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Abstract

Enriching Open-Domain Dialogue Models with Predictive Social Commonsense
By Sarah E. Finch (Fillwock)

The advancement of open-domain dialogue systems represents a significant goal of artificial
intelligence, aiming to create more engaging and human-like interactions between machines
and users. A key challenge in this domain is equipping these systems with a profound
understanding of human experiences, the nuances of which are often subtly implied rather
than explicitly stated in conversations. Social commonsense resources aim to support the
comprehension of human experiences, including capturing commonsense knowledge about
people’s motivations, the causes of events, emotions, and more. However, the existing datasets
and methodologies for social commonsense integration into dialogue applications suffer from
low coverage, sparse detail, and contextual redundancy, thereby impeding their capability to
promote meaningful dialogue interactions. Recognizing these limitations, this dissertation
explores the enhancement of open-domain dialogue systems through improved integration of
social commonsense knowledge.

This dissertation is structured around three core objectives: developing a reliable evaluation
framework for assessing commonsense capability in dialogue models, creating a novel dataset
of contextually novel commonsense inferences tailored for dialogue, and integrating these
inferences into dialogue models to enhance their conversational abilities. The first objective
is addressed through the introduction of Annotation of Behaviors in Chat Evaluation (ABC-
Eval), a binary behavior-based evaluation framework that offers a more objective and grounded
assessment of dialogue models’ commonsense reasoning capabilities. The second objective
is achieved with the development of ConvoSense, which is the largest dataset of its kind to
provide novel commonsense inferences designed specifically for dialogue contexts. Finally, the
third objective culminates in the presentation of Commonsense Inference Generate-Select-
Respond (CSI-GSR), a novel approach that leverages the rich pool of commonsense inferences
from ConvoSense to generate dialogue responses.

The findings of this dissertation highlight the current capabilities of LLM-based dialogue
models and the benefits of incorporating predictive commonsense inferences for response
guidance. The work on ABC-Eval reveals that commonsense errors are highly prevalent
in neural dialogue systems, thus highlighting the importance of improving commonsense
capabilities of dialogue models. The work on ConvoSense produces powerful resources and
models for capturing multi-faceted and predictive social commonsense inferences for dialogue.
The work on CSI-GSR showcases the utility of these multi-faceted and predictive social
commonsense inferences for advancing response specificity to its dialogue context. Collectively,
this body of work supports the pursuit of more nuanced, contextually aware, and intelligent
human-computer interactions.
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Chapter 1

Introduction

1.1 Motivation

Open-domain human-computer dialogue is a long-standing research objective in Artificial

Intelligence (AI). To meet this objective, automated dialogue systems must engage in open-

ended conversation with a human user, adapting fluently and intelligently to the topics that

are introduced. In open-domain dialogue, there are no constraints on the topics that can be

covered, requiring models that are able to carry on conversation across all dialogue situations.

However, one commonality underlying open-ended conversation is that human users exhibit

a preference for engaging with dialogue systems on discussions about life experiences and

personal information, which has been shown in both human-human chat [13, 58], in chat

between humans and embodied AI characters [72], and through experimentation during the

3rd Amazon Alexa Prize Socialbot Grand Challenge in 2019 [16]. Therefore, it becomes

evident that open-domain dialogue systems must possess the ability to comprehend and

reason about users’ experiences, intentions, and emotions to foster fulfilling interactions.

The dialogue depicted in Figure 1.1 serves as a compelling illustration of the role of

experiential reasoning in fostering intelligent human-computer interactions. For instance,

when the user expresses their fondness for the movie “Dune” in Turn 1, the system can

1
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I really like the movie Dune.

Everyone’s raving about that recently! Have you 
watched Part Two?

No, I’ve been too busy with work.

likes science fiction

will watch movie sequel  

Attribute:

Future event:

has watched Dune before Prerequisite:

Oh, that’s too bad. Do you have a big project 
deadline coming up?

upcoming project deadline

to be a good employee

Cause:

Motive:

busy with workReaction:

1

2

3

4

[a]
[b]

[c]

[d]
[e]

[f]

Figure 1.1: Example dialogue demonstrating the utility of commonsense for intelligent
interactions.

infer various relevant details about the user’s movie-watching preferences ([a]) and make

predictions about likely future plans of the user ([b]). These inferences enrich the contextual

understanding of the user’s input and facilitate the generation of insightful follow-up responses,

such as inquiring about the user’s thoughts on the movie’s sequel in Turn 2. Similarly, when

the user mentions being occupied with work in Turn 3, the system can contemplate likely

reasons behind their busy schedule such as an upcoming project deadline ([d]) and can infer

that the user is motivated to be a good employee ([e]), leading to a more nuanced discussion

about work-related matters.

In human-human dialogues, the ability to draw such inferences stems from shared world-

views, enabling individuals to comprehend, deduce, and predict based on mutual experi-

ences—a phenomenon commonly known as “commonsense”, particularly “social commonsense”

[10]. Speculative commonsense inferences, which provide plausible information based on

known facts, greatly enhance dialogue interactions by enabling intelligent follow-up engage-

ments. Therefore, for dialogue models to achieve human-like understanding and adeptness in
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navigating diverse conversation scenarios, they benefit from possessing robust capabilities in

generating predictive social commonsense inferences related to shared human experiences

commonly encountered in dialogue.

Over time, there has been a concerted endeavor to create datasets that facilitate com-

monsense reasoning. Early works focused on representing semantic characteristics of words

and their relationships to one another, including WordNet [12], FrameNet [2], and Concept-

Net [82]. Lately, efforts have shifted toward building datasets encompassing social- and

event-based commonsense, such as ATOMIC [32], that operate on phrasal descriptions of

situations. This new wave of datasets targets complex human concepts, including emotions,

desires, and motivations. Datasets such as ATOMIC hold promise for dialogue applications

as they provide insights directly relevant to human experience; however, a drawback lies

in their lack of contextual awareness as they hinge on independent situational descriptions

for commonsense inferences. This limitation poses challenges for dialogue-oriented tasks

because utterances should not be viewed in isolation but must be interpreted within their

context [62, 35]. While there have been several attempts to create datasets that facilitate

commonsense inferences specifically for dialogue contexts, existing datasets tend to cover only

a small set of commonsense types, lack in-depth details [19], and restate information already

present in the conversation rather than predicting novel information [21] (Fig. 1.1, [c], [f]).

The limitations of these commonsense resources lead to downstream impacts on the

works that attempt to leverage the commonsense knowledge towards improving dialogue

models. The majority of such work has focused on utilizing static, entity-based resources like

ConceptNet, rather than social commonsense resources. For those works that do recognize

the utility of social commonsense, they primarily narrow their focus to empathetic dialogue,

which tend to focus only on a subset of social commonsense that is related to emotion

prediction. Only a small handful of works approach the task of improving open-domain

dialogue models by using social commonsense [111, 8]. Their results present evidence that

social commonsense has a positive impact on dialogue models; however, their strategies for
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commonsense integration are limited. When generating a response, these models often only

consider a single commonsense candidate, even though social commonsense covers a wide

range of types that are not all equally applicable to each dialogue situation [111].

Furthermore, it is a recurring theme in existing commonsense-augmented dialogue works

to fail to perform an evaluation of the commonsense ability of their approaches, instead

focusing on other aspects of the response such as its quality or relevance to the context.

Those works that do attempt to evaluate the responses for their commonsense adherence

use methods that fail to provide a clear and complete definition of commonsense [110],

often polluting the definition with other aspects such as general context appropriateness

and relevance [113]. Consequently, it impossible to know where the field stands in terms of

commonsense capability of dialogue systems.

Recognizing the limitations in existing commonsense evaluation, resources, and models for

dialogue, this dissertation aims to address each in turn, culminating in a novel dialogue model

that leverages a powerful predictive social commonsense generator and whose capabilities can

be reliably evaluated. By proposing new approaches to improve commonsense evaluation of

dialogue models, commonsense inference prediction for dialogue, and commonsense integration

into dialogue models, this dissertation contributes to the advancement of open-domain dialogue

modeling.

1.2 Central Thesis and Research Questions

The central thesis of this dissertation is that social commonsense knowledge serves as a rich

reservoir of semantic material for open-domain dialogue. To be effective as semantic material

for dialogue responses, social commonsense inferences must be multi-faceted (i.e. are diverse

and cover a wide range of types) and must be contextually novel (i.e. predictive of new

information with respect to the dialogue context). When this is true, then social commonsense

can provide a spectrum of predictive ideas that dialogue models can use for generating highly
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contextualized follow-up responses. By considering such social commonsense inferences as a

pool of content candidates for response generation, dialogue models can produce responses that

are not only coherent and contextually appropriate but also exhibit a deeper understanding

of content of the conversation, like that observed in Figure 1.1.

This dissertation addresses the central thesis by addressing the following questions:

Research Questions

1. Does a binary behavior-based evaluation framework result in more
reliable and informative evaluation of dialogue model characteris-
tics?

Ch. 3

2. Is it possible to reliably obtain multi-faceted and contextually
novel social commonsense inferences for dialogue?

Ch. 4

3. Does access to a multi-faceted and contextually novel social com-
monsense pool improve dialogue responses?

Ch. 5

1.3 Research Contributions

In summary, the research contributions of the studies in this dissertation are as follows.

1.3.1 Commonsense Evaluation for Dialogue Models (Ch. 3)

I propose Annotating Behaviors in Chat Evaluation (ABC-Eval), a binary behavior-based

evaluation of dialogue model characteristics. It is a human evaluation method that specifically

measures the rate of behaviors including commonsense contradictions, irrelevant responses,

and self-contradictions. Compared to previous evaluation methods, my research shows that

ABC-Eval offers an improved method for quantifying dialogue model characteristics, including

commonsense capability of dialogue models. The contributions are:

• Design of 16 behavior labels for dialogue model evaluation, along with training exercises
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with automatic feedback for annotator onboarding.

• Enhanced interpretability, predictive power for dialogue quality, and sensitivity to

between-bot differences relative to existing Likert and Comparative evaluations.

• Capability to clearly reveal that commonsense contradictions are one of the largest

sources of errors produced by neural dialogue models.

1.3.2 Commonsense Dataset for Dialogue Models (Ch. 4)

I introduce ConvoSense, a dataset rich in commonsense inferences tailored for dialogue that

is automatically curated using Large Language Models. Using this ConvoSense dataset, this

study also trains smaller yet still highly capable generative commonsense inference models

for dialogue. The contributions are:

• Dataset of commonsense inferences for dialogue that surpasses existing datasets in

terms of contextual novelty and is competitive in terms of inference reasonability.

• Improved coverage of diverse commonsense inferences for dialogue, which is crucial for

representing the multi-faceted nature of commonsense reasoning.

• A generative commonsense inference model that surpasses existing models in both

novelty and reasonability of the outputted inferences.

1.3.3 Commonsense-Augmented Dialogue Model (Ch. 5)

I present Commonsense Inference Generate-Select-Respond (CSI-GSR), a novel three-stage

approach based on Large Language Models (LLMs) for generating dialogue responses from

ConvoSense inferences, and compare it against the native dialogue capabilities of prominent

LLMs, including ChatGPT3.5 and Llama2. The contributions are:

• Enhancement of response specificity and informativeness while maintaining overall

response quality.



7

• Evaluation of dialogue capabilities of native LLMs, including commonsense contradic-

tions, response relevance, and response informativeness.

1.4 Organization

The remainder of this dissertation is organized as follows. Chapter 2 summarizes existing

work in commonsense for dialogue, covering resources, models, and evaluation. Chapter

3 presents ABC-Eval, the behavior-based dialogue evaluation method that introduces a

reliable commonsense evaluation for dialogue. Chapter 4 presents ConvoSense, the dataset of

commonsense inferences for dialogue that achieves the best contextual novelty and coverage.

Chapter 5 presents CSI-GSR, a novel select-and-respond approach to commonsense-augmented

dialogue models that leverages ConvoSense inferences, and compares it against the native

dialogue capabilities of prominent LLMs. Chapter 6 concludes the dissertation.



Chapter 2

Background

2.1 Large Language Models

Large Language Models (LLMs) have emerged as a transformative force in the field of

natural language processing, exhibiting an unprecedented ability to perform a wide array

of tasks through instructional prompting [22, 39, 114, 51]. LLMs utilize an auto-regressive

Transformer architecture [89] which is pretrained on a massive corpus of self-supervised data,

where the primary training objective is to predict the next word given previous context. The

advancements of modern LLMs arise from the size of their pretraining data and the size of the

models themselves (billions to hundreds of billions of parameters) [85]. The greatest success

to date has come from closed-source LLMs [92], such as OpenAI’s GPT [5] and Google’s

Gemini [84], although much effort is being put into developing competitive open-sourced

models, such as Meta’s Llama2 [85]. LLMs are often finetuned on instruction datasets, such

as ChatGPT and Llama2-Chat, which teach the LLM to operate in a collaborative interface

rather than in a text-completion interface. Special finetuning techniques are employed to

optimize instruction-finetuned LLMs, such as Reinforcement Learning with Human Feedback

which improves generation capabilities by aligning outputs to human preference data [61].

These finetuning techniques result in LLMs with high performance on completing requested

8
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tasks given just a natural language prompt that contains textual descriptions, instructions,

and optional examples of the desired outcomes.

LLMs have demonstrated remarkable capabilities in various dialogue applications. For

one, studies have shown that LLMs can create datasets that are on par with, or even superior

to, established datasets such as DailyDialog, BlendedSkillTalk, and TopicalChat [38, 9]. This

ability not only highlights the inherent dialogue generation proficiency of LLMs but also

underscores their potential as efficient tools in dialogue system development. Furthermore,

the application of LLMs as dialogue agents has also seen significant advancements, often

surpassing the performance of state-of-the-art models that were specifically trained on dialogue

datasets. For instance, providing GPT-3 Davinci with in-context examples of empathetic

dialogues has yielded better outcomes than models trained directly on empathetic dialogue

datasets [41]. Furthermore, a modular approach to harnessing LLMs for dialogue generation

has been explored, wherein the dialogue generation process is segmented into multiple phases,

such as dialogue history summarization and information retrieval. Research indicates that

such modular frameworks achieve superior performance compared to their non-modular

counterparts [40, 106, 50, 91].

2.2 Commonsense Resources for Dialogue

Early work on commonsense focused predominantly on lexical, taxonomic, semantic, and

physical properties related to entities and verbs, such as the widely recognized WordNet [12],

FrameNet [2], and ConceptNet [81].

WordNet Fellbaum [12] present a large database of the English language, WordNet,

covering nouns, verb, adjectives, and adverbs. WordNet groups English words into sets of

synonyms called synsets, which are characterized by concise definitions and contain semantic

relations to other synsets. These semantic relations cover categories including definitional

(synonymy, antonymy), taxonomic (hyponymy/hypernymy), physical (meronymy/holonymy),
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manner (troponymy), and causal (entailment).

FrameNet Baker et al. [2] capture the linguistic frames underlying word usage in natural

language in their FrameNet resource. A “frame” refers to a conceptual structure that

represents a particular scenario, situation, or concept. This structure includes a collection of

slots that represent the roles that different elements play in the concept being represented.

For example, in the frame of “Eating”, the slots include the eater, the food, the manner of

eating, and so on. Each frame is associated with a number of words that evoke it, which

are called “lexical units”. FrameNet also records relationships between the frames, covering

temporal relationships like precedence, taxonomic relationships like inheritance, and causal

relationships like causative and inchoative.

ConceptNet Speer et al. [82] present a large-scale general knowledge graph that connects

words and phrases using labeled edges, or relations. It was collected from many sources

such as expert-created resources, crowd-sourcing, and games with a purpose, and contains 36

relations. The information contained in ConceptNet is predominantly on the concept and

entity-level, covering lexical, taxonomic, and physical properties of different words [32].

Although informative and often used for earlier dialogue approaches, especially ConceptNet,

these resources encounter challenges towards their application to dialogue specifically. For

one, they present abstracted representations of discussed concepts that require additional

sophisticated processing to link to the specific contextualized scenarios, events, and situations

described in dialogue. Additionally, these resources do not have substantial coverage of social

commonsense which is highly relevant to dialogue. In light of these challenges, follow up efforts

have sought to better capture commonsense specifically for dialogue. In particular, efforts

have shifted toward building datasets encompassing social- and event-based commonsense,

such as ATOMIC [32], and for curating commonsense inferences specifically tailored for

dialogue contexts, such as Cider [20], ComFact [19], Cicero[21], and Reflect [111].
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ATOMIC Sap et al. [77] construct the original ATOMIC dataset specifically to cover the

social aspects of commonsense that are not well-covered by previous resources. They focus on

commonsense types of prerequisites, personal characteristics, event effects, emotional reactions,

personal desires, intentions, and motivations in the context of short phrase descriptions of

events that can happen in people’s lives (e.g. “PersonX went for a run”). Various versions of

ATOMIC have since been developed, expanding its coverage.

All ATOMIC datasets structure their commonsense as a premise (which is a short phrase

describing some event), an inference type, and a reasonable inference that fits the definition

of said type (which is also a short phrase like the premise). The highest quality ATOMIC

dataset is ATOMIC10Xhigh which was constructed from filtered results from GPT3 [94].

Human-generated examples from the precursor dataset ATOMIC2020 [32] were used as

in-context learning examples in the GPT3 prompt to produce new commonsense inferences

for each type. A classifier was developed to predict whether a commonsense inference was

reasonable for its premise by training on 10,000 GPT3 generations annotated by humans for

their reasonability. This classifier was then used to filter the large-scale GPT3 generations to

produce the final ATOMIC10Xhigh dataset.

ATOMIC has the disadvantage of a lack of contextual awareness as its commonsense

tuples hinge on isolated, concise phrases for commonsense inferences. This limitation poses

challenges for dialogue-oriented tasks because utterances should not be viewed in isolation

but must be interpreted within their context [62, 35].

COMET Bosselut et al. [4] develop a generative model of commonsense knowledge, termed

COMET. COMET is a Transformer language model which is trained to produce the phrase

tail of a commonsense knowledge tuple given the phrase head and the relation. Hwang et al.

[32] use the ATOMIC2020 dataset to train a COMET model, with best performance observed

when BART is used for the base model.

Cider Ghosal et al. [20] present CIDER, a dataset in which pairs of utterances in a dialogue
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context are labeled by humans with derivable commonsense inferences. For example, in

the pair of utterances (“SpeakerA: Why were you late for work?”, “SpeakerB: I missed the

bus”), the event “missed the bus” would be linked to the event “late for work” with a causal

inference type. By design, Cider arises from a span-based extraction annotation setting

and is restricted to contain only those inferences that are explicitly revealed in the dialogue

utterances.

ComFact Gao et al. [19] map dialogue utterances to reasonable inferences from the

existing ATOMIC2020 dataset [32] by using exact string matching and embedding similarity.

Subsequently, human annotators verify the relevance of the retrieved inferences.

Cicero Human participants are tasked with composing responses to five social commonsense

questions (e.g., What is the event that directly causes or could cause Target? ) based on

dialogue contexts and explicitly instructed to incorporate information from the preceding

or forthcoming utterances. The first version of Cicero produces a single inference for each

example [21], whereas the second version produces multiple examples of both good and bad

inferences [78].

Reflect Zhou et al. [111] supplies both human-generated social commonsense inferences

covering five types and next utterance responses that could be derived from a specified

commonsense inference. The inferences are collected by instructing human participants to

answer a commonsense question, while the next-utterance responses are composed by new

human participants who are provided with the dialogue context and one of the human-

generated inferences.

For dialogue-centric commonsense datasets (Cider, ComFact, Cicero, Reflect), a trade-off

currently exists between the breadth of inference types covered and the scope of dialogue

contexts encompassed within these existing datasets. While some datasets cover a wide range
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Type Label(s) Definition(s) COM CIC REF

Subsequent
isBefore What could happen after this? [2]

* 22K 600Subsequent- What subsequent event happens or could happen following the Target? [3]
Events What might happen after? [4]

Antecedent isAfter
What could have happened before this? [2]

* 600
What might have happened before? [4]

Cause
xReason What could be the cause of this event? [2]

80 21K
Cause What is the event that directly causes or could cause Target? [3]

Prerequisite
xNeed What does X need to do before the event can happen? [1]

1K 10K
Prerequisites What is or could be the prerequisite of Target? [3]

Motivation
xIntent Why does X cause the event? [1]

800 12K
Motivation What is an emotion or basic human drive that motivates or could motivate Target?

[3]

Attribute xAttr
How would X be described? [1]

400 600
How would you describe Speaker? [4]

Reaction xReact
How does X feel after the event? [1]

300 600
What is Speaker feeling now? [4]

Reactiono oReact
How do others feel after the event? [1]

70 6K 600What is the possible emotional reaction of the listener in response to target? [3]
What is Responder feeling now? [4]

Desire xWant What would X likely want to do after the event? [1] 1K

Desireo oWant What would others likely want to do after the event? [1] 100

Constituents HasSubEvent What is a substep that happens within this event? [2] 800

Obstacle HinderedBy What could obstruct the occurrence of this event? [2] 200

Effect Causes What does this event cause to happen? [2] 30

Effects xEffect What effect does the event have on X? [1] 400

Effecto oEffect What effects does the event have on others? [1] 90

Table 2.1: The inference types covered in existing commonsense datasets (COM/CIC/REF:
the numbers of examples in the ComFact / combined Cicero v1 & v2 / Reflect datasets,
respectively). Each row denotes a unique type from the existing datasets using definitions
from [1] Sap et al. [77], [2] Hwang et al. [32], [3] Ghosal et al. [21], [4] Zhou et al. [111].
Counts are truncated to the nearest order of magnitude. * indicates the type was included
but no human-verified instances of it are present.

of relations, they are limited to a small number of dialogues [19], whereas others capture a

large number of dialogues but on a limited set of relations [21]. Table 2.1 summarizes the

distribution of different inference types in three of the dialogue-focused commonsense datasets

and presents a mapping of synonymous types among them based on the provided definitions.

In addition, a few challenges exist in these datasets. For example, the inferences in these

datasets are often too succinct and derive only straightforward conclusions with minimal

elaboration [19], which do not convey implicit commonsense. Furthermore, some studies

instruct annotators to recycle information from the ongoing conversation, undermining the

speculative nature of inferences and detracting from the potential of offering fresh insights
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to enhance dialogue understanding [21]. Moreover, although multiple plausible inferences

can be drawn from a single dialogue context, only a few datasets support this multifaceted

nature [78], impeding the development of models capable of generating diverse inferences,

and thus, limiting their utility in real applications.

2.3 Commonsense Augmentation for Dialogue Models

There have been many efforts to integrate commonsense into dialogue models, encompassing

a variety of sources of commonsense and strategies of integration.

ConceptNet-grounded Dialogue Models A popular direction in existing work is to

deduce topic shifts based on the concepts that are connected through commonsense relations

to terms previously mentioned in the dialogue. These works tend to use existing commonsense

knowledge graphs, primarily ConceptNet, and retrieval-based lookups to obtain commonsense

tuples that are within one or two hops to the words in the dialogue context. A defining

element of these works is that the decoder can choose to either generate a word from the

base vocabulary or choose to copy a specific word from the retrieved commonsense. Some

works use graph attention to integrate the retrieved commonsense (CCM [107], ConceptFlow

[102], CARE [105], KEMP [43], CAKF [99], CNTF [88], ECCF [44]) whereas others linearize

the retrieved tuples to treat them as additional text input (ConKADI [97], SAKDP [98]).

