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Abstract

Constrained Directed Graph Clustering through Differential Equations
By Ziyu Zhou

This thesis introduces an algorithmic approach to the problem of clustering a
weighted directed graph under constraints such as cardinality or membership require-
ments. The proposed approach extends a two-level iterative approach for solving
weighted undirected graph minimum-cut problems to the minimum-cut and general
clustering problems of directed graphs. This two-level method restates the constrained
minimum-cut problems as matrix nearness problems, for which the key to numerical
solutions is the gradient systems of matrix differential equations for minimizing a
functional of an eigenvalue and eigenvectors of the graph Laplacians. In the proposed
approach, a directed graph is transformed into an undirected one that preserves in-
formation about directionality. Numerical experiments are presented to validate the
proposed approach and compare it with existing ones for unconstrained cases. The
major contribution of this work is the ability to adapt a versatile technique to directed
graphs and further requirements on clustering criteria.
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Chapter 1

Introduction

Social networks are part of our everyday life. In math, a network (often referred

to as graphs) is a set of objects (called nodes or vertices) connected together. The

connections between the nodes are called edges or links. Take social networks as an

example: in the Facebook social network, each vertex is a user, and the presence

of an edge between two vertices reveals their friendship. Networks are at the very

foundation of many everyday objects, concepts, and processes, such as transportation

networks (airline flight routes), the internet, food webs, and language networks.

To represent real networks, we also need to distinguish between undirected and

directed graphs. In the former, we have two-way connections between the nodes –

edges have no direction (i.e., on Facebook, if A is a friend of B, B is also a friend

of A); in the latter, edges have directions and indicate one-way connections (i.e., on

Instagram, A follows B, but B does not follow A).

When we consider a huge dataset, organizing the graph into different modules

called communities or clusters is often useful. In the same cluster, vertices present

strong similarities, whereas vertices across the communities have low similarities. This

procedure is called graph clustering and has been a field of interest.

In practice, it is ubiquitous that graph clustering problems come with prior con-
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straints from background knowledge on the minimum size of clusters and membership

of vertices. However, constrained clustering for directed graphs remains a developing

area.

In [1], the authors present an algorithm for constrained graph minimum cut (re-

duction of clustering to only 2 clusters) solved as matrix nearness problems. In a

few words, the goal is to minimize the distance between the weight matrix associated

with the graph and a set of perturbed weight matrices, imposing the condition that a

functional of an eigenvalue of the graph Laplacian takes its minimal value. This study

aims to extend this approach to the minimum cut and general clustering problems of

directed graphs.

This work is organized as follows. In Chapter 2, we present some basic definitions

and results for undirected and directed graphs. In Chapter 3, we introduce the main

methods, that is, constrained minimum-cut and constrained clustering for undirected

graphs and we extend them to directed graphs. In Chapter 4, we provide some

numerical experiments, and we summarize our work in Chapter 5.
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Chapter 2

Graphs background

2.1 Undirected graphs

2.1.1 Definitions

In this section, we introduce the basic definitions of undirected graphs.

Definition 1 (Graph). A graph is a pair G = (V,E), where V = {v1, . . . , vn} is a set

whose elements are called vertices with |V | = n, and E ⊂ V × V is a set of paired

vertices whose elements are called edges.

The vertices vi and vj of an edge (vi, vj) are called the endpoints of the edge. The

edge is said to connect vi and vj and to be incident on vi and vj. Moreover, vi and vj

are said to be adjacent.

A graph G is weighted if a non-negative weight wij is assigned to each (vi, vj) ∈

V × V , where wij > 0 if and only if (vi, vj) ∈ E, i.e., the vertices vi and vj are

connected by an edge.

Definition 2 (Weighted adjacency matrix). The weighted adjacency matrix of graph

G is defined as

W = (wij) ∈ Rn.
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Definition 3 (Undirected Graph). A weighted graph G is called undirected if wij =

wji, with i, j = 1, . . . , n, i.e., the adjacency matrix W is symmetric. In an undirected

graph, (vi, vj) ∈ E implies (vj, vi) ∈ E, with i, j = 1, . . . , n.

In an undirected graph G, the degree of a vertex vi ∈ V is di =
∑n

j=1wij.

Definition 4 (Degree matrix). The degree matrix of G is defined as the diagonal

matrix of degrees

D = diag(di) = diag(W1),

where 1 := (1, . . . , 1)T ∈ Rn.

A path in G from vi0 to viℓ is a sequence (vi0 , vi1) , (vi1 , vi2) , . . . ,
(
viℓ−1

, viℓ
)
∈ E

of arbitrary length ℓ, such that {vik}ℓk=0 are all distinct and wcoik−1, ik > 0 for all

k = 1, . . . , ℓ. That is, a finite or infinite sequence of edges that joins a sequence of

vertices that are all distinct.

Two vertices vi and vj are called connected if G contains a path from vi to vj.

Otherwise, they are called disconnected.

Definition 5 (Connected graph). G is said to be connected if any pair of vertices of

G are connected, i.e., for any pair of vertices vi, vj ∈ V , there exists a path from vi

to vj.

A subgraph of G is another graph formed from a subset of the vertices V and

edges E. The vertex subset must include all endpoints of the edge subset but may

also include additional vertices. Then a connected component of G is a connected

subgraph that is not part of any larger connected subgraph.

Definition 6 (Graph Laplacian). The unnormalized graph Laplacian matrix of undi-

rected graph G is defined as

L = Lap(W ) = D −W.
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The Laplacian matrix L is symmetric and positive semi-definite [2].

2.1.2 Clustering and spectral graph theory

Graph clustering can be thought as

1. Minimum-cut problem;

2. Graph partitioning problem.

When working on clustering, we need to assume that the corresponding adjacency

matrix is weighted, and we need to define a partition of a graph.

Definition 7 (Partition of G). A partition of a graph G is the reduction of G to a

smaller graph by partitioning its set of vertices V into mutually exclusive groups. For

a group A, the indicator vector is given by

1A = (1Ai) ∈ Rn with 1Ai =


1 if vi ∈ A,

0 otherwise.

The problem of clustering for undirected graphs can be formulated as finding a

partition of the graph such that the edges between different partitions (clusters) have

low weights and the edges within a partition (cluster) have high weights. In general,

our aim is to find a number of clusters, say k, of the same graph. However, there is

a special case, i.e., k = 2, that is referred to as the minimum-cut problem.

Spectral graph theory, as pioneered by Fiedler [3] and Chung [4], is the study of

the properties of a graph in relationship to the characteristic polynomial, eigenvalues,

and eigenvectors of the adjacency matrix or of the Laplacian matrix of a graph.

Supported by this theory, spectral clustering is one of the modern techniques used for

undirected graphs. It exploits the spectrum (eigenvalues) of the Laplacian matrix,

as described in [5]. Spectral clustering has been extensively studied in data mining
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communities and is considered superior to traditional clustering algorithms, such as

K-means [6], in terms of having deterministic and polynomial-time solutions [7].

