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Abstract 

An Evaluation of Open Source Tools to Estimate the Reproduction Number of the 2009 
Influenza A/H1N1 Pandemic in the USA 

 
By: Carla Kumbale  

 
Introduction: The reproduction number (R), which is a key epidemiological parameter to be 

estimated during emerging outbreaks such as the 2009 influenza pandemic, is computed using the R0 

R-package. In addition, another R-package, EpiEstim, is also utilized to compute the instantaneous 

reproduction numbers (R(t)). Estimates are compared with the literature in order to further validate the 

use of these R-packages so that institutions such as the Centers for Disease Control and Prevention 

can implement these tools in order to rapidly compute these parameters during an emergency. 

Methods: In the R0 package we use the Maximum Likelihood (ML), Exponential Growth (EG), 

Time-Dependent (TD), and Sequential Bayesian (SB) methods to compute four different estimates of 

R. In the EpiEstim package, we use the Bayesian Statistical technique implemented in this R-package 

to estimate R(t).  A serial interval of 3.6 days with a standard deviation of 1.6 days is assumed for all 

of the estimates. These reproduction numbers are then compared to the literature. 

Results: Several estimates are computed through the use of the R0 package. For the ML method, we 

estimate R values that vary between 1.41 to 3.54 depending on the selected time period of incidence 

cases. For the TD, EG, and SB methods, an R value of 1.88, 1.91, and 1.24 are computed respectively. 

Finally, the R(t) values, computed through the use of the EpiEstim package vary between 1.04-3.37 

(weekly time window) and 1.24 – 3.33 (10-day time window).  These values are subsequently 

compared with the results found in the literature. 

Conclusion: This study has both demonstrated the use of and further validated the two computer 

packages that are now available for general use by non-modelers.  Although the use of these packages 

still requires a certain minimum knowledge of statistical methods, the availability of these packages 

vastly improves the tools now at the disposal of public health practitioners during an 

epidemic/pandemic. 
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CHAPTER ONE: INTRODUCTION 

In early April 2009, the public became aware of a novel A/H1N1 influenza virus, also 

known as “swine flu”. This disease originated from Central Mexico, which soon spread 

to the United States. [1] In the following weeks, the Director-General of the World 

Health Organization (WHO) declared this H1N1 influenza outbreak to be an international 

public health emergency.  By July 11th, 2009, the WHO declared a Phase 6 alert, meaning 

the world was now at the start of the 2009 influenza pandemic. [2] At the conclusion of 

this pandemic, approximately 60.8 million cases, 274,304 hospitalizations, and 12,469 

deaths occurred within the United States. [3] 

To more effectively mitigate against the effects of an emerging pandemic such as this, 

estimation of key epidemiological parameters, such as the serial interval and the 

reproduction number  is critical. [4] 

The serial interval is defined as the time between successive cases in a chain of 

transmission. [5] This is essential for outbreak studies since investigators are able to 

identify epidemiological links between cases and also to diagnose new cases that have 

links with laboratory- confirmed cases. [6] In this thesis, a serial interval of 3.6 with a 

standard deviation of 1.6 is used which was previously estimated by Cowling et al. [7] 

The basic reproduction number R0 is the expected number of secondary cases produced 

by a single typical infectious case. [8] Furthermore, this parameter describes the average 

amount of persons a case will infect assuming the entire population is susceptible to 

infection. [9]  
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When R0 is greater than 1, the infection has the propensity to spread across a population. 

As R0 increases, the harder it is to control the disease. In contrast, when R0 is less than 1, 

this usually indicates that there will be a decline of infection in the population however, 

exceptions exist. [9]   R0 is mathematically defined as follows: [10]  

𝑅" = 	𝜏 ∗ 	𝛽 ∗ 	𝛿 

Where:  

τ = the transmission probability of the disease between susceptible and infected 

individuals 

     β = the rate of contact between susceptible and infected individuals per unit time  

     δ = the duration and infected person remains infectious to other susceptible individuals  

 

The instantaneous reproduction number R(t) also termed the effective reproduction 

number, as defined by Fraser et al., is the number of secondary cases on average that each 

infected individual would infect if conditions remained as they were at each time step 

denoted as t. [11] This parameter is calculated in a population with underlying immunity 

therefore, accounting for reduced susceptibility to infection within a population. [12]  

R(t) is mathematically defined as the ratio of the number of new infections occurring at 

time step t to the sum of infectious incidence ending on time step t-1 weighted on the 

infectivity function which can be seen below: [13] 

R(t) = 
)*
)*+,	-,

*
,./

 

Where:  

It = the number of infections generated at time step t.  

Ws = the infectivity function 
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Several methods exist to estimate infectious disease transmission parameters. [14] During 

the 2009 pandemic, over 78 separate estimates for R were made. [9] Because no open-

source tools were available at that time that could be executed quickly and easily by 

public health officials with limited modeling experience, these estimates often 

represented a substantial investment of time and expertise by mathematical modelers. 

[14] For public health institutions such as the Centers for Disease Control and Prevention 

(CDC), which play an active role during a pandemic, accurate, reproducible, and fast 

estimates of parameters such as the reproduction number and serial interval are of crucial 

importance.   

Recently, two open-source R-program packages have been developed that can be used to 

estimate the reproduction number and instantaneous reproduction numbers during 

influenza and other infectious disease outbreaks: R0 and EpiEstim. [13,14,15] Currently, 

these two packages are the only open-source R=packages available that can be used to 

estimate these parameters to our knowledge. EpiEstim supplies a framework which can 

estimate the instantaneous reproduction number from the traditional epidemic curve 

while the package R0 can implement five different methods to estimate the reproduction 

number based on incidence data. These methods include: Attack Rate (AR), Exponential 

Growth (EG), Maximum Likelihood (ML), Time-Dependent (TD), and Sequential 

Bayesian (SB). [14] The motivation behind the creation of these packages was to provide 

public health practitioners with a ready-to- use tool that only requires data that are 

commonly collected or estimated during an outbreak, such as the epidemic curve and 
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serial interval. [13,14] The packages potentially would allow for the rapid computation of 

key parameters during an emerging pandemic by CDC and other public health agency 

personnel, strengthening the evidence base for selection and use of pharmaceutical and 

non-pharmaceutical interventions by these organizations.  

However, while the R0 package has been validated using incidence data from the 1918 

pandemic, a validation of this packages comparing results against each of the different 

methods used to estimate the reproduction number and against the results produced by 

the White et al. (2009) paper, which used the same 2009 pandemic line list data used in 

this analysis, and a meta- analysis of pandemic 2009 reproduction numbers conducted by 

Biggerstaff et al. (2014) has not yet been done. [9,16] White et al. use a likelihood- based 

method to estimate the reproduction number. Data consisted of date of illness onset and 

date of report to the CDC from early reported influenza cases in the United States during 

the 2009 pandemic. [16]   When estimating the R value alone, the authors made use of 

previous estimates of the mean of the serial interval provided by Cowling at al. (3.6 days) 

and Fraser et al. (1.91 days). [7,17] Using these estimates of the serial interval, White et 

al. calculate R which ranges from 1.5 to 3.1.[16]  In the systematic literature review by 

Biggerstaff et al., the summarized R value  estimate of the 2009 pandemic was found to 

be 1.46 (IQR: 1.30–1.70), which is the median point estimate in the community setting 

for all waves of this illness computed from 78 separate estimates of the reproduction 

number. [9] 

The validation of this package against estimates produced from the same dataset and 

compared to the consensus pandemic reproduction number would improve public health 

officials’ confidence in the use of these packages during the early stages of a pandemic.  
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Finally, to our knowledge, R(t) has not yet been estimated for the 2009 influenza 

pandemic for the entire population of the USA. However, two studies mentioned in the 

Biggerstaff et al. meta- analysis estimate this parameter within a camp based setting 

(R(t): 1.4-3.3) and a school setting ( R(t)= 1.3-2.0) in the USA. [9,18,19] Therefore, we 

aim to estimate the R(t) values for this pandemic encompassing the entire USA by 

utilizing the EpiEstim R-package in this thesis.  

