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ABSTRACT

Market Liquidity and Linear Factor Pricing Models:
Empirical Assessment and New Distribution-Free Tests

By Sermin Gungor

An important problem of modern financial economics is understanding and quan-

tifying the trade-off between risk and expected return. Although we anticipate the

riskier assets to yield higher returns, the quantification of the risk-return tradeoff

was possible only after the introduction of the linear factor pricing models. Given

the crucial role of these models in the asset pricing theory, this dissertation ana-

lyzes the linear factor pricing models from both financial economics and econometrics

points of view. The first chapter examines the role of time-varying market liquid-

ity in explaining the future asset returns using a conditional multifactor asset pricing

framework. The second chapter develops exact distribution-free tests of unconditional

mean-variance efficiency. The third chapter proposes a finite-sample procedure to test

the beta-pricing representation of linear factor pricing models that is applicable even

if the number of test assets is greater than the length of the time series.
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Preface

An important problem of modern financial economics is understanding and quanti-

fying the trade-off between risk and expected return. Although we anticipate the

riskier assets to yield higher returns, the quantification of the risk-return trade-off

was possible only after the introduction of the linear factor pricing models. Given

the crucial role of these models in the asset pricing theory, my research analyzes the

linear factor pricing models from both financial economics and econometrics points

of view. On the financial economics side, I examine the role of time-varying market

liquidity in explaining the future asset returns using a conditional multifactor asset

pricing framework. On the econometrics side, I propose new distribution-free proce-

dures for testing linear factor pricing models. Below I briefly elaborate on the three

papers that constitute this dissertation.

First essay studies the role of time-varying market liquidity in explaining the time

series behavior of the financial asset returns. Using lagged innovations in aggregate

liquidity and its volatility as state variables, I investigate whether liquidity provides

any information about the changes in assets’ risk and returns over time, and whether

this information can be attributed to a risk-based source. I start the empirical analy-

sis by examining the effect of lagged innovations in liquidity and its volatility, at the

portfolio level, without controlling for risk. Given that liquidity effect has a tempo-

ral dimension, I consider daily, weekly, and monthly data. The findings show that
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liquidity innovations track significant variation in portfolios’ expected returns. The

significant effect of liquidity shocks on portfolio returns can be attributed to one of

the following sources: (1) A shock to aggregate liquidity first results in a change in the

portfolio’s risk, then the expected return. This risk-based view implies that liquidity

indirectly affects the returns through time-variations in risk. (2) Liquidity shocks do

not influence the risk, nevertheless, have a significant direct effect on the returns.

In this case, liquidity provides information about future prices that is unrelated to

risk, hence, it is a source of mispricing. To test whether liquidity variables remain

to be significant after controlling for risk and determine the source of this effect, a

conditional multifactor asset pricing model is adopted.

Employing the methodology of Shanken (1990), the conditional model allows both

the expected returns and factor loadings to vary over time with liquidity innovations

and volatility. The appeal of studying the conditional model in the time-series is

two-fold. First, it allows us to examine the effect of aggregate liquidity variables

on the time-varying portfolio risks. Second, since time-series analysis focuses on the

expected returns, we can directly test whether the considered risk factors explain the

variation in expected returns over time.

Second essay develops exact distribution-free tests of unconditional mean-variance

efficiency. Empirical tests of the mean-variance efficiency hypothesis are usually con-

ducted within the context of a multivariate linear regression. The application of tests

2



based on asymptotic theory can lead to misleading conclusions as the approxima-

tion to the finite-sample distribution of test statistics can be quite poor, especially

as the number of equations included in the system increases. The findings show

that many standard parametric tests are unreliable, rejecting the null hypothesis of

mean-variance efficiency far too often.

Without any parametric assumptions it would seem difficult to derive an exact

finite-sample distribution theory. Despite this apparent difficulty, I propose in this

paper new non-randomized tests that are exact in finite samples without any paramet-

ric assumptions about the distribution of the error terms in the simple multivariate

linear regression model. Here I propose three testing approaches for joint inference

on several parameters that differ mainly by what is assumed about the covariance of

the errors across equations.

The first approach is an induced test procedure that allows for arbitrary covari-

ances in the cross-section of error terms. The second approach assumes that the errors

are independent across equations, conditional on the returns of the benchmark port-

folio. The third approach is based on a simple linear combination of the test assets

(or portfolios of test assets) and, like the second approach, provides a test procedure

with the correct size no matter the number of included assets. These single-portfolio

tests allow some forms of covariation in the cross-section of error terms. The number

of assets in the cross-section may even exceed the number of time-series observations,
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making these tests particularly attractive when testing mean-variance efficiency with

many test assets or when the portfolios have relatively short histories.

The proposed distribution-free (or non-parametric) tests have several appealing

features, since they are built on the mere assumption that the joint temporal error

density is symmetric around zero. This means that no restrictions are placed on the

degree of non-normality or the degree of heterogeneity across marginal distributions.

In fact, the existence of moments need not be assumed for the validity of the new tests.

It is important to note that this framework still leaves open the possibility of asym-

metries in the distribution of test asset returns via coskewness with the benchmark

portfolio.

Asset returns typically display clear patterns of volatility clustering for which

generalized autoregressive conditional heteroskedasticity (GARCH) models are often

used. The tests proposed here allow not only for non-normalities, but also for unknown

forms of conditional heteroskedasticity and other intertemporal dependencies among

the absolute values of the error terms in the asset pricing model.

The third essay develops a finite-sample procedure to test the beta-pricing rep-

resentation of linear factor pricing models that is applicable even if the number of

test assets is greater than the length of the time series. Further, I make no para-

metric assumption about the distribution of the disturbances in the factor model.
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This framework leaves open the possibility of unknown forms of time-varying non-

normalities, heteroskedasticity, and even outliers in the asset returns.

I propose an adaptive approach based on a split-sample technique to obtain a

single portfolio representation judiciously formed to avoid power losses that can occur

in simple portfolio groupings. A very attractive feature of this approach is that it

is applicable even if the number of test assets is greater than the length of the time

series. This stands in sharp contrast to the standard test or any other approach based

on usual estimates of the disturbance covariance matrix.

My proposed test procedure then exploits results from Coudin and Dufour (2009)

to construct confidence sets for the model parameters by inverting exact sign-based

statistics. The motivation for using this technique comes from an impossibility result

due to Lehmann ans Stein (1949) that shows that the only tests which yield reliable

inference under sufficiently general distributional assumptions, allowing non-normal,

possibly heteroskedastic, independent observations are based on sign statistics.

The power of the proposed test procedure increases as either the times series

lengthens or the cross-section becomes larger. Finally, I illustrate the new proce-

dure by testing the well-known Fama-French factor model over 5-year subsamples of

monthly returns on 100 U.S. equity portfolios formed on size and book-to-market.
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Chapter 1

Time-Variation in Liquidity and
Portfolio Returns

Abstract

This paper studies the role of time-varying liquidity in explaining the future asset

returns. Using the innovations in liquidity and its volatility as liquidity risk measures,

the methodology of Shanken (1990) is adopted in a multifactor asset pricing frame-

work. The resulting conditional model allows the factor loadings to vary over time

with the liquidity variables, hence, distinguish the risk and non-risk components of

their explanatory power. The merit of the conditional model is its ability to directly

test whether the innovations in liquidity and volatility capture time-variation in the

risk of an asset and whether they contain further information after controlling for

changes in risk. Using daily, weekly, and monthly data for the period of January 1964

- December 2008, I find that both the innovations in liquidity and its volatility are

strongly associated with changes in assets’ risk. After controlling for the time-varying

6



risk, the liquidity variables have no impact on the expected returns at the weekly and

monthly horizons. However, the daily innovations in liquidity convey information

about the future prices beyond the risk explanation.

JEL classification: G12

Keywords: Liquidity, Factor Models
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1.1 Introduction

The liquidity of an asset is often defined as the ability to cheaply trade large quantities

in a short period of time without moving the price too much. Despite its measurement

difficulty, there is substantial evidence to show that both the level of liquidity and

liquidity risk are priced in the market. Focusing on the latter, this paper examines the

role of time-varying liquidity in explaining the future asset returns. More specifically,

using lagged innovations in aggregate liquidity and its volatility as state variables, I

investigate whether liquidity provides any information about the changes in assets’

risk and returns over time, and whether this information can be attributed to a risk-

based source.

The early studies, such as Amihud and Mendelson, (1986), Brennan and Sub-

rahmanyam (1996), Brennan, Chordia, and Subrahmanyam (1998), Datar, Naik, and

Radcliffe (1998), examine the cross-sectional relation between the level of liquidity and

expected returns. They find that expected returns are decreasing in liquidity. More

recent studies by Chordia, Roll, and Subrahmanyam (2000), Hasbrouck and Seppi

(2001), Huberman and Halka (2001) analyze the systematic component in liquidity

and show that the time-variation in liquidity exhibits commonality. The new evidence

of a systematic component suggests that the fluctuations in liquidity may be a priced

risk factor. In general, the trading costs are high when aggregate liquidity is lower.

These higher costs are especially unwelcome to an investor whose wealth has already
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dropped and has a higher marginal utility of wealth. Therefore, investors must require

additional compensation for being exposed to liquidity risk due to its variations over

time. Motivated by the risk view of liquidity, Pastor and Stambaugh (2003), Acharya

and Pedersen (2005), Liu (2006), and Watanabe and Watanabe (2008) investigate

market-wide liquidity as a state variable that is common to all stocks, rather than a

characteristic that is relevant for pricing. The cross-sectional results of these studies

provide evidence that liquidity is a source of priced systematic risk in stock returns. A

related study by Chordia, Subrahmanyam, and Anshuman (2001) examines the effect

of the volatility of liquidity on stock returns, finding a surprising negative association

in the cross-section.

Although the cross-sectional relation between liquidity and expected returns has

been widely investigated, there is only limited time-series evidence on this issue.

Moreover, the existing literature do not seem to agree on the direction of the time-

series relation. Using monthly and yearly data Amihud (2002) finds that liquidity and

future portfolio excess returns are negatively related. Jones (2002) also confirms the

same negative relation using a very long time-series. However, the short-term results

of Gervais, Kaniel, and Mingelgrin (2002) show that the relation between liquidity

and expected returns is positive up to 20 days. The same positive relation is then

verified for international developed markets by Kaniel, Li, and Starks (2005). These

mixed time-series results indicate that, the relation between liquidity and expected

returns has a temporal dimension.
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The inconclusive time-series evidence and the growing interest in market-wide

liquidity risk motivated me to address the research question: What is the role of

time-varying aggregate liquidity on assets’ overall risk, measured by factor loadings

in a conditional asset pricing model, and expected returns? Employing the illiquidity

ratio of Amihud (2002), the liquidity risk is proxied by the innovations in aggregate

liquidity and its time-varying volatility. In a similar spirit, Watanabe and Watanabe

(2008) examined the time-variation in liquidity risk in a bivariate regime-switching

model. In this paper, however, instead of investigating the effect of liquidity only

on liquidity risk, I study its effect on three Fama and French (1993) factors and a

liquidity factor.

I start the empirical analysis by examining the effect of lagged innovations in liq-

uidity and its volatility, at the portfolio level, without controlling for risk. Given that

liquidity effect has a temporal dimension, I consider daily, weekly, and monthly data.

The findings show that liquidity innovations track significant variation in portfolios’

expected returns. The significant effect of liquidity shocks on portfolio returns can

be attributed to one of the following sources: (1) A shock to aggregate liquidity first

results in a change in the portfolio’s risk, then the expected return. This risk-based

view implies that liquidity indirectly affects the returns through time-variations in

risk. (2) Liquidity shocks do not influence the risk, nevertheless, have a significant

direct effect on the returns. In this case, liquidity provides information about future

prices that is unrelated to risk, hence, it is a source of mispricing. To test whether

10



liquidity variables remain to be significant after controlling for risk and determine the

source of this effect, a conditional multifactor asset pricing model is adopted. The

controlled risk factors in this model include the three Fama and French (1993) factors

and a liquidity factor, as suggested in Pastor and Stambaugh (2003), Liu (2006), and

Miralles and Miralles (2006). Similar to Fama and French’s SMB (small minus big)

and HML (high minus low), the mimicking liquidity factor is constructed based on

the return differences between an illiquid stocks portfolio and a liquid stocks portfolio.

Employing the methodology of Shanken (1990), the conditional model allows both

the expected returns and factor loadings to vary over time with liquidity innovations

and volatility. In this regression equation, the variation in the intercept measures the

direct effect of liquidity variables that is unrelated to risk. On the other hand, if the

liquidity innovations and volatility are truly risk factors, their effect will be captured

by the varying factor loadings and the resulting intercept will be zero. The appeal

of studying the conditional model in the time-series is two-fold. First, it allows us to

examine the effect of aggregate liquidity variables on the time-varying portfolio risks.

Second, since time-series analysis focuses on the expected returns, we can directly

test whether the considered risk factors explain the variation in expected returns over

time.

This paper is organized as follows: Section 2 provides the theoretical background

about the relation between liquidity and asset prices. Section 3 introduces the data

11



and time-series methodology. The employed models, and the details about obtaining

the innovations in liquidity and time-varying volatility are explained in this section.

Section 4 presents the empirical results for a system of predictive regressions, an

unconditional model, and a conditional four-factor asset pricing model. Section 5

concludes.

1.2 Theoretical Background

The standard asset pricing theory lies on two crucial assumptions; frictionless markets

and no arbitrage. In our context, the existence of frictionless markets implies that

trading assets in the stock market does not involve transaction costs, in other words,

stocks are perfectly liquid at all times. As a result, the standard theory shows that

stocks with the same cash flows must have the same price, otherwise there will be

arbitrage opportunities available to the investors at no risk. For an investor who

can freely trade in these frictionless markets, the first-order condition describing the

consumption and portfolio plan is Pt = Et[Pt+1Mt+1]. The stochastic discount factor

or the pricing kernel, Mt+1, summarizes all the necessary information for the asset

price Pt.

The assumption of frictionless markets, however, is rather extreme. For instance,

while trading in the stock market, the investors face transaction costs that limit

12



their ability to exploit return patterns. Hence, different prices for assets with the

same cash flows do not necessarily imply the existence of arbitrage (see Amihud

and Mendelson, 1986; Silber, 1991; Brenner et.al., 2001). Rather it implies that the

stochastic discount factor that prices all the assets actually does not exist. Some

liquidity models, however, continue to rely on the existence of the stochatic discount

factor but assume that it is a function of the aggregate liquidity, i.e. Pastor and

Stambaugh (2003).

Relaxing the assumption of frictionless markets, the theory of liquidity-based asset

pricing suggests that the level of liquidity as well as the liquidity risk are priced in

the market. The intuition behind the effect of liquidity is that the price of a stock is

the discounted value of the entire future stream of cash flows net of the transaction

costs, such as:

Pi =
C̄i − µAi

rf
(1.2.1)

where Pi is the stationary equilibrium price, C̄i is the mean of the i.i.d. cash-flows,

and Ai is the cost of transaction of asset i. The trading intensity is denoted by µ,

showing how often the investor expects to trade asset i. Finally rf is the risk-free
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rate.1 Similarly, the required return on stock i can be written as:

E(ri) = rf + µ
Ai
Pi

(1.2.2)

Eq. (1.2.1) and (1.2.2) show how the level of liquidity affects the stock prices and

required returns. Intuitively, Eq. (1.2.2) simply demonstrates that the required return

on stock i is the sum of risk-free rate and the expected per period cost of trading.

Moreover, the liquidity risk, which arises due to the variation of liquidity over-time,

is expected to be priced in the market. The variation in liquidity is perceived as

risk because its fluctuations are correlated with the price volatility and also it creates

additional uncertainty about the future transaction costs that the investor will face.

Separate from the effect of liquidity on asset returns net of transaction costs, a

fairly new line of research has emerged suggesting that liquidity is a common risk

factor (see; Pastor and Stambaugh, 2003; Acharya and Pedersen, 2005; Liu, 2006;

Miralles and Miralles, 2006). Based on the observation that the time-variation in

liquidity exhibits commonality (see; Chordia, Roll, and Subrahmanyam, 2000, Has-

brouck and Seppi, 2001, Huberman and Halka, 2001), these studies show that in-

vestors must be compensated for holding stocks with high sensitivity to innovations

1The future stream of cash flows and transaction costs is divided by the risk-free rate, rf , because

the discount rate for a risk-neutral investor is 1/Rf , with Rf = 1 + rf .
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in aggregate liquidity.

1.3 Data and Methodology

The empirical results are based on daily data for stock return, price, and trading

volume from daily stock files of Chicago University’s Center for Research of Securities

Prices (CRSP). The sample consists of all the ordinary common stocks (CRSP share

codes 10 and 11) listed in New York Stock Exchange (NYSE) and American Stock

Exchange (AMEX) over the period January 1964 to December 2008. To be admitted

in the sample, a stock must have a beginning of the month price between $5 and

$1000. Moreover, each stock is required to have at least 15 days of return and volume

data in each month in a year and at least 100 days of data in the previous year.

Following Amihud (2002), the illiquidity measure for a stock is defined as the ratio

of the stock’s absolute return to the dollar value of its trading volume (multiplied by

106):

ILLIQid =
|Rid|
V OLid

∗ 106 (1.3.1)

where Rid is the return and V OLid is the dollar volume of stock i on day d. The

illiquidity measure in Eq. (1.3.1) focuses on the stock price fluctuations due to order

flow. Intuitively, it measures the effect of trading volume on the stock price. The

larger the response of the stock price to the trading volume (a high value of ILLIQid)
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the less liquid the stock i is, therefore, ILLIQ is referred as illiquidity ratio. Then,

the stocks are sorted into 10 illiquidity portfolios each year based on their average

illiquidity ratio at the end of the previous year. The stocks with highest ILLIQid

are allocated to the least liquid portfolio P1, and the stocks with lowest ILLIQid are

allocated to the most liquid portfolio P10. The illiquidity for a portfolio is calculated

as the natural logarithm (ln) of equally-weighted average of the illiquidity ratios for

individual stocks in that portfolio. Using daily return and volume data, the daily cost

of trading for any portfolio p with I stocks is:

ILLIQpd = ln

(
1

I

I∑
i=1

|Rid|
V OLid

)
(1.3.2)

The market portfolio, denoted by Pm, is defined as the portfolio of all available

stocks, hence, the market-wide illiquidity is the average of the illiquidity ratios for all

stocks. Based on the previous research, Amihud’s illiquidity ratio have theoretical and

empirical advantages over the usual measures. Hasbrouck (2004) finds that, among

the liquidity proxies he considered, Amihud’s appears to be the best that captures

Kyle’s lambda. Amihud (2002) shows that, ILLIQ is positively related with measures

of price impact which he obtained from microstructure data. Similarly, Sadka (2006)

finds that, illiquidity ratio is highly correlated with high-frequency measures of price
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impact. It also has empirical advantage, because the required data is relatively easy

to obtain. The availability of data for a long period of time allows us to examine the

time-series variations in liquidity and its effects on expected returns. The empirical

results in this paper are based on the assumption that, ILLIQ is a valid proxy for

illiquidity costs.

To investigate the relation between liquidity, expected returns, and common risk

factors in an asset pricing framework, I obtained the three Fama-French factors; mar-

ket (MKT ), size, (SMB), and book-to-market (HML), as well as the risk-free one-

month Treasury-bill rate from Kenneth French’s website.2 I also created a liquidity-

mimicking factor based on ILLIQ. The liquidity factor is constructed by sorting all

the available stocks into three illiquidity groups based on NYSE breakpoints for the

top 30% (illiquid), middle 40% (moderately liquid), and bottom 30% (liquid). Then,

the liquidity factor IML (illiquid minus liquid) is defined as the difference between

the mean returns of the illiquid stocks portfolio and liquid stocks portfolio. The

presented portfolio returns are equally-weighted returns.

To study the possible temporary relation between the interest variables, I aggre-

gated the daily data to weekly and monthly frequencies. The lower frequency data

for portfolio returns and IML liquidity factor are obtained by aggregating the daily

observations. The illiquidity ratio is aggregated by averaging the daily observations

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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across dates.

Table 1.1 reports the summary statistics for four risk factors, MKT , SMB, HML,

and IML at each data frequency. For simplicity, I will focus on the monthly data in

my explanations, unless it is necessary to point out the temporary aspect in results.

The average monthly returns on MKT , SMB, HML, and IML are 0.37%, 0.26%,

0.43%, and 0.44% respectively. The positive risk premiums for each factor show that

investors are compensated for bearing factor risk. Also, notice that IML provides

the highest premium implying the importance of the liquidity risk factor.

A single factor model, such as Capital Asset Pricing Model (CAPM), studies the

relationship between an asset’s market beta and expected return. To ensure that

the market beta from a multifactor asset pricing model has the same interpretation

as the one from a single factor model, the included risk factors must be orthogonal

to each other. The correlation coefficients among MKT , SMB, HML, and IML

are reported in Table 1.1. The non-zero values indicate that the data on each factor

fails to control for the effects of the other factors. At monthly frequency, Panel C,

SMB and IML are positively correlated with MKT (correlation coefficients equal

to 0.30 and 0.12 respectively), while HML has a negative correlation of -0.38. The

correlation between SMB and HML is -0.26, and the highest correlation is between

SMB and IML with a positive value of 0.84. The four risk factors are orthogonalized

using the following regressions:
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SMBt = Asmb +BsmbMKTt + εsmbt (1.3.3)

HMLt = Ahml +BhmlMKTt + ChmlSMB⊥t + εhmlt (1.3.4)

IMLt = Aiml +BimlMKTt + CimlSMB⊥t +DimlHML⊥t + εimlt (1.3.5)

where the orthogonalized factors, denoted by superscript ⊥, are the sum of the esti-

mated residuals and the intercept from Eq. (5)-(7), such that:

SMB⊥t = Âsmb + ε̂smbt (1.3.6)

HML⊥t = Âhml + ε̂hmlt (1.3.7)

IML⊥t = Âiml + ε̂imlt (1.3.8)

Table 1.1 shows that the cross-correlations across the orthogonalized risk factors

are all equal to zero. Hence, in the calculation of a risk factor, the above procedures

successfully control for the impact of the other factors. The monthly mean return

on the size and the liquidity factors decline from 0.26% to 0.18% and from 0.44%

to 0.12% respectively. The monthly average return on the book-to-market factor,

however, increases from 0.43% to 0.54%.

19



1.3.1 Aggregate Illiquidity Ratio

Fig. 1.1 plots the time-series of illiquidity ratios for the market portfolio (Pm), an

illiquid portfolio (P2), and a liquid portfolio (P9) at daily, weekly, and monthly fre-

quencies. The most prominent feature of the illiquidity series is the downward trend,

indicating that liquidity has increased over the 45-year sample period. The liquidity

of P9 has increased faster, resulting in a larger liquidity differential between the liq-

uid and illiquid portfolios. Moreover, the decidedly negative trend of illiquidity ratio

reveals that, the series is non-stationary.

If the measure of aggregate illiquidity is a good proxy, then it is expected to cap-

ture the liquidity conditions in the market and coincide with the major economic and

financial events. Fig. 1.2 plots the monthly aggregate illiquidity and the equally-

weighted returns of all the available NYSE-AMEX stocks. The gray areas show

the NBER business-cycle contraction dates, and each black line represents a large

decline in liquidity due to a major event. The illiquidity series presents that, the

economic slow-downs are accompanied by large tightening in aggregate liquidity, ex-

cept the illiquidity spike leads the slow-down between March 2001 and November

2001. Throughout the sample period from January 1964 to December 2008, the large

liquidity declines coincide with six major events including the Penn Central Debacle

in May 1970, the oil crisis in November 1973, stock market crash in October 1987,

the decline in stock market in November 1990 due to the turmoil in Persian Gulf,
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the liquidity decline in September 1998 following Asian crisis, Russian default, and

the collapse of the Long Term Capital Management, and finally, the plunge in the

stock market in October 2008 as a result of failures in large U.S. financial institutions

because of subprime loans and credit default swaps.

Table 1.2 reports the summary statistics of average returns and illiquidity ratios

for ten liquidity-based portfolios, P1-P10, and the market portfolio, Pm, at each data

frequency. The statistics in Panel A through Panel C show that, portfolio returns

and illiquidity ratios at each frequency follow similar patterns. For instance, the un-

conditional average monthly return for individual portfolios is decreasing in liquidity.

