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Abstract

Statistical Methods for High-throughput Epigenomics Data

By

Hao Feng

DNA methylation is an important epigenetic modification that has essential roles
in biological and clinical processes including gene regulation, development and dis-
ease. Aberrant and unique DNA methylation patterns have been identified in various
diseases such as cancer, making DNA methylation an ideal biomarker. Recently, vari-
ous high-throughput technologies have emerged to measure genome-wide epigenomics
profiles. However, due to the novelty of the technologies and special characteristics
of the high-throughput DNA methylation data, there lacks rigorous and effective
statistical methods to examine DNA methylation thoroughly.

The coherent theme of this dissertation is to develop novel statistical models and
data analysis strategies for high-throughput epigenomics data. In particular, I pro-
pose several model-based methods for studying DNA methylation and its relationship
to disease. My first research topic aims at classifying tumors into different subtypes
based on their methylation profiles, which can facilitate the application of precision
medicine on patients. In practice, the data obtained from clinical samples are mixed
signals. The proportion of cancer cells in the mixture, known as the tumor purity,
will bias the clustering results if not properly accounted for. In this work, I develop
a model-based clustering method to infer tumor subtypes with the consideration of
tumor purity.

Moving from solid tumor samples to blood assay, my second research topic aims at
using cell-free DNA (cfDNA) methylation data to detect disease. Recent researches
start to exploit the epigenetic information on cfDNA, which could have broad appli-
cations. In this work, I provide thorough reviews and discussions on the statistical
method developments and data analysis strategies for using cfDNA epigenetic profiles,
in particular DNA methylation, to construct disease diagnostic models.

Along the trajectory of studying cfDNA, my third research topic aims at inves-
tigating another type of epigenetic marker: 5-hydroxymethylcytosine (5hmC). Cur-
rently, little is known about the 5hmC epigenetic profile on cfDNA. Here, I investigate
the genome-wide alteration of cfDNA 5hmC in young healthy subjects, old healthy
subjects and late onset Alzheimers disease (AD) patients. This is the first investiga-
tion, both experimentally and computationally, to study the cfDNA 5hmC profile of
neurodegenerative disease and its potential as a diagnostic biomarker.
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Introduction
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1.1 DNA Methylation

DNA methylation is an important epigenetic modification of the DNA molecule, and

plays a crucial role in many biological processes, including repression of gene transcrip-

tion, maintenance of gene imprinting and X-chromosome inactivation (Bird, 2002;

Hackett and Surani, 2013; Li et al., 1993). It involves the addition of a methyl group

to the 5-position of a cytosine of CpG dinucleotides, with very rare cases that happen

in CHG and CHH (H = A, T or C) (Lister et al., 2009). Methylation of a cyto-

sine within a gene promoter region can repress gene expression by interfering with

the binding of transcription factors or by binding proteins that inhibit transcription

(Bird and Wolffe, 1999; Hendrich and Bird, 1998), while methylation within gene

bodies has a heterogeneous relationship with gene expression (Cokus et al., 2008;

Lister et al., 2008; Wang et al., 2013). Given its influence on gene expression, both

the biological consequences and causes of changes in DNA methylation are of great

interest.

Recently, methods for assessing methylation have improved substantially in terms

of accuracy, genomic coverage, resolution and affordability. The measurement for

DNA methylation can be categorized into two categories: array-based approach and

sequencing-based approach. The array-based methods adopt the workflow of mi-

croarray, which measures the hybridization strength signal on pre-designed regions.

Those regions are targeted to methylated or potentially methylated regions such as

CpG islands, promoters, etc. For example, Illumina Infinium HumanMethylation27

BeadChip array probes the methylation level at ∼ 27, 000 CpG dinucleotides. The

later verion Infinium HumanMethylation450 BeadChip array measures more than

450, 000 CpG sites. Current sequencing-based methods for methylation analysis can

be further classified into two categories: enrichment- (Taiwo et al., 2012) and bisulfite-

conversion-based methods (Harris et al., 2010). Enrichment-based methods such as
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MeDIP-seq (Taiwo et al., 2012), MBD-seq (Serre et al., 2009; Rauch and Pfeifer, 2010)

and methylCap-seq use different methyl-binding proteins or antibodies to enrich for

methylated DNA fragments, followed by the application of next-generation sequenc-

ing of the fragments and alignment to a reference genome to estimate methylation

levels at a 100 ∼ 200-bp resolution. In contrast, bisulfite-conversion-based methods

such as whole-genome bisulfite sequencing (BS-seq or MethylC-seq) (Lister et al.,

2008; Frommer et al., 1992) and reduced representation bisulfite sequencing (RRBS)

(Meissner et al., 2008; Smith et al., 2009) allow estimation of methylation proportions

at a single-nucleotide resolution. Treatment of DNA with sodium bisulfite induces

deamination and conversion of unmethylated cytosines to uracil, which will be am-

plified as thymine, while methylated cytosines are protected by the methyl group

and remain unchanged. Bisulfite sequencing data can be analyzed by counting the

number of sequencing reads for each CpG site where either a thymine or a cytosine

is observed. The count of thymine represents the number of sequenced DNA strands

that are unmethylated (U) and the count of cytosine represents the number of DNA

strands that are methylated (M) at this CpG site. By taking the ratio of methylated

number (M) to the total number of reads (M + U), the proportion of methylated

DNA can be calculated as M
M+U

. By this process, DNA methylation proportions can

be estimated at single-nucleotide resolution with genome-wide coverage via BS-seq,

or with limited coverage (5− 10% of all CpG sites genome-wide) via RRBS.

1.2 Tumor Subtype Classification

Classifying tumor samples into subtypes based on different types of clinical or molec-

ular data is a key step in understanding cancer etiology and designing personalized

treatment for cancer patients (Chung et al., 2002; Hoadley et al., 2014; Ogino et al.,

2012). Originally, classification of cancer subtype was mostly based on clinical histo-

logical information. For example, according to the size and the appearance of malig-
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nant cells under a microscope, lung carcinomas are categorized into two main classes:

non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) (Leong et al.,

2014). With the advances of high-throughput technologies, tumor subtype classi-

fication has been performed more frequently using molecular signals such as DNA

sequence variants, gene expressions or DNA methylation. For example, the PAM50

gene expression assay was used to categorize breast tumors into five intrinsic subtypes:

luminal A, luminal B, human epidermal growth factor receptor2 (HER2) enriched,

basal-like and normal-like (Parker et al., 2009). Similarly, glioblastoma multiforme

was classified into four molecular subtypes: classical, neural, proneural and mes-

enchymal, where the former two were characterized by higher expression of epidermal

growth factor receptor (EGFR) and neuron maker genes, respectively (Verhaak et al.,

2010).

Aberrant DNA methylation pattern has been identified as a hallmark in different

types of cancers (Das and Singal, 2004; Hansen et al., 2011). DNA methylation profile

has widely been used to perform categorization on clinical presentation and patient

prognosis (Stefansson et al., 2015; Zhuang et al., 2012). Clustering of lung cancer

cell lines using DNA methylation markers showed that NSCLC and SCLC cell lines

had different DNA methylation patterns (Virmani et al., 2002). DNA methylation

profiling was also used in clustering of acute lymphoblastic leukemia (ALL) patients

and served as a complementary method for diagnosis of ALL (Nordlund et al., 2015).

These results suggest that each cancer subtype carries unique DNA methylation sig-

nature that can help to identify the subtypes.

1.3 Cell-Free DNA

Prognosis and diagnosis play vital roles in the prevention and treatment of diseases.

Traditionally, various types of surgical biopsies such as bone marrow or needle biop-

sies are performed in clinical setting, especially for cancer diagnosis (Sgouros, 1993).
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However, due to the invasive nature of the procedure and the potential sampling bias

of tumor biopsy, surgical biopsy is often not a preferred choice. As an alternative to

surgical biopsy, researchers and clinicians have been looking for molecular biomarkers

for disease diagnosis. These biomarkers, either genetic or epigenetic, carry various

indicative features for biological or disease states. They help achieve disease state

detection, subtypes classification, progression prediction, and response-to-treatment

characterization (AJ et al., 2001). The scope of molecular biomarker discovery has

been greatly expanded during the last two decades, due to the advances of high-

throughput genomics technologies such as microarray and next-generation sequencing

(NGS). For example, based on gene expression microarray data, Prediction Analysis

for Microarrays (PAM) identified a subset of gene biomarkers for cancer class predic-

tion (Tibshirani et al., 2002). The PAM50 panel, which tests a group of 50 selected

genes, has become the de facto gold standard for breast cancer subtype classification

and metastasis prediction (Parker et al., 2009). Zilliox et al. created the gene expres-

sion barcode (Zilliox and Irizarry, 2007), which was trained on public gene expression

microarray data, and can predict for a number of diseases given a new microarray

dataset.

In recent years, disease diagnosis based on molecular biomarkers in specimen, in-

cluding blood, urine, and cerebral spinal fluid, has gain tremendous attention. For

example, the practice to look for traces of cancer DNA by interrogating biomarkers on

plasma-isolated cell-free DNA (cfDNA) or circulating tumor DNA (ctDNA) is known

as liquid biopsy (Crowley et al., 2013). As a safer, cheaper, and quicker alternative

to surgical biopsy, the liquid biopsy has great potential in clinical practice. Cell-

free DNA are short DNA fragments (around 160-180 base pairs) existing in plasma.

When normal cells undergo apoptosis in a healthy individual, DNA fragments from

the cells are shredded and released to blood stream. Thus, cfDNA is a mixture of

DNA fragments from different cell types. In cancer patients, the cfDNA includes
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some circulating tumor DNA (ctDNA), which are DNA fragments released from can-

cer cells (Schwarzenbach et al., 2011). As a hallmark of cancer, the ctDNA carries

tumor-specific genetic variants such as copy number variation and point mutations.

After capturing and sequencing the cfDNA, ctDNA can be distinguished from normal

cfDNA by tumor-specific genetic variants. Presence of non-trivial amount of ctDNA

is an indication of cancer.

The essence of using cfDNA for cancer diagnosis is to detect abnormal cfDNA

segments. Here the abnormality is defined as the presents of unusual genetic vari-

ants. This principal, however, is only applicable to mutation-rich diseases - the ones

with high rate of genetic alteration such as cancer. For many mutation-poor diseases

and disorders not associated with high level of genetic alteration, other approaches

are needed. Recently, researchers start to explore the cfDNA epigenetics informa-

tion such as DNA methylation or nucleosome position to look for biomarkers for

diagnosis (Kang et al., 2017; Xu et al., 2017; Song et al., 2017; Li, Zhang, Lu, You,

Song, Luo, Zhang, Nie, Zheng, Xu et al., 2017). In analogous to the liquid biopsy,

these approaches try to define abnormality based on the epigenetic profiles, and then

construct model for disease prediction.

1.4 Overarching Goal and Outline

Selecting genomic biomarkers for disease prediction and classification showed good

potential and gained popularity over the last decade. In the past, researchers identi-

fied genetic and genomic biomarkers for a variety of diseases, including asthma (Allen

et al., 2003), breast cancer (Van De Vijver et al., 2002; Weigelt et al., 2003), cervical

cancer (Wong et al., 2003), leukemia (Ross et al., 2003), ovarian cancer (Petricoin III

et al., 2002), diabetes (Bell and Polonsky, 2001; Gloyn et al., 2003), leprosy (Bell,

2004), cardiovascular disease (Brindle et al., 2002), among other disease types. In

terms of high-throughput platforms, there has been a success in using genetic variant
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(Wray et al., 2007; MacArthur et al., 2014; Paynter et al., 2009), gene expression (Zil-

liox and Irizarry, 2007; Van De Vijver et al., 2002; Weigelt et al., 2003; Wong et al.,

2003; Ross et al., 2003), and protein (Petricoin III et al., 2002; Weissinger et al., 2007;

Schirmer et al., 2003) information for exploring disease-associated biomarkers. These

biomarker studies have provided powerful insights into the perception of diseases.

The identified biomarkers can guide future biomedical researches for disease etiology.

Applied clinical tools for disease detection and early diagnosis is now available, with

the identified biomarkers across the platforms. Biomarkers can potentially benefit

targeted disease therapy and personlized medicine for each patient.

Although the usage of genetic, gene expression or proteomic biomarker have been

studied, there is a lack of methods and tools for using epigenomics information for

disease diagnosis and classification. Here I built statistical models to investigate

the usage of epigenomic biomarker. This can bring new insights and enhance clinical

practice of various disease types. Translating the epigenomic knowledge into routinely

applied diagnostic tools will strengthen our understanding of epigenomics, and bring

benefits for patients. With the increasing of high-throughput platforms usage and

the decreasing of the cost of assay, the size of epigenomics data will grow over the

next decades. I can expect a wide application of epigenomic biomarker for disease

diagnosis and health status mornitoring.

Aiming at exploring epigenomic biomarkers for disease prediction and classifica-

tion, in this dissertation, I present some statistical methods for deciphering epige-

nomics data. The outline of this dissertation is as follows. In chapter 2, I propose

a statistical method InfiniumClust to perform cancer subtype clustering on DNA

methylation data with the consideration of tumor purity. The sample clustering are

performed through an Expectation-Maximization (EM) algorithm. In chapter 3, I

focus on cfDNA methylation and explore how it can be used for disease prediction.

I review the existing publications and investigate the statistical methods for cfDNA
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methylation study. I conduct simulation and real data analysis, and provide some

recommendations for data analysis strategies based on the results. In chapter 4, I

investigate the genome-wide alteration of cfDNA 5hmC in young healthy subjects,

old healthy subjects and late onset Alzheimer’s disease (AD) patients. I constructed

a classification machine learning model to predict AD from healthy old individuals.

In chapter 5, I outlined several potential research directions that I want to pursue in

the near future.
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Chapter 2

Accounting for Tumor Purity Improves

Cancer Subtype Classification from DNA

Methylation Data
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2.1 Introduction

Classifying tumor samples into subtypes based on different types of clinical or molec-

ular data is a key step in understanding cancer etiology and designing personalized

treatment for cancer patients (Chung et al., 2002; Hoadley et al., 2014; Ogino et al.,

2012). Originally, classification of cancer subtype was mostly based on clinical his-

tological information. With the advances of high-throughput technologies, tumor

subtype classification has been performed more frequently using molecular signals

such as DNA sequence variants, gene expressions or DNA methylation.

DNA methylation, as an important epigenetic modification of the DNA, carries

signatures in different cancers. Aberrant DNA methylation pattern has been identified

as a hallmark in different types of cancers (Das and Singal, 2004; Hansen et al., 2011).

DNA methylation profile has widely been used to perform categorization on clinical

presentation and patient prognosis (Stefansson et al., 2015; Zhuang et al., 2012).

Clustering of lung cancer cell lines using DNA methylation markers showed that

NSCLC and SCLC cell lines had different DNA methylation patterns (Virmani et al.,

2002). DNA methylation profiling was also used in clustering of acute lymphoblastic

leukemia (ALL) patients and served as a complementary method for diagnosis of ALL

(Nordlund et al., 2015). These results suggest that each cancer subtype carries unique

DNA methylation signature that can help to identify the subtypes.

A number of methods have been applied for clustering tumor samples based on

high-throughput data, including nonparametric (K-means, agglomerative hierarchical

clustering, etc.) and model-based methods (Houseman et al., 2008; Kuan et al., 2010).

In particular, Non-negative Matrix Factorization (NMF) is a popular method for

sample clustering based on gene expression data (Brunet et al., 2004). The method is

based on matrix factorization with non-negative constraints, and was shown to have

good performance. To systematically compare these methods, a recently developed
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tool ClustEval evaluated the currently available clustering methods by using different

datasets, varying parameters, and quality metrics. It suggested that no method

performed the best in all settings (Wiwie et al., 2015).

Among all published results for cancer type classification, one important aspect

is consistently ignored: the clinical tumor samples contain different types of cells

as well as their adjacent normal cells. Due to the inclusion of normal cells in the

tumor samples, the clinical tumor samples cannot be regarded as pure cancer cells.