Another effective approach for detecting clustering structure in undirected graphs

is the optimization of a function known as modularity over the possible divisions of a

graph. Informally, modularity measures the deviation in the concentration of edges

in the clustered graph from that expected in the case of randomly distributed edges,

which are expected to have no community structure [8, 9].

Constrained problems

In the process of finding the partitions above, there could be additional requirements.

For instance, we could be asked to find a group of user A containing at least 20

Facebook users or a group of friends of user A, which necessarily contains user B.

These two cases are referred to as cardinality constraint and membership constraint.

These are active problems of research (see, e.g., [10, 11, 7]), as no standard methods

exist, and the proposed ones are often heuristic or tailored to specific problems.

A versatile methodology based on spectral clustering, that can easily incorporate

various kinds of constraints, or combinations of such constraints, in a unified way was

presented in [1]. In the proposed method, the constrained partitioning problems were

reformulated as matrix nearness problems. As the goal is to identify components of

the graph that can be disconnected, in this method a system of matrix differential

equations is used to lead the smallest nonzero eigenvalue of the Laplacian to zero.

To this end, the distance between the graph adjacency matrix and a set of perturbed

adjacency matrices must be minimized.

This algorithm features a two-level iterative procedure for matrix nearness prob-

lems, which is in common with algorithms for eigenvalue optimization via differential

equations, such as given in [12, 13, 14, 15, 16].
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2.2 Directed graph

2.2.1 Definitions

In this section, we extend the basic definitions of undirected graphs to directed graphs.

Definition 8 (Directed Graph). A directed graph or digraph is a pair G = (V,E),

where V = {v1, . . . , vn} is a set whose elements are called vertices with |V | = n, and

E ⊂ V × V is a set of paired vertices whose elements are called edges. In a directed

graph, (vi, vj) ∈ E does not imply (vj, vi) ∈ E, with i, j = 1, . . . , n.

An edge (vi, vj) ∈ E in a directed graph has directionality and is called as directed

from vi to vj. The vertices vi and vj are called the endpoints of the edge, with vi the

tail of the edge and vj the head of the edge. The edge is said to connect vi and vj

and to be incident on vi and vj.

A directed graph G is weighted if a non-negative weight wij is assigned to each

(vi, vj) ∈ V × V , where wij > 0 if and only if (vi, vj) ∈ V , that is, there is an edge

directed from vi to vj.

Definition 9 (Weighted adjacency matrix). The weighted adjacency matrix of a

directed graph G is defined as

W = (wij) ∈ Rn.

It is crucial to notice that, in general, W is not symmetric.

Definition 10 (Degree matrix). In a directed graph G, the in-degree of a vertex

vi ∈ V is dini =
∑n

j=1 wji, i.e., the sum of weights of edges directed to vi; the out-

degree of a vertex vi ∈ V is douti =
∑n

j=1 wij, i.e., the sum of weights of edges directed

from vi. The in-degree matrix and out-degree matrix of G is defined as

Din = diag(dini ) = diag(W T
1) and Dout = diag(douti ) = diag(W1).
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The notion of connectivity can also be generalized to directed graphs, resulting in

the so-called strong and weak connectivity.

Definition 11 (Strongly and weakly connected graph). With the same definition of

paths as for undirected graphs, a directed graph G = (V,E) is strongly connected if for

any pair of vertices vi, vj ∈ V , there exists a directed path from vi to vj (and therefore

a directed path from vj to vi); a directed graph G = (V,E) is weakly connected if it

is connected in the undirected graph sense, i.e., ignoring the direction of the edges.

Directed graph Laplacian

Since the adjacency matrix is not symmetric, the definition of the Laplacian matrix

becomes challenging for directed graphs. We can consider two Laplacians, one related

to in-edges) and one referring to out-edges. Otherwise, we can find different ways to

”symmetrize” the problem, depending on which method we are going to use to make

an adjacency matrix symmetric. A couple of possibilities are illustrated and discussed

below.

Asymmetric Laplacians. Define two distinct Laplacians, one per each degree

matrix:

Lin = Din −W and Lout = Dout −W. (2.1)

Where Lin satisfies 1TLin = 0 but Lin1
T ̸= 0 in general and Lout satisfies Lout1 = 0,

but 1TLout ̸= 0 in general.

Since the Laplacians Lin and Lout are not symmetric, we expect they have complex

eigenvalues, which cannot provide us with any direct physical meaning.

Symmetric Laplacian via a bipartite model. In this case, the goal is to turn

a directed graph into an undirected one, by duplicating the vertices and connecting

them with unoriented edges.
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An undirected graph G = (V,E) is said to be bipartite if V = V1 ∪ V2 with V1, V2

such that V1 ∩ V2 = ∅ and vertices in V1 can be only connected with vertices in V2

and vice versa.

Any directed graph on n vertices can be uniquely represented by a bipartite graph

on 2n vertices as follows: let G = (V,E) be the directed graph, a bipartite graph

Gb = (Vb, Eb) can be constructed by defining Vb = V ∪V1, where V = {v1, v2, . . . , vn},

V1 = {vn+1, vn+2, . . . , v2n} and Eb = {(vi, vj′) | j′ = n + j, (vi, vj) ∈ E}. Therefore,

the corresponding adjacency matrix of Gb is

Wbp =

 0 W

W T 0

 ,

which is symmetric. Thus, it is possible to define the Laplacian as L = D − Wbp

where D is the degree matrix relative to the bipartite graph. The Laplacian, in terms

of the original adjacency matrix and the out-degree and in-degree matrices, can be

written as

L =

 Dout −W

−W T Din

 .

It is natural to wonder about the meaning of the eigenvalues and the eigenvectors of

L in terms of the original directed graph.

Assuming the graph is strongly connected, then Dout and Din are invertible. We

can normalize the Laplacian as follows:

L̂ =

D− 1
2

out 0

0 D
− 1

2
in


 Dout −W

−W T Din


D− 1

2
out 0

0 D
− 1

2
in

 = I2n+

 0 −D
− 1

2
outWD

− 1
2

in

D
− 1

2
in W TD

− 1
2

out 0


Thus, the eigenvalues of L̂ are of the form

λi = 1∓ σi

(
D

− 1
2

outWD
− 1

2
in

)
.
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Spectral properties of an undirected graph do not seem to be meaningful when working

with a bipartite graph.

2.2.2 Directed graph clustering background

Unconstrained problem

The problem of clustering for directed graphs lacks a standard concrete definition as

in the undirected cases. With the same definition of partition for undirected graphs,

a high-level definition can be given as finding a partition of the graph such that

each cluster (partition) can be considered as a set of vertices that share common or

similar features (characteristics). It is considered more challenging compared to the

undirected case for several reasons [17]:

I. Complexity in the problem formulation. Unlike in undirected cases where

the problem is formulated in terms of weights of edges within clusters and

between clusters, there are no precise and common problem formulations for

directed graph clustering problems. While extending the formulation for undi-

rected graphs to directed ones is not a trivial procedure, such density-based for-

mulation for directed graphs clustering cannot represent the direction of edges

and thus often fails to capture more sophisticated clustering structures.

