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Abstract 

Diameter Bounds on the Spectral Gap of Quantum Graphs 

By Tianlang Luo 

A quantum graph is a metric graph equipped with a differential operator. The spectrum of a 

compact quantum graph is real and discrete, where its first positive eigenvalue is referred to as 

the spectral gap.  We present a method to study the upper bound on the spectral gap of 

quantum graphs in terms of the diameter (and possibly of the total length and the total number 

of vertices) by reduction to a Sturm-Liouville problem.  
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1 Introduction

1.1 Background on quantum graphs

Quantum graph is a rapidly growing mathematical field which can be extensively applied as

a simple but non-trivial model to study complex physical systems. In chemistry, the complex

band structures of carbon can be calculated by studying their quantum graph models [1].

In photonic crystal theory, spectral problems arising from the theory of classical waves in

periodic high contrast photonic and acoustic media can be translated to spectral problems

on quantum graphs [9]. In quantum mechanics, quantum graphs offer a simple setting to

study various phenomena, such as Anderson localization [4, 6], and quantum chaos [5, 7].

One of the most important parameters of quantum graphs is the first positive eigenvalue

λ1, also called the spectral gap. For example, in quantum many-body physics, it is the energy

difference between the ground state and the first excited state of the system [3]. Estimation

of the spectral gap in terms of geometric properties of the quantum graphs has been vastly

explored. For example, in the early years Nicaise and Serge [10] proved the most fundamental

lower bound in terms of the total length L of the graph

λ1(G) ≥ π2

L2
.

The minimizer is the interval of length L, which is often considered as the trivial graph.

Recently, Kennedy et al. [8] proved that the spectral gap cannot be bounded from above in

terms of the diameter of the quantum graph alone. Rohleder and Jonathan [11] determined

the maximizer of all eigenvalues (including the spectral gap) for tree graphs.

1.2 Spectral theory of quantum graphs

A metric graph is a graph where each edge e is assigned with length `e > 0 and can be

identified with the interval [0, `e] ⊂ R. A quantum graph G is a metric graph equipped
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with a differential operator acting on the H2 space of functions defined on the edges of G.

In this paper, we will focus on the one-dimensional Laplacian operator −∆ = − d2

dx2
, which

computes the second derivative. Here, x is the coordinate along the edge. By gluing all

these operators on different edges together at vertices connecting them, we will assume the

following vertex condition: functions in the domain of −∆

1. are continuous across the vertices (continuity condition).

2. their normal derivatives (outward first derivatives in one-dimension) on each vertex

sum up to zero (Kirchhoff condition).

Figure 1: Vertex condition at v1 and v0. The arrows indicates the outward direction of the
first derivatives of functions defined on e1, e2 at v1.

For example, consider the graph with three vertices and two edges as shown in Figure

1. Let [0, `e1 ], [0, `e2 ] be the intervals associated to edges e1, e2, where 0 corresponds to v0

and `e1 corresponds to v1 on e1, while 0 corresponds to v1 and `e2 corresponds to v2 on e2.

Define ϕ1, ϕ2 on these intervals respectively. To satisfy the vertex condition at v1, we need

ϕ1(v1) = ϕ2(v1) and −ϕ′1(v1) + ϕ′2(v1) = 0. Furthermore, since v1 is a vertex of degree 2,

meaning there are exactly two edges connecting to it, we can freely remove v1 and combine

e1, e2 to form a single edge. Similarly, we can choose an interior point of an edge to be

an artificial vertex, and this vertex clearly satisfies the vertex conditions above. For v0,

however, since e1 is the only edge connected to v0, we only need ϕ′1(v0) = 0 to satisfy the

vertex conditions at v0. This is the same for v2.

We will also assume that G is compact, meaning that it has a finite number of edges

with finite lengths; and G is connected, so that the first eigenvalue λ0 = 0 has multiplicity
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one with eigenfunction ψ0 ≡ 1. Based on these assumptions, Theorem 1.4.4 in [2] shows

that −∆ is self-adjoint, and [2, §3.1] suggests that eigenvalues of compact quantum graphs

are real and discrete with finite multiplicity and converge to infinity. Therefore, the set of

eigenvalues of G, denoted by {λj}∞j=0, are real numbers which satisfy 0 = λ0 < λ1 ≤ λ2 ≤ · · ·

and λj −→∞ as j −→∞. The spectral gap of G is the lowest non-trivial eigenvalue λ1.