Previous studies have shown that tumor purities (the percentages of cancer cells in

solid tumor samples) have a strong influence on the analysis of genomic data in cancer

studies, and may bias the biological interpretation of results (Aran et al., 2015). Our

exploratory analyses also show that applying traditional clustering methods such as

K-means or NMF directly on the methylation profiles from tumor samples gives biased

results (more details are provided in Section 2.2): samples with similar tumor purities

tend to be clustered together. This is undesirable since there is no evidence showing

associations between tumor purity and cancer subtypes. Thus, we believe it is of

great necessity to consider tumor purity in the clustering procedure.

The importance of accounting for tumor purity in data analysis has been well rec-

ognized. For example, it is recommended to include purity in differential expression

analysis (Aran et al., 2015). We recently developed InfiniumPurify, which incorpo-

rates purity in differential methylation (DM) analysis (Zheng et al., 2017). However,

up to date there is no clustering method available with consideration of tumor purity.

In this study, we developed a rigorous statistical method InfiniumClust to perform

sample clustering on DNA methylation data with the consideration of tumor purity.

InfiniumClust models the DNA methylation levels of a tumor sample as a mixture of

normal and cancer data, where the mixing proportion is the tumor purity. The pure

cancer data are further assumed to be from a mixture of different cancer subtypes.

When tumor purities are known, the parameter estimation and sample clustering are
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performed through an Expectation-Maximization (EM)-based algorithm. We per-

formed extensive real-data based simulations and demonstrated good performances

with InfiniumClust. We further applied InfiniumClust to DNA methylation data for

23 cancer types from The Cancer Genome Atlas (TCGA). Compared with existing

clustering methods that ignore tumor purity, InfiniumClust provides less biased and

more meaningful results. To our best knowledge, InfiniumClust is the first available

tool for unsupervised clustering which taking tumor purity into account. Infinium-

Clust is currently available from R package InfiniumPurify , which can be obtained

at https://cran.r-project.org/web/packages/InfiniumPurify/index.html.

2.2 Materials and Methods

Sample clustering based on high-throughput data usually starts with feature (CpG

site, gene, etc.) selection. It is a common practice to select a small number (such

as 1000) of features with the largest variances, and use their data for clustering.

Those features are highly heterogeneous, thus they contain information for subtypes.

In contrast, using data for all features is not ideal because a large portion of them

show no variation among samples, thus bringing noise to the clustering procedure.

Under the above analyses, we first selected some highly variable CpG sites and then

performed clustering based on these feature-reduced data.

The raw data for the clustering procedure are from Illumina Infinium DNA methy-

lation 450k arrays, which report methylation beta values of more than 480, 000 CpG

sites. Methylation beta values range from 0 to 1, hence they cannot be considered as

froming a normal distribution. We first transformed the beta values using an arcsine

transformation:

f(x) = arcsin(2x− 1)

Such transformation has previously been used in DM analysis (Park and Wu, 2016).



13

The transformed data follow the normal distribution better compared with the raw

data, thus fitting our model assumption well. In addition, compared with commonly

used logit transform, the arcsine transformation is more linear (especially at the

boundaries). This is important since the methylation level from tumor sample is a

mixture of the cancer and normal methylation level, and the signal mixing is at the

original scale. A more linear transformation allows one to use a linear model for the

transformed data with a better approximation.

2.2.1 The Data Model

Let X, Y be C ×N matrices of transformed methylation levels for normal and pure

tumor cells, where i = 1, 2, . . . , C indexes CpG sites, and j = 1, 2, . . . , N indexes

samples. Assuming tumor samples have K subtypes with proportions pk, and satisfy∑K
k=1 pk = 1. Define a latent indicator variable Z as the membership of samples, i.e.

Zjk = 1 means the jth pure tumor cell comes from the subtype k. Apparently, each

sample can only belong to one cancer subtype, so

K∑
k=1

Zjk = 1

We assume that the transformed methylation level of CpG site i in normal cells j

follows the normal distribution:

Xij ∼ N(µi0, σ
2
i0)

The transformed methylation level at CpG site i in tumor cells j clustering into

subtype k is assumed to follow a mixture of normal distributions:

Yij|Zjk = 1 ∼ N(µik, σ
2
ik)
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where different subtypes have different means and variances. In practice, clinical

tumor samples are affected by tumor purity, so methylation for pure tumor cells is

unobserved. Instead, the observed data from clinical tumor samples, denoted by Y
′
ij,

is from mixed cancer-normal tissues. For tumor sample j, let λj be the tumor purity,

we have

Y
′

ij = λjYij + (1− λj)Xij

Assuming that Xij and Yij are independent, we have the distribution for the mixed

signal as

Y
′

ij|Zjk = 1 ∼ N(λjµik + (1− λj)µi0, λ2jσ2
ik + (1− λj)2σ2

i0)

The data model shows that due to the presence of cancer/normal sample mixing,

directly clustering Y
′
ij could lead to biased results. In the next section, we present a

model-based clustering algorithm where tumor purities are considered.

2.2.2 Model-Based Clustering Method

For our method presented below, the tumor purities λj are assumed to be known.

There are a number of methods available for purity estimation (Ahn et al., 2013;

Bao et al., 2014; Carter et al., 2012; Yoshihara et al., 2013), and an informative

review is presented by Wang et al. (2016). After obtaining the tumor purities λj

from existing methods, the clustering problem model transforms into a K-component

normal mixture model.

We develop the following method, termed InfiniumClust, to cluster methylation

beta values from 450k arrays. In the clustering problem, the input data are Y
′
ij and

λj. Denote the parameter set to be estimated as

θ = (p1, p2, . . . , pK−1;µ11, . . . , µCK ;µ10, . . . , µC0;σ
2
11, . . . , σ

2
CK ;σ2

10, . . . , σ
2
C0)

In detail, p1, p2, . . . , pK−1 are mixing proportions, µ11, . . . , µCK ;σ2
11, . . . , σ

2
CK are means
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and variances of each mixing cancer component and µ10, . . . , µC0;σ
2
10, . . . , σ

2
C0 are

means and variances of the normal cells. Under these setups, the clustering problem

can be performed through the following EM algorithm.

First, the conditional likelihood for observing the methylation status of sample j

is

p(Y
′

ij|Zjk = 1) = pkφ(Y
′

ij;λjµik + (1− λj)µi0, λ2jσ2
ik + (1− λj)2σ2

i0)

where φ is the probability density function (pdf) of standard normal distribution.

Treating Zjk as missing data, the joint likelihood of the observed and missing data

for CpG site i and sample j is

p(Y
′

ij|Zj) =
K∏
k=1

{pkφ(Y
′

ij;λjµik + (1− λj)µi0, λ2jσ2
ik + (1− λj)2σ2

i0)}Zjk

So the complete data log-likelihood for parameters is

`(θ;Y
′
,Z) =

C∑
i=1

N∑
j=1

K∑
k=1

Zjk(log[pk]+log[φ(Y
′

ij;λjµik+(1−λj)µi0, λ2jσ2
ik+(1−λj)2σ2

i0)])

In EM algorithm, the E-step involves calculating the conditional expectation of the

complete data log-likelihood, which gives the objective Q function as

Q(θ|θ(t)) = Eθ(t){`(θ;Y
′
,Z)|Y ′}

=
C∑
i=1

N∑
j=1

K∑
k=1

{Eθ(t)(Zjk|Y
′
)(log[pk] + log[φ(Y

′
ij ;λjµik + (1− λj)µi0, λ2jσ2ik + (1− λj)2σ2i0)])}

E-step calculates the expected value of Zjk conditional on the observed data and the

parameter values at the current step, denoted by θ(t). At current iteration step t,
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denote the expected value of Zjk as Zt
jk. E-step gives

Z
(t)
jk ≡ Eθ(t)(Zjk|Y

′
)

=
p
(t)
k

∏C
i=1 φ(Y

′
ij;λjµik + (1− λj)µi0, λ2jσ2

ik + (1− λj)2σ2
i0)∑K

k=1{p
(t)
k

∏C
i=1 φ(Y

′
ij;λjµik + (1− λj)µi0, λ2jσ2

ik + (1− λj)2σ2
i0)}

The M-step maximizes the conditional expectation of the objective function Q(θ|θ(t))

with respect to current-step parameters. For the updates of µik and µi0, we have

A−Bµ(t+1)
ik − Cµ(t+1)

i0 = 0

and

Aµ
(t+1)
i0 = B

where

A =
N∑
j=1

Z
(t)
jk λjY

′
ij

λ2jσ
2(t)
ik + (1− λj)2σ2(t)

i0

B =
N∑
j=1

Z
(t)
jk λ

2
j

λ2jσ
2(t)
ik + (1− λj)2σ2(t)

i0

C =
N∑
j=1

Z
(t)
jk λj(1− λj)

λ2jσ
2(t)
ik + (1− λj)2σ2(t)

i0

Combining the K + 1 equations, we can obtain the updates for µik and µi0. In

practice, we update the µik and µi0 one-by-one for each CpG site and for each group,

by solving one equation at a time. So the maximization of µ is essentially a conditional

maximization step in the Expectation Conditional Maximization (ECM) algorithm

(Meng and Rubin, 1993). For the updates for σ2
ik, σ

2
i0, the M-step is more challenging.

The partial derivatives of Q function with respect to σ2
ik or σ2

i0 show that the updates

of σ2
ik, σ

2
i0 exist on both numerator and denominator of a summation over sample j

from 1 to N. Therefore, the closed form solutions for updating σ2
ik and σ2

i0 do not
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exist and they have to be solved numerically. We adopted the optimize function in R

directly on objective likelihood function Q(θ|θ(t)) to update σ2
ik and σ2

i0.

The update for pk can be achieved by solving the following partial derivative

∂Q(θ|θ(t))
∂pk

=
C∑
i=1

N∑
j=1

{
Z

(t)
jk

pk
−

Z
(t)
jk

1−
∑K−1

l=1 pl
} = 0

thus

p
(t+1)
k =

∑N
j=1 Z

(t)
jk∑K

k=1

∑N
j=1 Z

(t)
jk

The EM algorithm starts with initial values obtained from the K-means clustering

directly performed on Y ‘
ij. The results from the EM procedure provide the posterior

probabilities of each sample being in each subtype, which can be used to determine

the subtype assignments.

2.3 Results

For all the results presented in this section, the estimated purities are provided by In-

finiumPurify (Zhang et al., 2015) and obtained from https://zenodo.org/record/

253193.

2.3.1 DNA methylation subtypes are biased by tumor purities

We first explored the real data to check whether tumor purity tends to bias the clus-

tering results by comparing the purity distributions among clusters. We focus our

attention on breast cancer (BRCA) since it has mature clinical subtypes known as

Luminal A, Luminal B, HER2-enriched, Basal-like and Normal-like, which are char-

acterized by expressions of ER, PR and Her2. We also downloaded the consensus

clustering results by NMF (cNMF) using DNA methylation 450k array data, and

performed K-means clustering on the same data set. We tried two sets of estimated
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tumor purities including the InfiniumPurify purities, which are estimated from DNA

methylation 450k array data, and ABSOLUTE purities are based on SNP array data.

The later ABSOLUTE purity estimates are actually the de facto gold standards pro-

vided by TCGA. These two types of tumor purities are shown to be highly correlated

(Zhang et al., 2015). In the following analysis, we examined tumor purities distribu-

tion from both InfiniumPurify and ABSOLUTE on clusters of K-means, cNMF and

PAM50, respectively.

Figure 2.1: Purity distribution for different BRCA subtypes. (A-C) InfiniumPurify
purity distribution on K-means clustering subtypes, cNMF subtypes and PAM50
molecular subtypes. (D-F) ABSOLUTE purity distribution on K-means clustering
subtypes, cNMF subtypes and PAM50 molecular subtypes. P-values are from linear
regression with ANOVA F-test

Figure 2.1 presents the purity distributions of different clusters obtained from the

above three methods. We observed significant purity differences using InfiniumPurify

among different subtypes from K-means, PAM50 and especially cNMF (Figure 2.1B).

For example, the third cluster in cNMF has an averaged purity of 0.5, way below
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other groups. Figure 2.1C shows the results from PAM50 subtypes, where the purity

differences show significance (p-value=4.8×10−4), for example, two luminal subtypes,

especially luminal B, have much higher purities than basal-like samples. But the p-

value is the smallest compared with K-means and cNMF (p-values are 1.02 × 10−51

and 5.04× 10−98, respectively).

Even though the number of tumor samples with ABSOLUTE purities is much

less than that with InfiniumPurify purities (264 versus 746 samples), we still detected

significant discrepancies in purities among different subtypes in Figure 2.1D and Fig-

ure 2.1E. For example, the ABSOLUTE purities of the third cluster are still way

below other groups (Figure 2.1E), and the PAM50 subtypes still have the smallest

purity differences compared with K-means, cNMF (Figure 2.1F). Overall, we con-

sistently observe significant purity differences among different subtypes in typically

used K-means and cNMF methods by purities from both InfiniumPurify and ABSO-

LUTE. These results demonstrate that tumor purities will bias the clustering results

if not correctly accounted for, and a clustering method with consideration of purity

is therefore needed.

2.3.2 Simulation

To evaluate InfiniumClust in cancer sample clustering, we conducted comprehensive

simulation studies to compare the performance of our method with other available

methods. In the simulation presented below, we used data from BRCA as template.

Since methylation level ranges from 0 to 1, it is a natural choice to simulate methy-

lation level from beta distribution. In detail, data are generated using the following

scheme:

1. Pure normal samples : For sample j at CpG i, we generated its methylation level

as Xij ∼ Beta(αi0, βi0). Here αi0 and βi0 are the method of moments estimates

(MME) from the beta values of a total of 96 normal BRCA samples.
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2. Pure tumor samples : For sample j at CpG i, let Yij ∼ Beta(αik, βik) in subtype

k, where αik and βik are estimated from the following procedure. We first

convert αi0 and βi0 to mean and dispersion (denoted by mi and di, respectively).

The dispersion parameter in beta distribution represents the variance that is

independent of mean. Because the pure tumor samples are more heterogeneous

than normal, we multiply the above dispersions by 2 as the tumor dispersions

(Neve et al., 2006; Zheng et al., 2014). For the mean of pure tumor samples, we

randomly selected K normal samples from BRCA and used their beta values as

the mean. With means and dispersions, we converted them back to α and β by

the formulas αik = mik(
1
di
− 1) and βik = (1−mik)(

1
di
− 1), and then generated

beta values for K subtypes.

3. Observed samples : We generated tumor purity values λj, j = 1, 2, . . . , N uni-

formly from [0.05, 0.95]. Substituting Xij (from (1)), Yij (from(2)) and λj into

the formula Y
′
ij = λjYij+(1−λj)Xij. Then Y

′
ij is the observed methylation level,

which is a mixture of methylation level from pure cancer and normal samples.

We applied InfiniumClust and K-means to the simulated data, and compared their

clustering performances. Because the group assignment of each sample is known, the

accuracy is defined as the percentage of correctly clustered samples. Since the group

indicators from all clustering methods are dummy variables, we use the following

procedure to match the clustering results with the truth. Assuming there are N

clusters, we first tabulate the group assignments for all samples from the truth and

clustering results into a N ×N table. Entry (i,j) in the table represents the number

of samples belonging to the ith group in truth, and predicted as the jth group from

clustering method. We then shuffle the rows and columns of the table, so that the

sum of the diagonal elements achieves the maximum. Finally, the sum of the diagonal

elements over the total number of samples is defined as the accuracy. For these

simulations the data are generated from a 3-subtype mixture with mixing proportions
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ratio 0.2:0.5:0.3, and all simulations are repeated for 20 times.

First, we evaluated the effect of CpG selection on the accuracy of InfiniumClust.

Instead of selecting CpG sites with the top 1000 largest variances, we randomly

selected 1000 CpG sites to run InfiniumClust. Results show that the accuracy could be

significantly worse compared with choosing 1000 CpG sites with the highest variances

(Figure 2.2A). This demonstrates that probes with larger variances due to different

normal cell contaminations are more informative for clustering.