II. asymmetricity. Many clustering results from spectral graph theory rely on

the symmetricity of adjacency matrices of undirected graphs. Since adjacency

matrices for directed graphs are asymmetrical, only a few methods in spectral

clustering can be extended from the undirected case directly [18].

III. Complexity in Laplacian. Many undirected graph clustering approaches

make use of graph Laplacian matrices. However, as introduced above, the notion

of Laplacian becomes complicated for directed graphs due to the direction of

edges.
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Specifically, for the symmetric Laplacian L defined via the bipartite model,

each vertex in the directed graph is represented by two vertices in the bipartite

model, making it nontrivial to partition G exploiting properties of L. Similarly,

for the asymmetric Laplacians, Lin and Lout, the asymmetricity of Lin and Lout

as well as the necessity to combine information retrieved from two Laplacians

make designing a simple algorithm a challenging task.

Popular methods for directed graph clustering problems fall into two categories

[17]:

I. Transforming the digraphs to undirected weighted graphs. In this class

of methods, directed graphs are converted to undirected weighted graphs, and

then appropriate undirected graph clustering approaches can be applied. In

some approaches, directed graphs are transformed to undirected ones where

information about directionality is introduced via weights on the edges of the

graph [19], while in other approaches, the directed network is converted into a

bipartite graph [20].

II. Extending undirected graph clustering methods to directed graphs.

This class of approaches constitutes extensions of methodologies from the undi-

rected case. Some approaches adapt the spectral clustering methods based

on the Laplacian matrix to directed graphs, while another prominent class of

methods extends modularity measure for undirected graphs and solves the cor-

responding optimization problems [21, 22].

In particular, a generalization for directed graphs of the modularity optimiza-

tion method in [9] was proposed in [21]. The author of [22] observed that this

definition of modularity could not distinguish the directionality of the edges in

some digraphs and proposed a new PageRank-based [23] modularity definition,

which accommodates directionalities and is consistent with the undirected ver-
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sion of modularity. Specifically, based on their definition, given Google Matrix

R = (rij) ∈ Rn×n and its stationary vector π = (πi) ∈ Rn (known as PageRank

vector), the LinkRank matrix is

S = (sij) ∈ Rn×n where sij = πirij,

where sij indicates the importance of the edge from i directed to j, i.e., the

probability of a random surfer following this edge in the stationary state. Then

the generalized modularity is constructed as

Q =
∑

vi,vj∈V

(sij − πiπj) δij, (2.2)

where δij = 1 if vertices vi and vj are in the same cluster and 0 otherwise.

Here
∑

vi,vj∈V sijδij denotes the fraction of time spent by random surfer while

walking within communities and
∑

vi,vj∈V πiπjδij denotes the expected value of

this fraction in the case of randomly distributed edges.

We adopt this modularity definition and optimize it with techniques proposed

in [21] in solving directed graph clustering problems to validate our proposed

method in unconstrained cases. Since modularity-based methods divide graphs

into more than two communities through subdividing the detected two clusters,

we focus our validation on two-cluster (minimum-cut) experiments.

Constrained problem

As the directed graph clustering problem is still an active research topic, constrained

directed graph clustering techniques are less investigated. [24] proposed methods

tailored to object co-segmentation in computer vision, while [25] proposed a seg-

mentation method for directed graphs that incorporates the attribute values, link

structure, and prior constraints.
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For this reason, the ability to extend a versatile algorithm for undirected graphs

to directed graphs is crucial to research in this field.
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Chapter 3

Minimum-cut and clustering

methods for directed graphs

3.1 From undirected graphs to directed graphs

Consider a directed graph G′ = (V , E ′) with vertex set V = {v1, . . . , vn} and edge set

E ′ ⊂ V × V . Let the associated asymmetric adjacency weight matrix be

W ′ = (w′
ij) ∈ Rn×n.

In this section, we formulate the problem of minimum-cut and clustering applied to

the directed graph G′, with and without constraints. Our formulation is based on

• The reinterpretation of clusters in digraphs;

• The symmetrization of the adjacency matrix; and

• The techniques illustrated in [1].
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3.1.1 Pattern-based clustering for directed graphs

As mentioned, we need to reinterpret the meaning of clustering for directed graphs.

In literature, there are two main formulations: [17]:

I. Density-based clusters, formed based on edge density characteristics. They

can be regarded as the more traditional definition of clusters in directed graphs,

the most natural extension from clusters in undirected graphs.

II. Pattern-based clusters, formed according to similar connectivity patterns

between vertices. These similarities could be lost with density-based criteria,

making pattern-based clusters of more interest in directed graph clustering lit-

erature, including this study.

Different patterns can be exploited to discover clusters or community structures

in directed graphs. For example, the LinkRank modularity method [22] extracts

flow-based patterns using random walks with the intuition that when digraphs are

considered as interlinked webpages, a community can be defined as a group of vertices

where the random surfer is more likely to be trapped into.

However, in this work, we are interested in a specific class of patterns in directed

graphs, the co-citation (and co-reference) patterns, i.e., the members of a set of

vertices link to another set of vertices, and this structure implies a similarity among

the members of each set. The graph in Figure 3.1 gives an example where vertices in

each cluster have the same out-links or in-links to or from the same vertices.

A remark is that flow-based and co-citation patterns may co-exist in a directed

graph and could align or differ, as discussed in our numerical examples in Section 4.

3.1.2 Directed graph symmetrization

To study the clustering of directed graph G′ based on co-citation and co-reference

patterns, we take the bibliography symmetrization approach proposed by the authors
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Figure 3.1: An example of a directed graph colored by clusters partitioned based on
co-citation and co-reference patterns

of [19], which combines M = W ′W ′T = (mij) ∈ Rn×n and N = W ′TW ′ = (nij) ∈

Rn×n. mij gives the sum of weight products w′
ikw

′
jk where vertices vi and vj share

common out-links (edges from vi and vj) to vertex vk ∈ V , and nij gives the sum of

weight products w′
kiw

′
kj where vertices vi and vj share common in-links (edges to vi

and vj) from vertex vk ∈ V . The symmetrized adjacency matrix is then defined as

W = M +N = (wij) = (mij + nij) ∈ Rn×n.

Let G = (V , E) be the graph associated with W . Since its adjacency matrix W is

symmetric, G is an undirected graph.

For the graph in Figure 3.1, the symmetrized adjacency matrix is
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W =



2 2 2 0 0 0 0 0

2 2 2 0 0 0 0 0

2 2 2 0 0 0 0 0

0 0 0 6 6 0 0 0

0 0 0 6 6 0 0 0

0 0 0 0 0 2 2 2

0 0 0 0 0 2 2 2

0 0 0 0 0 2 2 2



,

indicating that the associated undirected graph has three connected components

aligning with the clusters based on co-citation and co-reference patterns.

3.1.3 Minimum-cut and clustering formulation

Given the symmetrized adjacency matrix W = (wij) ∈ Rn×n and a set of vertices

A ⊂ V , we denotes its complement V \ A by Ā and define

W(A, Ā) =
∑

vi∈A,vj∈Ā

w2
ij =

∑
vi∈A,vj∈Ā

n∑
k=1

(
w′

ikw
′
jk + w′

kiw
′
kj

)2
.