The average monthly return of P1 is 1.817% and of P10 is 0.854%, for an annualized

spread of 12.19%.3 This economically significant return spread among the liquidity

portfolios confirms the existence of liquidity premium.

Table 1.2 also more formally documents the previously observed nonstationarity in

illiquidity series. The estimated first-order autocorrelation coefficients reveal that, the

series is highly persistent (see also; Amihud, 2002; Eckbo and Norli, 2002; Watanabe

and Watanabe, 2008), with values equal to 0.98, 0.99, and 0.99 for the market portfolio

Pm at daily, weekly, and monthly frequencies respectively. To remove this persistence

in the illiquidity and obtain a time-series of liquidity innovations, in the next section

3I annualized the daily, weekly, and monthly returns using [(1 + R/100)k − 1] ∗ 100, where k is

the number of observations in one year.
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I take the first difference of the aggregate illiquidity ratio.

1.3.2 Aggregate Liquidity Innovations and Volatility

The change in the aggregate illiquidity at the end of each period is defined as the first-

difference of the market-wide illiquidity ratio, ∆ILLIQmt = ILLIQmt−ILLIQm,(t−1),

for t = 1, ..., T . In a rational expectations model, the expected changes in state vari-

able(s) should not affect the risk premium. In other words, only the unexpected

changes in liquidity result in an adjustment about the future liquidity expectations,

hence the risk premium. Consistent with the theory, many studies in the literature

employ the innovations in liquidity as a measure of liquidity risk (see Pastor and

Stambaugh, 2003; Liu, 2006; Chan et. al., 2008; and Watanabe and Watanabe,

2008)4.

The relation between excess stock returns and liquidity innovations would be sim-

ply analyzed in a linear regression framework, if the latter was observable. Since this

is not the case, the common method used in the literature is a two-step estimation

(2SE) procedure. In the first-step, the changes in the illiquidity measure are de-

composed into expected and unexpected components using a simple AR(1) model;

4The empirical results using the data in this paper also show that, the expected component of

illiquidity ratio has no significant effect on the future portfolio returns. The unreported results are

available at request.
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∆ILLIQmt = α+ ρ ∆ILLIQm,(t−1) + ηmt, where the estimated residuals ,η̂mt, repre-

sent the unexpected changes in illiquidity. In the second-step, the excess stock returns

are regressed on the estimated residuals from the first-step, replacing the unobserved

illiquidity innovations. The generated regressors in this fashion, however, cause two

issues: (i) Even if the estimates from the first-step are consistent, the presence of the

generated regressors at the second step generally leads to loss of efficiency in estima-

tion. Moreover, it results in invalid inference, because the obtained standard errors

are an inconsistent estimate of the true standard errors (see Pagan, 1984; 1986) 5.

(ii) The second issue concerns the information used to estimate the residuals from an

AR(1) model. The parameter estimates from the above AR(1) model are obtained by

using all the available information up to end of the data sample (period T ). There-

fore, the estimated residuals at time t, η̂mt = ∆ILLIQmt − α̂ − ρ̂ ∆ILLIQm,(t−1),

do not actually represent the residuals for that time, since, α̂ and ρ̂ are obtained

using information available before, as well as, after time t. To address this problem,

5To avoid the inefficiency in the parameter estimates and inconsistency in the standard errors, I

have estimated the models in section (3.3) in one-step. In this system of nonlinear least squares (NLS)

the parameters of the first- and second-step from 2SE are simultaneously estimated. However, this

procedure requires simultaneous estimation of 42 parameters for the simple predictive regressions in

Eq. (1.3.14), and 152 parameters for the conditional multifactor asset pricing model in Eq. (1.3.15).

Due to the large number of parameters, the variance-covariance matrices from the NLS procedure

became intractable.
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I estimate a recursive AR(1) model for changes in the aggregate illiquidity:

∆ILLIQmt = αt + ρt∆ILLIQm,(t−1) + ηmt , t = 1, ..., T (1.3.9)

where the intercept and the slope coefficient on ∆ILLIQm,(t−1) are not constant but

evolve over time. The recursive AR(1) process in Eq. (1.3.9) implies that, the agents

learn about the illiquidity process over time. They believe that, market illiquidity

follows the process in Eq. (1.3.9) but they do not know the actual values for αt

and ρt. Each period they update their parameter estimates incorporating the new

information in that period.

The recursive estimation procedure starts estimating the parameters of Eq. (1.3.9)

by using the first 30 observations of changes in illiquidity. Then, the procedure is

repeated for the next period, by including the data for the new date. It continues

until the end of the dataset is reached. At the end of this process two series, one for

α̂t and one for ρ̂t, are generated with T̃ = (T − 30) estimates each. The innovations

in market liquidity, denoted by η̂∗mt, is defined as the negative values of the residuals

from Eq. (1.3.9)6:

6The residuals from Eq. (1.3.9) are multiplied by negative one to enhance the interpretation of

results by converting them into a measure of liquidity shocks rather than illiquidity.
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η̂∗mt = −(∆ILLIQmt − α̂t − ρ̂t∆ILLIQm,(t−1)), t = 1, ..., T̃ (1.3.10)

= −η̂mt (1.3.11)

Note that, a higher positive value of η̂∗mt now represents innovations in aggregate

liquidity. The time-series plot of liquidity innovations in Fig. 1.3 appears to have

constant mean at each data frequency.

In addition to the innovations in market-wide liquidity, this paper also examines

the volatility of liquidity as a state variable for predicting excess returns. The plots

in Fig. 1.3 exhibits time-varying volatility clustering in liquidity innovations. Hence,

the estimated residuals from Eq. (1.3.9) are defined as η̂mt = σmtumt, where umt ∼

D(0, 1), and D specifies a distribution with mean zero and unit variance. Based on

the Akaike information criterion (AIC), the time-varying volatility of daily liquidity

is modeled as a GARCH(1, 1) process:

σ2
mt = δ0t + δ1tη̂

2
m,(t−1) + δ2tσ

2
m,(t−1) (1.3.12)

and the volatility of weekly, and monthly liquidity are modeled as ARCH(2) pro-
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cesses:

σ2
mt = δ0t + δ1tη̂

2
m,(t−1) + δ2tη̂

2
m,(t−2) (1.3.13)

Notice that the parameters in Eq. (1.3.12) and (1.3.13) have time subscripts. It

is because the square-root of the estimated variances from the above procedures, σ̂mt,

will be employed in the next section as predictors of the excess portfolio returns.

However, since these series are estimated, one more time we face the previously

discussed generated repressors problem. This issue is addressed by recursively es-

timating the above GARCH and ARCH processes. First, using 1000 observations

for GARCH(1, 1) of daily volatility and 50 observations for ARCH(2) of weekly

and monthly volatilities, the initial δ̂t estimates are obtained. Then, the process

is repeated by including the η̂mt for the next period, until the end of the dataset is

reached. The resulting number of estimates for each δ̂t series is equal to T ∗ = (T̃−B),

where B is the number of observations employed for the initial estimates.

1.3.3 Time-Series Methodology

The methodology introduced in this section initially examines the simple time-series

relation between the two liquidity variables, namely innovations in aggregate liquidity
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and its volatility, and future portfolio returns. The following system of regression

equations is employed for ten liquidity-sorted portfolios:

Zpt = βp0 + βp1η̂
∗
m,(t−1) + βp2σ̂m,(t−1) + βp3Jant + εpt, p = 1, ..., 10 (1.3.14)

where Zpt = Rpt − Rft is the portfolio p’s return in excess of risk-free rate Rf and

Jant is a dummy variable for the month of January. The variable Jan controls for

the January effect in liquidity portfolios, which originally refers to the fact that, the

returns of small firms are higher in the month of January than in other months (see

Keim; 1983). Eq (1.3.14) provides a system of equations, where a separate time-series

regression is defined for each portfolio. It only serves the purpose of understanding

the basic relation between excess returns and lagged liquidity variables. It does not

control for risk factors and does not supply any information about the source of

time-varying expected returns.

The efficient market hypothesis states that the liquidity variables should not have

any predictive power after controlling for all the risk factors. In other words, the con-

sidered factors are adequate proxies for priced risk, and liquidity shocks and volatility

capture information about changes in these factors. Otherwise, aggregate liquidity

variables will remain to be significant even after controlling for risk. The latter out-

come implies that liquidity variables do not contribute to the portfolios’ risk. However,

they capture non-risk related information (mispricing) about expected returns.
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I examine the source of time-varying expected returns by using the conditional

methodology developed by Shanken (1990) for a four-factor asset pricing model. The

conditional model controls for the orthogonalized versions of the three Fama and

French (1993) factors, the excess market return (MKT ), size factor (SMB⊥), and

book-to-market factor (HML⊥). In addition, recognizing the limitations of three-

factor model7, I include a liquidity factor IML⊥ (illiquid minus liquid) as in Liu

(2006) and Miralles and Miralles (2006). The four-factor model assigns a role for

liquidity as a common risk factor similar to SMB⊥ and HML⊥. The liquidity factor

IML⊥ is created by taking the return differences between the lowest liquidity and

the highest liquidity portfolios. The resulting conditional four-factor model takes the

following form:

Zpt = apt + bptMKTt + sptSMB⊥t + hptHML⊥t + dptIML⊥t + ept (1.3.15)

The factor loadings in the system of equations (1.3.15) vary over time with the

innovations in liquidity and volatility. Following Shanken (1990), I assume that they

7Daniel and Titman (1997) argue that the Fama and French factors do not have the ability to

directly explain the cross-section of average returns. They claim that the explanatory power of the

Fama-French factors is not due to their ability to capture risk but due to their correlation with the

firms’ characteristics. Another drawback of the three-factor model for our specific purpose is its lack

of control for the liquidity risk.
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are linearly related, such that:

apt = ap0 + ap1η̂
∗
m,(t−1) + ap2σ̂m,(t−1) (1.3.16)

λpt = λp0 + λp1η̂
∗
m,(t−1) + λp2σ̂m,(t−1) (1.3.17)

where apt is the intercept and λpt = (bpt, spt, hpt, dpt)
′ is the vector of factor loadings

in Eq (1.3.15). Then Eq. (1.3.15) can be rewritten in a more explicit form:

Zpt = ap0 + ap1η̂
∗
m,(t−1) + ap2σ̂m,(t−1)

+
(
bp0 + bp1η̂

∗
m,(t−1) + bp2σ̂m,(t−1)

)
MKTt

+
(
sp0 + sp1η̂

∗
m,(t−1) + sp2σ̂m,(t−1)

)
SML⊥t (1.3.18)

+
(
hp0 + hp1η̂

∗
m,(t−1) + hp2σ̂m,(t−1)

)
HML⊥t

+
(
dp0 + dp1η̂

∗
m,(t−1) + dp2σ̂m,(t−1)

)
IML⊥t + ept, p = 1, ..., 10

Eq. (1.3.18) contains fifteen independent variables; an intercept, four factors,

and ten interactive terms. The coefficients ap1 and ap2 measure the direct effect of

lagged liquidity innovations and volatility respectively. The changes in the factor

loadings due to liquidity variables are captured by λp1 = (bp1, sp1, hp1, dp1)
′ and λp2 =

(bp2, sp2, hp2, dp2)
′. Using the conditional multifactor model, I can directly test the
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source of the time-variation in the expected portfolio returns by distinguishing the

risk and non-risk components. The rational asset pricing theory states that, the effect

of liquidity should disappear once all the risks are controlled for. Within the context of

Eq. (1.3.18), there are mainly two possible sources of the varying expected returns.

First, if the non-risk related component, measured by ap1 and ap2, is significantly

different from zero then the direct effect of liquidity prevails even after controlling for

the the time-variation in the portfolios’ risk. Assuming that the considered factors

adequately control for risk, such an outcome will imply that, the risk factors do not

fully explain the time-series relation between η̂∗m, σ̂m, and expected returns, hence,

the rational asset pricing hypothesis does not hold. Second, if the estimated values

of ap1 and ap2 are zero then the liquidity variables have an effect through the time-

variation in factor loadings. In this case, the source of the varying expected returns

will be attributed to changes in the portfolio’s risk, verifying the rational asset pricing

theory. The next section provides the test results for the relation between liquidity

variables and expected returns, and the source of this relation.

1.4 Empirical Results

To gain insight about the time-series relation between the innovations in liquidity

(η̂∗m), its volatility (σ̂m), and the expected returns, I start my empirical analysis
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by estimating the seemingly unrelated regressions in Eq. (1.3.14). This system of

equations for ten liquidity-sorted portfolios evaluates the economic importance of η̂∗m

and σ̂m without controlling for risk. Because each equation in the system has the

same regressors, the least-squares method provides an efficient estimator, hence, it

is favored. Table 1.3 reports the results for each portfolio. The averages of the

coefficient estimates across portfolios and the Wald statistics are reported in the last

two columns. The Wald statistic tests the null hypothesis that, the estimates of

a coefficient for all portfolios are jointly equal to zero. It is calculated as Wk =

β̂′pk(Σ̂k)
−1β̂pk, where β̂pk = (β̂1k, ..., β̂10,k)

′ is the vector of βpk estimates for the kth

regressor from ten equations, and Σ̂k is the (10 × 10) heteroskedasticity-consistent

estimate of the residual covariance matrix. Under the null hypothesis, the Wald

statistic is asymptotically distributed as χ2 with degrees of freedom equal to the

number of restrictions.

The evidence in Panel A through C shows that, the lagged innovations in aggregate

liquidity has a significant positive impact on the expected portfolio returns at all data

frequencies. At first, a positive relation between lagged liquidity and expected returns

seems surprising. However, the positive sign in due to the estimated negative ρ̂t values

from Eq. (1.3.9). The autocorrelation coefficient in Eq. (1.3.9) is time-varying with a

mean of -0.06. Together with the persistence in liquidity (see section 3.1) the negative

ρ̂t estimates imply that a negative (positive) liquidity shock in period t is expected to

be followed by a low (high) liquidity level (due to persistence) in period t+ 1, but is
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still expected to be higher than the level in period t (due to negative ρ̂t). Therefore, an

unexpected decline (increase) in liquidity will result in a lower expected return in the

next period. On the other hand, the volatility of liquidity appears to be insignificant

for all portfolios at all frequencies.

For daily data (Panel A), the coefficients of the lagged liquidity innovations range

from -0.001 for P10 to 0.168 for P1. Although, the effect of η̂∗m is stronger on less

liquid portfolios, it remains to be significant for P1 through P6. The coefficients of η̂∗m

have a positive average of 0.099 across portfolios. Hence, on average, an unexpected

increase in aggregate liquidity at time t results in higher expected returns at time

t+ 1. Together with the standard deviation of 0.048, the average coefficient estimate

of η̂∗m shows the magnitude of its impact. For example, an increase in η̂∗m two stan-

dard deviations from its mean implies a 0.01% (0.096*0.099) daily, 2.42% annualized,

increase in the next period return of a typical portfolio. Supporting evidence for the

significant effect of η̂∗m is also provided by the Wald test statistic, W . At 1% signifi-

cance level, it strongly rejects the null hypothesis with a value of 35.68 and confirms

that the aggregate liquidity shocks co-move with the expected returns. The weekly

results in Panel B and the monthly results in Panel C are similar to the daily ones. η̂∗m

is positively related with the expected returns of the liquidity-based portfolios, and

the degree of association is higher for less liquid portfolios. The average coefficient

estimate is 0.525 for weekly, and 3.304 for monthly frequencies, with respective stan-

dard deviations of 0.550 and 1.195. The implied effect of a two standard deviations
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increase in η̂∗m on the next period return is 0.58% at weekly and 7.90% at monthly

horizons. The Wald test statistic again rejects the null hypothesis at 1% significance

level.

The least-squares estimation method assumes that the regressors η̂∗m and σ̂m are

exogenous. This assumption may not hold if there are feedback effects from the ex-

pected portfolio returns to liquidity variables. Since Eq. (1.3.14) specifies a system of

predictive regressions with lagged innovations and volatility, endogeneity in the form

of feedback is less of a problem. However, if the investors’ liquidity preferences are

affected by the expectations of future prices, then the feedback effects can still exist.

To investigate the latter, I estimate the correlations between the contemporaneous

liquidity innovations and the residuals from Eq. (1.3.14). The low values, ranging

between 0.10 - 0.13 for daily, 0.23 - 0.30 for weekly, and 0.42 - 0.54 for monthly data,

suggest that the significant effect of η̂∗m on expected returns is not due to endogeneity

bias.

The lagged innovations in liquidity significantly affects the expected returns, how-

ever, provides low R2 statistics. Although, the small values of R2 are common in

predictive regressions of expected returns, they still cast doubt about the economic

importance of η̂∗m. Campbell and Thompson (2008) explore this issue in a simple opti-

mal portfolio problem and conclude that, low R2 statistics can generate large benefits

for investors. They compare the average excess returns from a conditional portfolio
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of a mean-variance optimizing investor who observes the predictor variable(s) and

an unconditional portfolio of an investor who does not. They show that the propor-

tional increase in expected return from observing the predictor(s) is approximately

equal to R2/S2, where S is the unconditional Sharpe ratio of the risky asset. Ta-

ble 1.4 reports the unconditional Sharpe ratios, R2 statistics from Eq. (1.3.14), and

the R2/S2 ratios for ten liquidity-sorted portfolios. The higher values of R2/S2 ra-

tio for illiquid portfolios imply that the liquidity variables provide more information

for these portfolios. Nevertheless, the R2/S2 ratios are high for the majority of the

portfolios. For example, the daily squared Sharpe ratio for P8 is 0.0005 (0.05%), and

the R2 equals to 0.001 (0.1%). The resulting R2/S2 = 2.0% means that using the

information from liquidity variables, η̂∗m and σ̂m, a mean-variance optimizing investor

can obtain a 2.0% proportional increase in her daily return. The weekly and monthly

proportional return gains for the same portfolio are 0.8% and 1.5% respectively.

1.4.1 The Unconditional Four-Factor Model

The next section examines the source of time-variation in expected portfolio returns

in a four-factor asset pricing model. In addition to the orthogonalized three Fama and

French (1993) factors, this model includes a liquidity factor (IML⊥). To determine

whether IML⊥ provides relevant information for portfolio returns, I investigate its

significance in an unconditional framework.
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Table 1.5 reports the least-squares estimates for the unconditional system of equa-

tions; Zpt = ap+bpMKTt+spSMB⊥t +bpHML⊥t +dpIML⊥t +ept, where p = 1, ..., 10.

Panels A through C document the results for daily, weekly, and monthly data. Consis-

tent with the previous findings in the literature, the factor loadings on size (SMB⊥)

and book-to-market (HML⊥) capture significant variation in portfolio returns after

controlling for market risk. It is interesting to observe that the loadings on the market

factor (MKT ) are higher for more liquid portfolios at daily and weekly frequencies.

At daily horizon, the loadings on MKT range from 0.547 for P1 to 1.049 for P10. The

loadings on weekly MKT are 0.767 and 1.036 for P1 and P10 respectively. Since the

factor loadings show the average sensitivities of the portfolio returns to risk factors,

also known as “beta”, it implies that liquid portfolios are more sensitive to market

risk. At each data frequency, the loadings on the IML⊥ are highly significant. The

aggregate liquidity betas decrease in portfolio liquidity and turn to negative for the

liquid portfolios, indicating, low liquidity stocks bear high liquidity risk. The average

risk-adjusted returns (ap) appear to be lower for more liquid portfolios. The spreads

between the returns of P1 and P10 are 0.027%, 0.10%, and 0.31% at daily, weekly,

and monthly frequencies respectively.

Under the rational asset pricing theory, the risk-adjusted average returns should be

equal to zero. The non-zero values of individual ap estimates in Table 1.5 imply that,

the four-factor model cannot entirely explain the cross-sectional differences among the

average portfolio returns. However, the liquidity factor IML⊥ is highly significant,
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therefore, the four-factor specification is preferred for the rest of the analyses.

1.4.2 Innovations in Aggregate Liquidity, Volatility, and Ex-

pected Returns: Conditional Four-Factor Model

The previously shown significant impact of the lagged liquidity variables on the ex-

pected returns can be attributed to one of the two sources: (1) The innovations in

liquidity and volatility are associated with the changes in portfolios’ risk and return.

In other words, the time variation in liquidity indirectly affects the expected returns

through variation in risk. In this case, liquidity proxies for risk, and we expect the

innovations and volatility to be related with the factor loadings in the conditional

asset pricing model. (2) Changes in the liquidity variables do not alter the portfolios’

risk, yet remain to be significant. If the direct effect of liquidity prevails, then the

innovations in liquidity and volatility are priced because they provide non-risk related

information about future prices.

Since the risk-based view suggests that the aggregate liquidity affects the expected

returns through risk factors, it is useful to explore the relations between the lagged
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innovations, volatility, and the factors, using the following regressions:

Ft = ϕ0 + ϕ1η̂
∗
m,(t−1) + ϕ2σ̂m,(t−1) + νt (1.4.1)

where Ft = (MKTt, SMB⊥t , HML⊥t , IML⊥t )′ is the vector of four risk factors. The

documented results in Table 1.6 show that, the lagged innovations in liquidity have

a significant positive impact on SMB⊥ and IML⊥ at all data frequencies. It is

also positively associated with HML⊥ at monthly horizon. The lagged volatility

measure appears to be positively related with SMB⊥ at daily frequency. The monthly

volatility, however, has a surprising negative impact on MKT and HML⊥.

Tables 1.7 reports the least-squares estimates of the system of conditional four-

factor regressions for ten liquidity-sorted portfolios. The risk-based view requires the

aggregate liquidity fluctuations and volatility to be related with one or more factor

loadings, i.e. λp1 6= 0 and λp2 6= 0 . On the other hand, non-zero interactions between

η̂∗m,(t−1), σ̂m,(t−1), and the intercept imply that the impact of liquidity variables on

expected returns are not entirely due to time-variations in portfolios’ risk. Since the

focus here is the association of the factor loadings with the liquidity variables, I only

report the coefficients of the interactive terms in order to reduce cluttering. Table

1.7 shows that η̂∗m and σ̂m are strongly associated with the time-variations in factor

loadings, however, the sign and the magnitude substantially changes depending on
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the investment horizon.

At daily frequency (Panel A), the volatility of aggregate liquidity, σ̂m, appears to

affect the loadings on HML⊥ and IML⊥ with an expected positive sign, although

these effects are significant only for P2, P3, and P9. The positive sign implies that the

book-to-market and liquidity risks become more important as the volatility of aggre-

gate liquidity increases. The significant effects of σ̂m on the loadings of HML⊥ and

IML⊥ are also supported by the Wald statistic values of 41.05 (p-value=0.000) and

49.73 (p-value=0.000) respectively. σ̂m is also strongly associated with the loadings

on MKT and SMB⊥, but with a negative sign. Hence, the market and size risks of

a portfolio decline with the volatility in aggregate liquidity. The decline in market

risk is especially significant for more liquid portfolios. It is important to realize that

the daily volatility in liquidity affects the expected portfolio returns only through

its impact on the portfolios’ risk. Its direct effect, measured by ap2, is marginally

and jointly equal to zero. Hence, the daily σ̂m is a source of risk and it provides no

incremental information after controlling for the time-varying factor risk.

On the other hand, the daily innovations in liquidity, η̂∗m, exhibit no association

with the risk factor loadings. Its direct impact, measured by ap1, on the expected

returns prevails after controlling for the time-varying risk. The positive values of

âp1 indicate that an unexpected increase (decrease) in aggregate liquidity results in

higher (lower) expected returns the next day. Hence, at one day investment horizon,
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an innovation in liquidity provides information about the next day’s asset prices,

without affecting the risk. The Wald statistic also supports the finding for individual

portfolios by rejecting the null hypothesis, H0 : â1,1 = â2,1 = ... = â10,1 = 0, with a

value of 70.54 (p-value=0.00).

At the investment horizon of one week (Panel B), σ̂m again affects the loadings

on MKT and SMB⊥ with a negative, and HML⊥ with a positive sign. The weekly

innovations in liquidity (η̂∗m) is, however, strongly associted with the size risk. The

positive significant estimates of ŝp1 imply that the size risk of a portfolio increases

with a positive innovation in liquidity. After controlling for the time-varying risk,

the significant direct effect of η̂∗m disappears. For individual portfolios, the slope

coefficients of η̂∗m are all zero, except for P1. Also, the Wald test statistic fails to reject

the null hypothesis of jointly zero âp1 with a value of 12.74 (p-value=0.24). Similarly,

the lagged volatility of liquidity does not have any direct explanatory power on the

expected returns. Overall, the weekly results provide supportive evidence for the

risk-based view showing that the liquidity variables are associated with the changes

in portfolios’ risk and do not provide any non-risk related information.

