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ABSTRACT 

Discovery of Airway Fluid Proteins Associated with Progressive Lung Disease and 

Damage in Early Childhood Cystic Fibrosis 

 

By Jeffrey Chou 

 

 

Background: Lung disease is typically the landmark clinical presentation in cystic 

fibrosis (CF) patients. However, much is still unknown regarding which immunological 

signaling proteins truly contribute to airway pathology, especially in young children. To 

assess such relationships, bronchoalveolar lavage (BAL) samples and lung computed 

tomography (CT) scans were obtained from a longitudinal cohort of CF children at one, 

three, and five years of age. Concentrations of select BAL proteins were determined 

using the Olink® Immuno-Oncology assay and overall lung disease from CT scans was 

quantified by the PRAGMA-CF (Perth-Rotterdam Annotated Grid Morphometric 

Analysis) method. Components of the PRAGMA score include PRAGMA-%Dis for total 

airway disease and PRAGMA-%Bx scores for bronchiectasis. 

 

Methods: Spearman correlation coefficients were used to evaluate cross-sectional 

relationships of individual protein correlations with PRAGMA scores. A random-

intercept model with AR(1) covariance structure was then built, with guidance from 

contrast tests for evaluating the effects of each individual protein on PRAGMA score at 

given time points. Calculated p-values for Spearman correlations and contrast tests were 

adjusted with the Benjamini-Hochberg method to control for false discovery rate (FDR). 

Finally, a lasso penalized regression algorithm for mixed models was utilized to select 

proteins that lead to a parsimonious model for predicting PRAGMA scores. 

 

Results: After FDR correction, three BAL proteins (ARG1, CCL4, and CSF1) exhibited 

significant positive correlations with PRAGMA-%Dis in the cross-sectional analysis of 

the five-year-old subset. These findings are corroborated by the contrast test results based 

on the linear mixed model with age set to five years. In addition, the lasso method 

suggests that higher HGF, lower LAMP3, and older age are predictive of increased 

PRAGMA-%Dis, whereas the selected predictors for increased PRAGMA-%Bx include 

higher ICOSLG, higher TNFRSF9, lower LAMP3, and older age. These proteins had 

significant effects in the linear mixed models’ contrast tests except for the effect of 

LAMP3 on %Dis.  

 

Conclusions: Our analyses demonstrate that select proteins have promising utility in 

predicting airway disease and damage in young CF children, both in a cross-sectional and 

longitudinal context. However, more research is needed to establish causal relationships 

for therapeutic drug development and improvement of precision medicine models. 
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1. INTRODUCTION 

 Cystic fibrosis (CF) is a lethal genetic disorder that severely hampers lung 

function as well as the gastrointestinal, endocrine, and reproductive systems.1 CF is 

caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) 

protein that regulates secretion of vital bodily fluids such as mucus, sweat, saliva, and 

tears.2 These secretions often become thickened and sticky in the loss of CFTR function, 

leading to chronic damage of associated internal organs.3 In the respiratory system, the 

obstruction with mucopurulent sputum causes recurring bacterial infections, progressive 

inflammation, and physical exacerbations from coughing and wheezing.3 The CFTR 

mutation also impairs digestive ability and pancreatic insulin production, resulting in 

symptoms such as malnutrition, diarrhea, weight loss, and CF-related diabetes (CFRD).3 

CF is inherited in an autosomal recessive manner and is primarily found in Caucasians.1 

Although incidence of cystic fibrosis in endemic populations is relatively rare (1 in 2,500 

live births in the E.U. and 1 in 3,500 live births in the U.S.), it is still one of the deadliest 

genetically-inherited diseases.1,4 While the average life expectancy has increased from 

less than five years in the 1940’s to a median of 40.7 years in 2013, more research is 

needed to further improve quality of life and survival outcomes for the CF population.5  

In particular, the inflammatory response in airways has long been the hallmark 

pathological feature of CF and is a key therapeutic target for limiting lung disease and 

damage.6 Shortly after birth, individuals with CF experience chronic inflammation and 

bacterial infections due to poor sputum drainage in the lungs. The inflammation is not 

effective at clearing bacterial infections and may persist even in the absence of 

pathogens.7,8 Several immunological cell subsets, including but not limited to neutrophils, 
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play a key role in CF inflammatory response. Neutrophils release powerful enzymes such 

as neutrophil elastase (NE) and myeloperoxidase that injure the respiratory lumen and 

have been shown to correlate with early structural damage of airways in young children 

(1-5 years old).7,9-12 Recent findings indicate that neutrophils recruited to CF airways 

undergo pathological reprogramming caused by signaling proteins that allow them to 

survive longer and co-exist with pathogens, rather than directly attacking them.10 

However, much is still unknown about mechanistic pathways involving these proteins 

and which ones significantly correlate with CF airway disease and damage.10,13 

 To aid in the confirmation and discovery of such signaling mechanisms, protein 

biomarkers can be measured in clinical fluid samples such as bronchoalvelor lavage fluid 

(BALF). Children undergoing BAL are placed under sedation, after which a 

bronchoscope inserted into the lungs for a saline wash. The resulting BAL is then 

collected and sent for laboratory analysis, where it is centrifuged to produce cell-free 

fluid (BALF).14  While the BAL is invasive, expensive, and difficult to perform, it is 

nonetheless regarded as the gold standard for airway biomarker measurement and 

provides excellent capture of inflammatory markers that correlate significantly with 

airway disease, such as NE and interleukin (IL)-8.15 Sputum collection also offers good 

biomarker detection, but most young children have difficulty expectorating sputum even 

upon induction.15 Blood plasma or serum is occasionally used, but this only captures 

biomarkers in the general circulation and may not reflect actual inflammatory 

mechanisms occurring in the airways.15,16 

Airway disease and damage in young CF children can be assessed through a 

computed tomography (CT) scan and quantified by the Perth-Rotterdam Annotated Grid 
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Morphometric Analysis (PRAGMA).17 In the PRAGMA procedure, physicians outline a 

grid over the CT scans and grade each cell for attributes such as percent bronchiectasis 

(structural damage of the airway) and percent airway disease (of any severity).17 

PRAGMA scores demonstrate excellent intra-class correlation coefficients (ICC, >90%) 

among physicians and perform well in quantifying the extent of lung disease and damage 

in children below six years of age.17  

However, very few studies have reported on a broad analysis of signaling proteins 

in BAL samples that may associate with the inflammation response and airway damage 

in young CF children. One recent analysis by DeBoer et al.18 attempted to measure 1,129 

proteins from blood plasma using the SOMAScan® targeted proteomics platform, and 

then analyzed significant correlations with bronchiectasis. However the cohort included 

in that study consisted of older children (aged 7-15 years) and was only conducted cross-

sectionally. As of today, there is a critical need to identify biomarkers that can aid in 

monitoring CF lung disease progression and spur development for novel inflammation 

therapies, especially in younger children (1-5 years).16 Early detection and treatment is 

paramount to impeding the progression of inflammation-induced damage as much as 

possible. Furthermore, there is a clear need for a longitudinal cohort study in order to 

provide greater statistical power and the ability to monitor and predict disease 

progression for any particular child over time.  

The objective of this thesis is to identify signaling proteins in BAL samples that 

correlate significantly with airway disease and bronchiectasis from a longitudinal cohort 

of young children with CF. To accomplish this, we obtained a dataset of protein 

concentrations and PRAGMA-CF Scores from the I-BALL early CF monitoring program 
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at Erasmus University in Rotterdam, Netherlands, a joint collaborative effort with 

Emory’s own early CF monitoring program (IMPEDE-CF). The I-BALL cohort consists 

of young children with CF who had clinical measurements taken at bi-yearly intervals 

between one and five years of age. The Erasmus investigators utilized the Olink® high-

throughput targeted proteomic assay, which employs protein extension assay (PEA) 

technology for detection of 92 biomarkers.19 In PEA, patient samples are incubated with 

a pair of antibodies that target specific proteins.20 If the DNA sequences of the antibodies 

matches with the protein, then amplification of the sequence occurs and final protein 

concentration is assessed by quantitative real-time polymerase chain reaction (qPCR).19,20  

 Our analyses aim at tackling the questions of whether and how airway disease and 

damage and their trajectory over time associate with BAL proteins and other potential 

demographic predictors, such as age. Narrowing down potential predictors is crucial due 

to the high cost of multiplex proteomic assays such as Olink® and SomaScan®. In this 

thesis project, the effects of each individual protein were first be evaluated in a both 

cross-sectional and longitudinal settings through the use of Spearman correlations and 

linear mixed models. This portion provided validation for known correlates of airway 

disease and damage, as well as guidance for building multivariate prediction models. 