We formulate both the minimum-cut problem (two clusters) and the general clus-

tering problems (k clusters).

In order to find the clusters based on co-citation and co-reference patterns in

the directed graph G′, we make use of the symmetrized undirected graph G, whose

weighted edges contain connectivity information by construction.
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Constrained minimum-cut problem

For the minimum-cut problem, we aim to find a partition of V into clusters A and its

complement Ā such that

W(A, Ā) is minimized. (3.1)

That is, the shared out-link and in-link patterns are minimized between the two

clusters. This problem is considered under the following additional constraints:

• Membership constraint : It is required that a given set of vertices V+ ⊂ V are

contained in one cluster and another given set of vertices V− ⊂ V are contained

in the other cluster.

• Cardinality constraint : It is required that each of the clusters has a prescribed

minimum number of vertices given by n̄.

Constrained clustering problem

For the general clustering problem, given a number of clusters k, we aim to find a

partition of V into clusters A1, . . . , Ak such that

k∑
l=1

W(Al, Āl) is minimized, (3.2)

under similar additional constraints:

• Membership constraint : It is required that for each m-th cluster of the dis-

connected graph Am, a given set of vertices Vm ⊂ V is in that component,

m = 1, . . . , k.

• Cardinality constraint : It is required that each of the clusters has a prescribed

minimum number of vertices given by n̄.
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3.1.4 Graph Laplacian and algebraic connectivity

Given the symmetrized adjacency matrix W = (wij) ∈ Rn×n and according degree

matrix D, The Laplacian matrix,

L = Lap(W ) = D −W

is symmetric, as defined in Section 2.1.1.

The following theorem reveals the relation between the connectivity of the graph

G and the eigenvalues and eigenspace of the Laplacian matrix L.

Theorem 3.1.1 ([3], [5]). Let W ∈ Rn×n be the adjacency matrix of an undirected

graph and L the corresponding Laplacian matrix. Let 0 = λ1 ≤ λ2 ≤ . . . ≤ λn be the

eigenvalues of L. Then the multiplicity k of the eigenvalue 0 of L equals the number

of connected components on vertex subsets A1, . . . , Ak in the graph. Then A1, . . . , Ak

partition V and the eigenspace of eigenvalue 0 is spanned by their indicator vectors

1A1 , . . . ,1Ak
.

In particular, when k = 2, the entries of the corresponding eigenvector orthogonal

to 1 assume only two different values of different signs, marking the membership to

the two connected components.

In other words, in order to find connected components within a graph, we need

to rely on the spectral properties of the Laplacian matrix associated with the sym-

metrized adjacency matrix. In particular, the multiplicity of zero eigenvalues will

provide us with the number of connected components, and the eigenvectors will con-

tain information on their belonging to a certain connected component.
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3.2 Constrained graph minimum-cut problem via

matrix differential equations

This section introduces a two-level constrained graph minimum-cut approach pro-

posed in [1] motivated by Theorem 3.1.1. As in [1], we first describe the method for

the unconstrained problem and then extend it to constrained problems.

3.2.1 Two-level method for the minimum-cut problem

The goal is to apply the method proposed in [1] to the symmetrized graph G, which

represents the properties of the directed graph G′. This method features two-level

iterations:

I. (Inner iteration) Given ε > 0, look for a perturbation matrix E(ε) = (eij) ∈

Rn×n of unit norm, such that the second smallest eigenvalue λ2 of Lap(W +εE)

is minimized.

To ensure that the graph associated with the perturbed adjacency matrix W +

εE is a valid undirected graph with the same edge set E as G, it is required that

E is symmetric, W + εE ≥ 0 (entry-wise) and E shares the sparsity pattern of

W .

II. (Outer iteration) Look for the smallest value among positive values of ε, call it

ε⋆, such that the second smallest eigenvalue λ2 of Lap(W + εE) equals 0. Then

two clusters of G, and thus G′, are determined by the signs of the entries of the

eigenvector of Lap(W + ε⋆E(ε⋆)) corresponding to λ2.

Below, we summarize a set of results that allow for the inner iteration, that is,

the problem position leading to the matrix differential equations, and their solution.

For the sake of brevity, we omit the proofs. They can be found in [1].



21

Inner iteration: constrained gradient flow for the functional Fε

To compute E(ε) for the given ε > 0, we minimize the functional

Fε(E) = λ2(Lap(W + εE)). (3.3)

We denote by ∥ · ∥ = ∥ · ∥F the Frobenius norm on Euclidean space and by ⟨X, Y ⟩ =

trace(XTY ) the inner product associated to the chosen norm.

Given a set of edges E , we define the orthogonal projection from Rn×n → Rn×n as

follows:

A = (aij) 7→ PE(A) = (pij) such that pij =


aij, if (vi, vj) ∈ E

0, otherwise.

Given a fixed graph adjacency matrix W and an ε > 0, we define an ε-feasible

perturbation matrix as E = (eij) ∈ Rn×n such that W + εE is associated with a valid

perturbed undirected graph as mentioned above, i.e., E is such that

(i) ∥E∥ = 1; (ii) E = ET ; (iii) E = PE(E); (iv) W + εE ≥ 0.

Consider a smooth path of ε-feasible matrices E(t). Let L(t) = Lap(W+εE(t)) be

the corresponding Laplacian matrix, λ2(t) the second smallest eigenvalue of L(t) and

x(t) the corresponding eigenvector with ∥x(t)∥ = 1. The following lemma describes

the gradient on a path of ε-feasible matrices E(t).

Lemma 3.2.1 ([1]). For every ε-feasible matrix E, a matrix Z = (zij) ∈ Rn×n is

the derivative of some path of ε-feasible matrices passing through E if and only if the

following conditions are satisfied

(i) ⟨E,Z⟩ = 0; (ii) Z = ZT ; (iii) Z = PE(Z); (iv) PE0(Z) ≥ 0,

where E0 := {(i, j) ∈ E : wij + εeij = 0}.
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To determine the admissible direction Ė of steepest descent of Fε(E) from E,

we aim to minimize
d

dt
Fε(E(t)) = λ̇2(t). Using a standard perturbation result for

eigenvalues (see [26]), we have (omitting argument t)

λ̇2(t) = ⟨xxT , L̇⟩. (3.4)

We are able now to write the derivative of the eigenvalue λ2, which is the gradient of

Fε in the space of symmetric matrices that have the sparsity pattern of W , in terms

of Ė. This is formalized in the following Lemma:

Lemma 3.2.2 ([1]). Rearranging (3.4) gives

λ̇2(t) = ε
〈
Gε(E(t)), Ė(t)

〉
, with Gε(E) = PE

(
Sym

(
(x • x)1T

)
− xxT

)
, (3.5)

where Sym(A) = 1
2
(A+ AT ) and x • x = (x2

i ) ∈ Rn. The matrix Gε(E) is symmetric

and has the sparsity pattern determined by the set of edges E.