1.3 Summary of results

In this paper we will review the methods and techniques to estimate the spectral gap λ1

on the quantum graph in terms of geometric properties of the graph developed in [8]. Our

goal is to present a comprehensive and detailed demonstration, and also correct the flaws in

some of the proofs in the original literature. In section 2, an exact formula of λ1 is derived

by minimizing the Rayleigh quotient. In section 3, the reaction of λ1 to the topology and

metric change of the graph is carefully investigated as an application of the formula of λ1

obtained in section 2. These changes are called “surgeries” on the graph. In section 4, first,

the algorithm which reduces any graph to a pumpkin chain (a special type of graph) without

decreasing λ1 by surgeries on the graph is reviewed. We then present a correct proof of how to

transform the eigenvalue problem on a pumpkin chain to a one-dimensional Sturm-Liouville

problem. The difference compared to the original literature lies in the part to prove the

existence of a first eigenfunction which does not vanish on at least one vertex. The original

literature involves an invalid assumption on the eigenfunction, but the same results can be

achieved even without it. In the final section, we apply the upper estimate of the spectral

gap in terms of both diameter and total length of the graph, which is obtained in Theorem

7.1 of [8], as an application of the reduction to one-dimensional problem method, to a special

type of pumpkin chain. A numerical investigation of the example justifies the comment in [8]

which says that the upper estimate is far from optimal. An improvement on this estimate

may involve construction of a new test function which suggests more information on the

configuration of the maximizer graph.
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2 Rayleigh Quotient

For any quantum graph G which satisfies the assumptions in section 1.2, we shall first derive

a formula for the spectral gap λ1(G) by the min-max principle. Since λ1(G) is the first

non-trivial eigenvalue, it can be obtained by minimizing the Rayleigh quotient subject to

the constraint of L2-orthogonality to the eigensubspace corresponding to λ0 = 0. Note that

λ0 is associated with the eigenfunction ψ0 ≡ 1.

Theorem 2.1 (Equation (2.3) in [8]).

λ1(G) = inf

{∫
G
|u′(x)|2 dx∫

G
|u(x)|2 dx

: u ∈ H1(G),

∫
G

u(x) dx = 0

}
,

where H1(G) is the space consisting of functions defined on the intervals associated with the

edges of the graph, belonging to the first Sobolev space, and satisfying the continuity condition

on each vertex, cf. [2, §1.3].

Proof. Let {λj}∞j=0 be the set of eigenvalues of G, where 0 = λ0 < λ1 ≤ λ2 ≤ · · ·. Let ψ1 be

an eigenfunction of λj. Note that ψ1 may not be unique. These satisfy

−∆ψj = λjψj.

Choose the eigenfunction set which forms an orthonormal basis for L2(G). Then we have

〈ψj, ψk〉 =

∫
G

ψjψk dx =


1 j = k,

0 j 6= k.

For u ∈ H1(G), u ∈ L2(G) and u′ ∈ L2(G). Expanding u in terms of the orthonormal basis,

we have

u =
∞∑
j=0

cjψj.

Since we want to find the lowest non-trivial eigenvalue λ1 > 0, we will only consider the sub-
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space of H1(G) which is orthogonal to the eigensubspace corresponding to λ0 = 0. Therefore,

we have,

∫
G

u · 1 dx = 0 =⇒ 〈u, ψ0〉 = 0

=⇒ c0 = 0.

For any ψj, we know that 〈ψj, ψj〉 = ‖ψj‖2 = 1. Then

〈ψ′j, ψ′j〉 = ‖ψ′j‖2 =

∫
G

ψ′2j dx

= −
∫
G

ψj∆ψj dx

= λj‖ψj‖2

= λj.

Thus, we obtain

‖u‖2 =
∞∑
j=1

〈cjψj, cjψj〉 =
∞∑
j=1

|cj|2

‖u′‖2 =
∞∑
j=1

〈cjψ′j, cjψ′j〉 =
∞∑
j=1

|cj|2λj.

Now we write out the Rayleigh quotient

Rayleigh quotient =
‖u′‖2

‖u‖2

=

∑∞
j=1 |cj|2λj∑∞
j=1 |cj|2

,

Note that {cj}∞j=1 cannot all be identically zero or the function u ≡ 0. Taking the infimum of

the Rayleigh quotient, we have to set c1 to be nonzero, for example c1 = 1, while all {cj}∞j=2

equal to zero since the set of eigenvalues {λj}∞j=0 is listed in an ascending order. Therefore,
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the infimum of the Rayleigh quotient is

inf

{
‖u′‖2

‖u‖2
: u ∈ H1(G),

∫
G

u(x) dx = 0

}
= inf

{∫
G
|u′(x)|2 dx∫

G
|u(x)|2 dx

: u ∈ H1(G),

∫
G

u(x) dx = 0

}
= λ1(G).