Figure 2.2: (A) Predicting accuracy on InfiniumClust by selecting 1000 CpG sites
with the largest variance and 1000 randomly selected CpG sites. (B, C)Predicting
accuracy in different number of CpG sites and sample sizes on InfiniumClust and
K-means.

Based on the above analysis, we selected CpG sites with largest variances in tu-

mor tissues and used their data as the input for clustering in the following analysis.

First, we compared InfiniumClust and K-means at different numbers of selected CpG

sites from 50, 100, 200, 300, 500, 800 and 1000, respectively. As shown in Figure

2.2B, overall the accuracies of InfiniumClust are much higher than those by K-means

(around 0.94 versus 0.81) regardless of the number of CpG sites used. More impor-

tantly, InfiniumClust is robust against the numbers of CpG sites, but the accuracy

of K-means gradually decreases with more CpG sites used.

We also tested the performance of InfiniumClust with varied sample sizes. If we

have only 10 samples, the accuracies by InfiniumClust and K-means are almost the
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same (0.8). But the accuracy of InfiniumClust increases to 0.9 when sample size

increases from 30 to 500, while the accuracy of K-means roughly remains the same

(0.76) (Figure 2.2C).

Compared with traditional clustering methods, InfiniumClust takes purity into

consideration. So we further tested the effect of purity on the algorithm from the

following aspects. First, we divided tumor samples into two groups (high purity and

low purity) using the median of purities among samples as cutoff. Figure 2.3A shows

that tumor samples with higher purities have higher chance to be clustered correctly.

It is expected because samples with lower purities tend to be incorrectly clustered due

to their higher normal cell contamination. They are likely to be clustered together

since they are more similar to normal samples. Second, we examined the influence

of accuracy of purity estimation on the algorithm. We randomly shuffled the puri-

ties of all tumor samples, and used them as input to implement InfiniumClust. As

shown in Figure 2.3B, clustering accuracies significantly decreased to around 0.75,

which is similar to the performance of K-means. This is not surprising because In-

finiumClust uses shuffled purities, which is equivalent to ignoring tumor purities by

K-means. Next, to test the robustness of our model against purity estimation, we

added different levels of random noise with the Gaussian distribution to the purities

of tumor samples. To be specific, tumor purities are added by a random noise of

the Gaussian distribution with mean 0 and standard deviations from 0 to 1, step by

0.02. Note that the output purities could possibly be ranged out of [0, 1] after adding

noise, so we set them as 0.01 if lower than 0 and 0.99 if larger than 1. As expected,

the accuracy of InfiniumClust decreases with the increase of standard deviation, but

still over 0.8 (K-means 0.75, Figure 2.3C). This indicates that InfiniumClust still has

better performance than K-means even if estimated tumor purities are biased.

We then evaluated the performance of InfiniumClust under different subtype pro-

portions. We selected 200 samples, 1000 CpG sites with the largest variance to
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Figure 2.3: (A) Predicting accuracy of InfiniumClust on samples with high purity
and samples with low purity. (B) Comparing the accuracy of InfiniumClust for the
samples with the precise purity and samples with the shuffled purity. (C) Scatter
plot of the noise of purity versus the accuracy of InfiniumClust, polynomial regression
curve is displayed.

run InfiniumClust and K-means, with different proportion ratios of three subtypes.

As shown in Figure 2.4A, InfiniumClust always performs well, on average about

0.9 for most scenarios. Even if proportions of subtypes are very unbalanced, e.g.

0.05:0.05:0.9, InfiniumClust still has good accuracy ( > .8). We also examined sev-

eral proportions at four and five subtypes. InfiniumClust achieves accuracies as high

as 0.9, whereas the accuracies of K-means are only around 0.7 (Figure 2.4B and C).

Figure 2.4: (A) Heatmap of different proportion of subtypes of K = 3 on Infini-
umClust, where row indexes the proportion of the first subtype, column indexes the
proportion of the second subtype. (B, C) Barplot of predicting accuracy in different
proportion ratios of subtypes of K = 4 and K = 5.

Another possible procedure to account for the purity effect is to estimate pure can-
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cer methylome and perform clustering (such as K-means) on purified data directly.

Given methylation levels of normal-adjacent sample and estimated purity, the pure

cancer methylome can be inferred by simply subtracting out the normal signal from

the tumor data based on a linear equation with consideration of purity. One caveat in

such approach is that there are much fewer normal samples in TCGA compared with

tumor samples (only 674 normal-adjacent samples from 12 cancer types), i.e. only

a small proportion of the tumor samples has corresponding normal controls. In this

case, one can compute the average normal methylome and subtract that to obtain

purified cancer methylome. We conducted simulations to evaluate the performance of

this approach (termed as puKmeans hereafter). Overall, the accuracies of puKmeans

are higher than K-means, but lower than InfiniumClust (Appendix 1, Fig. A4). This

is expected, because puKmeans takes the point estimates of pure cancer methylome

as inputs but ignores the variance, thus the information in data are not used in an

optimal way. Furthermore, we found that puKmeans is sensitive to the number of

CpG sites used in the clustering. In our simulation, using 100 CpG sites provides

the best results, and using more CpG sites leads to lower accuracy. On the contrary,

InfiniumClust is very robust against the number of CpG sites. These results demon-

strate the advantage of the proposed model-based clustering method over a simplified

approach to cluster on purified data.

Under all simulation scenarios, InfiniumClust achieves better accuracies. More-

over, InfiniumClust is robust against CpG site selections, sample sizes, biases in purity

estimation and proportions of clusters. These results demonstrate the advantages of

InfiniumClust in clustering tumor samples while considering tumor purity, as well as

a well-constructed model.
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2.3.3 Application of InfiniumClust to TCGA data

With the success of InfiniumClust on simulation data, we next tested InfiniumClust

on real tumor samples. We analyzed all samples with both NMF clustering results

and 450k array data (23 cancer types from TCGA). Data from 1000 CpG sites with

the largest variance among tumor samples were used for InfiniumClust and K-means.

The numbers of clusters of NMF used on these cancer types was the same number of

clusters for InfiniumClust and K-means.

First, we explored purity distributions between correctly clustered and incorrectly

clustered samples. Since the true clusters are unknown in real data, we used the

consensus samples of the three methods (NMF, K-means and InfiniumClust) in each

cancer type as a proxy for truth under the assumption that samples clustered into the

same group by different methods tend to form a true cluster. The consensus sample

is defined as follows. First consider two methods A and B that both cluster samples

into N groups. The group indices from the clustering methods are dummy indicator

variables that bear no biological meaning. To look at the agreements of the two

methods, we first fix the group indices for method A, and then shuffle the group indices

of method B to get the maximum overlap from all groups between the two methods.

The overlapped samples in each cluster of the two methods are termed as consensus

samples, while the rest are non-consensus samples. Similarly, for consensus samples

among three methods, we first get consensus samples between any two methods, then

compare the consensus samples with the results from the third method using the

same procedure. The consensus samples obtained from this comparison are defined

as consensus samples among three methods. All others are deemed non-consensus

samples. For all 23 cancer types in TCGA, we found that 50% of the samples belong

to the consensus group on the average. In general, we observed significant differences

in purity levels between the two groups in most cancer types (Figure 2.5A, results for

other cancer types are shown in Appendix 1, Fig. A5). Samples with higher purity
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tend to be in the consensus group. The result is consistent with the simulation result

that samples with higher purities tend to be clustered correctly.

Figure 2.5: (A) The distribution of InfiniumPurify Purity in consensus samples versus
non-consensus samples in THCA and BRCA. (B) Testing purity differences among
clusters from three methods for 23 cancer types. P-values are from linear regression
and F-test.

Next, we examined the purity difference among different clustering results in these

three methods (Appendix 1, Fig. A5). We computed the p-values by testing purity

difference among clusters from different methods. As shown in Figure 2.5B after

−log10 transformation, InfiniumClust gives much less significant p-values compared

with the other two methods. These results indicate that InfiniumClust is less affected

by the purities due to the inclusion of purities in clustering. They also show that

compared with K-means, purity has stronger influences on NMF. Overall, these results



27

emphasize the risk of ignoring tumor purity when applying unsupervised clustering,

and demonstrate good performances from InfiniumClust.

We also checked the overlap of clusters in these three methods. Appendix 1, Fig.

A2 shows the pairwise overlaps from the three methods. The average overlap between

clusters of InfiniumClust and K-means is 0.72 for 23 cancer types. In contrast, the

overlaps between the clustering results from NMF and other two methods are much

lower: the average overlap of NMF and InfiniumClust is 0.54. These results are

expected because algorithm-wise, InfiniumClust and K-means are very similar (K-

means and the normal mixture model perform similarly when data are normally

distributed). The only difference is the consideration of purities in InfiniumClust.

In contrast, NMF is based on a different method, thus it tends to produce different

results.

To test the robustness of our method, we also used ABSOLUTE purities to re-

peat the above analysis. We selected eight cancer types with ABSOLUTE purities

to compute purity distributions in consensus and non-consensus samples, the purity

difference among different clusters, and the overlap of clusters in these three methods,

respectively. The results are consistent with those using InfiniumPurify purities. In

particular, we also observed significant differences in purity levels between the consen-

sus and non-consensus in most cancer types; InfiniumClust gives much less significant

results compared with the other two methods (K-means and NMF); especially. In

BLCA and LUAD, the clusters overlap between InfiniumClust and K-means is even

over 0.9 (Appendix 1, Fig. A3). These results further prove that InfiniumClust is less

influenced by tumor purities. Therefore, we believe InfiniumClust provides robust

results in real data.

We further applied puKmeans in TCGA tumor data (12 cancer types, 5185 tumor

samples and 674 normal samples). As a comparison, we also conducted InfiniumClust

and K-means clustering in these cancer-normal mixtures. Since it is difficult to eval-
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uate the performances without a gold standard, we only performed some exploratory

analyses. As shown in Appendix 1, Table A1, the average overlap between clusters

of InfiniumClust and puKmeans is slightly higher than that between InfiniumClust

and K-means for 12 cancer types (0.712 versus 0.696).

2.4 Discussion

In this study, we systematically investigated the impact of tumor purity as a con-

founding factor in unsupervised clustering of tumor samples, and proposed a statis-

tical model to adjust the effect of purity in tumor sample clustering. We first found

that under traditional K-means and NMF approaches, tumor purities bias the clus-

tering results (samples with similar purities are likely to cluster together), and that

tumor samples with low purities tend to be misclassified. We designed a model-based

statistical method InfiniumClust for subtype classification based on DNA methyla-

tion data. In InfiniumClust, methylation levels from tumor samples at each CpG site

are modeled as mixture of normal distributions. Parameter estimation and sample

clustering is conducted by an EM type algorithm. Based on simulation, Infinium-

Clust achieved more robust and accurate results compared with K-means algorithm.

When applying to real TCGA tumor samples, InfiniumClust obtained the least bi-

ased clusters compared to K-means and the well-established NMF method. These

results reinforce our claim that purity difference may confound genomic analyses if

not correctly accounted for. To the best of our knowledge, InfiniumClust is the first

method for unsupervised clustering for cancer subtypes adjusted for tumor purity.

In our model, we assume a Gaussian distribution for the transformed methylation

level in each CpG site: data from normal samples follow a single Gaussian distribution

and data from tumor samples follow a mixture of Gaussian distributions. We validate

the assumptions in real data, and demonstrate that they approximately hold even

though there is mild violation (Appendix 1). However, according to our simulation
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results, the clustering algorithm will still perform well even if some CpG sites do not

satisfy the normality assumption.

The current version of InfiniumClust is specifically designed for Infinium 450k

methylation array, which is the most widely used platform for DNA methylation. It

is conceivable that the same principle and methods can be applied to data from other

platforms, or even other types of genomics data. For example, gene expression or copy

number variation perhaps play more direct roles in tumorigenesis, and their data from

tumor samples are influenced by purities as well. We will pay further attention to

model gene expression and copy number data with consideration of purities. It could

even be possible to integrate all these data into a unified model to better improve the

clustering accuracy.
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Chapter 3

Disease Prediction by Cell-Free DNA Methy-

lation
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3.1 Introduction

Prognosis and diagnosis play vital roles in the prevention and treatment of diseases.

Traditionally, various types of surgical biopsies such as bone marrow or needle biop-

sies are performed in clinical setting, especially for cancer diagnosis (Sgouros, 1993).

However, due to the invasive nature of the procedure and the potential sampling

bias of tumor biopsy, surgical biopsy is often not a preferred choice. In recent years,

disease diagnosis based on molecular biomarkers in specimen, including blood, urine,

and cerebral spinal fluid, has gain tremendous attention. For example, the practice

to look for traces of cancer DNA by interrogating biomarkers on plasma-isolated cell-

free DNA (cfDNA) or circulating tumor DNA (ctDNA) is known as liquid biopsy

(Crowley et al., 2013). As a safer, cheaper, and quicker alternative to surgical biopsy,

the liquid biopsy has great potential in clinical practice. cfDNA is a mixture of

DNA fragments from different cell types. In cancer patients, the cfDNA includes

some circulating tumor DNA (ctDNA), which are DNA fragments released from can-

cer cells (Schwarzenbach et al., 2011). As a hallmark of cancer, the ctDNA carries

tumor-specific genetic variants such as copy number variation and point mutations.

After capturing and sequencing the cfDNA, ctDNA can be distinguished from normal

cfDNA by tumor-specific genetic variants. Presence of non-trivial amount of ctDNA

is an indication of cancer.

Recently, researchers start to explore the cfDNA epigenetics information such as

DNA methylation or nucleosome position to look for biomarkers for diagnosis (Kang

et al., 2017; Xu et al., 2017; Song et al., 2017; Li, Zhang, Lu, You, Song, Luo, Zhang,

Nie, Zheng, Xu et al., 2017). In analogous to the liquid biopsy, these approaches try

to define abnormality based on the epigenetic profiles, and then construct model for

disease prediction.

In this work, we focus on cfDNA methylation and explore how they can be used
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for disease prediction. We systematically review the existing publications and investi-

gate the statistical methods for cfDNA methylation study. We discuss two important

aspects: marker selection and prediction model construction, under different sce-

narios. We conduct extensive simulation and real data analysis, and provide some

recommendations for data analysis strategies based on the results.

3.2 The Cause of Alteration of cfDNA Methylation in

Disease

DNA methylation is known to be highly tissue-specific (Schultz et al., 2015), which is

an important basis for cfDNA methylation data analysis. Even though different tis-

sues share exactly the same DNA sequence, the differences in their methylomes allow

one to trace the tissue of origins of cfDNA, and subsequently use those information

for disease prediction.

Considering cfDNA as a mixture of DNA segments from different tissues, the dif-

ferences in cfDNA methylation between patients and healthy people could be from

two sources. The first one is the alteration in one particular tissue type in disease, for

example, the methylation level changes in certain cell types between breast carcinoma

versus normal (Bloushtain-Qimron et al., 2008). The second is the change in mix-

ing proportions in the composition of cfDNA, for example, hepatocellular carcinoma

(HCC) patients have an increasing proportion of cfDNA fragments originates from

apoptotic liver cells (Sun et al., 2015). It is important to note that both changes are

usually not reflected in the methylation profiles in the blood sample, thus one cannot

construct disease prediction model from blood data but have to rely on cfDNA.

It is well known that DNA methylation is highly tissue-specific (Kang et al., 2017;

Avraham et al., 2014; Ghosh et al., 2010; Varley et al., 2013). Thus, both of these

changes will lead to the marginal cfDNA methylation changes between cases and
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controls. For disease prediction, the most straightforward idea is to detect differen-

tially methylated loci (DML) or regions (DMRs) between cases and controls from the

cfDNA methylation data, and use the methylation levels in those regions as predictors

for diagnosis (Song et al., 2017; Li, Zhang, Lu, You, Song, Luo, Zhang, Nie, Zheng,

Xu et al., 2017). Another family of approaches is to first trace the tissue-of-origin

of cfDNA and estimate the mixing proportions, then construct a model to predict

disease status based on the estimated proportions. This type of methods takes ad-

vantage of the tissue-specificity of epigenetic profiles such as DNA methylation or

nucleosome position, and use signal deconvolution methods for proportion estimation

(Kang et al., 2017; Sun et al., 2015; Ulz et al., 2016). We conduct detailed simulation

studies to compare these two types of approaches under different scenarios (detailed

in later section).