Additionally, some works further modify the commonsense resource using statistical properties

of dialogue datasets to add additional tuples representing common history-response concept-

pairs [44] and emotion-related concepts [105], or extract a subset of ConceptNet concepts that

are related to common life stressors [31]. Approaches such as these that are based on retrieval

from static commonsense knowledge resource are limited by the coverage of the resource.

Zhou et al. [113] attempt to mitigate this constraint of static ConceptNet by training a model

to generate intermediate commonsense assertions before generating the dialogue response,

using ConceptNet commonsense assertions mapped to dialogue contexts in existing datasets



15

using exact string matching and embedding similarity.

ATOMIC-grounded Empathetic Dialogue Models Recently, a few works have used

the generative model COMET trained on ATOMIC as the source of commonsense information

in order to better represent the social and experience-oriented nature of conversations with

human users. However, all of these models target either empathetic or emotional support

response generation specifically, rather than open-domain responses. Empathetic response

generation tasks the model with recognizing and acknowledging the emotional state of the user

based on what they just said and producing supportive reactions [69]. Similarly, emotional

support conversations task the model with identifying the problem that the user is facing

and utilizing an appropriate psychology-grounded interaction strategy to comfort, encourage,

and aid the user in coping with their problems [48]. Both of these tasks narrow the scope of

possible responses that are targeted by such dialogue models and represent only a subset

of the interactions that can occur in natural open-domain conversations. Works including

Sabour et al. [74], Tu et al. [86], and Liu and Kilicoglu [49] use encoded outputs from various

commonsense types from COMET-ATOMIC as additional input with the dialogue context,

either through direct text concatenation or concatenation of their embeddings, used to train

the dialogue model. On the other hand, Fu et al. [18] develop a ChatGPT-based dialogue

agent that ingests COMET-ATOMIC inferences. They use COMET-ATOMIC to generate

two user inferences (emotion, desire) and to generate in-context learning examples for two

system inferences (emotion, intention) by running on the ground truth responses. Then, the

user inferences and in-context learning examples are inputted in the prompt to ChatGPT,

which is instructed to output the appropriate system inferences and a final response for the

given dialogue context.

Social-commonsense-grounded Open-domain Dialogue Model Only a couple of

recent works have attempted to integrate social commonsense to open-domain dialogues.

Zhou et al. [111] collect Reflect, a dataset of human-written commonsense inferences for
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five commonsense types for dialogue contexts (Section 2.2) and corresponding responses

which are human-written under instruction to express a provided inference. They finetune

BlenderBot on their collected dataset of commonsense-guided responses where the input

is a dialogue context followed by one commonsense inference question and the output is

the answer followed by the response. However, they find that finetuning BlenderBot to

be conditioned on the inference question does not improve human perception of quality

of responses against BlenderBot finetuned on their data to output the response directly.

Furthermore, they find that prompting GPT3-davinci to output responses by thinking about

one commonsense inference question with few-shot in-context learning examples performs

best when compared to their finetuned models. Through evaluation performed by Amazon

Mechanical Turkers in which the sensibility, specificity, and interestingness of the generated

responses are binarily annotated, they observed notable improvements over native GPT3

response generation. Specifically, sensible responses increased by 6%, specificity by 14%, and

interestingness by 9% across 50 examples. Chae et al. [8] take a different approach, employing

ChatGPT3.5 to generate rationales linking dialogue context to responses, where each rationale

is composed of three question-answer pairs where the questions were derived from 11 types

of commonsense reasoning. After filtering the rationales produced by ChatGPT using two

automatic measures of the suitability of the rationale for response generation of a given

dialogue context, they trained an OPT1.3B model to generate rationales for dialogue contexts,

and used the generations of this model as additional input to ChatGPT3.5 in a prompt

designed for response generation. Their evaluation, conducted via MTurkers, demonstrated

statistically significant enhancements in naturalness (67 vs 33) and specificity (58 vs 42),

but not for consistency (53 vs 47) or engagingness (52 vs 48) against responses from native

ChatGPT3.5. Both of these approaches restrict the consideration of commonsense in a greedy

fashion when generating a response, failing to capitalize on the inherent multi-faceted nature

of commonsense reasoning for dialogue situations.
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2.4 Commonsense Evaluation for Dialogue Models

Most works on commonsense-grounded dialogue models do not perform an explicit evaluation

of the commonsense properties of the generated responses. Instead, they evaluate the generated

responses in terms of various characteristics, such as relevance to the context and specificity.

Although such characteristics may be influenced by the integration of commonsense, they

encompass broader concepts that represent more than just the commonsense properties.

For commonsense-specific evaluations, two previous works utilize two different evaluation

procedures, each with their own concerns. Zhou et al. [113] use a pairwise comparison

evaluation to determine which responses follow commonsense more although they do not

provide any definition of commonsense to their annotators and the eliciting question that

they use conflates commonsense with appropriateness and relevance to the context. Zhou

et al. [110] instruct human annotators to rate the commonsense plausibility of responses on a

scale from 1 to 10, but their evaluations produce concerningly large variance in the scores,

calling into question the validity of their evaluation procedure.



Chapter 3

Annotation of Behaviors in Chat

3.1 Introduction

In any dialogue system development, assessing the system’s performance on relevant aspects is

crucial. Take, for instance, evaluating the commonsense understanding of the bot illustrated

in Figure 3.1. The bot’s responses include statements like building a life-size airplane

model (Turn 3) and gifting it to a brother who dislikes planes (Turn 5), both of which

seem implausible. These instances indicate a lack of commonsense understanding, as they

conflict with innate knowledge of likely situations in the world. This capability of pointing to

specific responses that express a lack of commonsense understanding gives rise to the idea

that it is possible to evaluate the commonsense capability of this bot by labeling all of the

turns in which it produces a commonsense mistake. Under this, a concrete measure of the

expected rate of commonsense mistakes made by a bot can be obtained, which is intuitively

interpretable as an indication of its commonsense capability. This principle is the motivation

behind the first research question: does a binary behavior-based evaluation framework result

in more reliable and informative evaluation of dialogue model characteristics? In particular,

the aim is to accurately measure distinct attributes of a dialogue model pertinent to its

effectiveness as a conversational agent, thereby achieving a nuanced and multi-dimensional

18
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I’m building a 3d model of a plane. i want 
to make it look like a real one.

Are you having a hard time building it?

Kind of. It is a life size model.

Oh that’s really ambitious but awesome! 
What are you going to do with it?

1

2

3

4

I am going to give it to my brother. He 
hates planes.

5

Commonsense Contradiction

Commonsense Contradiction

Figure 3.1: Example of commonsense contradiction labels in human-machine dialogue.

evaluation of its performance. Such an evaluation is intended to be complementary to holistic

evaluations of overall model performance (e.g. overall quality on a Likert scale) as it enables

a higher granularity into the strengths and weaknesses of the model that help to understand

and explain the human perception of the quality achieved by a specific dialogue model [87].

In this chapter, I present the Annotation of Behaviors in Chat Evaluation (ABC-Eval), a

comprehensive evaluation framework for dialogue models that targets fine-grained response

assessment which is developed in collaboration with another graduate student [17]. ABC-

Eval is an evaluation protocol that measures rates of important dialogue model behaviors,

including irrelevant responses, self contradictions, and factual hallucinations. Importantly,

ABC-Eval enables tangible evaluation of the commonsense capability of dialogue models

through measuring the rate of commonsense contradictions expressed in the outputted

responses. Through extensive statistical analyses, the behavior labels from ABC-Eval are

shown to achieve high inter-annotator reliability, discriminate differences between different

dialogue models, and capture large degrees of variance in human perception of overall response

quality. Following these analyses, ABC-Eval is verified to enable reliable and informative
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fine-grained assessment of dialogue model characteristics that contribute useful information

related to overall dialogue quality.

3.2 ABC-Eval Development

Typically, when dialogue models are evaluated for fine-grained characteristics, such as their

capability for emotional understanding, conversational consistency, or response relevance,

these characteristics are defined and evaluated in a high-level manner. The most commonly

evaluated dimensions and their definitions as provided to evaluators are shown in Table 3.1,

as synthesized in my work on surveying the evaluation procedures of open-domain dialogue

works accepted to top-tier Natural Language Processing venues [14]. The evaluations typically

follow one of two methodologies, either Likert ratings or pairwise comparisons. Likert rating

evaluation instructs human annotators to rate the dialogue system responses on a set of

dialogue dimensions using numeric scales, most often 1 to 5. Pairwise comparisons instruct

human annotators to select the most fitting response on a set of dialogue dimensions when

shown multiple options generated from different dialogue models.

Dimension Definition

Grammaticality Responses are free of grammatical and semantic errors
Relevance Responses are on-topic with the immediate dialogue history
Informativeness Responses produce unique and non-generic information that is specific to the dialogue context
Emotional Responses indicate an understanding of the user’s current emotional state and
Understanding provide an appropriate emotional reaction based on the current dialogue context
Engagingness Responses are engaging to user and fulfill the particular conversational goals implied by the user
Consistency Responses do not produce information that contradicts other information known about the system
Proactivity Responses actively and appropriately move the conversation along different topics

Quality The overall quality of and satisfaction with the dialogue

Table 3.1: The final set of dialogue dimensions for human evaluation from Finch and Choi
[14]. Dimensions above the dashed line are dimensional characteristics of dialogue models.
The Quality dimension below the dashed line is an overall performance assessment.

One major limitation of these common evaluation procedures is that they fail to provide

detailed information on the dialogue models under study. Obtaining a decimal score or a

win percentage on one of the typical dimensions reveals some information on the response
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characteristics achieved but does not uncover the specific behaviors that are going right or

wrong for a particular dialogue model. For the dialogue shown in Figure 3.1, it could be

indicated that this bot receives a score of 2 out of 5 for commonsense, which follows the

typical method of evaluating commonsense. However, it is difficult to say exactly what such

a numerical score means, other than some abstract assessment of low commonsense. Instead,

by following the behavior labeling approach, specific turns of the bot are identified that

express commonsense problems, thereby obtaining a concrete measure of the expected rate of

commonsense mistakes made by a bot which is intuitively more informative as an indication

of its commonsense capability. As a result, this motivates the utility of a behavior evaluation

procedure for dialogue models and leads to the development of ABC-Eval.

ABC-Eval is developed in two stages: (1) collecting a set of behavior label candidates

and (2) developing and piloting the annotation instructions and procedure.

3.2.1 Collecting Behavior Label Candidates

Based on a review of recent work in open-domain dialogue modeling and evaluation, the

characteristics of chatbot responses related to conversation quality are identified. These

characteristics include those presented as error cases, evaluation metrics, or desirable response

features. Due to its high coverage of error categories, Higashinaka et al. [28] is the primary

source of inspiration for many of the behavior labels. However, their presented taxonomy is

further improved by considering additional labels based on characteristics of chat presented

by other work, and by further refining their error categories for clarity. The development

process of these behavior label candidates is discussed next.

3.2.2 Pilots and Development

The labels, annotation instructions, procedure, and software application for ABC-Eval are

created using an iterative process of development and piloting. The goals of this development

process are to curate the behavior labels to be included in ABC-Eval and to identify the best
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annotation interface for these included behavior labels for the most reliable annotations.

14 students are invited to serve as evaluators for piloting the evaluation. The pilots

are performed on conversations collected between a high-performing neural dialogue model

(Blender [73]) and one of the ABC-Eval developers. To avoid overfitting the evaluation design,

a new set of conversations is used for each pilot round. Three pilot rounds are conducted,

making revisions to the evaluation setup after manually reviewing each round’s annotation.

Pilot 1 consists of a single annotation task, which covers 17 behavior labels. Annotators

are given instructions and definitions for all 17 behavior labels and instructed to label the

turns of a provided dialogue with all of the labels that are applicable. A single dialogue

is annotated by two to three different annotators, and four dialogues in total are used in

this pilot, each annotated by a different group of annotators. Students of both the graduate

level and undergraduate level participate in this pilot. The labels are: uninterpretable,

antisocial, redundant, irrelevant, correct fact, incorrect fact, commonsense

contradiction, correct profile, contradict profile, correct self context,

contradict self context, correct partner context, contradict partner context,

request, present, ignore request, and ignore present.

Pilot 2 consists of six annotation tasks, each covering a different set of behavior labels.

The instructions and definitions have been updated from Pilot 1. Annotators are given these

new instructions and definitions for the set of behavior labels for a particular annotation task,

and instructed to label the turns of a provided dialogue with those labels that are applicable.

Each annotation task is applied to a different dialogue, where at least two annotators perform

the annotation task. The same annotator is allowed to perform more than one annotation

task, although not all did. Students of both the graduate level and undergraduate level

participate in this pilot. The six annotation tasks are: interpretability (uninterpretable),

conversational consistency (correct profile, contradict profile, contradict self

context, contradict partner context, and redundant), sociality (antisocial), ency-
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clopedic knowledge (correct fact, incorrect fact), commonsense (commonsense

contradiction), and turn-taking (request, present, follow-up, topic-switch,

irrelevant, ignore).

Pilot 3 follows a similar setup to Pilot 2. There are three major differences. First, all

annotators perform all of the annotation tasks. Second, the instructions and definitions

have been updated, based on the results from Pilot 2. Finally, training exercises have been

implemented for each annotation task in order to teach the annotators how to identify each

behavior label before they then perform the annotations on the desired dialogues. It should

also be noted that only undergraduate students participate in this pilot.

Dialogues Annotators

# # Type α

Pilot 1
4 11 ALL 0.18

2 4 G 0.39

Pilot 2
6 5 ALL 0.49

6 4 G 0.50

Pilot 3
6 4 U 0.43

6 4 (screened) U 0.45

Table 3.2: The distribution of dialogues and annotators for each evaluation pilot. Dashed
line delineates a subset (below line) of the total annotations (above line) produced in that
pilot. α: Krippendorf’s alpha, U: Undergraduate annotators, G: Graduate level annotators,
ALL: Undergraduate and graduate annotators.

Table 3.2 presents a summary of the pilot rounds. It is important to note that these piloting

rounds are not necessarily directly comparable to one another when taken as a whole, since

the annotators and dialogues to be annotated varied between each round. Instead, I will

discuss below the major takeaways afforded by different splits of the pilots that informed the

final design of ABC-Eval.
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Task Formulation The decision to format ABC-Eval into several small annotation tasks,

each with a tailored subset of the behavior labels, is made from the results of Pilot 1. In

Pilot 1, there was only a single annotation task, in which the annotators had to consider all

labels at the same time. The overall interannotator agreement is quite low (α = 0.18), which

is concerning. Based on ad-hoc feedback from the pilot annotators, the consensus is that this

setup demanded an unreasonable cognitive load on annotators due to the large number of

labels to keep track of.

For Pilot 2, the behavior labels are split into groups based on their similarity and each

group is structured as a new annotation task. Table 3.2 shows the boost to interannotator

agreement between Pilots 1 and 2. However, this agreement increase could have resulted from

an increase in the quality of the annotators (as Pilot 2 is composed primarily of annotators

with a graduate-level education whereas Pilot 1 is more evenly split between annotators with

an undergraduate-level education and graduate-level education). To remove this confound,

the agreement in Pilots 1 and 2 is also calculated for only graduate-level annotators. Although

it is less dramatic, there remains an increase in agreement from 0.39 to 0.50, which encourages

the decision to maintain the smaller annotation tasks. Dividing the annotation into tailored

tasks seems to reduce the cognitive load on annotators, thus allowing them to perform more

accurate annotations per task with minimal overhead.

Training and Screening Manual analysis of the pilot annotations from Pilots 1 and 2

reveal some recurring annotation mistakes, arising from misunderstandings of the detailed

guidelines for the tasks. In an attempt to correct such misunderstandings, a three-round

training procedure is introduced for each task, where an annotator must complete the training

before being allowed to participate in the evaluations.

Each round of training for a particular annotation task consists of one curated conversation

with ground-truth labels and explanations that are shown as feedback to the annotator after

they complete the training round. The results of Pilots 1 and 2 are used in order to develop
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these training conversations as follows:

1. Label Specification Construction: A label specification is constructed that identi-

fies frequent dialogue situations or patterns that reveal either a positive or negative

expression of the behavior label. This specification aims to provide a definition of the

label that is example-based, by exemplifying different dialogue cases and how they

should be annotated for a particular behavior label. These cases focus on covering

the turns which received a high rate of incorrect annotations from the annotators in

the pilot rounds. These specifications are not necessarily exhaustive or theoretically

complete; instead, this serves as an instructional guideline for the commonly observed

misconceptions.

2. Training Conversation Selection: Three new conversations between Blenderbot

and a human (from a collection within my lab) are selected for each annotation task to

be used as training conversations for it. This selection is manually done by ranking

the conversations on their coverage of the cases identified in the label specifications

relevant to the annotation task.

3. Training Conversation Modification: The selected conversations are heavily revised

by hand to ensure that all of the cases identified in the specification are adequately

represented, most often by inserting new utterances that correspond to underrepresented

cases.

To evaluate the utility of this training process, a third pilot is conducted using four under-

graduates. It is observed that there is a general upwards trend in annotation performance

between the training rounds for the annotators, suggesting that the training is aiding in the

annotation accuracy for the annotators. The final agreements are calculated in two manners,

in order to quantitatively assess the impact of the training. First, the annotations from all

annotators are considered, regardless of annotator performance on the training, resulting in

an agreement of 0.43. Second, only those annotations from annotators who scored highly in
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the training are considered. For this, annotators were filtered out of each task based on the

number of mistakes that they made in the training. The filtering criteria was a maximum of

1 mistake on the training for interpretability and sociality annotation tasks and a maximum

of 2 mistakes for the other tasks. After filtering, the agreement is slightly improved at 0.45.

Due to the small nature of this pilot, it cannot be concluded whether this difference

is meaningful. However, ad-hoc feedback from the annotators suggested that the training

rounds are useful towards their understanding of the tasks, although the amount of training

did increase the overall workload of participation.

Pilot Conclusion At the end of these three pilot rounds, it is noticed that emotional

understanding and bot character depth are not well represented in the piloted behavior

labels. To remedy this, two additional annotation tasks are developed and tested outside

of the previous pilots. These two annotation tasks consist of the labels empathetic and

lack of empathy, and preference info and life info, respectively. In addition, the

decision is made to exclude a number of low-performing and lower priority behavior labels in

order to minimize the overall scope and cost of this behavior-based evaluation framework,

including use profile, contradict profile, request, and present. The next section

will describe the final ABC-Eval design in full, based on the incorporation of all of the

decisions discussed for the pilots.
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3.2.3 Final ABC-Eval Design

Label Abbr. Description Inspired by

Uninterpretable !Intb It is difficult to understand the intended meaning of part or all of the response. 1, 2, 3, 4, 5, 6

Antisocial !Socb The response is insulting, hateful, or excessively vulgar. 2, 7, 8, 9

Preference Info Preb The response expresses the bot’s preferences, wishes, or values.
10, 11

Life Info Lifb The response shares information about the bot’s life or experiences.

Empathetic Empb The response shows an understanding and reacts appropriately to someone’s emotions.
11, 12, 13

Lack of Empathy !Empb The bot misunderstands or reacts inappropriately to someone’s emotions.

Commonsense
!Comb The response misunderstands or contradicts common knowledge. 2, 14, 15, 16

Contradiction

Fact Usage Facb The response accurately incorporates encyclopedic or expert knowledge. 1, 2, 11, 17, 18,
Fact Contradiction !Facb The response hallucinates or inaccurately presents encyclopedic or expert knowledge. 19, 20

Self Contradiction !Selb The bot contradicts something it said earlier in the dialogue.
2, 3, 6, 20, 21,

Partner Contradiction !Parb The bot contradicts or misremembers something the user said earlier in the dialogue.
Redundant Redb The response inappropriately repeats information presented earlier in the dialogue.

22, 23

Ignore Ignb The response ignores what the user just said.

1, 2, 3, 6, 24
Irrelevant !Relb The response interrupts the current topic of discussion by presenting unrelated information.
Follow-up Folb The response explores, elaborates on, or asks about the ideas shared in the previous turn.
Topic Switch Topb The response introduces a new topic of conversation.

Table 3.3: The 16 behavior labels within ABC-Eval. Row separators denote annotation task
groupings. [1] Gopalakrishnan et al. [24], [2] Higashinaka et al. [28], [3] Mehri and Eskenazi [56], [4]
Mehri and Eskenazi [57], [5] Phy et al. [64], [6] Sanguinetti et al. [75], [7] Beattie et al. [3], [8] Sun
et al. [83], [9] Xu et al. [100], [10] Rashkin et al. [70], [11] Smith et al. [80], [12] Majumder et al.
[52], [13] Rashkin et al. [68], [14] Zhong et al. [104], [15] Zhou et al. [108], [16] Zhou et al. [112], [17]
Gupta et al. [26], [18] Honovich et al. [29], [19] Santhanam et al. [76], [20] Shuster et al. [79], [21] Li
et al. [45], [22] Nie et al. [60], [23] Welleck et al. [93], [24] Xu et al. [101] .

Based on the piloting and development work described previously, the final ABC-Eval

procedure includes 16 binary behavior labels divided between 8 independent annotation

tasks, where each annotation task has corresponding training materials. Table 3.3 presents

the names and definitions of the 16 behavior labels, and highlights the previous works that

inspired the development of each behavior label. In each annotation task, human evaluators

are provided with definitions and examples of the behavior labels associated with that task

and asked to annotate every chatbot turn in a given human-chatbot conversation with each

behavior label, if it is applicable to that turn. Evaluators complete these tasks using a

custom web application based on the ParlAI evaluation interface. The 8 annotation tasks are

described next.
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1. Interpretability covers one label: uninterpretable, which identifies nonsensical

language in the turns. The interface used for this annotation task is shown in Figure 3.2.

Figure 3.2: Interface for uninterpretable
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2. Sociality covers one label: antisocial, which identifies offensive language in the turns.

The interface used for this annotation task is shown in Figure 3.3.

Figure 3.3: Interface for antisocial
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3. Character Depth covers two labels: preference info and life info, which identify

turns in which character-like information (preferences, opinions, life experiences, etc.) is

shared. The interface used for this annotation task is shown in Figure 3.4.

Figure 3.4: Interface for preference info and life info
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4. Emotional Understanding covers two labels: empathetic and lack of empathy,

which identify positive and negative cases of emotional appropriateness in the turns, respec-

tively. The interface used for this annotation task is shown in Figure 3.5.

Figure 3.5: Interface for empathetic and lack of empathy
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5. Commonsense covers one label: commonsense contradiction, which identifies turns

in which violations of commonsense knowledge are expressed. The interface used for this

annotation task is shown in Figure 3.6.

Figure 3.6: Interface for commonsense contradiction
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6. Encyclopedic Knowledge covers two labels: fact usage and fact contradiction,

which identify positive and negative cases of encyclopedic knowledge being expressed, respec-

tively. The interface used for this annotation task is shown in Figure 3.7.