The results for monthly data in Panel C also provides support for the risk-based

view. The coefficients of the interactions of η̂∗m and σ̂m with the risk factors demon-

strate that the liquidity variables capture substantial variation in factor risk. The

innovations in liquidity exhibit strong negative associations with MKT and IML⊥,
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implying that the market and liquidity risks decline (increase) with a positive (neg-

ative) shock to aggregate liquidity. However, η̂∗m is again positively related with

SMB⊥, hence, an unexpected increase in liquidity results in a higher size risk. The

volatility of liquidity (σ̂m) appears to be strongly correlated with all the risk fac-

tors. It affects the book-to-market risk with a negative sign. The loadings on its

interactions with MKT , SMB⊥, and IML⊥ are positive as expected, since a higher

volatility in aggregate liquidity implies higher market, size, and liquidity risk for an

individual portfolio. The monthly innovations in liquidity and volatility do not have

direct impact on the expected returns. The estimated values of âp1 and âp2 are all

insignificant at individual portfolio level, except for P2. The joint significance across

portfolios is also rejected by Wald statistic with a value of 14.46 (p-value=0.15) for

âp1, and 8.05(p-value=0.62) for âp2.

Overall, the results from conditional four-factor model are consistent with the risk

view of liquidity at weekly and monthly frequencies. The innovations in liquidity and

volatility are highly associated with loadings on the risk factors. After controlling

for time-variation in factor loadings, the liquidity variables do not provide additional

information about the next period’s expected returns. Hence, the source of the liq-

uidity effect on the expected returns comes from the variation in factor risk over time.

The daily results are, however, different than their lower frequency counterparts. At

one day investment horizon, the direct impact of innovations in liquidity remains to

be significant after controlling for the time-varying factor risk. At this horizon, the
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variation in expected returns cannot be completely explained by the changes in risk

and the innovations in liquidity appears to be a source of mispricing.

1.5 Conclusion

The cross-sectional relations between both the level and the risk of liquidity, and

expected stock returns have long been an interest. The finding that liquidity and

volatility of liquidity explain cross-sectional return differences among stocks (port-

folios) implies that, at a fixed point in time liquidity based state variables convey

information about returns.

Complementing the previous line of research, this study investigated the time-

series relation between liquidity risk and expected returns at portfolio level. First, it

addressed the question of whether liquidity based state variables provide information

about the variation in expected returns. Second, it analyzed whether this information

comes from a risk-based source. Using Amihud’s (2002) illiquidity ratio as a proxy

and Shanken’s (1990) methodology, a conditional four-factor asset pricing model was

employed, where the factor loadings were allowed to change over time.

Using daily, weekly, and monthly portfolio data for the period of January 1964 -

December 2008, I showed that the source of the information provided by the innova-
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tions in aggregate liquidity and the volatility of aggregate liquidity vary substantially

depending on the investment horizon. At weekly and monthly frequencies, the liq-

uidity variables are highly associated with the time-variations in factor loadings, and

do not provide any incremental information after accounting for these variations. At

daily horizon, however, the factor loadings appear to be significantly related with

volatility, but not with innovations. The innovations directly affect the expected

portfolio returns without altering the risk. Hence, the impact of liquidity at daily

frequency cannot be entirely attributed to changes in the risk of a portfolio.

The liquidity risk variables studied in this paper contain important information

about the risk and the expected return of an asset. At daily horizon, they provide

more information than just the changes in assets’ risk. Since understanding the

dynamics of liquidity risk help investors to make more informed investment decisions

and may affect their portfolio allocations, it is worthwhile to explore the temporary

dimension of the liquidity effect, and study the source(s) of the information it provides.
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Pastór L. and R.F. Stambaugh (2002). Liquidity Risk and Expected Stock Returns,

Journal of Political Economy, 111(3), 642-685.

Pereira J.P. and H.H. Zhang (2008). Stock Returns and the Volatility of Liquidity,

Working Paper.

Sadka R. (2006). Momentum and Post-Earnings-Announcement Drift Anomalies:

The Role of Liquidity Risk, Journal of Financial Economics 80, 309-349.

Sadka R. and A. Scherbina (2007). Analyst Disagreement, Mispricing, and Liquidity,

Journal of Finance 62(5), 2367-2404.

Shanken J. (1990). Intertemporal Asset Pricing: An Empirical Investigation, Jour-

nal of Econometrics 45, 99-120.

Silber W.L. (1991). Discounts on Restricted Stocks: The Impact of Illiquidity on

Stock Prices, Financial Analysts Journal 47, 60-64.

Subrahmanyam A. (2008). The Implications of Liquidity and Order Flows for Neo-

classical Finance, Pacific-Basin Finance Journal forthcoming.

47



Watanabe A. and M. Watanabe (2008). Time-Varying Liquidity Risk and the Cross-

Section of Stock Returns, The Review of Financial Studies 21(6), 2449-2486.

48



Figure 1.1: Time-series of Illiquidity Ratio. Each plot shows the illiquidity ratios for three
different portfolios at daily, weekly, and monthly frequencies. The bold, thin, and the dashed lines
represent the illiquidity ratio of a liquid stocks portfolio (P9), an illiquid stocks portfolio (P2), and
the market portfolio (Pm) respectively.
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Figure 1.2: Monthly Return and Illiquidity Ratio of the Market Portfolio. The top figure
plots the monthly aggreate illiquidity ratio and the bottom figure plots the monthly excess returns for
the market portfolio Pm. The sample covers the period from January 1964 to December 2008. The
gray areas represent the NBER business-cycle contraction dates. Each vertical black line corresponds
to a major economic or financial event that resulted in a large decline in the aggregate liquidity.
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Figure 1.3: The Innovations in Market Liquidity. Each plot displays the innovations in ag-
gregate liquidity, η̂∗mt. The innovations are the negative values of the estimated residuals from the
recursive AR(1) process in Eq. (1.3.9), such that; η̂∗mt = −(∆ILLIQmt − α̂t − ρ̂t∆ILLIQm,(t−1)).
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Table 1.1: Summary statistics for the risk factors. The means, standard deviatons, and the
correlation coefficients for the standard and orthogonalized, denoted by superscript ⊥, four risk
factors are reported in the table below. The factors SMB⊥, HML⊥, and IML⊥ are orthogo-
nalized using Eq. (1.3.3) - (1.3.5).

Mean Stdev. MKT SMB HML IML SMB⊥ HML⊥ IML⊥

Panel A: Daily Frequency

MKT 0.02 0.96 1.00
SMB 0.01 0.50 -0.22 1.00
HML 0.02 0.47 -0.43 -0.06 1.00
IML 0.02 0.53 -0.44 0.81 0.21 1.00
SMB⊥ 0.01 0.49 0.00 0.98 0.00 0.00 1.00
HML⊥ 0.03 0.42 0.00 0.00 0.89 0.00 0.00 1.00
IML⊥ 0.01 0.27 0.00 0.00 0.00 0.50 0.00 0.00 1.00

Panel B: Weekly Frequency

MKT 0.07 2.15 1.00
SMB 0.03 1.18 0.02 1.00
HML 0.09 1.17 -0.42 -0.14 1.00
IML 0.10 1.20 -0.22 0.82 0.14 1.00
SMB⊥ 0.04 1.18 0.00 0.99 0.00 0.00 1.00
HML⊥ 0.12 1.05 0.00 0.00 0.90 0.00 0.00 1.00
IML⊥ 0.06 0.60 0.00 0.00 0.00 0.50 0.00 0.00 1.00

Panel C: Monthly Frequency

MKT 0.37 4.46 1.00
SMB 0.26 3.20 0.30 1.00
HML 0.43 2.90 -0.38 -0.26 1.00
IML 0.44 3.00 0.12 0.84 0.03 1.00
SMB⊥ 0.18 3.05 0.00 0.95 0.00 0.00 1.00
HML⊥ 0.54 2.64 0.00 0.00 0.91 0.00 0.00 1.00
IML⊥ 0.12 1.42 0.00 0.00 0.00 0.47 0.00 0.00 1.00
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Table 1.2: Summary statistics for the portfolio returns and illiquidity ratio. The ten
liquidity-sorted portfolios are denoted by P1 − P10, where P1 is the least liquid stocks portfolio
and P10 is the most liquid stocks portfolio. Pm stands for the market portfolio, which is the
portfolio of all available stocks. The percentage returns are the equally-weighted returns for each
portfolio and the illiquidity ratio is Amihud’s measure: ILLIQpd = ln

(
1
I

∑I
i=1

|Rid|
V OLid

)
. The

sample period is January 1964 - December 2008.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Pm
Panel A: Daily Frequency

Return (%)

Mean 0.078 0.061 0.054 0.051 0.050 0.046 0.046 0.046 0.044 0.039 0.055
Stdev 0.791 0.943 0.992 1.013 1.008 1.006 1.020 1.037 1.013 1.073 0.922

Illiquidity Ratio

Mean 0.590 -0.492 -1.325 -1.971 -2.591 -3.172 -3.780 -4.466 -5.240 -6.350 -1.295
Stdev 0.893 1.370 1.712 1.863 1.947 2.009 2.050 2.068 2.074 2.082 1.096
Autocorr. 0.946 0.978 0.986 0.988 0.990 0.991 0.992 0.992 0.991 0.988 0.980
Adj.R2 0.894 0.957 0.973 0.977 0.981 0.982 0.984 0.984 0.982 0.977 0.961

Panel B: Weekly Frequency

Return (%)

Mean 0.416 0.328 0.283 0.262 0.257 0.239 0.233 0.230 0.220 0.195 0.263
Stdev 2.264 2.427 2.440 2.462 2.456 2.422 2.431 2.436 2.310 2.309 2.302

Illiquidity Ratio

Mean 0.606 -0.475 -1.308 -1.952 -2.573 -3.152 -3.761 -4.446 -5.218 -6.323 -1.286
Stdev 0.869 1.354 1.697 1.849 1.934 1.998 2.040 2.058 2.064 2.073 1.083
Autocorr. 0.979 0.992 0.995 0.995 0.996 0.996 0.997 0.997 0.997 0.994 0.991
Adj.R2 0.960 0.983 0.989 0.990 0.992 0.991 0.994 0.994 0.994 0.988 0.983

Panel C: Monthly Frequency

Return (%)

Mean 1.817 1.433 1.242 1.150 1.129 1.049 1.023 1.011 0.964 0.854 1.151
Stdev 6.268 6.061 5.941 5.847 5.683 5.537 5.461 5.309 4.895 4.603 5.315

Illiquidity Ratio

Mean 0.610 -0.470 -1.303 -1.946 -2.569 -3.147 -3.758 -4.443 -5.216 -6.316 -1.284
Stdev 0.861 1.349 1.694 1.847 1.932 1.996 2.038 2.057 2.062 2.070 1.078
Autocorr. 0.974 0.989 0.993 0.994 0.995 0.995 0.995 0.995 0.996 0.991 0.986
Adj.R2 0.953 0.978 0.985 0.986 0.988 0.988 0.990 0.991 0.992 0.982 0.974
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Table 1.4: The economic significance of the innovations in liquidity. The
unconditional Sharpe ratios (S), estimated R2 values from Eq.(1.3.14), and the R2/S2

ratios are provided for ten liquidity portfolios. The ratio of R2 statistic to squared
Sharpe ratio, S2, implies the difference between the excess returns conditional on
liquidity variables, and the unconditional returns. A positive value for this ratio
measures the gain from the information on liquidity.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Panel A: Daily Frequency
SharpeRatio 0.071 0.040 0.032 0.028 0.027 0.024 0.023 0.022 0.021 0.016
R2 0.011 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.000
R2/S2 2.211 2.462 1.931 2.622 1.392 1.782 1.890 2.008 0.000 0.000

Panel B: Weekly Frequency
SharpeRatio 0.130 0.084 0.066 0.057 0.056 0.049 0.047 0.045 0.043 0.032
R2 0.024 0.013 0.008 0.006 0.004 0.003 0.002 0.002 0.001 0.001
R2/S2 1.432 1.791 1.818 1.960 1.331 1.444 1.137 0.816 0.599 0.796

Panel C: Monthly Frequency
SharpeRatio 0.178 0.124 0.106 0.094 0.094 0.086 0.087 0.089 0.090 0.077
R2 0.035 0.031 0.025 0.019 0.012 0.013 0.013 0.012 0.009 0.009
R2/S2 1.101 2.032 2.199 2.142 1.345 1.797 1.661 1.450 1.080 1.511
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Table 1.5: Unconditional Four-Factor Model: The system of unconditional factor models,
Zpt = ap + bpMKTt + spSMB⊥t + bpHML⊥t + dpIML⊥t + ept, for p = 1, ..., 10, is estimated for ten
liquidity portfolios. The least liquid portfolio is P1 and the most liquid portfolio is P10. The least-
squares coefficient estimates are reported, with the heteroskedasticity-consistent standard deviations
in parentheses.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Panel A: Daily Frequency

conts. 0.027 -0.001 -0.006 -0.008 -0.004 -0.004 -0.002 0.000 0.001 0.000
(0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002)

MKT 0.547 0.752 0.820 0.871 0.892 0.917 0.948 0.981 0.970 1.049
(0.010) (0.007) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.006) (0.005)

SMB⊥ 0.580 0.769 0.817 0.757 0.671 0.527 0.381 0.233 0.018 -0.228
(0.022) (0.012) (0.013) (0.013) (0.015) (0.016) (0.016) (0.018) (0.016) (0.011)

HML⊥ 0.264 0.556 0.551 0.527 0.454 0.417 0.396 0.380 0.356 0.169
(0.024) (0.016) (0.014) (0.014) (0.016) (0.017) (0.018) (0.017) (0.016) (0.011)

IML⊥ 0.893 0.789 0.597 0.426 0.168 -0.010 -0.131 -0.286 -0.371 -0.256
(0.029) (0.019) (0.020) (0.021) (0.022) (0.024) (0.022) (0.023) (0.020) (0.015)

Adj.R2 0.711 0.896 0.914 0.918 0.908 0.907 0.903 0.913 0.927 0.958

Panel B: Weekly Frequency

conts. 0.108 0.004 -0.026 -0.036 -0.018 -0.024 -0.017 -0.004 0.005 0.006
(0.020) (0.015) (0.015) (0.015) (0.016) (0.016) (0.016) (0.016) (0.014) (0.011)

MKT 0.767 0.908 0.936 0.981 1.003 1.012 1.034 1.056 1.011 1.036
(0.017) (0.014) (0.015) (0.015) (0.017) (0.016) (0.017) (0.017) (0.015) (0.012)

SMB⊥ 0.802 0.862 0.831 0.755 0.650 0.514 0.381 0.235 0.027 -0.193
(0.033) (0.029) (0.034) (0.034) (0.039) (0.040) (0.040) (0.038) (0.034) (0.025)

HML⊥ 0.392 0.532 0.530 0.502 0.453 0.445 0.429 0.392 0.358 0.145
(0.038) (0.031) (0.031) (0.030) (0.035) (0.034) (0.037) (0.035) (0.030) (0.023)

IML⊥ 1.107 0.828 0.608 0.430 0.181 0.037 -0.079 -0.234 -0.324 -0.216
(0.051) (0.039) (0.047) (0.047) (0.052) (0.050) (0.051) (0.051) (0.046) (0.036)

Adj.R2 0.825 0.918 0.915 0.921 0.906 0.907 0.904 0.911 0.918 0.947

Panel C: Monthly Frequency

const. 0.288 -0.040 -0.159 -0.205 -0.136 -0.186 -0.161 -0.104 -0.068 -0.025
(0.111) (0.080) (0.078) (0.079) (0.092) (0.084) (0.088) (0.085) (0.078) (0.063)

MKT 1.039 1.081 1.090 1.121 1.110 1.107 1.113 1.096 1.018 0.976
(0.037) (0.021) (0.019) (0.020) (0.024) (0.020) (0.022) (0.022) (0.019) (0.018)

SMB⊥ 0.875 0.843 0.791 0.670 0.582 0.442 0.295 0.171 0.000 -0.180
(0.053) (0.041) (0.051) (0.055) (0.059) (0.064) (0.067) (0.067) (0.055) (0.036)

HML⊥ 0.561 0.544 0.567 0.544 0.442 0.467 0.445 0.400 0.354 0.148
(0.056) (0.042) (0.042) (0.050) (0.054) (0.053) (0.054) (0.052) (0.046) (0.036)

IML⊥ 1.179 0.931 0.712 0.498 0.271 0.141 0.076 -0.112 -0.225 -0.166
(0.093) (0.072) (0.084) (0.087) (0.095) (0.099) (0.099) (0.094) (0.088) (0.066)

Adj.R2 0.884 0.931 0.931 0.928 0.897 0.902 0.897 0.897 0.904 0.934
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Table 1.6: Risk factors and liquidity vari-
ables. The results for the regressions of the risk
factors on the innovations in liquidity and volatil-
ity, Ft = ϕ0 + ϕ1η̂

∗
m,(t−1) + ϕ2σ̂m,(t−1) + νt. Ft =

(MKTt, SMB⊥t , HML⊥t , IML⊥t )′ denotes the vec-
tor of four factors. The values in parentheses are
the standard deviations.

MKTt SMB⊥t HML⊥t IML⊥t
Panel A: Daily Frequency

const. 0.031 -0.040 0.021 0.010
(0.029) (0.015) (0.013) (0.008)

η̂∗m,(t−1) 0.013 0.109 -0.036 0.025
(0.049) (0.024) (0.021) (0.013)

σ̂m,(t−1) -0.082 0.230 0.022 0.013
(0.160) (0.081) (0.069) (0.043)

Adj.R2 0.000 0.002 0.000 0.000

Panel B: Weekly Frequency

const. 0.081 -0.190 0.010 -0.025
(0.270) (0.148) (0.132) (0.075)

η̂∗m,(t−1) -0.173 0.916 0.008 0.344
(0.326) (0.179) (0.159) (0.090)

σ̂m,(t−1) -0.086 1.795 0.813 0.619
(2.092) (1.143) (1.021) (0.578)

Adj.R2 0.000 0.012 0.000 0.006

Panel C: Monthly Frequency

const. 3.891 -1.403 2.565 0.304
(1.749) (1.168) (1.018) (0.537)

η̂∗m,(t−1) 0.815 2.379 1.588 1.487
(1.247) (0.833) (0.726) (0.382)

σ̂m,(t−1) - 20.533 8.540 -11.794 -1.265
(10.046) (6.713) (5.847) (3.083)

Adj.R2 0.006 0.014 0.016 0.028
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Chapter 2

Exact Distribution-Free Tests of
Mean-Variance Efficiency

Abstract

This paper develops exact distribution-free tests of unconditional mean-variance

efficiency. These new tests allow for unknown forms of non-normalities, conditional

heteroskedasticity, and other non-linear temporal dependencies among the absolute

values of the error terms in the asset pricing model. Exactness here rests on the

assumption that the joint temporal error density is symmetric around zero. This

still leaves open the possibility of return distribution asymmetry via coskewness with

the benchmark portfolio. A simulation study shows that the new tests have very

good power relative to that of many commonly used tests. The inference procedures

developed are further illustrated by tests of the mean-variance efficiency of a market

index using a forty-two-year sample of monthly returns on ten U.S. equity portfolios.
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Keywords: CAPM; Conditional heteroskedasticity; Non-parametric tests; Robust in-

ference
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2.1 Introduction

The celebrated capital asset pricing model (CAPM) of Sharpe (1964) and Lintner

(1965) extends the notion of a mean-variance efficient portfolio to the portfolio of all

invested wealth—the market portfolio. A given portfolio is mean-variance efficient

if it has the smallest possible variance of return given its expected return, or, more

appropriately, if it has the largest expected return given its variance. This theory

implies that expected excess returns on assets are linearly related to the slope, or

beta, of their regression on the expected excess return of the benchmark portfolio.

Here excess returns are those in excess of the riskless rate of return. Under mean-

variance efficiency, the risk premium of an asset is a linear function of the asset’s

beta.

Empirical tests of the mean-variance efficiency hypothesis are usually conducted

within the context of a multivariate linear regression. The application of tests based

on asymptotic theory can lead to misleading conclusions as the approximation to the

finite-sample distribution of test statistics can be quite poor, especially as the number

of equations included in the system increases; see Shanken (1996), Campbell, Lo,

MacKinlay (1997), Dufour and Khalaf (2002), and the numerical evidence presented

here. The findings show that many standard parametric tests are unreliable, rejecting

the null hypothesis of mean-variance efficiency far too often.
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Gibbons, Ross, and Shanken (1989) (GRS) propose a truly finite-sample test. The

exact distribution theory for their multivariate F -test rests on the assumption that

the regression error terms are independent over time and jointly normally distributed

each period, conditional on the returns of the benchmark portfolio under test. These

assumptions are at odds with some well-known facts about financial asset returns.

Indeed, it has long been recognized that financial returns depart from Gaussian condi-

tions; see Fama (1965), Blattberg and Gonedes (1974), and Hsu (1982). In particular,

the distribution of asset returns appears to have fatter tails than those of a normal

distribution.

Beaulieu, Dufour, and Khalaf (2007) (BDK) propose an exact randomized likelihood-

based test procedure that relaxes normality. Their framework assumes that the error

distribution is known, or at least specified up to some unknown nuisance parameters.

If normality is assumed, the BDK test becomes the simulation-based equivalent of

the GRS test. More generally, the BDK test procedure can be thought of as an ex-

act parametric bootstrap. When nuisance parameters are present, the computational

cost of the BDK test procedure grows with the number of nuisance parameters since

it then involves finding maximal p-values over a confidence region for the intervening

nuisance parameters. The first-step confidence region is established by inverting a

simulation-based goodness-of-fit test (of the assumed distribution), which involves a

grid search over the nuisance parameter space.
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Without such parametric assumptions it would seem difficult to derive an exact

finite-sample distribution theory. Despite this apparent difficulty, we propose in this

paper new non-randomized tests that are exact in finite samples without any paramet-

ric assumptions about the distribution of the error terms in the simple multivariate

linear regression model. The methods exploit results derived by Luger (2003) in the

context of testing for a random walk. Here we propose three testing approaches for

joint inference on several parameters that differ mainly by what is assumed about the

covariance of the errors across equations.

The first approach is an induced test procedure that allows for arbitrary covari-

ances in the cross-section of error terms. The price to pay for this extra flexibility is

that those tests can be conservative and lead to power losses if the number of test

assets is large. The second approach assumes that the errors are independent across

equations, conditional on the returns of the benchmark portfolio. This delivers tests

with the correct size and more power than the induced tests. The third approach is

based on a simple linear combination of the test assets (or portfolios of test assets)

and, like the second approach, provides a test procedure with the correct size no

matter the number of included assets. These single-portfolio tests allow some forms

of covariation in the cross-section of error terms. The number of assets in the cross-

section may even exceed the number of time-series observations, making these tests

particularly attractive when testing mean-variance efficiency with many test assets

or when the portfolios have relatively short histories. This stands in contrast to ex-
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tant approaches based on estimates of the covariance matrix of the regression errors.

In order to avoid singularities, those approaches require the size of the cross-section

be less than that of the time series. The distribution-free approaches to inference

developed here do not require the error covariance matrix.

The proposed distribution-free (or non-parametric) tests have several appealing

features, since they are built on the mere assumption that the joint temporal error

density is symmetric around zero. This means that no restrictions are placed on the

degree of non-normality or the degree of heterogeneity across marginal distributions.

In fact, the existence of moments need not be assumed for the validity of the new tests.

It is important to note that this framework still leaves open the possibility of asym-

metries in the distribution of test asset returns via coskewness with the benchmark

portfolio.

Asset returns typically display clear patterns of volatility clustering for which

generalized autoregressive conditional heteroskedasticity (GARCH) models are of-

ten used; see Bollerslev (1986). The tests proposed here allow not only for non-

normalities, but also for unknown forms of conditional heteroskedasticity and other

intertemporal dependencies among the absolute values of the error terms in the asset

pricing model. Such forms of intertemporal dependencies invalidate the exact sta-

tistical theory underlying the parametric GRS and BDK test procedures. Since it

is well known that asset returns depart from homogeneous conditions, the new tests
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of the mean-variance efficiency hypothesis developed here offer a valid and useful

distribution-free testing alternative to potentially misleading parametric procedures.