3.3 Existing Works

Table 3.1 lists the existing publications for using cfDNA epigenetic profiles in diseases

diagnosis (Kang et al., 2017; Xu et al., 2017; Song et al., 2017; Li, Zhang, Lu, You,

Song, Luo, Zhang, Nie, Zheng, Xu et al., 2017; Schultz et al., 2015; Sun et al.,

2015; Ulz et al., 2016; Jensen et al., 2015; Lehmann-Werman et al., 2016; Tanić

and Beck, 2017; Warton and Samimi, 2015; Lokk et al., 2014; Hatt et al., 2015;

Guo et al., 2017; Snyder et al., 2016; Legendre et al., 2015). As discussed before,

the prediction model construction can be roughly categorized into two classes: (1)

using the marginal cfDNA epigenetic profile as predictors, or (2) using the mixing

proportions as predictors. The first class includes (Xu et al., 2017; Song et al., 2017;

Li, Zhang, Lu, You, Song, Luo, Zhang, Nie, Zheng, Xu et al., 2017; Schultz et al., 2015;

Jensen et al., 2015; Lehmann-Werman et al., 2016; Lokk et al., 2014; Hatt et al., 2015;

Legendre et al., 2015). For example, Xu et al. (2017) used 10 cfDNA methylation

markers for diagnosis of hepatocellular carcinoma using logistic regression. Another
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example is using Random Forest (RF) on a set of regions to classify cancer types

(Song et al., 2017). The second class includes (Kang et al., 2017; Sun et al., 2015;

Guo et al., 2017). For example, Kang et al. (2017) modeled proportion of tumor-

derived cfDNA and used a probabilistic model to predict tumor burden and tumor

type. Sun et al. (2015) used an external thousands-marker reference panel to solve for

tissue proportions in HCC patients and healthy controls. The estimated proportions

can potentially be used for disease diagnosis.

In addition to DNA methylation, there is attempt to use other cfDNA epigenetic

information such as nucleosome position for disease prediction. Snyder et al. (2016)

found that during apoptosis, genomic DNA protected by nucleosomes will be released

to bloodstream, and the unprotected naked DNA will be degraded. The tissue-

specific nucleosome positioning causes different fragmentation pattern in cfDNA, thus

allows one to trace the tissue of origin which could be helpful for conducting disease

prediction. However, due to the limited number of researches and data available, using

cfDNA nucleosome position to predict disease will not be included in this review.

3.4 Methods

3.4.1 Marker Selection

Marker selection is the first step in disease prediction model construction. In cfDNA

methylation studies, both the Whole Genome Bisulfite Sequencing (WGBS) and the

human 450k/27k methylation array profile large number of CpG sites. A majority of

these CpG sites are either irrelevant, noisy, or redundant for distinguishing the under-

lying disease status. Including all CpG sites as features in the model will have harmful

impacts on traditional machine learning algorithms such as support vector machine

(Li and Yu, 2008). Therefore, marker selection is a very important step to alleviate

problem caused by bad markers. Typically, researchers select tens to thousands of
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Disease
Epigenetic

Data type
Sample Prediction

Publication
profile used size method

Lung cancer, hepatocellular carcinoma,

5hmC hMe-Seal 49 Song et al. (2017)
(HCC), pancreatic cancer, glioblastoma Random Forest

(GBM), gastric cancer, colorectal cancer, Mclust
breast cancer patients

Colorectal cancer, gastric cancer, pancreatic
5hmC hMe-Seal 350

Logistic
Li, Zhang, Lu, You, Song, Luo, Zhang, Nie, Zheng, Xu et al. (2017)

cancer, liver cancer, thyroid cancer regression

Hepatocellular carcinoma (HCC) 5mC BS-seq 1933
Logistic

Xu et al. (2017)
regression

Pregnant/non-pregnant plasma 5mC BS-seq 27 NA Jensen et al. (2015)

General cancer 5mC

Methylation

87 Kang et al. (2017)
450k Probalistic model

microarray/ for tumor burden
BS-seq

Diabetes, multiple sclerosis, traumatic or
5mC

methylation
218 NA Lehmann-Werman et al. (2016)ischemic brain damage, pancreatic cancer 450k

or pancreatitis microarray

General disease 5mC

Methylation

NA NA Tanić and Beck (2017)
450k

microarray/
BS-seq

5mC

Methylation

NA NA Warton and Samimi (2015)
Colorectal, breast, lung, pancreatic 450k

and ovarian cancers microarray/
BS-seq

General disease-related
5mC

Methylation N=4
NA Lokk et al. (2014)pathogenic mechanisms 450k (17 tissues)

microarray
Colon, prostate, breast, nucleosome DNA

179
Coverage

Ulz et al. (2016)
lung cancer positioning sequencing depth

Pregnancies/non-pregnancies 5mC
Methylation

22 NA Hatt et al. (2015)450k
microarray

Lung, colorectal cancer 5mC BS-seq 59 NA Guo et al. (2017)

Tissue-specific methylation 5mC MethylC-seq
N=4

NA Schultz et al. (2015)
(18 tissues)

General cell types contribution
nucleosome DNA

60
Coverage

Snyder et al. (2016)
positioning sequencing depth

Prenatal, cancer, and transplantation
5mC BS-seq 83

Quadratic
Sun et al. (2015)

assessments Programming
Metastatic breast cancer 5mC BS-seq 120 NA Legendre et al. (2015)

Table 3.1: List of publications of using cfDNA epigenetics information to infer dis-
ease. The epigenetics information utilized are either DNA methylation (5mC), DNA
hydroxymethylation (5hmC) or nucleosome position.
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markers based on data from all CpGs. These makers could be CpG sites, CpG clus-

ters (Kang et al., 2017), or fixed-size genomic bins (Sun et al., 2015). The selection

criteria are typically based on the differentiating power of the markers, that is, select-

ing features showing significant differences among different tissues (Sun et al., 2015)

or wide between-group methylation ranges (Kang et al., 2017). All existing publica-

tions utilize their own approach for selecting CpG sites. These approaches generally

take following three aspects into consideration. First, some studies use differentially

methylated loci (DML) as predictive markers. For example, Xu et al. (2017) used

10 highly-selective CpGs as the informative markers in diagnosis of hepatocellular

carcinoma. It is a direct and reasonable approach because selected markers are dis-

criminative for disease status. Second, some studies use regions instead of single CpG

markers as features for prediction. For example, Song et al. (2017) used 5hmC signal

within the gene body, Kang et al. (2017) used 100 bp up- and downstream CpG sites

as regions, and Lehmann-Werman et al. (2016) used several adjacent CpG sites as

the basic unit for features. The underlying assumption of choosing region instead

of single CpG site as the feature is that adjacent CpG sites have similar methyla-

tion level, and pooling information from nearby CpG sites together can stabilize and

enhance signals. Third, some studies borrow biological information from external

data to select markers. For example, Xu et al. (2017) used solid tumor samples from

The Cancer Genome Atlas (TCGA) to conduct preliminary marker selection. The

intuition behind such approach is that features differ significantly between solid tu-

mor and normal tissue would also be likely to demonstrate detectable methylation

differences in the cfDNA of the same disease.

In order to select informative and discriminative markers for disease prediction,

we suggest detecting DML from training data first. The criteria for selecting markers

from this step can be relatively loose, in order to retain relatively large number of

markers. Next, when external biological information such as markers from tissue-
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specific methylation are available, one can use these locations to filter the markers

from the previous step. Furthermore, one should consider pooling nearby CpG sites

together to create regions if possible, instead of using single CpG site. This will

help boost and stabilize the methylation signals. Finally, to determine the number of

markers allowed in the final statistical model, one needs to conduct cross-validation

(CV) to select the optimal number that minimize the prediction error. After all these

steps above, data of the selected markers for all samples can be used either directly as

features for disease prediction or for signal deconvolution (more details in subsection

3.4.3).

3.4.2 Data Generative Model

Once the markers are selected, the next step is to build statistical model to predict the

disease status. The training data include the cfDNA methylation profiles (denoted

as Y, could be from the WGBS or the 450k/27k methylation array) for the selected

markers, and disease status (denoted as Z) for N subjects including N0 patients and

N1 healthy people (N = N0 + N1). Y is a matrix of M by N, where M is the number

of pre-selected biomarkers (CpG sites or regions). Z is a binary vector of length N,

(1 for case and 0 for control). The goal of the problem is to use cfDNA methylation

data (Y) to predict disease status (Z).

Suppose there are T tissues releasing DNA fragments into the cfDNA pool in

plasma. Denote the methylation profiles for the M biomarkers in these T tissues as

matrix R. R is of dimension M by T, where each column represents the methylation

levels of the M biomarkers from one tissue. It is important to note that due to

biological variation, the R matrices are not exactly the same from different people.

However, the marker selection step guarantees that the variation among individual

for the same tissue are significantly lower than the difference among different tissues.

Moreover, since there could be differential methylation in certain tissue types between
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cases and controls, R in cases can be potentially different from the R in controls. In

some situation, R can be obtained from methylomes of specific tissues or purified cell

types (Sun et al., 2015). R could also be unknown or unavailable if we do not have

external information about those biomarkers or the tissues of interests.

As described earlier, cfDNA is a pool of mixing DNA fragments from each of the

T tissues. For each individual, the tissue proportion is a vector of length T. Each

element in the vector is a number between 0 and 1, and all elements from the vector

will sum up to 1. For these N individuals, the tissue proportions are represented as

a T by N matrix Π, where πij is the tissue proportion of the ith tissue in the jth

individual, and i = 1 . . . T ; j = 1 . . . N . It has the restriction of
∑T

i=1 πij = 1 and

each πij ∈ [0, 1].

Following the above notations, the expected values of the cfDNA methylation (Y)

is a mixture of the tissue specific methylation (R):

E(Y) = RΠ

We use the expectation notation E(.) here because the observed cfDNA methylation

data Y contains random noises. For modeling and computational convenience, it is

commonly assumed the random errors following normal distribution with mean 0.

From this model, it is clear that the differences in either R or Π will cause E(Y) to

differ between two groups. In the next section, we will discuss the possible statistical

methods for using cfDNA methylation data Y to predict the disease.

3.4.3 Disease Prediction Approach

With training data, several methods can be applied for disease status prediction:
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Directly using marker methylation to predict

As the most straightforward approach, one can directly use the observed cfDNA

methylation (Y) to predict disease status Z, using an off-the-shelf machine learning

(Xu et al., 2017; Song et al., 2017; Li, Zhang, Lu, You, Song, Luo, Zhang, Nie, Zheng,

Xu et al., 2017) or model-based approach (Kang et al., 2017). The trained model can

be evaluated using test data, and eventually used as a panel to diagnose new patients.

This approach is easy and intuitive, and widely used in many existing publications

(Kang et al., 2017; Xu et al., 2017; Song et al., 2017; Li, Zhang, Lu, You, Song, Luo,

Zhang, Nie, Zheng, Xu et al., 2017). Since differences in either R or Π will cause

E(Y) to differ between case and control, one does not need to know exactly the source

of changes as long as Y can predict Z.

Prediction based on tissue mixing proportions

To take a step further than using marker data directly, there are some researches to

first estimate the mixing proportion Π, and then using Π as predictor for diagnosis.

The underlying assumption is that the disease is associated with the change of mixing

proportions (which is related to cell death rates). The proportions estimation can be

viewed as a dimension reduction step, which can potentially improve the signal to

noise ratio in the data and lead to better prediction accuracy. An added benefit of

this approach is that the results are more interpretable: disease is associated with the

proportion change of certain cell type, which could be related to the cell death rate

for that tissue.

The estimation of the mixing proportions can be achieved by using following two

different procedures.

1. Reference-based method

When external reference panel R is available, the estimation can be done by
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regressing the mixed signal Y to purified tissue reference R. Since the regression

coefficients are not totally free parameters and have to satisfy some constraints

(between 0 and 1, sum up to 1 in each individual), the problem is a constrained

linear regression in the following form:


E(Y) = RΠ∑T

i=1 πij = 1

0 ≤ πij ≤ 1

This can be converted into an optimization problem to minimize the residual

sum of squares. The optimization problem has a quadratic loss function and

linear constraints, thus can be solved by Quadratic Programming (QP) algo-

rithm.

With estimated proportions, we can train a Support Vector Machine (SVM) to

predict Z from Π̂ from training data. When a new patient coming in, one can

use the reference panel R to solve for new individuals tissue proportion π̂ using

QP, and then apply the trained SVM on π̂ to predict disease status.

This approach is easy, intuitive, and computationally efficient. The only short-

coming is the requirement of R. One can look for R in public data, but has to

assume that it is not significantly different from the reference methylome of the

population under study, which could be a strong assumption.

2. Reference-free method

When external reference panel R is unavailable, one can use Non-negative ma-

trix factorization (NMF) algorithm to jointly solve for R and Π. Briefly speak-

ing, NMF is an algorithm that factorizes a matrix, say V, into two matrices W

and H, such that:

V = WH
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where all three matrices contain non-negative elements. Because W and H are

both unknown, the factorization is solved by numerical approximation methods

(Onuchic et al., 2016). To be specific, the estimator of W and H follows:

argminW,H||V−WH||2

where 0 ≤W ≤ 1, 0 ≤ H ≤ 1, and
∑

i Hij = 1 for any j. After initialization of

W and H, a procedure is taken to estimate W given fixed H, and then estimate

H given fixed W, iteratively, until it converges. NMF was traditionally used

on chemometrics, signal processing, and image processing (Gao et al., 2005; Ci-

chocki et al., 2006). Recently, NMF is gaining popularity among computation

biological research community, especially in analyzing data from highly hetero-

geneous samples (Houseman et al., 2012, 2016; Cardenas et al., 2016). One

major reason for this popularity is that the factorized matrices are in reduced

dimensions and have better biological interpretation.

In estimating mixing proportions from cfDNA methylation, we factorize methy-

lation matrix Y into two non-negative matrices W and H, while constraining

each cell in matrix H takes value within [0, 1] and each column in matrix H sum

up to 1. To be noticed, the original version of NMF only requires W and H to

be non-negative, but does not have those added constrains. The algorithm was

specifically customized by adding these new constraints to solve for W and H

for DNA methylation study (Houseman et al., 2016; Li, Xiao, Shi, Yang, Wang,

Wang, Marcia and Lu, 2017; Lutsik et al., 2017). Then W can be interpreted

as a sudo-reference matrix comparable to the external reference matrix R, and

H can be interpreted as a sudo-tissue-proportion matrix similar to the tissue

proportion matrix Π. Matrix H can then be used for disease status prediction,

resembling using QP-solved proportion matrix Π.
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NMF provides a flexible way to solve for tissue proportions when the external

tissue reference information is unavailable. Under the context of cfDNA methy-

lation study, assume we have training data for N individuals (with known disease

status), and new patients (with cfDNA methylation data but disease status is

unknown). Reference-free NMF-based approach is the following. First, we ap-

ply NMF on training data Y to factorize it into two matrices W and H. Since

the columns from H represent individuals with known disease status Z, we train

a Support Vector Machine (SVM) using H to predict Z. Then we regress W

on new patients data Yb in regression to get testing datas tissue proportions

Hb. Finally, we apply the trained SVM on Hb to predict disease status for new

patients.

To summarize the methods described above, a schematic illustration of plasma

cfDNA methylation mixing procedure and deconvolution methods for disease detec-

tion and monitoring is shown in Figure 3.1. Besides directly using markers to for

disease predication and monitoring, signal deconvolution methods can be categorized

into either the reference-based approach when the tissue-specific reference profiles

are known, or reference-free approach when the tissue-specific methylation reference

profiles are unavailable.