Then, lasso penalized regression methods under linear mixed models were applied to 

select proteins that are predictive of airway disease and damage over time. This selection 

yielded a final multivariate longitudinal model that achieves easily interpretable 

prediction of PRAGMA scores from a parsimonious subset of proteins. Ultimately, it is 

expected that insights from this model will provide deeper understanding of the 

immunological signaling process at play in CF airways, help unlock key targets for 
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therapeutic drug development, and provide criteria for personalized diagnosis and 

treatment in a precision medicine context.  
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2. METHODS 

2.1 Data Acquisition and Cleaning 

Data for this study was integrated from three different sources: (1) I-BALL 

clinical demographics, (2) Olink® protein concentrations, and (3) PRAGMA-CF scores. 

All datasets shared a two-level hierarchical row structure such that measurements at each 

age (designated as ‘Study Event’ with level ‘E2’ for one year, ‘E3’ for two years, …, and 

‘E6’ for five years) are nested within each patient (i.e., where i = ‘Subject ID’ and j = 

‘Study Event’). Each dataset was stored as a CSV file on the consortium’s Isilon® server 

and then imported into RStudio GUI (Graphical User Interface) for data cleaning and 

analysis. The following subsections will detail specific steps for cleaning each of the 

three input datasets. After the cleaning process, all datasets were merged by a common 

identifier which includes the subject ID and the study event.   

2.1.1 I-BALL Clinical Demographics 

Clinical demographics from Erasmus’ I-BALL cohort were originally recorded on 

OpenClinica® Data Management software. Clinical variables extracted from the file 

include the birth date, date of BAL, date of CT scan, and age in months. Patients who had 

more than a 30-day difference in date of BAL procedure vs. CT scan were excluded from 

analysis, since there can be dramatic discrepancies in airway pathology within that time 

frame. The mean difference between BAL and CT visits was 7.13 ± 7.58 days for the 

included data. 

2.1.2 BALF & Olink Proteomics  

 BALF was collected for each patient at two different sites in the airways, 

designated as ‘B2’ and ‘B4’. The ‘B2’ site corresponds to BALF collected from the right 
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middle lobe of the lungs, which is the default for all patients who underwent the BAL 

procedure. Some patients have a ‘B4’ measurement taken from various other parts of the 

lung such as the most affected lobe of the lung or the lingula (upper lobe of left lung), 

depending on clinician discretion. Protein concentrations of BALF from ‘B2’ and ‘B4’ (if 

available) were quantified using the Olink® assay. However, due to major lapses in data 

collection for ‘B4’ measurements, only the ‘B2’ protein samples will be included for this 

thesis. 

Whereas the I-BALL and PRAGMA datasets have a two-level hierarchical row 

structure, the original Olink dataset has a third level to denote the site of BALF collection 

(i.e., where i = ‘Subject ID’, j = ‘Study Event’, and k = ‘BAL Site’). Each column 

represents a different protein. In addition, each protein has a unique limit of detection, 

which is the minimum concentration that the assay can quantify reliably. The first data 

cleaning step involved imputation of protein measurements below the LOD as ½ of the 

LOD. Next, an indicator column for each protein was created such that ‘0’ denotes a 

measurement at or above LOD and ‘1’ denotes a measurement below LOD. These 

columns were used to calculate percent of measurements below LOD for each protein. 

Proteins that have no more than 20% measurements below LOD were included for 

analysis, and proteins that have between 20 and 50% measurements less than LOD were 

saved for a potential future analysis where proteins are analyzed as a categorical variable 

(above or at LOD vs. below LOD) instead of a continuous variable. All proteins are listed 

in Appendix B along with their calculated % below LOD values. Out of the 92 total 

proteins, 62 of them were selected for further analysis in this study.    
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2.1.3 PRAGMA Scores 

 Two types of PRAGMA scores, PRAGMA-%Dis (total airway disease) and 

PRAGMA-%Bx (airway structural damage), were recorded for each patient in three 

different batches by the same rater. Thus, some CT scans were scored more than once. If 

a patient has PRAGMA scores in batches one and two, the first batch was used for 

analysis since it had a larger sample size and will minimize variance contributed by batch 

effects. PRAGMA scores from the third batch was only used if no score was produced in 

the first or second batches. Thus, the PRAGMA scores primarily come from the first 

batch.  

2.2 Summary Statistics 

Summary statistics were calculated for PRAGMA scores (both %Dis and %Bx) 

and clinical variables of interest. The mean and standard deviations were reported for 

continuous variables such as age and PRAGMA scores. Frequencies were reported for 

categorical variables such as gender and infection status. All summary statistics were 

stratified by the study event to evaluate possible trends in variables across the different 

ages. 

2.3 Cross-Sectional Spearman Correlations 

At each age, the Spearman correlation coefficient (ρ) was used to determine 

which proteins have significant relationships with PRAGMA-%Dis or %Bx scores. This 

analysis will also reveal the directionality of the relationships at each time point and 

provide guidance for building longitudinal models. The Spearman Rho is a non-

parametric rank-based algorithm that is robust against outliers. For this reason, the 

Spearman Rho was chosen over the parametric Pearson correlation coefficient (r) since 
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several proteins are nearly 20% below LOD and possibly left-skewed as a result. To 

address the multiplicity of comparisons across the 62 proteins, the associated p-values 

were adjusted by the Benjamini-Hochberg method to control for false discovery rate 

(FDR) when screening for significant correlates.21 

2.4 Linear Mixed Models of PRAGMA Scores to Evaluate Individual Protein Main 

Effects 

To evaluate the longitudinal relationship between individual protein 

concentrations and PRAGMA-%Dis or PRAGMA-%Bx scores while controlling for age, 

two different random-intercept linear mixed models were proposed with repeated 

measures of each subject as the random effect. The models were fit using the lme() 

function from the nlme package. Parameter beta coefficients and associated p-values were 

calculated using the residual maximum likelihood (REML) method. REML yields less 

biased estimates than normal maximum likelihood (ML), especially in smaller samples, 

since it accounts for the loss in degrees in freedom when estimating fixed effects.22,23 In 

addition, the first-order autoregressive (AR(1)) structure was specified for the covariance 

matrix, which is suitable for longitudinal scenarios where observations closer in time are 

more strongly correlated than observations father apart in time.22,23 

2.4.1 Model I: Protein concentration and age as a continuous covariate 

Let 𝑖 denote the Subject ID and 𝑗 denote the study event. Model I includes the 

main effects of protein concentration (𝑥𝑖𝑗) and age (i.e. exact age in months at BAL 

procedure) on PRAGMA-%Dis or PRAGMA-%Bx (𝑌𝑖𝑗) and is specified as follows: 

𝑌𝑖𝑗 = 𝛽0 + 𝜃𝑖 + 𝛽1 ∙ 𝑥𝑖𝑗 + 𝛽2 ∙ 𝑎𝑔𝑒𝑖𝑗 + 𝜖𝑖𝑗 
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The parameter 𝜃𝑖 is the random intercept for each 𝑖𝑡ℎ child that accounts for 

between-subject variance, and 𝜖𝑖𝑗 is the error term that accounts for within-subject 

variance. For this analysis, the main effect of interest is that of protein concentration on 

PRAGMA score. In model I, the corresponding interpretation is that PRAGMA score 

increases by the constant 𝛽1 for every one-unit increase in protein concentration, while 

keeping age fixed at a certain level. It is possible, however, that the relationship between 

protein concentration and PRAGMA score is not the same for all ages. Thus, a limitation 

of model I is that it assumes the same main effect of protein on PRAGMA score 

regardless of age. To remedy such an assumption, an interaction term between protein 

concentration can be added. 