Figure 3.7: Interface for fact usage and fact contradiction
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7. Conversation Consistency covers three labels: self contradiction, partner

contradiction, and redundant, which identify turns that express deterioriations in con-

versational consistency. The interface used for this annotation task is shown in Figure

3.8.

Figure 3.8: Interface for self contradiction, partner contradiction, and redundant



35

8. Turn-taking covers four labels: ignore, irrelevant, follow-up, and topic switch,

which identify positive and negative cases of appropriate turn-taking behaviors. The interface

used for this annotation task is shown in Figure 3.9.

Figure 3.9: Interface for ignore, irrelevant, follow-up, and topic switch

Training and Screening To improve annotation consistency and detect poorly performing

evaluators, automated training sessions are included for each annotation task. Each session

consists of three conversations that evaluators annotate using an identical procedure and

web interface to the corresponding task. The three conversations used for each session are

hand-crafted to represent a variety of positive and negative examples of the behavior labels

for the corresponding task. The gold annotations for each training conversation are hidden

from evaluators during the annotation; however, after completing each training conversation,
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any disagreements between the evaluator’s annotations and gold labels are displayed along

with an explanation to help the evaluator improve. The evaluator’s performance on the

third conversation of each training session is used to screen evaluators, where performance is

measured by the number of turns where their annotations disagree with gold labels. Evaluators

are eligible to complete the work on a task if they make mistakes on fewer than two turns for

the Sociality and Interpretability tasks, or on fewer than three turns for the other six tasks.

3.3 Existing Evaluation Methods

To evaluate ABC-Eval as a fine-grained evaluation method, three popular approaches to

evaluations of dialogue characteristics are included for comparison in this study: Dialogue

Likert, Turn Likert, and Comparative. Through this comparison, the benefits afforded by

ABC-Eval for dimensional evaluation of dialogue characteristics will be assessed.

Label
Dialogue Turn

Comparative
Likert Likert

Consistency Cond Cont Conc
Emotion

Emod Emot EmocUnderstanding
Engagingness Engd Engt Engc
Grammaticality Grad Grat Grac
Informativeness Infd Inft Infc
Proactivity Prod Prot Proc
Relevance Reld Relt Relc

Quality Quad Quat Quac

Table 3.4: The seven labels for dialogue characteristics for Likert and Comparative evaluations
(taken from Finch and Choi [14]), henceforth referred to using their abbreviations and colors.
The label for holistic quality is also shown below the dashed line.

Dialogue Likert Annotators provide dialogue-level ratings from 1 (least) to 5 (most) for

the seven characteristic labels shown in Table 3.4. The dimension set proposed in Finch
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and Choi [14] is used, which results from a detailed survey of characteristics used in chat

evaluation. Bot-level metrics are calculated as the mean rating across all bot dialogues.

Turn Likert Annotators provide turn-level ratings on the same scale and labels as those

used for Dialogue Likert. The dialogue-level metric is measured as the mean rating of a single

dialogue’s turns. The bot-level metric is calculated as the mean rating of all turns in all bot

dialogues.

Comparative Annotators select the dialogue in which chatbot responses better fit a label

definition from a side-by-side pair of dialogues, also using the seven characteristic labels in

Table 3.4. A “neither” option is allowed, only for cases where the evaluator cannot distinguish

which dialogue is a better fit. Bot-level metrics are calculated as bot pair win/tie/loss

proportions between pairing of their dialogues.

For each evaluation method described previously, overall quality annotations are also included.

3.4 Evaluation Collection

To compare ABC-Eval against the existing evaluation methods, it is necessary to collect

evaluations from each of these methods on the same underlying conversation dataset. To

this end, human-bot conversations are collected using high-performing models for the time.

Based on a literature review of state-of-the-art open-domain multi-turn dialogue models and

subsequent pilot studies within my lab, the following four dialogue models are selected:

• Blender2 [95], a high-performing large-scale general-purpose neural dialogue model

trained on several dialogue datasets.

• Emora [16], a rule-based chatbot from the Amazon Alexa Prize Socialbot Grand

Challenge [67] with the all-time highest final score.
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• Blender-Decode [60], a Blender-based dialogue model that ranks generated response

candidates by their consistency to the context.

• BART-FiD-RAG [79], a knowledge-grounded open-domain dialogue model using a

fusion-in-decoder and retrieval-augmented-generation techniques.

Conversations are collected between 46 university undergraduate students and the dialogue

models in a remote text-based conversation setting using a Javascript-based interactive web

interface that I modified from the ParlAI framework. Links to the web interface are sent to

each interactor with instructions to be completed within 2 weeks. For each link, the interactor

completes two conversations with a random pair of chatbots, for a minimum of 30 turns per

conversation, with a similar open-ended, topic-free chatting environment to Adiwardana et al.

[1]. Interactors are asked to rate seven dimensions as well as overall quality (Table 3.4) of

each conversation after its completion on a 1-5 Likert scale, and to select the better-fitting

conversation for the same seven dimensions and overall quality after each conversation-pair

(ties allowed). The final conversation dataset includes 400 human-bot dialogues (100 dialogues

per chatbot), averaging 30.3 turns per dialogue (11.3 tokens per user turn).

After the conversations are collected, external evaluations are then conducted. ABC-Eval,

Dialogue Likert, Turn Likert, and Comparative evaluations are performed on these 400

conversations using an external annotation company SurgeHQ. Consequently, this study

consists of the collection of 40 labels per conversation. This collection is split into 18

independent evaluation tasks as follows:

• 8 ABC-Eval tasks, each composed of 1 to 4 labels as denoted by groupings in Table 3.3

• 1 Dialogue Likert task, composed of all 8 labels from Table 3.4 completed in random

order

• 8 Turn Likert tasks, each composed of 1 label from Table 3.4

• 1 Comparative task, composed of all 8 labels from Table 3.4 completed in random order



39

The 18 evaluation tasks are posted on SurgeHQ’s annotation platform (https://www.surgehq.ai)

to be completed by dedicated remote workers (Surgers) with experience in NLP annotation.

Each time an evaluator connects to one of the tasks, they are assigned a randomly selected

conversation to annotate. This study is allocated a group of 125 Surgers, chosen by a

SurgeHQ employee based on high annotation performance on past projects. Evaluators are

compensated per annotated conversation per task, at an estimated rate of $20/hr. Evaluators

are allowed to annotate up to 60 conversations per task.

The final evaluation dataset consists of 400 conversations, each with results for all 40 labels.

Additionally, a randomly-selected subset of 100 conversations (and 50 of the conversation

pairs) is evaluated a second time by a different Surger in order to measure inter-annotator

agreement (IAA).

3.5 Evaluation Analysis

In this section, I present the results of four analyses comparing ABC-Eval against the existing

evaluation methods for fine-grained dialogue characteristic evaluations. These analyses

demonstrate that ABC-Eval achieves better interpretability (Section 3.5.1), better coverage

of distinct characteristics of chat that impact quality (Section 3.5.2 and Section 3.5.4), and

overall higher measurement sensitivity (Section 3.5.3) than alternative evaluation methods.

3.5.1 Interpretability

The reliability of interpreting each metric’s annotation instructions is measured by calculating

IAA using the set of 100 double-annotated conversations. High agreement between annotators

demonstrates that different people can reliably come to the same conclusions about how a

metric’s definition applies to each chatbot response.

The results in Figure 3.10 show the IAA for all metrics from each evaluation method

(left to right: ABC-Eval (orange), Turn Likert (blue), Dialogue Likert (red), and Dialogue

https://www.surgehq.ai
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Figure 3.10: IAA (Krippendorff’s alpha) for all metrics. Error bars denote 95% bootstrap
confidence intervals, using bias-corrected and accelerated confidence intervals with k =10,000
Monte Carlo case resamples. !Socb and !Intb’s confidence intervals are largely due to a low
rate of positive examples (see Figure 3.13).

Comparative (green)). Overall, it can be seen that the definitions of most ABC-Eval metrics

can be interpreted more reliably than the definitions of most Turn Likert, Dialogue Likert,

and Dialogue Comparative metrics. Likert-style and comparative-style annotations appear

to have similar interpretability, although Quac is a notable exception that produced higher

agreement than Quad.

3.5.2 Importance
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cannot predict Quad so only results for variance of Quac are shown.
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The importance of each metric is estimated by a predictive validity analysis that measures

the extent, to which the metric can predict conversation quality (Figure 3.11). Conversation

quality is represented by Quad and Quac from interactors that participated in the conversa-

tions (Section 3.4) to avoid cases where the same evaluator produced the quality label and

explanatory metric. The predictive validity of each metric is measured by fitting univariate

linear or logistic regression models to predict Quad or Quac, respectively.

Quac is represented as a binary encoding, where 0 and 1 represent choosing the first and

second conversation, respectively. Any conversation pairs in which the interactor could not

distinguish a difference in quality between conversations are excluded, and models are fitted

on the remaining set of 184 conversations. To use non-comparative predictors for predicting

Quac, the difference in metric value between each pair of conversations is used.

These results show that dialogue quality is substantially related to emotional understanding

metrics (Emo, Empb, !Empb), relevance-related metrics (Rel, !Relb, Ignb), and consistency

metrics (Con, !Selb, Redb, !Parb). Within these metric groupings, ABC-Eval metrics are

overall more predictive of quality than their Likert or Comparative analogs, while Comparative

metrics are least predictive of quality.

3.5.3 Sensitivity

The sensitivity of each metric is investigated following the procedure used by Li et al. [42]

where hypothesis tests are conducted to count the number of statistically significant differences

that each metric is able to detect between the six pairings of the four chatbots (Table 3.5).

To make results comparable, the conversations used for hypothesis testing are downsampled

to 32 conversations per bot for the Dialogue Likert, Turn Likert, and ABC-Eval metrics to

match the 32 conversation-pairs per bot-pair produced by the Comparative evaluation.1

The results show that the Likert evaluations are more sensitive than the Comparative

evaluation for most labels. ABC-Eval metrics have a wide range of sensitivity, with many

1Only 192 of the 200 dialogue pairs are evaluated with Comparative labels due to a collection mistake
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Table 3.5: The number of statistically significant differences detected by each metric when
comparing bot-pairs using z-tests of proportions (ABC-Eval), t-tests (Turn Likert and
Dialogue Likert), and sign tests (Comparative) at three significance thresholds.

ABC-Eval metrics appearing to be more sensitive analogs of similar Likert metrics. For

example, the results show that !Selb and Redb are more sensitive than Con, that Facb and

!Facb are more sensitive than Inf , and that Empb and !Empb are more sensitive than Emo.

On the other hand, the Likert-style Rel metric shows similar or slightly superior sensitivity

compared to the analogous Ign and !Rel behavior metrics.

3.5.4 Coverage & Distinctness

The coverage and distinctness of the ABC-Eval metrics is investigated via incremental validity

analysis. For this analysis, backwards stepwise regression is performed that determines (1) the

ability of an evaluation method as a whole to explain conversation quality, and (2) whether

each metric contributes distinct information about quality above and beyond other metrics

(Figure 3.12). Specifically, a multivariate regression model is fit to each of the four evaluation

methods under study. These models are fit similarly to those presented in Section 3.5.2, but

include all non-quality metrics within an evaluation method as predictors. Then, predictors

are removed from each model one at a time based on a beam search (k=100) of which

removed predictor results in the smallest decrease in model fitness (adjusted R2 or adjusted

pseudo-R2). This stepwise regression analysis is performed twice to predict both Quad and

Quac given by interactors, similar to the analysis in Section 3.5.2.

The results show that ABC-Eval has overall better coverage than other evaluation

methods for explaining conversation quality. Furthermore, most ABC-Eval metrics that

have a strong relationship with conversation quality appear to be appropriately distinct in

the information they provide, especially !Empb, !Selb, Redb, !Relb, Empb, !Comb, and Ignb.
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Figure 3.12: Incremental validity of metrics within 4 evaluation methods, obtained using
backwards stepwise regression. Points represent the extent to which a model can explain
variance in quality (R2 for predicting Quad with a linear model, McFadden’s pseudo-R2 for
predicting Quac with a logistic model) using all metrics on the same line and to the left as
predictors. Filled marker symbols denote steps where the model’s predictors all contributed
positively to adjusted R2 or adjusted pseudo-R2 values; otherwise, marker symbol is unfilled.
Comparative metrics cannot be used to predict Quad so only results for explaining variance
of Quac are shown.

Similar distinctness can also be seen in Turn Likert metrics, whereas dialogue-level metrics

show relatively low distinctness.

3.6 Cost

Tables 3.6 and 3.7 provide the payment rates per task used in this study and the subsequent

overall costs of each evaluation method, respectively. It is clearly shown that turn-level

annotation tasks are significantly more costly to gather compared to dialogue-level tasks.

Nevertheless, the previous analyses suggest that such turn-level annotation tasks, particularly

ABC-Eval, offer richer insights for finely assessing dialogue models. However, it’s crucial to
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recognize that not all 16 ABC-Eval behavior metrics are equally relevant across all dialogue

applications, rather subsets of behaviors can be identified that capture the desired dialogue

characteristics of a particular application. Hence, the most pragmatic evaluation approach,

ensuring both utility and efficiency in model performance assessment, likely involves a blend

of ABC-Eval and other metrics. For example, a dialogue model focusing on commonsense

knowledge targets commonsense understanding, response relevance, response informative-

ness, and overall quality. This can be achieved by combining ABC-Eval metrics such as

commonsense contradictions and irrelevant with Likert metrics like informativeness

and quality. Such an evaluation scheme provides detailed insights into desired characteris-

tics while remaining practical in terms of cost and annotator effort. In fact, this evaluation

approach is found useful in practice later in this dissertation (Chapter 5).

Task Payment Task Payment

Uninterpretable $0.63 Antisocial $0.44

Preference Info $0.70
Empathetic $1.15

Life Info Lack of Empathy

Commonsense $0.92
Fact Usage $1.96

Contradiction Fact Contradiction

Self Contradiction

$0.87

Ignore

$1.87
Partner Contradiction Irrelevant
Redundant Follow-up

Topic Switch

Dialogue Likert $0.60 Turn Likert $0.70

Comparative $1.43

Table 3.6: Payment per annotation task in USD. The payment for Turn Likert is per label whereas
the indicated payment for Dialogue Likert and Comparative covers all labels, due to how the
annotation tasks were constructed (Section 3.2.3).

Metric TI TP EC OC

Dialogue Likert 2.81 21.37 374.36 240.00
Comparative 4.35 13.81 289.68 286.67
Turn Likert 19.94 3.01 2658.40 2240.00
ABC-Eval 25.60 2.34 3413.58 3422.67

Table 3.7: The data collection costs for each task in USD. TIme is the median completion time
in minutes for one dialogue. ThroughPut represents the number of completed dialogues per hour.
Estimated Cost is calculated using median completion time, 400 dialogues, and $20/hr rate. Our
Cost is the total amount paid in this work to collect a dataset of 400 conversations (single-annotated).



45

3.7 Dialogue Model Insights

!Socb !Comb Ignb !Facb !Relb !Empb !Parb Redb !Selb Topb !Intb
0.0

0.1

0.2

0.3 BART-FiD-RAG
Emora

Blender2
Blender-Decode

Figure 3.13: Proportions of turns expressing undesirable behaviors, with 95% Wilson score
confidence intervals.

Given that ABC-Eval is a powerful fine-grained evaluation framework for dialogue models, I

next consider the insights it provides towards the weaknesses of current neural dialogue models,

specifically focusing on commonsense understanding. Figure 3.13 demonstrates the rates of

undesirable model behaviors observed in the 400 collected conversations. The results show that

a clear weakness in neural dialogue models is in commonsense reasoning, since commonsense

violations are present in about 15-20% of the bots’ responses (!Comb). In addition, consistency

issues are prevalent across all bots: self-contradictions and partner contradictions appear in

about 10% of the bots’ responses overall (!Selb, !Parb). The behaviors of self- and partner-

contradictions often reveal commonsense errors as well, since the occurrence of two mutually

exclusive events as what is observed during such contradictions is a violation of commonsense.

The importance of commonsense in dialogue is further corroborated by the predictive validity

results shown in Figure 3.11, in which it is clear to see that commonsense violations and

partner contradictions are two of the strongest predictors of overall dialogue quality.

3.8 Conclusion

This study demonstrates the power of a binary behavior-based evaluation framework for

assessing dialogue models in high granularity through the development and application of
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ABC-Eval. The metrics covered in ABC-Eval have better interpretability (Section 3.5.1),

a wider coverage of distinct characteristics of chat that impact quality (Section 3.5.2 and

Section 3.5.4), and overall higher measurement sensitivity (Section 3.5.3) than alternative

evaluation methods of dialogue model characteristics. In light of this, ABC-Eval is a compelling

method for obtaining a detailed view of specific strengths and weaknesses of dialogue models

through the measurement of different behavior rates. By presenting verified evaluation setups

for 16 different behavior labels, ABC-Eval enables the selection of the most pertinent subset

for a particular dialogue application. This can serve as a complement to the coarse-grained

yet more efficient evaluations of overall dialogue model quality, often collected through Likert

ratings, in order to better understand and explain the specific characteristics of different

dialogue models in detail. Following this, application of ABC-Eval to neural dialogue models

circa 2020 and 2021 reveal that commonsense reasoning is a crucial vulnerability, thereby

motivating the further efforts undertaken in this dissertation.



Chapter 4

ConvoSense: Generating

Commonsense for Dialogue

4.1 Introduction

Given the weakness to commonsense observed in earlier neural dialogue models (Chapter

3), it becomes pertinent to develop better dialogue commonsense resources that can be

leveraged in downstream dialogue applications. Towards this, this chapter targets the second

research question: Is it possible to reliably obtain multi-faceted and contextually novel social

commonsense inferences for dialogue? In this chapter, I present the collection of ConvoSense,

a dataset of social commonsense inferences for dialogue [15]. As discussed in Section 2.2,

existing commonsense resources for dialogue tend to be misaligned with dialogue contexts,

recycle known context information as commonsense inferences, derive only straightforward

conclusions with minimal elaboration, or contain inferences of low diversity. As such, it

is necessary to develop a more suitable social commonsense resource that can be used to

produce multiple novel inferences for a given dialogue context. To this end, ConvoSense

is the first dialogue-centric social commonsense dataset that not only covers an extensive

array of inference types at large-scale but also provides a plethora of diverse, novel inferences

47
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tailored to each dialogue context. Compared to existing datasets, ConvoSense shows greater

contextual novelty, a higher number of inferences per example, and enhanced inference

diversity while maintaining exceptional reasonableness (Section 4.5.2). I will also discuss

in this chapter the results of several experiments towards developing generative models for

producing inferences for dialogue contexts (Section 4.4), which show that models trained on

ConvoSense excel in generating plausible inferences with higher detail and novelty, compared

to ones trained on existing datasets (Section 4.5). Importantly, the trained commonsense

generator (ConvoSenseM*) from this work will be leveraged as a powerful social commonsense

resource for the commonsense-augmented dialogue approach covered next in Chapter 5.

4.2 ChatGPT Dialogue Commonsense Generation

In order to support the development of a large-scale and high coverage commonsense dataset

for dialogue that improves upon existing works, I hypothesize that I can leverage large

language models (LLMs) to accomplish this task in an efficient and low-cost manner. From

initial pilot tests of both closed-source (ChatGPT) and open-sourced LLMs (Vicuna and

Llama), I find that ChatGPT provides greater reliability in following specific instructions

and produces commonsense inferences of overall better quality than the open-sourced LLMs.

Consequently, I choose to rely on ChatGPT in this work.

4.2.1 Prompt Engineering

Prior to crafting the full ConvoSense dataset, I empirically assess ChatGPT’s efficacy in

generating reasonable and novel commonsense inferences for dialogue. To mitigate any

unintended bias from in-context examples in the ChatGPT prompt, I adopt a zero-shot

generation framework using ChatGPT.1 During the development process of the ChatGPT

prompts for this task, I observe that the inferences generated from ChatGPT frequently

1gpt-turbo-3.5-301 with a temperature setting of 1.0.
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contain detailed and rich information, thus addressing one of the major limitations of

existing works. In addition, to encourage novel inferences from ChatGPT, I include the

instruction “Your answers should provide novel information that is not explicitly shared in

the conversation.” as seen in Table 4.1. I observe that this instruction helps in reducing the

redundancy of the generated inferences to the information already explicitly shared in the

dialogue context, thus addressing a second major limitation of existing works.

For the prompt, each inference type is accompanied by a guiding question and an answer

prefix, ensuring uniformity in the generated content for the specific type, which respectively

fill the Inference Question (Q) and Inference Answer Template (A) slots in the prompt. For

every dialogue context, the sequence of utterances in the context is placed in the Dialogue

Context (C) slot, and its final turn gets duplicated in the Target Utterance (T) slot. Finally,

the ChatGPT output, commencing with the header Answers and adopting a list-like format

with newline separation, is parsed to extract the generated inferences. An example of

the final prompt design is illustrated in Table 4.1 and the questions and answer prefixes

employed for the fifteen identified social commonsense inference types derived from the

existing dialogue-centric datasets (Table 2.1) are detailed in Table 4.2.

Speaker: I just finished cleaning up my kitchen and
getting the trash out.

Listener: I don’t envy you. I hate cleaning.
Speaker: I’m the other way. I love cleaning, and then

C

seeing my nice clean kitchen afterwards.

Target: I’m the other way. I love cleaning, and then
T

seeing my nice clean kitchen afterwards.

Q Question: What does Speaker want to do next?

A Answer: As a result, Speaker wants ...

In a list titled ”Answers”, generate several likely answers to
this question for the target expression, keeping the rest of
the conversation in mind.
Your answers should provide novel information that is not
explicitly shared in the conversation.

Table 4.1: A ChatGPT prompt example for the Desire inference type. Segments are dynamically
modified based on the example and inference type, as highlighted in the gray containers (C: dialogue
context, T: target utterance, Q: inference question, A: inference answer template).
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Type Question Answer Template

Subsequent What might happen after what Speaker just said? After this, ...

Antecedent What events happened before the situation that Speaker
just shared?

Before this, ...

Cause What could have caused the last thing said to happen? This was caused by...
Prerequisite What prerequisites are required for the last thing said to

occur?
For this to happen, it must be true that...

Motivation What is an emotion or human drive that motivates Speaker
based on what they just said?

Speaker is motivated...

Attribute What is a likely characteristic of Speaker based on what
they just said?

Speaker is...

Reaction How is Speaker feeling after what they just said? Speaker feels...
Reactiono How does Listener feel because of what Speaker just said? Listener feels...
Desire What does Speaker want to do next? As a result, Speaker wants...
Desireo What will Listener want to do next based on what Speaker

just said?
As a result, Listener wants...

Constituents What is a breakdown of the last thing said into a series of
required subevents?

This involves...

Obstacle What would cause the last thing said to be untrue or
unsuccessful?

This is untrue or unsuccessful if...

Effect What does the last thing said cause to happen? This causes...
Effects How does the last thing said affect Speaker? This causes Speaker to...
Effecto How does the last thing said affect Listener? This causes Listener to...

Table 4.2: Question and answer prefixes used for generating each inference type from GPT
for dialogue contexts. The ten inference types included in ConvoSense are represented by
Type.