Equation (3.5) indicates that the admissible direction Ė = Z of the steepest

descent is given by

argmin
Z

⟨G,Z⟩ s.t. (i-iv) in Lemma 3.2.1 and ⟨Z,Z⟩ = 1, (3.6)

where G denotes Gε(E). The authors of [1] proposed an equivalent optimization

question

argmin
Z

⟨Z,Z⟩ s.t. (i-iv) in Lemma 3.2.1 and ⟨G,Z⟩ = −1, (3.7)

which yields the same Karush–Kuhn–Tucker (KKT) conditions as (3.6) except for

the normalization sign. Solving (3.7) gives the following results on ε-feasible gradient

flow (curve following the direction of steepest descent) of Fε.
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Theorem 3.2.3 ([1]). On an interval where E0(t) does not change, the gradient flow

of Fε under (i-iv) in Lemma 3.2.1 is the system of differential equations (omitting

argument t)

Ė = −P+Gε(E)− κP+E with κ =
⟨−Gε(E), P+E⟩

∥P+E∥2
, (3.8)

where P+ = PE\E0. Thus by construction, for a smooth path E(t) of unit Frobenius

norm satisfying this system, λ̇2(t) ≤ 0. Moreover, λ̇2(t) = 0 if and only if Ė = 0.

In other words, this theorem states that there is a path for E(t) such that the

second smallest eigenvalue λ2 decreases, and that finding the stationary points of E(t)

is equivalent to finding the stationary points of λ2(t).

Outer iteration Newton-bisection method

Once a minimizer of the above functional is found for a fixed ε, we want to ”adjust”

the size of the perturbation to ultimately find ε⋆, such that λ2(W + ε⋆E(ε⋆)) = 0.

Let E(ε) be the minimizer of Fε resulting from the inner iteration. Assume that

for ε < ε⋆, the eigenvalue λ2(W + εE(ε)) > 0 is simple. Then E(ε) is a piecewise

smooth function of ε. In order to find the zeros of this function, we use Newton’s

method if ε < ε⋆ to obtain a fast iterative method to converge to ε⋆ from the left.

Otherwise, if ε > ε⋆, we can use a bisection technique to get closer to ε⋆.

To apply Newton’s method, we need to be able to express the derivative of f(ε) =

Fε(E(ε)). The Lemma below provides us with such a result.

Lemma 3.2.4. Assume that the second smallest eigenvalue of Lap(W + εE(ε)) is

simple. Moreover, assume E(ε) to be a smooth function of ε in some interval, and

the set of zero weight edges E0 related to E(ε) is independent of ε in that interval.
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Then, the function f(ε) = Fε(E(ε)) is differentiable with

d

dε
f(ε) = −

∥∥P+Gε(E(ε))
∥∥∥∥P+E(ε)

∥∥− 1

ε2
∥P+Gε(E(ε))∥
∥P+E(ε)∥

∥PE0W∥2 . (3.9)

Once the value ε⋆ is found, we have identified the perturbation that sends the

second smallest eigenvalue of the Laplacian matrix to zero; that is, we have two

disconnected components of the graph. We are now left with the task of identifying

the nodes that belong to the two partitions. Supported by Theorem 3.1.1, we assign

the partition A, Ā based on the signs of entries of the eigenvector x to the second

smallest eigenvalue λ2 of Lap(W + ε⋆E(ε⋆)). That is, to choose


vi ∈ A if xi ≥ 0

vi ∈ Ā if xi < 0.

for each vi ∈ V .

Algorithms

In order to summarize the method and clarify its steps, we present the pseudocode

relative to the inner iteration in Algorithm 1 and the outer iteration in Algorithm

2. The same pseudocode applies to the constrained problems and general clustering

problems examined below.
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Algorithm 1: Inner iteration: constrained gradient flow to minimize Fε

Data: W (symmetrized adjacency matrix), ε (distance), E0 (initial E), t0, tf
and h0 (start time, ending time, and step size)

Result: f(ε) = Fε(E(ε)), E(ε), f ′(ε), Z (gradient flow at E(ε))
if E0 is not given then

Initialize E0 by the free gradient −Gε(0)/∥Gε(0)∥
end
begin

Set E(0) = E0

Compute λ2(0) the second smallest eigenvalue of Lap(W + εE(0))
Compute x(0) the eigenvector associated with λ2(0)
Compute Fε(E(0)) and gradient flow Z(0)
Set t = 0, h = h0

while t < tf do
if h is smaller than a threshold then

Compute f ′(ε)
return Fε(E(t)), E(t), f ′(ε) and Z(t)

end
Set t1 = t+ h
Compute E(t1) given E(t), Z(t) ; /* Modified Explicit Euler */

Compute Fε(E(t1))
if Fε(E(t)) > Fε(E(t1)) then /* Step accepted */

Compute gradient flow Z(t1)
if Fε(E) has approximately reached a stationary value then

Compute f ′(ε)
return Fε(E(t1)), E(t1), f

′(ε) and Z(t1)
end
if the previous iteration was accepted then

Set h = 2h
end
Set t = t1

else /* Step rejected */
Set h = h/2

end
Compute f ′(ε)
return Fε(E(t1)), E(t1), f

′(ε) and Z(t1)
end

end
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Algorithm 2: Outer iteration: Newton-bisection for distance approximation

Data: W (symmetrized adjacency matrix), kmax (maximum number of
iterations), tol (tolerance) ε0, εlb and εub (starting values for the lower
and upper bounds for ε⋆ )

Result: ε⋆ (approximate computed distance), partitioning result
begin

Compute f(ε0), E(ε0), f
′(ε0), Z by the inner iteration

Set k = 0
while k ≤ kmax do

if f (εk) < tol then /* Bisection step */
Set εub = min (εub, εk)
Set εk+1 = (εlb + εub) /2

else /* Newton step */
Set εlb = max (εlb, εk)

Set εk+1 = εk − f(εk)
f ′(εk)

end
if εk+1 /∈ (εlb, εub) then

Set εk+1 = (εlb + εub) /2
end
if k = kmax or εub − εlb < tol then

Calculate partitioning result
return εk+1, partitioning result

end
Approximate initial guess E0 from E(εk) and Z
Set k = k + 1
Compute f(εk), E(εk), f

′(εk), Z by the inner iteration with initial E0

end
Calculate partitioning result
return εk+1, partitioning result

end
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3.2.2 Constrained minimum-cut problems

The two-level approach to the constrained minimum-cut problem has the same struc-

ture as the unconstrained minimum-cut problem. However, extra terms must be

added to the functional Fε(E) defined in Equation (3.3) so that the modified Fε(E) =

0 if and only if the perturbed graph is disconnected and the constraints are satisfied.

Before illustrating this change, let us introduce the following notation.

Let x = (xi) ∈ Rn be the eigenvector to the second smallest eigenvalue λ2 of

Lap(W + εE). Let x− =
(
x−
i

)
with x−

i = min (xi, 0) and x+ =
(
x+
i

)
with x+

i =

max (xi, 0). Then we denote the averages of entries of x− and x+ by

〈
x−〉 = 1

n−

n∑
i=1

x−
i ,

〈
x+
〉
=

1

n+

n∑
i=1

x+
i ,

where n− and n+ are the numbers of negative and nonnegative components of x,

respectively.