2.4.2 Model II: Protein concentration, age as a continuous covariate, and interaction 

of protein*age 

Model II is similar to model I, but also includes an interaction term between 

protein concentration and age (𝑥𝑖𝑗 ∙ 𝑎𝑔𝑒𝑖𝑗): 

𝑌𝑖𝑗 = 𝛽0 + 𝜃𝑖 + 𝛽1 ∙ 𝑥𝑖𝑗 + 𝛽2 ∙ 𝑎𝑔𝑒𝑖𝑗 + 𝛽3 ∙ 𝑥𝑖𝑗 ∙ 𝑎𝑔𝑒𝑖𝑗 + 𝜖𝑖𝑗 

The interaction term allows the effect of protein on PRAGMA score to vary by 

different age levels. To illustrate, the model is rearranged in the following form where the 

protein terms are grouped together: 

𝑌𝑖𝑗 = 𝛽0 + 𝜃𝑖 + (𝛽1 + 𝛽3 ∙ 𝑎𝑔𝑒𝑖𝑗) ∙ 𝑥𝑖𝑗 + 𝛽2 ∙ 𝑎𝑔𝑒𝑖𝑗 + 𝜖𝑖𝑗 

Thus, the PRAGMA score now increases by 𝛽1 + 𝛽3 ∙ 𝑎𝑔𝑒𝑖𝑗 for every one unit 

increase in protein concentration and can be different for each age category. Since nearly 

all patients had measurements at approximately 12 months (E2), 36 months (E4), or 60 

months (E6), a few contrast tests were run to determine if the effects of the protein are 
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significantly different from zero at each age group. The contrast tests were conducted 

using the glht() function of the multcomp R package and were defined as follows: 

𝐻0𝑎: 𝛽1 + 12 ∙ 𝛽3 = 0 

𝐻0𝑏: 𝛽1 + 36 ∙ 𝛽3 = 0 

𝐻0𝑐: 𝛽1 + 60 ∙ 𝛽3 = 0 

 The p-values from the contrast tests were also FDR adjusted if the interest lies in 

inferring the protein has an effect on the PRAGMA score at one or more time points (or 

ages).  

2.5 Lasso Penalized Regression for Building Multivariate Linear Mixed Models of 

PRAGMA Scores 

 The previous models can reveal whether a given protein has a significant 

longitudinal association with PRAGMA score. However, a limitation is that they only 

consider one protein at a time. Solely applying multiple comparison adjustment to such 

univariate analysis results often gives over-conservative results.  In the context of the 

immune response in CF airways, it is well understood that multiple, likely correlated, 

signaling proteins play a role in airway disease and damage. Multivariate analysis can 

help reveal how they jointly impact the PRAGMA scores. However, the dimensionality 

issue need to be properly handled given the number of proteins is greater than the number 

of subjects.  

 Traditional model selection techniques such as forwards, stepwise, and backwards 

selection tend not work well in high-dimensional datasets (where p > n).24 Instead, 

penalized regression methods such as the lasso (least absolute shrinkage and selection 

operator) was used to shrink parameter estimates of insignificant variables to zero.24 
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These methods can often gain estimation efficiency while achieving shrinkage estimation 

that leads to reasonable variable selection.24 

 In linear mixed models, the lasso method seeks to find the beta coefficients that 

minimize the quantity − log(𝐿) + 𝜆 ∙ ∑ |𝛽𝑗|𝑝
𝑗=1 , where L is the maximum likelihood 

estimate, λ is the shrinkage parameter, and ∑ |𝛽𝑗|𝑝
𝑗=1  is the ℓ1 penalty.  As 𝜆 increases, 

more beta coefficients are shrunken to zero. Model evaluation techniques such as the k-

fold cross-validation (CV) and Bayesian Information Criteria (BIC) are used to choose 

the optimal 𝜆 parameter. 

 The R package lmmlasso, created by Schelldorfer et al25, was utilized for protein 

selection in this study. The algorithm utilizes a maximum likelihood-based ℓ1 

penalization that is optimized for fixed effects in high-dimension datasets and predicts 

random effect coefficients via the maximum a posteriori (MAP) principle.25 In addition, 

the package recommends choosing the optimal 𝜆 at the lowest BIC.25  

2.6 Transparency Statement 

 To promote transparency and ensure reproducibility of results, we intend to make 

all datasets and R code publicly available online after peer-reviewed publication. 
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3. RESULTS 

3.1 Summary Statistics 

Table 1: Summary Statistics of Cohort 

 Study Event 

Variable 
E2 

(n=9) 

E3 

(n=1) 

E4 

(n=14) 

E5 

(n=1) 

E6 

(n=13) 

Age at BAL 

(months) 
     

Mean (SD) 
13.2 

(0.499) 
25.0 (NA) 

37.4 

(0.767) 
49.3 (NA) 

61.4 

(0.651) 

PRAGMA-%Dis      

Mean (SD) 
1.62 

(0.768) 
3.89 (NA) 2.57 (1.29) 2.33 (NA) 3.65 (2.47) 

PRAGMA-%Bx      

Mean (SD) 
0.226 

(0.261) 
1.23 (NA) 

0.586 

(0.495) 
1.08 (NA) 1.30 (1.18) 

Gender      

Female 5 (55.6%) 1 (100%) 9 (64.3%) 1 (100%) 5 (38.5%) 

Male 4 (44.4%) 0 (0%) 5 (35.7%) 0 (0%) 8 (61.5%) 

CFTR Mutation      

F508del 

Homozygous 
4 (44.4%) 0 (0%) 7 (50.0%) 0 (0%) 6 (46.2%) 

F508del 

Heterozygous 
4 (44.4%) 1 (100%) 6 (42.9%) 1 (100%) 6 (46.2%) 

Other 1 (11.1%) 0 (0%) 1 (7.1%) 0 (0%) 1 (7.7%) 

Infection Present      

Yes 1 (11.1%) 0 (0%) 5 (35.7%) 0 (0%) 10 (76.9%) 

No 8 (88.9%) 1 (100%) 9 (64.3%) 1 (100%) 3 (23.1%) 

 

 Of subjects that have complete Olink® and PRAGMA information, the Erasmus 

CF cohort has a total size of n=38 measurements, with n=9, n=14, and n=13 observations 

at the E2, E4, and E6 time points, respectively. There is one patient from whom clinical 

measurements were obtained at E3 and E5. Summary statistics for clinical variables of 
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interest are presented in table 1 and are stratified by study event. As expected, mean 

PRAGMA % Dis and % Bx scores increase as age increases. Overall frequencies of 

gender and CFTR mutation appear to be evenly distributed. However, the proportion of 

subjects with pathogenic bacterial infection increases with age (11.1% at E2, 35.7% at 

E4, and 76.9% at E6). 

 A potential limitation of this study is that only n=6 patients have two repeated 

measurements and most patients have only one measurement (n=26). No patients have 

complete records across E2, E4, and E6. However, this study is currently ongoing and 

more data will be collected in the future. 

3.2 Cross-Sectional Spearman Correlations 

 Significant Spearman correlations between PRAGMA-%Dis or %Bx vs. select 

proteins across the time points are visualized below in figure 1a and 1b. The exact 

correlations of all proteins are printed in tables 4a and 4b of the appendix. At E2, nearly 

all proteins are negatively correlated but insignificant (at α = 0.05) vs. PRAGMA scores, 

except for CAIX (insignificant after FDR adjustment). However at E4, a large majority of 

proteins are significantly (positively) correlated with PRAGMA-%Dis, even after FDR 

adjustment (46 out of 62 proteins). The correlations are also positive at E6, but after FDR 

adjustment, only CSF.1 (rho = 0.868, p = 0.008), ARG1 (rho = 0.808, p = 0.043), and 

CCL4 (rho = 0.791, p = 0.043) remain significant.   

 Similar trends are seen for the proteins vs. PRAGMA-%Bx. At E2, most of the 

proteins are insignificant, but instead have weak positive correlations. Stronger positive 

correlations are seen E4 and E6. However, there virtually all proteins are insignificant 

after FDR adjustment across each time point except for PDGF.subunit.B at E4. 
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Figure 1: Bubble plots to illustrate the direction and magnitude of cross-sectional 

spearman correlations of (a) PRAGMA-%Dis or (b) PRAGMA-%Bx versus protein 

concentrations, as stratified by study event. For each study event, the proteins were 

ranked by the strength of unadjusted p-value and the top 20 proteins were chosen for 

display. FDR adjusted p-values are also displayed for each study event. The magnitude of 

correlations is illustrated by the size of the bubbles, which is defined by the negative log10 

of the p-value. Only significant correlations at −𝑙𝑜𝑔10(0.05) ≈ 1.3 or greater are shown; 

otherwise the bubble is hidden. In addition, the directionality of the association of 

illustrated by the color of the bubble, where red indicates a positive correlation and blue 

indicates a negative correlation. 
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3.3 Linear Mixed Models of PRAGMA Scores to Evaluate Individual Protein Main 

Effects 

 

3.3.1 Model I: Protein concentration and age as a continuous covariate 

 The coefficient estimates and p-values for 𝛽1 (protein concentration) of model I 

are listed in table 5 for PRAGMA-%Dis and PRAGMA-%Bx. For both responses, there 

are several proteins that have significant 𝛽1 coefficients (10 out of 62 for both % Dis and 

% Bx). However, model I may not adequately capture changes in strength of associations 

across the different time points. Model II will attempt to address this shortcoming. 