4.2.2 Evaluating ChatGPT-generated Commonsense

To evaluate the quality of ChatGPT-generated commonsense inferences for dialogues, I

compare their reasonableness and novelty against inferences from human datasets. First, I

sample dialogue contexts and their corresponding inferences from the existing human datasets

of ComFact, Cicero, and Reflect (Section 2.2). For each dataset, an equal number of examples

are sampled for each inference type provided in the dataset (Table 2.1). For every sampled

example, I then prompt ChatGPT to produce inferences of the same type as that provided by

the human and randomly select one from the generated list. Finally, two human annotators

from the SurgeHQ crowdsourcing platform are presented with the dialogue context, inference

question, and both the ChatGPT- and human-generated inferences and asked to categorize

them.
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Reasonableness Most prior works assess their inferences based on human-judged rea-

sonableness [32, 21, 78, 111]. An inference is deemed reasonable if it makes sense in, is

relevant to, and is consistent with the provided dialogue context. I follow Hwang et al. [32],

in which annotators categorize inferences into levels of the truth likelihood: always/likely,

sometimes/possible, never/farfetched, or invalid/nonsense.

Novelty A key trait of commonsense for dialogue is its role in enhancing dialogue com-

prehension by providing new contextual information. In my study, annotators explicitly

evaluate the extent to which an inference contributes fresh information to the conversation,

categorized as: new & detailed, new & simple, and purely repetitive.

Since I aim to elicit the natural commonsense understanding learned by each annotator

through their life experience in the annotation tasks, I do not provide any training or explicit

examples towards what constitutes a “reasonable” or “novel” commonsense inference to

avoid artificially polluting their commonsense understanding of the world. Instead, I provide

a description of the task with definitions of the different categories. The instructions are

intended to mitigate bias towards trivial inference properties by providing clear definitions of

the characteristics under study and emphasizing important aspects to keep in mind, such as

ignoring grammar errors unless it made an inference nonsensical. Furthermore, decomposing

inference quality into two characteristics allows for their independent evaluation. I verified

through pilots that this approach resulted in reliable and sensible annotations.

4.2.3 Results

Following the evaluation approach presented in Hwang et al. [32], the two metrics in this work

are converted into binary representations. Thus, labels [always/likely, sometimes/possible]

are categorized as positive and [never/farfetched, invalid/nonsense] are considered negative

reasonableness. Similarly, [new & detailed, new & simple] are designated as positive, and

[purely repetitive] is classified as negative novelty. In cases of annotator disagreement, one of
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the annotators’ decisions is randomly selected. To mitigate the potential noise introduced

by this random selection, I repeat the process 100 times and report the average result, only

confirming statistical significance when every selection yields a significant result.

Many agreement metrics, including Cohen’s kappa, have been shown to be inaccurate

measurements of annotator agreement in cases where there is a large class imbalance due to

their calculation of chance agreement [34, 96, 65]. Gwet’s AC1 inter-annotator agreement

metric has been demonstrated to overcome the vulnerability to class imbalance due to its

different calculation for chance agreement, thus producing more accurate inter-annotator

agreement measurements for such situations [27]. Considering the reported quality of the

existing datasets and my preliminary assessments of ChatGPT-generated inferences, I expect

much higher rates of positive classes than negative ones, resulting in a class imbalance.

As a result, I utilize Gwet’s AC1 metric for inter-annotator agreement in this work. The

annotators obtain AC1 values of 0.8 and 0.6 for reasonableness and novelty, respectively,

implying substantial agreement.

Dataset R N #

ChatGPT 93 (0.17)* 91 (0.21)*
390

ComFact 81 (0.05) 73 (0.04)

ChatGPT 93 (0.10) 80 (0.16)*
300

Cicero 88 (0.05) 70 (0.06)

ChatGPT 89 (0.08) 86 (0.08)
300

Reflect 91 (0.09) 82 (0.04)

Table 4.3: The average % (σ < 2%) of total samples (#) tested as reasonable (R) and novel (N),
with discordance probabilities in parentheses. *: statistical significance (McNemar’s test, α = 0.05).
90 more samples are used for ComFact due to its greater number of inference types.

Table 4.3 demonstrates that ChatGPT attains comparable reasonableness in its generated

inferences as those derived from humans, even exceeding the reasonableness of the inferences

in ComFact with statistical significance. Notably, the results also indicate that ChatGPT

surpasses the novelty of the human-generated inferences for the majority of the existing

datasets. Furthermore, ChatGPT outputs achieve higher detail than that observed from
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Figure 4.1: Average % of new & detailed inferences out of all positive novelty inferences for
each data source.

human-generated inferences. Figure 4.1 shows the percentage of new & detailed inferences out

of all positive novelty inferences for each data source, clearly demonstrating the superiority of

ChatGPT inferences in terms of their expressed detail. Example inferences from ChatGPT

and humans are shown in Figure 4.2.

Cause
Listener:

Speaker:
Listener:
Speaker:

1. the listener does not know which subject to study.

I can't decide whether to go to university or get a job. What's your 
opinion?
Well, if I were you, I would go on studying.
But I don't even know what to study.
I advise you to major in economics.

Speaker:

Listener:
Speaker:

1. the speaker is old fashioned.
2. the speaker is outdoorsy.

We're all went out for a nice picnic lunch 
earlier.
Where did you go?
To the park, the place by the lake.

Attribute

1. the speaker's personal interest in economics.
2. the speaker's observation of the job market and the high demand for 

economics graduates.
3. the speaker's perception of economics as a versatile and valuable degree that 

can open up various career paths.
4. the speaker's inclination towards quantitative and analytical subjects, which 

are central to economics.
5. the speaker's belief that economics provides a solid foundation for 

understanding and navigating today's complex global economy.

1. someone who enjoys spending time in nature.
2. familiar with the park by the lake and has 

visited it before.
3. someone who values and prioritizes 

socializing and spending time with loved ones.
4. someone who enjoys simple pleasures like 

picnicking and appreciating the outdoors.
5. someone who makes an effort to plan 

enjoyable activities to share with others.

Figure 4.2: Cause and Attribute inferences written by humans (top, green) and generated by
ChatGPT (bottom, blue).
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4.3 Constructing Commonsense Datasets

Given my assessment of high-quality, novel, ChatGPT-generated commonsense inferences, I

next construct a substantial conversational commonsense dataset, termed ConvoSense.

4.3.1 ConvoSense: New ChatGPT-generated Dataset

Constructing a practical dataset of commonsense inferences for dialogue benefits from covering

a wide variety of dialogue situations. To this end, the construction process of ConvoSense first

carefully selects the dialogues to include based on their topical diversity, trims the dialogue

contexts to optimize utterance topical diversity, and finally generates the inferences for each

context.

Dialogue Selection I choose to sample the dialogues for ConvoSense as a subset of those

dialogues in the high-quality and large-scale SODA dataset. SODA contains over a million

dyadic dialogues generated by ChatGPT covering situations based on ATOMIC commonsense

tuples [37]. For cost practicality, ConvoSense is constructed to contain 10,000 training

dialogues, 1,000 validation dialogues, and 1,000 test dialogues each.

To encourage diversity in ConvoSense, I employ BERTopic [25], which clusters the

dialogues selected from SODA into groups using dimension reduction technique UMAP [55]

and HDBSCAN clustering algorithm [54] on embeddings of the dialogues.2 I configure the

hyperparameters3 to effectively group dialogues while maintaining a well-balanced distribution

of group lengths based on manual verifications. As a result, I obtain 100K dialogue groups,

where each group consists of 6.3 dialogues on average. These groupings represent 100K unique

dialogue topics, thus enabling the construction of ConvoSense to span a variety of topics by

sampling dialogues from a subset of these groupings.

Next, I randomly select one dialogue from the n groupings, where each dialogue contains at

2The all-mpnet-base-v2 model is used for embedding.
3neighbors: 5, components: 5, min cluster size: 2.
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least 5 utterances and has a BERTopic score of at least 0.95 to its group. To maintain distinct

dialogue scenarios in each split, each grouping can only be selected for one split. Through

this procedure, I set n values as [10K, 1K, 1K] for assembling the training, validation, and

test splits, respectively.

Utterance Selection For each selected dialogue, I determine which utterance to perform

inference generation on. The goal is to select utterances that are semantically rich, since

commonsense reasoning is most applicable in situations in which there is much shared

information to ingest about the conversational partner on which to make inferences [109].4

Manual review of the topic keywords identified for each group during the BERTopic grouping

suggest that the topic keywords can serve as useful approximations of the rich semantic

information expressed in the dialogue. Similar to Zhou et al. [109] who identify the most

similar dialogue utterance to the grounding scenario description of the dialogue for this

selection step, I use the topic keywords to pinpoint the most topically salient utterance in

each dialogue which is then used as the focal utterance for commonsense inference generation.

In addition, utilizing the topic keywords to select the utterance also helps to ensure that the

topical diversity afforded by the grouping is maintained. Consequently, in this work, the

focal utterance is determined by selecting the utterance whose embedding yields the highest

cosine similarity with the embedding of the four-word topic string assigned to the dialogue’s

respective group by BERTopic. Subsequently, I trim the dialogue’s utterances such that the

conversation ends at this selected utterance. This trimmed version becomes the final dialogue

context used for commonsense inference generation, where the inferences are derived for the

last utterance.

Because commonsense inferences often relate to a central figure in a conversation, either

the speaker or the listener, I introduce nominal tags for the two participants. The terminal

utterance is labeled as Speaker, and its preceding utterance is labeled as Listener. These

4Utterances which focus less on information-sharing (e.g. acknowledgment, question-asking, etc.) may have
different requirements or integrations with commonsense reasoning, which is left to future work.
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nominal tags are then assigned in alternating order to the remaining utterances.

Inference Types For each preprocessed dialogue, ChatGPT generates inferences for all in-

cluded commonsense types following the procedure in Section 4.2.1. Specifically, ten common-

sense types are included: Subsequent, Cause, Prerequisite, Motivation, Attribute,

Reaction, Reactiono, Desire, Desireo, and Constituents (highlighted in Table 4.2).

These ten types are selected from the overall set of fifteen social commonsense types identified

from previous works based on their usage frequency in existing datasets and their lack of

semantic overlap. The rationale behind the decisions of what to exclude are as follows:

• The set Effect, Effects, and Effecto is excluded because such information is highly

related to Subsequent as well as Desires and Desireo in many cases.

• Antecedent is excluded due to high overlap with Cause and Prerequisite.

• Obstacle is excluded due to its low usage in existing datasets and a lack of compelling

examples of its applicability to dialogue situations.

Illustrative examples of ConvoSense are shown in Figure 4.3.

Listener:
Speaker:
Listener:
Speaker:
Listener:
Speaker:

1. to ask the listener if she knows any shortcuts or tricks to find the 
perimeter quickly.

2. to learn the different types of shapes and their respective perimeters 
to improve her math skills.

3. to know the formula for calculating the perimeter so that she can 
apply it to the given shape.

4. to explore practical applications of finding perimeters in daily 
life, such as measuring the perimeter of her backyard.

5. to document the process of finding the perimeter step by step so 
that she can later revise it as a reference guide.

Desire
Hi, Taraji. How are you doing today?
I'm doing fine, thank you. Just working on my math homework.
Do you need any help with that?
Yeah, I could use some help. Thank you.
Let's take a look. What are you working on?
I'm working on this problem where I have to find the perimeter of 
this shape.

Speaker:
Listener:
Speaker:

1. to know if speaker has any recommendations for better 
books.

2. to discuss specific examples of two-dimensional 
characters and plot holes in the book with speaker.

3. to ask speaker if they have read any other books by the 
same author.

4. to leave a negative review of the book online.
5. to stop reading the book and find something else 

to read.

This book is terrible!
What's wrong with it?
The author doesn't know how to tell a story! 
All the characters are two-dimensional and 
the plot is full of holes!

Desireo

Figure 4.3: Desire and Desireo inferences in the ConvoSense dataset.
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Data Quality The results in Section 4.2.3 demonstrate that ChatGPT is generally capable

of producing high-quality commonsense inferences regardless of the underlying dialogue

source. Consequently, applying ChatGPT to generate commonsense inferences for the SODA

dialogues is expected to perform with similar high quality. To explicitly verify this, I conduct

an evaluation of the ConvoSense dataset. An external conversational AI expert, unaffiliated

with this study, evaluates the generated inferences for 100 ConvoSense examples (508 total

inferences; average 5.08 inferences per example), with all ten inference types uniformly

represented across examples. The human judge completes two evaluation tasks: grading

reasonableness and novelty of an inference (Sec. 4.2.2) and performing inference clustering

to measure per-example output diversity. Table 4.4 presents the results, confirming the

high reasonableness, novelty, detailedness, and diversity of the inferences in the ConvoSense

dataset.

ConvoSense

Reasonable 91
Novel 97

Detailed 63
Clusters 4.82 (95%)

Table 4.4: Human evaluation results on 100 examples of ConvoSense data, including the %
of total inferences judged to be reasonable and novel, the % of positive novelty inferences
judged to be detailed (vs. simple), and the average number of unique inference clusters per
example, with the average % of unique inferences per example in parentheses.

Error Analysis I next perform an error analysis on the unreasonable inferences identified

by the human judge. I observe that most unreasonable inferences are explained by being too

niche to be likely given only the provided information in the dialogue context (26%; Desire

examples #4-5 in Figure 4.3), or by their attribution to the wrong conversational participant

(26%; Desireo examples #4-5 in Figure 4.3). Relatively speaking, only a small percentage

of unreasonable inferences are explained by a violation of common knowledge of human

experiences (10%), a lack of relevance to the dialogue context (10%), or a contradiction

of the dialogue context (7%). This suggests that ConvoSense inferences are predominately
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accurate representations of commonsense understanding, although they can suffer from lack

of precision regarding situational nuances and speaker roles.

4.3.2 HumanGen: Human-generated Datasets

To compare ConvoSense against the existing human-generated datasets, I combine the three

human-generated datasets of ComFact, Cicero, and Reflect (Section 2.2) into a solitary

dataset, termed HumanGen.5 Specifically, their train/validation/test sets are integrated

independently. For ComFact and Cicero, this integration follows the provided splits, while

for Reflect, data is sampled following an 80/10/10 distribution. To standardize HumanGen

into a cohesive format, I perform the following preprocessing steps.

First, I align the commonsense types in the human datasets with the specifications of

Table 4.2 to identify the appropriate commonsense inference questions for each instance.

Then, I combine consecutive utterances from the same speaker to ensure every dialogue turn

represents a distinct speaker. Lastly, I apply Speaker and Listener tags in a similar manner to

ConvoSense (Figure 4.3). Since human-generated inferences often contain nominal references

to specific target entities, I additionally incorporate the names of conversational participants

into the tags, as exemplified by “Speaker (A)”.

The naming conventions vary across the different human-generated datasets. To maintain

uniformity, I adopt the naming conventions used in Cicero for both ComFact and Reflect, as

Cicero constitutes nearly 90% of HumanGen. In Cicero, participants are denoted as A and B.

For ComFact, originally lacking speaker designations, I randomly assign A/B tags to each

conversation. On the other hand, Reflect includes original speaker names; thus, I replace

them with A/B tags accordingly. Since the speaker name frequently appears in Reflect’s

inferences, I uniformly replace it with “the speaker”, aligning with the prevalent format in

Cicero.

5Many commonsense types have a sparsity of training data when the human-generated datasets are viewed in
isolation, which would impede the training of a neural model to adequately capture the commonsense type.
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4.3.3 Dataset Statistics

Table 4.5 presents data statistics for ConvoSense and HumanGen. ConvoSense significantly

surpasses HumanGen for data volume, particularly regarding instances with polymorphic

outputs, where multiple inferences can be derived per instance. Moreover, ConvoSense boasts

greater vocabulary diversity and reduced redundancy among inferences.

All Poly
Examples Words Inferences U1(#) U2(#) Examples U1(%) U2(%) UL(%)

ConvoSense 120,000 14.6 5.1 (2-13) 16,666 199,087 120,000 92.8 98.9 98.8

ComFact 3,909 3.2 1.4 (2-12) 295 315 1,401 86.7 97.3 60.3
Cicero 52,644 11.6 1.3 (2-11) 7,598 44,234 9,911 84.4 97.2 98.7
Reflect 3,000 6.4 1.1 (2-4) 835 1,407 216 85.1 95.2 82.2

HumanGen 59,553 6.6 1.3 (1-12) 2,886 15,420 11,528 86.7 97.0 78.3

Table 4.5: Statistics of the ConvoSense and HumanGen datasets. Poly: polymorphic examples
(multiple inferences). Examples: # of examples, Words: average # of words per inference,
Inferences: average # of inferences per example with range shown in parentheses, U1/2(#):
average # of unique unigrams/bigrams across all inferences, U1/2(%): average % of unique
unigrams/bigrams between inferences within a single example, UL(%): average % of unique
inferences across all examples. Averages are calculated at the macro level across all inference types.

4.4 Generative Commonsense Models

4.4.1 Training and Decoding Strategies

With the rich and diverse multi-inference examples provided in ConvoSense, training com-

monsense generation models that produce versatile outputs is likely well-supported. Yet, a

key query remains: how can this versatility be best achieved by the model?

A common method of enhancing diversity in generative outputs is to modify the decoding

strategy [23, 90, 33]. Through preliminary testing, I observe that diverse beam search

decoding with Hamming distance reward following Vijayakumar et al. [90] improves the

output diversity with less impact on accuracy compared to other methods.

On the other hand, Cao and Wan [7] propose modifying the model architecture by

introducing latent variables to guide output variety. However, this approach only approximates
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learning varied responses by relying on conditioning on random latent variables. In contrast,

ConvoSense provides direct access to numerous inferences per input, enabling direct training

of generative models that produce multiple inferences per example, with the set of inferences

treated as target outputs during training. Therefore, I explore the performance of three

strategies for diverse generation of commonsense inferences.

Monomorphic Beam Search (M) This model receives as input a dialogue context C

consisting of the previous six utterances delimited by their corresponding speaker tags, the

current response r for which to generate inferences, and a commonsense question q pertaining

to one of the ten inference types (Table 4.2) in the following format:

C\nr\n\n[Question]q\n[Answer]

It is trained to output a single inference i. During training, instances with multiple correct

inferences I generate several training examples, one for each target inference i ∈ I. During

inference, standard beam search decoding is used to generate k outputs.

Monomorphic Diverse Beam Search (M*) This model adheres to the same design as

the M model, except during inference it uses Hamming-distance diverse beam search decoding

instead to generate k outputs, following Vijayakumar et al. [90].

Polymorphic (P) Using the same input as the M model, this model is trained to output a

series of inferences as a sequence. To do this, the ground-truth inferences for each training

example are concatenated into a list-like sequence, delimited by semicolons and prefixed by

an integer representing their position in the list as follow:

(1) i1; (2) i2; (3) i3; . . .

The order of the answers in the list are shuffled between each training epoch. During inference,

standard beam search decoding is used to generate the top-1 output. A single output from

this model is intended to represent the set of multiple diverse inferences for the input, without
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the need for any post-hoc decoding strategies, which other studies have observed to negatively

impact the accuracy of the output generations [33].

4.4.2 Model Configuration

I develop six generative models: ConvoSenseM, ConvoSenseM*, ConvoSenseP, HumanGenM,

HumanGenM*, and HumanGenP. Each model name denotes the training dataset with the

terminal letter indicating the model strategy. All of them use T5-3b [66] as the base model,

which is then finetuned on the corresponding dataset following the indicated model strategy.

The ConvoSense* and HumanGen* models are finetuned for 5 or 10 epochs, respectively.

The best-performing models and hyperparameters are selected through grid-search based on

their results on the validation sets.6 For all models, decoding is performed with 10 beams.

For ConvoSenseM* and HumanGenM*, the number of beam groups is 10, and the diversity

penalty is 0.5 and 1.0, respectively. For P models, decoding also uses a repetition penalty of

5.0 to reduce output token repetition.

It is worth noting that only 16% of HumanGen examples feature multiple ground-truth

inferences. Training a P model on the complete dataset yields a single-inference model, which

defeats the purpose of the polymorphic model strategy. Instead, I develop the HumanGenP

model exclusively on multi-inference instances to facilitate learning of polymorphic outputs.

4.5 Generative Model Evaluation

I evaluate the six generative models (Section 4.4.2) on the ten commonsense inference types

(Table 4.2) that exist in both the HumanGen (Section 4.3.2) and ConvoSense (Section 4.3.1)

datasets. The model performance is evaluated using automatic reference metrics (Section 4.5.1)

6The Adafactor optimizer is used with a a weight decay of 5e-3 and a learning rate of 5e-6, except for
ConvoSenseP with 1e-6. The max source length is set to 768. The max target length is set to 400 for P
models and 128 for other models. All models are trained using bf16 for memory efficiency. P models use a
prefix of “provide several reasonable answers to the question based on the dialogue:\n” and other models
use a prefix of “provide a reasonable answer to the question based on the dialogue:\n”.
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and human evaluations of reasonableness and novelty (Section 4.5.2).

4.5.1 Automatic Reference Metrics

Conventional evaluations of generative models against ground-truth references often overlook

the diverse nature of the outputs. They typically assess individual model outputs against

a single reference, focusing on best-case performance due to dataset constraints. However,

such assessments are inadequate for my multi-inference dialogue generation objective. To

address this, I structure my automated evaluation method to account for the concept of

output diversity. This method, referred to as PolyAgg, serves as an aggregation function

compatible with standard evaluation metrics. Its purpose is to gauge the model’s capacity to

encompass the complete set of ground-truth references in its generated outputs.

Algorithm 1 Metric Aggregation

1: procedure PolyAgg(outputs, references)
2: matrix← []
3: for o ∈ outputs do
4: row ← []
5: for r ∈ references do
6: score←Metric(o, r)
7: Append(score, row)

8: Append(row,matrix)

9: a← LinearSumAssignment(matrix)
10: return Mean(a)

Algorithm 1 demonstrates the PolyAgg aggregation function. The PolyAgg aggregation

function computes a score matrix for each example, where rows represent model outputs

and columns represent ground-truth references, and finds the maximal assignment of rows to

columns following the linear sum assignment problem [6], which seeks to find the optimal

bijective mapping between rows and columns in a cost matrix. By mandating a one-to-one

mapping from model outputs to references, I can accurately measure reference set coverage

and prevent models that generate mere surface-level variations from scoring highly on datasets

with diverse references. I use SciPy’s linear sum assignment solver, then calculate the mean
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of the assigned scores for the final metric value. Dou et al. [11] utilize a similar aggregation

for evaluating a diverse dialogue response generation model.

One consideration for PolyAgg is that it can only match up to the number of generated

outputs. If a model generates fewer outputs than there are references, PolyAgg will not

measure against all references. However, this is a reflection of the model’s coverage capability,

which is valuable information. To capture this, I introduce a coverage moderator for the

PolyAgg score. Using cardinality notation | · |, where outse denotes the model outputs and

refse denotes the ground-truth references for a single example e ∈ E, the coverage moderator

C is defined as:

C =
|outse|
|refse|

(4.1)

Furthermore, different dialogue contexts can vary in the amount of diversity to their inferences,

due to the nature of the described situations or shared information within the dialogue. A

model achieving a high PolyAgg score on a diverse example should receive greater reward

compared to a low-diversity case. Thus, not all examples should be treated equally when

computing the overall model score; rather, each score should be proportionally weighted

based on the corresponding number of ground-truth references.