Remark 2.2. 1. Take arbitrary test function u ∈ H1 which is perpendicular to the con-

stant eigenfunction (usually C1 on each edge and continuous on each vertex, but does

not need to satisfy Kirchhoff condition), we have the inequality

λ1(G) ≤ ‖u
′‖2

‖u‖2
,

where equality is achieved when u = ψ1.

2. We can further apply the min-max method to the Rayleigh quotient to derive a general

formula for eigenvalues of any order. Specifically,

λk = max
W⊂H1

dim(W )=k

min
u∈W⊥

‖u′‖2

‖u‖2
.

Since we want to compute the k-th lowest eigenvalue, we will disregard the eigensub-

spaces that correspond to the eigenvalues smaller than λk, namely {λj}k−1j=0 . Therefore,

W = span{ψ0, · · · , ψk−1}.

Theorem 2.1 provides the exact formula for the spectral gap. However, it is often diffi-

cult to find test functions which attain or converge to the infimum, especially for complicated

graphs. One usually needs to simplify the graphs depending on the problem.
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3 Surgery on Quantum Graphs

Theorem 2.1 reveals a surprising relation between the spectral gap and both the topology

and the geometry of the quantum graph. In this section, we will study how the spectral gap

reacts to the alteration on the structure of the quantum graph.

Lemma 3.1 (Lemma 2.3 of [8]). Suppose G and G′ are connected compact quantum graphs

with operators defined in the introduction.

1. If G′ is formed by attaching a pendant edge, or more generally a pendant graph, to

one vertex of G, then λ1(G) ≥ λ1(G
′). By “pendant graph” (or edge) we mean that the

graph to be added, i.e. G′ \G, is attached to G only at one vertex. This covers the case

of adding a loop. (Figure 2)

2. If G′is formed from G by identifying two vertices of G (say, v1, v2 are replaced with a

new vertex v0 and each edge having v1 or v2 as an endpoint is replaced with a new edge

having v0 as an endpoint, and in particular the edges between v1 and v2 are replaced

with loops around v0), then λ1(G) ≤ λ1(G
′). (Figure 3)

3. If we add an edge e = v1v2 between two already existing vertices of a quantum graph

G, producing the new quantum graph G′, then λ1(G) ≥ λ1(G
′) provided there is an

eigenfunction corresponding to λ1(G) attaining the same value on both v1 ,v2. (Figure

4)

4. If G′ is formed from G by lengthening a given edge, then λ1(G) ≥ λ1(G
′).

5. If G′ is obtained from G by scaling each edge with the factor 1
c
∈ R, then the corre-

sponding eigenvalues scale as c2, that is,

λ1(G) = c−2λ1(G
′).

Since the original literature includes only incomplete proofs and also contains minor
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errors (incorrect test functions in parts 1, 4), we shall present a correct and detailed proof

here.

Proof. 1. Let ψ1 be any eigenfunction associated with λ1(G). We know that

∫
G

ψ1 dx = 0.

We assume G′ is obtained by attaching a pendant edge to the vertex v ∈ G. We extend

ψ1 to a function ψ̃ ∈ H1(G′) by defining ψ̃ = ψ1(v) on G′ \ G. Then define another

function ϕ ∈ H1(G′) by

ϕ := ψ̃ − L(G′ \G)

L(G′)
ψ1(v).

We check that

∫
G′

(
ψ̃ − L(G′ \G)

L(G′)
ψ1(v)

)
dx =

∫
G′
ψ̃ dx−

∫
G′

L(G′ \G)

L(G′)
ψ1(v) dx

=

∫
G

ψ1 dx+

∫
G′\G

ψ1(v) dx−
∫
G′

L(G′ \G)

L(G′)
ψ1(v) dx

= L(G′ \G)ψ1(v)− L(G′)
L(G′ \G)

L(G′)
ψ1(v)

= 0.

Hence, ϕ is a valid test function for λ1(G
′). First, consider
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∫
G′
|ϕ′|2 dx =

∫
G′
|(ψ̃ − L(G′ \G)

L(G′)
ψ1(v))′|2 dx

=

∫
G′
|ψ̃′|2 dx

=

∫
G

|ψ′1|2 dx+

∫
G′\G
|(ψ1(v))′|2 dx

=

∫
G

|ψ′1|2 dx.