 

Purpose 

The work in this thesis is aimed at demonstrating the use of the R0 package to estimate 

the reproduction number during an emerging influenza pandemic. Results obtained are 

compared against reproduction number estimates from the White et al. (2009) and the 

Biggerstaff et al (2014) papers to further validate this tool. [9,16] In addition, we 

compare the results produced by the different techniques utilized by the R0 package 

which include the following: ML, SB, TD, and EG. Finally, we utilize the R-package 

EpiEstim to estimate the instantaneous reproduction numbers for this 2009 Influenza 

pandemic in the USA. [13,14] 
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Specific Aims:  

The three specific aims of this thesis are to:  

1) Aim 1: Estimate the reproduction number R using a maximum likelihood 

estimator (ML) implemented in the R0 package and compare these results with 

the results obtained in the literature. [16] 

2) Aim 2: Compute a reproduction number R for a single study period starting from 

the earliest beginning date cited in White et. al. (March/28/2009) and ending on 

the latest date (May/3/2009). Each of the four applicable methods implemented in 

the R0 package which are valid for this particular investigation: EG, TD, ML, and 

SB are used for this computation. We then aim to make comparisons of these 

results with the results found in the literature.  

3) Aim 3: Estimate the instantaneous reproduction number R(t) for this pandemic in 

the USA through the use of a Bayesian statistical method included in the 

EpiEstim package.  
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CHAPTER TWO: METHODS  

Data 

We use an updated version of the data used in the White et al. paper provided by the 

CDC which includes a line list of reported cases of influenza A/H1N1 in the United 

States.   Information on approximately 1880 confirmed and probable cases were used. Of 

these, 1194 confirmed and probable cases had both a date of onset with a date of report to 

the CDC. The distribution of confirmed and probable cases can be seen in Figure 1. We 

include probable cases in this analysis since greater than 90% of these cases were later 

confirmed. [16] Individual-based data becomes considerably less frequent in favor of 

aggregate counts of new cases after May 13th. [16] Therefore, we chose the range of onset 

dates included in this analysis to be March 28th, 2009 to May 3, 2009 and the range of 

report dates to be April 24, 2009 to May 8, 2009.  

	

Figure 1: Confirmed and probable cases plotted by onset time occurring in the United States. 
First date of onset is March 28, 2009 ending on May 3, 2009. It can be observed that onset times 
rapidly decline as we approach the final onset date. There were 1738 confirmed cases, 142 
probable cases, and a total of 1880 confirmed and probable cases. 
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The analysis is performed using imputed data where if the date of onset is missing, it is 

imputed from the date of report. Shown in Figure 2 is the average time between onset of 

symptoms and case report to the CDC. If a report date is known but the onset date is 

missing, we compute an estimated date of onset through the following equation: 

𝜔 = 𝑅 − 𝐴 

Where:  

 𝜔 = The estimated onset date  

R = The report date  

A= The average time in days between onset and date of report to the CDC  

 

Figure 2: The average reporting delay by days to the CDC of cases with a known date of onset is 
shown. It can be observed that the peak reporting delay between onset and report date occurs on 
April 6, 2009. As time progresses, reporting delay rapidly declines. 
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R0 Package  
 
Estimates of the reproduction number are computed through the use of the R-package R0. 

We stratify the results for four datasets: data with an onset date on or before 

4/25/09,4/26/09, 4/27/09, or 4/28/09 as done by the White et al. paper. [16] For the 

stratified data, estimates are made through the use of the maximum likelihood estimation 

model proposed by White & Pagano. [20] This method is also used to estimate the R 

value in the White et al. paper as well. [16] 

Estimates of the overall R value which consists of data with an onset date for the overall 

time period are also computed through the use of the R-package R0. The range of the 

overall time period for the dataset is from 3/ 28/2009 to 5/3/2009.  We implement four 

different methods which include: ML, EG, SB, and, TD to compute four estimates. We 

assume a serial interval of 3.6 days with standard deviation of 1.6 days for all estimates. 

[7] 

 
 
EpiEstim Package  

Estimates of the instantaneous reproduction number, R(t), were computed through the use 

of the R-package EpiEstim. Estimates are made for an epidemic over predefined time 

windows through the use of a Bayesian statistical method proposed by Wallinga & 

Teunis. [21] We define a 7-day time window and 10-day time window for which 

estimates are made. The first week begins on April 18, 2009 and ends on April 25, 2009. 

The last week defined begins on April 26, 2009 ending on May 3, 2009.  Additionally, 

the first 10-day period begins on April 15, 2009 and ends on April 25, 2009. The last 10-
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day period begins on April 23, 2009 and end on May 3, 2009. Again, for all analyses, we 

assume a mean serial interval of 3.6 with a standard deviation of 1.6. [7] 

 
Description of the Mathematical Models 
 
The two computer packages, R0 and EpiEstim utilized in this thesis take somewhat 

distinct approaches in order to compute the reproduction number.  The first package R0 

computes a R value  for the entire study period whereas the second computes R(t) over a 

time window τ but with reproduction number considered constant over the specified time 

window.[14] This package additionally makes available several models for computing 

R.[14]   These methods are termed Maximum Likelihood Estimator (ML), Exponential 

Growth (EG), Sequential Bayesian (SB) and Time Dependent (TD) reproduction number. 

[14] The EpiEstim models the reproduction number as a RV (Random Variable), which is 

also done in SB in R0 package but with the caveat that in the former, R(t) is considered 

constant over a time window τ and uses a Bayesian statistical method from a Gamma 

Prior. [13] 

Each of these models are described below: 

R0 - Maximum Likelihood Estimator (ML):  

This model developed by White and Pagano assumes that each primary case generates 

secondary cases whose expected value is the reproduction number. [20] Furthermore, it 

also assumes that the primary cases on the first day, generate the subsequent secondary 

cases over the assumed maximal serial interval. For each of the days in the study period 

in turn generate secondary cases over the following days in the serial interval. Given the 
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number of incidence cases during the study period, this method computes the 

reproduction number that will maximize the likelihood function.  

This analysis assumes that the epidemic curve is analyzed from the very first day. If that 

is not the case, the initial R value will be over estimated. This model is built upon the 

fundamental assumption that the number of secondary cases produced by each infected 

individual is Poisson distributed. [20]   In addition, it also assumes that this whole 

process, which starts from a seed number of cases is a closed system.  The assumption of 

the process being a closed system may not be totally realistic if the disease is dispersed 

across the globe.  The results from this method are more reliable when the knowledge of 

the serial interval is well known. [20] 

For simplicity sake, t implicitly refers to one day in this thesis.  Thus, if Nt, t=1, 2, 3, …T 

represents the set of incidence cases generated over a period with the maximal length of 

the serial interval being k, then N0 are initial seed cases that initiate the whole process of 

generating subsequent incidence of cases Nt. [20] 

Since production of secondary cases from a single primary case is assumed to be Poisson 

distributed with parameter R, it then follows that the RV Xt representing the total number 

of secondary cases generated over the maximal serial interval at time t, are also Poisson 

distributed with parameter λt=NtR. [20] 

Additionally, it is assumed that the distribution of cases Xt over the forward serial 

interval denoted by Xts, for t=0,1,2,3…T and s=1,2…k are themselves RVs of a 

multinomial distribution with unknown probability p.  That is Xts, ~ Mult (k, p).  Thus 

𝑋4 = 𝑋456
578 . Moreover, Xts are secondary cases generated on day s from Nt on day t 
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where t=0,1, 2,….,T and s=1,2,…,k where k is the maximal length of the serial interval.   