Augmented functional Fε under the membership and cardinality constraints

I. Augmented functional for the membership-constrained minimum-cut

problem

Given the constraint that two sets of vertices V+,V− ⊂ V are contained in two

different clusters in the partitioned graph, the functional Fε(E) to be minimized

reads

Fε(E) = λ2(Lap(W + εE)) +
α

2

∑
vi∈V−

(
xi −

〈
x−〉)2 + α

2

∑
vi∈V+

(
xi −

〈
x+
〉)2

,

(3.10)

where α is a weight to be chosen. The sign of the eigenvector x is chosen so that

Fε(E) takes the smaller value of the two possible values in each inner iteration.

Theorem 3.1.1 ensures that the augmented functional Fε(E) = 0 if and only if
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the constraints are satisfied.

II. Augmented functional for the cardinality-constrained minimum-cut

problem

The goal is to find the minimum-cut where each partition has at least n̄ vertices.

Here, we can use the functional Fε from the membership constraint. However,

V− and V+ are not given but are chosen depending on perturbation matrix E;

that is, we define V− and V+ as the collection of vertices to the indices of the

smallest and largest n̄ components of eigenvector x, respectively.

Gradient of Fε under the membership and cardinality constraints

Let

1
− =

(
1
−
i

)
∈ Rn with 1

−
i =


1 if xi < 0

0 otherwise,

1
+ =

(
1
+
i

)
∈ Rn with 1

+
i =


1 if xi ≥ 0

0 otherwise,

and, with ei denoting the i-th standard unit vector, define

v = v+ + v− with v± = −
∑
vi∈V±

(
xi −

〈
x±〉)(ei − 1

n±1
±
)
.

Lemma 3.2.5 ([1]). In the above situation, for Fε(E) defined in Equation (3.10), we

have
d

dt
Fε(E) = ε

〈
Gε(E), Ė

〉
, with

Gε(E) = PE
(
Sym

((
x • (x+ αz)1T − x(x+ αz)T

))
,

where z = (L− λ2I)
† v († denotes Moore-Penrose pseudoinverse) and x • y = (xiyi)

for x, y ∈ Rn. The matrix Gε(E) is symmetric and has the sparsity pattern determined

by the set of edges E.
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Applying Lemma (3.2.5) to the Newton-bisection methods completes the outer

iteration algorithm for constrained problems.

3.3 Constrained clustering problem via matrix dif-

ferential equations

This section extends the two-level graph minimum-cut approach to the graph clus-

tering problem. Again, we first describe the method for the unconstrained problem

and then extend it to constrained problems.

3.3.1 Two-level method for the clustering problem

Given the number of clusters k, with 3 ≤ k ≤ n, in the two-level method, we replace

the second smallest eigenvalue in Section 3.2.1 by the k−th smallest eigenvalue λk

of the Laplacian matrix relative to the perturbed graph W + εE. Theorem 3.1.1

guarantees that λk = 0 if and only if the perturbed graph associated with adjacency

matrix Lap(W + εE) has k connected components A1, . . . , Ak.

The same Theorem also suggests how to determine the clusters Ai, . . . , Ak, as it

states that the eigenspace of the eigenvalue 0 is spanned by the indicator vectors

1A1 , . . . ,1Ak
.

Let X ∈ Rn×k be the matrix which contains the first k eigenvectors of Lap(W +

ε⋆E(ε⋆)) (k eigenvectors according to the smallest k eigenvalues). That is,

X =

[
X1, . . . , Xk

]
= (xij),

where Xk denotes the k-th eigenvector of Lap(W + ε⋆E(ε⋆)) (eigenvector according

to the k-th smallest eigenvalue).

The standard way to determine the clusters is to apply k-means algorithms on
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the rows of X (see [5]). However, for the sake of deriving the gradient flow of the

augmented functional Fε, we relaxed the problem by requiring that for each k,

∥Xk∥ = 1 with
n∑

k=1

xij ≥ 0,

and determine the clusters by the index of the maximum entry in each row of X.

That is, to assign

vi ∈ Ap where p = argmax
1≤p≤k

xip, (3.11)

for each vi ∈ V .

Inner iteration: constrained gradient flow for the functional Fε

For clustering problem with k clusters, to compute E(ε), we minimize the functional

Fε(E) = λk(Lap(W + εE). (3.12)

Consider the same admissible path E(t) as for the minimum-cut problem in Sec-

tion 3.2.1, under the same denotations, by similar proof as in [1], the gradient flow of

Fε is given in the following theorem.

Theorem 3.3.1. On an interval where E0(t) does not change, the gradient flow of Fε

under (i-iv) in Lemma 3.2.1 is the system of differential equations (omitting argument

t)

Ė = −P+Gε(E)− κP+E with κ =
⟨−Gε(E), P+E⟩

∥P+E∥2

and Gε(E) = PE
(
Sym

(
(Xk •Xk)1

T
)
−XkX

T
k

) (3.13)

where P+ = PE\E0. Thus by construction, for a smooth path E(t) of unit Frobenius

norm satisfying this system, λ̇k(t) ≤ 0. Moreover, λ̇k(t) = 0 if and only if Ė = 0.

The matrix Gε(E) is symmetric and has the sparsity pattern determined by the set of

edges E.
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Outer iteration Newton-bisection method

The same Newton-bisection technique applies with Gε(E(ε)) in
d

dε
f(ε) modified as

in Theorem 3.3.1 and the clustering results determined as in Equation (3.11).

3.3.2 Extension for constrained clustering problems

As in the minimum-cut problem, we need to add constraints to the functional Fε(E)

defined in Equation (3.12) so that the modified Fε(E) = 0 if and only if the graph is

clustered into k connected components and the prescribed constraints are satisfied.

Augmented functional Fε under the membership and cardinality constraints

I. Augmented functional for the membership-constrained clustering prob-

lem

Given the constraint that k sets of vertices Vm for m = 1, . . . , k are in k different

clusters in the clustered graph, we augment Fε(E) as

Fε(E) = λk(Lap(W + εE)) + α
∑

1≤m≤k

∑
vi∈Vm

(
max
1≤j≤k

xij − xim

)
, (3.14)

where α is a weight to be chosen. In particular, V1, . . . , Vm are rearranged in

each inner iteration so that Fε(E) takes the smallest value.

II. Augmented functional for the cardinality-constrained clustering prob-

lem

The goal is to find k clusters with the condition that each cluster has at least

n̄ vertices. Here, we use the functional Fε from the membership constraint.

However, Vm are not given but are chosen depending on perturbation matrix E

greedily: for each m, we determine Vm as the collection of vertices to the indices

of the largest n̄ components of eigenvector Xm that have not been assigned to
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some Vj for 1 ≤ j ≤ m.

Gradient of Fε under the membership and cardinality constraints

Given an m with 1 ≤ m ≤ k, for an vi ∈ Vm, let mi be the index of the maximum

entry in the i-th row of X, i.e.,

mi = argmax
1≤j≤k

xij.