3.4.4 Simulation

In order to evaluate and compare the aforementioned prediction approaches under

different scenarios, we performed a series of simulations. In all simulations, data are

generated to mimic the real data characteristics. The main simulation procedures are

as following. We obtain the cfDNA WGBS methylation data of 32 healthy people as

control samples and 29 hepatocellular carcinoma (HCC) patients as case samples from

a previous study (Sun et al., 2015). Then we take the methylation levels for 1,013

CpG clusters (500 bp, each) from 14 different tissues as the reference panel R, which
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Figure 3.1: Schematic overview of plasma cfDNA methylation mixing procedure and
deconvolution methods for disease detection and monitoring. One straightforward
approach is to use marker directly for disease detection. Besides using biomarkers
directly, signal deconvolution methods can be categorized into either the reference-
free approach when the external tissue-specific methylation reference in unavailable,
or the reference-based approach when the tissue-specific profile is known.
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are reported by the authors and chosen based on tissue-specific methylation profiles.

We further obtained the cfDNA methylation levels for all samples in these 1,013

regions as the methylation data of interest, and applied QP on the methylation data

and reference panel to solve for tissue proportions for each patient. Next, we assume

32 healthy peoples tissue proportions come from a common Dirichlet distribution

Dir(α0), and 29 HCC cancer patients proportions from another common Dirichlet

distribution Dir(α1). We obtain the MLE of α0 and α1, as α̂0 and α̂1, respectively.

Using α̂0 and α̂1, we generate 50 controls tissue proportions P0 from Dir(α̂0),

and 100 cases’ proportions P1 from Dir(α̂1). To mimic the biological variation in

reference panel for different person, we generate the noise-added reference panel Ri

for each sample i base on the original reference panel R. To be specific, we use the

original reference R as the mean parameter in beta distribution, and then adjust

the dispersion level based on simulation setting to control the noise level. Using

higher dispersion will generate noisier reference panel Ri. Then for each sample, we

multiply Ri with the simulated mixing proportion to obtain the expected values for

this individuals cfDNA methylation levels. The next step in simulation is adding noise

to the simulated cfDNA methylation level, which is again based on beta distribution.

We reparametrize the beta distribution Beta(α, β) into the following form:

Beta(µ, φ)

where µ = α
α+β

is the mean and φ = 1
α+β+1

is the dispersion. Here, we take RiPi

as the mean µ of Beta distribution, and use different values for the dispersion φ to

investigate the effect of noise levels on the performance of prediction.
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3.4.5 Simulation Results

After obtaining the simulation data, we use leave-one-out cross validation (LOOCV)

to evaluate and compare the classification accuracies from different methods. The

classification accuracies from all simulations are summarized by the boxplots in Fig-

ure 3.2. Simulations are conducted under low (φ=0.17, Figure 3.2A), medium (φ=0.5,

Figure 3.2B), and high (φ=0.67, Figure 3.2C) noise levels. Each simulation is repeated

for 20 times. The methods under comparison include: marker directly predict ap-

proach (presented as marker), estimate tissue proportion approach using QP (QP),

and the reference-free NMF approach (NMF). As a benchmark, we also include the

results from using the true proportions as predictor (true prop).

As shown in Figure 3.2, using the true proportions as predictors achieves the

highest accuracy in all simulation settings, as expected. When the noise level is

low (Figure 3.2A), the prediction accuracies of all methods are reasonably good, with

NMFs accuracy lower than the others. When the noise level increases, the three meth-

ods under comparison start to differ. At medium noise level, using marker directly

to predict performs worse than QP (p = 10−4, one-sided t-test) but better than NMF

(p = 10−3, one-sided t-test). At high noise level, using marker directly to predict

performs worse than the other two methods (p = 10−12 and 10−12 high; one-sided t-

test). In particular, at high noise level (Figure 3.2C), directly using marker to predict

perform rather poorly. This is because under our simulation setting, the methyla-

tion differences come from the differences in mixing proportions between cases and

controls. The proportion estimation serves as a signal filtering step to extract better

prediction features, which subsequently improves prediction. Across all noise levels,

QP performs better than NMF (p= 10−12 low; 10−8 medium; 10−2 high; one-sided t-

test). This is expected because QP utilize external information to help disease status

prediction, which is supposed to outperform reference-free method NMF. We then

conduct the following simulations to further investigate the QP and NMF methods
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Figure 3.2: Boxplot of classification accuracies for multiple methods in simulations.
Marker: Marker directly predict approach. QP: using tissue proportions solved from
Quadratic Programming procedure for prediction. NMF: Non-negative matrix factor-
ization (NMF) approach. True Prop: using simulated true proportion in classification.
A total number of 20 simulations are conducted. A, low noise level; B, medium noise
level; C, high noise level.
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from other aspects.

Sample size consideration

Since the simulation above contains rather small sample size (150), we investigate

how the size of training data will affect the results by increasing the sample size

to 750 and 1500. Supplementary Figure B.1 shows that the total sample size has

dramatic effect on prediction accuracy. As the sample size increase, the accuracies of

all methods increase, across all noise levels. However, when the noise level is not low,

NMF actually performs better than QP under larger sample size. This is because

that when the noise level is high, the reference panel used for QP is noisy. In this

case, it is suitable to use NMF for reference-free decomposition when the sample size

allows. These results also provide some hints for sample size selection. For NMF, the

gain of accuracy from 150 to 750 is dramatic, and then plateaued from 750 to 1,500.

It is therefore advisable to have at least several hundred of samples to start using the

NMF approach.

Other aspects in solving proportion

In either QP or NMF-based method, the estimated proportions are coordinates when

projecting the original data into a lower dimensional space. The improvement in pre-

diction accuracy using estimated proportions suggest that the coordinates contains

cleaner signals for the outcome. We investigate how much impact the direction of the

projection will have on prediction. We conduct simulations under different external

reference R, to see how the choice of reference will affect the classification results.

We use a high variance reference in QP estimate tissue proportion approach to solve

for tissue proportions. That is, more noise is added to the R used in QP. This mimic

the situation that there is significant bias for the reference panel being used. We

also try to use a random reference by randomly shuffling the entire R used in QP.
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This mimic the extreme situation where the reference R is completely off. Results in

Supplementary Figure B.2 indicate that using the high variance reference (QP high

var) and randomly shuffled reference (QP random) both lead to a decrease of accu-

racy, where using random reference is much worse than all other methods (p=0.0159,

ANOVA). Both QP and NMF project a matrix into lower dimensional space with

either known or unknown coordinates. Whether the projection has predictive power

for the outcome is important for the performance of the method. The results in Sup-

plementary Figure B.2 illustrates that a bad projection direction leads to unfavorable

prediction accuracy, and that using a more accurate external reference R will benefit

the classification.

We also explore if directly solving proportions in ordinary least square (OLS)

without any constraint will affect the prediction accuracy. Results in Supplementary

Figure B.2 indicate OLS has comparable performance to QP. Of course, the OLS

results will lose biological interpretation since without constraints, the regression

coefficients cannot be interpreted as mixing proportions anymore. Thus, the QP is

still a preferred method than OLS. When adopting reference-based approaches, we

also compare QP with two other newly designed methods: Cibersort (Newman et al.,

2015) and EpiDISH (Teschendorff et al., 2017). Cibersort (CBS) employs support

vector regression (SVR), and EpiDISH uses robust partial correlations (RPC). Results

in Supplementary Figure B.3 indicate CBS performs better than QP in high noise

level, whereas RPC and QP are comparable overall. This indicates the reference-based

algorithms that specifically designed for gene expression or DNA methylation data,

where solved proportions constraint can be implemented a posteriori, can provide

alternative means for QP.
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Validation of NMF results

To validate if the NMF-solved reference matrix W is a good approximation to the

true reference panel, we investigate the NMF results in simulation. Since the column

orders of W is randomly generated from NMF, we first need to assign tissue types

to the columns of W. To do so, we find matches based on pairwise correlations of

the columns of W and the true references. In these two matrices, two columns with

highest correlation are regarded to represent the same tissue. After this, we exclude

these two matched columns and use the highest correlation on the remaining data to

identify the second matched tissue. We iterate this procedure until all tissue types are

determined. We found that overall, the estimations of the reference are accurate. The

average correlation between estimated and true reference is above 0.83. Figure 3.3

shows the scatterplot for NMF-solved reference methylation versus the truth for four

(out of 14) tissues. Such scatterplots for all tissues are available in Supplementary

Figure B.4.

We further compare the NMF-solved proportion matrix H to the true proportions

in simulation. Figure 3.4 shows the scatterplots of NMF-solved tissue proportions

versus true proportions for the four tissues. In general, NMF-solved proportions cor-

relate with true proportion well in most estimations, although in some tissues this

relationship is weak. Possible reason for the inaccurate estimation in some cases

is that the low abundance of certain tissue makes them difficult to estimate. The

scatterplot for all tissues solved-proportion versus true proportions are available in

Supplementary Figure B.5. Overall, reference-free approach has the capacity to elu-

cidate compositions of heterogeneous cfDNA samples pertaining to their constituent

homogeneous tissue types.
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Figure 3.3: Scatterplots of NMF estimated reference methylation levels versus true
reference methylation levels in 4 tissues. A, small intestines; B, adipose tissues; C,
adrenal glands; D, lungs. Relatively strong correlations are observed. Spearmans
correlation is shown in each panel.
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Figure 3.4: Scatterplots of NMF estimated tissue proportions versus true tissue pro-
portions in 4 tissues. A, small intestines; B, adipose tissues; C, adrenal glands; D,
lungs. Relatively strong correlations are observed. Spearmans correlation is shown
in each panel.
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3.5 Real data results

We further evaluate and compare the methods in real data. We obtain and process

the cfDNA WGBS data for 27 hepatocellular carcinoma (HCC) patients, 32 healthy

unpregnant control subjects, and 17 healthy pregnant subjects from Sun et al. (2015).

This dataset is referred to as the WGBS dataset thereafter. The external reference

panel is obtained from the same study, with reference data from the Roadmap Epige-

nomics Consortium (Kundaje et al., 2015) included. With this external reference

panel known, we first apply QP to solve for tissue proportions. For each individual

among HCC patients, healthy controls and pregnant subjects, the bar plots for esti-

mated tissue proportions are shown in Figure 3.5. Each bar represents one person. To

take a close look at the tissue proportions in a tissue-specific manner, the boxplot for

liver and placenta tissue proportions among these 3 groups (HCC, control, pregnant)

are shown in Figure 3.6. It demonstrates that HCC patients have an increased pro-

portion of cfDNA originating from liver, which is consistent with the original study

(Figure 7 in Sun et al. (2015)) and suggests that the cell death rates in liver are

higher among HCC patients. Similarly, pregnant women show an increased propor-

tion of cfDNA originating from placenta. The marked differences in these proportions

indicate that the proportions will be predictive for the outcome.

The boxplots for all 14 tissue-type proportions, with one panel for each tissue type,

are shown in Supplementary Figure B.6. We then apply NMF on real data to see if

the NMF-solved result is similar to the truth. Although on average the correlation

is not as ideal as in simulation, Supplementary Figure B.7 shows that NMF-solved

reference correlates true reference well. NMF is effective for obtaining the underlying

reference panel from real data.

We then apply 3 different methods to classify the HCC, control and pregnant

subjects. The classification confusion matrices from leave-one-out cross-validation
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Figure 3.5: Barplot for the estimated 14 tissue proportions from real data for HCC
patients, healthy controls and pregnant subjects, using Quadratic Programming (QP)
with external reference available. HCC patients showed an increased proportion of
cfDNA originating from liver, while pregnant controls showed an increased proportion
of cfDNA originating from placenta.

Figure 3.6: Boxplot of real data solved tissue proportions for liver and placenta,
respectively, among 3 groups. A, tissue proportions for liver among 3 groups; B,
tissue proportions for placenta among 3 groups.
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(LOOCV) are shown in Table 3.2.

Method Marker predict NMF proportion predict QP proportion predict
HCC control preg HCC control preg HCC control preg

Truth
HCC 11 12 4 8 15 4 14 13 0

control 3 29 0 4 28 0 3 29 0
preg 0 0 17 0 0 17 0 0 17

Table 3.2: Classification confusion matrices for the WGBS data. HCC: hepatocellu-
lar carcinoma patients. control: healthy, unpregnant control people. preg: healthy
pregnant women. Marker predict accuracy: 0.75. NMF predict accuracy: 0.70. QP
predicted accuracy: 0.79.

As shown in Table 3.2, QP based method has the highest classification accuracy

(79%). It is because QP takes advantage of accurate external reference information,

which helps to extract the proportion used in classification. Directly using markers for

predication also yield satisfying predication accuracy and performs better than NMF

approach. This is because when sample size is relatively small, NMF solved reference

and proportions is not as accurate as in relatively large samples. QP based method

can outperform NMF approach under small sample size setting. We also applied two

other reference-based algorithms, CBS and RPC here. Supplementary Table indi-

cates all three reference-based methods (CBS, RPC and QP) performs similarly. The

results show that the pregnant subjects can be easily separated with other groups,

while separating HCC patients with healthy controls yields more misclassification.

It is because pregnant subjects show a more profound change in estimated propor-

tions for placenta (∼ 20% in proportion change on average) compared with the rest

groups, thus the signal-to-noise ratio is very high. For HCC patients, even though the

proportion from liver is significantly higher in liver, there is still non-trivial overlaps

in proportions between HCC and normal control, leading to the misclassifications.

Overall, as a non-invasive pre-screening procedure, the real data results are reason-

ably good and show promises that cfDNA methylation can potentially be used for

disease diagnosis. We also analyze a set of reference-free real data for further compar-

ison. We obtain and process cfDNA hydroxymethylation data for 15 healthy controls
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and 18 colorectal cancer patients from Li, Zhang, Lu, You, Song, Luo, Zhang, Nie,

Zheng, Xu et al. (2017). The data were generated from capture sequencing technol-

ogy known as 5hmC-Seal, which has similar data characteristics as MeDIP-seq. This

dataset is referred to as the 5hmC-seq dataset thereafter. Since there is no external

reference panel available for this dataset, we can only apply either marker-directly

approach or NMF approach for disease prediction. We summarize the sequencing

read counts on each 2kb regions along the genome, and then use the counts as in-

puts for disease prediction. During each round of LOOCV, top 1000 DMRs are first

identified in the training samples using DSS (Feng et al., 2014). We then use the

log-transformed read counts from the top 1000 DMRs as the input data for both

marker-directly approach and NMF approach. The model is trained using top 1000

DMRs or deconvoluted proportions, respectively for marker-directly approach and

NMF approach. The prediction result from LOOCV is shown in Table 3.3. Overall,

using marker and NMF yield similar prediction accuracies, although using marker

performs slightly better (one more correct prediction). Based on our observation,

the signal-to-noise ratio in this dataset is reasonably high. Thus, the DMR markers

themselves already have good differential power to detect the cancer-normal differ-

ence. Therefore, using marker-directly approach yield decent accuracy.

Method Marker predict NMF proportion predict
Cancer Normal Cancer Normal

Truth
Cancer 11 4 10 5
Normal 0 18 0 18

Table 3.3: Classification confusion matrices for the 5hmC-seq data. Cancer: colorectal
cancer patients. Normal: healthy controls. Marker predict accuracy: 0.88. NMF
predict accuracy: 0.85.
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3.6 Discussion and Conclusion

Recent studies have reported that cfDNA contains rich information of disease status

and can be used to extract biomarkers and construct disease prediction model (Kang

et al., 2017; Tanić and Beck, 2017; Guo et al., 2017). As a non-invasive alternative

to surgical biopsy, cfDNA-based assay has great potential in disease diagnosis. The

highly promising and sought-after liquid biopsy in cancer diagnosis depends on cfDNA

sequence variants, thus can only be applied on diseases with high mutation rate such

as cancer. Using cfDNA methylation overcomes such limitation and has much wider

application. In this study, we review the published works of using cfDNA in disease

diagnosis. We focus on the strategies for statistical method and data analysis, and

conduct simulations to investigate several potential methods for cfDNA methylation

deconvolution and prediction for disease. The advantages and disadvantages for the

three general approaches are summarized in Table 3.4.