Combining the PolyAgg aggregation, coverage moderator C, and diversity weighting, the

final score for a model is calculated as:

∑
e∈E

PolyAgg(outse, refse) ∗ C ∗ |refse|∑
e∈E
|refse|

(4.2)

I use this evaluation scheme with three automatic metrics to measure the performance of

the models. I include the traditional ngram-matching BLEU metric with n ∈ [1, 4] [63], the

token-level embedding-based metric BertScore7 [103], and sentence cosine similarity using

7BertScore: microsoft/deberta-xlarge-mnli
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SentenceBert8 [71].

HumanGen Test Split (n = 11,494) ConvoSense Test Split (n = 10,000)
Top-1 Top-5 Top-1 Top-5

BLEU BS Embed BLEU BS Embed BLEU BS Embed BLEU BS Embed

ConvoSenseM 5.407 0.641 0.422† 6.282 0.650 0.462 19.019 0.777 0.730† 11.119 0.700 0.603
ConvoSenseM* 5.131 0.637 0.416 6.710 0.658† 0.496 17.923 0.773 0.725 11.933 0.709 0.627
ConvoSenseP 4.922 0.635 0.422 6.026 0.645 0.482 15.163 0.758 0.703 9.725 0.644 0.564

HumanGenM 10.724 0.711 0.538 12.701 0.721 0.576 5.095 0.633 0.501 3.574 0.588 0.413
HumanGenM* 9.473 0.697 0.511 12.056 0.724† 0.591 4.263 0.617 0.481 3.045 0.571 0.393
HumanGenP 9.524 0.700 0.523 9.658 0.645 0.504 6.358 0.655 0.528 2.330 0.256 0.201

Table 4.6: Reference metric results on test splits. Columns BS denote Bertscore. Underline
indicates best metric with statistical significance under Bonferonni multi-test correction, except
where indicated by † (t-test, α = 0.05).

Results I evaluate each model in terms of both its best-case performance (Top-1 output)

and its multi-inference performance (Top-5 outputs). In the Top-1 setting, the maximum

score achieved by the top-1 output against all of the ground-truth references for an example

is taken and averaged across the test data. In the Top-5 setting, the top-5 outputs from the

models are taken and scores are calculated using Equation 4.2, before being averaged across

the test data. For M(*) models, the top one or five beams are taken as the outputs for each

setting. For P models, the first one or five inferences in the outputted sequence are taken

as the outputs for each setting. The results are shown in Table 4.6 for each model on the

HumanGen and ConvoSense test splits, respectively.

Overall, it is evident that using diversity-promoting decoding (M*) outperforms the

direct generation of multiple inferences (P). This approach achieves the highest BLEU,

BertScore, and sentence similarity scores in the Top-5 assessment setting. This trend is

particularly pronounced in the case of the ConvoSense-trained model, holding true for both

the ConvoSense and HumanGen test splits. Enhancing training inference diversity as seen in

ConvoSense appears to support the adoption of diversity-focused decoding strategies, yielding

more contextually relevant outputs aligned with ground-truth references, even when applied

to test examples from different datasets.

8SentenceBert: all-mpnet-base-v2
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In the Top-1 setting, monomorphic models with standard beam search demonstrate

superior performance for both HumanGen- and ConvoSense-trained models. However, the

difference compared to diverse beam search is relatively minor, particularly when considering

embedding-based metrics. Interestingly, the HumanGenP model displays the strongest ability

to generalize to the ConvoSense test split among all HumanGen-trained models in the Top-1

scenario. Upon manual comparison of HumanGenP outputs against other HumanGen-trained

models, I observe that HumanGenP is more inclined to specify a focal person in the inference

(e.g.,“the speaker/listener”). This often aligns better with ConvoSense references, although

in a superficial manner with little impact on the underlying semantics.

It is also observed that the models produce low scores when evaluated against the test

examples that are out-of-distribution with respect to their training data. This may not

reflect the true underlying reasonableness of the generated inferences, but rather a difference

in inference content between the datasets, which is supported by evidence in Section 4.2.3

showing that human-written generations are more often repetitive with the dialogue context

than ChatGPT generations. To obtain a direct measure of the quality of the generated model

inferences, a human evaluation is discussed next in Section 4.5.2.

4.5.2 Human Evaluations

I also evaluate the models through human assessment, in both the Top-1 and Top-5 setting.

Based on automated evaluation outcomes, I compare ConvoSenseM* to both HumanGenM

and HumanGenM*. An external conversational AI expert, unaffiliated with this study,

evaluates the top five inferences for 60 examples per model in a blinded design, with all ten

inference types and both datasets being uniformly represented. The human judge completes

two evaluation tasks: grading reasonableness and novelty of an inference (Sec. 4.2.2) and

performing inference clustering to identify unique generated inferences per example.

Table 4.7 demonstrates ConvoSenseM*’s superior performance compared to the HumanGen

models. ConvoSenseM* achieves a remarkable 93% reasonableness and 98% novelty, averaging
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Top-1 Top-5
R N R N Clusters

ConvoSenseM* 90 98 93 98 3.42 (68%)
HumanGenM 75 57 81 56 2.25 (45%)
HumanGenM* 75 70 81 70 3.17 (63%)

Table 4.7: Percentage of reasonable (R) and novel (N) inferences from each model. Underline
denotes a statistically significant result against both HumanGen models (chi-square propor-
tions test, α = 0.05). The average number of inference clusters is also shown, along with the
average % of unique inferences per example in parentheses (Clusters).

3.4 unique inferences per example. Indeed, similar results hold even when considering the

Top-1 output per model, showing that ConvoSenseM* exhibits strong performance regardless

of whether a single-best inference is desired or a diverse set of inferences are desired. Moreover,

when considering the positive novelty inferences in the Top-5 setting, I observe that 75%

are annotated as detailed for ConvoSenseM* whereas only 7% are indicated as such for

HumanGenM*. This reveals a substantial improvement in the amount of detail present in

the inferences produced by ConvoSense models as compared to HumanGen models, which

results in richer information being provided by the model.

4.6 Conclusion

This study has confirmed the feasibility of generating multi-faceted, contextually novel

commonsense inferences for dialogue. The presented dataset, ConvoSense, surpasses existing

commonsense resources by offering a more diverse range of inferences that afford higher

contextual novelty for their dialogue contexts. The comprehensive evaluation demonstrates

that models trained on ConvoSense outperform those trained on other datasets in producing

plausible, detailed, and novel commonsense inferences across various dialogue scenarios. This

achievement provides a state-of-the-art generative commonsense model that can be leveraged

to improve downstream dialogue applications.



Chapter 5

Generate-Select-Respond:

Commonsense-Augmented Dialogue

Model

5.1 Introduction

This chapter targets the third research question: Does access to a multi-faceted and contex-

tually novel social commonsense pool improve dialogue responses? In this chapter, I present

Commonsense Inference Generate-Select-Respond (CSI-GSR), a three-stage dialogue model

that considers a pool of commonsense inferences relevant to the current dialogue situation

when generating the follow-up response. CSI-GSR specifically leverages the ConvoSense-

trained commonsense generator from Chapter 4, which is the only existing model of its

kind that affords access to a multi-faceted and contextually novel commonsense pool for

dialogue contexts. CSI-GSR is compared against the native response generation capabilities

of prominent LLMs, including ChatGPT3.5 and Llama2, as well as the state-of-the-art in

commonsense-augmented open-domain dialogue modeling, ChatGPT + Doctor [8]. It is

found that CSI-GSR substantially advances the informativeness of the responses, improving

67
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the level of detail and specificity of the responses to the dialogue context, over all considered

models while still maintaining overall response fluidity in the greater dialogue context.

5.2 Approach

Following the success of modular LLM-based dialogue agents (Section 2.1), I present a

commonsense-augmented dialogue approach that contains a pipeline of LLM modules directing

the response generation strategy, hereafter referred to as CSI-GSR. It consists of the following

modules: (1) a powerful commonsense inference (CSI) generator that outputs diverse and

contextually novel inferences (G), (2) a strategic inference selector (S), and (3) an inference-

grounded responder (R). Figure 5.1 illustrates the proposed pipeline with examples.

Inference Generation (G) First, the pool of commonsense inferences are generated

for a given dialogue context D using ConvoSenseM* (Chapter 4.4). This results in the

commonsense inference set I, a set of commonsense inference candidates that are diverse and

relevant to the dialogue context.

Inference Selection (S) Second, the commonsense inference selection ChatGPT module

plans which inferences are useful towards generating an interesting and appropriate response

to the dialogue context. It is tasked with selecting k inferences at a time from the full

set of inferences I by being prompted to carefully consider each inference and strategically

determine which inferences are the most useful, relevant, and interesting for writing the next

response in the dialogue context. The selected inferences are outputted as the list I ′ and are

a subset of I where 1 ≤ |I ′| < |I|. This produces a set of commonsense inferences that are

curated specifically for their utility towards generating a good follow-up response.

Response Generation (R) Third, the ChatGPT response generator module takes I ′

and D and outputs the next response r. It is instructed to synthesize the semantic content
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Response 
Generation

(R)

ChatGPT

Inference 
Selection

(S)

ChatGPT

You find yourself in the role of a conversational architect, who is responsible for setting up the next 
exchange in the ongoing dialogue presented in "Dialogue History." Specifically, your task is to review the 
series of talking points provided in "Talking Points" and select the best 1 idea that will craft an engaging and 
cohesive response for the Listener to say. Write your selected talking points into a list titled "Selection".

# Dialogue History 
Listener (You): Hey coach, thanks for helping me out these past few months. 
Speaker (Other): No problem, Yusuf. One thing you still need to work on is your backhand stroke.
 
# Talking Points 
* The Listener (You) wants to to hire a professional tennis coach to help him improve his backhand stroke. 
* I think it is possible the previous dialogue turn was caused by the listener’s  lack of experience with the backhand 
stroke. 
* I think the Speaker (Other) is motivated by a desire to see their students succeed and reach their full potential. 
* The Listener (You) feels relieved that there is still room for improvement and is eager to work on it.
* Next, I predict yusuf might ask the coach for some specific drills or exercises to work on his backhand stroke. 
…

Selection:

* Next, I predict yusuf might ask the coach for some specific drills or exercises to work on his backhand 
stroke.

You are the Listener in a conversation shown in "Dialogue History".

Your goal is write a casual yet engaging and appropriate next response for the Listener (You) in the 
provided dialogue. First, sufficiently answer all questions posed by Speaker (Other) in their preceding 
turn. Then, continue your response by including the talking points shown in "Talking Points" since you 
want to cover them in your next response too.

Write the response in the following format:

Listener's Response:
___

# Dialogue History 
Listener (You): Hey coach, thanks for helping me out these past few months. 
Speaker (Other): No problem, Yusuf. One thing you still need to work on is your backhand stroke.
 
# Talking Points 
* Next, I predict yusuf might ask the coach for some specific drills or exercises to work on his backhand stroke.

Listener’s Response:

Inference Generation (G)

Listener desire: to hire a professional tennis coach to help him improve his backhand stroke. 
Caused by: the listener's lack of experience with the backhand stroke.
Motivation: by a desire to see their students succeed and reach their full potential. 
Listener reaction: relieved that there is still room for improvement and is eager to work on it. 
Next: yusuf might ask the coach for some specific drills or exercises to work on his backhand stroke. 
…

Listener desire
Listener reaction
Speaker reaction

Speaker characteristic
Speaker desire

Listener: Hey coach, thanks for helping me out 
these past few months. 
Speaker: No problem, Yusuf. One thing you still 
need to work on is your backhand stroke.

Speaker motivation
Subevents

Prerequisites
Next

Caused by

Commonsense Types Dialogue Context

Input

Output

Convo
Sense

M*

Since you mentioned my backhand stroke needs improvement, do you have any specific drills or 
exercises you recommend to help me strengthen it? I'm really eager to keep working on my game and 
keep getting better.

Figure 5.1: The module pipeline of CSI-GSR with finalized Enumeration prompt design for
the prompt-based ChatGPT modules (S, R) (Section 5.3.1). Underline denotes instruction
that changes for -single and -multi variants, with -single shown here (Section 5.3.2).
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provided in the set of multiple inferences into an engaging and appropriate response. This

produces a dialogue response that is natural and engaging in the dialogue by being grounded

on k selected commonsense inferences.

5.3 Approach Development

The performance of an approach that relies on prompting LLMs is determined by the prompt

that is provided to the LLM. The phrasing of the task and its instructions thus play a pivotal

role in the outcomes achievable through such methods. However, this characteristic introduces

a unique challenge when developing approaches using prompt-based LLM techniques. Namely,

the reliance on natural language introduces an intractable exploration space of prompts, since

there are countless ways of composing a natural language prompt to accomplish a singular

task. It is impossible to test all possible natural language prompts, and there is no highly

reliable way of estimating the impact of specific modifications, as of now.

5.3.1 Commonsense Inference Generate-Select-Respond: CSI-GSR

In light of these challenges of prompt development, I first identify a suitable Inference

Generation module before focusing on the LLM-based Inference Selection and Response

Generation modules, which utilize the output of the Inference Generation module.

Inference Generation (G)

Recent work on LLMs, including ChatGPT3.5, has revealed that they tend to overlook

information situated in the “middle” of the prompt, especially as the length of the prompt

grows [47]. With this in mind, I decide to limit the number of inferences that are generated

from the Inference Generation module, in order to better situate the subsequent modules

to reason over the inferences that they are provided. Specifically, the Inference Generation

module will output a set of ten commonsense inferences in total, one corresponding to each
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of the ten commonsense types covered in the ConvoSenseM* model. I first experiment with

outputting the top-1 inference for each type, but observe that there can be high semantic

overlap between the inferences outputted between different types. Since the hypothesis

to be tested in this work specifically targets the utility of diverse and multi-faceted social

commonsense inferences as response content candidates, the level of diversity in the inferences

should be maximized to the greatest extent possible. Thus, overlapping inferences are

undesirable. To mitigate this, I next experiment with ways of improving the diversity of the

final set of commonsense inferences. Notably, the results in Chapter 4 demonstrate that the

top-5 outputs of the ConvoSenseM* model attain a remarkable 68% inference uniqueness

while maintaining high reasonableness and novelty. In practice, this means that within a

specific dialogue context and for a given type of commonsense, an average of 3 to 4 inferences

represent unique semantic information from one another out of the 5 that are outputted. In

light of this, I implement an approach for the Inference Generation module that outputs the

top-5 outputs for each inference type t in ConvoSense and then selects a single inference for

each type such that between-type cosine similarity of inference embeddings is minimized.

Manual analysis of the results indicates that this approach improves the diversity of the

inference set outputted by the Inference Generation module, without too substantial of an

impact on the reasonableness of the inferences.

Inference Selection (S) and Response Generation (R)

Next, I focus on on the Inference Selection and Response Generation modules, which will

ingest the outputs from the previously described Inference Generation module as part of their

prompts. I first identify a small set of prompts that are likely to accomplish the desired tasks

of Inference Selection and Response Generation, based on trial-and-error experimentation,

and then perform a more thorough performance comparison between this finite set. I aim for

high diversity in the considered prompts, where the prompts are designed to approach the task

from different perspectives, rather than being surface-form modifications to the vocabulary
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and phrasings of a common approach. In this way, even though I am only considering a small

set of prompts in full, I approximate wide coverage of the prompt search space to optimize the

likelihood of finding a successful strategy. In total, I compare the performance of 4 distinct

strategies for the Inference Selection and Response Generation modules of CSI-GSR:

Enumeration the Inference Selection module generates a list of interesting and engaging

talking points intended to inspire a compelling follow-up response. The Response Generation

module then incorporates these talking points into the generated response. The prompts are

shown in Table 5.1.

Structured Composition the Inference Selection module is prompted to identify the

best composition of commonsense inferences for constructing a response by choosing a main

commonsense inference to drive the response and a set of supplementary inferences to provide

supporting details for the main point. The Response Generation module receives these

grounding inferences categorized into two groups: the main point and supporting points. The

prompts are shown in Table 5.2.

Group Partition the Inference Selection module is instructed to partition commonsense

inferences into groups, each of which could potentially generate a suitable response, and to

then identify the optimal group. The Response Generation module then receives the chosen

group for generating the response. The prompts are shown in Table 5.3.

Planning the Inference Selection module is prompted to articulate a natural language

description outlining the plan for the subsequent response. The explanation must include an

indication of a selected set of commonsense inferences. The Response Generation module

receives both the selected inferences and the explanation to construct the response accordingly.

The prompts are shown in Table 5.4.

For all prompts, the dialogue context is provided as a sequence of turns, separated by newlines,
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Enumeration

S

You find yourself in the role of a conversational architect, who is responsible for setting up the
next exchange in the ongoing dialogue presented in “Dialogue History.” Specifically, your task is
to review the series of talking points provided in “Talking Points” and curate a selection of 2 to 4
non-repetitive ideas that will craft an engaging and cohesive response for the Listener to say when
combined. You want to strike a balance between selecting enough talking points to construct an
interesting response without selecting too many that would result in a longwinded, overwhelming, or
unfocused response. Write your selected talking points into a list titled “Selection”.

# Dialogue History
{context}

# Talking Points
{inferences}

Selection:

R

You are the Listener in a conversation shown in “Dialogue History”.

Your goal is write a casual yet engaging and appropriate next response for the Listener (You) in
the provided dialogue. First, sufficiently answer all questions posed by Speaker (Other) in their
preceding turn. Then, continue your response by including the talking points shown in “Talking
Points” since you want to cover them in your next response too.

Write the response in the following format:

Listener’s Response:

# Dialogue History
{context}

# Talking Points
{Output from S}

Listener’s Response:

Table 5.1: The Inference Selection (S) and Response Generation (R) prompts used for the
Enumeration prompt design. Placeholders “{context}” and “{inferences}” are replaced by the
dialogue context and generated commonsense inferences, respectively, of a provided example.
Placeholder “{Output from S}” is replaced by the output from ChatGPT from the Inference
Selection module.
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Structured Composition

S

You are a conversational architect, who is responsible for creating a response outline for the next
response in the ongoing dialogue presented in “Dialogue History”.

A response outline consists of 1 MAIN POINT and 1 - 3 SUPPORTING POINTS that the Listener
will say in their immediate next response. You are given a set of possible talking points shown in
“Talking Points” from which you need to put together the outline. The foremost purpose of MAIN
POINT is to answer all of the questions asked in the previous turn by the Speaker. If there are
any questions to answer, then “Main Point” should consist of a question-answering action (e.g. the
Listener (You) will answer the Speaker’s questions).
If there are no questions to answer, then MAIN POINT either proactively contributes new information
to the conversation from the perspective of the Listener, or follows up to elaborate on what was
shared by the Speaker. The MAIN POINT must be taken from the list “Talking Points”.
SUPPORTING POINTS either function as transitions into the main point by introducing its relevance
to the conversation, or as trailing addendums in order to offer additional details expounding on the
content of the MAIN POINT. All supporting points must be taken from the list “Talking Points”.

# Dialogue History
{context}

# Talking Points
{inferences}

Main Point:

R

You are the Listener in the ongoing conversation shown in “Dialogue History”, who is provided an
outline of how to structure your next response in the form of “Main Point” and “Supporting Points”.

Begin by determining how to express the main point outlined in the “Main Point” section, focusing
on either proactively contributing new information from the perspective of the Listener or following
up on the Speaker’s input for further elaboration.
Then, integrate the “Supporting Points” into your response, using them as transitions to establish
the relevance of the main point or as trailing addendums to provide additional details that enhance
the content of the main point.
Pay careful attention to the flow of your response, ensuring a coherent and logical progression
between main and supporting points, and also consider the overall flow of the conversation given
your response to make sure it is natural and cohesive.
It is critical that ALL points in both “Main Point” and “Supporting Points” need to be mentioned
in your response.

# Dialogue History
{context}

# Talking Points
{Output from S}

Listener’s Response:

Table 5.2: The Inference Selection (S) and Response Generation (R) prompts used for the Structured
Composition prompt design. Placeholders “{context}” and “{inferences}” are replaced by the
dialogue context and generated commonsense inferences, respectively, of a provided example.
Placeholder “{Output from S}” is replaced by the output from ChatGPT from the Inference
Selection module.
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Group Partition

S

First, think about how to split the talking points in “Talking Points” into groups of 2 or 3 relevant
talking points that can be said together to form an appropriate and interesting response in the
ongoing conversation shown in “Dialogue History”. The only thing you should output is what you
think the best group is for making the next response. Output it as a list labeled “Best Group”.

# Talking Points
{inferences}

# Dialogue History
{context}

R

Write the Listener’s next response for ongoing conversation shown in the “Dialogue History” based
on the talking points in “Best Group” as “Listener’s response”. Make sure the response is natural
as the next response in the conversation, synthesizes the talking points in the group together, and
avoids being longwinded or rambling.

# Dialogue History
{context}

# Best Group
{Output from S}

Table 5.3: The Inference Selection (S) and Response Generation (R) prompts used for the
Group Partition prompt design. Placeholders “{context}” and “{inferences}” are replaced
by the dialogue context and generated commonsense inferences, respectively, of a provided
example. Placeholder “{Output from S}” is replaced by the output from ChatGPT from the
Inference Selection module.
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Planning

S

You are teaching someone to be a better conversationalist through a demonstration of constructing
a response from the Listener in the example dialogue shown in “Dialogue History”. First, explain
how you would use the talking points shown in “Talking Points” to construct the next response as
the Listener in the ongoing conversation shown in “Dialogue History” in “Explanation” field. Then,
output the list of talking points needed to execute your explanation in “Selection” field.

# Dialogue History
{context}

# Talking Points
{inferences}

Explanation:

R

You are teaching someone to be a better conversationalist through a demonstration of constructing
a response from the Listener in the example dialogue shown in “Dialogue History” from a set of
provided talking points in “Talking Points”. First, sufficiently answer all questions posed by Speaker
(Other) in their preceding turn. Then, continue your response by including the talking points shown
in “Talking Points”.

Write the response in the following format:

Listener’s Response:

# Dialogue History
{context}

# Talking Points
{Output from S}

Listener’s Response:

Table 5.4: The Inference Selection (S) and Response Generation (R) prompts used for the
Planning prompt design. Placeholders “{context}” and “{inferences}” are replaced by the
dialogue context and generated commonsense inferences, respectively, of a provided example.
Placeholder “{Output from S}” is replaced by the output from ChatGPT from the Inference
Selection module.
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where each turn is prefixed by a nominal tag. The terminal turn is prefixed as “Speaker

(Other)”, and its preceding utterance is labeled as “Listener (You)”. These nominal tags are

then assigned in alternating order to the remainder of the turns. These nominal tags encourage

ChatGPT to take on the role of the Listener in the conversation when constructing the

follow-up response. Additionally, the commonsense inferences generated from the Inference

Generation module (ConvoSenseM*) are prefixed with natural language text based on their

type as indicated by Table 5.5 to transform the generated inferences into complete natural

language sentences before being used as input in a prompt.