Next, consider

∫
G′
|ϕ|2 dx =

∫
G

(
ψ1(x)− L(G′ \G)

L(G′)
ψ1(v)

)2

dx+

∫
G′\G

(
ψ1(v)− L(G′ \G)

L(G′)
ψ1(v)

)2

dx

=

∫
G

(
(ψ1(x))2 +

(
L(G′ \G)

L(G′)
ψ1(v)

)2

− 2ψ1(x)
L(G′ \G)

L(G′)
ψ1(v)

)
dx

+

∫
G′\G

(
L(G)

L(G′)
ψ1(v)

)2

dx

=

∫
G

(ψ1(x))2 dx+
L2(G′ \G)L(G)

L2(G′)
ψ2
1(v) +

L(G′ \G)L2(G)

L2(G′)
ψ2
1(v)

≥
∫
G

|ψ1(x)|2 dx.

Hence, the Rayleigh quotient

‖ϕ′‖2

‖ϕ‖2
=

∫
G′ |ϕ′|2 dx∫
G′ |ϕ|2 dx

≤
∫
G
|ψ′1|2 dx∫

G
|ψ1(x)|2 dx

= λ1(G).

By Theorem 2.1, we conclude that λ1(G) ≥ λ1(G
′). The more general pendant graph

case can be shown by continuously adding pendant edges.
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Figure 2: (Lemma 3.1-1) G′ is formed by attaching a pendent edge to G.

2. Claim: H1(G′) ⊂ H1(G).

Since G′ is obtained from G by identifying v1, v2 ∈ G and all the other parts are

identical, it suffices to consider the edges connecting to these two vertices. Take an

arbitrary test function u ∈ H1(G′). Let {ej}nj=1 be the set of edges connected to v0,

and the test function u restricted on intervals associated to each of them is denoted

by {fj}nj=1. The continuity condition from H1(G′) ensures that fj(v0) = fk(v0) for all

j, k from 1 to n. However, in G, the set of edges connected to v1, v2 is also {ej}nj=1. We

can assume that {ej}j∈J1 is the set of edges connected to v1, while {ej}j∈J2 is the set

of edges connected to v2. Since fj(v0) = fk(v0) for all j, k from 1 to n in G′, we have

fj(v1) = fk(v1) for all j, k ∈ J1, and fj(v2) = fk(v2) for all j, k ∈ J2 in G. Clearly, u

also satisfies the continuity condition from H1(G). We can conclude that u ∈ H1(G),

and thus H1(G′) ⊂ H1(G).

Since H1(G′) ⊂ H1(G), the search domain for the infimum in the Rayleigh quotient

shrinks while all the other conditions remain unchanged, the infimum of the Rayleigh

quotient cannot be smaller. Therefore, λ1(G) ≤ λ1(G
′).

3. The idea is similar to part 1. Extending the eigenfunction ψ1 associated with λ1(G) by

the constant value ψ1(v1) = ψ1(v2) on the new edge yields a new function ψ̃ ∈ H1(G′).



11

Figure 3: (Lemma 3.1-2) G′ is formed by identifying v1, v2 of G.

Define the test function ϕ by

ϕ := ψ̃ − L(G′ \G)

L(G′)
ψ1(v1).

Since ∫
G′
ϕdx = 0,

ϕ is a valid test function for λ1(G
′). And a similar analysis as in part 1 shows that

λ1(G) ≥ λ1(G
′).

4. Assume e ∈ G is lengthened. Denote its associated interval by [0, a]. Let the lengthened

interval be [0, a′] with a′ > a. Again, extending the eigenfunction ψ1 associated with

λ1(G) by the constant value ψ1(a) on [a, a′] yields a new function ψ̃ ∈ H1(G′). Define

the valid test function ϕ for λ1(G
′) by

ϕ := ψ̃ − a′ − a
L(G′)

ψ1(a).

Following a similar analysis as in part 1 we conclude that λ1(G) ≥ λ1(G
′).
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Figure 4: (Lemma 3.1-3) G′ is formed by adding a new edge e1 connecting v1, v2 of G,
provided ψ(v1) = ψ(v2) for some eigenfunction ψ corresponding to λ1(G).

5. Let ψ1 be any eigenfunction associated with λ1(G). We know that

−∆ψ1(x) = λ1(G)ψ1(x)

for all x ∈ G. If we scale each edge with a factor 1
c
∈ R to obtain G′, by a change of

variable we have

−∆ψ1(
x

c
) = c2λ1(G)ψ1(

x

c
)

for x
c
∈ G′. Therefore, c2λ1(G) is a non-trivial eigenvalue of G′ with eigenfunction

ψ1(
x
c
).