[20] 

In this this study, based upon documented data from the CDC, the maximum serial 

interval, k, is known.  However, k is varied depending upon the length of the incidence 

data vector used for a particular study. 

The overall likelihood is a product of individual likelihoods for each t and assuming that 

the secondary cases generated for each t are independent, likelihood function L takes the 

following form: [20] 

𝐿 𝑅, 𝑋 , 𝑁", 𝑁8, …𝑁=	, 𝑝8, 𝑝?, … , 𝑝6 =
𝑒AB4 ∙ 𝜆4

E*

𝑋4!
𝑋4!

𝑋48!. 𝑋4?! …𝑋46!
𝑝5
E*H

6

578

=

47"

 

This is a product of two groups of terms with first group from the Poisson PDF and a 

second bracketed term from the multinomial distribution over the serial interval k.  The 𝑝 

terms of a multinomial distribution are constrained by the requirements imposed by the 

first and second axioms of probability.   

There are further simplifications that can be made by observing the final k terms are 

unobservable. Hence the final k terms can be dropped which reduces the number of terms 

to 

 𝑇 − 𝑘 when T>>k.  Thus, the future terms of Xts for t>T and S>0 are unknown and hence 

the last several Xt terms are normalized to conform to the requirement of multinomial or 

binomial RVs. 

By making substitutions, the likelihood reduces to the following compact equation: [20] 



13  

L R 𝐩 = 	
𝑒A∝* ∝4

O*

𝑁4!

=

478

																																															(1)	

𝑤ℎ𝑒𝑟𝑒	 ∝4= 𝑅 𝑁4AV

WXY	(6,4)

V78

𝑝V	 

Since logarithmic functions are monotonic, the original function can be maximized by 

maximizing the logarithm of the likelihood function.  This has the advantage of 

transforming the multiplicative terms to one of summation.  Taking the natural logarithm 

of (1) and simplifying, the likelihood function becomes: [20] 

log L 𝑅" 𝐩 = 𝑙 𝑅" 𝐩 = −∝4+ 𝑁4

=

478

log ∝4 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

This function is a maximum for the unknown parameter R0 when ef
eg
= 0 

𝑑𝑙
𝑑𝑅 = − 𝑁4AV

WXY 6,4

V78

𝑝V	
=

478

+
𝑁4=

478

𝑅"
= 0 

𝑅 =
𝑁4=

478

𝑁4AV
WXY 6,4
V78 𝑝V	=

478
																																							 

R0 - Exponential Growth Method (EG) 

This method developed by Wallinga and Lipstich, uses a Euler-Lotka equation in 

demography which is based on the population growth of females, since the female 

population is considered as the limiting factor. [22] Here the growth rate of females in the 

Euler-Lotka equation is interpreted as the growth in infection. The serial interval 

distribution is assumed known and using this information R is computed for the whole 
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study interval. The EG method requires a scrutiny of the epidemic curve and requires the 

identification of the period in the epidemic curve where the growth is exponential. No 

assumption is made on mixing in the population. These equations presented are defined: 

[22] 

	𝑏 𝑡 = 𝑒A4k𝑏(𝑡)𝑛(𝑎)𝑑𝑎
l

"
																																																																		(3)					 

 
Where b(t) = population birth rate at time t 

n(a) = rate of production of female-offspring 

 

by dividing equation (3) by b(t) which can be taken out of the integral then the equation 

reduces to: [22] 

1 = 𝑒A4k𝑛(𝑎)𝑑𝑎
l

"
																																																							(4) 

If n(a) is integrated over the whole lifespan we obtain the total number of female 

offspring produced by a single mother over her lifespan.: [22] 

𝑅 = 𝑛(𝑎)𝑑𝑎
l

"
 

Although the upper limit on the integral in reality is finite, it can be replaced by ∞ 

without any loss of generality.  Additionally, R can now be interpreted as the 

reproduction number. 

If n(a) is now normalized as below:[22] 

𝑔 𝑎 =
𝑛(𝑎)
𝑛(𝑎)𝑑𝑎l

"

=
𝑛(𝑎)
𝑅 	 
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If we now interpret the ‘age’ of an infection to be the time since infection, then the 

generation interval distribution is equivalent to g(a) above.  Substituting the equation 

above in (4) we obtain: [22] 

1
𝑅 = 𝑒A4k𝑔(𝑎)𝑑𝑎

l

"
 

The right hand side (RHS) of the equation above can be readily recognized as the one-

sided Laplace Transform of the function g(a).  At the same time, the moment generating 

function of an RV x is: [22] 	

𝑀(𝑥) = 𝑒rk𝑔(𝑎)𝑑𝑎
l

"
 

Which is the same as the Laplace transform except with a negative parameter -x. 

R can then be obtained by using a Moment Generating Function M(-r) where r is the 

growth rate. [22] 

𝑅 =
1

𝑀(−𝑟) 

Depending upon the assumed probability distribution for generation time which in turn is 

based upon the disease under study, then different moment generating functions result.  

More details are available in the paper by Wallinga and Lipsitch. [22]  
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R0 - Sequential Bayesian Method (SB) 

The Bayesian statistical method proposed by Bettencourt and Ribeiro, is used estimate R. 

[23]  The infectiousness at a future time which can be the next day is assumed Poisson 

distributed with a certain mean. The expression for the mean has the term R that is to be 

estimated and the number of incidences at the present time. Starting from a gamma 

distributed prior for R the Poisson posterior distribution is updated by applying Bayes 

theorem as each new incident data is included. This updated posterior becomes the prior 

distribution for the next update of the posterior for the following day. As more and more 

incidence data is taken into account R tends to decrease. 

This model implicitly uses an exponential distribution for the generation time and in 

addition it also assumes that there is random mixing in the population.  This method will 

fail when there are gaps in the incidence data, that is periods during which the number of 

observations is 0.  Because of the continuous update made to the prior distribution, it can 

take into account the impact of intervention on a real-time basis. [23] 

This method is similar to the method described for the EpiEstim package (shown below) 

except for the fact that the posterior distribution updates and becomes the prior 

distribution for the computation of the reproduction number for following day.[13, 23] 

The analysis begins with a non-informative prior on the conditional distribution of R.  

The conditional distribution of R given a set of number of incidences up to time t, the 

prior distribution R used on each new day is the posterior distribution from the previous 

day [23] 
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𝑃 𝑅 N", N8, … . , N4

=
𝑃 N4 R, N", N8, … . , N4A8 𝑃 𝑅 N", N8, … . , N4A8

𝑃(N", N8, … . , N4)
……………… . (2) 

More details are available on the mathematical derivation in the Bettencourt and Ribeiro 

paper. [23] 

R0 – Time Dependent Method (TD) 

In this method, proposed by Wallinga & Teunis, the probability that a case on day i was 

infected by a case on prior days j is computed from an assumed serial interval 

distribution. [21] The reproduction number for a particular day’s incidence is then 

computed as the sum of all probabilities from prior incidences that may contributed to the 

day’s incidence under consideration. An average value of reproduction number is then 

computed over all cases that had the same date of onset. This method like others in the 

R0 package assumes that the serial interval distribution is known or at least that it is well 

understood.  The serial interval distribution is dependent upon the outbreak under study.  