Section 2 of the paper presents the framework, the hypothesis of interest, and

the extant GRS and BDK test procedures that are exact under parametric distribu-

tional assumptions. Section 3 describes the building blocks of our three approaches

to distribution-free inference. Section 4 is divided into three subsections, each one

describing a proposed test procedure. Section 5 begins by presenting some additional

(asymptotic) extant tests of mean-variance efficiency and then presents the results

of some simulation examples to illustrate the behavior of the proposed tests relative

to the commonly used procedures. Section 6 provides an empirical illustration of

the new tests in the context of the Sharpe-Lintner version of the CAPM. Section 7

concludes.

2.2 Exact parametric tests

A benchmark portfolio with excess returns rp is said to be mean-variance efficient

with respect to a given set of N test assets with excess returns ri, i = 1, ..., N , if

it is not possible to form another portfolio of those N assets and the benchmark

portfolio with the same expected return as rp but a lower variance, or equivalently,

with the same variance but a higher expected return. More formally, portfolio p is
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mean-variance efficient if the following first-order condition is satisfied for the N test

assets:

E[rit] = βiE[rpt], i = 1, ..., N, (2.2.1)

where rit and rpt are the time-t returns on asset i and portfolio p, respectively, in

excess of the riskless rate of return. The term βi captures the degree of association

between the expected excess return on the individual asset i and the expected excess

return for portfolio p. Accordingly, assets with higher betas should offer in equilibrium

higher expected returns. Consider the excess-return system of equations

rit = ai + βirpt + εit, t = 1, ..., T, i = 1, ..., N, (2.2.2)

where εit is a random error term for asset i in period t with the property that E[εit] =

0. The specification in (2.2.2) is a seemingly unrelated equations model. The mean-

variance efficiency condition in (2.2.1) can then be assessed by testing

H0 : ai = 0, i = 1, ..., N, (2.2.3)

in the context of (2.2.2). This null hypothesis follows from a comparison of the un-

conditional expectation of (2.2.2) to the mean-variance efficiency condition in (2.2.1).

If H0 does not hold, it would be possible to obtain a higher expected return with no

higher risk, contradicting the hypothesis that portfolio p is mean-variance efficient.

The exact Wald test ofH0 in (2.2.3) proposed by GRS assumes that the error terms

(ε1t, ..., εNt) are jointly normally distributed around zero each period, conditional on
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the excess returns (rp1, ..., rpT ); i.e., the regressor variable is assumed to be strictly

exogenous. Further, the error terms are assumed independent over time. Under

normality, the methods of maximum likelihood and ordinary least squares yield the

same estimates of the ai’s and the βi’s in (2.2.2). Collect those estimates in â =

(â1, ..., âN)′ and β̂ = (β̂1, ..., β̂N)′, and let Σ̂ denote the unconstrained maximum-

likelihood estimate of Σ—the N ×N error covariance matrix. The GRS test statistic

is

J1 =
(T −N − 1)

N

[
1 +

µ̂2
p

σ̂2
p

]−1

â′Σ̂−1â, (2.2.4)

where µ̂p is the sample mean of rpt and σ̂2
p is the maximum-likelihood estimate of the

variance of rpt. Under the null hypothesis H0, the statistic J1 follows an exact central

F distribution with N degrees of freedom in the numerator and (T −N − 1) degrees

of freedom in the denominator.

BDK also derive exact tests of mean-variance efficiency. In the context of (2.2.2),

they assume the errors have the following distribution structure:

(ε1t, ..., εNt)
′ = ΛUt, t = 1, ..., T, (2.2.5)

where Λ is an unknown, non-singular matrix and the distribution of the Ut’s is either

completely known or specified up to a finite number of nuisance parameters, ν. BDK

propose Monte Carlo (MC) tests based on the likelihood ratio (LR) statistic

J2 = T
(

log |Σ̂0| − log |Σ̂|
)
, (2.2.6)

where Σ̂0 is the constrained estimator of Σ. The key property for the MC tests is
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that (2.2.6) is invariant with respect to Λ. When Ut is Gaussian, the BDK test

is the simulation-based equivalent of the GRS test since J1 and J2 are related via

the monotonic transformation J1 = T−N−1
N

(exp[J2/T ]− 1); see Equation (5.3.40) in

Campbell, Lo, and MacKinlay (1997). More generally, size-correct MC tests of H0 can

be performed for any assumed distribution of the Ut’s that does not involve nuisance

parameters. BDK also propose a maximized MC (MMC) procedure for situations

with an incompletely specified error distribution, such as the multivariate Student-t

distribution with unknown degrees of freedom. The MMC procedure consists of two

steps. First, an exact confidence set for the nuisance parameters is constructed by

inverting an MC goodness-of-fit test of the hypothesis in (2.2.5) with ν specified.

Inverting that test involves assembling by grid search the values of ν that are not

rejected at a specific level of significance, say α1. In the second step, the p-value of

the MC LR test is maximized over the first-step confidence set. If the resulting MMC

p-value is compared to a cutoff level α2, then the overall level of this (computationally

intensive) procedure is α = α1+α2; see BDK for details and Dufour and Khalaf (2001)

for a more general discussion about the technique of MC testing. Like any MC test

procedure, the BDK approach is exact only if the maintained distribution structure

actually holds.
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2.3 Building blocks

Within the context of model (2.2.2), we develop distribution-free tests of the mean-

variance efficiency null hypothesis in (2.2.3). Elliptically symmetric distributions of

returns are very attractive in this context because they guarantee that mean-variance

analysis is fully compatible with expected utility maximization; see Chamberlain

(1983), Owen and Rabinovitch (1983), and Berk (1997). If a random vector of returns

follows an elliptically symmetric distribution, then the marginal distribution of any

component of that vector is also elliptically symmetric; see Ingersoll (1987, p. 104).

Consistent with that fact, the proposed tests are based on an assumption of symmetry

for the marginal error distributions and proceed by taking long differences between

return observations separated by m = T/2 periods. Here we assume that T is even

so that the midpoint m is an integer. The approach is based on Luger (2003) and

makes the following assumptions about the error terms for test asset i and the excess

returns of portfolio p:

Assumption 1. The density of (εi1, ..., εiT ) is symmetric around zero, conditional

on Rp = (rp1, ..., rpT )′. Further, Pr[rpt = 0] = 0 for t = 1, ..., T.

Assumption 2. The random variables εit, t = 1, ..., T , are continuous, conditional

on Rp.
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The approach proposed here is based on distribution-free tests about the medians of

εi, i = 1, ..., N . Under Assumption 1, these become equivalent to the usual tests (e.g.

the GRS test) that maintain E[εit | Rp] = 0. Note that the distribution of rpt may be

skewed thereby inducing asymmetry in the unconditional distribution of rit. In that

case, a given portfolio can still be mean-variance efficient provided that investors’

expected utility depends only on the mean and variance of a portfolio’s return.

What distinguishes the present framework from Luger (2003) is that here the mul-

tivariate symmetry assumption is made conditional on Rp = (rp1, ..., rpT )′. It should

be noted that this conditioning on Rp is entirely consistent with arbitrage pricing

theory. It is also a common approach used by GRS and BDK, for instance, to obtain

a finite-sample distribution theory. The distributional assumptions made by those

authors, however, are far more restrictive than Assumptions 1 and 2. GRS require

independent and jointly normal errors, while BDK relax the normality assumption

but nevertheless require that the error distribution structure be specified up to a fi-

nite number of nuisance parameters. Here the conditional distribution of (εi1, ..., εiT )

given Rp is completely unspecified. This means that no restrictions are placed on the

degree of non-normality or the degree of heterogeneity across marginal distributions.

It should be noted that several popular models of time-varying conditional variance,

such as GARCH-type or stochastic volatility models with continuous and symmet-

ric innovations, satisfy Assumptions 1 and 2. In fact, those assumptions allow for

the presence of unknown forms of conditional heteroskedasticity (or any other form
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of non-linear dependence among the |εit|’s). Furthermore, the conditional variances

need not be finite nor even follow a stationary process, and moments need not exist.

Define the scaled returns rit/rpt, for i = 1, ..., N and t = 1, ..., T . Under the

statistical specification in (2.2.2), these scaled returns can be expressed as

rit
rpt

=
ai
rpt

+ βi +
εit
rpt
,

thereby relegating the nuisance parameter βi to the role of intercept. Following Theil

(1971, p. 616), that parameter can be eliminated from the inference problem via the

long differences

zit = dmt × xpt, (2.3.1)

for t = 1, ...,m, where

dmt =

(
ri,t+m
rp,t+m

− rit
rpt

)
and xpt =

(rpt − rp,t+m)

rptrp,t+m
.

The quantity in (2.3.1) is the building block of the distribution-free methods proposed

here. An important aspect of the sequence of long differences dmt , t = 1, ...,m, is that

it contains no overlaps. The methodology of Luger (2003) yields exact tests when

built on dmt . The multiplication of dmt by xpt seen in (2.3.1) is done in order to improve

power. To see why this is, note that

dmt = aixpt +

(
εi,t+m
rp,t+m

− εit
rpt

)
. (2.3.2)

The proof of Proposition 1 below shows that (εi,t+m/rp,t+m− εit/rpt) has a symmetric

distribution. Suppose that xpt = (1/rp,t+m − 1/rpt) is also symmetrically distributed,
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independently of the εit’s. Then the quantity in (2.3.2) would have median zero no

matter the value of ai, so that any sign statistic based on that quantity would have

nothing but trivial power. Multiplying dmt with xpt to get zit shifts its median to the

right or left, depending on the sign and magnitude of ai, and hence delivers sign tests

with power to detect ai 6= 0. While such a modification results in only approximately

exact tests in Luger’s (2003) random walk context, here the tests are based on truly

exact finite-sample pivots owing to the fact that we can condition on Rp.

Define a sign function as s[z] = 1 if z > 0, and s[z] = 0 if z ≤ 0. The following two

propositions are adapted from Luger (2003) and proofs are provided in the appendix

for the sake of self-containment. Note that when ai = 0, the statistic zit in (2.3.1) is

a function only of (εi,t+m/rp,t+m − εit/rpt)xpt.

Proposition 1. Let εi1, ..., εiT be a sequence of random variables that satisfies As-

sumptions 1 and 2. Then, the random variable s[(εi,t+m/rp,t+m − εit/rpt)xpt] is dis-

tributed like a Bernoulli variable Bt, such that Pr [Bt = 1] = Pr [Bt = 0] = 1/2 for

t = 1, 2, ...,m.

This result shows that the random variables s[zit], t = 1, ...,m, are identically

distributed under the null hypothesis. The next proposition shows that those random

variables are also mutually independent, thereby paving the way for test procedures

74



based on a class of linear signed rank statistics defined by

SRi =
m∑
t=1

s[zit]ϕ[Rank(|zit|)], (2.3.3)

where Rank(|zit|) is the rank of |zit| when |zi1|, ..., |zim| are placed in ascending order

of magnitude, and 0 ≤ ϕ[1] ≤ ... ≤ ϕ[m] is a set of scores with ϕ[m] > 0. In the

following, the symbol
d
= stands for the equality in distribution.

Proposition 2. Let εi1, ..., εiT be a sequence of random variables that satisfies As-

sumptions 1 and 2. Then, the null distribution of any linear signed rank statistic

defined by (2.3.3) has the property that

SRi
d
=

m∑
j=1

Bjϕ[j],

where B1, ..., Bm are mutually independent uniform Bernoulli variables on {0, 1}.

The choice of score function yields different linear signed rank statistics. The two

statistics of greatest interest are the sign statistic, obtained from the score function

ϕ[j] = 1:

Si =
m∑
t=1

s[zit],

and the Wilcoxon signed rank statistic

Wi =
m∑
t=1

s[zit]Rank(|zit|),

obtained with ϕ[j] = j. The sign statistic follows a binomial distribution with number

of trials m and probability of success 1/2. The distribution of the Wilcoxon statistic
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has been tabulated for various values of m; see Table A.4 in Hollander and Wolfe

(1973) for m ≤ 15. For larger values, the standard normal distribution provides a very

good approximation to the standardized variate. The same is true of the standardized

sign statistic. The basic result (found in Randles and Wolfe 1979, Section 10.2) is

that the standardized sign and Wilcoxon signed rank statistics

S∗i =
Si −m/2√

m/4
and W ∗

i =
Wi −m(m+ 1)/4√
m(m+ 1)(2m+ 1)/24

, (2.3.4)

where null means and variances are used, have limiting (as m→∞) standard normal

distributions. It should be noted that the asymptotic approximation works extremely

well even for small values of m since the Binomial and Wilcoxon distributions are close

to normal.

In principle, the approach adopted here could be extended to allow for additional

covariates. For example, suppose returns were represented by

rit = ai + βirpt + γirft + εit, t = 1, ..., T, i = 1, ..., N,

where rft is a second common factor. In that case, the basic building of the distribution-

free tests would become

zit =

(
dmt+m/2
xf,t+m/2

− dmt
xft

)(
xp,t+m/2
xf,t+m/2

− xpt
xft

)
,

where xft = (rptrf,t+m − rftrp,t+m)/rptrp,t+m for t = 1, ...,m/2.
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2.4 Exact distribution-free tests

2.4.1 Sup-type tests

A test of H0 with a single test asset can be performed simply by comparing either

of the test statistics in (2.3.4) with the appropriate critical values from the standard

normal distribution. In order to test the null hypothesis with several test assets

indexed by i = 1, ..., N , consider the test statistics

SB = max
1≤i≤N

|S∗i | and WB = max
1≤i≤N

|W ∗
i |. (2.4.1)

Note that the maximal statistic corresponds to the one with the smallest p-value,

since the individual test statistics are identically distributed. These test statistics are

suggested by the fact that H0 in (2.2.3) is the intersection of the N subhypotheses

H0i : ai = 0, i = 1, ..., N . The decision rule is then built from the logical equivalence

that H0 is false if any of its component subhypotheses is false; i.e., reject H0 if any

one of the separate tests, say S∗1 , ..., S
∗
N , rejects it. Such tests are called induced

tests of H0; see Savin (1984). The results of Sidak (1967) show that no matter the

covariance structure among the individual test statistics, the asymptotic marginal

null distributions of SB and WB defined in (2.4.1) satisfy the inequalities

Pr[SB ≤ ωα∗/2] ≥ (1− α) and Pr[WB ≤ ωα∗/2] ≥ (1− α), (2.4.2)
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where ωα∗/2 is the upper α∗/2 critical point of the standard normal distribution and

α∗ = 1− (1− α)1/N . This inequality gives a slight improvement over the Bonferroni

inequality. The inequalities in (2.4.2) imply that the asymptotic level of the induced

test of H0 that compares either SB or WB to ωα∗/2 is equal to α. So if the ordinary

two-sided p-value of SB or WB is, say pv, then the multiplicity-adjusted two-sided

p-value is calculated from the equation pv∗ = 1− (1− pv)N . See Chow and Denning

(1993) for an application of Sidak’s results in a different context.

2.4.2 Sum-type tests

The sup-type tests based on the bounds in (2.4.2) allow for an arbitrary covariance

structure in the cross-section of error terms. The cost of this extra flexibility is

that those tests tend to be conservative and this behavior under the null effectively

translates into relative power losses under the alternative hypothesis; see Section 4

for some simulation evidence.

Tests with the correct size that deliver more power can be obtained under the

assumption that the error terms (ε1t, ..., εNt) are independent, conditional on Rp =

(rp1, ..., rpT )′. Note that the error terms need not be unconditionally independent.

With that further assumption, the exact distributions of the sum-type statistics

SS =
N∑
i=1

S∗2i and WS =
N∑
i=1

W ∗2
i (2.4.3)
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can be obtained (e.g. by numerical or simulation methods). A far more practical way

to conduct inference is to note that since the S∗i ’s and W ∗
i ’s tend to be normal as m

increases, the null distributions of SS and WS in (2.4.3) will tend to be chi-squared

with N degrees of freedom. The results in Section 4 show that this approximation

works extremely well.

2.4.3 Single-portfolio tests

As GRS remark, the hypothesis that ai = 0, for all i, implies that all linear com-

binations of the ai’s equal zero. This means that if some linear combination of the

N test assets (or portfolios of test assets) has a non-zero intercept, then the null

hypothesis is false; i.e., portfolio p is not mean-variance efficient. Following that idea,

consider aggregating the N equations that comprise the system in (2.2.2) to find the

single-portfolio representation

r̄t = A+Brpt + et, t = 1, ..., T, (2.4.4)

where r̄t =
∑N

i=1 rit, A =
∑N

i=1 ai, B =
∑N

i=1 βi, and et =
∑N

i=1 εit. It is also

possible to consider weighted sums. The weights, however, would need to be chosen

on the basis of prior (non-sample) information to avoid introducing data-snooping

size distortions; see Lo and MacKinlay (1990).

The construction of a test of H0 in (2.2.3) based on A is reminiscent of the test
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in Bossaerts and Hillion (1995) based on Â =
∑N

i=1 âi. The same distribution-free

approach as above can be used to detect whether the intercept A in (2.4.4) is different

from zero under the following high-level assumptions:

Assumption 3. The density of (e1, ..., eT ) is symmetric around zero, conditional on

Rp = (rp1, ..., rpT )′. Further, Pr[rpt = 0] = 0 for t = 1, ..., T .

Assumption 4. The random variables et, t = 1, ..., T , are continuous, conditional

on Rp.

These assumptions are the natural extensions of Assumptions 1 and 2 to the model

in (2.4.4). As before, no restrictions are placed on the shape or the location of the

distribution of rpt. It is easy to see that if Assumption 1 holds and the errors are

either cross-sectionally independent or at least exchangeable as Bossaerts and Hillion

(1995) assume, then Assumption 3 is satisfied. A sufficient condition for Assumption

3 is that the joint cross-sectional density of error terms is reflective symmetric so that

(ε1t, ..., εNt) has the same distribution as (−ε1t, ...,−εNt). In that case, we have that∑N
i=1 εit has the same distribution as −

∑N
i=1 εit; i.e., et is symmetrically distributed

around zero. So although not completely unrestricted, reflective symmetry allows

some forms of covariation in the cross-section of error terms.

Our distribution-free approach yields the following versions of the sign and Wilcoxon
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test statistics:

S =
m∑
t=1

s[Zt] and W =
m∑
t=1

s[Zt]Rank(|Zt|), (2.4.5)

where Rank(|Zt|) is the rank of |Zt| when |Z1|, ..., |Zm| are placed in ascending order

of magnitude. Here Zt is defined as

Zt =

(
r̄t+m
rp,t+m

− r̄t
rpt

)(
rpt − rp,t+m
rptrp,t+m

)
,

for t = 1, ...,m. Under the null hypothesis, the sign and Wilcoxon statistics in (2.4.5)

based on Zt follow exactly the binomial distribution (with parameters m and 1/2)

and the distribution of the Wilcoxon variate, respectively. As before, the standardized

versions

S∗ =
S −m/2√

m/4
and W ∗ =

W −m(m+ 1)/4√
m(m+ 1)(2m+ 1)/24

(2.4.6)

have limiting standard normal distributions under H0. Of course, the signed rank

tests built on Zt have no power to detect mean-variance inefficiencies of portfolio p

in directions away from the null where
∑N

i=1 ai = 0. This possibility, however, can

easily be checked by examining the estimates â1, ..., âN ; see Section 5 for an empirical

illustration with size portfolios.

The possibility of losing power depending on whether the (weighted) ai’s tend to

cancel out is a concern for any approach that uses linear combinations of assets. For

example, parametric tests of the CAPM are usually applied to portfolio groupings of

stocks in order to have N much less than T . As Shanken (1996) notes, this has the

potential effect of reducing the residual variances and increasing the precision with
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which the ai’s are estimated. On the other hand, as Roll (1979) points out, individual

stock expected return deviations under the alternative can cancel out in portfolios,

which would reduce power. So the expected power of tests to detect mean-variance

inefficiencies necessarily depends on how the portfolios are formed; see Sentana (2008)

for more on the effects of portfolio composition on test power.

2.5 Simulation results

This section reports the results of some simulation experiments to contrast the be-

havior of the proposed distribution-free tests with several standard test procedures.

The first of these benchmarks is the GRS test in (2.2.4). The second one, denoted

JMC
2 , is an MC test based on the LR statistic in (2.2.6), following the BDK approach.

The other benchmarks for comparison purposes are the usual LR test, an adjusted

LR test, and a test based on the Generalized Method of Moments (GMM). The lat-

ter is a particularly important benchmark here, since in principle it is “robust” to

non-normality and heteroskedasticity of returns.

The LR test, J2, is applied following the usual practice which is to base it on

asymptotic theory. The large-sample result is that the null distribution of J2 tends to

that of a chi-square variate with N degrees of freedom, χ2
N . Jobson and Korkie (1982)

suggest an adjustment to J2 in order to improve its finite-sample size properties when
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compared against the χ2
N distribution. The adjusted statistic is

J3 =
T − (N/2)− 2

T
J2, (2.5.1)

which, under H0, also follows an asymptotic χ2
N distribution.

MacKinlay and Richardson (1991) develop tests of mean-variance efficiency using

a GMM framework. Define rt as the N × 1 vector of excess returns for the N test

assets observed at time t. The moments of interest are those of the 2N × 1 vector

ft(θ) = ht ⊗ εt(θ), (2.5.2)

where ht = (1, rpt)
′ and εt(θ) = rt − a − βrpt. Here θ = (a′, β′)′, a = (a1, ..., aN)′,

and β = (β1, ..., βN)′. The symbol ⊗ refers to the Kronecker product. The model

specification in (2.2.2) implies the moment conditions E(ft(θ0)) = 0, where θ0 is the

true parameter vector. The system in (2.5.2) is exactly identified which implies that

the GMM procedure yields the same estimates of θ as does OLS applied equation

by equation, which in turn are equivalent to the maximum likelihood estimates in

(2.2.2). The GMM-based Wald test statistic is

J4 = T â′
[
R
(
D̂′Ŝ−1D̂

)−1

R′
]−1

â, (2.5.3)

where R = (1, 0)⊗ IN , with IN as the N ×N identity matrix. Here T−1(D̂′Ŝ−1D̂)−1

is a consistent estimator of the covariance matrix of the GMM estimator θ̂. The

component matrix D̂ is computed as

D̂ = −

 1 r̄p

r̄p (σ̂2
p + r̄2

p)

⊗ IN
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and Ŝ, which is a consistent estimator of
∑+∞

`=−∞E[ft(θ0)ft−`(θ0)
′], can be computed

with the Newey and West (1987) procedure. Under the null hypothesis H0, the statis-

tic J4 follows an asymptotic χ2
N distribution. Following MacKinlay and Richardson

(1991), the J4 statistic in (2.5.3) is scaled by (T −N − 1)/T , which was suggested to

improve the finite-sample null behavior of the GMM Wald test.

We also consider the parametric J tests applied to the single-portfolio represen-

tation in (2.4.4). Those tests are denoted J∗1 , J∗MC
2 , J∗2 , J∗3 , and J∗4 and they will

allow us to see the relative power gains that result from the non-parametric approach

versus those that the linear combination induces. Note that since log(1 + x) ≈ x for

x small, we expect J∗3 to mimic J∗1 .

All the tests compared here are invariant with respect to the βi’s, so there is no

need to specify their values. The MC tests are applied assuming the distribution of

the error terms is completely known and the p-values are based on 100 MC draws.

We consider sample sizes T = 30, 60, 120, and 240. For the number of test assets,

we consider values of N = 10, 20, and 30. Note that J1, J
MC
2 , J2, J3, and J4 cannot

be computed when N ≥ T . (Those cases are abbreviated n.a. in the tables.) The

GMM Wald test, J4, cannot even be computed with T = 60 and N = 30. The reason

is that the matrix Ŝ is singular whenever 2N = T . All the other tests do not have

these limitations on N relative to T . In order to have a sharp contrast between the

power functions of each test, the parameters ai are set to 0.07 under the alternative
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hypothesis. The parametric MC tests are exact here, but there is no such theoretical

guarantee with all the other parametric tests across error specifications. So to ensure

meaningful comparisons, the power results for the non-randomized parametric tests

are based on size-corrected critical values. Finally, each experiment comprises 1000

replications of each return generating process.