Method Advantages Disadvantages

Marker-directly

· Straightforward and easy to apply · Results lack direct biological
· Applicable on disease with no interpretation
cfDNA tissue proportion change · Results contain no tissue

proportion information

Reference-based
· Can estimate tissue proportions · Require external reference panel
· Tissue proportions have biological from pure tissues
interpretation

Reference-free

· Does not require external reference

· Computationally more intensive

panel from pure tissues
· Can estimate reference panel and
tissue proportions
· Tissue proportions have biological
interpretation

Table 3.4: Advantages and disadvantages of three cfDNA methylation disease pre-
dicting approaches.

cfDNA is a mixture of DNA fragments from multiple tissues, and the mixing pro-

portions are potentially associated with disease status. The difference in proportions

will lead to some marginal cfDNA methylation changes due to the tissue specificity of
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the methylomes. The disease prediction can be achieved by either using methylation

levels or estimated mixing proportions as predictors, with an off-the-shelf machine

learning algorithm. Regardless of the downstream prediction approach, marker selec-

tion is a very important first step. We review the approaches for selecting marker in

existing works, and make some recommendation. In general, we recommend selecting

markers based on the training data as well as external biological information.

When there is no profound change in cell type specific methylomes between cases

and controls, it is generally assumed that the changes of tissue proportions in the

mixing pool of cfDNA is associated with disease status. If the reference methylome

are available, reference-based methods like Quadratic Programming (QP) can pro-

duce reliable tissue proportion estimation. Simulation studies show that the accuracy

of using estimated tissue proportions to predict disease status is higher than that of

using marker directly. As an added advantage, the estimated proportions also provide

more interpretable result. In contrast, the reference methylome could be unavailable

under certain circumstances. For example, the subpopulation under this study is

different from the previous one. Under this situation that the reference panel is dif-

ferent from the original one, NMF is a viable solution. NMF-based method provides

a reference-free approach for solving both tissue proportion and tissue reference si-

multaneously. Simulation studies demonstrate that this method provide comparable

results to reference-based approach.

Although the disease prediction accuracy in real data is reasonable, there could be

complications in real practice. The prediction can be influenced by biological and/or

technical artifacts such as genetic background, demographics, or batch effects, which

is a difficulty faced by many other genome-based predictive assays. For example, it has

been shown that batch effect or different data normalization methods can negatively

affect the prognosis in cancer using gene expression data (Qi et al., 2015). To alleviate

these problems, the training and test sample first need to be consistent: they must



58

be from the same population and experimental platform. If significant batch effects

were observed, one needs to first perform data normalization using approaches such

as ComBat (Johnson et al., 2007), or consider using alternative rank-based methods

to stabilize the signal. Furthermore, there will be room for improving the results.

First, larger training samples size can contribute to the improvement in prediction

accuracy. We recommend to start with at least several hundred samples to construct

a prediction model. We believe with advances of experimental technologies and data

analysis method, more cfDNA methylation data will be generated from larger-scale

studies, which will greatly improve the model. We also envision that if the sample

size increased significantly (e.g., doubled or tripled), we should retrain the model to

improve accuracy. It is possible that with the retrained model, some diagnoses for

existing patients could be different. In that case, the ethical issues have to be carefully

addressed. However, this is the nature of clinical research: with accumulation of

data and evidence, diagnosis criteria could evolve. Second, both reference-based

and reference-free methods are dimension reduction approach to project data into

lower dimensional space: reference-based method projects the data matrix onto the

known reference, and reference-free method jointly solves the reference and projection.

The prediction accuracy will be related to the reference used (as we showed in our

simulation study). It will be very interesting to develop novel statistical method to

identify the optimal low dimension space to project to that can produce the best

prediction accuracy.

3.7 Key Points

• cfDNA is a mixture of DNA fragments from multiple tissues, and the mixing

proportions could potentially be associated with disease status. cfDNA screen-

ing has great potential to be a non-invasive procedure for disease testing.
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• Prediction based on cfDNA methylation can be applied to diseases not associ-

ated with significant DNA sequence changes.

• One can predict disease based on cfDNA methylation levels, or the estimated

mixing proportions.

• Marker selection is very important for disease prediction using cfDNA methyla-

tion. It should be done using both the training data as well as external biological

information.

• Mixing proportion estimation can be performed with or without reference methy-

lomes.

3.8 Methods Availability

The R scripts implementing the methods discussed in this work are available online at:

https://github.com/haoharryfeng/cfDNAmethy, with instructions and an example

dataset.
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Chapter 4

Cell-Free 5hmC in Alzheimer’s Disease Pa-

tients
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4.1 Introduction

Aging can be characterized as a set of accumulated cellular changes, leading to the im-

pairment in various biological functions and increased risks in developing age-related

diseases, such as cancer and neurodegenerative diseases (López-Ot́ın et al., 2013).

The functional deterioration in biological processes can be caused by different rea-

sons, from a certain decreased metabolism to the alteration of epigenetic patterns

(López-Ot́ın et al., 2013). To evaluate aging, several biomarkers, including telom-

ere length, mitochondrial DNA deletion and protein alterations, have been proposed,

but none of them is sensitive enough for clinical practice (Meissner and Ritz-Timme,

2010). Methylation of the fifth position of cytosine (5-methylcytosine, 5mC) is one of

the well-characterized epigenetic hallmarks. It is involved in the gene regulation and

associated with many age-related diseases (Smith and Meissner, 2013; Reik, 2007;

Bird and Wolffe, 1999). It has been widely reported that the dynamic change of 5mC

occur during aging (Fraga and Esteller, 2007; Christensen et al., 2009; Alisch et al.,

2012). Interestingly, the results from a recent study even suggest that the methyla-

tion status in as few as three selected CpG sites in blood DNA are reliably enough

for age prediction (Weidner et al., 2014).

Cell-free DNA (cfDNA) is short DNA fragments that commonly between 160180

base pairs and released from different types of dead or dying cells to blood stream

(Crowley et al., 2013). Recently, cfDNA isolated from plasma has shown great poten-

tial in clinical practice and been recruited as the a novel disease diagnosis biomarker,

which is non-invasion, faster and more economic compare to the regular surgical

biopsy (Crowley et al., 2013). For example, in the plasma of cancer patients, the

cfDNA includes some circulating tumor DNA (ctDNA), carrying tumor-specific ge-

netic variants, including point mutations and copy number variation (Schwarzenbach

et al., 2011). The high-throughput microarray or sequencing experiment can distin-
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guish ctDNA from normal cfDNA by tumor-specific genetic variants, enabling ctDNA

serve as a reliable indicator for cancer due to its nature of mutation-rich. In addition,

other approaches, such as exploring the cfDNA epigenome information, are developed

for investigating those mutation-poor diseases not associated with significant genetic

changes. In these diseases, cfDNA epigenetic information such as DNA methylation

or nucleosome positioning can potentially serve as diagnosis biomarkers (Kang et al.,

2017; Xu et al., 2017; Hao et al., 2017). The uniqueness or abnormality in epige-

netic profiles of cfDNA for these mutation-poor diseases are suitable for constructing

statistical models for prediction.

For decades, 5mC was recognized as the only epigenetic mark on DNA until the

rediscovery of 5-hydroxymethylcytosine (5hmC) in mouse Purkinje neurons and em-

bryonic stem cells (ESCs) in 2009 (Kriaucionis and Heintz, 2009; Tahiliani et al.,

2009). The novel ten-eleven translocation (Tet) proteins can act as writers and

convert 5mC to 5hmC (Ito et al., 2011). 5hmC plays an important role in DNA

demethylation process because it can be further oxidized to form 5-formylcytosine

(5fC) and 5-carboxylcytosine (5caC), which can be quickly removed from the genome

by thymine-DNA glycosylase (TDG) to initiate base excision repair (BER) (Ito et al.,

2011; He et al., 2011; Maiti and Drohat, 2011). Overall, 5hmC is enriched in gene-

bodies and cis regulatory elements, and the alteration of 5hmC has been widely re-

ported to be involved in regulation gene expression (Li, Yao, Chen, Kang, Li, Cheng,

Li, Lin, Wang, Wang et al., 2017; Cheng et al., 2018; Pastor et al., 2011; Song et al.,

2011). Moreover, 5hmC can stably exist during aging and be dynamically recog-

nized by certain groups of proteins (5hmC readers) (Spruijt et al., 2013; Szulwach

et al., 2011). These founding suggest that 5hmC is not only an intermediate in the

demethylation process, but rather has its own biological functions, thus is an ideal

epigenetic mark for aging and age-related diseases. Indeed, two recent publications

have revealed the great potential of cfDNA 5hmC severing as a novel biomarker in



63

cancer diagnosis (Li, Zhang, Lu, You, Song, Luo, Zhang, Nie, Zheng, Xu et al., 2017;

Song et al., 2017). However, so far, little is known whether 5hmC is dynamically al-

tered during aging and could be served as a novel biomarker for aging or age-related

disorders.

In this study, we investigated the genome-wide alteration of cfDNA 5hmC in young

healthy subjects (23-30 years old), old healthy subjects (68-76 years old) and late on-

set Alzheimer’s disease (AD) patients (67-90 years old). In healthy subject groups,

we identified 193 aging-related DhMRs (differentially hydroxymethylated regions),

which associated with the genes involved in synaptic functions. However, these 193

aging-related DhMRs do not necessarily associated with pathology of AD. A set of

236 distinct disease-associated DhMRs were further identified by comparing cfDNA

5hmC in old healthy subjects and AD patients. Interestingly, we found the adjacent

genes of the disease-associated DhMRs were highly enriched in various brain regions,

such as cingulate gyrus, prefrontal cortex and cerebellum, suggesting these disease-

associated DhMRs containing cfDNA is potentially released from brain. In addition,

using cfDNA 5hmC data, we constructed a classification machine learning model to

predict AD from healthy old individuals. Our cross-validation results showed reason-

ably prediction accuracy. As far as we know, our work is the first investigation, both

experimentally and computationally, to study the cfDNA 5hmC profile of neurode-

generative disease.

4.2 Materials and Methods

4.2.1 Case materials

Frozen plasma from 20 healthy individuals, including 10 young (23-30 years) and 10

old (67-76 years) Caucasian females (Supplementary Table C.1). All individuals were

disease-free, non-smokers who are not taking any medication. In addition, we also
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collected plasma from 10 individuals who were diagnosed with late onset Alzheimer’s

disease (67-90 years) (Supplementary Table C.1).

4.2.2 Genomic DNA preparation

Genomic DNA was isolated from brain samples with standard protocols. Tissues

were homogenized on ice and then treated with proteinase K (0.667 µg/µl) in 600 µl

digestion buffer (100 mM Tris-HCl, pH 8.5, 5 mM EDTA, 0.2% SDS, 200 mM NaCl)

at 55◦C for overnight. The second day, 600 µl of Phenol:Chloroform:Isoamyl Alcohol

(25:24:1 saturated with 10 mM Tris, pH 8.0, 1 mM EDTA) (P-3803, Sigma) was

added to samples, mixed completely, and centrifuged for 10 min at 12,000 rpm. The

aqueous layer solution was transferred into a new Eppendorf tube, and the genomic

DNA precipitated with 600 µl isopropanol. The pellet was washed with 75% ethanol,

air-dried, and eluted with Nuclease-Free Water (Ambion).

4.2.3 5hmC specific chemical labeling, affinity purification, and se-

quencing

5hmC enrichment was performed using a previously described procedure with an im-

proved selective chemical labeling method (Szulwach et al., 2011). DNA libraries

were generated following the Illumina protocol for “Preparing Samples for ChIP Se-

quencing of DNA” (Part# 111257047 Rev. A) using 2550 ng of input genomic DNA

or 5hmC-captured DNA to initiate the protocol. All sequencing libraries were run on

Illumina Hi-seq 2000 machines.

4.2.4 Bioinformatics analysis

FASTQ sequence file from each sample was aligned to the Homo sapiens reference

genome (hg19) using Bowtie2. All subsequent data analyses were performed using R

language and Bioconductor packages. We first cut the whole human genome (hg19)
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into equal sized bins of 5kb. Numbers of reads overlapped with each bin were obtained

to represent the level of 5hmC at the corresponding regions. Only regions with a

mean 5hmC level greater than 1 across all samples were kept for follow-up analysis.

Genome-wide bin counts are compared between Old samples and Young samples,

and between Old samples and AD samples for DhMRs detection using Bioconductor

package DSS (Wu et al., 2012). DSS uses a negative-binomial distribution to model

the sequence read counts, and has a Wald test for testing differences in two groups.

DhMRs are defined as the regions with false discovery rate (FDR) less than 0.2,

considering the multiple testing. Given the gender bias, we removed all the DhMRs

in sex chromosomes.

Different genomic features of DhMRs were obtained using HOMER (Hypergeo-

metric Optimization of Motif EnRichment) software (Heinz et al., 2010). A chromo-

some distribution plot is generated by the generic plotting function in R. Enrichment

analyses were performed by using Enrichr (http://amp.pharm.mssm.edu/Enrichr/),

which contains more than 140 gene-set libraries (released by 01/23/2019) (Chen et al.,

2013; Kuleshov et al., 2016).

4.2.5 cfDNA 5hmC AD biomarker selection and the prediction model

First, we cut the genome into 5kb bins and obtained the count of reads in each bin

along the genome for each individual. Then we performed normalization to make each

individual sample’s profile comparable. Next, we selected the biomarker for predicting

AD with the help of an external solid brain tissue’s profile. To be specific, we obtained

the data from brain samples of a study that has both AD and healthy individual. We

then identified the DhMR (referred to as ‘brain-specific DhMR’ below) by comparing

the profile of AD versus healthy samples. We overlapped the brain-specific DhMR

with our cfDNA data to obtain the candidate bins that are the potential biomarkers

for AD cfDNA.
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Among these candidate bins, the predictive biomarkers were further filtered by

the within-group coefficient-of-variation, which favored the biomarkers with good

consistency. To be specific, for each candidate bins, we calculated the coefficient-of-

variation for healthy group (CVhealthy) and AD group (CVAD), respectively. Then

we sum the values from two groups up to obtain the overall coefficient-of-variation

(CVa), for each bin.

CVa = CVhealthy + CVAD

By ordering CVa from the smallest to the largest genome-wide and retaining the

top 15 bins that have the smallest CVa, we obtained the cfDNA 5hmC AD biomarkers.

The idea behind this selection approach is to keep the biomarkers with good within-

group consistency, which are potentially more suitable for classification algorithm.

Then the values from the cfDNA 5hmC AD biomarkers can be fit into machine

learning model for AD prediction. Here we adopted Random Forest algorithm, which

is a supervised ensemble learning approach for classification, by constructing decision

trees using the features given.

We conducted leave-one-out cross-validation (LOOCV) to evaluate the effective-

ness of these biomarkers. In each round of LOOCV, 9 AD samples and 9 healthy

samples were used for model training and the rest 1 AD sample and 1 healthy sample

were left for model testing. In each round of LOOCV, top 15 bins with smallest CVa

were retained as cfDNA 5hmC AD biomarkers. Random Forest model was trained

on the training samples. Prediction was performed on the left-out testing samples.

The LOOCV was iterated through all samples.
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4.3 Results

4.3.1 Identification and characterization of aging-related DhMRs in

cfDNA

To explore the dynamic change of cfDNA 5hmC during aging, we firstly isolated the

cfDNA from the plasma obtained from two age groups, including 10 young healthy

subjects (23-30 years old) and 10 old healthy subjects (67-76 years old) (Supple-

mentary Table C.1). Genomic DNA was then isolated from each cfDNA sample.

By incorporating a previously established chemical labeling and affinity purification

method, coupled with high-throughput sequencing technology (Song et al., 2011),

we genome-widely profiled the cfDNA 5hmC distribution, which was then evaluated

by counting normalized 5hmC mapped reads in 5-kb binned human genome (hg19).

We found more bins had higher 5hmC reads in old group compared with those from

young samples (Supplementary Figure C.1). This finding is consistent with our pre-

vious observation (Szulwach et al., 2011), confirming that aging resulted in a global

increase of 5hmC in the old group.

To detect aging-related DhMRs, the number of 5hmC reads in each 5-kb bin of

human genome (hg19) were statistically analyzed between young and old samples.