Bias can tend to increase when data is aggregated over long intervals. [21] 

This method exploits the fact that serial interval distribution is known for several 

diseases.  Using pairs of cases rather than the entire infection network, it obtains a 

likelihood-based estimates of reproduction number. Let pij be the probability that case i 

has been infected by case j and let w(t) be the known sereial interval distribution, then, 

given their difference in time of symptom onset ti– tj, can be expressed in terms of the 

probability distribution for the generation interval. This distribution for the generation 

interval is available for many infectious diseases, and we denote it by w(τ). The 

probability that case i has been infected by case j is then the probability that case i has 
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been infected by case j divided by the sum of probabilities that case i has been infected 

by any other case k.  Since the distribution of the serial interval is assumed known then 

the expression for pij. [21] 

𝑃V5 =
𝑁V𝑤(𝑡V − 𝑡5)
𝑁V𝑤(𝑡V − 𝑡6)Vv6

 

Where Ni is the number of cases on day i. 

Then the reproduction number Ri is then expressed as: [21] 

𝑅V = 	 𝑃V5
∀5

 

The average reproduction number can now be calculated for the whole period of study: 

[21] 

𝑅 = 	
𝑅V
𝑁V∀V

 

The details of the mathematics underlying this whole derivation is provided in the 

Walling and Teunis paper [21]. 

 

EpiEstim - Bayesian Statistical Inference 

This package also uses a Bayesian statistical technique, which was developed by Anne 

Cori et al., except that the reproduction number is assumed to be constant over a subset of 

period of study termed time window. [13] Thus, this method involves two probability 

distribution, one for prior and the other for posterior. The choice of time window is 
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important so that it neither too small nor too large. The authors provide a guide for the 

proper choice of time window where the total number of incidences in that period is 

greater than a minimum threshold. This model assumes that the transmissibility of the 

disease over a time window is a Poisson distributed.  Infectiousness is assumed to 

coincide with symptom onset. Since the posterior distribution has an analytical 

expression, it is possible to link the expression for the posterior CV (standard deviation 

divided by mean) to the number of incident cases in a time window and then imposing a 

posterior CV smaller than a required value-threshold.  The assumption of infectiousness 

starts with symptom onset although reasonable for diseases such as influenza, is 

positively not true for diseases such as HIV.   

This method estimates the instantaneous reproduction number Rtτ over a period τ as a 

Poisson process. [13] The rate at which new secondary infections are generated at time t 

from a person infected at a prior time 𝑡 − 𝑠 is Rtps where ps is the probability of 

infectiousness at time s.  If the time period	𝑡 − 𝑠	is characterized by a number of discrete 

incidences Ns ,s=0,1,…,𝑡 − 1 then the incidence It is Poisson distributed with a mean 

𝑅4 𝑁4Ax𝑝x4
x78 .   

Let λt = 𝑁4Ax𝑝x4
x78 , then the likelihood function of the number of incidences being Nt 

given prior vector of incidences Ns = (𝑁", 𝑁8, … . , 𝑁4A?, 𝑁4A8): [13] 

𝑃 𝑁4 𝑵𝒔, 𝒑, 𝑅4 =
(𝑅4𝜆4)O*𝑒Ag*B*

𝑁4!
 



20  

Now, for the vector of incidences 𝑵𝝉 = (𝑁4A}~8, 𝑁4A}~?, … , 𝑁4A8, 𝑁4) over a span of time 

𝜏 leading up to time t and assuming a constant reproduction number 𝑅4,} over that time-

span, the likelihood function becomes: [13] 

𝑃 𝑵𝝉 𝑵𝒕A𝝉, 𝒑, 𝑅4,} =
(𝑅4,}𝜆4)O*𝑒Ag*,�B,

𝑁x!

4

x74A}~8

……………… . (2) 

conditional upon a vector of incidences 𝑵𝒕A𝝉 = (𝑁", 𝑁8, … , 𝑁4A}) 

Assuming a Prior for Rt, τ as gamma distributed with parameters α and β, the prior PDF 

P(Rt, τ) is: 

𝑃(𝑅4,}) =
𝑅4,}�A8𝑒

A
g*,�
�

Γ 𝛼 𝛽�  

The posterior probability with this conjugate Prior and with the likelihood function given 

by (2) is: [13] 

𝑃 𝑵𝝉,, 𝑅4,} 𝑵𝒕A𝝉, 𝒑 =
(𝑅4,}𝜆4)O*𝑒Ag*,�B,

𝑁x!

4

x74A}~8

.
𝑅4,}�A8𝑒

A
g*,�
�

Γ 𝛼 𝛽� 	

= 𝑅4,}
�~	 O*+,A8*

,.*+��/ . 𝑒Ag*,�[	 (B*~�+/])*
,.*+��/

𝜆x
O,

𝑁x!

4

x74A}~8

[Γ 𝛼 𝛽�]A8 

It can be easily recognized that the posterior PDF is also gamma distributed with 

parameters: [13] 

𝛼 +	 𝑁x

4

74A}~8

,
1

𝛽A8 +	 𝜆44
x74A}~8
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The expression for the posterior mean of instantaneous reproduction number over the 

time-span τ is: [13] 

𝑅4,} =
𝛼 +	 𝑁x4

74A}~8

𝛽A8 +	 𝜆44
x74A}~8

 

With this method, the authors take the uncertainty of the serial interval distribution by 

estimating the instantaneous reproduction number by drawing a specified number of 

samples, n1, from specified truncated normal distribution around a specified mean.  

These draws are discretized over the serial interval leading up to a day t.  For each sample 

drawn from the truncated normal, the posterior mean over a time-span is computed.  The 

number of samples to be drawn over the study time-span, n2, can also be specified in the 

computer package.  Out of the total 𝑛1 ∗ 𝑛2 

computations of Rt, τ, a mean of the instantaneous Rt,τ is computed.  More details are 

available in the reference. [13] 
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Parameter Inputs: R0 Package  

It is shown in Table 1 the parameter inputs that were made for the following methods: 

ML, EG, SB, and, TD. In addition, we estimate the R value by previously calculated 

mean and standard deviation serial interval estimates. [16] The serial interval estimate is 

provided by Cowling et al. which has been obtained using household influenza 

transmission data. [7] Assuming a Weibull model, they estimate the mean serial interval 

to be 3.6 days with standard deviation of 1.6 days. [7] 

Table 1 

Included are the various parameters supplied by the R package, R0. We provide the definitions 
and our inputs that produce the results presented in this thesis. [14] 
 
 
 
 
 
 

R0 R package Details 

Methods  

 
est.R0.ML 
est.R0.EG 
est.R0.SB 
est.R0.TD 

 
Parameters Definitions Inputs 

epid The epidemic curve our dataset which we call 
casecounts 

mGT 
Generation time 

or 
serial interval 

Mean serial interval is set at 
3.6 with standard deviation 

1.6  
We assume a Weibull 

distribution 

Begin Time estimation begins We set this at 
‘2009-3-28’ 

End Time estimation ends 

We set this at either: [16] 
'2009-4-25' 
'2009-4-26' 
'2009-4-27’ 

or 
'2009-4-28' 
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Parameter Inputs: EpiEstim Package  

Shown in Table 2 are the descriptions of the various parameters supplied by the EpiEstim 

R package, definitions of each of the parameters, and our inputs. For all analyses, we 

assume a mean serial interval of 3.6 with a standard deviation of 1.6. [7] 

Table 2 
EpiEstim R package Details 

Parameters Definitions Input 
I 
 Vector of incidence cases cases 

T. Start, T.End 
 

Vector of positive integers 
consisting of the start and end 

times of each time-window 
for with the reproduction 

number is estimated. 