Two specifications of model (2.2.2) are considered. The first example, though

completely unrealistic, is constructed to ensure the exactness of the GRS Wald test,

J1. The error terms εit are drawn randomly from the standard normal distribution

and so are portfolio-p’s excess returns, rpt, independently of the errors. MacKinlay

and Richardson (1991) use a similar design. We also tried introducing coskewness by

drawing rpt from a χ2
1 distribution. The results were essentially the same as in the

symmetric case.

Table 1 reports the empirical rejection rates for this homoskedastic example. As

expected, the parametric J1 and JMC
2 tests, the distribution-free sum-type SS and

WS tests, and the single-portfolio J∗1 , J∗MC
2 , S∗, and W ∗ tests have empirical sizes

close to the nominal 5% level. Note how well the use of critical values from the

chi-squared distribution works for the SS and WS tests, and those of the normal

distribution for the S∗ and W ∗ tests. In general, all the single-portfolio J∗ tests also

have rejection rates close to the nominal level. We see though that even in this i.i.d.

case, the LR J2 test suffers serious size distortions when T is relatively small and N
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increases. For example, when N increases from 10 to 20 with T = 30, the empirical

size of the J2 test increases from about 15% to 60%—twelve times the nominal level.

The bottom portion of Table 1 shows the relative power results. Note that J1, J2,

and J3 have identical size-corrected powers, since they are all related via monotonic

transformations. The same is true of their single-portfolio counterparts. As expected,

the JMC
2 and J∗MC

2 tests behave like the J1 and J∗1 tests, respectively. It is immediately

clear that SB and WB are not as powerful as the other tests. They nevertheless have

power as T increases. The most striking result though comes from comparing the S∗

and W ∗ tests with the parametric tests. For example, the W ∗ test has power that is

either comparable or even greater in some instances than all the parametric J tests.

The power advantage that the linear combination induces in this setup is apparent

when comparing any test to its single-portfolio counterpart. The power performance

of the S∗ and W ∗ tests is quite remarkable considering their non-parametric nature

and the fact that only half the sample is effectively used to detect departures from

the null hypothesis.

The second specification of model (2.2.2) is a more realistic description of asset

returns. Following MacKinlay and Richardson (1991), we consider a case of contem-

poraneous conditional heteroskedasticity in which the variance of εit depends on the

value of rpt. In their example, the error terms are essentially governed by an equation

of the form εit = ηit
√

(rpt − µp)2/σ2
p, where ηit is the innovation term. As in stan-
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dard GARCH models, this form does not allow an asymmetric response to shocks in

rpt; i.e., the conditional variance of εit is the same whether (rpt − µp) is positive or

negative. Here we consider a specification in the spirit of Nelson’s (1991) exponential

GARCH model that allows for asymmetric responses to shocks. The innovations ηit

are standard normal and we let εit = ηit
√

exp(λ0 + λ1rpt). It should be noted that

such a specification finds empirical support in Duffee (1995, 2001). The returns rpt

are as in the first example and we set λ0 = 0, λ1 = 2. It is easy to see that this

specification generates εit’s with excess kurtosis.

Table 2 reports the results for the heteroskedastic example. From the top portion

where ai = 0, we see that all the non-randomized parametric J tests suffer serious size

distortions, and that these worsen as N increases for any given T . When N = 10, T =

60 the parametric J tests all have empirical sizes in excess of 20%. The probability

of a Type I error with J1, J2, and J3 exceeds 60% when N is increased to 30. The

severity of the size distortions for the GMM-based J4 test is also quite surprising since

it accomodates conditional heteroskedasticity, at least in principle. In sharp contrast,

there is a closer agreement between the nominal and empirical rejection probabilities

for the single-portfolio J∗ tests. The MC tests do not have an over-rejection problem

here, since they are applied assuming the form of heteroskedasticity is known. The

distribution-free tests also behave as expected with rejection rates close to the nominal

5% level, but unlike the MC tests this is achieved without assuming anything about

the heterogeneity in variances.

87



From the bottom portion of Table 2, we see that the distribution-free tests have

very good power when compared to the parametric tests. The sum-type SS and WS

tests have power which is comparable to that of the J tests, including the MC tests.

It should be emphasized that the size-corrected tests are not feasible tests in practice.

They are merely used here as theoretical benchmarks for the new tests. Comparing

the single-portfolio tests, we see again that the S∗ and W ∗ tests in this heteroskedastic

case tend to be more powerful than the parametric tests, often by a sizeable margin.

This result is in line with the discussion in Randles and Wolfe (1979, Ch. 4) about

the power of the sign and Wilcoxon signed rank tests relative to the Student-t test

in a location model under a variety of distributions. Here we have another example

that illustrates the conventional wisdom that non-parametric tests tend to perform

well in the presence of excess kurtosis—a well-known feature of asset returns.

2.6 Empirical illustration

The new distribution-free inference procedures are illustrated by tests of the mean-

variance efficiency of a stock market index: the value-weighted index from the Univer-

sity of Chicago’s Center for Research in Security Prices (CRSP). The data consist of

monthly returns on ten portfolios for the period covering January 1965 to December

2006. Stocks listed on the New York Stock Exchange and on the American Stock
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Exchange are allocated to 10 portfolios based on the market value of equity. The

one-month US Treasury bill return is used as the riskless rate of return. These data

definitions are the same as in Campbell, Lo, and MacKinlay (1997, Ch. 5), except

that we extend the sample end point.

Table 3 shows the empirical test results for the entire forty-two-year period, seven

five-year subperiods and a seven-year subperiod, and three ten-year subperiods and

a twelve-year subperiod. It is quite common in this literature to test the CAPM over

subperiods out of concerns about parameter stability. Here the choice of subperiods

follows that in Campbell, Lo, and MacKinlay. Columns 2–6 report the results of the

parametric J tests; columns 7 and 8 report the results of the sup-type SB and WB

tests; columns 9 and 10 report the results of the sum-type SS and WS tests; columns

11–15 report the results of the single-portfolio J∗ tests; and columns 16 and 17 report

the results of the single-portfolio S∗ and W ∗ tests. Here the MMC test procedure

of BDK is applied assuming Student-t errors with unknown degrees of freedom. In

each case, we set α1 = 0.025 so the level of the first-step confidence interval for

the degrees-of-freedom parameter is 97.5%. These confidence intervals are reported

in square brackets. The reported MMC p-values should then be referred to a 2.5%

cutoff if one has in mind an overall 5%-level test.

The parametric J test results tend to reject the Sharpe-Lintner CAPM, with

p-values less than 6% for the entire sample period. The J∗ tests reject the null hy-
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pothesis with even smaller p-values in this case. The exceptions among the parametric

J tests are the MMC tests which tend to favor a non-rejection. Note that the confi-

dence intervals associated with the MMC tests are tight at quite low values for the

degrees-of-freedom parameter. This suggests the presence of high kurtosis and shows

that normality is definitely rejected. In contrast, the p-values for the distribution-free

tests provide very clear evidence in favor of mean-variance efficiency.

The parametric J tests and distribution-free tests results align more closely over

the five-year subperiods with both sets of tests tending to reject the null in the

first three five-year subperiods, then tending to not reject over the next four five-

year subperiods, and finally tending to reject again the null in the last seven-year

subperiod. The single-portfolio J∗ tests tend to be in agreement with the other tests

in every one of those subperiods except in the subperiod 1/70–12/74, where the J∗

tests indicate a clear non-rejection but all the other tests seem to favor a rejection.

The results for the ten-year subperiods, reported in the bottom portion of Table 3,

are more in line with those for the entire sample period. In the first three of those

subperiods, the parametric tests tend to reject the null, while the distribution-free

tests do not reject the null hypothesis of efficiency in two out of those four subperiods.

Here the single-portfolio tests agree on rejections in the second and fourth subperiods,

and non-rejections in the first and third subperiods.

Besides the obvious sensitivity to the choice of sample period, a comparison of the
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results across test statistics reveals that parametric versus non-parametric inference

can differ markedly. Indeed, in many cases where the distribution-free tests indicate

a clear non-rejection with large p-values, the parametric tests indicate the diametrical

opposite with quite small p-values. The full sample results are a case in point.

Table 4 shows the OLS estimates of the intercept terms for each equation com-

prising the system in (2.2.2) and the equation in (2.4.4). The columns labeled P1 to

P10 show the estimates of ai corresponding to the ten portfolios and the last column,

labeled PA, shows the estimates of the aggregate portfolio intercept A =
∑10

i=1 ai.

All the reported intercept values are multiplied by 1000. It is interesting to note

that the individual intercept terms for portfolios P1 to P9 tend to all have the same

sign, and the estimated intercept with the opposing sign for portfolio P10—the largest

cap-based decile portfolio—is quite small in magnitude compared to
∑9

i=1 âi. These

results are evidence that the non-rejections by the distribution-free single-portfolio

S∗ and W ∗ tests seen in Table 3 are not due to the ai’s canceling out.

Table 5 reports the covariance matrix for the market model residuals, where the

entries are multiplied by 1000. This matrix is an estimate of the covariances across

portfolio returns once the effects of the market portfolio have been removed. The

low covariance values suggest that assuming conditional independence in the cross-

section of returns may be fairly innocuous in this application. Indeed, recall that the

sum-type SS and WS tests assume that the error terms (ε1t, ..., εNt) are indepen-
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dent, conditional on Rp. The fact that those test statistics are not significant when

computed with the full sample constitutes an implicit non-rejection of the conditional

independence assumption. As a further check, we computed the Breusch and Pagan

(1980) Lagrange multiplier test for the diagonality of the error covariance matrix of

a seemingly unrelated equations system. The computed p-value of that test is 0.99,

which clearly shows the joint statistical insignificance of the off-diagonal entires in

Table 5. These results support not only the validity of the sum-type SS and WS

tests but also that of the single-portfolio S∗ and W ∗ tests. In light of the simulation

results, the most natural interpretation of the empirical findings is that the CRSP

value-weighted index appears consistent with the mean-variance efficiency hypothesis

over the full sample period.

2.7 Conclusion

The mean-variance efficiency of a given portfolio is typically assessed with tests based

on OLS or GMM. The reliability of such test procedures depends on several parametric

assumptions about the model’s error terms, such as the finiteness and stationarity

of moments. Exact parametric tests rely on an even stronger assumption about the

actual distribution of the error terms. For instance, the well-known GRS Wald test

assumes that the errors are multivariate Gaussian.
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In this paper, we have proposed new non-randomized tests of mean-variance effi-

ciency whose exactness does not depend on any parametric assumptions. The finite-

sample validity of the new tests rests on the assumption that the joint temporal error

density is symmetric around zero. This leaves open the possibility of conditional

heteroskedasticity and even outliers. In fact, no restrictions are placed on the degree

of non-normality or the degree of heterogeneity and dependence of the conditional

variances. Not even the existence of moments is required.

The proposed tests were evaluated against commonly used parametric tests in

some simulation experiments. The numerical results reveal that the parametric pro-

cedures suffer serious size distortions in the presence of contemporaneous conditional

heteroskedasticity, especially when the number of test assets is large and/or the time

history is relatively short. The MC approach of BDK can avoid this problem, but

only if the precise form of heterogeneity is known. Since it has long been recognized

that asset returns depart from homogeneous conditions, the new tests of the mean-

variance efficiency hypothesis developed here offer a valid and useful distribution-free

testing alternative to potentially very misleading parametric procedures.
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Appendix

Proof of Proposition 1. Under Assumption 1, the elements of Rp are all different

from zero with probability one, so the quantities εit/rpt, t = 1, ..., T , are well defined.

Given Rp, we also have under Assumption 1 that

(εi1/rp1, εi2/rp2, ..., εiT/rpT )
d
= (−εi1/rp1, εi2/rp2, ..., εiT/rpT )

d
= ...

d
= (−εi1/rp1,−εi2/rp2, ...,−εiT/rpT ) , (2.7.1)

where all 2T such terms appear in this string of equalities in distribution. In particular,

we have

(εi1/rp1, εi2/rp2, ..., εiT/rpT )
d
= (−εi1/rp1,−εi2/rp2, ...,−εiT/rpT ) .

Define δ[η1, η2, ..., ηT ] =
(
(ηm+1 − η1), (ηm+2 − η2), ..., (ηT − ηm)

)
. It follows that

δ [εi1/rp1, εi2/rp2, ..., εiT/rpT ]
d
= δ [−εi1/rp1,−εi2/rp2, ...,−εiT/rpT ]

or

(
(εi,m+1/rp,m+1 − εi1/rp1), ..., (εiT/rpT − εim/rpm)

) d
=

(
− (εi,m+1/rp,m+1 − εi1/rp1), ...,−(εiT/rpT − εim/rpm)

)
,

since X
d
= Y implies U [X]

d
= U [Y ] for any measurable function U [·] defined on the

common support of X and Y (Randles and Wolfe 1979, Theorem 1.3.7). This last

result is used here conditional on Rp so that
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(
(εi,m+1/rp,m+1 − εi1/rp1)xp1, ..., (εiT/rpT − εim/rpm)xpm

) d
=

(
− (εi,m+1/rp,m+1 − εi1/rp1)xp1, ...,−(εiT/rpT − εim/rpm)xpm

)
,

since the xpt’s defined in (3.4.4) are just functions of (rp1, ..., rpT )′. In turn,

E
[
s
[

(εi,t+m/rp,t+m − εit/rpt)xpt
]]

= E
[
s
[
− (εi,t+m/rp,t+m − εit/rpt)xpt

]]
or

Pr
[

(εi,t+m/rp,t+m − εit/rpt)xpt > 0
]

= Pr
[

(εi,t+m/rp,t+m − εit/rpt)xpt < 0
]

= 1/2,

(2.7.2)

for t = 1, 2, ...,m, since Pr [(εi,t+m/rp,t+m − εit/rpt)xpt = 0] = 0 under Assumption 2.

Note that (2.7.2) holds conditional on Rp as well as unconditionally. �

Proof of Proposition 2. By applying the function δ[·] defined in the proof of

Proposition 1 to the string of equalities in distribution in (2.7.1), we see that

(
(εi,m+1/rp,m+1 − εi1/rp1), (εi,m+2/rp,m+2 − εi2/rp2), ..., (εiT/rpT − εim/rpm)

) d
=(

− (εi,m+1/rp,m+1 − εi1/rp1), (εi,m+2/rp,m+2 − εi2/rp2), ..., (εiT/rpT − εim/rpm)
) d

=(
(εi,m+1/rp,m+1 − εi1/rp1),−(εi,m+2/rp,m+2 − εi2/rp2), ..., (εiT/rpT − εim/rpm)

) d
=(

− (εi,m+1/rp,m+1 − εi1/rp1),−(εi,m+2/rp,m+2 − εi2/rp2), ..., (εiT/rpT − εim/rpm)
) d

=

...

d
=
(
− (εi,m+1/rp,m+1 − εi1/rp1),−(εi,m+2/rp,m+2 − εi2/rp2), ...,−(εiT/rpT − εim/rpm)

)
,

where all 2m such terms appear in this string of equalities in distribution. Let

E =
(

(εi,m+1/rp,m+1− εi1/rp1)xp1, ..., (εiT/rpT − εim/rpm)xpm

)
. It follows that the 2m
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different values that the vector s[E] =
(
s
[
(εi,m+1/rp,m+1−εi1/rp1)xp1

]
, ..., s

[
(εiT/rpT−

εim/rpm)xpm
])

may take in {0, 1}m have the same probability (1/2)m. Therefore, the

elements of s[E] are mutually independent. Note that this result holds conditional

on Rp as well as unconditionally. Define dj to be the position of the integer j in the

realization of the vector
(
Rank(|zi1|), ..., Rank(|zim|)

)
, j = 1, ...,m, so that

m∑
t=1

s[zit]ϕ
[
Rank(|zit|)

]
=

m∑
j=1

s[zi,dj ]ϕ[j].

Conditional on |E| =
(
|(εi,m+1/rp,m+1−εi1/rp1)xp1|, ..., |(εiT/rpT−εim/rpm)xpm|

)
, the

vector of scores is a fixed permutation of
(
ϕ[1], ..., ϕ[m]

)
. So under the null hypothesis

and conditional on |E|, it follows that

m∑
j=1

s[zi,dj ]ϕ[j]
d
=

m∑
j=1

Bjϕ[j],

since
(
s[zi,d1 ], ..., s[zi,dm ]

) d
= (B1, B2, ..., Bm), where B1, ..., Bm are mutually indepen-

dent uniform Bernoulli variables on {0, 1}. Moreover, given the symmetry established

in Proposition 1, we have under the null that s [zt] is independent of R+
t and thus of

ϕ
[
R+
t

]
(Randles and Wolfe 1979, Lemma 2.4.2). Therefore, under the null, it is the

case also unconditionally that

SRi =
m∑
t=1

s[zit]ϕ
[
Rank(|zit|)

] d
=

m∑
j=1

Bjϕ[j],

since the distribution of
∑m

j=1Bjϕ[j] does depend on |E|. �
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Chapter 3

Testing Linear Factor Pricing
Models in Large Cross-Sections:
A Distribution-Free Approach

Abstract

We develop a finite-sample procedure to test the beta-pricing representation of lin-

ear factor pricing models that is applicable even if the number of test assets is greater

than the length of the time series. Further, we make no parametric assumption about

the distribution of the disturbances in the factor model. Our framework leaves open

the possibility of unknown forms of time-varying non-normalities, heteroskedasticity,

and even outliers in the asset returns. The power of the proposed test procedure

increases as either the times series lengthens or the cross-section becomes larger. Fi-

nally, we illustrate the new procedure by testing the well-known Fama-French factor

model over 5-year subsamples of monthly returns on 100 U.S. equity portfolios formed

on size and book-to-market.
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3.1 Introduction

Many asset pricing models predict that expected returns depend linearly on “beta”

coefficients relative to one or more portfolios or factors. The beta is the regression

coefficient of the asset return on the factor. In the capital asset pricing model (CAPM)

of Sharpe (1964) and Lintner (1965), the single beta measures the systematic risk or

co-movement with the returns on the market portfolio. Accordingly, assets with

higher betas should offer in equilibrium higher expected returns. The Arbitrage

Pricing Theory (APT) of Ross (1976), developed on the basis of arbitrage arguments,

can be more general than the CAPM in that it relates expected returns with multiple

beta coefficients. Merton (1973) and Breeden (1979) develop models based on investor

optimization and equilibrium arguments that also lead to multiple-beta pricing.

Empirical tests of the validity of beta pricing relationships are often conducted

within the context of multivariate linear factor models. When the factors are traded

portfolios and a riskfree asset is available, exact factor pricing implies that the vector

of asset return intercepts will be zero. These tests are interpreted as tests of the mean-

variance efficiency of a benchmark portfolio in the single beta model or that some

combination of the factor portfolios is mean-variance efficient in multiple beta models.

In this context, standard asymptotic theory provides a poor approximation to the

finite-sample distribution of the usual Wald and likelihood ratio (LR) test statistics,

even with fairly large samples. Shanken (1996), Campbell, Lo, and MacKinlay (1997),
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and Dufour and Khalaf (2002) document severe size distortions for those tests, with

over rejections growing quickly when the number of equations in the multivariate

model increases. The simulation evidence in Ferson and Foerster (1994) and Gungor

and Luger (2009) shows that tests based on the Generalized Method of Moments

(GMM) à la MacKinlay and Richardson (1991) suffer from the same problem. As a

result, empirical tests of beta-pricing representations can be severely affected and can

lead to spurious rejections of their validity.

The assumptions underlying standard asymptotic arguments can be questionable

when dealing with financial asset returns data. In the context of the consumption

CAPM, Kocherlakota (1997) shows that model errors are so heavy-tailed that they do

not satisfy the Central Limit Theorem. In such an environment, standard methods

of inference can lead to spurious rejections even asymptotically and Kocherlakota

instead relies on jackknifing to devise a method of testing the consumption CAPM.

Similarly, Affleck-Graves and McDonald (1989) and Chou and Zhou (2006) propose

the use of bootstrap techniques to provide more robust and reliable asset pricing tests.

There are very few methods that provide truly exact, finite-sample tests.1 The

most prominent one is probably the F-test of Gibbons, Ross, and Shanken (1989)

(GRS). The exact distribution theory for that test rests on the assumption that the

1A number of Bayesian approaches have also been proposed. These include Shanken (1987),

Harvey and Zhou (1990), and Kandel, McCulloch, and Stambaugh (1995).
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model errors are jointly normal and independent and identically distributed through

time. As we already mentioned, there is ample evidence that financial returns ex-

hibit non-normalities; for more evidence, see Fama (1965), Blattberg and Gonedes

(1974), Hsu (1982), Affleck-Graves and McDonald (1989), and Zhou (1993). Beaulieu,

Dufour, and Khalaf (2007) generalize the GRS approach for testing mean-variance

efficiency. Their simulation-based approach does not necessarily assume normality

but it does nevertheless require that the disturbance distribution be parametrically

specified, at least up to a finite number of unknown nuisance parameters. Gungor and

Luger (2009) propose exact tests of the mean-variance efficiency of a single reference

portfolio, whose exactness does not depend on any parametric assumptions.

In this paper we extend the idea of Gungor and Luger (2009) to obtain tests of

multiple-beta pricing representations that relax two assumptions of the GRS frame-

work: (i) the normality assumption and (ii) the restriction on the number of test

assets. The proposed test procedure is based on finite-sample pivots that are valid

without any assumptions about the distribution of the disturbances in the factor

model. We propose an adaptive approach based on a split-sample technique to ob-

tain a single portfolio representation judiciously formed to avoid power losses that can

occur in simple portfolio groupings. For other examples of split-sample techniques,

see Dufour and Taamouti (2005) and Dufour and Taamouti (2010). A very attractive

feature of our approach is that it is applicable even if the number of test assets is

greater than the length of the time series. This stands in sharp contrast to the GRS
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test or any other approach based on usual estimates of the disturbance covariance

matrix. In order to avoid singularities and be computable, those approaches require

the size of the cross-section be less than that of the time series. In fact, great care

must be taken when applying the GRS test since its power does not increase mono-

tonically with the number of test assets and all the power may be lost if too many

are included. This problem is related to the fact that the number of covariances that

need to be estimated grows rapidly with the number of included test assets. As a re-

sult, the precision with which this increasing number of parameters can be estimated

deteriorates given a fixed time-series.2

Our proposed test procedure then exploits results from Coudin and Dufour (2009)

to construct confidence sets for the model parameters by inverting exact sign-based

statistics. The motivation for using this technique comes from an impossibility re-

sult due to Lehmann ans Stein (1949) that shows that the only tests which yield

reliable inference under sufficiently general distributional assumptions, allowing non-

normal, possibly heteroskedastic, independent observations are based on sign statis-

tics. This means that all other methods, including the standard heteroskedasticity

and autocorrelation-corrected (HAC) methods developed by White (1980) and Newey

and West (1987) among others, which are not based on signs, cannot be proved to be

2The notorious noisiness of unrestricted sample covariances is a well-known problem in the port-

folio management literature; see Michaud (1989), Jagannathan and Ma (2003), and Ledoit and Wolf

(2003, 2004), among others.
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valid and reliable for any sample size.

The paper is organized as follows. Section 2 presents the linear factor model used

to describe the asset returns, the null hypothesis to be tested, and the benchmark GRS

test. We provide an illustration of the effects of increasing the number of test assets

on the power of the GRS test. In Section 3 we develop the new test procedure. We

begin by presenting the statistical framework and then proceed to describe each step

of the procedure. Section 4 contains the results of simulation experiments designed to

compare the performance of the proposed test procedure with several of the standard

tests. We also present evidence on the robustness of our procedure to departures

from the maintained assumptions. In Section 5 we apply the procedure to test the

Sharpe-Lintner version of the CAPM and the well-known Fama-French three factor

model. Section 6 concludes the paper.

3.2 Factor structure

Suppose there exists a riskless asset for each period of time and define rt an N × 1

vector of time-t returns on N assets in excess of riskless rate of return. Suppose

further that those excess returns are described by the linear K-factor model

rt = a + Bft + εt, (3.2.1)
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where ft is a K × 1 vector of common factor portfolio excess returns, B is the N ×K

matrix of betas (or factor loadings), and a and εt are N × 1 vectors of factor model

intercepts and disturbances, respectively. The vector εt is usually assumed to have

well-defined first and second moments satisfying E[εt|ft] = 0 and E[εtε
′
t|ft] = Σ, a

finite N ×N matrix.