Given the depletion of 5hmC in sex chromosome (Szulwach et al., 2011) and sex bias

of the subjects in this study (Supplementary Table C.1), we excluded the DhMRs

identified in X and Y chromosomes. In total, we identified 193 aging-related DhMRs,

majority of which (172 out of 193) showed increased 5hmC level in old group, sug-

gesting that the maintenance of 5hmC in certain loci may be important to against

aging (Figure 4.1A). Genomic annotation of these 193 DhMRs revealed that 20% of

DhMRs overlap with known genes, while 80% of DhMRs are found in non-coding

regions, including intergenic regions, short and long interspersed nuclear elements

(SINE and LINE), and long terminal repeats (LTR) (Figure 4.1B). These DhMRs,
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including both gain-of-5hmC and loss-of-5hmC regions, are universally distributed on

autosome (Figure 4.1C).

To further explore the biological relevance of these aging-related DhMRs, we per-

formed enrichment analyses by using Enrichr (http://amp.pharm.mssm.edu/Enrichr/),

which contains more than 140 gene-set libraries (released by 01/23/2019) (Chen et al.,

2013; Kuleshov et al., 2016). Gene ontology (GO) and pathway analyses showed that

the nearest genes of aging-related DhMRs are significantly involved in synaptic func-

tion and in Heparan sulfate biosynthesis (Figure 4.1D). Dysfunction of synapse has

been suggested as one of the hallmarks for cognitive decline, which is associated with

normal aging (Morrison and Baxter, 2012). Even subtle changes, for instance, could

increase the risk of neuron death and contribute to the pathogenesis of neurogener-

ative diseases, such as Alzheimer’s disease (AD) in human (Bell and Hardingham,

2011; Nicholson et al., 2004). In addition, it has been demonstrated that aging in

human is accompanied by specific alterations in heparan sulfate biosynthesis (Feyzi

et al., 1998), which links to many features of the pathogenesis of AD (Van Horssen

et al., 2003). Together these results have supported the previous knowledge of aging

and indicate the clinical importance of cfDNA 5hmC as a potential biomarker for

aging and age-related neurogenerative diseases.

4.3.2 Aging-related DhMRs in cfDNA are not necessarily associated

with Alzheimer’s disease

AD is a typical age-related neurodegenerative disease characterized by a progres-

sive decline in cognitive functions, affecting more than 15 million people worldwide

(Blennow, n.d.). In AD patient brains, loss of synapses and neurons is often observed

in the cerebral cortex and some subcortical regions, which leads to severe atrophy of

the affected regions, such as degeneration in the temporal lobe, frontal cortex and cin-

gulate gyrus (Wenk et al., 2003). Majority of AD is late onset, typically ranging from
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Figure 4.1: Identification and characterization of aging-related DhMRs in human
cell-free DNA. (A) The number of 5hmC reads in each 5kb bin of human genome
(hg19) were analyzed between healthy young (n =10) and old (n =10) individuals to
find differentially hydroxymethylated regions (DhMRs). In total, 193 aging-related
DhMRs were identified, and majority of the DhMRs (172 out of 193) showed increased
5hmC level in old group. (B) Genomic annotation of 193 aging-related DhMRs to
show their percentage of each genomic region. (C) Chromosomal distribution of 193
aging-related DhMRs indicates they are relatively universally located in autosome.
(D) Gene ontology (GO) and pathway analyses showed that the nearest genes of
aging-related DhMRs are significantly involved in synaptic function and in several
pathways including Heparan sulfate biosynthesis.
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60 to 65 years, and associates with no clear genetic association or cause (Bekris et al.,

2010). To test whether aging-related DhMRs are potentially associated with AD, we

genome-widely profiled 5hmC in the cfDNA obtained from AD patient plasma and

examined the number of 5hmC reads of AD cfDNA in those aging-related DhMRs.

Based on 5hmC changes in each group, we divided aging-related DhMRs into four

subgroups, including 45 “Increase (Young < Old < AD)” group, 127 “Peak (Young

< Old > AD)” group, 21 “Valley (Young > Old < AD)” group, and 0 “Decrease

(Young > Old > AD)” group (Figure 4.2A). Human phenotype association analysis

of DhMRs in each subgroup highlighted a number of diseases or phenotypes related

to aging, such as carotid artery diseases, stroke, blood pressure and glomerular fil-

tration rate (Figure 4.2B). However, we did not see a clear associated between these

aging-related DhMRs and AD. In addition, although there are certain trends of 5hmC

change in each subgroup, none of them showed statistical difference in 5hmC changes

between old and AD samples, suggesting these aging-related DhMRs in cfDNA are

not necessarily associated with AD.

4.3.3 Identification and characterization of disease-associated DhMRs

of Alzheimer’s disease

To explore disease-associated DhMRs of AD, we therefore only focus on comparing

AD samples to old samples, given their matched ages to minimum aging effect. The

number of 5hmC reads in each 5-kb bin of human genome (hg19) were statistically

analyzed between AD and old samples. In contrast to what we observed in the

comparison between young and old groups (Supplementary Figure C.1), we found a

large portion of bins had higher 5hmC reads in AD samples (76,497 bins) than those

from old samples (19,901 bins), suggesting the development of AD is associated with

the overall increase of 5hmC (Supplementary Figure C.2A).

Following the analysis mentioned above, we identified 236 disease-associated DhMRs,
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Figure 4.2: Aging-related DhMRs is not necessarily associated with Alzheimer’s dis-
ease (AD). (A) The number of 5hmC reads of AD cfDNA were examined in the 193
aging-related DhMRs. Based on 5hmC changes in each group, aging-related DhMRs
were further divided into four subgroups, including 45 “Increase (Young < Old <
AD)” group, 127 “Peak (Young < Old > AD)” group, 21 “Valley (Young > Old <
AD)” group, and 0 “Decrease (Young > Old > AD)” group. (B) Human phenotype
association analysis of DhMRs in each subgroup highlighted a number of diseases or
phenotypes related to aging, such as carotid artery diseases, stroke, blood pressure
and glomerular filtration rate.
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where 180 DhMRs have significantly higher 5hmC level in AD; while others have sig-

nificantly lower 5hmC level in AD (Figure 4.3A and Supplementary Figure C.2B).

Genomic annotation of these 236 disease-associated DhMRs indicated that 16% of

DhMRs overlap with known genes, while 84% of DhMRs are found in non-coding

regions, including intergenic regions, SINE, LINE, and LTR (Figure 4.3B). Similar to

those aging-related DhMRs, GO analysis showed that the nearest genes of disease-

associated DhMRs are also significantly involved in synaptic function; while pathway

analysis highlighted Neuroactive ligand-receptor interaction (Figure 4.3C and Sup-

plementary Figure C.2C).

Given the cfDNA is mixture of DNA fragments from various tissues, it is usually

difficult to distinguish the resource of the cfDNA. To further explore the tissue speci-

ficity of the DhMRs, we performed enrichment analysis by using Enrichr with the

ARCHS4 Tissues library, which contains the genes that highly expressed in human

tissues. Interestingly, we found the adjacent genes of the aging-related DhMRs were

only enriched in cingulate gyrus, while those of disease-associated DhMRs were highly

enriched in different regions of central nervous system, including cingulate gyrus, pre-

frontal cortex, cerebellum and spinal cord, suggesting these disease-associated DhMRs

containing cfDNA is potentially released from brain (Figure 4.3D).

4.3.4 Prediction of Alzheimer’s disease using cfDNA 5hmC biomarker

cfDNA has the potential to serve as the biomarker for disease diagnosis, and here we

built a prediction model to use the cfDNA 5hmC biomarker to predict Alzheimer’s

disease. The goal of this computational model is to distinguish AD patients and

healthy old individuals, using their cfDNA 5hmC profile.

We utilized an external dataset from an AD study on brain tissues to assist our

cfDNA 5hmC biomarker selection and conducted cross-validation to evaluate the

prediction accuracy (Figure 4.4). Here, we first identified DhMR when comparing AD
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Figure 4.3: Identification and characterization of DhMRs associated with AD. (A)
The number of 5hmC reads in each 5kb bin of human genome (hg19) were analyzed
between AD patients (n =10) and healthy old (n =10) individuals to find differentially
hydroxymethylated regions (DhMRs). In total, 236 disease-associated DhMRs were
identified. (B) Genomic annotation of 236 disease-associated DhMRs to show their
percentage of each genomic region. (C) Gene ontology (GO) analyses showed that
the nearest genes of disease-associated DhMRs are significantly involved in synaptic
function. (D) Enrichment analysis by using Enrichr with its ARCHS4 Tissues library
were performed to explore the tissue specificity of the disease-associated DhMRs. The
adjacent genes of the aging-related DhMRs were only enriched in cingulate gyrus,
while the disease-associated DhMRs were highly enriched in various brain regions.



74

versus healthy samples using brain tissues data. Next, we overlapped genomic regions

from these DhMR with our cfDNA data and retained biomarkers that showed good

consistency. After the selection of biomarkers, the prediction model was constructed

using Random Forest algorithm, which is a supervised ensemble learning approach

for classification based on decision trees. This machine learning model was built on

5kb genomic regions as biomarkers. Iteratively, using leave-one-out cross-validation

(LOOCV), we split the samples into training and testing. The model from each round

of LOOCV will be trained on 9 AD samples and 9 healthy old samples. Testing

accuracy is evaluated on the left-out 1 AD sample and 1 healthy old sample. This

procedure is iterated through all samples. Results from LOOCV showed our models

the prediction accuracy is 80% (Table 4.1).

Predicted AD Predicted healthy
True AD 9 1

True healthy 3 7

Table 4.1: AD prediction accuracy from leave-one-out cross-validation (LOOCV).
Iteratively, Random Forest model was trained with training samples (9 AD and 9
healthy), and then applied on testing samples (1 AD and 1 healthy) to obtain the
prediction. Accuracy: 80%.

4.4 Discussion

Epigenetic information, such as DNA methylome, in cfDNA has been investigated

to pursue alternative biomarkers for clinical diagnosis of various diseases, including

cancers and aging-related disorders (Feng et al., 2018; Jung and Pfeifer, 2015). In

the present study, for the first time, we investigated the potential of cfDNA 5hmC

in severing as a clinical biomarker. We successfully detected the 5hmC signals from

cfDNA that isolated from plasma and identified 193 regions with dynamic 5hmC

changes (aging-related DhMRs). These DhMRs reflects the changes between young

and old healthy individuals and are strongly associated with the genes playing impor-
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Figure 4.4: Schematic overview of cfDNA 5hmC AD prediction model. In the feature
selection, external brain samples were utilized to help find the candidate features.
In cross-validation, leave-one-out cross-validation (LOOCV) was adopted to evaluate
the performance of AD prediction model. RF: Random Forest.



76

tant roles in synaptic functions. Although the various changes during human aging

often contribute to the pathology of AD (López-Ot́ın et al., 2013), we found these

aging-related DhMRs identified in healthy groups do not necessarily associated with

AD. Alternatively, by comparing cfDNA 5hmC in AD and old healthy individuals,

we further identified a set of 236 distinct disease-associated DhMRs. Interestingly,

we found these disease-associated DhMRs were associated with the genes that highly

expressed in central nervous system, potentially reflecting the striking changes in the

brain during the development of AD. Furthermore, we proposed a prediction model

to use the cfDNA 5hmC biomarker to predict Alzheimer’s disease. Cross-validation

showed reasonably accuracy in predicting AD patients from healthy old subjects.

In recent years, disease diagnosis using molecular biomarkers from plasma-isolated

cfDNA gained tremendous attention. For example, researchers examined specimens

like plasma, blood, urine and cerebral spinal fluid to identify traces of biomarkers for

cancer and other diseases. This cheaper, safer and less invasive alternative approach

exhibits potentials in clinical practice. Here, using cfDNA 5hmC marker, our study

confirmed the merit of cfDNA in aging and AD research. Our disease prediction

model also verified the capability of using cfDNA 5hmC markers to prediction AD

subject from health old group.

It is known that 5hmC is highly enriched in the brain (Globisch et al., 2010),

and the distribution of 5hmC across the genome in human and mouse brain has been

explored by our group and others. The distribution of 5hmC is tissue- and cell-type-

specific. For example, it has been reported that 5hmC is particularly enriched in

synaptic genes with a tissue-specific differential distribution at exon-intron bound-

aries, suggesting a potential role for 5hmC in RNA splicing in brain (Khare et al.,

2012). In addition, 5hmC is consistently found to be enriched at euchromatin in

both mouse and embryonic stem cells (ESCs) and neuronal cells, but is preferentially

distributed at cis-regulatory elements, where the enrichment is more significant in
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human than in mouse (Szulwach et al., 2011; Chen et al., 2014; Ficz et al., 2011;

Pastor et al., 2011; Wu et al., 2011).

Although the etiology of sporadic AD has not been elucidated, it has been sug-

gested that alterations in the level of epigenetics could be involved in its pathophys-

iology (Berger et al., 2009; Dupont et al., 2009; Waddington, 1939; Waseem Bihaqi

et al., 2012; Irier and Jin, 2012). Indeed, our previous studies have shown an age-

dependent acquisition of this modification in genes linked to neurodegenerative disease

(Song et al., 2011; Szulwach et al., 2011). Other earlier studies suggested that num-

bers of epigenetic marks are changed in AD brain, including the decreased 5mC and

DNMT1 levels in AD-vulnerable neurons (Mastroeni et al., 2010) and a global 5mC

and 5hmC increase in the middle frontal gyrus and middle temporal gyrus (Coppieters

et al., 2014). Those global increased levels of 5mC and 5hmC were correspondingly

correlated and also positively associated with typical markers of AD, including amy-

loid beta, tau, and ubiquitin load (Coppieters et al., 2014). Interestingly, although

the massive aging-associated changes in the brain are caused by oxidative stress, a

mice study suggested that the aging-associated increase of 5hmC in hippocampus

is independent of oxidative stress and possibly caused by the altered Tet enzymatic

activities (Chen et al., 2012). A recent study examined the epigenetic alteration dur-

ing AD progression by analyzing the hippocampus and parahippocampal gyrus of

preclinical AD and late-stage AD patients and found significantly increased levels of

Tet1, 5mC, and 5hmC, but decreased 5fC and 5caC levels (Bradley-Whitman and

Lovell, 2013). Notably, in support of these observations, our current results revealed

a substantial global increase of 5hmC in AD cfDNA and that the majority of the

disease-associated DhMRs are gain-of-5hmC. Our results also indicated that those

disease-associated DhMRs are significantly associated with the genes that highly ex-

pressed in AD-vulnerable brain regions, suggesting a great potential of cfDNA 5hmC

serving as a reliable biomarker for disease prediction.
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Our prediction model was built by borrowing information from brain tissue study.

This step stabilized the signals and helped with feature selection. Results showed

improved performance by utilizing the external brain tissue study information. The

interpretation is two-fold. First, cfDNA data signal is noisy; therefore, feature selec-

tion and information extraction are vital for properly utilizing and interpreting the

cfDNA data. Second, the 5hmC signals from cfDNA is associated with signals in

brain. Studying such association is still an open question.

In summary, we investigated the genome-wide alteration of cfDNA 5hmC in young

healthy subjects, old healthy subjects and late onset Alzheimer’s disease (AD) pa-

tients. We identified the dynamical alteration of 5hmC during aging process and

in age-related disorders. We constructed a classification model to predict AD from

healthy old individuals. This is the first investigation to study the cfDNA 5hmC

profile of aging and in neurodegenerative disease.
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Chapter 5

Conclusion and Future Research Plan
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5.1 Conclusion

In this dissertation, I present some statistical models and data analysis strategies for

high-throughput epigenomics data. The coherent theme here is to use epigenomic

biomarkers for disease prediction and classification. In my first project, I focus on

real-world solid tumor samples and utilize DNA methylation data to conduct cancer

subtype clustering. During this procedure, I take the tumor purity into consideration

to solve the mixture signal problem. Moving from solid tumor samples to blood assay,

I focus on cfDNA in the second project. I use cfDNA methylation information to

predict disease. This liquid biopsy approach could potentially have broad applications

for early diagnosis. Along the trajectory of studying cfDNA, my third research project

aims at investigating 5hmC in cfDNA environment. Here I particularly focus on

cfDNA 5hmC’s association with aging and AD.