17 
 
 

 

 

3.3.2 Model II: Protein concentration, age as a continuous covariate, and interaction 

of protein*age 

 Table 6 lists the coefficient estimates and p-value for 𝛽1 (protein concentration) 

and 𝛽3 (interaction of protein*age) of PRAGMA-%Dis and PRAGMA-%Bx, 

respectively. Virtually none of the reported p-values are significant. However, in order to 

truly evaluate the significance of the main effect of each protein on PRAGMA score with 

an interaction term, the contrast tests were run with results reported in table 7a and 7b for 

PRAGMA-%Dis and %Bx, respectively. The results are also visualized in figure 2, 

below. 

 

Figure 2: Bubble plots to illustrate the direction and magnitude of the linear mixed model 

contrast tests at each time point for (a) PRAGMA-%Dis and (b) PRAGMA-%Bx. Figure 

2 is similar to figure 1 except that contrast estimates are displayed instead of Spearman 

rho. FDR adjusted p-values are also presented with the unadjusted p-values of contrast 

estimates. The color of the bubbles indicates the directionality of contrast estimates, 

where dark red bubbles are strong positive estimates and dark blue bubbles are strong 

negative estimates. In addition, the sizes of the bubbles illustrate the magnitude of 

contrast p-values, where larger bubbles indicate higher significance and smaller bubbles 

indicate lower significance. Insignificant contrasts with p-values (adjusted or unadjusted) 

below −𝑙𝑜𝑔10(0.05) ≈ 1.3 are hidden from the display.  
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 Overall, the results of the contrast tests, as illustrated in figure 2, somewhat reflect 

the overall trends seen in the cross-sectional analysis (figure 1). At E2, all of the effects 

of protein concentration on PRAGMA score are not significant. From E2 to E4, a change 

in magnitude of contrasts is also present, although not as pronounced as the cross-

sectional correlations. A moderate number of proteins (18 out of 62) have significant 

effects at E4, but none of the p-values are significant after adjustment. Ending at E6, a 

larger number of proteins demonstrate significant effects (25 out of 62). After FDR 

adjustment a slightly smaller number of effects are significant (17 out of 62). Similar to 

the cross-sectional correlations, CSF.1 (estimated effect = 1.236, p < 0.001 for %Dis; 

estimated effect = 0.425, p = 0.001 for %Bx), CCL4 (estimated effect = 0.911, p < 0.001 

for % -Dis; estimated effect = 0.391, p < 0.001 %Bx), and ARG1 (estimated effect = 

0.787, p < 0.001 for %Dis; estimated effect = 0.300, p < 0.001 for %Bx) demonstrate 

significant effects at E6 in the longitudinal model. Other proteins of interest include 

LAMP3 (estimated effect = -0.442, p = 0.009 for %Bx, insignificant for %Dis), HGF 

(estimated effect = 0.981, p < 0.001 for %Dis; estimated effect = 0.374, p = 0.008 for 

%Bx), and ICOSLG (estimated effect = 1.536, p < 0.001 for %Dis; estimated effect = 

0.593, p = 0.006 for %Bx), all of which are robust parameters in the upcoming lasso 

penalization regression. All aforementioned proteins have positive effects on PRAGMA 

score except for LAMP3, which has a negative effect.   

3.4 Lasso Penalized Regression for Building Multivariate Protein Linear Mixed 

Models of PRAGMA Scores 

 Figures 3a-4b visualize the results of the lasso penalized regression of PRAGMA-

% Dis and %Bx over proteins. For each outcome, the ‘a’ figures illustrate variation of 
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selection criteria AIC, BIC, and deviance across possible lambda values (i.e., values of 

the penalization parameter), and the ‘b’ figures illustrate penalization of beta estimates 

across lambda values. The selection of lambda does not start from zero (i.e., no 

penalization) because fitting the unpenalized model would fail given the sample size is 

less than the number of proteins. The selection of lambda starts at 4.2 for % Dis and 8.0 

for %Bx. 

 

Figure 3a: Selection criteria for lasso-shrinkage models of PRAGMA-%Dis. Estimated 

AIC, BIC, and deviance statistics are plotted possible values of the lambda shrinkage 

parameter. The lmmlasso package algorithm fails to produce models for lambda values 

less than 4.2, hence the non-zero starting value of lambda. It appears that the lowest BIC 

occurs at 5.8, which is denoted by the dashed gray line. 
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Figure 3b: Parameter estimates plotted against possible lambda values. As lambda 

increases, the parameter estimates shrink closer to zero and the number of parameters in 

the overall model decreases. The dashed line indicates the model with the lowest BIC, 

which includes the parameters HGF, age, and LAMP3. 

 

Figure 4a: Lasso selection criteria for PRAGMA-%Bx. The model fails to converge for 

lambda values less than 18.0, but the lmmlasso algorithm still prints results. The lowest 

BIC occurs at 14.9. While the model does not converge at 14.9 (4 parameters), the lowest 

acceptable lambda of 18.0 still has 4 parameters in the model (+ HGF, + ICOSLG, + 

BAL_age_months, -LAMP3).  
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Figure 4b: Same as figure 3b, but for response variable of PRAGMA-%Bx. 
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Judging from figures 3a and 3b, the lowest BIC occurs at 5.8 and 14.9 for % Dis and % 

Bx, respectively. For % Dis, the lowest BIC corresponds to a final mixed model 

comprised of independent variables age, HGF, and LAMP3 (figure 4a). A lack of 

convergence warning occurred at lambda = 14.9 for %Bx (corresponding to a 4 

parameter-model), but the issue is resolved by setting lambda to at least 18.0, which still 

retains 4-parameter model of age, ICOSLG, LAMP3, and HGF (figure 4b). All selected 

parameters were refitted into a linear mixed model with AR(1) covariance structure. 

Parameter estimates, 95% confidence intervals, associated p-values are reported in table 2 

below. Note that LAMP3 has a negative parameter estimate for both % Dis and % Bx, 

while all other estimates are positive. 

 

Table 2: Fitted multivariate linear mixed models for PRAGMA-%Dis and PRAGMA-

%Bx as chosen by the lasso. For each independent variable, the parameter estimate is 

displayed first, followed by the 95% confidence interval and the p-value.  

 PRAGMA-%Dis 

Parameter Estimate         95% CI p-value 

(Intercept) 0.567 (-2.846, 3.980) 0.737 

BAL_age_months 0.022 (-0.014, 0.058) 0.143 

HGF_B2 0.546 (-0.015, 1.106) 0.053 

LAMP3_B2 -0.302 (-0.899, 0.294) 0.205 

Observations 38 

Unique Subjects 32 

BIC 165.874 
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  PRAGMA-%Bx 

Parameter  Estimate 95% CI p-value 

(Intercept) 0.584 (-0.630, 1.797) 0.334 

BAL_age_months 0.016 (-0.009, 0.040) 0.109 

ICOSLG_B2 0.210 (-0.594, 1.014) 0.378 

LAMP_3B2 -0.208 (-0.570, 0.153) 0.131 

TNFRSF9_B2 0.180 (-0.253, 0.612) 0.216 

Observations 38 

Unique Subjects 32 

BIC 111.581 
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4. DISCUSSION 

4.1 Interpretation of Results 

 The results of the cross-sectional analyses demonstrate significant differences in 

the association between protein concentrations and PRAGMA scores across the three 

time points of the study. At E2, nearly all of the correlations are insignificant. While 

PRAGMA-% Dis was negatively correlated and %Bx was positively correlated with the 

proteins, there is not enough evidence to ascertain the true directionality of the 

associations. However, it is reasonable to infer that the associations are weak due to the 

lack of observable inflammatory pathology at such a young age. As the children progress 

into the E4 time point (approximately 3 years old), most proteins become significantly 

positively correlated with %Dis. The change in magnitude of correlation coincides with 

the establishment of CF pathology as the children develop. At the final E6 time point 

(approx. 5 years old), only a handful of proteins are significant, indicating a possible 

stabilization in inflammatory response from three to five years of age. However, further 

research is needed to infer the causality of such a change in relations. 