Then with ei denoting the ith standard unit vector, we define

Zmi = (Kmei •XT
m)1

T − (Kmi
ei •XT

mi
)1T −KmeiX

T
m +Kmi

eiX
T
mi

∈ Rn×n,

where Kj = (L− λjI)
† denotes the Moore-Penrose pseudoinverse of (L− λjI) for

each j = 1, . . . , k.

Lemma 3.3.2. In the above situation, for Fε(E) defined in Equation (3.15), we have

d

dt
Fε(E) = ε

〈
Gε(E), Ė

〉
, with

Gε(E) = PE

(
Sym

(
(Xk •Xk)1

T −XkX
T
k +

∑
1≤m≤k

∑
vi∈Vm

Zmi

))
.

The matrix Gε(E) is symmetric and has the sparsity pattern determined by the set of

edges E.

Fε(E) = λk(Lap(W + εE)) + α
∑

1≤m≤k

∑
vi∈Vm

(
max
1≤j≤k

xij − xim

)
, (3.15)

Proof. For each m for m = 1, . . . , k, we have

d

dt

∑
vi∈Vm

(
max
1≤j≤k

xij − xim

)
=
∑
vi∈Vm

(
d

dt
max
1≤j≤k

xij − ẋim

)
.
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With the pseudoinverses of (L− λjI) defined above and the standard results for

eigenvector derivatives [27], we obtain that

d

dt
max
1≤j≤k

xij = −eTi Kmi
L̇Xmi

, ẋim = −eTi KmL̇Xm,

so that

d

dt

∑
vi∈Vm

(
max
1≤j≤k

xij − xim

)
=
∑
vi∈Vm

(
eTi KmL̇Xm − eTi Kmi

L̇Xmi

)
=
∑
vi∈Vm

⟨KmeiX
T
m −Kmi

eiX
T
mi
, L̇⟩.

Then proceed as in the proof of Lemma 3.2.2 given in [1] to obtain the result.

Applying Lemma (3.3.2) to the Newton-bisection methods completes the outer

iteration algorithm for constrained problems.

In the following Chapter, we illustrate some numerical examples of all the methods

above, applied to both undirected graphs (to validate the method, comparing results

with [1]), and directed graphs.
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Chapter 4

Numerical experiments

Numerical experiments are based on the implementation of the algorithms presented

in the previous Chapter. The methods are coded entirely in Python (version 3.8) and

the experiments are performed on a personal laptop. In the following, we present

three examples. Example 1 is used to validate the codes and to compare the results

with those of [1]. Indeed, the analyzed graph is undirected. In Example 2, we consider

a community-structured graph generated according to [18]. In Example 3, we analyze

a directed graph representing a subset of the United States Airline network.

Example 1 (Zachary’s Karate club)

Zachary’s Karate club is a graph describing the relation between 34 members of a

karate club [28]. We aim to replicate the results from [1] to validate our code in

minimum-cut undirected graphs under constraints.

(i) Unconstrained minimum-cut: With no constraints, we obtain two clusters

of size 16 and 18 using the partition algorithm, as shown in Figure 4.1a. The

approximate computed distance is ε⋆ = 10.9545.

(ii) Minimum-cut under membership constraints: We aim to have a partition
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(a) Zachary’s karate club graph colored by
unconstrained minimum-cut result.

(b) Zachary’s karate club graph colored by
minimum-cut result when requiring that
vertices 14 and 34 to belong to the same
cluster.

(c) Zachary’s karate club graph colored by minimum-cut result when requiring each cluster
to have at least 17 vertices.

Figure 4.1: Example 1: Zachary’s karate club minimum-cut.

of the graph with specific vertices in each cluster. Four examples are shown in

Table 4.1. Here, tol = 10−5 and initial weight α = 3. The results show that it

is easiest to require vertex 9 to change its cluster, whereas it is most difficult

to force vertex 14 to another cluster. As an example, Figure 4.1b shows the

minimum-cut result when vertices 14 and 34 are in the same cluster.

(iii) Minimum-cut under cardinality constraints: Requiring to have a parti-

tion of the graph with n̄ = 17 vertices in each cluster, we obtain a partition as in

Figure 4.1c with approximate computed distance ε⋆ = 69.0994 with tol = 10−5
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Constraints ε⋆

vertices 9 and 1 in the same partition 9.4212
vertices 14 and 34 in the same partition 14.6566
vertices 20 and 34 in the same partition 14.1860
vertices 32 and 1 in the same partition 13.5686

Table 4.1: Computed values of approximate computed distance ε⋆ for each member-
ship constraint, Example 1 (ii).

and initial weight α = 0.3.

Example 2 (Generated benchmark)

Here, we study a benchmark weighted directed graph with built-in community struc-

ture generated by the algorithm proposed in [29]. The digraph has 3 built-in com-

munities, where vertices 13 and 14 belong to two communities, as shown in Figure

4.2. We compared the unconstrained minimum-cut result with the modularity-based

LinkRank approach proposed in [22], as introduced in Section 2.2.2.

Figure 4.2: Generated benchmark digraph colored by built-in community, where ver-
tices 13 and 14 belong to both communities near them.
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Minimum-cut

(i) Unconstrained minimum-cut: With no constraints, we obtain two clusters

of size 5 and 10, as shown in Figure 4.3a. The approximate computed distance

is ε⋆ = 58.0345. One community is detected, while the other two are included

in the same cluster.

(ii) LinkRank: Applying the modularity-based method, we obtain the same clus-

ters as our methods, as shown in Figure 4.3a.

(iii) Minimum-cut under membership constraints: We consider the case that

vertex 7 to be in the same cluster as vertex 10, or vertex 7 to be not in the same

cluster as vertex 4. By setting a tol = 10−5 and initial weight α = 3, we obtain

approximate computed distances ε⋆ = 79.8658 and ε⋆ = 77.7294, respectively.

Figure 4.3b and 4.3c present the constrained minimum-cut results. The applied

constraint forced the algorithm to detect a different built-in community from

the unconstrained case.

(iv) Minimum-cut under cardinality constraints: Requiring to have a par-

tition of the graph with at least n̄ = 6 vertices in each cluster, we obtain a

partition as in Figure 4.3d with approximate computed distance ε⋆ = 146.9121

by setting tol = 10−5 and initial weight α = 9.

Clustering

(i) Unconstrained clustering with k = 3: With no constraints applied, we

obtain three clusters of size 4, 5, and 6, as shown in Figure 4.4a. The approxi-

mate computed distance is ε⋆ = 78.0150, and the clusters align with the built-in

communities.
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(a) Generated benchmark digraph col-
ored by unconstrained minimum-cut and
LinkRank clustering results.

(b) Generated benchmark digraph colored
by minimum-cut result when requiring ver-
tices 7 and 10 to belong to the same cluster.

(c) Generated benchmark digraph colored
by minimum-cut result when requiring ver-
tices 4 and 7 not to belong to the same clus-
ter.

(d) Generated benchmark digraph colored
by minimum-cut result when requiring each
cluster to have at least 6 vertices.

Figure 4.3: Example 2: Generated benchmark digraph minimum-cut.