Varied 
(Refer to appendix for code) 

Method 
 

Method in which the serial 
interval distribution is 

specified 

"UncertainSI" 
 

n1, n2 
 

n1- size of sample of pairs. 
Must be a positive integer 

 
n2- size of the sample drawn 

from each posterior 
distribution. Must be a 

positive integer. 

We set this to be: 
n1= 1000 
n2= 1000 

Mean.SI Mean serial interval 3.6 

Std.SI Standard deviation of the 
serial interval 1.6 

Std.Mean 
Standard deviation of the 

distribution from which the 
serial interval is drawn 

1 

Min.Mean.SI Lower  bound of serial 
interval distribution 3.5 

Max.Mean.SI Upper bound of serial 
interval distribution 3.7 

Min.Std 
Lower bound of standard 

deviation of the SI 
distribution 

1.5 

Max.Std 
Upper bound of standard 

deviation of the SI 
distribution 

1.7 

Included are the various parameters supplied by the R package, EpiEstim. We provide the 
definitions and our inputs that produce the results presented in this thesis. [13] 
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CHAPTER 3: RESULTS  
 
We report an epidemic curve by date of onset shown in Figure 3. There were 1880 

confirmed or probable onset cases with a date of report to the CDC. The first date of 

onset is March 28th, 2009 with an end date of May 3, 2009. The first date of report is 

April 24, 2009 ending on May 8, 2009. Overall, there are 29 days of data used in this 

analysis.  

Figure 3. Epidemic curve of infection for 2009 Influenza Pandemic in the United States. The 
analysis begins on March 28,2009 and ends on May 3, 2009. There are a total of 1880 confirmed 
and probable cases with a total of 29 days of data used. 	

	

As observed in Figure 3, it can be seen that the peak of cases occurred on April 27, 2009.  

In addition, it can be observed that onset case counts decline rapidly as we approach May 
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3, 2009, the final date analyzed. This rapid decline of cases is attributable to reporting lag 

as previously observed by White et al. [16]   

Aim 1: Estimate R0 using a maximum likelihood estimator (ML) included in the R0 

package  

It is shown in Table 3 the R values for the datasets created. Table 3 also includes the 

results computed by White et al. (2009). [16] 

Table 3 
Time Period Mean 

R0 
2.5th  

Percentile 
97.5th 

Percentile 
Total Cases 

Reproduction Numbers mean SI = 3.6 days; σ =1.6 
3/28/09 - 4/25/09 3.54 3.11 4.01 477 
3/28/09 - 4/26/09 3.27 2.93 3.64 667 
3/28/09 - 4/27/09 3.07 2.80 3.36 924 
3/28/09 - 4/28/09 2.58 2.37 2.80 1115 
White et al. (2009) Estimates [16] 
Original Data-Reproduction Numbers R0 mean SI = 3.6 days; σ =1.6 
3/28/09 - 4/25/09 3.48 2.88 3.72 275 
3/28/09 - 4/26/09 3.29 2.85 3.47 392 
3/28/09 - 4/27/09 2.87 2.55 3.06 529 
4/3/09 - 4/28/09 2.59 2.31 2.77 681 

R estimates assume the mean of the serial interval (SI) is 3.6 days with standard deviation (σ) of 
1.6 days. [7] Estimates computed by White et al. are included. Total case counts for each time 
period can also be seen.  
 

It can be observed that with a serial interval assumed at 3.6 days, the reproduction 

numbers vary between 2.58 to 3.54. In addition, as the reporting time period increases, 

this leads to a decrease in the estimate of the reproduction number.   The code 

implemented in order to achieve these results can be found in the appendix.   

Aim 2: Estimate the overall R0 using the EG, TD, ML, and SB methods included in the 
R0 package  
 
Shown in Table 4 are the R values estimated by the R0 computer package. Four separate 

values are reported for each of the four methods implements which include ML, EG, SB, 
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and, TD. The range of the overall time period for the dataset is from March 28, 2009 to 

May 3, 2009.  

             Table 4 
Method  Reproduction 

Number  
3/28/2009 – 4/3/2009 

95% CI 

ML 1.41 [1.32;1.50] 
EG 1.88 [1.81;1.95] 
TD 1.91 [1.52; 2.31] 
SB 1.24 [1.08- 1.40] 

Overall R estimates assume the mean of the serial interval (SI) is 3.6 days with standard deviation 
(σ) of 1.6 days. [7] We implement four methods provided by the R0 package: ML, EG, TD, and, 

SB. [14] 
 
 
The R value reported, in which the TD method is implemented, is an average of the 

reproduction numbers computed over the 29 days. [14] For the SB method, the reported 

estimate was obtained on day 29. Reproduction numbers reported all take on a value 

below 2. The code implemented in order to achieve these results can be found in the 

appendix. 

Aim 3: Estimate the effective reproduction number R(t) through the use of a Bayesian 

statistical method included in the EpiEstim package 

Estimates of the instantaneous reproduction number, R(t) are shown in Table 5 in which 

we define a 7-day time window. The R(t) estimates range from 1.04 to 3.37.  As each 

week progresses in time, both R(t) and the standard deviation of R(t) decreases as 

expected.  
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 Table 5 
Time Period Mean Rt SD Rt 2.5th  Percentile 97.5th Percentile 

Instantaneous Reproduction Numbers Rt 
mean SI = 3.6; SD SI = 1.6 
4/18/09 - 4/25/09 3.37 0.16 3.07 3.69 
4/19/09 - 4/26/09 3.12 0.13 2.87 3.37 
4/20/09 - 4/27/09 2.55 0.09 2.37 2.74 
4/21/09 - 4/28/09 2.12 0.07 1.98 2.26 
4/22/09 - 4/29/09 1.73 0.05 1.63 1.84 
4/23/09 – 4/30/09 1.49 0.04 1.41 1.58 
4/24/09 – 5/1/09 1.32 0.04 1.25 1.39 
4/25/09 – 5/2/09 1.17 0.03 1.10 1.23 
4/26/09 – 5/3/09 1.04 0.03 0.98 1.09 

Instantaneous reproduction number (R(t)) estimates obtained from our dataset. A time window of 
7-days is set. Additionally, reported are the standard deviation of R(t), the 2.5th percentile and the 

97.5th percentile which represent the 95% central range of R(t). 
 

 

Similarly, estimates of R(t) are shown in Table 6 however, here we define a 10-day time 

window. The R(t) estimates range from 1.24 to 3.33.  As each week progresses in time, 

both R(t) and the standard deviation of R(t) decreases as expected. 