Claim: c2λ1(G) = λ1(G
′).

If not, let λ1(G
′) = λ′ ∈ (0, c2λ1(G)), and denote the eigenfunction associated to λ′ by

ψ′. We have

−∆ψ′(x) = λ′ψ′(x)

for all x ∈ G′. Again, by a change of variable we have

−∆ψ′(cx) = c−2λ′ψ′(cx)
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for cx ∈ G. Therefore c−2λ′ is a non-trivial eigenvalue of G with eigenfunction ψ′(cx).

By construction, 0 < λ′ < c2λ1(G), and thus 0 < c−2λ′ < λ1(G). Since λ1(G)

is the lowest non-trivial eigenvalue by definition, this is a contradiction. Therefore,

c2λ1(G) = λ1(G
′), and this is equivalent to λ1(G) = c−2λ1(G

′).

Lemma 3.1 suggests that, when estimating the spectral gap of a particular quantum

graph G, we can perform surgeries, such as adding or removing pendants, identifying vertices,

and scaling edges, to transform G into a simpler graph G′ without losing track of the spectral

gap.
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4 Reduction to One-dimensional Problem

In this section, we will show that, to study the upper bound on the spectral gap in terms of

the diameter of the graph D (coupled with the number of vertices of the graph V and the

total length of the graph L), it suffices to consider the upper bound of the spectral gap of a

special quantum graph called a pumpkin chain. We can even further simplify the problem

on the pumpkin chain to a one-dimensional Sturm-Liouville problem.

First, we will introduce the pumpkin graph and the pumpkin chain.

Definition 4.1.

1. A pumpkin graph consists of a pair of vertices connected by a set of parallel edges.

2. A pumpkin chain is a linear arrangement of equilateral pumpkin graphs joined at

vertices. (Figure 5)

Figure 5: A pumpkin chain with 4 pumpkins.

In a pumpkin chain, we denote the two end vertices as v0, vD. All the V − 2 interior

vertices connect to exactly two pumpkins on their sides, and every path from v0 to vD must

pass through all of them. Since the edges on the same pumpkin of a pumpkin chain are

equilateral, we observe that the diameter of a pumpkin chain is the distance between v0 and

vD, which is also the length of any path connecting v0 and vD. For any pumpkin chain G,

we are able to define a level function S : G −→ [0, D] by

S(z) = dist(v0, z).
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For example, S(v0) = 0 and S(VD) = D. S(z) is called the level of z in G.

Kennedy et al. [8] introduced an algorithm to reduce a general quantum graph to a

pumpkin chain without decreasing the spectral gap by the surgeries in Lemma 3.1.

Lemma 4.2 (Lemma 5.4 of [8]). Given any compact, connected and non-empty quantum

graph G, there exists a pumpkin chain G′ such that

1. D(G′) = D(G), L(G′) ≤ L(G), V (G′) ≤ V (G) + 2.

2. λ1(G
′) ≥ λ1(G).

Proof. We will produce the pumpkin chain G′ from G in the following steps, and the resulting

graph after each step satisfies the above conditions.

Step 1. Choose any two points x, y ∈ G such that dist(x, y) = D := D(G). If x, y are not

vertices of G, we will make them artificial vertices of G. This process potentially raises

the upper bound of V (G′) by 2. If x, y are original vertices of G, then the upper

bound of V (G′) remains unchanged. Relabel x, y as v0, vD (endpoints of the resulting

pumpkin chain). (Figure 6)

Figure 6: An arbitrary quantum graph G. Γ1 is the path from v0 to vD which achieves the
diameter D of the graph

Step 2. Find a path in G connecting v0 and vD. Since G is compact, we can find such a path

with minimal length, denote it as Γ1, and thus `(Γ1) = D. Observe that Γ1 contains
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no loop and traverses all of its vertices and edges only once. Similarly, choose the

second shortest path Γ2 * Γ1 connecting v0 and vD such that Γ2 also traverses all of

its vertices and edges only once. Continue this process by finding the next shortest

path Γj connecting v0 and vD such that Γj traverses all of its vertices and edges only

once and

Γj *
j−1∑
k=1

Γk.

By compactness of G, this process must terminate in finitely many steps. Denote the

last such path as Γn. We have D = `(Γ1) ≤ `(Γ2) ≤ · · · `(Γn).