Exact factor pricing implies that expected returns depend linearly on the betas

associated to the factor portfolio returns:

Et[rt] = BλK , (3.2.2)

where λK is a K × 1 vector of expected excess returns associated with ft, which rep-

resent market-wide risk premiums since they apply to all traded securities. The beta-

pricing representation in (3.2.2) is a generalization of the CAPM of Sharpe (1964) and

Lintner (1965), which asserts that the expected excess return on an asset is linearly

related to its single beta, which measures the asset’s systematic risk or co-movement

with the excess return on the market portfolio—the portfolio of all invested wealth.

Equivalently, the CAPM says that the market portfolio is mean-variance efficient

in the investment universe comprising all possible assets.3 The pricing relationship

in (3.2.2) is more general since it says that a combination (portfolio) of the factor

3A benchmark portfolio with excess returns rp is said to be mean-variance efficient with respect

to a given set of N test assets with excess returns rt if it not possible to form another portfolio of

those N assets and the benchmark portfolio with the same variance as rp but a higher expected

return.
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portfolios is mean-variance efficient; see Jobson (1982), Jobson and Korkie (1982,

1985), Grinblatt and Titman (1987), Shanken (1987), and Huberman, Kandel, and

Stambaugh (1987) for more on the relation between factor models and mean-variance

efficiency.

The beta-pricing representation in (3.2.2) is a restriction on expected returns

which can be assessed by testing the hypothesis

H0 : a = 0 (3.2.3)

under the maintained factor structure specification in (3.2.1). If the pricing errors,

a, are in fact different from zero, then (3.2.2) does not hold meaning that there is no

way to combine the factor portfolios to obtain one that is mean-variance efficient.

Gibbons, Ross, and Shanken (1989) (GRS) propose a multivariate F-test of (3.2.3)

that all the pricing errors are jointly equal to zero. Their test assumes that the vec-

tors of disturbance terms εt, t = 1, ..., T , in (3.2.1) are independent and normally

distributed around zero with non-singular cross-sectional covariance matrix each pe-

riod, conditional on the the T × K collection of factors F = [f ′1, ...,f
′
T ]′. Under

normality, the methods of maximum likelihood and ordinary least squares (OLS)

yield the same unconstrained estimates of a and B:

â = r̄− B̂f̄ , (3.2.4)

B̂ =

[
T∑
t=1

(rt − r̄)(ft − f̄)′

][
T∑
t=1

(ft − f̄)(ft − f̄)′

]−1

, (3.2.5)
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where r̄ = T−1
∑T

t=1 rt and f̄ = T−1
∑T

t=1 ft, and the estimate of the disturbance

covariance matrix is

Σ̂ =
1

T

T∑
t=1

(rt − â− B̂ft)(rt − â− B̂ft)
′. (3.2.6)

The GRS test statistic is

J1 =
T −N −K

N

[
1 + f̄ ′Ω̂−1f̄

]−1

ā′Σ̂−1ā, (3.2.7)

where Ω̂ is given by

Ω̂ =
1

T

T∑
t=1

(ft − f̄)(ft − f̄)′.

Under the null hypothesis H0, the statistic J1 follows a central F distribution with

N degrees of freedom in the numerator and (T − N −K) degrees of freedom in the

denominator.

In practical applications of the GRS test, one needs to decide the appropriate

number N of test assets to include. It might seem natural to try to use as many

test assets as possible in order to increase the probability of rejecting H0 when it

is false. As the test asset universe expands it becomes more likely that non-zero

pricing errors will be detected, if indeed there are any. However, the choice of N is

restricted by T in order to keep the estimate of the disturbance covariance matrix in

(3.2.6) from becoming singular, and the choice of T itself is often restricted owing to

concerns about parameter stability. For instance, it is quite common to see studies

where T = 60 monthly returns and N is between 10 and 30. The effects of increasing
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the number of test assets on test power is discussed in GRS and Sentana (2009).

When N increases, three effects come into play: (i) the increase in the value of J1’s

non-centrality parameter, which increases power, (ii) the increase in the number of

degrees of freedom in the numerator, which decreases power, and (iii) the decrease in

the number of degrees of freedom in the denominator, which also decreases power.

To illustrate the net effect of increasing N on the power of the GRS test, we

simulated model (3.2.1) with K = 1, where the returns on the single factor are ran-

dom draws from the standard normal distribution. The elements of the independent

disturbance vector were also drawn from the standard normal distribution thereby

ensuring the exactness of the GRS test. We set T = 60 and considered ai = 0.05,

0.10, and ai = 0.15 for i = 1, ..., N and we let the number of test assets N range

from 1 to 58. Figure 1 shows the power of the GRS test as a function of N , where

for any given N the higher power is associated with higher pricing errors. In line

with the discussion in GRS, this figure clearly shows the power of the test given this

specification rising as N increases up to about one half of T and then decreasing

beyond that. So great care must be taken when choosing the number of test assets

since power does not increase monotonically with N and if the cross-section is too

large, then the GRS test may lose all its power or may not even be computable. In

fact, any procedure that relies on standard unrestricted estimates of the covariance

matrix of regression disturbances will have this singularity problem when N exceeds

T .
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3.3 Test procedure

In this section we develop a procedure to test H0 in (3.2.3) that relaxes three assump-

tions of the GRS test: (i) the assumption of identically distributed disturbances,

(ii) the assumption of normally distributed disturbances, and (iii) the restriction

on the number of test assets. Our approach is motivated by results from classical

non-parametric statistics that show that the only tests which yield reliable inference

under sufficiently general distributional assumptions, allowing non-normal, possibly

heteroskedastic, independent observations are ones that are conditional on the ab-

solute values of the observations; i.e., they must be based on sign statistics. This

result is due to Lehmann and Stein (1949); see also Pratt and Gibbons (1981, p.

218), Dufour and Hallin (1991), and Dufour (2003). Next we present the statistical

framework and then proceed to describe each step of the procedure.

3.3.1 Statistical framework

As in the GRS framework, we assume that the disturbance vectors εt in (3.2.1)

are independently distributed over time, conditional on F. We do not require the

disturbance vectors to be identically distributed, but we do assume that they remain

symmetrically distributed each period.In what follows the symbol
d
= stands for the

equality in distribution.
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Assumption 1. The cross-sectional disturbance vectors εt, t = 1, ..., T , are mutually

independent, continuous, and diagonally symmetric so that εt
d
= −εt, conditional on

F.

The diagonal (or reflective) symmetry condition in Assumption 1 can be equiv-

alently expressed in terms of the density function as f(εt) = f(−εt). Recall that a

random variable v is symmetric around zero if and only if v
d
= −v, so the symmetry

assumption made here represents the most direct non-parametric extension of uni-

variate symmetry. See Serfling (2006) for more on multivariate symmetry. The class

of distributions encompassed by the diagonal symmetry condition includes elliptically

symmetric distributions, which play a very important role in mean-variance analysis

because they guarantee full compatibility with expected utility maximization regard-

less of investor preferences; see Chamberlain (1983), Owen and Rabinovitch (1983),

and Berk (1997). A random vector V is elliptically symmetric around the origin

if its density function can be expressed as |Σ|−1/2g(V′Σ−1V) for some nonnegative

scalar function g(·), where Σ is (proportional to) the covariance matrix. The class of

elliptically symmetric distributions includes the well-known multivariate normal and

Student-t distributions, among others. It is important to emphasize that the diago-

nal symmetry condition in Assumption 1 is less stringent than elliptical symmetry.

For example, a mixture (finite or not) of distributions each one elliptically symmetric

around the origin is not necessarily elliptically symmetric but it is diagonally symmet-
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ric. Note also that the distribution of ft in (3.2.1) may be skewed thereby inducing

asymmetry in the unconditional distribution of rt.

Assumption 1 does not require the vectors εt to be identically distributed nor

does it restrict their degree of heterogeneity. This is a very attractive feature since

it is well known that financial returns often depart quite dramatically from Gaussian

conditions; see Fama (1965), Blattberg and Gonedes (1974), and Hsu (1982). In

particular, the distribution of asset returns appears to have much heavier tails and

is more peaked than a normal distribution. The present framework thus leaves open

the possibility of unknown forms of non-normality and even heteroskedasticity. For

example, when (rt,f t) are elliptically distributed but nonnormal, the conditional

covariance matrix of εt depends on the contemporaneous f t; see MacKinlay and

Richardson (1991) and Zhou (1993). Here the covariance structure of the disturbance

terms could be any function of the common factors (contemporaneous or not). The

simulation study below includes a contemporaneous heteroskedasticity specification.

3.3.2 Portfolio formation

A usual practice in the application of the GRS test is to base it on portfolio groupings

in order to have N much less than T . As Shanken (1996) notes, this has the potential

effect of reducing the residual variances and increasing the precision with which a =
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(a1, ..., aN)′ is estimated. On the other hand, as Roll (1979) points out, individual

stock expected return deviations under the alternative can cancel out in portfolios,

which would reduce power. Ideally, all the pricing errors in a would be of the same

sign to avoid power losses when forming portfolios. Our approach here is an adaptive

one based on a split-sample technique, where the first subsample is used to obtain an

estimate of a. That estimate is then used to form a single portfolio that judiciously

avoids power losses. Finally, a conditional test of H0 is performed using only the

returns on that portfolio observed over the second subsample. It is important to

note that in the present framework this approach does not introduce any of the data-

snooping size distortions (i.e. the appearance of statistical significance when the null

hypothesis is true) discussed in Lo and MacKinlay (1990), since the estimation results

are conditionally (on the factors) independent of the second subsample test outcomes.

Let T = T1 +T2. In matrix form, the first T1 returns on asset i can be represented

by

r1
i = aiι+ F1bi + ε1

i , (3.3.1)

where r1
i = [ri1, ..., riT1 ]

′ collects the time series of T1 returns on asset i, ι is a T1 × 1

vector of ones, b′i is the ith row of B in (3.2.1), and ε1
i = [εi1, ..., εiT1 ]

′.

Assumption 2. Only the first T1 observations on rt and ft are used to compute the

subsample estimates â1, ..., âN .
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This assumption does not restrict the choice of estimation method, so the sub-

sample estimates â1, ..., âN could be obtained by OLS, quasi-maximum likelihood, or

any other method. A well-known problem with OLS is that it is very sensitive to

the presence of large disturbances and outliers. An alternative estimation method

is to minimize the sum of the absolute deviations in computing the regression lines

(Koenker and Bassett 1978). The resulting least absolute deviations (LAD) estimator

may be more efficient than OLS in heavy-tailed samples where extreme observations

are more likely to occur. For more on the efficiency of LAD versus OLS, see Glahe

and Hunt (1970), Hunt, Dowling, and Glahe (1974), Pfaffenberger and Dinkel (1978),

Rosenberg and Carlson (1977), and Mitra (1987). The results reported below in the

simulation study and the empirical application are based on LAD.

With the estimates â1, ..., âN in hand, a vector of statistically motivated “portfo-

lio” weights ω̂ = (ω̂1, ω̂2, ..., ω̂N) is computed according to:

ω̂i =
âi

|â1|+ ...+ |âN |
= sign(âi)

|âi|
|â1|+ ...+ |âN |

, (3.3.2)

for i = 1, ..., N , and these weights are then used to find the T2 returns of a portfolio

computed as yt =
∑N

i ω̂irit, t = T1 + 1, ..., T . Note that having a zero denominator

in (3.3.2) is a zero probability event in finite samples when the disturbance terms are

of the continuous type (as in Assumption 1). Let δ denote the sum of the weighted

ai’s and set xt = ft.
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Proposition 1. Under H0 and when Assumptions 1 and 2 hold, yt is represented by

the single equation

yt = δ + x′tβ + ut, for t = T1 + 1, ..., T, (3.3.3)

where δ = 0 and (uT1+1, ..., uT )
d
= (±uT1+1, ...,±uT ), conditional on F and ω̂.

Proof. The conditional expectation part of (3.3.3) follows from the common factor

structure in (3.2.1), and the fact that δ is zero under H0 is obvious. The independence

of the disturbance vectors maintained in Assumption 1 implies that the T2 vectors εt,

t = T1 +1, ..., T , are conditionally independent of the vector of weights (ω̂1, ω̂2, ..., ω̂N)

given F, since under Assumption 2 those weights are based only on the first T1

observations of rt and ft. Thus we see that, given F and ω̂,

(
ω̂1ε1t, ω̂2ε2t, ..., ω̂NεNt

) d
=
(
− ω̂1ε1t,−ω̂2ε2t, ...,−ω̂NεNt

)
, (3.3.4)

for t = T1 + 1, ..., T . Let ut =
∑N

i ω̂iεit. For a given t, (3.3.4) implies that ut
d
= −ut,

since any linear combination of the elements of a diagonally symmetric vector is itself

symmetric (Behboodian 1990, Theorem 2). Moreover, this fact applies to each of the

T2 conditionally independent random variables uT1+1, ..., uT . So, given F and ω̂, the

2T2 possible T2 vectors

(
± |uT1+1|,±|uT1+2|, ...,±|uT |

)
are equally likely values for (uT1+1, ..., uT ), where ±|ut| means that |ut| is assigned

either a positive or negative sign with probability 1/2. �
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The construction of a test based on a single portfolio grouping is reminiscent of

a mean-variance efficiency test proposed in Bossaerts and Hillion (1997) based on∑N
i=1 âi and another one proposed in Gungor and Luger (2009) based on

∑N
i=1 ai.

Those approaches can suffer power losses depending on whenever the ai’s tend to

cancel out. Splitting the sample and applying the weights in (3.3.2) when forming

the portfolio offsets that problem. Note that these weights do not correspond to any of

the usual ones in mean-variance analysis since finding those requires an estimate of the

covariance structure and that is precisely what we are trying to avoid. Furthermore,

such estimates are not meaningful in our non-parametric context where possible forms

of heterogeneity are left completely unspecified. To see why the weights in (3.3.2) are

reasonable, note that the sign component in the definition of ω̂i makes it more likely

that all the intercept values in the equation describing ω̂irit will be positive under the

alternative hypothesis. The component in (3.3.2) pertaining to the absolute values

serves to give relatively more weight to the assets that seem to depart more from H0

and to down weight those that seem to offer relatively less evidence against the null

hypothesis.

3.3.3 Confidence sets

The model in (3.3.3) can be represented in matrix form as y = δ + Xβ + u, where

the elements of u follow what Coudin and Dufour (2009) call a strict conditional
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mediangale. Define a sign function as s[x] = 1 if x > 0, and s[x] = −1 if x ≤ 0. The

following result is an immediate consequence of the mediangale property.

Proposition 2. Under Assumptions 1 and 2, the T2 disturbance sign vector

s(y − δ −Xβ) =
(
s[yT1+1 − δ − x′T1+1β], ..., s[yT − δ − x′Tβ]

)
follows a distribution free of nuisance parameters, conditional on F and ω̂. Its dis-

tribution can be simulated to any degree of accuracy simply by repeatedly drawing

S̃T2 = (s̃1, ..., s̃T2), whose elements are independent Bernoulli variables such that

Pr[s̃t = 1] = Pr[s̃t = −1] = 1/2.

A corollary of this proposition is that any function of the form Ψ = Ψ(s(y −

δ −Xβ); F) is also free of nuisance parameters (i.e. pivotal), conditional on F. To

see the usefulness of this result, consider the problem of testing H0(δ0,β0) : δ =

δ0,β = β0 against H1(δ0,β0) : δ 6= δ0 or β 6= β0. Under H0(δ0,β0), the statistic

Ψ(s(y − δ − Xβ); F) is distributed like Ψ(S̃T2 ; F), conditional on F. Suppose that

Ψ(·) is a non-negative function. The decision rule is then to reject H0(δ0,β0) at

level α if Ψ(s(y − δ −Xβ); F) is greater than the (1 − α)-quantile of the simulated

distribution of Ψ(S̃T2 ; F).

Following Coudin and Dufour (2009), we consider two test statistics given by the
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quadratic forms

SX(δ0,β0) = s(y − δ0 −Xβ0)
′XX′s(y − δ0 −Xβ0), (3.3.5)

SP (δ0,β0) = s(y − δ0 −Xβ0)
′P(X)s(y − δ0 −Xβ0), (3.3.6)

where P(X) = X(X′X)−1X′ projects orthogonally onto the subspace spanned by the

columns of X. Boldin, Simonova, and Tyurin (1997) show that these statistics can

be associated with locally most powerful tests in the case of i.i.d. disturbances under

some regularity conditions. Coudin and Dufour extend that proof to disturbances

that satisfy the mediangale property. It is interesting to note that (3.3.6) can be

interpreted as a sign analogue of the F test for testing the hypothesis that all the

coefficients in a regression of s(y − δ0 −Xβ0) on X are zero.

An exactly distribution-free confidence set for δ and β can be constructed simply

by inverting either (3.3.5) or (3.3.6). Consider the test statistic in (3.3.6) for example,

and let cα represent its one-sided α-level simulated critical value. A joint confidence

set, say C1−α(δ,β), with level 1−α for δ and β is simply the collection of all values of

δ0,β0 for which SP (δ0,β0) is less than cα. Note that the critical value cα only needs

to be computed once, since it does not depend on δ0,β0.

From the joint confidence set, it is possible to derive conservative confidence

sets and intervals for general functions of the parameters δ,β using the projection

method in Coudin and Dufour (2009); see also Abdelkhalek and Dufour (1998), Du-

four and Jasiak (2001), and Dufour and Taamouti (2005) for other examples of this
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technique. Consider a non-linear function g(δ,β) of δ,β. It is easy to see that

(δ,β) ∈ C1−α(δ,β) ⇒ g(δ,β) ∈ g(C1−α(δ,β)) so that Pr[(δ,β) ∈ C1−α(δ,β)] ≥

1 − α ⇒ Pr[g(δ,β) ∈ g(C1−α(δ,β))] ≥ 1 − α. This means that g(C1−α(δ,β)) is a

conservative confidence set for g(δ,β); i.e., one for which the level is at least 1 − α.

In the special case when g(δ,β) is scalar, the interval[
inf

(δ0,β0)∈C1−α(δ,β)
g(δ0,β0), sup

(δ0,β0)∈C1−α(δ,β)

g(δ0,β0)

]

satisfies

Pr

[
inf

(δ0,β0)∈C1−α(δ,β)
g(δ0,β0) ≤ g(δ,β) ≤ sup

(δ0,β0)∈C1−α(δ,β)

g(δ0,β0)

]
≥ 1− α.

Hence, a confidence interval of the form [δ̂L, δ̂U ] for δ in model (3.3.3) can be found

as

δ̂L = argmin
(δ0,β0)∈R×RK

δ0,

subject to SP (δ0,β0) < cα,

δ̂U = argmax
(δ0,β0)∈R×RK

δ0,

subject to SP (δ0,β0) < cα.

(3.3.7)

Once the solutions in (3.3.7) are found, the null hypothesis H0 : a = 0 in (3.2.3) is

rejected at level α if zero is not contained in [δ̂L, δ̂U ], otherwise there is not sufficient

evidence to reject it at that level of significance.

Searching over the R×RK domain in (3.3.7) is obviously not practical and some

restrictions need to be imposed. Here we perform that step by specifying a fine grid
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of relevant points B(δ̂0, β̂0) around δ̂0, β̂0 and calculate SP (δ0,β0) at each of those

points.4 An important remark about computation is that a single pass over the grid

is enough to establish both the joint confidence set and the limits of the marginal

confidence interval for δ. Note also that the grid search can be stopped and the null

hypothesis can no longer be rejected at the α level as soon as zero gets included in

the marginal confidence interval for δ.

3.3.4 Summary of test procedure

Suppose that one wishes to use the SP statistic in (3.3.6). In a preliminary step,

the distribution of that statistic is simulated to the desired degree of accuracy and a

one-sided α-level critical value, cα, is determined. The rest of the test procedure then

proceeds according to the following steps.

1. The estimates âi of ai, i = 1, ..., N , are computed using the first subsample of

observations, rit and ft, t = 1, ..., T1.

4More sophisticated global optimization methods could be used to solve for the limits of the

marginal confidence interval. For instance, Coudin and Dufour (2009) make use of a simulated

annealing algorithm (Goffe, Ferrier, and Rogers 1994). The advantage of the grid search is that it

is completely reliable.
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2. For each i = 1, ..., N , weights ω̂i are computed according to:

ω̂i =
âi

|â1|+ ...+ |âN |
,

and T2 returns of a portfolio are computed as yt =
∑N

i ω̂irit, t = T1 + 1, ..., T .

3. For each candidate point (δ0,β0) ∈ B(δ̂0, β̂0), the statistic SP (δ0,β0) is com-

puted. The limits of the marginal confidence interval, δ̂L and δ̂U , are found

as:

δ̂L = argmin
(δ0,β0)∈B(δ̂0,β̂0)

δ0,

subject to SP (δ0,β0) < cα,

δ̂U = argmax
(δ0,β0)∈B(δ̂0,β̂0)

δ0,

subject to SP (δ0,β0) < cα.

4. The null hypothesis H0 : a = 0 is rejected if 0 /∈ [δ̂L, δ̂U ], otherwise it is accepted.

This procedure yields an exactly distribution-free test of H0 over the class of all

disturbance distributions satisfying Assumption 1.

3.4 Simulation results

We present the results of some small-scale simulation experiments to compare the

performance of the proposed test procedure with several standard tests. We also

present some evidence of the robustness of the new procedure to the presence of cross-

sectional error correlation. The first of the benchmarks for comparison purposes is
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the GRS test in (3.2.7). The other benchmarks are the usual likelihood ratio (LR)

test, an adjusted LR test, and a test based on the Generalized Method of Moments

(GMM). The latter is a particularly important benchmark here, since in principle it

is “robust” to non-normality and heteroskedasticity of returns.

The LR test is based on a comparison of the constrained and unconstrained log-

likelihood functions evaluated at the maximum likelihood estimates. The uncon-

strained estimates are given in (3.2.4), (3.2.5), and (3.2.6). For the constrained case,

the maximum likelihood estimates are

B̂∗ =

[
T∑
t=1

rtf
′
t

][
T∑
t=1

ftf
′
t

]−1

,

Σ̂∗ =
1

T

T∑
t=1

(
rt − B̂∗ft

)(
rt − B̂∗ft

)′
.

The LR test statistic, J2, is then given by

J2 = T
[
log |Σ̂∗| − log |Σ̂|

]
,

which, under the null hypothesis, follows an asymptotic chi-square distribution with

N degrees of freedom, χ2
N . As we shall see, the finite sample behavior of J2 can differ

vastly from what asymptotic theory predicts. Jobson and Korkie (1982) suggest an

adjustment to J2 in order to improve its finite-sample size properties when used with

critical values from the χ2
N distribution. The adjusted statistic is

J3 =
T − (N/2)−K − 1

T
J2,
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which also follows the asymptotic χ2
N distribution, under H0.

MacKinlay and Richardson (1991) develop tests of mean-variance efficiency in a

GMM framework. For the asset pricing model in (3.2.1), the GMM tests are based

on the moments of the following (K + 1)N × 1 vector:

gt(θ) =

 1

ft

⊗ εt(θ), (3.4.1)

where εt(θ) = rt − a − Bft. The symbol ⊗ refers to the Kronecker product. Here

θ = (a′, vec(B)′)′, where vec(B) is an NK × 1 vector obtained by stacking the

columns of B, one below the other, with the columns ordered from left to right. The

model specification in (3.2.1) implies the moment conditions E(gt(θ0)) = 0, where

θ0 is the true parameter vector. The system in (3.4.1) is exactly identified which

implies that the GMM procedure yields the same estimates of θ as does OLS applied

equation by equation. The covariance matrix of the GMM estimator θ̂ is given by

V = [D′0S
−1
0 D0]

−1, where D0 = E[∂gt(θ0)/∂θ
′
0] and S0 =

∑+∞
s=−∞E[gt(θ0)gt−s(θ0)

′];

see Campbell, Lo, and MacKinlay (1997, Chapter 5). The GMM-based Wald test

statistic is

J4 = T â′
[
R
(
D̂′Ŝ−1D̂

)−1

R′
]−1

â, (3.4.2)

where D̂ and Ŝ are consistent estimators of D0 and S0, respectively, and R = (1,0K)⊗

IN , with 0K denoting a row vector of K zeros and IN as the N ×N identity matrix.