Type Prefix

Cause I think it is possible the previous dialogue turn was caused by
React o The Listener (You) feels
React I think the Speaker (Other) feels
Subsequent Next, I predict
Attribute I think the Speaker (Other) is
Desire o The Listener (You) wants
Constituent I think it is possible the previous dialogue turn depends on
Motivation I think the Speaker (Other) is motivated
Prerequisite I think it is possible the previous dialogue turn requires
Desire I think the Speaker (Other) wants

Table 5.5: Prefixes used to transform the generated commonsense inferences into natural
language sentences when used as inputs into the Inference Selection and Response Generation
prompts.

Enumeration Structured Composition Group Partition Planning

3.45 3.05 2.88 2.48

Table 5.6: The average quality score for each prompt design.

To identify the best prompt, I rate the quality of the outputted responses from each prompt

design on 20 dialogues from the development set of the ConvoSense dataset. Outputs from

both gpt3.5-turbo-0613 and gpt3.5-turbo-1103 are included. Because the OpenAI model

lifecycle deprecates snapshots relatively quickly, it is important to provide a more generalized

assessment of each prompt, rather than be restricted to a specific snapshot. Table 5.6 shows

the average quality score for each prompt, with the highest performance being observed for
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the Enumeration prompt. As a result of its superiority to the other prompts under study,

the Enumeration design is chosen to be used for the CSI-GSR approach.

5.3.2 Pilot Study

Having optimized the prompt design for CSI-GSR in the previous section, a pilot study is

conducted to estimate the performance impact of this response generation approach. Two

versions of CSI-GSR are investigated: CSI-GSR-single and CSI-GSR-multi. For both

variants, the Response Generation module is kept the same, but it receives a different set of

grounding commonsense inferences from two different Inference Selection modules as follows:

CSI-GSR-single restricts the Inference Selection module to select the best, single com-

monsense inference to guide the follow-up response, with the instruction “select the best 1

idea that will craft an engaging and cohesive response for the Listener to say” placed at the

underlined portion of the prompt shown in Figure 5.1.

CSI-GSR-multi prompts the Inference Selection module to select multiple commonsense

inferences that provide interesting and useful information to guide the follow-up response,

with the instruction “curate a selection of 2 to 4 non-repetitive ideas that will craft an

engaging and cohesive response for the Listener to say when combined. You want to strike a

balance between selecting enough talking points to construct an interesting response without

selecting too many that would result in a longwinded, overwhelming, or unfocused response”

placed at the underlined portion of the prompt shown in Figure 5.1.

The two variants of CSI-GSR (CSI-GSR-single and CSI-GSR-multi) are compared against one

another, and against the baseline response generation capability of ChatGPT. For baseline

performance, ChatGPT is instructed to produce the next follow-up response given a dialogue

context using the prompt shown in Table 5.7.

To perform this comparison, an external conversational AI expert, unaffiliated with this
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ChatGPT

# Dialogue History
{context}

You are the Listener in a conversation shown in “Dialogue History”.

Your goal is write a casual yet engaging and appropriate next response for the Listener
(You) in the provided dialogue.

Write the response in the following format:

Listener’s Response:

Listener’s Response:

Table 5.7: The prompt used for native response generation of ChatGPT. Placeholder
“{context}” is replaced by the dialogue context of a provided example.

study, is shown a response from CSI-GSR-single, CSI-GSR-multi, and ChatGPT for 60

dialogues from the development set of ConvoSense. They are instructed to select which of

the three responses is the best option for the follow-up response in the dialogue context of

that example, with no ties allowed. Figure 5.2 shows the win-rate for each model.

52%
35%

13%

ChatGPT CSI-GSR-single CSI-GSR-multi

Figure 5.2: Proportion of instances where the specific model’s output is selected as the
preferred option.

Surprisingly, responses from ChatGPT are substantially preferred by the evaluator, with a

win-rate of 52%, outperforming both versions of CSI-GSR. Furthermore, it can be seen that

CSI-GSR-single is preferred over CSI-GSR-multi. These results suggest that the incorporation
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of social commonsense under the current CSI-GSR pipeline does not improve the quality of

the dialogue responses over what ChatGPT is able to do natively, and that response quality

is further degraded with multi-inference grounding.

CSI-GSR-multi CSI-GSR-single

Longwinded 40% 17%
Suboptimal Follow-up Topic 38% 67%
Context Mixup 11% 3%
Topic Order 7% 0%
Presentation of Speculative Inferences as Facts 4% 14%

Table 5.8: Error analysis of generated responses from each CSI-GSR model variant, on
responses that fail to be preferred to responses from native ChatGPT. Analysis results
show the percentage of responses belonging to various error categories, where categories are
mutually exclusive.

In an effort to understand these unexpected results better, the external evaluator is asked to

provide a short explanation of their response preferences for the examples. Then, an error

analysis is performed, guided by the provided explanations. Table 5.8 shows the rates of

different errors affecting the responses generated by both variants of CSI-GSR, where the

categories are:

Longwindedness Responses are unfocused and unnaturally verbose, resulting in an over-

whelming dialogue experience.

Suboptimal Follow-up Topics In some cases, the semantic content introduced in the

response is a relevant but less important aspect of the topic being discussed, which feels

unnatural as a follow-up response in the dialogue.

Context Mixup In this type of error, the response is misplaced in the conversation,

referencing a previous turn rather than the most recent one.

Topic Order Sometimes, although the response content is appropriate, the order in which

it is expressed feels disjointed or unnatural.
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Presentation of Speculative Inferences as Facts Errors in this category occur when

the selected inference is predictive of future events, yet is expressed in the response as if the

future event already happened.

Based on the results of this pilot study and error analysis, it it clear that ChatGPT is unable to

leverage the external resource of commonsense inferences in a manner that improves response

generation, suffering from a multitude of errors on both how to select salient follow-up topics

from the commonsense inferences as well as how to incorporate them into a coherent and

appropriate response to the current dialogue.

In general, CSI-GSR is vulnerable to producing a response that expresses an unexpected

follow-up topic, such as by choosing to focus on an aspect of what is being discussed that

has low salience or low likelihood (e.g. proposing a snack break at the onset of a homework

assistance session, Table 5.9). Both multi and single variants of CSI-GSR are dominated by

this error type. Furthermore, CSI-GSR also encounters issues with coherence of the outputted

responses, such as producing a response that is a follow-up to some historical utterance rather

than the current state of the dialogue (Table 5.10), outputting thoughts in a response in an

unnatural order (Table 5.11), or presenting selected speculative commonsense inferences as

observed events in the world (Table 5.12).

Specific to CSI-GSR-multi, longwinded responses also are a critical limiting factor, in

which the responses are unfocused and present too much information at one time rendering

them overwhelming and hard to follow (Table 5.13). This is most likely due to the selection

of inferences that each present independent talking points, which are then concatenated

into a single response. Based on the decision to optimize the Inference Generation module

for diversity, this effect of the inferences in the pool being independent talking points is

encouraged. It could be the case that allowing for greater semantic similarity between the

inferences helps to mitigate this longwindedness effect. However, as the main hypothesis

being tested in this study focuses on the utility of diverse commonsense inferences for dialogue

models, resolving this issue specific to multi-inference grounding is left for future work.



82

Dialogue Context

A: Hey, you dropped your pencil.
B: Thanks, I appreciate it.
A: No problem, I know how it feels to be in need of a pencil and not have one.
B: Yeah, it’s frustrating. But at least you were there to help me out. Thanks again.
A: You’re welcome. So, what were you working on?
B: Just some homework for my math class. It’s due tomorrow and I’m still struggling with it.
A: Let me take a look. I’m pretty good at math and maybe I can help you understand it better.
B: That would be great! Thank you so much for your help, Jan.

CSI-GSR ChatGPT

You’re welcome, Max. I’m glad I could help you
out. Math can be tough sometimes, but don’t
worry, we’ll figure it out together. Before we
dive into the homework, though, how about
we take a break and grab a snack? It’s al-
ways good to recharge and refuel before tackling
a challenging task. What do you say?

Sure, I’d be happy to help! What specific topic
or problem are you struggling with in your math
homework?

Table 5.9: Example of Suboptimal Follow-up Topics response error category. The segment
of the response that expresses the error type is bolded.

Dialogue Context

B: Hey, Sarah! I’m so glad you came to the beach with me today.
A: Yeah, it’s really nice out here. The weather is perfect and the water looks so inviting.
B: I know! I can’t wait to go for a swim. But first, let’s build a sandcastle!
A: That sounds like fun. What do you need me to do?
B: Well, first we need to find a good spot to build our castle. Somewhere where the sand is nice
and firm. Do you see a spot that looks good to you?

CSI-GSR ChatGPT

I’m glad I came too! The beach is always
so relaxing. Building a sandcastle sounds
like a great idea. Let’s start by looking for
a spot with firm sand. I see a spot over there
that looks promising. What do you think?

Sure, how about over there? The sand looks pretty
packed and it’s close enough to the water to enjoy
the view while we build.

Table 5.10: Example of Context Mixup response error category. The segment of the
response that expresses the error type is bolded.
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Dialogue Context

A: Hi, I’m Ryken.
B: Hi, I’m James. I need a lawyer for a divorce.

CSI-GSR ChatGPT

Hi James, nice to meet you. I’m sorry to hear
that you’re going through a divorce. I can def-
initely help you with that. Do you have any
specific concerns or questions about the di-
vorce process? It’s important to address any
issues or uncertainties you may have so that I can
assist you in the best way possible. And I’m
glad that you’ve reached out for legal help.
It takes courage to take this step, but it’s
important to have the support and guidance
you need during this difficult time.

Hi James, nice to meet you. I’m sorry to hear that
you’re going through a divorce. I can definitely
help you find a lawyer who specializes in divorce
cases. Can you tell me a bit more about your
situation so I can assist you better?

Table 5.11: Example of Topic Order response error category. The segment of the response
that expresses the error type is bolded.

Dialogue Context

B: Hey, Mom.
A: Hey, Delanie. What’s up?
B: I crashed my bike.

CSI-GSR ChatGPT

Oh no, Delanie! Are you okay? I’m really
sorry to hear about your bike. Do you need
any help fixing it? I’m glad to hear that
you didn’t get hurt though. That must
have been a scary experience. Let me know if
there’s anything I can do to help.

Oh no, are you okay? Did you get hurt?

Table 5.12: Example of Presentation of Speculative Inferences as Facts response error
category. The segment of the response that expresses the error type is bolded.
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Dialogue Context

A: So, what can you tell me about the history of our town?
B: Well, it was founded back in the 18th century by a group of settlers from France. They were
looking for a new place to call home, and they found this land. They built a few houses and a
church, and that’s how the town started. Over the years, more and more people came to live here.
We have records of all sorts of people living in the town, from farmers to shopkeepers to blacksmiths.
There’s even a story about a witch who lived here back in the 1700s!

CSI-GSR ChatGPT

Wow, that’s really fascinating! I’m especially in-
trigued by the story about the witch. Could
you tell me more about her? Like, what was
her name and what kind of things did she
do? It’s so cool to hear about the history of our
town and all the different people who lived here.
Speaking of which, what’s the current pop-
ulation of our town? And what is it like to
live here today?

That’s really fascinating! I love hearing about the
origins of our town and how it has evolved over
the years. It’s amazing to think about all the
different people and stories that have shaped our
community. I’m especially intrigued by the story
of the witch who lived here in the 1700s. Do you
know any more details about her?

Table 5.13: Example of Longwindedness response error category. The segment of the
response that expresses the error type is bolded.

Instead, I focus only on investigating the impact of a diverse and predictive pool of common-

sense inferences as response content candidates for dialogue modeling through CSI-GSR-single.

5.3.3 Approach Improvement

One candidate explanation for the limitations observed for the CSI-GSR-single approach is

that the Inference Selection module is failing to perform adequately, especially seeing as the

most common error involves an unimportant or low salience follow-up topic in the generated

response. Under the CSI-GSR approach, the response content should come directly from the

selected inferences, thus an issue with the response could be derived from an issue with the

selected inference. On the other hand, it could be the case that Inference Selection module is

performing sufficiently but the Response Generation module fails to incorporate the selected

inference when constructing the response. In light of these possible causes, I analyze the 60

development examples on the following two characteristics:

1. Selection Bias: one possible point of failure for CSI-GSR is in the Inference Selection
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module providing a simplistic inference selection mechanism resulting in poorly selected

inferences, such as by being biased towards selecting the first or last inference from the

provided inference candidates; thus, I aim to detect any patterns in selection that may

be indicative of poor selection capabilities.

2. Response Faithfulness: a second possible point of failure for CSI-GSR is in the Response

Generation module failing to incorporate the selected commonsense inferences; thus, I

aim to identify whether this is a current issue in order to take appropriate action to

mitigate it if it is a problem

Response Faithfulness It is observed that 90% of the responses incorporate details from

the selected commonsense inferences. This still leaves the question of whether the way that

the inference is being expressed in the response is suboptimal, perhaps by being phrased as a

question when it is more natural being posed as a thought or prediction. However, manual

examination suggests that it is not the presentation of the inference content itself that is

found to be problematic. Instead, the selected commonsense inference is often contributing

fundamentally unnatural focal points, which would produce odd responses no matter how

they are incorporated or expressed in the response. In light of this, the analysis on the

Inference Selection module becomes even more pressing.

Selection Bias It is observed that the Inference Selection module has a high likelihood

of selecting commonsense inferences whose semantic content directly indicates a follow-up

action in the conversation, since 78.3% of the examples select an inference of type Desire,

Desireo, or Subsequent. For instance, the Subsequent inference of “Next, I predict the

Listener might ask the Speaker for some specific drills or exercises to work on his backhand

stroke” is providing an explicit instruction on what to say in the next response and how to

say it. Selecting inferences like this that explicitly convey follow-up actions is not necessarily

an indicator of poor selection behavior, since such semantic content is often salient for
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conversational behaviors.

However, it is possible that ChatGPT selects these inferences because they explicitly

provide guidance on what to say next in the conversation, whereas other non-action-prescribing

inferences are less obviously applicable to follow-up response prediction since they involve a

potentially complex extrapolation from the commonsense idea to a coherent response. For

instance, a Motivation inference of “I think the Speaker is motivated by a desire to see their

students succeed and reach their full potential” does not directly translate to an action to

take in the conversation, thus it is much less straightforward how to incorporate this content

into a follow-up response. One option is produce a response that acknowledges the Speaker’s

commitment to their student’s success. A second option is to produce a response that asks

the Speaker about the significance they place on their students’ high levels of achievement.

In fact, there are many other possible ways of expressing such an inference than the two

mentioned. Consequently, in order to evaluate the true utility of such inferences as response

content candidates, ChatGPT would need to be capable of identifying and evaluating all of

these different versions of expression. However, the suggestion from the observed selection bias

is that ChatGPT is likely unable to do this well in the current implementation of CSI-GSR

as evidenced by its failure to select such inferences with high expression-variability most of

the time.

With this in mind, I next experiment with a modification to CSI-GSR to encourage the

Inference Selection module to more fully consider all of the commonsense inference candidates

for response generation.

Commonsense Inference Generate-Respond-Select: CSI-GRS

The goal of this modification is to improve the capability of ChatGPT to assess each

commonsense inference towards its utility of contributing to the next response in the dialogue.

Based on the observed behavior for CSI-GSR, I hypothesize that the Inference Selection
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module is performing a simplistic selection procedure due to the disconnect between inference

and follow-up response, which incurs a multi-step reasoning process to project the usage

of inference in response generation, thus encouraging ChatGPT to prefer the selection of

straightforward, action-prescribing inferences with their lower projection demands. One

approach to improve the capability of assessing the utility of each commonsense inference for

response generation is to re-order the Inference Selection and Response Generation modules,

such that the first step in the response generation pipeline is to construct a response for each

inference and then instruct ChatGPT to select the best response from that candidate set. In

this way, the Inference Selection module does not need to perform any implicit reasoning

about how a commonsense inference could contribute to the response generation, rather it is

provided the actual resultant response from incorporating each inference and only needs to

focus on assessing the quality of each fully formed response as the follow-up response in the

dialogue.

Following this approach, I redesign CSI-GSR to CSI-GRS as follows:

Inference Generation (G) This is unchanged from CSI-GSR, using ConvoSenseM* to

generate a set of t commonsense inference candidates I that are relevant to the dialogue

context.

Response Generation (R) Second, the ChatGPT response generator module takes I and

D and outputs |I| next responses R, where each r ∈ R corresponds to a follow-up response

that incorporates one i ∈ I. It is instructed to synthesize the semantic content of each

inference into an engaging and appropriate response.

Inference Selection (S) Third, the commonsense inference selection ChatGPT module

assesses which inference-grounded response r ∈ R is the best response to the dialogue context.

Upon initial experimentation, this new Inference Selection module is instructed to select

the best follow-up response from the provided set of candidates from the new Response
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Generation module. However, this results in an index-biased selection, preferring to select

one of the first three responses from the Response Generation module for all development

examples. To mitigate this effect, I explore two iterative strategies of selection in which

the Inference Selection module is called |R| − 1 times to pinpoint the best response. The

Pruning variant instructs ChatGPT to identify the worst response from a set of candidates.

After each iteration, the selected worst response is removed from the set of candidates and

ChatGPT is called again with this reduced set of candidates. This continues until only a

single response remains in the set, which is considered to be the selection of the overall best

response. On the other hand, the Maximization variant instructs ChatGPT to identify

which of two response candidates is better. Upon selection, ChatGPT is called again to

compare the selected response against an unseen response candidate from R. After the

|R| − 1-th iteration, the selected response is considered to be the selection of the overall best

response.

By comparing the response outputs of the Pruning and Maximization variants on 30

dialogues from the development set of ConvoSense, it is observed that the Pruning variant

is better. Next, I compare the quality of the responses from this winning Pruning variant

of CSI-GRS and the original CSI-GSR approach using the same evaluation setup. This

comparison analysis reveals that CSI-GRS does not produce higher quality responses, with

a win-rate of only 27% against the original CSI-GSR. Upon examination of the outputs of

CSI-GRS, it is observed that CSI-GRS is less biased in its inference selection; however, the

responses produced by CSI-GRS are often less coherent to the previous dialogue context,

failing to address the specific previous turn. This suggests that the Response Generation

module struggles to adequately incorporate several of the commonsense types into coherent

and appropriate responses, and that the Inference Selection module struggles to identify

high-quality responses. Consequently, simply switching the order of the Inference Selection

and Response Generation modules is insufficient for correcting the observed limitations of

the CSI-GSR approach.
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Based on the results of this experimentation on restructuring the approach, further evidence

is gathered that the zero-shot approach to Inference Selection and Response Generation is

unsuccessful. I next look to strategies on teaching large language models to perform a new

task as the final approach to improve the performance of CSI-GSR. The common practice is

to perform fine-tuning using a dataset of task examples. However, there is no such existing

dataset for CSI-GSR-single and no promising approach to obtain such a dataset automatically.

Because ChatGPT-based CSI-GSR-single results in low preference responses and high rates of

detrimental characteristics (Pilot Study, Section 5.3.2), it is not suitable to use ChatGPT to

construct a dataset, since it would construct a dataset with these undesirable characteristics

which would then leak into any approach that leverages such a dataset. Consequently, the

most likely option is to utilize human annotators; however, this incurs a prohibitively high cost.

Recently, previous work has revealed that LLMs can obtain a significant performance gain

simply by providing several examples of successful task completion, rather than finetuning on

a large dataset of task examples. Motivated by such works, I explore two techniques to teach

large language models to perform CSI-GSR-single successfully, leveraging recent techniques

on few-shot in-context-learning and few-shot finetuning.

5.3.4 Few-shot Learning

As discussed previously, there is no suitable approach to automatically generate high-quality

and successful examples of the CSI-GSR approach to dialogue response generation. As a

result, I undertake the task of creating few-shot examples for CSI-GSR-single by manually

performing the selection and subsequent response generation steps for a given dialogue. For

each of the 10 commonsense types covered in ConvoSense, I construct 10 examples for both

the Inference Selection and Response Generation modules of CSI-GSR, resulting in a total

of 100 examples for each module. Algorithm 2 portrays the process that was followed for

few-shot example construction. To construct these examples, dialogues are sampled from the

training split of the ConvoSense dataset. Each sampled dialogue is considered in turn as to
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its utility as a few-shot example for CSI-GSR response generation. If the sampled dialogue is

too similar to a different few-shot or is of low quality due to repetitiveness or nonsensicalness,

it is excluded from being a few-shot. After verifying the suitability of the dialogue, the quality

of its corresponding inferences is considered next. These inferences are those generated by

ChatGPT following the ConvoSense dataset construction process, in which one generated

inference is taken for each commonsense type. From the ten inferences, the one leading

to the most suitable and engaging follow-up response is selected. If the chosen inference

already has ten examples in the existing few-shots, the next best one is considered until either

an underrepresented inference is found or none of the remaining inferences lead to a good

follow-up response. If a good inference cannot be found for the sampled dialogue, then it is

excluded from being a few-shot. If a sampled dialogue passes both the dialogue quality and

inference suitability verifications, then a follow-up response is crafted based on the selected

inference. The dialogue, along with the selected inference and written inference-grounded

response, is then included as a few-shot example. Other than the initial dialogue sampling,

all of the work performed during this process is done by a human in order to construct

high-quality and human-verified examples.

Algorithm 2 Few-shot Examples Construction

1: fewshots← []
2: while length(fewshots) < 100 do
3: dialogue, inferences← sample(ConvoSensetraining)
4: if ∃ shotdialogue ∈ fewshots s.t. similar(dialogue, shotdialogue) then
5: continue
6: if poor quality(dialogue) then
7: continue
8: selectedi ← best(inferences)
9: while selectedi ̸= null and count(fewshots, type(selectedi)) == 10 do
10: remove(inferences, selectedi)
11: selectedi ← best(inferences)

12: if selectedi == null then
13: continue
14: response← grounded response(dialogue, selectedi)
15: append(fewshots, (dialogue, selectedi, response))
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Following the initial creation of few-shot examples for CSI-GSR, a second round of curation

is conducted to refine the examples. This refinement aims to optimize the naturalness of

responses and ensure strong connection between the response and the selected commonsense.

First, I revisit each example to assess the appropriateness of the selected commonsense

out of the 10 options. There is one instance in which I determine that all commonsense

inferences are too unnatural as response candidates, in which case this few-shot example is

replaced by a better fitting one. In addition, there are several examples that necessitated a

reselection of the optimal commonsense inference to improve the naturalness of the resulting

response. As a result of this refinement, there is a slight distribution shift in the number of

examples per commonsense type. Specifically, Desire and Motivation have 9 examples each,

Reacto has 12 examples, and the remaining types retained 10 examples. Second, each written

response is modified by ChatGPT using the instruction “Make this a better conversational

response” and the resulting response is used if it improved the naturalness or engagingness of

the response based on manual analysis. Table 5.14 shows examples of the human-curated

few-shots resulting from this curation process.

In-Context-Learning One strong application of few-shot examples is for in-context-

learning for prompt-based approaches using LLMs, where relevant few-shots are concatenated

to the prompt to explicitly show the LLM the intended task behaviors [5]. Following this, I

develop CSI-GSR-icl, utilizing the created few-shots as in-context-learning examples for the

CSI-GSR pipeline. For the Inference Selection module, I handpick 10 examples from the 100

selection few-shots, such that there is one example of each commonsense type being selected.