(ii) Clustering with k = 3 under membership constraints: We require ver-

tices 13 and 14 not in the same component, with tol = 10−5 and initial weight

α = 3. Figure 4.4b presents the clustering results with the applied constraint,

and the approximate computed distance is ε⋆ = 107.5529.

(iii) Clustering with k = 3 under cardinality constraints: Requiring to have

a clustering of the graph with n̄ = 5 vertices in each cluster, we obtain the

partition in Figure 4.4c with approximate computed distance ε⋆ = 111.3178 by
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setting tol = 10−5 and initial weight α = 3.

(a) Generated benchmark digraph colored
by unconstrained clustering result.

(b) Generated benchmark digraph colored
clustering result when requiring vertices 13
and 14 not to belong to the same cluster.

(c) Generated benchmark digraph colored by clustering result when requiring each cluster
to have at least 5 vertices.

Figure 4.4: Example 2: Generated benchmark digraph clustering.

Example 3 (United States Airline network)

Here, we study a directed graph representing the 50 domestic flight routes with the

largest total number of passengers in the United States in 2019 based on Bureau of

Transportation Statistics data [30]. Figure 4.5 presents the directed graph, where the

nodes denote cities in the United States, and the edges denote flight routes weighted

by the number of total passengers over 2019 (divided by 500, 000 for normalization).
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Still, we compared the unconstrained minimum-cut result with the modularity-based

proposed.

Figure 4.5: United States Airline network.

Minimum-cut

(i) Unconstrained minimum-cut: With no constraints, we obtain two clusters

of size 1 and 15, as shown in Figure 4.3a. The approximate computed distance

is ε⋆ = 58.5066. Such unbalanced results appear since the optimization goal

defined in Equation (3.1) didn’t consider the size of partitions. As introduced

in [5], we can explicitly request the sets A1, . . . , Ak to be “reasonably large” by

modifying the optimization goal and using the normalized Laplacian matrices

in the two-level method [1].
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(ii) LinkRank: Applying the modularity-based method, which detects a more bal-

anced cluster than our methods, as shown in Figure 4.6b.

(iii) Minimum-cut under membership constraints: We require vertices New

York and Los Angeles to be not in the same cluster, to partition the vertices by

their similarity in flight patterns with the two metropolitan cities. By setting

a tol = 10−5 and initial weight α = 3, we obtain the constrained minimum-

cut result presented in Figure 4.6c, with approximate computed distances ε⋆ =

293.6063.

(iv) Minimum-cut under cardinality constraints: Requiring to have a parti-

tion of the graph with n̄ = 5 vertices in each cluster, we obtain a partition as

in Figure 4.6d with approximate computed distance ε⋆ = 263.2201 by setting

tol = 10−5 and initial weight α = 0.8.

We observe that clusters our method detected when clusters are forced to be

relatively balanced to be close to the result of the modularity-based method.

We analyze that the difference appears in that the modularity method simulates

directed graphs as web pages with interlinks in the World Wide Web and finds

a group of webpages (vertices) where a random surfer is more likely to stay

as a cluster based on the definition of modularity in Equation (2.2), while our

methods divide vertices with similar connectivity patterns into a cluster based

on the symmetrization technique applied.

Clustering

(i) Unconstrained clustering with k = 3: With no constraints applied, we ob-

tain three clusters of size 1, 3, and 12, as shown in Figure 4.7a. The approximate

computed distance is ε⋆ = 123.4132. Similar to the minimum-cut problem, we
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(a) Airline digraph colored by uncon-
strained minimum-cut result.

(b) Airline digraph colored by colored by
LinkRank clustering results.

(c) Airline digraph colored by minimum-
cut result when requiring vertices New
York and Los Angeles not to belong to the
same cluster.

(d) Airline digraph colored by minimum-
cut result when requiring each cluster to
have at least 7 vertices.

Figure 4.6: Example 3: Airline network minimum-cut.

can obtain clusters of more balanced sizes by using normalized clusters in the

two-level algorithm.

(ii) Clustering with k = 3 under membership constraints: We require ver-

tices Atlanta and Chicago not in the same component, with tol = 10−5 and

initial weight α = 10. Figure 4.7b presents the clustering results with the

applied constraint, and the approximate computed distance is ε⋆ = 363.9693.

(iii) Clustering with k = 3 under cardinality constraints: Requiring to have

a clustering of the graph with n̄ = 4 vertices in each cluster, we obtain the
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partition in Figure 4.7c with approximate computed distance ε⋆ = 450.6817 by

setting tol = 10−5 and initial weight α = 10.

(a) Airline digraph colored by uncon-
strained clustering.

(b) Airline digraph colored clustering re-
sult when requiring vertices Atlanta and
Chicago not to belong to the same com-
ponent.

(c) Airline digraph colored clustering result when requiring each component to have at least
4 vertices.

Figure 4.7: Example 3: Airline network clustering.
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Chapter 5

Conclusions

We generalize an algorithmic approach to solving constrained minimum-cut problems

for undirected graphs to the constrained minimum-cut problems for directed graphs

through a graph symmetrization technique which introduces the information about

co-citation and co-reference patterns in directed graphs via the weights on the edges

of the symmetrized graphs.

We follow a two-level iterative approach that solves constrained minimum-cut

problems as matrix nearness problems: it minimizes the distance between the adja-

cency matrix of a graph and a set of perturbed graphs, imposing the constraints by

forcing a functional of the adjacency matrix to take its minimal value. The main

computational cost can be found in the solution of eigenvalue problems of symmet-

ric positive semi-definite matrices, which is determined by available numerical linear

algebra routines, making this algorithm capable of exploiting the sparsity of large

graphs.

Moreover, we generalize this approach from constrained minimum-cut problems

to general constrained clustering problems with more than 2 clusters by exploiting

the eigenvalues and eigenspace of the perturbed adjacency matrix.

We compare our methods in unconstrained cases with a modularity-based directed
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graph clustering method which aims to detect communities in the directed graph by

flow-based patterns instead of connectivity patterns (co-citation and co-reference) for

our methods. Through numerical experiments, we observe that both patterns could

co-exist in directed graphs, and the communities detected could align or defer.

Regarding future studies, we aim to tackle the limitations of our proposed ap-

proach and extend the scope of this study, as elaborated below.

I. As demonstrated in the numerical examples, utilizing unnormalized Laplacians

can result in unbalanced communities. We aim to modify the two-level algo-

rithm to make use of the normalized Laplacian matrices and investigate the

result.

II. The two-level approach features versatility in constraints: it can easily incorpo-

rate constraints other than cardinality and membership constraints, including

must-link (requiring pairs of vertices must be in the same cluster), cannot-link

(requiring pairs of vertices must not be in the same cluster), and combina-

tions of multiple constraints through modifying the augmented functionals to

be minimized. We aim to extend our scope and incorporate more constraints

for directed graph clustering problems.

III. Though performing remarkably well on extensive problems from literature,

the two-level algorithm cannot guarantee finding the global minimum of non-

smooth, non-convex optimization problems or NP-hard combinatorial optimiza-

tion problems. [1] presents an example where it gets stuck in a local minimum,

and we aim to explore similar caveats in directed cases and analyze different

algorithms’ performance.
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