Note that the J4 statistic cannot be computed whenever (K + 1)N exceeds T , since

Ŝ then becomes singular.
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Our implementation of the proposed test procedure is computationally intensive

owing to the numerical grid search we perform in Step 3. This is not overly costly for

a single application of the procedure, but it does become prohibitive for a simulation

study. For that reason, we restrict our attention to cases with K = 1 in model (3.2.1).

For convenience, the single-factor specification is given again here as

rit = ai + bift + εit, t = 1, ..., T, i = 1, ..., N, (3.4.3)

in which case the null hypothesis is a test of the mean-variance efficiency of the given

portfolio. The returns of the reference portfolio, ft, follow a stochastic volatility

process:

ft = exp(ht/2)εt with ht = λht−1 + ξt,

where the independent terms εt and ξt are both i.i.d. according to a standard normal

distribution and the persistence parameter λ is set to 0.5. The bi’s are randomly drawn

from a uniform distribution between 0.5 and 1.5. All the tests are conducted at the

nominal 5% level and critical values for SX(δ0,β0)) and SP (δ0,β0) are determined

using 10,000 simulations. In the experiments we choose mispricing values a and set

half the intercept values as ai = a and the other half as ai = −a. We denote this in

the tables as |ai| = a. The estimates of ai, i = 1, ..., N , in Step 1 are found via LAD.

Finally, there are 1000 replications in each experiment.

In the application of the test procedure, a choice needs to be made about where to

split the sample. While this choice has no effect on the level of the tests, it obviously
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matters for their power. We do not have analytical results on how to split the sample,

so we resort to simulations. Table 1 shows the power of the test procedure applied

with the SX and SP statistics for various values of T1/T , where |ai| = 0.20, 0.15, and

0.10. Here T = 60 and N = 100 and the disturbance terms εit are drawn randomly

from the Student-t distribution with ν degrees of freedom. We consider ν = 12

and 6 to examine the effects of kurtosis on the power of the tests. As expected the

results show that for any given value of T1/T , the power increases as |ai| increases

and decreases as the kurtosis of the disturbance terms increases. Overall, the results

suggest that no less that 30% and no more than 50% of the time series observations

should be used as the first subsample in order to maximize power. Accordingly, the

testing strategy represented by T1 = 0.4T is pursued in the remaining comparative

experiments.

We also include in our comparisons two distribution-free tests proposed by Gungor

and Luger (2009) that are applicable in the single-factor context. The building block

of those tests is

zit =

(
ri,t+m
ft+m

− rit
ft

)
× (ft − ft+m)

ftft+m
, (3.4.4)

defined for t = 1, ...,m, where m = T/2 is assumed to be an integer. The first test is

based on the sign statistic

Si =

∑m
t=1 0.5(s[zit] + 1)−m/2√

m/4
(3.4.5)
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and the second one is based the Wilcoxon signed rank statistic

Wi =

∑m
t=1 0.5(s[zit] + 1)Rank(|zit|)−m(m+ 1)/4√

m(m+ 1)(2m+ 1)/24
, (3.4.6)

where Rank(|zit|) is the rank of |zit| when |zi1|, ..., |zim| are placed in ascending order

of magnitude. Gungor and Luger (2009) show that a time-series symmetry condition

ensures that both (3.4.5) and (3.4.6) have limiting (as m → ∞) standard normal

distributions. Under the further assumption that the disturbance terms are cross-

sectionally independent, conditional on (f1, ..., fT )′, their sum-type statistics

SD =
N∑
i=1

S2
i and WD =

N∑
i=1

W 2
i (3.4.7)

follow an asymptotic chi-square distribution with N degrees of freedom. Simulation

results show that this approximation works extremely well and just like the test

procedure proposed here, the SD and WD test statistics can be calculated even if N

is large.

Tables 2 and 3 show the empirical size (Panel A) and power (Panel B) when

|ai| = 0.15 of the considered tests for T = 60, 120 and N = 10, 25, 50, 100, 125. The

power results for the J1, J2, J3, and J4 are based on size-corrected critical values, since

none of those tests are exact under the two specifications we examine. It is important

to emphasize that size-corrected tests are not feasible in practice, especially under

the very general symmetry condition in Assumption 1. They are merely used here as

theoretical benchmarks for the truly distribution-free tests. In particular, we wish to

see how the power of the new tests compares to these benchmarks as T and N vary.
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The results in Table 2 correspond to the single-factor model where the disturbance

terms εit are i.i.d. in both the time-series and the cross-section according to a Student-

t distribution with 6 degrees of freedom. From Panel A, we see that the parametric J1

and the distribution-free SD and WD tests behave well under the null with empirical

rejection rates close to the nominal level. This finding for the GRS test is in line

with Affleck-Graves and McDonald (1989) who present simulation evidence showing

the GRS test to be fairly robust to deviations from normality. From Table 2, the

(conservative) SX and SP tests are also seen to satisfy the level constraint in the

sense that the probability of a Type I error remains bounded by the nominal level of

significance.5 The J2, J3, and J4 tests, however, suffer massive size distortions as the

number of equations increases.6 When T = 120 and N = 100, the LR test (J2) rejects

the true null with an empirical probability of 100% and in the case of the adjusted

LR test (J3) that probability is still above 50%. Notice as well that the J1, J2, and

J3 are not computable when N exceeds T , and the GMM-based J4 cannot even be

computed here as soon as 2N exceeds T . (Those cases are indicated with “-” in the

tables.)

In Panel B of Table 2, we see the same phenomenon as in Figure 1: for a fixed T ,

5Following the terminology in Lehmann and Romano (2005, Chapter 3), we say that a test of H0

has level α if the probability of incorrectly rejecting H0 when it is true is not greater than α.
6This overrejection problem with standard asymptotic tests in multivariate regression models

is also documented in Stambaugh (1982), Jobson and Korkie (1982), Amsler and Schmidt (1985),

MacKinlay (1987), Stewart (1997), and Dufour and Khalaf (2002).
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the power of the GRS J1 test rises and then eventually drops as N increases. Note

that J1, J2, and J3 have identical size-corrected powers, since they are all related via

monotonic transformations (Campbell, Lo, and MacKinlay 1997, Chapter 5). On the

contrary, the power of the SD and WD tests and that of the new SX and SP tests

increases monotonically with N .

The second specification we consider resembles a stochastic volatility model and

introduces dependence between the conditional covariance matrix and ft. Specifically,

we let εit = exp(λift/2)ηit, where the innovations ηit are standard normal and the

λi’s are randomly drawn from a uniform distribution between 1.5 and 2.5. It should

be noted that such a contemporaneous heteroskedastic specification finds empirical

support in Duffee (1995, 2001) and it is easy to see that it generates εit’s with excess

kurtosis—a well-known feature of asset returns. Panel A of Table 3 reveals that all the

parametric tests have massive size distortions in this case, and these over-rejections

worsen as N increases for a given T .7 When T = 120, the J tests all have empirical

sizes around 20%. The probability of a Type I error for all those tests exceeds 65%

when N is increased to 50. In sharp contrast, the four distribution-free tests satisfy

the nominal 5% level constraint, no matter T and N . As in the first example, Panel

B shows the power of the distribution-free tests increasing with both T and N in this

heteroskedastic case.

7The sensitivity of the GRS test to contemporaneous heteroskedasticity is also reported in

MacKinlay and Richardson (1991), Zhou (1993), and Gungor and Luger (2009).
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At this point, one may wonder what is the advantage of the new SX and SP

tests since the SD and WD tests of Gungor and Luger (2009) seem to have better

power in Panel B of Tables 2 and 3. Those tests achieve higher power because they

eliminate the bi’s from the inference problem through the long differences in (3.4.4),

whereas the new tests proceed by finding set estimates of those nuisance parameters.

A limitation of the SD and WD tests is that they are valid only under the assumption

that the model disturbances are cross-sectionally independent. Table 4 reports the

empirical size of the distribution-free tests when the cross-sectional disturbances are

multivariate normal with an equicorrelation structure. Specifically, the disturbances

have zero mean, unit variance, and the correlation between any two disturbances is

equal to ρ, which we vary between 0.1 and 0.5. We see from Table 4 that the SD and

WD tests are fairly robust to mild cross-sectional correlation, but start over-rejecting

as the equicorrelation increases and this problem is further exacerbated as either T

or N increases. As expected, the proposed SX and SP tests are seen to behave well in

Table 4 since Assumption 1 on which they rest allows for cross-sectional disturbance

correlation. The second limitation of the SD and WD tests is that they are designed

for the single-factor model and cannot be easily extended to allow for multiple factors.

The new SX and SP tests are illustrated next in the context of a single- and a three-

factor model.

137



3.5 Empirical application

We illustrate the use of the new test procedure with two empirical applications. First,

we present the results of the proposed tests for a single-factor asset pricing model and

compare with those of the standard parametric tests and the non-parametric tests of

Gungor and Luger (2009). This application investigates the mean-variance efficiency

of a value-weighted market index of all stocks listed on the NYSE, AMEX, and

NASDAQ. Our second application compares the results from the Fama and French

(1993) three-factor model and examines whether a combination of the factor portfolios

is mean-variance efficient. We use monthly value-weighted returns for the period from

January 1965 to December 2009 with a total of 540 observations. Our data consist

of the returns on the three Fama-French factors, one-month U.S. Treasury bill rate

as the risk-free rate, and the returns on three sets of portfolios from the data library

of Kenneth French. The three portfolio sets include 10 portfolios formed on size, and

25 and 100 portfolios formed on both size and book-to-market. We acknowledge that

short subperiods could reduce the effects of time-variation in linear factor models.

Therefore, in addition to the entire whole sample period with T = 540, we report the

results for nine 5-year, T = 60, and four 10-year, T = 120, subperiods.
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3.5.1 10 portfolios formed on size

Using the return data on 10 portfolios formed on size, we first apply the parametric J

tests and the non-parametric tests to the single-factor model. The empirical results

are summarized in Table 1. Columns 2–5 present the conventional J tests; columns 6

and 7 present the non-parametric SD and WD proposed by Gungor and Luger (2009);

and the square brackets in columns 8 and 9 report the 95% confidence intervals for

the new test procedure applied with SX and SP statistics.

Over the entire sample period, the parametric J tests tend to reject the null

hypothesis with p-values no more than 1%, implying that the pricing errors from

the single-factor model are jointly significantly different from zero. In contrast, the

p-values for the non-parametric SD and WD, 82% and 60% respectively, and the

95% confidence intervals for the new procedure with SX and SP statistics favor

non-rejection supporting the mean-variance efficiency of the market index.

In three of the nine 5-year subperiods, 1/65–12/69, 1/90–12/94, and 1/00–12/04,

all the Js reject the efficiency of the market portfolio with p-values less than 8%.

The results of the non-parametric SD and WD statistics are consistent with those

of the J tests for 1/65–12/69 and 1/00–12/04, altough, they also reject the null in

1/70–12/74 and 1/75–12/79. The newly proposed SX and SP , however, continue to

not reject the mean-variance efficiency, except for SP in the 1/75–12/79 subperiod.
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In the 10-year subperiods, the results are more in line with the findings for the entire

sample period, such that, the J tests tend to reject the null more often than the

non-parametric tests. Out of the four subsamples, the Js indicate a rejection for the

last three, while SD and WD tend to reject only in the second subperiod, and the

SX and SP only in the third subperiod. Solely for the first subsample the parametric

and the non-parametric tests agree on non-rejection.

The empirical results in Table 1 reveal that the inference is sensitive to the choice

of the sample period as well as the choice of the test statistics. Besides the ob-

vious difference in the parametric and non-parametric inference in the full sample,

the non-parametric SD and WD, and the proposed SX and SP statistics differ

markedly in the subperiods. One possible explanation for the disagreement across

non-parametric tests is the existence of cross-correlations among the test portfolios.

Note that, SD and WD rest on the assumption of independence while SX and SP

allow for correlations across 10 portfolios, providing a more robust testing procedure

for the mean-variance efficiency.

Table 2 displays the results for the Fama-French three-factor model. Columns 2–5

show the results of the parametric J tests. The square brackets in columns 6–7 show

the 95% confidence intervals for the SX and SP statistics. The non-parametric SD

and WD cannot be computed for large number of factors due to the reduction in

the sample size caused by the long-differences required with each additional factor.
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Hence, they are not included in Table red2.

For the entire 45-year sample period, the reported results for the three-factor

model in Table 2 are very similar to those of the single-factor model in Table 1. The

standard J tests reject the null with low p-values equal to 1% whereas the distribution-

free SX and SP tests show evidence of non-rejection implying that a combination of

the factor portfolios is mean-variance efficient.

In the 5-year subperiods, there is much disagreement among the parametric tests

themselves. In seven of the nine subsamples, the GMM-based Wald test, J4, tends

to reject the null with p-values lower than 6%. The usual LR test, J2, rejects the

mean-variance efficiency for 1/80–12/84, 1/90–12/94, and 1/95–12/99, whereas the

adjusted LR test, J3, rejects only for 1/80–12/84 with a p-value of 6%. Note that,

only in the subperiod 1/80–12/84, the GRS test, J1, rejects the null with a p-value

of 7% and agrees with the non-parametric SX and SP on non-rejection for the rest

of the 5-year intervals. The results in the 10-year subperiods resemble those for the

entire sample period and the J tests are consistent among each other. Over the last

two subperiods, all the Js indicate a very clear rejection with p-values less than 3%,

while SX and SP favor non-rejection. For the first two subperiods, however, the

Fama-French asset pricing model is supported by all the test procedures.

In Table 2, the SX and SP statistics do not reject the Fama-French three-factor
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model in the whole period or in any of the subperiods. These non-rejections imply that

the excess returns of 10 portfolios are well explained by the three factors. However,

a closer look at the results in Table 1 and Table 2 clearly shows that the size and

the book-to-market factors are not always required, and the market portfolio alone

can price the 10 portfolios in eight of the nine 5-year and in three of the four 10-year

subperiods.

Observing that the Fama-French model is never rejected by the non-parametric

SX and SP statistics, one may be concerned about the ability of the new procedure

to correctly reject the null, when in fact the alternative is true. The fact that the

single-factor model is rejected in the subperiods 1/85-12/94 and 1/75-12/79 provides

an evidence that the non-rejections by the non-parametric procedure are not due to

low power.

3.5.2 25 portfolios formed on size and book-to-market

In this section, we use the return data on 25 portfolios formed on size and book-to-

market. The results for the single-factor model, reported in Table 3, indicate that

both the parametric J tests, and the non-parametric SD and WD strongly reject the

null hypothesis of mean-variance efficiency with p-values less than 1%. The SX and

SP statistics, however, are in disagreement with all the other tests by tending to not
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reject the null.

For 25 portfolios, the results in the 5-year and the 10-year subperiods are consistent

with those of the whole sample such that, in the majority of the subperiods the null

hypothesis is again rejected both by the standard J tests and the SD and WD.

For the same subperiods, the confidence intervals from the SX and SP statistics

indicate the exact opposite where the intercepts from the single-factor model are

jointly not different from zero at the 5% significance level. In other words, SX and

SP demonstrate that the excess return on the market portfolio is sufficient to explain

the risk premia of the 25 portfolios.

Table 4 displays the results for the Fama-French model using 25 portfolios. In the

full sample, the J tests continue to strongly reject the null with p-values less then 1%.

It is, however, quite surprising to find that the three-factor model is also rejected by

the SP statistic at 5% level of confidence, whereas the earlier single-factor model is

not.

One drawback of the parametric J1, J2, J3, and J4 statistics is that they cannot

be computed with N ≥ T . The GMM Wald test J4 cannot even be computed when

(K+1)N ≥ T . The matrix Ŝ is singular if this condition is not satisfied. The dashed

lines in the tables denote these cases where the parametric tests cannot be calculated.

None of the non-parametric tests, however, suffer from these limitations of N relative
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to T . Among the test statistics that are calculated, the usual LR test, J2, tends to

reject the null hypothesis in all the 5-year subperiods, except in 1/75-12/79. On the

other hand, J1 and J3 indicate a rejection only in the subperiods 1/85-12/89 and

1/90-12/94. The 95% confidence intervals associated with SX and SP favor non-

rejection in all the 5-year subperiods. The results in the 10-year subperiods are very

similar to those in the 5-year, where the null is mostly rejected by the parametric

tests and not rejected by the non-parametric tests.

3.5.3 100 portfolios formed on size and book-to-market

Table 5 displays the results for the single-factor model using return data on 100

portfolios formed on size and book-to-market. Similar to the earlier findings over

the full sample with 25 portfolios, the J statistics decidedly reject the null with p-

values close to zero. The inference of the SD and WD are in agreement with those

of the parametric ones, with compatible small p-values. In sharp contrast, the 95%

confidence intervals for SX and SP continue to not reject, validating the single-factor

model and the mean-variance efficiency of the market portfolio.

For the 5-year subperiods, because N = 100 > T = 60, none of the parametric

tests can be calculated. Therefore, Table 5 reports only the non-parametric results

since they are free from this limitation. In six of the nine subperiods, the SD and
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WD statistics tend towards a rejection where SP rejects the null only in the 1/75-

12/74 subperiod. As mentioned earlier, such a difference among the non-parametric

procedures is an indication of the presence of cross-correlations across 100 portfolios.

In the 10-year subperiods, the J1, J2, and J3 become available mostly rejecting the

null with very low p-values. In the same subperiods, SX and SP indicate no rejection.

In Table 5 we present the results for the Fama-French three-factor model. In the

whole 45-year period, the non-parametric SP statistic agrees with the parametric

inference on rejection. Within the 5-year subsamples, the three-factor model is also

rejected by the both non-parametric statistics for the 1/80-12/84 subperiod. The

10-year results resemble the previous findings, where the parametric tests in general

tend to reject the null and the non-parametric ones tend not to.

3.5.4 Extreme observations

In Tables 1 through 6, we find striking difference between the parametric and non-

parametric inference. In general, the parametric J tests reject both the single-factor

and the Fama-French three-factor model, while the non-parametric SX and SP favor

a non-rejection. A plausible explanation for such a difference can be the effect of a

small number of influential outliers on the parameter estimates that the J tests rely

on, see Vorkink (2003). To investigate whether the results are driven by the outliers
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we winsorize the excess returns on the 10 portfolios at 0.1%, 0.3%, 0.5%, 0.7%, 0.9%,

1% levels.8

Using the entire sample period from January 1965 to December 2009 and different

winsorization levels, the results in Table 7 show the sensitivity of the parametric

inference to the presence of outliers. For the single-factor model, Panel A, the J

tests favor a rejection when the data is winsorized up to 0.1%, and a non-rejection

thereafter. In Panel B, the Fama-French three-factor model is rejected by the J1 and

J4 tests for the low winsorization levels where the inference is reverted as the level

increases. For the three-factor case, J4 appears to be the most sensitive statistic to the

outliers, whereas J2 and J3 are the least affected ones. The fact that the parametric

inference can vary with the presence of influential eccentric observations implies that,

one needs to take caution before reaching to a conclusion based on their results.

3.6 Conclusion

The beta-pricing representation of linear factor pricing models is typically assesses

with tests based on OLS or GMM. In this context, standard asymptotic theory is

known to provide a poor approximation to the finite-sample distribution of those test

8We also winsorize the excess returns on the 25 and 100 portfolios. The results are not sensitive

to winsorization at any level, hence are not reported here.
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statistics, even with fairly large samples. In particular, the asymptotic tests tend

to over-reject the null hypothesis when it is in fact true, and these size distortions

grow quickly as the number of included test assets increases. So the conclusions of

empirical studies that adopt such procedures can be lead to spuriously reject the

validity of the asset pricing model.

Exact finite-sample methods that avoid the spurious rejection problem usually

rely on strong distributional assumptions about the model’s disturbance terms. A

prominent example is the GRS test that assumes that the disturbance terms are

identically distributed each period according to a multivariate normal distribution.

Yet it is known that financial asset returns are non-normal, exhibiting time-varying

variances and excess kurtosis. These stylized facts would put into question the reli-

ability of any inference method that assumes that the cross-sectional distribution of

disturbance terms is homogenous over time. Another issue with standard inference

methods has to do with the choice of how many tests assets to include. Indeed, if too

many are included relative to number of available time-series observations, the GRS

test may lose all its power or may not even be computable. In fact, any procedure that

relies on unrestricted estimates of the covariance matrix of regression disturbances

will no longer be computable owing to the singularity that occurs when the size of

the cross-section exceeds the length of the time series.

In this paper we have proposed a finite-sample test procedure that overcomes
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these problems. Specifically, our statistical framework makes no parametric assump-

tion about the distribution of the disturbance terms in the factor model. The only

requirement is that the cross-section disturbance vectors be diagonally symmetric each

period. The class of diagonally symmetric distributions includes elliptically symmet-

ric ones, which are theoretically consistent with mean-variance analysis. Our non-

parametric framework leaves open the possibility of unknown forms of time-varying

non-normalities and many other distribution heterogeneities, such as time-varying

covariance structures, time-varying kurtosis, etc. The procedure is an adaptive one

based on a split-sample technique that is applicable even in large cross-sections. In

fact, the power of the new test procedure increases as either the time series length-

ens of the cross-section becomes larger. The inference procedure developed here thus

adds a potentially very useful way to assess linear factor pricing models.
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Figure 3.1: Power of the GRS Test.

Notes: This figure plots the power of the GRS test as a function of the number of included test
assets. The returns are generated from a single-factor model with normally distributed
disturbances. The sample size is T = 60 and the number of test assets N ranges from 1 to 58. The
test is performed at a nominal 0.05 level. The higher power curves are associated with greater
pricing errors.
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Table 3.1: Empirical power comparisons for various sample splits.

T1/T 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Panel A: t(12) Distribution
|ai| = 0.20
SX 85.9 91.9 89.2 84.7 76.3 50.7 10.9
SP 95.5 97.7 98.3 97.6 97.1 81.7 34.1
|ai| = 0.15
SX 37.5 46.9 49.3 43.3 35.7 19.1 3.2
SP 56.9 69.8 67.9 65.8 60.1 39.1 12.1
|ai| = 0.10
SX 6.6 7.2 9.2 7.8 7.1 3.2 0.8
SP 12.5 16.9 16.5 14.9 14.8 7.7 2.2

Panel B: t(6) Distribution
|ai| = 0.20
SX 71.5 81.9 81.4 76.0 62.8 36.6 7.5
SP 87.1 93.5 95.5 94.4 86.9 68.3 25.4
|ai| = 0.15
SX 24.7 32.6 32.9 31.1 25.3 12.0 1.9
SP 41.4 53.7 52.3 54.8 44.1 27.5 9.6
|ai| = 0.10
SX 4.0 6.2 4.5 4.2 4.5 2.2 0.3
SP 8.1 12.7 9.6 8.9 8.7 5.1 1.6

Notes: This table reports the empirical power (in percentages) of the
proposed test procedure based on the SX and SP statistics in (3.3.5) and
(3.3.6) for various sample splits, T1/T . The sample size is T = 60 and the
number of test assets is N = 100. The returns are generated according to a
single-factor model in with i.i.d. disturbances following a Student-t
distribution with degrees of freedom equal to 12 (Panel A) or 6 (Panel B).
The notation |ai| = a means that N/2 pricing errors are set as ai = −a and
the other half are set as ai = a. The nominal level is 0.05 and the results are
based on 1000 replications.
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Table 3.2: Empirical size and power comparisons with homoskedastic disturbances.