For the Response Generation module, the 10 response generation few-shot examples are

retrieved at runtime that match the type of the selected commonsense inference being passed

to the Response Generation module. In this way, the Response Generation module is given

10 strong examples of utilizing the selected commonsense type in the follow-up response. For

each module, these few-shots are concatenated into the prompts shown in Figure 5.15, which
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Dialogue Inference Selection Response Generation

Speaker (Other): Hey there! Thanks for
taking the time to talk with me. It’s
really nice out here, isn’t it?
Listener (You): Yeah, it is. I love com-
ing to this lake to relax and clear my
head. There’s something about being
surrounded by nature that just makes
me feel at peace.
Speaker (Other): I know what you mean.
I came out here today specifically to try
and de-stress a bit. work has been hectic
lately and I just needed a break.

The previous dialogue
turn was caused by a re-
cent project deadline at
work that put a lot of
pressure on the speaker.

What’s been going on at
work? Some big project
or deadline working you
into the ground?

Speaker (Other): Hey, I’m glad I ran
into you. I’ve been meaning to talk to
you about something.
Listener (You): Oh, yeah? What’s up?
Speaker (Other): Well, remember how
we were talking about that new movie
that came out last week? The one with
the big twist ending?

The Speaker (Other)
wants to share their own
theory about the twist
ending and hear the
listener’s thoughts on it.

Yeah, I remember. I’ve
still been thinking about
that ending over and
over, trying to figure out
what it means for the
next movie in the series.
You have any theories
about it?

Listener (You): Hi there. Are you okay?
You look a bit hungry.
Speaker (Other): Yeah, I am. I haven’t
had anything to eat in a while.

Next, speaker might start
feeling weak and tired
due to low energy levels.

Do you want to get some-
thing to eat with me? I
don’t want you to feel too
weak or tired from being
hungry.

Table 5.14: Examples of human-curated few-shots.

result from modifications to the Enumeration prompt design to allow for the inclusion of

few-shot examples.

Fine-tuning There have been recent works showing the success of few-shot and low-

resource fine-tuning on LLMs, especially when using parameter-efficient fine-tuning methods

[36, 46, 59]. In particular, I opt to employ Low-Rank Adaptation (LoRA) [30] for few-shot

fine-tuning an LLM to perform both commonsense inference selection and inference-grounded

response generation for the CSI-GSR approach.

LLMs, by design, are pre-trained on massive datasets, enabling them to capture broad

linguistic understanding and generalizability. However, directly fine-tuning an LLM on a
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Few-shot Enumeration

S

You find yourself in the role of a conversational architect, who is responsible for setting up the next
exchange in the ongoing dialogue presented in “Dialogue History.” Specifically, your task is to review
the series of talking points provided in “Talking Points” and select the best 1 idea that will craft an
engaging and cohesive response for the Listener to say. Write your selected talking point into a list
titled “Selection”.

Review the following examples of good selections for different pairs of “Dialogue History” and
“Talking Points”.

{examples}

Now, select the best talking point for the following pair:

# Dialogue History
{context}

# Talking Points
{inferences}

Selection:

R

You are the Listener in a conversation shown in “Dialogue History”.

Your goal is write a casual yet engaging and appropriate next response for the Listener (You) in
the provided dialogue. First, sufficiently answer all questions posed by Speaker (Other) in their
preceding turn. Then, continue your response by including the talking points shown in “Talking
Points” since you want to cover them in your next response too.

Write the response in the following format:

Listener’s Response:

Review the following examples to understand how to write a response given a “Dialogue History”
and set of “Talking Points”.

{examples}

Now, complete the tasks for the following situation:

# Dialogue History
{context}

# Talking Points
{inferences}

Listener’s Response:

Table 5.15: The Inference Selection (S) and Response Generation (R) prompts used for
few-shot in-context-learning. Placeholders “{context}” and “{inferences}” are replaced
by the dialogue context and generated commonsense inferences, respectively. Placeholder
“{examples}” is replaced by the few-shot examples in the specified format.
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small, task-specific dataset risks overfitting and can lead to “catastrophic forgetting”, in

which the general knowledge that was encoded in the LLM during pretraining is lost during

the subsequent fine-tuning stage. This can lead to the model performing well on the training

data but failing to generalize to unseen examples.

Instead of directly finetuning the original weights of an LLM, Hu et al. [30] introduce

LoRA, a low rank adaptation strategy for finetuning. Under LoRA, the update to a weight

matrix W ∈ Rd×k of a layer in the LLM is approximated by a pair of smaller matrices A

and B, where A ∈ Rd×r and B ∈ Rr×k such that ∆W = AB. Following this, the modified

forward pass of the affected computations is:

h = W0x + ∆Wx = W0x + ABx (5.1)

Only the low-rank decomposition matrices A and B are updated through backpropogation

during fine-tuning. Such parameter-efficient fine-tuning affords benefit to few-shot finetuning.

For one, because the learned matrices are of low-rank (i.e. much smaller size than the original

weight matrices), this could lower the risk of overfitting that arises from over-parametrized

and highly complex neural structures that can memorize all of the nuances in a small dataset

at the expense of generalizability. In addition, because the original weights of the LLM

are frozen, LoRA can balance the LLM’s pre-trained knowledge with the ability to learn

task-specific behaviors. Specifically, this design can encourage the adaptation matrices to

learn to perform the task-specific behaviors given the existing general knowledge contained

in the LLM itself with less forgetting. In essence, LoRA can facilitate efficient adaptation of

the LLM to a new task while lowering the risks of overfitting due to the limited dataset size.

Following this, I finetune an LLM to perform CSI-GSR using the created few-shot examples

using LoRA, hereafter CSI-GSR-ft. There are 100 examples of the Inference Selection module

and 100 examples of the Response Generation module, approximately uniformly distributed

across all 10 commonsense types. The LLM is finetuned jointly to learn to perform both

the Inference Selection and Response Generation modules independently, following the
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Enumeration prompt design as the input format. At inference time, a two-call generation

approach is performed, where CSI-GSR-ft is first provided the Inference Selection prompt

with the dialogue context and commonsense options of the datapoint, and it outputs a single

selected commonsense inference. Then, CSI-GSR-ft is provided the Response Generation

prompt with the dialogue context and the previously outputted inference selection, and it

generates a follow-up response.

Few-shot Impact on Responses Next, I perform the bias analysis from Section 5.3.3

on the Inference Selection module of the in-context-learning few-shot approach in order

to determine whether the improvement strategy of adding few-shots has an impact on the

previously observed selection bias. Table 5.16 shows that a more diverse spread of selected

commonsense types is achieved, overcoming the bias towards selecting only three of the

types. Indeed, previously Subsequent, Desireo, and Desire accounted for 78.3% of the

selections, whereas under the few-shot in-context-learning approach they account for only

23.3%. The strategy of incorporating few-shots, following a uniform distribution among the

available types, has encouraged the Inference Selection module to incorporate a wider variety

of types of commonsense for response generation. Although the Inference Selection module

still displays a tendency to select certain types, manual examination reveals that the responses

are less likely to bring up unnatural talking points for the dialogue than what was observed

before; thus the few-shot strategy has made improvements to the CSI-GSR approach overall.

Furthermore, I assess the rate of responses that are faithful to their selected commonsense,

in order to verify that the Response Generation module is not detrimentally impacted by

this modification to the Inference selection module. I find that 88% of the responses are

faithful to their selected commonsense, incorporating its specified semantic content into the

generated response. This is a comparable faithfulness rate to what is previously observed

(90%), thus confirming that faithfulness has been upheld. Given the promising results of

these analyses, a full evaluation study is undertaken next.
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Type %

Motivation 35.0
Reaction 13.3
Reactiono 13.3

Desireo 13.3
Attribute 11.7

Desire 6.7
Subsequent 3.3

Cause 3.3
Prerequisite 0.0
Constituent 0.0

Table 5.16: Percentage (%) of each commonsense type selected by the CSI-GSR-icl approach.

5.4 Evaluation

5.4.1 Models

This evaluation aims to measure the impact of CSI-GSR on dialogue response generation. As

baselines, both large language models of ChatGPT and Llama2 are included. Based on the

previous section on approach development, two variants of CSI-GSR-single are included for

evaluation. Finally, the state-of-the-art in commonsense-grounded response generation is also

included. Thus, the following models are evaluated:

ChatGPT is instructed to write an engaging and appropriate follow-up response for the

provided dialogue context. The prompt used for response generation is shown in Table 5.7.

Llama2 is instructed to write the most plausible follow-up response for the provided

dialogue context. This prompt is developed through manual experimentation and analysis,

similar to the development process for ChatGPT-based prompts. Llama2 is included as

an additional comparison of baseline response capability of current large language models

as it is one of the best-performing open-sourced large language models. Specifically, the 7

billion chat version of Llama21 developed by Meta is utilized in this study, which has been

1https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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instruction-finetuned similar to ChatGPT. The prompt used for response generation is shown

in Table 5.17.

Llama2

# Dialogue History
{context}

Write the most plausible next response from the Listener for the dialogue shown above.
Only output the next response, no preamble:

Table 5.17: The prompt used for native response generation of Llama2. Placeholder
“{context}” is replaced by the dialogue context of a provided example.

ChatGPT + CSI-GSR-icl is a model that follows the novel CSI-GSR-single approach to

commonsense-augmented response generation using human-curated in-context-learning few

shots for both the Inference Selection and Response Generation modules. It is described in

detail in Section 5.3.4.

Llama2 + CSI-GSR-ft is a model that follows the novel CSI-GSR-single approach to

commonsense-augmented response generation using few-shot finetuning on human-curated

training data. Since ChatGPT is closed-source with limited accessiblity for finetuning, Llama2

is used as the base model to support LoRA few-shot finetuning of this approach. It is described

in detail in Section 5.3.4.

ChatGPT + Doctor is the state-of-the-art commonsense-augmented open-domain dia-

logue model [8]. It was previously shown to outperform native ChatGPT3.5 with statistical

significance in terms of response naturalness and specificity, and to outperform models that

rely on other dialogue commonsense resources, including ComFact, Reflect, and Cicero.

Following this approach, ChatGPT3.5 is conditioned to produce the most plausible next

response to a given dialogue context by leveraging a provided commonsense rationale, where

appropriate. The commonsense rationale is composed of a sequence of 3 question-answer

(QA) pairs that, when taken together, aim to interpret the dialogue context and reason about



98

the most likely follow-up. At inference time, a trained rationale model is used to generate

the rationale for a given dialogue example, which is then inserted into the ChatGPT prompt

before sending the prompt to ChatGPT. The official trained rationale model2 is used, which

is an OPT-1.3B model finetuned on the official dataset of commonsense rationales filtered

from ChatGPT. The prompt used for response generation is taken from the original paper

and is shown in Table 5.18.

ChatGPT + Doctor

Generate the most plausible next response considering the dialogue history. You can refer
to the rationale, but you should ignore the rationale if it misleads the next response. Do
not try to put too much information in the next response. You should follow the style of
the history.

Rationale:
{inferences}
History:
{context}
Next Response:
A

Table 5.18: The prompt used for state-of-the-art commonsense-augmented open-domain
dialogue model, ChatGPT + Doctor. Placeholders “{context}” and “{inferences}” are
replaced by the dialogue context and generated rationale, respectively, of a provided example.
The turns in the context are prefixed in alternating fashion by nominal tags “A” and “B”,
where the last turn is the context is prefixed by “B”.

For generation using ChatGPT-based models (ChatGPT, ChatGPT + CSI-GSR-icl, ChatGPT

+ Doctor), the latest snapshot at the time of writing is used (gpt-3.5-turbo-0125) with a

temperature of 0.7. For generation using Llama-based models (Llama2, Llama2 + CSI-GSR-

ft), beam search is used with 3 beams. In addition, for Llama+CSI-GSR-ft, training is done

with a learning rate of 0.0001, weight decay of 0.001, batch size of 16, and max input length

of 1024 for 10 epochs. The LoRA is configured with rank of 32, alpha of 64, and dropout

of 0.05. This training configurations is selected based on manual analysis of results on the

development set across various configurations to identify the best outputs. Quantization

2https://huggingface.co/DLI-Lab/DOCTOR

https://huggingface.co/DLI-Lab/DOCTOR
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to nf4 is used based on manual analysis that finds it improves efficiency while achieving

comparable outputs to non-quantized setups.

5.4.2 Test Data

During approach development, it is observed that ChatGPT substantially outperformed

CSI-GSR variants. However, it should be noted that the development data is sampled from

a dataset of dialogues that are actually generated by ChatGPT in the first place, namely,

the SODA dataset. This introduces the possible effect that ChatGPT only performed so

well because the dialogues it is being evaluated on are “in-distribution” and represented

dialogue situations ChatGPT is capable of handling, thus inflating its performance against

the alternative approaches. To conduct a fairer evaluation of the approaches under study, the

test data is specifically chosen to be “out-of-distribution” for all models. As such, dialogues

are sampled from the Reflect dataset [111]. The Reflect dataset is composed of 600 dialogues

from the Commonsense-Dialogues dataset [110]. The dialogues in Commonsense-Dialogues

are human-written, where a human annotator is shown a short natural language narrative

describing an everyday situation, derived from Atomic commonsense tuples, and asked to

write a dialogue between two people that is appropriate for the narrative. The Reflect dataset

further modifies the dialogues to terminate at the utterance with the highest cosine similarity

to the narrative used as a prompt for each dialogue. 60 dialogues are sampled from Reflect

to be used as test data. Each model generates a follow-up response for each test dialogue,

resulting in 5 responses to be evaluated for each test dialogue. Table 5.19 presents examples

of the generated commonsense and response outputs for each model under study.

5.4.3 Metrics

Three undergraduate students at Emory University are recruited to be human annotators.

During evaluation, the human annotators are shown a dialogue context along a response

from one of the models. The order of the examples is randomized for each annotator and
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Dialogue Context

Speaker (Other)/B: This story of mine’s been getting a lot of attention on the internet!
Listener (You)/A: How many followers do you have now?
Speaker (Other)/B: A lot! People are really enjoying reading it.

ChatGPT

Response: Commonsense:
That’s awesome! It must feel great to see your
hard work paying off like this.

-

ChatGPT+Doctor

Response: Commonsense:
Wow, that’s amazing! I’m so happy for you. Subquestion 1: What is the reason for Person A to

ask about the number of followers? (xIntent)
Subanswer 1: Person A wants to know how many
followers Person B has on the internet.
Subquestion 2: What is the reaction of Person B to
the question about the number of followers? (oReact)
Subanswer 2: Person B is surprised by the question
and didn’t expect that many people would be inter-
ested in their blog.
Subquestion 3: What might Person A want to com-
municate to Person B, given Person B’s surprise at
the number of followers? (oWant)
Subanswer 3: Person A might want to express their
surprise and admiration for Person B’s blog and their
ability to attract a large number of followers.

ChatGPT+CSI-GSR-icl

Response: Commonsense:
I’m glad to hear that your story is gaining traction!
What’s it about? I’m really curious to know more
about it.

The Listener (You) feels curious about the story and
wants to know more about it.

Llama2

Response: Commonsense:
That’s great to hear! It’s always exciting to see
a story gain traction online. Have you considered
sharing it on social media platforms to reach an
even wider audience?

-

Llama2+CSI-GSR-ft

Response: Commonsense:
Wow, that’s awesome! I guess this is no surprise
since it is a really interesting story. Do you have
any other writing that you want to share with the
world?

The Speaker (Other) wants to use this success as a
platform to promote their other works and gain more
exposure.

Table 5.19: Example commonsense outputs, where applicable, and response outputs for the
models under study.
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annotators are unaware of which model produced which response. 5% of the evaluation data

is annotated by all three annotators to calculate inter-annotator agreement.

For each example, the human annotators complete assessments on five different metrics.

The metrics are assessed independently of one another. Three behavior metrics are included,

targeting specific behaviors that are hypothesized to be improved by commonsense integration

for dialogue models. In addition, for overall response quality and informativeness achieved by

each model, Likert-style metrics are used to capture these high-level constructs that do not

decompose cleanly into binary behaviors.

Quality is measured by a Likert scale on the turn-level, following Quat from Chapter 3.

The same setup and instructions of Quat are used (Section 3.3), in which annotators are

instructed to rate the quality of the response given its dialogue context on a scale from 1

(least) to 5 (most). No training is provided due to the subjective nature of the metric.

Informativeness is measured by a Likert scale on the turn-level, following Inft from

Chapter 3. The same setup and instructions of Inft are used (Section 3.3), in which

annotators are instructed to rate the level of unique and specific information of the response

to its dialogue context on a scale from 1 (least) to 5 (most). No training is provided due to

the subjective nature of the metric.

Irrelevant is measured by a binary behavior label on the turn-level, following !Rel in ABC-

Eval. The setup and instructions of !Rel from ABC-Eval are used, in which annotators are

instructed to indicate whether the response is appropriately relevant to its dialogue context.

Annotators complete the !Rel training from ABC-Eval before performing this evaluation task,

which consists of 3 graded quizzes on the !Rel label with automatic feedback provided for

their incorrect labels.



102

Commonsense Contradictions is measured by a binary behavior label on the turn-level,

following !Com in ABC-Eval. The setup and instructions of !Com from ABC-Eval are used,

in which annotators are instructed to indicate whether the response violates commonsense

knowledge. Annotators complete the !Com training from ABC-Eval before performing this

evaluation task, which consists of 3 graded quizzes on the !Com label with automatic feedback

provided for their incorrect labels.

Conversational Expectations is measured by a binary behavior label on the turn-level,

hereby denoted as !Exp. This is a new behavior label, which is not present in the ABC-Eval

evaluation framework. !Exp captures instances where the response fails to meet conversational

expectations, such as by focusing on a low salience topic or continuing the conversation in

some way that feels out of place. This behavior metric is included based on the prevalence

of the error Suboptimal Follow-up Topics in the conducted error analysis of CSI-GSR

(Section 5.3.2). Following the development of the ABC-Eval framework, a set of instructions

and examples are created to describe the Conversational Expectations label. These examples

are taken from the responses in the Error Analysis that are categorized as Suboptimal

Follow-up Topics. Tables 5.20 and 5.21 provide the instructions and examples, respectively,

given to annotators for this evaluation label. In addition, 3 training quizzes with automatic

feedback are developed to teach annotators how to perform the label of !Exp. Positive and

negative examples of !Exp are taken from the responses in the Error Analysis, excluding

those responses already used as examples for the instructions. Each training quiz contains

5 positive and 5 negative examples of !Exp. Annotators complete the !Exp training before

performing this evaluation task.
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Instructions

Goal:

Identify if each response option for Speaker A fails to follow conversational expectations/norms.

Details:

In a conversation, there are usually expected topics or actions that follow. If Speaker A’s response
introduces a topic or action that is unexpected or unlikely based on the conversation so far, it may
feel weird or wrong.

This is different from relevance. Even if a response is relevant to the topic, it can still fail to follow
expectations/norms if it focuses on something unimportant or unlikely given the context.

One sign of a response that exhibits expectation failure is if there is an obvious preferred action or
follow-up point that always fits the conversational situation.

Consider the following for each turn:

Does Speaker A’s response fail to follow conversational expectations/norms because it focuses on
an event or action that is unlikely or unimportant for the current discussion?

* If Yes, the response focuses on something unlikely or unimportant, or there is an obvious
alternative response that better fits the conversational situation.

* If No, the response focuses on the most important and expected follow-up to the current
discussion.

Table 5.20: Instructions for the Conversational Expectations evaluation label.
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Examples

B: Oh, please. You’re the one who’s always starting
arguments with me.
A: No, I’m not. You’re the one who’s always trying to
start something.
B: That’s because you’re always doing something that
deserves to be called out.
A: Like what?
B: Well, like the way you’re always putting yourself
first and expecting everyone else to just deal with it.
A: That’s not true. I don’t do that.
B: Yes, you do. And it’s really annoying.
A: I’m sorry if it seems like I’m always starting argu-
ments with you. That’s not my intention at all. Maybe
we just have different perspectives on things. Have
you considered seeking advice from a trusted friend or
counselor? They might be able to help you navigate
this situation and find a resolution that works for both
of us. It could be beneficial to have an outside look.

Label: 1
Yes, the response focuses on something unlikely
or unimportant, or there is an obvious alterna-
tive response that better fits the conversational
situation:
A and B are having an argument about how they
treat one another. Although suggesting to talk
about this issue with an external person is rel-
evant, the way that A proposes this solution is
not expected since they remove their own par-
ticipation from the suggested action. This is an
example of an unlikely action for A to take and
it is easy to think of a different manner in which
this could have played out that would be more
expected (e.g. A asking B to come with them to
talk about their fight with an external mediator).

A: Here, you dropped your pencil. Whatcha doing?
B: Just some homework for my math class. It’s due
tomorrow and I’m still struggling with it.
A: Let me take a look. I’m pretty good at math and
maybe I can help you understand it better.
B: That would be great! Thank you so much.
A: You’re welcome, John. I’m happy to help. Before
we dive into the math homework, though, how about
we take a little break and grab a snack? I find that
taking a break and refueling with some food can help
clear our minds and make it easier to focus. Plus, it’s
always nice to have a little snack to keep us going.

Label: 1
Yes, the response focuses on something unlikely
or unimportant, or there is an obvious alterna-
tive response that better fits the conversational
situation:
A and B just started a conversation, in which A
offers to help B with their homework and proposes
a snack break first. Although A proposes this
activity in such a way that justifies its relevance
to the current discussion, it is an unlikely event
for A to immediately ask B if they want to take
a break and grab a snack, before A helps B at all.
This response is a deviation from the expected
trajectory of this dialogue.

A: Hey coach, thanks for helping me out these past few
months. I really appreciate it.
B: No problem, Yusuf. You’ve worked hard and it’s
paid off. Your tennis skills have improved a lot.
A: Yeah, I’ve been practicing a lot lately. But I still
feel like there’s room for improvement. What do you
think I should work on next?
B: Well, one thing you could work on is your backhand
stroke. It’s not as strong as your forehand stroke and
needs some improvement.
A: Thanks, coach. I really appreciate your guidance
and support. I’ve been putting in a lot of effort, but I
agree that there’s always room for improvement. I’ll
definitely focus on my backhand stroke. Do you have
any specific drills or exercises that you recommend to
help me strengthen it?

Label: 0
No, the response focuses on the most important
and expected follow-up to the current discussion:
A is talking to their coach B about their tennis
skills, in which B just pointed out that A’s back-
hand stroke could be improved. A acknowledges
the suggestion and follows up by asking for spe-
cific exercises/drills to improve it, which is a likely
action to take next. It is difficult to think of a
response that would be more suitable than that.

Table 5.21: Examples given to the annotators for the Conversational Expectations evaluation label.
The correct label and explanation is shown in the right-hand column for the final “A” response of
the dialogue context shown in the left-hand column.
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5.4.4 Metric Reliability

Interannotator agreement is calculated using Krippendorff’s alpha for each metric. Annotator

agreement and reliability results are shown in Table 5.22. It is seen that the human annotators

produce similar agreement to that achieved during the original ABC-Eval study, achieving

moderate agreement for most metrics. Although the agreement on Quat is low, this is expected

due to the highly subjective nature of rating the quality of a dialogue and is seen in other

studies, including ABC-Eval. In fact, ABC-Eval verifies that Quat is capable of detecting

significant differences between different dialogue models even with a low interannotator

agreement on the turn annotations, thus supporting the usage of Quat for this study despite

the low interannotator agreement. In addition, interannotator reliability on annotating the

behaviors (!Com, !Rel, and !Exp) is also confirmed from the annotators’ performance on the

training quizzes, reaching nearly 80% accuracy on average for the training quizzes for each

behavior metric.