 With regards to screening possible biomarkers, the E6 proteins seem most helpful 

as a starting point. False discovery rate p-value adjustment can further help in 

determining reliable predictors of PRAGMA scores while reducing Type I error. At E4, a 

relatively large number of significant proteins remain significant after FDR adjustment, 

while the FDR adjustment at E6 yields only CSF1, ARG1, and CCL4 as proteins that are 

significantly associated with PRAGMA-%Dis. The proteins have been of high interest in 

recent CF literature and could aid in corroborating current evidence that they associate 

with airway damage in young children. However, the proteins do not exhibit significant 
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correlation with PRAGMA-%Bx after FDR adjustment, so there is not enough evidence 

to determine if they also correlate with airway structural damage. The lack of significance 

in the correlations may also be caused by the low range of values PRAGMA-% Bx scores 

(min = 0.000, max = 3.76, median = 0.788; table 1) as opposed to the PRAGMA-%Dis 

(min = 0.871, max = 9.86, median = 3.08) across all ages, which is expected due to lack 

of severe airway damage in young children as opposed to teenage or adult CF 

populations. However, the results are valuable in determining earliest causes of 

inflammation and therapeutic targets to impede progression before onset of severe 

pathology. 

 The trends seen in the cross-sectional analysis also provide insight into building 

appropriate longitudinal models to assess marginal effects of each protein on PRAGMA 

scores while accounting for age and potential interaction between age and protein 

concentration. Due to changes in magnitudes of the protein vs. PRAGMA associations at 

E2 (all insignificant and weakly positive or negative), E4 (mostly significant and strongly 

positive), and E6 (select few significant and moderately positive), there is a priori 

reasoning to infer the need for an interaction term of age and protein concentration. The 

significant results of most of the protein contrast with model II especially at E6, which 

confirm such a hypothesis, indicating that the main effects of protein on PRAGMA score 

is significantly different at each age. Thus, the interaction term successfully encapsulates 

such differences in main effects. In addition, the longitudinal models have an advantage 

over cross-sectional correlations in that it has more power in differentiating proteins that 

truly have significant long-term airway effects in young CF children versus just a 

significant effect solely at E6. Significant proteins of interest included ARG1, CSF1, and 
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CCL4 for both PRAGMA-%Dis and %Bx, which corroborates the cross-sectional 

findings and lends further evidence that they may be associated with longitudinal long-

term airways disease and damage in young children, not just a cross-sectional benchmark 

of five-year-olds.  

 A limitation of the cross-sectional association and the previous linear mixed 

models is that they only consider the marginal effects of each individual protein, rather 

than all of them simultaneously. Immunological responses are regulated by intricate 

molecular pathways that comprise of complex interactions within and among signaling 

proteins, and cells such as neutrophils, macrophages, epithelial cells and other key 

players. While it is not possible to capture all such relationships in one statistical model, 

the building of a multivariate protein model can help to determine which proteins 

demonstrate significant impact on PRAGMA scores. This can help eliminate proteins that 

appear to be significant in marginal analyses, but whose effects on PRAGMA scores may 

be mainly mediated through other proteins. In the lasso for both PRAGMA-%Dis and 

%Bx, age and LAMP3 were most robust against penalized regression. For PRAGMA-

%Dis only, HGF was also a robust parameter, and for % Bx only, ICOSLG and 

TNFRSF9 were the additional robust parameters. Since the selected proteins differ for % 

Dis or %Bx, it may suggest possible heterogeneity in protein subsets that associate with 

total airway disease versus airway structural damage. However, the %Bx results also 

must be interpreted with caution since the range of values is low. 

The p-values for the lasso selected parameters in the final linear mixed model are 

all insignificant. This may be due to the small sample sizes of the cohort. However, the 

selected proteins can still be potential topics of future research based on their robustness 
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against lasso penalization versus many other proteins. In addition, while they are not 

significant in the cross-sectional analysis (after FDR adjustment), they all are significant 

in the contrast tests under linear mixed models except for the effect of LAMP3 on 

PRAGMA-%Dis. LAMP3 is also unique in that it is the only protein with a significant 

negative effect on PRAGMA-%Bx in longitudinal model II, whereas a majority of 

significant proteins demonstrate positive directionality in many of the other figures and 

tables. Further research is needed to ascertain the negative contribution of LAMP3 to 

PRAGMA scores, as it was recently discovered that LAMP3 (also referred to as CD63) 

on neutrophil surfaces contribute to destruction of extracellular matrix in the lung.26 

There also may differences in clinical outcomes of cell-bound CD63 versus free CD63 

that warrant future investigation. 

It may be peculiar that CSF.1, CCL4, and ARG1, proteins that were notably 

significant in the both cross-sectional correlations and mixed model contrast tests, were 

not selected by the lasso. While they demonstrably contribute positively to airway disease 

when considered individually, this suggests that they may not be reliable predictors of 

PRAGMA scores when controlling for the marginal effects of all other proteins in a 

multivariate setting. As a disclaimer, none of the findings are indicative of a true causal 

relationship between protein and PRAGMA scores considered in either an individual or 

multivariate context. However, significant results can yield insights as to what strongly 

correlates with PRAGMA scores and to generate hypothesis as to potential targets for 

drug development or endpoints for clinicians to optimize CF pulmonology treatment for 

different children. 
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4.2 Limitations 

 As previously mentioned, the small number of repeated measurements can limit 

the power and stability of longitudinal mixed models and penalized regression. With 

more repeated measurements collected in the future, we expect to have better capacity to 

validate the current findings and reveal a clearer and more robust picture regarding the 

roles of proteins on airway disease progression. A larger sample size would also aid in 

predicting subject-level PRAGMA score trajectories as well as discovering possible 

heterogeneities in PRAGMA outcomes among the CF population. 

 Another limitation of the study is the possibility of batch effects among the three 

sets of PRAGMA scores generated for the subjects. No batch effect correction was 

employed in this thesis, but in a planned future analysis, all of subjects’ CT scans will be 

rescored in one batch by one physician. This can help eliminate unwanted batch-wise 

variances. 

4.3 Suggestions for Further Research 

 Due to the possibility of highly correlated proteins in the study, a future analysis 

can consider using penalized regression with elastic net penalty, which assigns an evenly-

distributed shrinkage to highly correlated predictors rather than the lasso’s behavior of 

arbitrarily favoring one over another.27 The elastic net was not attempted here due to the 

unavailability of appropriate statistical software. Furthermore, it may be of interest to 

evaluate groups of proteins that work or interact together in known pathways.27 This can 

be achieved through the grouped lasso algorithm, which allows one to penalize subsets of 

variables in groups rather than individually.27 The results can be especially useful in 
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analysis and discovery of protein clusters that work in similar molecular pathways to 

affect PRAGMA scores. 
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6. APPENDIX A: Olink® Immuno-Oncology Panel Protein Names and 