Table 6  
Time Period Mean R(t) SD R(t) 2.5th  Percentile 97.5th Percentile 

Instantaneous Reproduction Numbers R(t) 
mean SI = 3.6; SD SI = 1.6 
4/15/09 - 4/25/09 3.33 0.16 3.04     3.65 
4/16/09 - 4/26/09 3.11 0.13 2.87     3.36 
4/17/09 - 4/27/09 2.59 0.10 2.41     2.78 
4/18/09 - 4/28/09 2.15 0.07 2.01     2.29 
4/19/09 - 4/29/09 1.80 0.05 1.69     1.91 
4/20/09 – 4/30/09 1.60 0.04 1.52     1.69 
4/21/09 – 5/1/09 1.48 0.04 1.40     1.55 
4/22/09 – 5/2/09 1.35 0.03 1.28     1.41 
4/23/09 – 5/3/09 1.24 0.03 1.18     1.29 

Instantaneous reproduction number (R(t)) estimates obtained from our dataset. A time window of 
10 days is set. Additionally, reported are the standard deviation of R(t), the 2.5th percentile and 

the 97.5th percentile which represent the 95% central range of R(t). 
 

 

Overall, R(t) estimates are relatively similar irrespective of the time windows which we 

predefined to be either 7 or 10- day periods. 
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CHAPTER 4: DISCUSSION  

Prior to the availability of computer packages such as R0 and EpiEstim, epidemiologists 

would have been required to possess both an in-depth understanding of the mathematical 

methods utilized in epidemiological modeling as well as a certain expertise in 

implementing these methods as computer programs.  This aspect was well-recognized by 

Dr. Manoj Gambhir in his seminal paper “Infectious Disease Modeling Methods as Tools 

for Informing Response to Novel Influenza Viruses of Unknown Pandemic Potential”. 

[24] The availability of ready-made computer packages obviates the need for 

epidemiologists to be expert programmers and bridges the gap which currently exists 

between mathematical modelers and public health practitioners. 

In addition, as the use of these packages becomes familiar and widespread, organizations 

such as the CDC will potentially have access to more up to date information needed to 

inform decision making during public health emergencies.  This is because at present, the 

public health scientists and practitioners at the CDC rely upon outside entities and 

organizations to estimate these parameters which can be time-consuming and inefficient 

during an epidemic/pandemic outbreak. 

Below, shown in Table 7 consists of all estimates computed in this thesis and estimates 

reported by Biggerstaff et al. and White et al. [9, 16] 

As displayed in Table 3, R values computed using the ML method in the R0 package 

closely agree with the results White et. al. obtained in their paper.  The results between 

the R0 package and the original White paper are similar, supporting the conclusion that 

the the implementation of the ML method in the R0 package closely matches the 

implementation in the technical paper. This is apparent with a reproduction estimate of 
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2.58 for the time period starting on March 28 and ending on April 28 compared to the 

White et al estimate of 2.59 for the same time period. [16] 

   Table 7.  
R package: R0 

R Estimate 
ML method 
Time period: 

3/28/09- 4/28/09 

2.58 

White et al. [16] 

R0 Estimate 
ML method 
Time period: 

3/28/09- 4/28/09 

2.59 

R package: R0 
R Estimate 
ML method 
Time period: 

3/28/09- 5/3/09 

1.41 

R package: R0 
R Estimate 
EG method 

Time period: 
3/28/09- 5/3/09 

1.88 

R package: R0 
R Estimate 
TD method 

Time period: 
3/28/09- 5/3/09 

1.91 

R package: R0 
R Estimate 
SB method 

Time period: 
3/28/09- 5/3/09 

1.24 

R package: EpiEstim 
R(t) Estimate 

Time window: 7 days 

1.04 – 3.37 

R package: EpiEstim 
R(t) Estimate 

Time window: 10 days 

1.24 – 3.33 

Biggerstaff et al. [9] 
 R estimate 

1.46 

Comparison table of all estimates computed 
 in this thesis and estimates found in the literature. 
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These estimates of 2.58 and 2.59 [16] in comparison to other estimates found, which are 

below 2 seen in Table 7, can be attributed to the set time period which was implemented. 

For instance, once we expand this time period to end on May 3, we compute a R value of 

1.41 which is substantially lower and more closely related to the R value of 1.46 found in 

the Biggerstaff et al. meta-analysis.  

Shown in Table 4 and Table 7, the estimated values of the R value by the four methods 

are quite apparent. The SB method which continuously updates the posterior distribution 

each day from the prior the day before, provides the lowest R value,1.24, This could be 

attributed to the fact that by doing so this method is implicitly incorporating the impact of 

real-time intervention.  The ML method provides the next lowest estimate since it does 

not restrict itself to the exponential growth period of the disease as the two other methods 

do.  The TD and the EG methods provide the highest estimates since they focus upon the 

period of exponential growth.  Nevertheless, the median value of 1.63 for the four 

methods is quite comparable to the value of 1.46 obtained by Biggerstaff et. al. in their 

meta- analysis. During an emergency, it is recommended that the CDC estimate R values 

utilizing all four methods implemented in the R0 package. This is since each estimate 

depends on the method implemented and variation is inevitable. Furthermore, such small 

differences, nevertheless can lead to large variations in the assessment of required 

efficacy in interventions. [14] This can easily be done by using the Estimate.R function 

which enables the user of the R0 package to estimate the reproduction numbers for one 

incidence dataset using several methods. [14] This code can be seen in the appendix.  
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The R(t) estimates through the use of the EpiEstim package, obtained for both the 7-day 

and 10-day time windows somewhat parallel one another except for the fact that R(t) 

computed for the weekly time period decreases more rapidly therefore, reaching a lower 

minimum. These R(t) estimates using the Bayesian statistical method although, not 

exactly comparable to the results found by Sugimoto et al. (R(t): 1.4-3.3) [11] (and 

Lessler et al. ( R(t)= 1.3-2.0) [12] since both studies take place in a camp based setting 

and school setting respectively and not a large scaled population setting nevertheless, are 

quite similar. This is especially true in comparison to the Sugimoto et al. estimates. 

Finally, it is important to note, that the estimation of R(t) provides important insight into 

the temporal changes in transmission of a disease during a pandemic. However, the 

interpretation of these time varying trends is not always straightforward. [13] These 

changes in the reproduction number, as demonstrated, can be due to decreased 

susceptibility in the population, changes in transmissibility, and changes in contact 

patterns within the affected population among other possibilities. [13] 

It has been shown in the risk assessment produced by Reed et al. of the CDC, that 

estimates of R, which were computed through the use of the R0 package in this thesis, that 

are between 1.0- 1.7 are classified as having low to moderate transmissibility of 

influenza. [25] Further, R greater than or equal to 1.8 is considered as having moderate to 

high transmissibility potential. The estimates computed by the implementation of the ML 

(R0 = 1.35) and SB (R0 = 1.16) methods shows this pandemic to potentially have low to 

moderate severity. [25] In contrast, the estimates computed by the EG (R0 = 1.90) and 

TD (R0 = 1.91) methods shows that this pandemic could have moderate to high severity. 

[25] Overall, if we take the median of all four estimates we compute an R value of 1.63. 
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this estimate and the estimate found in the Biggerstaff et al. meta-analysis places this 

pandemic to potentially having low to moderate severity at such an early phase of this 

pandemic. [25] This is comparable to what Reed et al. report in which the 2009 pandemic 

was classified as moderate to low severity as well. [25] It is important to note that the 

various estimates presented in this thesis vary between mostly having low to moderate 

transmissibility and some occurring on the lower spectrum of having moderate to high 

transmissibility. Thus, it is important, during an epidemic, to compute these estimates 

using several methods in order to make comparisons to ensure proper conclusions are 

made.  