Step 3. Let G1 := ∪nj=1Γj. Observe that any connected component of G \G1 is attached to G1

at a single vertex and hence is a pendent. Otherwise, we can find a path connecting

v0 and vD such that it traverses all of its vertices and edges only once, but passes

through G \ G1. However, this path-finding process already terminates in step 2 and

thus we cannot find such a path. Therefore, it is enough to consider G1 instead of G.

(Figure 7)

Figure 7: The graph G1 is produced by removing all pendants, or as union of paths from v0
to vD. The vertex v1 is removed since it is of degree 2.

Step 4. We will produce another graph G2 out of G1 by shortening Γ2, · · · ,Γn to the same

length as `(Γ1) = D. Let Γ1 = Γ′1. To shorten Γ2 without changing Γ′1, we shorten

Γ2 \ Γ′1 by `(Γ2) − D and get Γ′2 with `(Γ′2) = D. Note that this may also shorten

the other path Γ3, · · · ,Γn. However, by construction they still have length at least D

and are still ordered in increasing length. Continue to shorten every Γj \ ∪j−1k=1Γ
′
k and
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get Γ′j with `(Γ′j) = D. Note that the resulting path may be overlapping, and we only

consider the m ≤ n distinct paths. Set G2 := ∪mj=1Γ
′
j. (Figure 8)

Figure 8: The graph G2 produced by shortening paths from G1. The artificial vertex v4 has
been added with the same level as v2 and v3, and the set of edges {e1, e2, e3} and {e4, e5, e6}
are equilateral within their own sets.

Step 5. For each Γ′j ⊂ G2, define the level function restricted on Γ′j as Sj : Γ′j −→ [0, D]. For

each vertex vi ∈ Γ′1, make S−1k (S1(vi)) an artificial vertex of Γ′k if it is not an original

vertex for all k 6= 1. Continue this process for Γ′2, · · · ,Γ′m. In the end, at each level of

G2, if there exists a vertex on some paths, then each path has a vertex at this level.

Finally, identifying all the vertices at the same level yields the desired pumpkin chain

G′. Note that the V (G′) can be no larger than V (G2), with equality only if all vertices

reside at different levels. (Figure 9)

Figure 9: The graph G′ produced by identifying v2, v3, v4 and the edge e7 has degraded to a
point.

The algorithm involves removing pendants, shortening edges, and identifying vertices, which,

by Lemma 3.1, can only potentially raise the spectral gap.
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Therefore, for any quantum graph G with given geometric properties D, V, L, we can

construct a pumpkin chain G′ by Lemma 4.2, such that the diameter is preserved, and the

length and number of vertices are bounded by those of G′, while λ1(G
′) ≥ λ1(G). Hence, we

can solely study the upper bound on the spectral gap of pumpkin chains.

The next result introduced in [8] will reduce the study on a pumpkin chain G to a

one-dimensional Sturm-Liouville problem, as we can find an eigenfunction ψ1 corresponding

to λ1(G) which only depends on the level of points in G. However, the original proof contains

a flaw by assuming that the eigenfunction cannot vanish identically on any pumpkin. We

will present a correct proof of this result without this assumption.

Lemma 4.3 (Lemma 5.6 of [8]). Suppose G is a pumpkin chain. There exists an eigenfunc-

tion ψ1 associated with λ1(G) and a function ϕ : [0, D] → R such that ψ1(z) = ϕ(S(z)) for

all z ∈ G.

Proof. If there exists an eigenfunction ψ associated with λ1(G) which does not vanish on at

least one vertex of G, for example, ψ(v) 6= 0, then we can construct a new function ψ1 on

G by averaging the value of ψ at each fixed level. Since ψ(v) 6= 0, and taking average on

a single point will not change the value at that point, we have ψ1(v) 6= 0. Together with

continuity, we see that ψ1 6≡ 0. We further observe that ψ1 is also an eigenfunction for λ1(G),

since it is constructed as a linear combination of eigenfunctions on each edge. Finally, ψ1

depends only on the level, since we set ψ1’s value at the same level to be the average value

of the ψ’s values on that level. Therefore, ψ1 is the desired eigenfunction.