Abbreviations 

Abbreviation Full Name 

LOD 

value 

% below 

LOD 

< 20 % 

LOD 

ADA Adenosine Deaminase  -1.980 0.014 Yes 

ADGRG1 

Adhesion G-protein coupled receptor 

G1  -0.045 0.919 No 

ANG.1 Angiopoietin-1  0.198 0.203 No 

ANGPT2 Angiopoietin-2  -1.159 0.500 No 

ARG1 Arginase-1  0.715 0.095 Yes 

CAIX Carbonic anhydrase IX  -1.128 0.108 Yes 

CASP.8 Caspase-8  -0.246 0.014 Yes 

CCL17 C-C motif chemokine 17  -1.040 0.027 Yes 

CCL19 C-C motif chemokine 19 -0.589 0.041 Yes 

CCL20 C-C motif chemokine 20 -0.123 0.014 Yes 

CCL23 C-C motif chemokine 23 -0.004 0.014 Yes 

CCL3 C-C motif chemokine 17  -0.785 0.014 Yes 

CCL4 C-C motif chemokine 3 0.224 0.014 Yes 

CD244 Natural killer cell receptor 2B4  -0.289 0.068 Yes 

CD27 CD27 antigen  0.065 0.014 Yes 

CD28 

T-cell-specific surface glycoprotein 

CD28  0.174 0.932 No 

CD4 T-cell surface glycoprotein CD4  -2.362 0.027 Yes 

CD40 CD40 ligand  -0.185 0.014 Yes 

CD40.L CD40L receptor  -0.097 0.662 No 

CD5 T-cell surface glycoprotein CD5  -1.099 0.014 Yes 

CD70 CD70 antigen -0.256 0.216 No 

CD83 CD83 antigen  -0.654 0.014 Yes 

CD8A 

T-cell surface glycoprotein CD8 

alpha chain  -0.058 0.122 Yes 

CRTAM 

Cytotoxic and regulatory T-cell 

molecule  -0.614 0.703 No 

CSF.1 

Macrophage colony-stimulating 

factor 1  -1.462 0.014 Yes 

CX3CL1 Fractalkine -0.484 0.027 Yes 

CXCL1 C-X-C motif chemokine 1  0.423 0.014 Yes 

CXCL10 C-X-C motif chemokine 10 -1.472 0.027 Yes 

CXCL11 C-X-C motif chemokine 11 -0.267 0.081 Yes 

CXCL12 Stromal cell-derived factor 1  0.073 0.986 No 

CXCL13 C-X-C motif chemokine 13 -0.160 0.014 Yes 
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CXCL5 C-X-C motif chemokine 5 0.070 0.027 Yes 

CXCL9 C-X-C motif chemokine 9 -0.339 0.014 Yes 

DCN Decorin -0.392 0.378 No 

EGF Pro-epidermal growth factor  0.008 0.027 Yes 

FASLG Fas antigen ligand  -0.415 0.014 Yes 

FGF2 Fibroblast growth factor 2  -0.953 0.257 No 

Gal.1 Galectin-1  -0.225 0.014 Yes 

Gal.9 Galectin-9 -0.206 0.014 Yes 

GZMA Granzyme A  -0.988 0.014 Yes 

GZMB Granzyme B -0.256 0.014 Yes 

GZMH Granzyme H  0.156 0.027 Yes 

HGF Hepatocyte growth factor  -0.698 0.014 Yes 

HO.1 Heme oxygenase 1  0.164 0.014 Yes 

ICOSLG ICOS ligand  -0.336 0.014 Yes 

IFN.beta Interferon beta  -0.076 0.932 No 

IFN.gamma Interferon gamma -0.101 0.932 No 

IL.1.alpha Interleukin-1 alpha  -0.110 0.054 Yes 

IL.21 Interleukin-21  0.057 0.946 No 

IL.35 Interleukin-35 -0.739 0.905 No 

IL10 Interleukin-10 -0.158 0.757 No 

IL12 Interleukin-12 -0.939 0.014 Yes 

IL12RB1 Interleukin-12 receptor subunit beta-1  -0.196 0.716 No 

IL13 Interleukin-13 -0.846 0.784 No 

IL18 Interleukin-18 -0.005 0.014 Yes 

IL2 Interleukin-2 -0.002 0.932 No 

IL33 Interleukin-33 0.051 0.568 No 

IL4 Interleukin-4  -1.018 0.595 No 

IL5 Interleukin-5 0.872 0.986 No 

IL6 Interleukin-6 0.057 0.014 Yes 

IL7 Interleukin-7 -0.301 0.027 Yes 

IL8 Interleukin-8 0.469 0.014 Yes 

KLRD1 Natural killer cells antigen CD94  -0.400 0.432 No 

LAMP3 

Lysosome-associated membrane 

glycoprotein 3  -0.148 0.014 Yes 

LAP.TGF.beta.1 

Latency-associated peptide 

transforming growth factor beta-1  -1.623 0.122 Yes 

MCP.1 Monocyte chemotactic protein 1  -0.607 0.014 Yes 

MCP.2 Monocyte chemotactic protein 2 -0.169 0.041 Yes 

MCP.3 Monocyte chemotactic protein 3 -0.423 0.068 Yes 

MCP.4 Monocyte chemotactic protein 4 -0.735 0.027 Yes 
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MIC.A.B 

MHC class I polypeptide-related 

sequence A/B  -0.828 0.068 Yes 

MMP12 Matrix metalloproteinase-12  0.050 0.014 Yes 

MMP7 Matrix metalloproteinase-7  -0.041 0.014 Yes 

NCR1 

Natural cytotoxicity triggering 

receptor 1  0.003 0.892 No 

NOS3 Nitric oxide synthase, endothelial  -0.570 0.743 No 

PD.L1 Programmed cell death 1 ligand 1  -0.003 0.041 Yes 

PD.L2 Programmed cell death 1 ligand 2 -0.594 0.230 No 

PDCD1 Programmed cell death protein 1  0.124 0.716 No 

PDGF.subunit.B 

Platelet-derived growth factor subunit 

B  -1.008 0.068 Yes 

PGF Placenta growth factor  0.224 0.014 Yes 

PTN Pleiotrophin -0.789 0.027 Yes 

TIE2 Angiopoietin-1 receptor  -0.241 0.284 No 

TNF Tumor necrosis factor  -0.226 0.500 No 

TNFRSF12A 

Tumor necrosis factor receptor 

superfamily member 12A  -0.594 0.027 Yes 

TNFRSF21 

Tumor necrosis factor receptor 

superfamily member 21  -0.161 0.014 Yes 

TNFRSF4 

Tumor necrosis factor receptor 

superfamily member 4  -0.165 0.338 No 

TNFRSF9 

Tumor necrosis factor receptor 

superfamily member 9 -1.299 0.014 Yes 

TNFSF14 

Tumor necrosis factor ligand 

superfamily member 14  -0.434 0.027 Yes 

TRAIL 

TNF-related apoptosis-inducing 

ligand  -0.793 0.014 Yes 

TWEAK 

Tumor necrosis factor (Ligand) 

superfamily, member 12  -0.750 0.014 Yes 

VEGFA Vascular endothelial growth factor A  -0.082 0.014 Yes 

VEGFC Vascular endothelial growth factor C  -1.898 0.216 No 

VEGFR.2 

Vascular endothelial growth factor 

receptor 2  -1.566 0.068 Yes 
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7. APPENDIX B: Additional Tables 

Table 4a: Cross-Sectional Correlations of PRAGMA-%Dis vs. All Proteins  

 Study Event 

 E2 (n=9) E4 (n=14) E6 (n=13) 

Protein 

Spearman 

Rho P-Value 

FDR P-

Value 

Spearman 

Rho P-Value 

FDR P-

Value 

Spearman 

Rho P-Value 

FDR P-

Value 

ADA_B2 -0.567 0.121 0.587 0.776 0.002 0.005 0.703 0.010 0.089 

ARG1_B2 -0.683 0.050 0.587 0.868 0.000 0.001 0.808 0.001 0.043 

CAIX_B2 -0.800 0.014 0.587 0.827 0.000 0.002 0.380 0.201 0.369 

CASP.8_B2 -0.367 0.336 0.596 0.767 0.002 0.005 0.379 0.202 0.369 

CCL17_B2 -0.183 0.644 0.753 0.068 0.820 0.820 0.176 0.566 0.650 

CCL19_B2 -0.333 0.385 0.646 0.539 0.050 0.062 0.264 0.384 0.495 

CCL20_B2 -0.233 0.552 0.728 0.758 0.003 0.006 0.528 0.067 0.182 

CCL23_B2 -0.400 0.291 0.587 0.196 0.502 0.537 0.082 0.793 0.806 

CCL3_B2 -0.500 0.178 0.587 0.815 0.001 0.003 0.659 0.017 0.089 

CCL4_B2 -0.200 0.613 0.746 0.754 0.003 0.006 0.791 0.002 0.043 

CD244_B2 -0.483 0.194 0.587 0.911 0.000 0.000 0.319 0.289 0.426 

CD27_B2 -0.417 0.270 0.587 0.710 0.006 0.011 0.319 0.289 0.426 

CD4_B2 -0.483 0.194 0.587 0.675 0.010 0.017 0.148 0.630 0.697 

CD40_B2 -0.250 0.521 0.702 0.837 0.000 0.002 0.550 0.055 0.180 

CD5_B2 -0.467 0.213 0.587 0.833 0.000 0.002 0.236 0.437 0.542 

CD83_B2 -0.383 0.313 0.587 0.556 0.042 0.054 0.506 0.081 0.194 

CD8A_B2 -0.417 0.270 0.587 0.139 0.638 0.648 -0.096 0.754 0.780 

CSF.1_B2 -0.033 0.948 0.980 0.714 0.006 0.010 0.868 0.000 0.008 

CX3CL1_B2 -0.467 0.213 0.587 0.741 0.004 0.007 0.132 0.669 0.703 

CXCL1_B2 -0.217 0.581 0.746 0.604 0.025 0.035 0.528 0.067 0.182 

CXCL10_B2 -0.317 0.410 0.669 0.481 0.084 0.100 0.209 0.494 0.588 

CXCL11_B2 -0.417 0.270 0.587 0.393 0.165 0.183 0.050 0.878 0.878 
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CXCL13_B2 -0.517 0.162 0.587 0.789 0.001 0.004 0.143 0.643 0.699 