Epigenomics has been shown to be associated with transcriptome, and is further

linked to phenotypes. Epigenomics study offers great potentials in elucidating the

underlying mechanism for disease. Currently, however, there are still many questions

that have not been answered. For example, how is the epigenome heterogeneity

varies from cell-to-cell or cell-type-to-cell-type? At the cellular level, how will the

epigenetic affect transcriptome? With my experience in epigenomics research and the

advancement in sequencing technology, I will further investigate and address these

fundamental questions in epigenomics. Therefore, I am proposing my future research

plan, with more dedicate investigation into single-cell epigenomics.

5.2 Future Research Plan

Nowadays, the advancement in biotechnology is a prime driven force of new biological

discoveries. Single-cell sequencing technology is one of the emerging ones. Tradition-

ally, the NGS was conducted on bulk samples, which contains hundreds of thousands
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of cells. The signal we observed is the averaged signal across a cell population. The

advances of single-cell sequencing technology now allow us to inspect the DNA methy-

lation profile of each cell, one by one, the basic unit of living creatures. Single-cell

epigenomics study presents a promising direction to a better understanding of disease

etiology and leads to new drug targets and strategies for personalized treatment.

The data from single-cell DNA methylation experiments offer great opportunities

as well as challenges for data analyses. Unlike the traditional bulk DNA methylation

sequencing data, the single-cell DNA methylation sequencing data lack well-developed

statistical methods and tools. For example, there is not yet a consensus on statistical

method for cell clustering. Moreover, there is a need of tools to impute missing single-

cell methylation values. To address the problem of the shortage of statistical methods

and tools, and serve the immediate needs, I am planning to work on the following

research directions.

5.2.1 Single-cell Methylation Missing Value Imputation

Due to the low capture efficiency and stochastic CpG methylation, the overall missing

fractions are high in single-cell methylation data. The sparsity of single-cell methy-

lation data is a major hurdle to effectively study cellular heterogeneity. With large

proportion of CpG missing, it is difficult to investigate cell-to-cell heterogeneity in the

genome-wide scale. Imputing the missing values will enable us to study the regulation

and the dynamics of DNA methylation in single cells at the whole genome scale, and

to help reveal new linkages between epigenetic and other genomics features.

Here I will use histone modification data to help imputing the single-cell methyla-

tion status. Based on previous research, DNA methylation level is diverse at various

functional genomic regions. I will develop statistical model for missing methylation

level imputation, with genomic information incorporated. Within each functional

genomic region, methylation/unmethylation transition probability can be estimated.
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With the estimated probability, a Markov model can be utilized for imputation. The

schematic overview of this method is shown in Figure 5.1.

Figure 5.1: Schematic overview of single-cell methylation value missing imputation.
Histone modification data can help us cut the genome into multiple regions. Tran-
sition probability of methylation/unmethylation can be estimated from each region.
Then Markov Model can be constructed to impute the missing value form nearby
CpG site.

5.2.2 Cell Clustering Using Single-Cell Methylation Data

Although the notion of a cell type is intuitively clear, it still lacks a consistent and

rigorous definition. In the past, researchers use the size or the shape to define cell

types. Later, researchers start to use the existance of proteins on the surface of

cells to define the cell type. Now, single-cell methylation data provides a first time

data-driven, coherent and unbiased approach that can help investigating the natural
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groupings of cell population. Besides providing a deeper understanding of basic unit

of living organism or tissue, clustering can provide references for disease studies.

Therefore, I will develop methods for unsupervised clustering of single cell methylome

data. Feature selection and dimension reduction will be integrated to unsupervised

clustering procedure. The method will also allow continuous cell grouping to construct

the pseudotime of cells.

5.2.3 Cell Type Methylome Profile Construction

In biological and clinical research, it is often of great interest to inspect the methy-

lome characteristics of each of the cell type composition of a certain tissue or organ.

Single-cell methylation data can bridge the gap between a cell populations signals

and individual cellular behaviors. The data can be used to accurately construct cell

subtypes methylome. To achieve this, I will jointly model scBS-seq data and bulk

BS-seq data, and account for the discrepancy between them. Figure 5.2 provide a

schematic illustration of how to the pure cell type methylome. On the top level, the

observed methylome from bulk BS-seq can be modeled as an aggregation of methy-

lomes from multiple cell types, with different weights on each pure cell type. On

the second level, the methylome from each cell type is an aggregation of methylomes

from individual cells. Hierarchical modeling can help obtaining the latent cell type

methylomes, with incorporation of biological and technical noise. I aim to achieve a

more accurate and robust estimation of cell-type methylome profile than estimating

from bulk or scBS-seq alone. This will also provide an useful database reference for

researchers to study the composition of his/her’s own mixture sample.

5.2.4 Methods for Jointly Profiled Single-Cell Data

As single cell methylation sequencing technology evolves, parallel single-cell sequenc-

ing protocols are emerging. These parallel single-cell sequencing technologies allow for
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Figure 5.2: Schematic overview of cell type mixture problem in single cell methylation,
using brain as an example. Bulk samples are mixtures of pure cell type profiles, while
each pure cell type generate multiple cell’s profile in the single-cell level.

joint profiling of two or more genomic features. For example, scM&T-seq measures

single-cell genome-wide methylome and transcriptome for each cell (Angermueller

et al., 2016). scNMT-seq (single-cell nucleosome, methylation and transcription

sequencing) measures chromatin accessibility, DNA methylation and transcriptome

jointly (Clark et al., 2018). These biotechnology improvements allow the discovery

of associations across multi-omics measure, at single-cell level. Here, I will segment

genome into functional regions, model the multi-omics measures, and assess the as-

sociation between each pair of the measures. In addition, I will develop statistical

methods for the prediction of methylation level, using other single- or multi-omics

measures.
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Appendix A

Appendix for Chapter 2

Figure A.1: InfiniumPurify Purity differences between consensus and non-consensus
samples for 21 cancer types from TCGA.
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Figure A.2: Overlap matrices of clusters in the three methods by using InfiniumPurify
purity in 23 cancer types. Red: highly overlapped.
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Figure A.3: Application of InfiniumClust to TCGA data by using ABSOLUTE purity.
(A) ABSOLUTE Purity differences between consensus and non-consensus samples in
eight cancer types of TCGA. (B) Testing ABSOLUTE purity differences among clus-
ters from the three methods for 8 cancer types. P-values are from linear regression and
F-test. (C) Overlap matrices of clusters in the three methods by using ABSOLUTE
purity in 8 cancer types. Red: highly overlapped.
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Figure A.4: Predicting accuracy in different number of CpG sites on InfiniumClust,
puKmeans and K-means.
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Figure A.5: InfiniumPurify Purity distributions of different clusters obtained from
InfiniumClust, K-means and cNMF for 23 cancer types.
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Cancer type InfiniumClust-puKmeans InfiniumClust-K-means puKmeans-K-means
BLCA 0.720763723 0.603818616 0.503579952
BRCA 0.895442359 0.709115282 0.746648794
COAD 0.830564784 0.867109635 0.88372093
HNSC 0.649056604 0.518867925 0.547169811
KIRC 0.593846154 0.486153846 0.676923077
KIRP 0.688405797 0.789855072 0.605072464
LIHC 0.905263158 0.815789474 0.884210526
LUAD 0.793991416 0.579399142 0.759656652
LUSC 0.501392758 0.690807799 0.467966574
PRAD 0.524475524 0.622377622 0.727272727
THCA 0.549514563 0.805825243 0.623300971
UCEC 0.890660592 0.86332574 0.86332574

Table A.1: Overlap of clusters by using InfiniumClust, puKmeans and K-means for
clustering.

Supplementary Material. The arcsine transformed beta values follow a single

normal distribution from normal samples, and a mixture of normal distributions from

tumor samples.

First, we demonstrate the importance of data transformation. It is known that a

majority of the methylation levels are close to 0 or 1, so that the raw beta values are

likely non-normal. However, after arcsine transformation, the normality of the data

becomes better. We demonstrate this by comparing the goodness of fit test statistics

for raw and transformed beta values from normal BRCA samples (96 samples), as

shown in the figure below. Each dot represents a CpG site. The test statistics become

much smaller after transformation, especially for sites with large test statistics (viola-

tion of normality). Thus the arcsine transformation helps the normality assumption

and it is the reason why we apply it on raw data before clustering.

Next, we check the assumption that transformed beta values from normal samples

follows a single normal distribution for a CpG site. Again, we performed goodness of

fit test for normality on data from BRCA normal control samples. As a comparison,

we also performed the test for data from BRCA tumor samples. The figure below

shows the distribution of chi-square goodness of fit test p-values and statistics for
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normal and tumor, for all CpG sites. A majority of the p-values from normal samples

are uniformly distributed, showing that the normality assumption holds for most

CpG sites. There is a small fraction of sites with small p-values, indicating violation

of a single normal distribution assumption. These are likely to be the sites where

different types of normal cells showing differential methylation. On the contrary, the

p-values from tumor samples are highly skewed toward 0, suggesting that most of

the tumor beta values are not from a single normal distribution. The histograms for

test statistics lead to the same conclusion. Overall, the results show normal data

approximately follow a single distribution, but tumor data are not.

The assessment of normality in tumor data is more difficult since it is assumed

to follow a mixture of normals. However, it is known that any distribution can be

approximated by a mixture of normal distributions, thus we believe using a mixture

of normal for tumor data will work reasonably well. Overall, these results suggest

that the normality assumptions hold well in real data.

Moreover, We also performed goodness of fit test for normality on the 1000 CpG

sites used in our clustering algorithm. We again compute the p-values and test statis-

tics for these sites for both normal and tumor samples.

As shown in the figure below (left panel), the violation of normality from these

CpG sites is more severe compared with the results from all CpG sites (figure provided
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above): about 30% of the CpG sites violate the normality assumption. To assess how

this violation affects the results, we performed additional simulation studies. We

generated tumor and normal data from beta distribution and skipped the arcsine

transformation. The normal assumption apparently does not hold. The right panel

of the figure below shows the chi-square goodness of fit test for the most variable

1000 CpG sites, and it looks very similar to the real data. We applied InfiniumClust

to the simulated data, and still obtained very high accuracy (0.98 on average). The

result shows that our method is robust to the data distribution assumption.
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Appendix B

Appendix for Chapter 3

Method
CIBERSORT RPC QP

proportion predict proportion predict proportion predict
HCC control preg HCC control preg HCC control preg

Truth
HCC 18 9 0 17 10 0 14 13 0

control 7 25 0 7 25 0 3 29 0
preg 0 1 16 0 1 16 0 0 17

Table B.1: Classification confusion matrices based on real data using different
reference-based methods. HCC: hepatocellular carcinoma patients. control: healthy,
unpregnant control people. preg: healthy pregnant women. Cibersort: using tis-
sue proportions solved from Cibersort for prediction. RPC: using tissue proportions
solved from Robust Partial Correlations for prediction. QP: using tissue proportions
solved from Quadratic Programming procedure for prediction. Cibersort predicted
accuracy: 0.78. RPC predicted accuracy: 0.76. QP predicted accuracy: 0.79.
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Figure B.1: Boxplot of classification accuracies for NMF and QP under different noise
level and sample size. NMF: Non-negative matrix factorization (NMF) approach. QP:
using tissue proportions solved from Quadratic Programming procedure for predic-
tion. N represent the total sample size used in simulation. 3-fold cross validation was
conducted. A, low noise level; B, medium noise level; C, high noise level.
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Figure B.2: Boxplot of classification accuracies for multiple methods in simulations.
QP: using tissue proportions solved from Quadratic Programming procedure for pre-
diction. OLS: using tissue proportions directly solved from Ordinary Least Square
without constraint in QP. QP high var: using a high-noise reference as the reference
in the QP step to solve tissue proportions, then use the solved proportions for pre-
diction. QP random: using a randomly shuffled reference as the reference in the QP
step to solve tissue proportions, then use the solved proportions for prediction. A,
low noise level; B, medium noise level; C, high noise level.
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Figure B.3: Boxplot of classification accuracies for multiple reference-based methods
in simulations. QP: using tissue proportions solved from Quadratic Programming
procedure for prediction. RPC: using tissue proportions solved from Robust Partial
Correlations for prediction. CBS: using tissue proportions solved from Cibersort for
prediction. True prop: using true tissue proportions for prediction. A, low noise level;
B, medium noise level; C, high noise level.
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Figure B.4: Scatterplots of NMF estimated reference methylation levels versus true
reference methylation levels in all 14 tissues in simulation. Spearmans correlation is
shown in each panel.
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Figure B.5: Scatterplots of NMF estimated tissue proportions versus true tissue pro-
portions in all 14 tissues in simulation. Spearmans correlation is shown in each panel.
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Figure B.6: Boxplot of real data solved tissue proportions for all 14 tissues, respec-
tively, among 3 groups. One panel for each tissue.
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Figure B.7: Scatterplots of NMF estimated reference methylation levels versus true
reference methylation levels in all 14 tissues in real data from Sun K et al. PNAS
2015. Spearmans correlation is shown in each panel.
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Appendix C

Appendix for Chapter 4

Figure C.1: Genome-scale patterns of 5hmC exhibited general increase in old samples.
Global 5hmC normalized reads in cfDNA of young and old samples were counted in
5-kb binned human genome (hg19). Bins with more than 4 reads are highlighted in
color. 45,860 bins (blue) showed more 5hmC reads in young than old group, whereas
47,405 bins (red) contained fewer 5hmC reads in young group.
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Table C.1: Subjects information and mapping rates.

Patient ID Age Group Total Reads # Mapped Reads # % of Alignment
NS0001 73 Old 20620940 16833720 81.63%
NS0002 70 Old 24405232 20472234 83.88%
NS0054 24 Young 27799251 22911152 82.42%
NS0003 24 Young 20694005 16933366 81.83%
NS0004 74 Old 17744068 14139450 79.69%
NS0005 27 Young 21343938 17627700 82.59%
NS0006 27 Young 24002467 19794803 82.47%
NS0007 23 Young 27176486 22001543 80.96%
NS0008 70 Old 16184975 12940173 79.95%
NS0009 24 Young 27427366 22348100 81.48%
NS0010 30 Young 27218638 22500079 82.66%
NS0011 30 Young 27074327 22618490 83.54%
NS0012 73 Old 25021058 20956187 83.75%
NS0013 71 Old 25340923 20793804 82.06%
NS0014 24 Young 24435506 19899891 81.44%
NS0015 23 Young 25601779 21286193 83.14%
NS0016 76 Old 21321136 17330107 81.28%
NS0017 69 Old 26895623 22107968 82.20%
NS0018 76 Old 25874331 21178665 81.85%
NS0019 68 Old 22978841 19111322 83.17%
885296 85 AD 21697210 17884224 82.43%
710785 74 AD 20847691 17477643 83.83%
710642 84 AD 21060631 17296572 82.13%
710969 67 AD 23241602 18595340 80.01%
885862 90 AD 20199690 16690537 82.63%
711904 63 AD 18749790 15504879 82.69%
713048 69 AD 25235132 20877621 82.73%
710978 81 AD 24167035 19494196 80.66%
886906 83 AD 21102684 17247851 81.73%
710286 80 AD 24351773 19818729 81.39%
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Figure C.2: Genome-scale patterns of 5hmC exhibited general increase in AD sam-
ples. (A) Global 5hmC normalized reads in cfDNA of AD and old samples were
counted in 5-kb binned human genome (hg19). Bins with more than 4 reads are high-
lighted in color. 76,497 bins (red) showed more 5hmC reads in AD than old group,
whereas 19,901 bins (blue) contained fewer 5hmC reads in AD group. (B) Chro-
mosomal distribution of 236 disease-associated DhMRs indicates they are relatively
universally located in autosome. (C) Pathway analyses showed that the nearest genes
of disease-associated DhMRs are significantly involved in Neuroactive ligand-receptor
interaction.
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