Now we only need to ensure the existence of such an eigenfunction ψ which does not

vanish on at least one vertex of G. Suppose there exists an eigenfunction ψ associated with

λ1(G) which vanishes at all vertices of G. Consider its longest pumpkin and denote its

length by `max. Since ψ is an eigenfunction of G, its restriction to the edges of this longest

pumpkin is also an eigenfunction associated with λ1(G). Note that λ1(G) may not be the

first eigenvalue on these edges. Since ψ vanishes on all vertices, it vanishes on the endpoints

of this pumpkin. By Dirichlet’s condition, λ1(G) ≥ π2

`2max
. On the other hand, by Theorem
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6.1 of [8], λ1(G) ≤ π2

`2max
. Therefore, λ1(G) = π2

`2max
. Since `max ≥ `e for all edges e ∈ G, we

have π2

`2max
≤ π2

`2e
, but Dirichlet’s condition gives π2

`2max
≥ π2

`(e)2
. We have π2

`2max
= π2

`2e
and hence G

is equilateral.

We claim that G has only one pumpkin. If G has k > 1 pumpkins with D(G) = D,

every edge in G has the same length D
k

. Then λ1(G) = π2

`2max
= k2π2

D2 with an eigenfunction

ψ(z) = sin
(
kπS(z)
D

)
for z ∈ G which vanishes at all vertices of G. However, we can find

another eigenvalue λ̃1(G) = π2

D2 <
k2π2

D2 = λ1(G) with the eigenfunction ψ̃(z) = sin
(
πS(z)
D

)
.

Therefore, λ1(G) is not the smallest non-trivial eigenvalue and this is a contradiction. Hence,

G has only one pumpkin. (Figure 10)

Figure 10: Left: eigenfunction which vanishes at all vertices on a pumpkin chain consisting
of 3 equilateral pumpkins. Right: eigenfunction corresponding to λ1 of the same pumpkin
chain.

Since G has only one pumpkin, λ1(G) = π2

D2 with an eigenfunction ψ(z) = sin
(
πS(z)
D

)
for z ∈ G, and ψ vanishes at all vertices of G (here the only vertices of G are the two

endpoints of the pumpkin). Define another function ψ̃ on G by ψ̃(z) := cos
(
πS(z)
D

)
. Clearly,

ψ̃ is also an eigenfunction of λ1(G), but ψ̃(v0) = 1 and ψ̃(vD) = −1. (Figure 11)

In conclusion, for any eigenfunction ψ associated with λ1(G) which vanishes at all

vertices of G, we can find another eigenfunction ψ̃ associated with λ1(G) which does not

vanish on at least one vertex of G. Hence, we can always perform the averaging strategy to

generate the eigenfunction ψ1 which only depends on the level of points in G.

This implies that we only need to consider one-dimensional functions in the Rayleigh



20

Figure 11: Eigenfunction corresponding to λ1 on a single pumpkin. There exists a sine
eigenfunction which vanishes at endpoints, but also another cosine eigenfunction which does
not vanish at endpoints.

quotient with the weight function

ρ(x) := #S−1(x)

for x ∈ [0, D]. The weight function counts the number of edges at the given level. Therefore,

the formula from Theorem 2.1 reduces to the following:

λ1(G) = inf

{∫ D
0
|u′(x)|2ρ(x) dx∫ D

0
|u(x)|2ρ(x) dx

: u ∈ H1 ([0, D]) ,

∫ D

0

u(x)ρ(x) dx = 0

}
.
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5 Application: An Estimate in terms of Diameter and

Total Length

By Lemma 4.2 and Lemma 4.3, to estimate the spectral gap of quantum graphs in terms

of diameter and total length, it suffices to consider the one-dimensional Sturm-Liouville

problem on pumpkin chains. Kennedy et al. [8] give the following upper estimate.

Theorem 5.1 (Theorem 7.1 of [8]). Any quantum graph G satisfying the assumptions in the

introduction and having diameter D > 0 and total length L ≥ D satisfies

λ1(G) ≤ π2

D2

4L− 3D

D
.

In the original proof provided in [8], the test function serving as the upper estimate is

defined by

ϕ(z) :=


Acos(πS(z)

D
) if S(z) ≤ D

2

Bcos(πS(z)
D

) if S(z) > D
2

where A,B are chosen to satisfy the orthogonality condition
∫
G
ϕ = 0. Kennedy et al. [8]

claimed that this estimate is far from optimal and is only sharp in the trivial case, meaning

when the pumpkin chain consists of a single interval and hence L = D. In this section, we

will investigate the sharpness of this estimate through an example. To be specific, we will

numerically compute the first positive eigenvalue of a specific type of graph by fixing the

diameter while altering the total length.