CXCL5_B2 -0.450 0.230 0.587 0.626 0.019 0.031 0.352 0.239 0.401 

CXCL9_B2 -0.467 0.213 0.587 0.736 0.004 0.008 0.396 0.182 0.369 

EGF_B2 -0.250 0.521 0.702 0.763 0.002 0.006 0.319 0.289 0.426 

FASLG_B2 -0.433 0.250 0.587 0.574 0.035 0.047 0.308 0.306 0.442 

Gal.1_B2 -0.100 0.810 0.881 0.824 0.001 0.002 0.423 0.152 0.336 

Gal.9_B2 0.017 0.982 0.982 0.899 0.000 0.000 0.390 0.189 0.369 

GZMA_B2 -0.617 0.086 0.587 0.393 0.165 0.183 0.302 0.315 0.444 

GZMB_B2 -0.533 0.148 0.587 0.604 0.025 0.035 0.544 0.058 0.180 

GZMH_B2 -0.400 0.291 0.587 0.407 0.151 0.173 0.214 0.482 0.586 

HGF_B2 -0.667 0.059 0.587 0.824 0.001 0.002 0.670 0.015 0.089 

HO.1_B2 -0.133 0.744 0.823 0.754 0.003 0.006 -0.385 0.196 0.369 

ICOSLG_B2 -0.483 0.194 0.587 0.640 0.016 0.027 0.539 0.061 0.180 

IL.1.alpha_B2 -0.383 0.313 0.587 0.744 0.002 0.006 0.511 0.078 0.192 

IL12_B2 -0.067 0.880 0.925 0.389 0.170 0.185 0.280 0.353 0.476 

IL18_B2 -0.267 0.493 0.695 0.596 0.028 0.038 0.352 0.239 0.401 

IL6_B2 -0.417 0.270 0.587 0.793 0.001 0.004 0.423 0.152 0.336 

IL7_B2 -0.200 0.613 0.746 0.798 0.001 0.004 0.170 0.579 0.652 

IL8_B2 -0.683 0.050 0.587 0.802 0.001 0.004 0.582 0.040 0.155 

LAMP3_B2 -0.367 0.336 0.596 0.182 0.532 0.559 -0.264 0.384 0.495 

LAP.TGF.beta.1_B2 -0.133 0.744 0.823 0.798 0.001 0.004 0.649 0.016 0.089 

MCP.1_B2 -0.283 0.463 0.695 0.609 0.024 0.035 0.566 0.047 0.163 

MCP.2_B2 -0.467 0.213 0.587 0.556 0.042 0.054 0.132 0.669 0.703 

MCP.3_B2 -0.200 0.613 0.746 0.541 0.046 0.058 0.352 0.239 0.401 

MCP.4_B2 -0.017 0.982 0.982 0.415 0.141 0.165 0.187 0.541 0.633 

MIC.A.B_B2 0.067 0.880 0.925 0.169 0.563 0.582 -0.324 0.280 0.426 

MMP12_B2 -0.667 0.059 0.587 0.728 0.005 0.009 0.648 0.020 0.093 

MMP7_B2 -0.267 0.493 0.695 0.767 0.002 0.005 0.725 0.007 0.089 
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PD.L1_B2 -0.383 0.313 0.587 0.609 0.024 0.035 0.324 0.280 0.426 

PDGF.subunit.B_B2 -0.533 0.148 0.587 0.793 0.001 0.004 0.714 0.008 0.089 

PGF_B2 -0.483 0.194 0.587 0.912 0.000 0.000 0.676 0.014 0.089 

PTN_B2 -0.150 0.708 0.813 0.723 0.005 0.009 0.412 0.163 0.349 

TNFRSF12A_B2 -0.267 0.493 0.695 0.604 0.025 0.035 0.511 0.078 0.192 

TNFRSF21_B2 -0.333 0.385 0.646 0.675 0.010 0.017 0.280 0.353 0.476 

TNFRSF9_B2 -0.617 0.086 0.587 0.837 0.000 0.002 0.665 0.016 0.089 

TNFSF14_B2 -0.600 0.097 0.587 0.829 0.000 0.002 0.588 0.038 0.155 

TRAIL_B2 -0.300 0.437 0.677 0.886 0.000 0.000 0.692 0.011 0.089 

TWEAK_B2 -0.417 0.270 0.587 0.771 0.002 0.005 0.593 0.036 0.155 

VEGFA_B2 -0.300 0.437 0.677 0.521 0.059 0.072 0.577 0.043 0.155 

VEGFR.2_B2 -0.183 0.644 0.753 0.895 0.000 0.000 0.242 0.426 0.538 
 

Table 4b: Cross-Sectional Correlations of PRAGMA-%Bx vs. All Proteins  

 Study Event 

 E2 (n=9) E4 (n=14) E6 (n=13) 

Protein 

Spearman 

Rho P-Value 

FDR P-

Value 

Spearman 

Rho P-Value 

FDR P-

Value 

Spearman 

Rho P-Value 

FDR P-

Value 

ADA_B2 0.270 0.483 0.863 0.577 0.031 0.117 0.582 0.040 0.324 

ARG1_B2 0.174 0.654 0.863 0.648 0.012 0.084 0.659 0.017 0.227 

CAIX_B2 -0.017 0.965 0.980 0.435 0.120 0.213 0.179 0.559 0.737 

CASP.8_B2 -0.035 0.929 0.976 0.563 0.036 0.117 0.242 0.426 0.729 

CCL17_B2 0.348 0.359 0.863 -0.165 0.573 0.629 0.000 1.000 1.000 

CCL19_B2 0.531 0.141 0.863 0.130 0.658 0.692 0.154 0.617 0.797 

CCL20_B2 0.192 0.622 0.863 0.568 0.034 0.117 0.407 0.170 0.454 

CCL23_B2 0.174 0.654 0.863 -0.015 0.958 0.964 -0.126 0.683 0.804 

CCL3_B2 -0.148 0.704 0.873 0.508 0.064 0.158 0.522 0.071 0.324 

CCL4_B2 -0.122 0.755 0.906 0.594 0.025 0.109 0.692 0.011 0.227 

CD244_B2 0.235 0.543 0.863 0.594 0.025 0.109 0.181 0.554 0.737 
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CD27_B2 0.400 0.286 0.863 0.530 0.051 0.144 0.247 0.415 0.729 