Metric Krippendorff’s α Training % Training Avg.

Quality 0.21 − | − | − −
Informativeness 0.53 − | − | − −

Irrelevant 0.56 69 | 88 | 83 80
Commonsense Contradictions 0.46 76 | 81 | 74 77
Conversational Expectations 0.41 73 | 77 | 77 76

Table 5.22: Measure of annotator reliability for each metric under study. The inter-annotator
agreement (Krippendorff’s α), average performance on each training quiz (Training %),
and average overall training performance (Training Avg.) are shown. Averages are calculated
across all annotators and Training % is formatted as quiz #1 | quiz #2 | quiz #3.

5.4.5 Results

Informativeness It can be seen in Figure 5.3 that the CSI-GSR approach to response

generation successfully and substantially improves the amount of specific detail that is ex-

pressed in the generated dialogue responses, for both few-shot strategies explored in this study.

Indeed, both ChatGPT+CSI-GSR-icl and Llama2+CSI-GSR-ft demonstrate statistically



106

Informativeness Quality1
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ChatGPT ChatGPT
+Doctor

ChatGPT
+CSI-GSR-icl Llama2 Llama2
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Figure 5.3: Average scores achieved by each dialogue model on the Likert-style metrics of
Informativeness and Quality, where higher is better. Error bars denote 95% Student’s t
confidence intervals. * denotes statistically significant differences (paired t-test, α < 0.01).

significant improvements in Informativeness over their counterparts using the same base

model. Furthermore, it can be seen that ChatGPT+CSI-GSR-icl model vastly outperforms

the SOTA commonsense dialogue model ChatGPT+Doctor on the Informativeness of the

responses. Consequently, the results shown for CSI-GSR demonstrate the power of this

approach to substantially reduce the occurrence of generic or non-contextualized responses,

far outperforming the capabilities of the previous state-of-the-art in commonsense-augmented

response generation.

The observed results on the low informativeness of ChatGPT+Doctor responses runs

contrary to the original results from Chae et al. [8], which showed that ChatGPT+Doctor

improved the specificity (i.e. informativeness) of responses against native ChatGPT responses.

Examination of a sample of responses from the native ChatGPT prompt used by Chae et al.

[8]3 suggest that this prompt resulted in generic responses with little detail. On the other

hand, the current study uses a prompt for native ChatGPT response generation that does not

exhibit this same response genericness, which is accomplished through targeted effort spent

3It should be noted that Chae et al. [8] did not provide their exact native ChatGPT prompt; based on the
details in the paper, I take the prompt from Chae et al. [8] and remove the rationale component to stand in
as the native ChatGPT prompt used in that work.
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optimizing native ChatGPT to produce high quality responses. Consequently, the ChatGPT

baseline used by Chae et al. [8] seems to be an underestimate of the power of native ChatGPT

at response generation, and the prompt used in the current study is a fairer representation of

the capabilities of ChatGPT, thereby serving as a more appropriate and stronger baseline

against which to measure improvements in specificity. Table 5.23 shows examples of responses

produced by native ChatGPT from the current study, native ChatGPT from Chae et al. [8],

and SOTA ChatGPT+Doctor, which illustrates the discrepancy in baseline genericness.

Dialogue Response

B: I want to take a nap but I am
so hungry.
A: Why don’t you eat then nap.
B: I just got back from the museum
with the kids. I think we are all
going to order hamburgers. We are
starving.

[ChatGPT ] That sounds like a perfect post-museum
meal! Enjoy those burgers and I hope you all get a
good nap afterwards.

[ChatGPT [8] ] Sounds like a good plan. Enjoy your
burgers and nap after!

[Doctor [8] ] Sounds like a good plan. Enjoy your
meal!

B: I wish I didn’t have to always
use the bus because I never seem
to be on time.
A: I wonder why your routes are
late, I don’t have that problem.
B: I’m not sure! I waited an entire
hour after work to get a ride home.

[ChatGPT ] That’s frustrating, waiting for an hour
must have been really annoying. Have you tried
reaching out to the bus company about the delays?

[ChatGPT [8] ] That sounds frustrating, maybe there
was an accident or construction causing delays.

[Doctor [8] ] Have you thought about trying to carpool
with someone instead of taking the bus?

Table 5.23: Examples highlighting discrepancies in informativeness between responses based
on Chae et al. [8].

Quality For the open-domain dialogue setting explored in this study, the human-perceived

Quality of the responses is not greatly affected by the incorporation of commonsense (Figure

5.3). Instead, each of the commonsense-augmented models achieves similar response Quality

to that of their native counterparts.

Irrelevant Responses Most models are quite capable of producing relevant responses,

with the rate of irrelevance responses at or below 5% (Figure 5.4). It is suggested that
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Expectations
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0.1
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ChatGPT ChatGPT
+Doctor
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Figure 5.4: Average proportions of turns of each dialogue model expressing the behaviors
of Commonsense Contradictions, violations of Conversational Expectations, and Irrelevant,
where lower is better. Error bars denote 95% Wilson score confidence intervals. * denotes
statistically significant differences (McNemar’s test, α < 0.01).

Llama2+CSI-GSR-ft struggles with response relevance more, although the difference is not

statistically significant. Consequently, incorporating commonsense into the responses seems

to have little effect on the overall relevance of the response.

Commonsense Contradictions As shown in Figure 5.4, models based on ChatGPT

display comparable rates of Commonsense Contradictions, falling below 5%, with no sig-

nificant differences observed. Models based on Llama2 perform somewhat worse and seem

to produce greater rates of commonsense contradictions. Even so, these results indicate

that commonsense contradictions are less of an issue for current generation large language

models compared to previous neural dialogue models (Chapter 3). The rates observed for

ChatGPT and Llama2 models are a marked improvement over previous dialogue models which

outputted Commonsense Contradictions at a rate of approximately 20%. This suggests that

recent advancements in large language modeling seem to have mitigated this commonsense

challenge without explicit training on dialogue response generation or specialized techniques
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for enhancing commonsense understanding. Since LLMs like Llama2 and ChatGPT are

becoming the commonplace base model to use for dialogue applications, the direction of

correcting commonsense errors specifically for dialogue seems to have diminishing necessity.

Conversational Expectations Out of all of the measured behaviors, the models are most

vulnerable to producing violations of conversational expectations in their responses, with

Llama2+CSI-GSR-ft expressing the greatest rate of violations (Figure 5.4). For the other

commonsense-based approaches, their rate of production does not differ much from their

native counterparts, suggesting that current approaches to incorporating commonsense into

responses neither helps nor hinders this behavior. Previously unexplored, this new behavior

label seeks to identify instances where model responses are relevant to the current discussion,

but focus on an aspect of the topic under discussion that is less salient or important than

other aspects that come to mind. These results suggest that further work is needed towards

improving the capability of dialogue models to conform to conversational expectations and

to identify the most compelling follow-up topic. Examples in Table 5.24 underscore instances

where responses deviated from discussing the important aspects of the current discussion.

Overall, Llama2+CSI-GSR-ft fares the worst on all metrics out of all approaches under

study. This observation suggests that the limited volume of few-shot training data utilized in

this investigation may not adequately support the effective mastery of the CSI-GSR task.

Conversely, the CSI-GSR-icl methodology demonstrates notable efficacy, underscoring the

value of the introduced commonsense selection and integration strategy. The evaluation

outcomes, in conjunction with previously noted high levels of response faithfulness (Section

5.3.4), endorse CSI-GSR-icl’s proficiency in seamlessly incorporating rich and contextually

pertinent commonsense information within dialogue responses. This enhancement distinctly

bolsters the specificity of interactions relative to the given context. Importantly, this is

achieved without compromising response quality or coherence of the overall dialogue flow.
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Dialogue Response Explanation

B: You know that I have a huge crush on
Kendall. I got her to go to the movies
with me.

A: That’s awesome! How
was the movie?

source:

ChatGPT

The salient topic is the
interpersonal relation-
ship between B and
Kendall, not details
about the movie.

B: I couldn’t hear anything in here this
morning.
A: I know. I asked your brother to turn
the music down but he didn’t want to.
B: I know, when he does that you can
only try talking louder.

A: I guess we’ll just have
to invest in some noise-
canceling headphones.

source:

ChatGPT

The goal of the dis-
cussion is how to hear
better given the large
amount of noise from
the brother, whereas
noise-canceling head-
phones would block all
sound.

B: Kendall just rubbed my chin.
A: Why did he do that?
B: He said it is a good luck but I find it
weird.

A: He probably meant
well, but I can see why
you found it weird. It’s
kind of a quirky thing to
do for good luck. So, how
do you usually deal with
situations that catch you
off guard like that?

source:

ChatGPT+CSI-GSR-icl

The phrasing of the
question is too analyt-
ical and therapeutical,
which is out-of-place in
the casual nature of the
dialogue.

Table 5.24: Examples of responses that are positive examples of violations of Conversational
Expectations, along with explanations of the violation.

5.5 Conclusion

This study introduced the Commonsense Inference Generate-Select-Respond (CSI-GSR)

model, a novel approach to enhancing the capabilities of large language models (LLMs) in

generating more informative and context-specific dialogue responses. By harnessing a diverse

pool of commonsense inferences, CSI-GSR not only surpasses existing models, including

ChatGPT3.5, Llama2, and ChatGPT + Doctor, in producing responses with greater detail

and specificity to the dialogue context but also upholds the natural flow and coherence of

conversation. Moreover, the insights gained from this research indicate that commonsense

errors are less common in the current era of large language models for dialogue applications
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and point toward an imperative future direction in LLM-based dialogue development: the

refinement of models to better discern and emphasize the most pertinent aspects of a

conversation, thereby generating follow-up responses that not engage on the most important

discussion topics.



Chapter 6

Conclusion

6.1 Research Contributions

This dissertation focuses on the pivotal role of social commonsense knowledge in enriching

open-domain dialogue, with a focus on social commonsense that is multi-faceted (covering a

diverse array of commonsense types) and contextually novel (produces new information that

is predictive in nature to the dialogue context). The findings of the work in this dissertation

provide a verified framework for measuring commonsense capability of dialogue models

using a behavior-based evaluation design, present the first successful methods for obtaining

multi-faceted and contextually novel social commonsense for dialogue, and demonstrate that

incorporating such social commonsense into dialogue responses significantly enhances their

specificity to their dialogue contexts. In summary, the findings of the three covered research

questions are as follows.

Does a binary behavior-based evaluation framework result in more reliable and

informative evaluation of dialogue model characteristics?

Thorough statistical analyses demonstrate that the behavior labels covered in the Annotation

of Behaviors in Chat Evaluation (ABC-Eval) are more interpretable, predictive of overall

112
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dialogue quality, and capable of identifying differences between dialogue models than existing

dialogue characteristic evaluation methods. Thus, these results confirm that a binary behavior-

based evaluation framework does result in more reliable and informative fine-grained dialogue

model evaluations.

Is it possible to reliably obtain multi-faceted contextually novel social common-

sense inferences for dialogue?

Generative commonsense inference models trained on ConvoSense are shown to produce

highly reasonable, detailed, and contextually novel commonsense inferences for dialogue. This

is observed for ten different commonsense types across a variety of dialogue situations, thus

verifying that it is possible to reliably obtain multi-faceted and contextually novel social

commonsense inferences for dialogue.

Does access to a multi-faceted and contextually novel social commonsense pool

improve dialogue responses?

The Commonsense Inference Generate-Select-Respond (CSI-GSR) dialogue approach achieves

substantial improvement in response specificity and informativeness, while maintaining the

high response quality observed from LLMs, thereby surpassing the performance of the state-

of-the-art commonsense-augmented dialogue model. These results demonstrate the benefits

of providing dialogue models with a multi-faceted and contextually novel commonsense pool.

6.2 Future Work

Building upon the work presented in this dissertation, the following avenues of future work

are identified.
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6.2.1 Behavioral Evaluation of LLM-based Dialogue Models

The ABC-Eval framework, detailed in Chapter 3, has been tested and applied to a previous

generation of neural dialogue models, which have now been superseded by LLM-based dialogue

models. The findings outlined in Chapter 5 suggest that the behavioral patterns observed in

previous dialogue models may not directly apply to LLM-based models, as exemplified by

the change in frequency of expressing commonsense contradictions. Therefore, it is crucial to

conduct thorough behavioral evaluations on LLM-based dialogue models to gain a nuanced

understanding of their current limitations, rather than relying on insights from outdated

models. Moreover, there are likely aspects crucial for assessing the performance of LLM-based

dialogue models that are not covered by ABC-Eval, such as the analysis of conversational

expectation violations as demonstrated in Chapter 5. Adapting ABC-Eval to capture the

state of LLMs represents a valuable research endeavor, as it can pinpoint the weaknesses of

these models that will help to direct and propel dialogue model advancement in the most

efficient manner.

6.2.2 Commonsense-augmented Dialogue Models “In-the-Wild”

Most previous works on commonsense-augmented dialogue models, including that described

in this dissertation in Chapter 5, rely on evaluations of single responses outputted to static

dialogue contexts. This is due to the high cost of “in-the-wild” evaluation, where such dialogue

models would be deployed in an interactive multi-turn setting with human users to test the

capabilities of the systems in full conversations. However, these “in-the-wild” evaluations

are often better indicators of the true performance of dialogue systems as they represent the

realistic deployment setting. It is imperative that future work on commonsense-augmented

dialogue models include “in-the-wild” evaluations in order to gain a better understanding of

their real-world applicability.
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6.2.3 Improving Social Commonsense Integration for Open-Domain

Dialogue

Certain design choices of CSI-GSR dialogue approach in Chapter 5 are likely to bene-

fit from further experimentation, especially given the observed limitations of the current

implementation. For one, strategies to mitigate the observed trade-off between response long-

windedness/coherence and inference diversity can serve to make multi-inference augmentation

more successful, which faced much difficulty in the work in this dissertation, perhaps through

alternative implementations of the Inference Generation module. In addition, as discussed

in Section 5.3.3, there can be multiple ways of expressing the same commonsense inference

content, which may have an effect on the overall quality or coherence of the response in

its context. The work in this dissertation did not experiment with different presentation

styles or strategies, which leaves room for future work to build upon. Finally, as discussed in

Section 4.3.1, the work in this dissertation focused on commonsense inferences for dialogue

situations that are rich in information-sharing from the human user. Utterances which focus

less on information-sharing (e.g. acknowledgment, question-asking, etc.) may have different

requirements or integrations with commonsense reasoning, which should be examined in

future work.

6.2.4 Alternative Commonsense Integrations

Depending on the dialogue application, the role of commonsense could differ. Whereas open-

domain dialogue tends to involve discussions on life experiences and events thus promoting

the need for social commonsense, other dialogue applications may benefit from other types

of commonsense, such as that related to frame semantics or physical properties of objects.

Further research can extend into additional commonsense categories and also into additional

settings of dialogue, beyond the open-domain setting.

In addition, there are other possible strategies to integrating commonsense that may
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be more suitable for other dialogue applications. This dissertation found success for open-

domain dialogue models when treating commonsense inferences as response content candidates,

but other applications could benefit from a more structured approach. Further research

investigating the combination of commonsense and structured text representations for dialogue,

such as dialogue acts/intents or rhetorical structure theory [53], are worth exploring, especially

for dialogue applications that are more goal-oriented in nature, such as virtual assistants,

tutors, or persuasive systems.

6.2.5 Improving Open-source LLMs with Commonsense

Future efforts should include extending commonsense-augmentation to open-source LLMs,

like Llama2, by employing more robust datasets compared to the few-shot methodology

utilized in this study. Enhancing these models with commonsense knowledge could reduce

the observed error rates and increase the informativeness of responses, making them more

competitive with models like ChatGPT.

6.2.6 Enhancing Topical Salience in Dialogue Models

There is a promising avenue for enhancing Large Language Model (LLM)-based dialogue

systems by improving their ability to recognize and focus on the most compelling follow-up

points in a conversation. By refining the models to identify and prioritize key aspects of the

dialogue, these systems can become more effective in maintaining the flow of conversation

and adhering to human conversational patterns. This improvement is essential as it addresses

the observed tendency of LLM-based models to focus on less critical details (Section 5.4.5).

6.2.7 Refining Response Content Control

Many dialogue applications can benefit from the ability to integrate specific information into

the system’s responses. Achieving this high degree of control over the response content can
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conflict with ensuring the response flows naturally and coherently within the current dialogue.

The successful application of the CSI-GSR method for commonsense integration in this study

suggests that leveraging LLMs’ advanced language capabilities could be a promising approach

to achieve better control over response content. Future efforts in this direction could explore

the general capability of LLM-based dialogue models for incorporating specific details into

responses without disrupting the conversational continuity.
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Korhonen, David Traum, and Llúıs Màrquez, editors, Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 5370–5381, Florence,

Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1534.

URL https://aclanthology.org/P19-1534.

[70] Hannah Rashkin, David Reitter, Gaurav Singh Tomar, and Dipanjan Das. In-

creasing Faithfulness in Knowledge-Grounded Dialogue with Controllable Features.

https://www.tandfonline.com/doi/abs/10.1080/00031305.2016.1141708
https://www.tandfonline.com/doi/abs/10.1080/00031305.2016.1141708
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/1801.03604v1
https://aclanthology.org/P19-1534
https://aclanthology.org/P19-1534


130

In Proceedings of the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on Natural Language Pro-

cessing (Volume 1: Long Papers), pages 704–718, Online, August 2021. Associ-

ation for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.58. URL

https://aclanthology.org/2021.acl-long.58.

[71] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese

bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 3982–3992, 2019. URL https://aclanthology.

org/D19-1410/.

[72] Susan Robinson, David R Traum, Midhun Ittycheriah, and Joe Henderer. What would

you ask a conversational agent? observations of human-agent dialogues in a museum

setting. In LREC, pages 1–7, 2008.

[73] Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu,

Jing Xu, Myle Ott, Eric Michael Smith, Y-Lan Boureau, and Jason Weston. Recipes

for Building an Open-Domain Chatbot. In Proceedings of the 16th Conference of the

European Chapter of the Association for Computational Linguistics: Main Volume,

pages 300–325, Online, April 2021. Association for Computational Linguistics. doi: 10.

18653/v1/2021.eacl-main.24. URL https://aclanthology.org/2021.eacl-main.24.

[74] Sahand Sabour, Chujie Zheng, and Minlie Huang. Cem: Commonsense-aware em-

pathetic response generation. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 36, pages 11229–11237, 2022.

[75] Manuela Sanguinetti, Alessandro Mazzei, Viviana Patti, Marco Scalerandi, Dario Mana,

and Rossana Simeoni. Annotating Errors and Emotions in Human-Chatbot Interactions

in Italian. In Proceedings of the 14th Linguistic Annotation Workshop, pages 148–159,

https://aclanthology.org/2021.acl-long.58
https://aclanthology.org/D19-1410/
https://aclanthology.org/D19-1410/
https://aclanthology.org/2021.eacl-main.24


131

Barcelona, Spain, December 2020. Association for Computational Linguistics. URL

https://aclanthology.org/2020.law-1.14.

[76] Sashank Santhanam, Behnam Hedayatnia, Spandana Gella, Aishwarya Padmakumar,

Seokhwan Kim, Yang Liu, and Dilek Hakkani-Tur. Rome was built in 1776: A Case

Study on Factual Correctness in Knowledge-Grounded Response Generation, October

2021. URL http://arxiv.org/abs/2110.05456. arXiv:2110.05456 [cs].

[77] Maarten Sap, Ronan Le Bras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie,

Hannah Rashkin, Brendan Roof, Noah A Smith, and Yejin Choi. Atomic: An atlas of

machine commonsense for if-then reasoning. In Proceedings of the AAAI conference

on artificial intelligence, pages 3027–3035, 2019. URL https://ojs.aaai.org/index.

php/AAAI/article/view/4160.

[78] Siqi Shen, Deepanway Ghosal, Navonil Majumder, Henry Lim, Rada Mihalcea, and

Soujanya Poria. Multiview Contextual Commonsense Inference: A New Dataset and

Task, November 2022. URL http://arxiv.org/abs/2210.02890. arXiv:2210.02890

[cs].

[79] Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval

Augmentation Reduces Hallucination in Conversation. In Findings of the Association for

Computational Linguistics: EMNLP 2021, pages 3784–3803, Punta Cana, Dominican

Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/

2021.findings-emnlp.320. URL https://aclanthology.org/2021.findings-emnlp.

320.

[80] Eric Michael Smith, Mary Williamson, Kurt Shuster, Jason Weston, and Y-Lan

Boureau. Can You Put it All Together: Evaluating Conversational Agents’ Abil-

ity to Blend Skills. In Proceedings of the 58th Annual Meeting of the Associa-

tion for Computational Linguistics, pages 2021–2030, Online, July 2020. Associ-

https://aclanthology.org/2020.law-1.14
http://arxiv.org/abs/2110.05456
https://ojs.aaai.org/index.php/AAAI/article/view/4160
https://ojs.aaai.org/index.php/AAAI/article/view/4160
http://arxiv.org/abs/2210.02890
https://aclanthology.org/2021.findings-emnlp.320
https://aclanthology.org/2021.findings-emnlp.320


132

ation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.183. URL

https://aclanthology.org/2020.acl-main.183.

[81] Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual

graph of general knowledge. In Proceedings of the AAAI conference on artificial in-

telligence, volume 31, 2017. URL https://ojs.aaai.org/index.php/AAAI/article/

view/11164.

[82] Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual

graph of general knowledge. In Proceedings of the AAAI conference on artificial

intelligence, volume 31, 2017.

[83] Hao Sun, Guangxuan Xu, Jiawen Deng, Jiale Cheng, Chujie Zheng, Hao Zhou, Nanyun

Peng, Xiaoyan Zhu, and Minlie Huang. On the Safety of Conversational Models:

Taxonomy, Dataset, and Benchmark. In Findings of the Association for Computational

Linguistics: ACL 2022, pages 3906–3923, Dublin, Ireland, May 2022. Association

for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.308. URL https:

//aclanthology.org/2022.findings-acl.308.

[84] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac,

Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini:

a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[85] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine

Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.

Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288,

2023.

[86] Quan Tu, Yanran Li, Jianwei Cui, Bin Wang, Ji-Rong Wen, and Rui Yan. Misc: A

mixed strategy-aware model integrating comet for emotional support conversation. In

https://aclanthology.org/2020.acl-main.183
https://ojs.aaai.org/index.php/AAAI/article/view/11164
https://ojs.aaai.org/index.php/AAAI/article/view/11164
https://aclanthology.org/2022.findings-acl.308
https://aclanthology.org/2022.findings-acl.308


133

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 308–319, 2022.

[87] Emiel van Miltenburg, Miruna Clinciu, Ondřej Dušek, Dimitra Gkatzia, Stephanie
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