Also, based on the risk assessment by Reed et al., a transmissibility scale from 1 to 5 was 

described in which a value of 1 was defined as having a reproduction number less than or 

equal to 1.1 and a value of 5 was defined as having a reproduction number greater than or 

equal to 1.8. [25] 

With a median of 1.63 computed from all four estimates implemented in the R0 package, 

the value on the transmissibility scale is 4 which results in a symptomatic attack rate of 

21-24% of the total population, 31-35% in a school setting, and 21-24% at a workplace 

setting. [25] In contrast, the estimate reported by Biggerstaff et al. [25] of 1.46 has a 

value of  3 on the transmissibility scale. This in turn results in a symptomatic attack rate 

of 16-20% of the total population, 21-25% in a school setting, and 16-20% at a workplace 

setting. As the attack rate increases, the quicker it is to reach the peak number of cases as 

a result of such diseases.  Furthermore, these results in comparison are quite similar.   

  Knowledge such as this can immensely aid public health practitioners in having the 

ability to make decisions during early phase pandemic planning in order to quickly 
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mitigate against such diseases. For instance, for low to moderate severity, the CDC 

recommends voluntary home isolation of ill persons, selective school dismissals in 

facilities with children at high risk for severe influenza complications, and 

recommendation for vaccination which is considered the main tool in reducing the risk of 

acquiring infection. [26]  

 

Limitations and Observations 

All methods described in this thesis, are fundamentally dependent upon the quality of the 

onset and reported data time series collected by organizations such as the CDC.  In this 

study, which used the latest available data for the 2009 Influenza Pandemic in the United 

States, the dataset is still deficient in that not all onset dates had a corresponding report 

date and vice versa.  Despite this however, it needs to be stressed that it does not detract 

from the overall value of neither this study or the ones performed by White et al. 

Before performing any study and using these R packages, it is essential to scrutinize the 

data and undertake any modifications necessary.  Since onset times are of interest, a more 

accurate set of incidence time series could be developed by imputing onset times by 

examining report delays and then based upon that adjusting incidence numbers which do 

not have onset dates. In addition, changes in the reporting rate of cases can significantly 

impact estimated if it is not constant over the entire outbreak. This can lead to 

underestimation of Rif the reporting rate decreases.  

Another major factor which fundamentally impacts the study is the knowledge of the 

mean serial interval and standard deviation.  These in turn determine the serial interval 
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distribution.  The assumed PDF of the serial distribution can also impact the results 

obtained. 

For example, the serial interval mean was estimated to be 3.6 days however, if this 

estimate is changed, this will significantly impact the resulting reproduction number.  It 

can be observed that a lower mean for the serial interval which in turn affects the serial 

interval distribution has the effect of dramatic reduction in reproduction number. 

For the Bayesian statistical method another factor that impacts the results is the 

magnitude of time window chosen.  Generally, a larger time window will smooth out the 

estimates however, a smaller time window can provide more frequent updates of the 

posterior distribution. (refer to table in appendix) 

The initial prior distribution along with the likelihood function are of great importance in 

the Bayesian statistical method since it determines the subsequent trajectory of 

calculations.  The more informative the prior distribution, then more likely it is to glean 

insight into the dynamic of the disease. 

 

Conclusion 

This study has both demonstrated the use of and further validated the two computer 

packages that are now available for general use by non-modelers.  Although the use of 

these packages still requires a certain minimum knowledge of statistical methods, the 

availability of these packages vastly improves the tools now at the disposal of public 

health practitioners during an epidemic/pandemic.  Further studies should be performed 

to both validate and demonstrate the use of these models for other diseases as well as for 

other datasets. 
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Figures:  

 

	

Figure 1: Confirmed and probable cases plotted by onset time occurring in the United States. 
First date of onset is March 28, 2009 ending on May 3, 2009. It can be observed that onset times 
rapidly decline as we approach the final onset date. There were 1738 confirmed cases, 142 
probable cases, and a total of 1880 confirmed and probable cases. 
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Figure 2: The average reporting delay by days to the CDC of cases with a known date of onset is 
shown. It can be observed that the peak reporting delay between onset and report date occurs on 
April 6, 2009. As time progresses, reporting delay rapidly declines. 
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Figure 3. Epidemic curve of infection for 2009 Influenza Pandemic in the United States. The 
analysis begins on March 28,2009 and ends on May 3, 2009. There are a total of 1880 confirmed 
and probable cases with a total of 29 days of data used. 	
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Tables: 

Table 1: Included are the various parameters supplied by the R package, R0. We provide 
the definitions and our inputs that produce the results presented in this thesis. [14] 

 

 

 

 

 

 

 

 

 

 

R0 R package Details 

Methods  

 
est.R0.ML 
est.R0.EG 
est.R0.SB 
est.R0.TD 

 
Parameters Definitions Inputs 

epid The epidemic curve our dataset which we call 
casecounts 

mGT 
Generation time 

or 
serial interval 

Mean serial interval is set at 
3.6 with standard deviation 

1.6  
We assume a Weibull 

distribution 

Begin Time estimation begins We set this at 
‘2009-3-28’ 

End Time estimation ends 

We set this at either: [16] 
'2009-4-25' 
'2009-4-26' 
'2009-4-27’ 

or 
'2009-4-28' 
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Table 2 Included are the various parameters supplied by the R package, EpiEstim. We 
provide the definitions and our inputs that produce the results presented in this thesis. 
[13] 
 

EpiEstim R package Details 

Parameters Definitions Input 
I 
 Vector of incidence cases cases 

T. Start, T.End 
 

Vector of positive integers 
consisting of the start and end 

times of each time-window 
for with the reproduction 

number is estimated. 

Varied 
(Refer to appendix for code) 

Method 
 

Method in which the serial 
interval distribution is 

specified 

"UncertainSI" 
 

n1, n2 
 

n1- size of sample of pairs. 
Must be a positive integer 

 
n2- size of the sample drawn 

from each posterior 
distribution. Must be a 

positive integer. 

We set this to be: 
n1= 1000 
n2= 1000 

Mean.SI Mean serial interval 3.6 

Std.SI Standard deviation of the 
serial interval 1.6 

Std.Mean 
Standard deviation of the 

distribution from which the 
serial interval is drawn 

1 

Min.Mean.SI Lower  bound of serial 
interval distribution 3.5 

Max.Mean.SI Upper bound of serial 
interval distribution 3.7 

Min.Std 
Lower bound of standard 

deviation of the SI 
distribution 

1.5 

Max.Std 
Upper bound of standard 

deviation of the SI 
distribution 

1.7 
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Table 3: R estimates assume the mean of the serial interval (SI) is 3.6 days with standard 
deviation (σ) of 1.6 days. [7] Estimates computed by White et al. are included. Total case 
counts for each time period can also be seen.  
 