T N J1 J2 J3 J4 SD WD SX SP

Panel A: Size

60 10 4.6 9.5 4.7 7.9 5.5 4.2 0.2 0.9
25 4.3 32.1 5.6 14.9 4.4 5.2 0.4 1.4
50 6.0 98.7 41.2 - 5.2 4.1 0.7 1.1

100 - - - - 4.6 2.9 0.5 0.9
125 - - - - 4.5 4.2 1.0 2.0

120 10 3.8 5.8 3.8 5.2 3.8 4.2 0.1 1.2
25 5.1 12.0 5.2 7.8 4.2 3.4 0.5 1.0
50 5.5 45.0 7.5 13.9 5.2 4.8 0.6 1.5

100 4.0 100.0 53.5 - 4.2 3.7 0.8 1.8
125 - - - - 6.1 5.0 0.7 1.7

Panel B: Size-corrected power

60 10 41.5 41.5 41.5 41.9 16.7 18.4 1.7 4.5
25 55.5 55.5 55.5 52.7 26.0 25.3 5.7 11.0
50 24.1 24.1 24.1 - 40.8 43.4 14.2 29.3

100 - - - - 61.6 69.0 37.2 55.9
125 - - - - 67.3 75.2 44.5 64.0

120 10 83.1 83.1 83.1 83.8 32.6 39.0 11.5 22.1
25 97.0 97.0 97.0 97.4 55.9 62.4 33.2 51.4
50 99.6 99.6 99.6 99.5 79.4 86.6 66.2 83.4

100 91.1 91.1 91.1 - 96.4 98.2 94.4 98.7
125 - - - - 98.7 99.1 98.4 99.7

Notes: This table reports the empirical size (Panel A) and size-corrected power (Panel B) of the
GRS test (J1), the LR test (J2), an adjusted LR test (J3), a GMM-based test (J4), a sign test
(SD), a Wilcoxon signed rank test (SD), and the proposed SX- and SP-based tests. The returns
are generated according to a single-factor model with i.i.d. disturbances following a t(6)
distribution. The pricing errors are zero under H0, whereas N/2 pricing errors are set equal to
−0.15 and the other half are set to 0.15 under H1. The nominal level is 0.05 and entries are
percentage rates. The results are based on 1000 replications and the symbol “-” is used whenever
a test is not computable.
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Table 3.3: Empirical size and power comparisons with contemporaneous heteoskedas-
tic disturbances.

T N J1 J2 J3 J4 SD WD SX SP

Panel A: Size

60 10 23.2 32.8 23.6 26.6 5.9 5.3 0.4 0.9
25 46.6 81.6 50.5 62.8 5.5 4.3 0.3 1.1
50 50.6 97.4 90.2 - 3.9 4.4 0.9 2.1

100 - - - - 4.5 3.7 1.2 2.3
200 - - - - 5.4 4.2 1.1 2.6

120 10 19.0 23.1 19.1 18.5 4.9 4.4 0.3 1.5
25 37.8 54.6 38.3 45.5 4.2 5.0 0.6 1.8
50 67.8 92.8 72.2 78.2 4.8 3.9 1.1 2.4

100 73.7 96.6 94.0 - 5.7 5.2 1.8 2.2
200 - - - - 6.0 4.9 1.6 1.9

Panel B: Size-corrected power

60 10 14.9 14.9 14.9 15.0 14.0 15.9 2.0 4.2
25 27.2 27.2 27.2 25.1 20.6 26.0 4.0 6.3
50 32.3 32.3 32.3 - 28.6 35.4 6.7 11.6

100 - - - - 49.4 59.3 15.4 21.7
200 - - - - 72.4 80.3 29.9 38.8

120 10 23.0 23.0 23.0 24.0 26.8 31.2 7.3 10.8
25 47.8 47.8 47.8 45.7 43.7 51.7 17.6 23.2
50 78.6 78.6 78.6 73.6 69.4 78.9 36.0 44.2

100 76.3 76.3 76.3 - 91.0 95.7 63.9 71.2
200 - - - - 99.6 99.8 88.6 91.9

Notes: This table reports the empirical size (Panel A) and size-corrected power (Panel B) of the
GRS test (J1), the LR test (J2), an adjusted LR test (J3), a GMM-based test (J4), a sign test
(SD), a Wilcoxon signed rank test (SD), and the proposed SX- and SP-based tests. The returns
are generated according to a single-factor model with contemporaneous heteroskedastic
disturbances. The pricing errors are zero under H0, whereas N/2 pricing errors are set equal to
−0.15 and the other half are set to 0.15 under H1. The nominal level is 0.05 and entries are
percentage rates. The results are based on 1000 replications and the symbol “-” is used
whenever a test is not computable.
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Table 3.4: Empirical size under cross-sectional disturbance equicorrelation structure.

Panel A: N = 10 Panel B: N = 100

ρ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
T = 60
SD 4.5 5.2 5.7 7.1 6.9 5.5 10.1 12.3 15.4 17.7
WD 5.3 5.3 6.1 8.2 8.8 6.6 12.0 15.2 16.9 19.8
SX 0.7 0.1 0.1 0.1 0.1 0.2 0.3 0.1 0.4 0.0
SP 1.3 0.5 0.6 0.5 0.4 0.9 1.1 0.5 1.2 0.3
T = 120
SD 4.9 6.5 6.8 7.7 8.9 8.7 13.5 17.6 19.0 20.6
WD 4.8 6.2 6.6 7.8 10.0 10.1 13.4 17.0 19.5 21.9
SX 0.0 0.1 0.2 0.3 0.5 0.7 0.6 0.3 0.4 0.6
SP 0.3 0.7 0.9 0.9 1.2 1.9 1.1 0.7 0.8 1.0

Notes: This table reports the empirical size of a sign test (SD), a Wilcoxon signed rank test (SD), and
the proposed SX- and SP-based tests when the cross-sectional disturbances are multivariate normal
with mean zero and the correlation between any two disturbances is equal to ρ. The nominal level is
0.05 and entries are percentage rates. The results are based on 1000 replications
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Table 3.5: Test results for the single-factor model with 10 portfolios formed on size.

Time J1 J2 J3 J4 SD WD SX SP
45-year period
1/65–12/09 2.30 22.94 22.64 23.04 5.91 8.31 [-1.34, 1.44] [-0.40, 0.16]

(0.01) (0.01) (0.01) (0.01) (0.82) (0.60)
5-year subperiods
1/65–12/69 1.80 18.80 16.61 18.42 24.00 34.80 [-4.79, 5.20] [-0.48, 1.37]

(0.08) (0.04) (0.08) (0.05) (0.01) (0.00)
1/70–12/74 1.45 15.52 13.71 14.27 34.93 34.94 [-3.72, 6.27] [-0.25, 2.30]

(0.19) (0.11) (0.19) (0.16) (0.00) (0.00)
1/75–12/79 1.30 14.09 12.45 18.50 33.07 58.75 [-3.86, 6.13] [0.28, 1.72]

(0.26) (0.17) (0.26) (0.05) (0.00) (0.00)
1/80–12/84 1.17 12.84 11.34 11.99 3.07 5.79 [-4.87, 5.12] [-0.45, 0.78]

(0.33) (0.23) (0.33) (0.29) (0.98) (0.83)
1/85–12/89 1.27 13.85 12.23 12.60 9.60 4.33 [-4.73, 5.26] [-0.31, 1.18]

(0.27) (0.18) (0.27) (0.25) (0.48) (0.93)
1/90–12/94 1.80 18.80 16.61 18.28 8.93 14.01 [-1.45, 0.66] [-0.24, 0.45]

(0.08) (0.04) (0.08) (0.05) (0.54) (0.17)
1/95–12/99 1.60 16.94 14.96 20.20 9.47 7.29 [-3.75, 6.24] [-1.10, 2.09]

(0.14) (0.08) (0.13) (0.03) (0.49) (0.70)
1/00–12/04 1.93 19.93 17.61 19.46 27.60 16.80 [-4.66, 5.33] [-0.88, 2.18]

(0.06) (0.03) (0.06) (0.03) (0.00) (0.08)
1/05–12/09 1.54 16.39 14.48 15.42 8.93 6.57 [-5.07, 4.92] [-1.07, 1.33]

(0.15) (0.09) (0.15) (0.12) (0.54) (0.77)
10-year subperiods
1/65–12/74 1.26 13.17 12.40 12.50 6.73 3.34 [-5.80, 4.19] [-1.89, 0.05]

(0.26) (0.21) (0.26) (0.25) (0.75) (0.97)
1/75–12/84 1.81 18.45 17.37 23.18 40.87 56.62 [-4.69, 5.30] [-0.19, 0.85]

(0.07) (0.05) (0.07) (0.01) (0.00) (0.00)
1/85–12/94 2.29 22.84 21.511 22.18 7.20 3.85 [-1.07, -0.21] [-1.06, -0.54]

(0.02) (0.01) (0.02) (0.01) (0.71) (0.95)
1/95–12/04 2.30 22.94 21.60 21.61 10.00 7.61 [-6.11, 3.88] [-2.29, 0.66]

(0.02) (0.01) (0.02) (0.02) (0.44) (0.67)

Notes: The results are based on value-weighted returns of 10 portfolios formed on size. The market portfolio is the
value-weighted return on all NYSE, AMEX, and NASDAQ stocks and the risk-free rate is the one-month Treasury
bill rate. Columns 2–5 report the results for the parametric J test; columns 6–7 report the results for the
non-parametric SD and WD statistics. The numbers in parantheses are the p-values. The results for the newly
proposed procedure, SX and SP , are reported in columns 8 and 9. The 95% marginal confidence intervals of the
intercept estimates are in square brackets.
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Table 3.6: Test results for the Fama-French model with 10 portfolios formed on size.

Time J1 J2 J3 J4 SX SP
45-year period
1/65–12/09 2.44 24.43 24.02 24.99 [-0.59, 0.69] [-0.03, 0.21]

(0.01) (0.01) (0.01) (0.01)
5-year subperiods
1/65–12/69 1.03 11.87 10.09 12.18 [-1.00, 0.96] [-0.48, 0.40]

(0.44) (0.29) (0.43) (0.27)
1/70–12/74 1.39 15.59 13.25 19.55 [-0.88, 1.08] [-0.32, 0.44]

(0.21) (0.11) (0.21) (0.03)
1/75–12/79 0.41 5.08 4.31 6.09 [-1.04, 0.92] [-0.60, 0.48]

(0.93) (0.89) (0.93) (0.81)
1/80–12/84 1.92 20.55 17.47 28.76 [-0.71, 1.29] [-0.35, 0.61]

(0.07) (0.02) (0.06) (0.00)
1/85–12/89 1.51 16.75 14.24 19.07 [-0.73, 1.27] [-0.13, 0.67]

(0.16) (0.08) (0.16) (0.04)
1/90–12/94 1.70 18.56 15.78 21.81 [-0.86, 1.10] [-0.34, 0.54]

(0.11) (0.05) (0.11) (0.02)
1/95–12/99 1.70 18.50 15.72 31.27 [-0.70, 1.30] [-0.14, 0.66]

(0.11) (0.05) (0.11) (0.00)
1/00–12/04 1.29 14.58 12.39 17.72 [-1.15, 0.81] [-0.91, 0.81]

(0.26) (0.15) (0.26) (0.06)
1/05–12/09 1.52 16.82 14.29 19.54 [-1.16, 0.80] [-0.44, 0.20]

(0.16) (0.08) (0.16) (0.03)
10-year subperiods
1/65–12/74 1.06 11.35 10.50 12.52 [-1.04, 0.92] [-0.16, 0.20]

(0.40) (0.33) (0.40) (0.25)
1/75–12/84 0.95 10.16 9.39 12.28 [-1.13, 0.83] [-0.45, 0.19]

(0.50) (0.43) (0.50) (0.27)
1/85–12/94 2.56 25.71 23.79 26.66 [-0.94, 1.02] [-0.18, 0.34]

(0.01) (0.00) (0.01) (0.00)
1/95–12/04 2.16 22.07 20.42 25.30 [-1.18, 0.78] [-0.54, 0.30]

(0.03) (0.01) (0.03) (0.00)

Note: The results are based on value-weighted returns of 10 portfolios formed on size, the
returns on three Fama-French factors, and the one-month Treasury bill rate as the risk-free
rate. Columns 2–5 report the results for the parametric J statistics and the p-values in the
paranthesis. The results for the newly proposed distribution-free tests, SX and SP , are
reported in columns 6 and 7. The 95% marginal confidence intervals of the intercept estimates
are in square brackets.
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Table 3.7: Test results for the single-factor model and 25 portfolios formed on size and book-to-market.

Time J1 J2 J3 J4 SD WD SX SP
45-year period
1/65–12/09 4.18 99.93 97.25 106.49 97.13 121.42 [-1.14, 1.48] [-0.21, 0.27]

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
5-year subperiods
1/65–12/69 1.90 52.53 39.83 46.81 34.53 58.61 [-4.80, 5.19] [-0.50, 1.39]

(0.04) (0.00) (0.03) (0.01) (0.10) (0.00)
1/70–12/74 1.56 45.84 34.76 38.07 42.00 42.53 [-3.63, 6.36] [-0.30, 2.41]

(0.11) (0.01) (0.09) (0.05) (0.02) (0.02)
1/75–12/79 0.88 30.03 22.77 28.01 65.87 116.08 [-4.53, 5.46] [-0.22, 1.00]

(0.62) (0.22) (0.59) (0.31) (0.00) (0.00)
1/80–12/84 1.73 49.17 37.29 44.33 21.87 23.02 [-4.54, 5.45] [-0.13, 1.06]

(0.07) (0.00) (0.05) (0.01) (0.64) (0.58)
1/85–12/89 2.51 62.68 47.53 77.33 66.67 67.67 [-4.61, 5.38] [-0.03, 0.96]

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)
1/90–12/94 2.03 54.74 41.51 51.85 38.80 73.94 [-3.22, 1.11] [-0.88, 0.40]

(0.03) (0.00) (0.02) (0.00) (0.04) (0.00)
1/95–12/99 1.20 37.92 28.76 42.34 13.87 19.87 [-4.46, 5.53] [-0.73, 1.36]

(0.31) (0.05) (0.27) (0.02) (0.96) (0.75)
1/00–12/04 1.57 46.10 34.96 39.80 87.33 49.27 [-4.40, 5.59] [-0.31, 1.74]

(0.11) (0.01) (0.09) (0.03) (0.00) (0.00)
1/05–12/09 1.60 46.68 35.40 40.05 24.27 19.27 [-5.05, 4.94] [-0.73, 0.40]

(0.10) (0.01) (0.08) (0.03) (0.50) (0.78)
10-year subperiods
1/65–12/74 1.62 43.03 37.83 39.87 31.40 29.06 [-5.74, 4.25] [-1.61, 0.03]

(0.05) (0.01) (0.05) (0.03) (0.18) (0.26)
1/75–12/84 1.34 36.54 32.13 39.56 86.60 116.16 [-4.50, 5.49] [ -0.02, 1.02]

(0.16) (0.06) (0.15) (0.03) (0.00) (0.00)
1/85–12/94 4.41 93.08 81.84 116.37 74.80 84.90 [-2.00, 1.89] [-0.19, 0.65]

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
1/95–12/04 2.59 62.88 55.28 61.81 57.40 62.42 [-5.41, 4.58] [-1.37, 1.00]

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Note: The results are based on value-weighted returns of 25 portfolios formed on size and book-to-market. The
market portfolio is the value-weighted return on all NYSE, AMEX, and NASDAQ stocks and the risk-free rate is the
one-month Treasury bill rate. Columns 2–5 report the results for the parametric J test; columns 6–7 report the
results for the non-parametric SD and WD statistics. The numbers in parantheses are the p-values. The results for
the newly proposed procedure, SX and SP , are reported in columns 8 and 9. The 95% marginal confidence intervals
of the intercept estimates are in square brackets.
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Table 3.8: Test results for the Fama-French Model with 25 portfolios formed on size
and book-to-market.

Time J1 J2 J3 J4 SX SP
45-year period
1/65–12/09 3.26 79.71 77.27 87.00 [-0.28, 0.32] [0.08, 0.16]

(0.00) (0.00) (0.00) (0.00)
5-year subperiods
1/65–12/69 1.44 45.20 32.77 - [-1.04, 0.92] [-0.36, 0.48]

(0.16) (0.01) (0.14)
1/70–12/74 1.48 46.03 33.37 - [-0.90, 1.06] [-0.38, 0.54]

(0.15) (0.01) (0.12)
1/75–12/79 0.58 22.31 16.18 - [-1.16, 0.80] [-0.48, 0.56]

(0.92) (0.62) (0.91)
1/80–12/84 1.27 41.31 29.95 - [-0.78, 1.22] [-0.22, 0.62]

(0.26) (0.02) (0.23)
1/85–12/89 2.18 59.61 43.22 - [-0.85, 1.11] [-0.05, 0.55]

(0.02) (0.00) (0.01)
1/90–12/94 2.25 60.93 44.18 - [-0.88, 1.08] [-0.36, 0.56]

(0.02) (0.00) (0.01)
1/95–12/99 1.12 37.71 27.34 - [-0.95, 1.01] [-0.11, 0.61]

(0.38) (0.05) (0.34)
1/00–12/04 1.11 37.54 27.21 - [-0.92, 1.04] [-0.48, 0.48]

(0.38) (0.05) (0.35)
1/05–12/09 1.56 47.73 34.61 - [-0.99, 0.97] [-0.23, 0.37]

(0.12) (0.00) (0.10)
10-year subperiods
1/65–12/74 1.42 39.13 33.75 48.74 [-0.99, 0.97] [-0.07, 0.13]

(0.12) (0.04) (0.11) (0.00)
1/75–12/84 0.78 22.98 19.82 28.19 [-0.99, 0.97] [-0.19, 0.09]

(0.76) (0.58) (0.76) (0.30)
1/85–12/94 4.04 88.95 76.72 139.18 [-0.80, 1.16] [-0.08, 0.56]

(0.00) (0.00) (0.00) (0.00)
1/95–12/04 2.09 53.95 46.53 88.08 [-0.95, 1.01] [-0.27, 0.49]

(0.01) (0.00) (0.01) (0.00)

Note: The results are based on value-weighted returns of 25 portfolios formed on size and
book-to-market, the returns on three Fama-French factors, and the one-month Treasury bill
rate as the risk-free rate. Columns 2–5 report the results for the parametric J statistics and the
p-values in the paranthesis. The results for the newly proposed distribution-free tests, SX and
SP , are reported in columns 6 and 7. The 95% marginal confidence intervals of the intercept
estimates are in square brackets.
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Table 3.9: Test results for the single-factor model and 100 portfolios formed on size and book-to-market.

Time J1 J2 J3 J4 SD WD SX SP
45-year period
1/65–12/09 2.74 262.02 236.79 277.65 260.95 314.09 [-0.92, 1.38] [-0.12, 0.35]

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
5-year subperiods
1/65–12/69 - - - - 143.33 186.92 [-4.68, 5.31] [-0.35, 1.36]

(0.00) (0.00)
1/70–12/74 - - - - 152.80 148.81 [-3.90, 6.09] [-0.36, 1.56]

(0.00) (0.00)
1/75–12/79 - - - - 227.47 355.90 [-3.03, 6.96] [0.33, 6.96]

(0.00) (0.00)
1/80–1/84 - - - - 96.40 96.91 [-4.59, 5.40] [0.00, 0.71]

(0.58) (0.57)
1/85–12/89 - - - - 164.00 156.98 [-4.58, 5.41] [-0.09, 0.68]

(0.00) (0.00)
1/90–12/94 - - - - 156.67 185.98 [-3.88, 0.83] [-0.85, 0.25]

(0.00) (0.00)
1/95–12/99 - - - - 70.93 85.86 [-4.30, 5.69] [-1.00, 1.57]

(0.99) (0.84)
1/00–12/04 - - - - 219.47 201.90 [-4.16, 5.83] [-0.19, 1.47]

(0.00) (0.00)
1/05–12/09 - - - - 89.07 80.24 [-5.09, 4.90] [-0.50, 0.50]

(0.78) (0.93)
10-year subperiods
1/65–12/74 1.33 249.48 141.37 - 121.27 104.95 [-5.59, 4.40] [-1.43, 0.09]

(0.24) (0.00) (0.00) (0.07) (0.35)
1/75–12/84 0.94 214.31 121.44 - 263.00 345.82 [-4.56, 5.43] [-0.83, 1.06]

(0.60) (0.00) (0.07) (0.00) (0.00)
1/85–12/94 1.75 278.58 157.86 - 193.20 194.08 [-1.58, 1.78] [-0.12, 0.60]

(0.08) (0.00) (0.00) (0.00) (0.00)
1/95–12/04 2.57 321.22 182.03 - 186.07 212.82 [-5.39, 4.60] [-1.47, 0.53]

(0.01) (0.00) (0.00) (0.00) (0.00)

Note: The results are based on value-weighted returns of 100 portfolios formed on size and book-to-market. The
market portfolio is the value-weighted return on all NYSE, AMEX, and NASDAQ stocks and the risk-free rate is the
one-month Treasury bill rate. Columns 2–5 report the results for the parametric J test; columns 6–7 report the
results for the distribution-free tests of SD and WD. The number in parantheses are the p-values. The results for
the newly proposed procedure, SX and SP , are reported in columns 8 and 9. The 95% marginal confidence intervals
of the intercept estimates are in square brackets.
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Table 3.10: Test results for the Fama-French model with 100 portfolios sorted by size
and book-to-market.

Time J1 J2 J3 J4 SX SP
45-year period
1/65–12/09 2.48 243.09 218.78 327.08 [-0.14, 0.74] [0.06, 0.22]

(0.00) (0.00) (0.00) (0.00)
5-year subperiods
1/65–12/69 - - - - [-0.88, 1.08] [-0.16, 0.48]
1/70–12/74 - - - - [-1.15, 0.81] [-0.35, 0.29]
1/75–12/79 - - - - [-0.93, 5.07] [-0.93, 5.08]
1/80–12/84 - - - - [-1.00, 0.96] [-0.32, 0.40]
1/85–12/89 - - - - [-0.94, 1.02] [-0.22, 0.58]
1/90–12/94 - - - - [-1.03, 0.93] [-0.51, 0.29]
1/95–12/99 - - - - [-0.63, 1.37] [-0.15, 1.02]
1/00–12/04 - - - - [-1.37, 2.63] [-1.37, 2.31]
1/05–12/09 - - - - [-1.01, 0.95] [-0.45, 0.63]
10-year subperiods
1/65–12/74 1.78 297.18 163.45 - [-0.95, 1.01] [-0.07, 0.25]

(0.09) (0.00) (0.00)
1/75–12/84 0.79 191.69 105.43 - [-1.92, 2.04] [-1.08, 1.68]

(0.76) (0.00) (0.34)
1/85–12/94 1.67 285.83 157.21 - [-0.85, 1.11] [-0.05, 0.39]

(0.11) (0.00) (0.00)
1/95–12/04 2.23 317.49 174.62 - [-0.84, 1.12] [-0.40, 0.56]

(0.03) (0.00) (0.00)

Note: The results are based on value-weighted returns of 100 portfolios formed on size and
book-to-market, the returns on three Fama-French factors, and the one-month Treasury bill
rate as the risk-free rate. Columns 2–5 report the results for the parametric J statistics and the
p-values in the paranthesis. The results for the newly proposed distribution-free tests, SX and
SP , are reported in columns 6 and 7. The 95% marginal confidence intervals of the intercept
estimates are in square brackets.
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Table 3.11: Sensitivity of parametric tests to extreme observations.

0% 0.1% 0.3% 0.5% 0.7% 0.9% 1%
Panel A: Single-factor model
J1 2.30 2.18 1.73 1.61 1.52 1.49 1.48

(0.01) (0.02) (0.07) (0.10) (0.13) (0.14) (0.14)
J2 22.94 21.77 17.41 16.21 15.34 15.03 14.94

(0.01) (0.02) (0.07) (0.09) (0.12) (0.13) (0.13)
J3 22.64 21.49 17.18 16.00 15.14 14.84 14.75

(0.01) (0.02) (0.07) (0.10) (0.13) (0.14) (0.14)
J4 23.04 20.00 14.86 13.67 12.98 12.82 12.73

(0.01) (0.03) (0.14) (0.19) (0.22) (0.23) (0.24)

Panel B: Fama-French three-factor model
J1 2.39 2.39 1.94 1.77 1.63 1.50 1.46

(0.01) (0.01) (0.04) (0.06) (0.09) (0.13) (0.15)
J2 23.90 23.23 19.39 19.99 20.47 19.02 19.07

(0.01) (0.01) (0.04) (0.03) (0.03) (0.04) (0.04)
J3 23.57 22.85 19.07 19.66 20.13 18.71 18.76

(0.01) (0.01) (0.04) (0.03) (0.03) (0.04) (0.04)
J4 23.92 24.01 18.01 15.36 13.46 12.19 11.73

(0.01) (0.01) (0.05) (0.12) (0.20) (0.27) (0.30)

Note: The above parametric statistics are based on winsorized excess returns on 10
portfolios at 0.1%, 0.3%, 0.5%, 0.7%, 0.9%, and 1% levels, for the full sample period
from Janury 1965 to December 2009. The p-values associated with each test statistic
are reported in parantheses.
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