Example 5.2. Consider the pumpkin chain G with diameter D where extra edges are centered

around the midpoint of the main diameter. Therefore, G consists of three pumpkins with

two single-edge pumpkins on the sides and a thin but tall pumpkin in the middle as shown

in Figure 12. Note that all extra edges in the center are equilateral since they belong to the

same pumpkin. Denote the length of one extra edge by e, and the number of extra edges by

k. Then the total length L = D + ke. Let x ∈ [0, D] be the longitudinal coordinate. Then
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L1 = D
2
− e

2
is the coordinate of the left vertex of the extra edges, and L2 = D

2
+ e

2
is the

coordinate of the right vertex of the extra edges.

Figure 12: The graph G with k = 10.

Recall from the end of section 4 that

λ1(G) = inf

{∫ D
0
|u′(x)|2ρ(x) dx∫ D

0
|u(x)|2ρ(x) dx

: u ∈ H1([0, D]),

∫ D

0

u(x)ρ(x) dx = 0

}
.

Since ρ is piecewise constant, the eigenfunction ψ1 corresponding to λ1(G) will take the form

of sine and cosine of the same frequency σ on each pumpkin, where σ2 = λ1(G). The vertex

condition on the end points degrades to Neumann condition, and ψ1 will only be cosine on

the side pumpkins and a linear combination of sine and cosine in the middle pumpkin:

ψ1(x) =


cos(σx) x ∈ [0, L1]

a1cos(σx) + a2sin(σx) x ∈ [L1, L2]

bcos(σ(D − x)) x ∈ [L2, D].

We can assume the coefficient in the first pumpkin to be 1 by rescaling ψ1. The coefficients
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a1, a2, b are chosen to satisfy the vertex condition at L1, L2:

cos(σL1)− a1cos(σL1)− a2sin(σL1) = 0

σsin(σL1)− a1(k + 1)σsin(σL1) + a2(k + 1)σcos(σL1) = 0

a1cos(σL2)− a2sin(σL2) + bcos(σ(D − L2)) = 0

a1(k + 1)σsin(σL2)− a2(k + 1)σcos(σL2) + bσsin(σ(D − L2)) = 0.

We can rewrite the system of equations in the matrix form. Let

A =



cos(σL1) −cos(σL1) −sin(σL1) 0

σsin(σL1) −(k + 1)σsin(σL1) (k + 1)σcos(σL1) 0

0 cos(σL2) −sin(σL2) cos(σ(D − L2))

0 (k + 1)σsin(σL1) −(k + 1)σcos(σL1) σsin(σ(D − L2))


,

and

x =



1

a1

a2

b


.

The homogeneous linear system Ax = 0 admits nontrivial solution of the coefficient vector x

if and only if det(A) = 0, where it is a function of σ and the spectral gap λ1 can be computed

from its smallest positive root σ1. The eigenfunction ψ1 can be recovered from the nontrivial

solution of the coefficient vector x once σ1 is obtained. Note that ψ1 will automatically

satisfy the orthogonality condition since eigenspaces corresponding to different eigenvalues

are orthogonal complements of each other.

In Figure 13, ψ1(x) takes the form of cosine function on the side pumpkins while tending

to a flat line in the middle pumpkin. By Sturm-Liouville theory, ψ1(x) should have a single
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Figure 13: The eigenfunction ψ1(x). The graph G has D = 5, e = 0.1, k = 100.

zero, and we can check that, from Figure 13, ψ1(x) is decreasing and passes through zero

only once.

We can alter the number of extra edges k and thus changing the total length while

fixing the diameter. Then observe how λ1 behaves under this change and compare it with

the upper estimate in Theorem 5.1.

In Figure 14, λ1 lies below the upper bound in Theorem 5.1 for all k values, and this

suggests that the upper bound is valid in our example. We can further observe that, when

k is small and the total length is not much larger than the diameter, λ1 is very close to the

upper bound. However, as k and L increase, λ1 nearly remains constant while the upper

estimate increases drastically compared to λ1. Therefore, in our example, the upper bound

in Theorem 5.1 serves as a good estimator of λ1 when k and L are small but fails to capture

its trend as k and L grow larger.

Example 5.2 justifies the comment in [8] which says that the upper bound in Theo-

rem 5.1 is far from optimal. It also suggests that the upper bound may overestimate the

contribution from the extra edges to λ1. Since the test function adopted in the original

proof of Theorem 5.1 assumes no information about the configuration of the extra edges on
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Figure 14: Comparison between the upper bound in Theorem 5.1 and λ1 with different
numbers of extra edges k. The graph G has D = 5, e = 0.1.

the pumpkin chain and it fails to approximate the actual first eigenfunction, an improve-

ment on this upper bound may need a test function which suggests more information on the

configuration of the maximizer graph.
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