Time Period Mean 
R0 

2.5th  
Percentile 

97.5th 
Percentile 

Total Cases 

Reproduction Numbers mean SI = 3.6 days; σ =1.6 
3/28/09 - 4/25/09 3.54 3.11 4.01 477 
3/28/09 - 4/26/09 3.27 2.93 3.64 667 
3/28/09 - 4/27/09 3.07 2.80 3.36 924 
3/28/09 - 4/28/09 2.58 2.37 2.80 1115 
White et al. (2009) Estimates [16] 
Original Data-Reproduction Numbers R0 mean SI = 3.6 days; σ =1.6 
3/28/09 - 4/25/09 3.48 2.88 3.72 275 
3/28/09 - 4/26/09 3.29 2.85 3.47 392 
3/28/09 - 4/27/09 2.87 2.55 3.06 529 
4/3/09 - 4/28/09 2.59 2.31 2.77 681 
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Table 4: Overall R0 estimates assume the mean of the serial interval (SI) is 3.6 days with 
standard deviation (σ) of 1.6 days. [7] We implement four methods provided by the R0 
package: ML, EG, TD, and, SB. [14] 
 
 

Method  Reproduction 
Number  

3/28/2009 – 4/3/2009 

95% CI 

ML 1.41 [1.32;1.50] 
EG 1.88 [1.81;1.95] 
TD 1.91 [1.52; 2.31] 

SB 1.24 [1.08- 1.40] 
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Table 5: Instantaneous reproduction number (R(t)) estimates obtained from our dataset. 
A time window of 7-days is set. Additionally, reported are the standard deviation of R(t), 
the 2.5th percentile and the 97.5th percentile which represent the 95% central range of 
R(t). 
 

Time Period Mean 
R(t) 

SD 
R(t) 

2.5th  Percentile 97.5th Percentile 

Instantaneous Reproduction Numbers R(t) 
mean SI = 3.6; SD SI = 1.6 
4/18/09 - 4/25/09 3.37 0.16 3.07 3.69 
4/19/09 - 4/26/09 3.12 0.13 2.87 3.37 
4/20/09 - 4/27/09 2.55 0.09 2.37 2.74 
4/21/09 - 4/28/09 2.12 0.07 1.98 2.26 
4/22/09 - 4/29/09 1.73 0.05 1.63 1.84 
4/23/09 – 4/30/09 1.49 0.04 1.41 1.58 
4/24/09 – 5/1/09 1.32 0.04 1.25 1.39 
4/25/09 – 5/2/09 1.17 0.03 1.10 1.23 
4/26/09 – 5/3/09 1.04 0.03 0.98 1.09 
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Table 6: Instantaneous reproduction number (R(t)) estimates obtained from our dataset. A time 
window of 10 days is set. Additionally, reported are the standard deviation of R(t), the 2.5th 
percentile and the 97.5th percentile which represent the 95% central range of R(t). 
 

 

 
Time Period Mean 

 R(t) 
SD  
R(t) 

2.5th  Percentile 97.5th Percentile 

Instantaneous Reproduction Numbers R(t) 
mean SI = 3.6; SD SI = 1.6 
4/15/09 - 4/25/09 3.33 0.16 3.04     3.65 
4/16/09 - 4/26/09 3.11 0.13 2.87     3.36 
4/17/09 - 4/27/09 2.59 0.10 2.41     2.78 
4/18/09 - 4/28/09 2.15 0.07 2.01     2.29 
4/19/09 - 4/29/09 1.80 0.05 1.69     1.91 
4/20/09 – 4/30/09 1.60 0.04 1.52     1.69 
4/21/09 – 5/1/09 1.48 0.04 1.40     1.55 
4/22/09 – 5/2/09 1.35 0.03 1.28     1.41 
4/23/09 – 5/3/09 1.24 0.03 1.18     1.29 
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Table 7: Comparison table of all estimates computed 
 in this thesis and estimates found in the literature. 
 

R package: R0 
R Estimate 
ML method 
Time period: 

3/28/09- 4/28/09 

2.58 

White et al. [16] 

R0 Estimate 
ML method 
Time period: 

3/28/09- 4/28/09 

2.59 

R package: R0 
R Estimate 
ML method 
Time period: 

3/28/09- 5/3/09 

1.41 

R package: R0 
R Estimate 
EG method 

Time period: 
3/28/09- 5/3/09 

1.88 

R package: R0 
R Estimate 
TD method 

Time period: 
3/28/09- 5/3/09 

1.91 

R package: R0 
R Estimate 
SB method 

Time period: 
3/28/09- 5/3/09 

1.24 

R package: EpiEstim 
R(t) Estimate 

Time window: 7 days 

1.04 – 3.37 

R package: EpiEstim 
R(t) Estimate 

Time window: 10 days 

1.24 – 3.33 

Biggerstaff et al. [9] 
 R estimate 1.46 
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APPENDECES  

Appendix A: R0 Package Code 

library(R0) 
 
#dates inputted  
date <- as.Date(c('2009-3-28','2009-3-30','2009-4-3', '2009-4-4','2009-4-6', '2009-4-
8','2009-4-9','2009-4-10','2009-4-11','2009-4-12', '2009-4-15','2009-4-16','2009-4-
17','2009-4-18','2009-4-19','2009-4-20','2009-4-21','2009-4-22','2009-4-23','2009-4-
24','2009-4-25','2009-4-26','2009-4-27','2009-4-28','2009-4-29','2009-4-30','2009-5-
1','2009-5-2','2009-5-3')) 
 
#case counts 
casecounts<- c(1, 1, 1, 3,2, 
1,1,1,1,2,4,1,6,6,11,27,13,54,94,101,146,190,257,191,183,139,176,146,121) 
 
#concatenating vector in R 
names(casecounts) <- date 
#print casecounts to check  
casecounts 
 
#save  
save(casecount, file="casecount.RData")  
#load casecounts 
load(file="casecount.RData")  
 
 
ML Method  
mGT<-generation.time("weibull", c(3.6, 1.6)) 
est.R0.ML(casecounts,mGT, begin='2009-3-28', end='2009-5-3’') 
 
 
EG Method 
mGT<-generation.time("weibull", c(3.6, 1.6)) 
est.R0.EG(casecounts, mGT, begin = '2009-3-28', end = '2009-5-3') 
 
TD Method  
mGT<-generation.time("weibull", c(3.6, 1.6)) 
TD <- est.R0.TD(casecounts, mGT, begin='2009-3-28', end='2009-5-3', nsim=10000) 
 
SB Method 
mGT <- generation.time("weibull", c(3.6,1.6)) 
SB <- est.R0.SB(casecounts, mGT) 
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Estimate.R Function (Estimate R0 for one incidence dataset using several methods.) 
mGT<-generation.time("gamma", c(3.6, 1.6)) estR0<-estimate.R(casecounts, mGT, 
begin='2009-3-28', end='2009-5-3', methods=c(""ML", EG",  "TD", "SB")) 
  
 
 
 
Appendix B: EpiEstim Package Code 

library(EpiEstim) 

cases<- c(1, 1, 1, 3,2, 
1,1,1,1,2,4,1,6,6,11,27,13,54,94,101,146,190,257,191,183,139,176,146,121) 
 

#7-day Time Windows 
EstimateR(cases, T.Start=14:22, T.End=21:29, method="UncertainSI", 
          Mean.SI=3.6, Std.Mean.SI=1, Min.Mean.SI=3.5, Max.Mean.SI=3.7, 
          Std.SI=1.6, Std.Std.SI=0.5, Min.Std.SI=1.5, Max.Std.SI=1.7, 
          n1=1000, n2=1000, plot=TRUE) 
 
#10-day Time Windows 
EstimateR(cases, T.Start=11:19, T.End=21:29, method="UncertainSI", 
          Mean.SI=3.6, Std.Mean.SI=1, Min.Mean.SI=3.5, Max.Mean.SI=3.7, 
          Std.SI=1.6, Std.Std.SI=0.5, Min.Std.SI=1.5, Max.Std.SI=1.7, 
          n1=1000, n2=1000, plot=TRUE) 
 