CD4_B2 0.017 0.965 0.980 0.372 0.191 0.285 0.022 0.949 0.998 

CD40_B2 0.348 0.359 0.863 0.449 0.107 0.202 0.456 0.120 0.354 

CD5_B2 0.296 0.439 0.863 0.590 0.027 0.109 0.099 0.751 0.846 

CD83_B2 0.279 0.468 0.863 0.354 0.214 0.309 0.286 0.344 0.710 

CD8A_B2 -0.183 0.638 0.863 -0.224 0.441 0.536 -0.124 0.687 0.804 

CSF.1_B2 0.540 0.134 0.863 0.469 0.091 0.182 0.659 0.017 0.227 

CX3CL1_B2 0.340 0.372 0.863 0.308 0.284 0.367 0.071 0.821 0.909 

CXCL1_B2 0.000 1.000 1.000 0.370 0.193 0.285 0.401 0.176 0.454 

CXCL10_B2 0.279 0.468 0.863 0.167 0.568 0.629 0.143 0.643 0.797 

CXCL11_B2 0.148 0.704 0.873 0.189 0.517 0.617 -0.011 0.978 1.000 

CXCL13_B2 0.322 0.398 0.863 0.524 0.055 0.147 -0.033 0.921 0.984 

CXCL5_B2 0.174 0.654 0.863 0.350 0.220 0.310 0.099 0.751 0.846 

CXCL9_B2 0.340 0.372 0.863 0.493 0.073 0.175 0.341 0.255 0.586 

EGF_B2 0.174 0.654 0.863 0.332 0.246 0.331 0.231 0.448 0.729 

FASLG_B2 0.383 0.309 0.863 0.414 0.142 0.244 0.247 0.415 0.729 

Gal.1_B2 -0.104 0.789 0.906 0.541 0.046 0.135 0.126 0.683 0.804 

Gal.9_B2 0.061 0.876 0.937 0.566 0.035 0.117 0.264 0.384 0.729 

GZMA_B2 0.061 0.876 0.937 0.165 0.573 0.629 0.236 0.437 0.729 

GZMB_B2 0.261 0.497 0.863 0.464 0.095 0.183 0.495 0.089 0.324 

GZMH_B2 0.113 0.772 0.906 0.136 0.642 0.686 0.231 0.448 0.729 

HGF_B2 0.218 0.574 0.863 0.687 0.007 0.076 0.533 0.064 0.324 

HO.1_B2 -0.087 0.824 0.912 0.409 0.146 0.245 -0.456 0.120 0.354 

ICOSLG_B2 0.374 0.321 0.863 0.713 0.004 0.076 0.517 0.074 0.324 

IL.1.alpha_B2 0.279 0.468 0.863 0.558 0.038 0.118 0.495 0.089 0.324 

IL12_B2 0.644 0.061 0.863 0.163 0.578 0.629 0.187 0.541 0.737 

IL18_B2 0.148 0.704 0.873 0.471 0.089 0.182 0.220 0.470 0.729 

IL6_B2 0.218 0.574 0.863 0.638 0.014 0.084 0.319 0.289 0.639 
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IL7_B2 0.322 0.398 0.863 0.308 0.284 0.367 0.187 0.541 0.737 

IL8_B2 0.270 0.483 0.863 0.682 0.007 0.076 0.467 0.110 0.354 

LAMP3_B2 0.644 0.061 0.863 -0.013 0.964 0.964 -0.203 0.505 0.737 

LAP.TGF.beta.1_B2 0.261 0.497 0.863 0.709 0.005 0.076 0.520 0.069 0.324 

MCP.1_B2 0.218 0.574 0.863 0.471 0.089 0.182 0.385 0.196 0.485 

MCP.2_B2 0.340 0.372 0.863 0.381 0.179 0.278 0.044 0.892 0.970 

MCP.3_B2 0.313 0.412 0.863 0.398 0.159 0.260 0.192 0.529 0.737 

MCP.4_B2 0.566 0.112 0.863 0.169 0.563 0.629 0.006 0.993 1.000 

MIC.A.B_B2 0.618 0.076 0.863 -0.031 0.917 0.947 -0.231 0.448 0.729 

MMP12_B2 0.104 0.789 0.906 0.638 0.014 0.084 0.500 0.085 0.324 

MMP7_B2 0.461 0.211 0.863 0.475 0.086 0.182 0.753 0.004 0.227 

PD.L1_B2 0.313 0.412 0.863 0.277 0.337 0.418 0.198 0.517 0.737 

PDGF.subunit.B_B2 0.200 0.606 0.863 0.858 0.000 0.005 0.544 0.058 0.324 

PGF_B2 0.296 0.439 0.863 0.616 0.019 0.098 0.511 0.078 0.324 

PTN_B2 0.096 0.806 0.909 0.343 0.230 0.316 0.374 0.209 0.499 

TNFRSF12A_B2 0.331 0.385 0.863 0.389 0.169 0.268 0.291 0.334 0.710 

TNFRSF21_B2 0.279 0.468 0.863 0.482 0.081 0.182 0.148 0.630 0.797 

TNFRSF9_B2 0.244 0.527 0.863 0.671 0.009 0.076 0.654 0.018 0.227 

TNFSF14_B2 0.261 0.497 0.863 0.634 0.015 0.084 0.495 0.089 0.324 

TRAIL_B2 0.348 0.359 0.863 0.519 0.057 0.147 0.610 0.030 0.313 

TWEAK_B2 0.522 0.149 0.863 0.438 0.117 0.213 0.456 0.120 0.354 

VEGFA_B2 0.575 0.106 0.863 0.277 0.337 0.418 0.445 0.130 0.366 

VEGFR.2_B2 0.392 0.297 0.863 0.673 0.008 0.076 0.223 0.464 0.729 
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Table 5: Model I Results for All Proteins vs. PRAGMA-%Dis and %Bx  

 %Dis (n=38, repeats=6) %Bx (n=38, repeats=6) 

Protein Beta-1 P-Value Beta-1 P-Value 

ADA_B2 0.417 0.043 0.205 0.031 

ARG1_B2 0.333 0.067 0.178 0.035 

CAIX_B2 0.318 0.339 0.018 0.903 

CASP.8_B2 0.152 0.468 0.09 0.354 

CCL17_B2 -0.198 0.437 -0.052 0.647 

CCL19_B2 -0.005 0.98 0.017 0.841 

CCL20_B2 0.173 0.208 0.082 0.179 

CCL23_B2 -0.317 0.223 -0.077 0.517 

CCL3_B2 0.247 0.2 0.107 0.216 

CCL4_B2 0.462 0.029 0.217 0.025 

CD244_B2 0.24 0.417 0.068 0.611 

CD27_B2 0.462 0.162 0.207 0.172 

CD4_B2 0.012 0.969 -0.028 0.835 

CD40_B2 0.368 0.171 0.163 0.174 

CD5_B2 0.2 0.288 0.068 0.423 

CD83_B2 0.271 0.472 0.089 0.596 

CD8A_B2 -0.132 0.367 -0.075 0.278 

CSF.1_B2 0.614 0.029 0.228 0.062 

CX3CL1_B2 0.164 0.519 0.058 0.615 

CXCL1_B2 0.049 0.841 0.012 0.911 

CXCL10_B2 -0.095 0.443 0.009 0.865 

CXCL11_B2 -0.051 0.744 0.023 0.74 

CXCL13_B2 0.094 0.56 0.05 0.495 

CXCL5_B2 -0.026 0.86 0.027 0.692 

CXCL9_B2 0.239 0.192 0.13 0.124 

EGF_B2 0.569 0.047 0.14 0.224 
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FASLG_B2 0.114 0.794 0.136 0.506 

Gal.1_B2 0.315 0.273 0.048 0.701 

Gal.9_B2 0.699 0.112 0.188 0.312 

GZMA_B2 0.162 0.373 0.066 0.431 

GZMB_B2 0.145 0.338 0.128 0.09 

GZMH_B2 0.101 0.554 0.05 0.522 

HGF_B2 0.603 0.026 0.263 0.028 

HO.1_B2 -0.07 0.582 -0.036 0.545 

ICOSLG_B2 1.096 0.022 0.503 0.023 

IL.1.alpha_B2 0.291 0.214 0.223 0.055 

IL12_B2 0.218 0.559 0.097 0.569 

IL18_B2 0.059 0.827 0.031 0.802 

IL6_B2 0.282 0.161 0.118 0.183 

IL7_B2 0.343 0.339 0.076 0.629 

IL8_B2 0.348 0.042 0.167 0.033 

LAMP3_B2 -0.455 0.082 -0.251 0.061 

LAP.TGF.beta.1_B2 0.716 0.245 0.366 0.197 

MCP.1_B2 0.391 0.097 0.148 0.147 

MCP.2_B2 -0.017 0.925 0.058 0.477 

MCP.3_B2 0.205 0.378 0.091 0.387 

MCP.4_B2 0.012 0.968 0.025 0.86 

MIC.A.B_B2 -0.201 0.471 -0.062 0.62 

MMP12_B2 0.311 0.032 0.129 0.041 

MMP7_B2 0.304 0.12 0.163 0.077 

PD.L1_B2 0.165 0.665 0.081 0.637 

PDGF.subunit.B_B2 0.533 0.177 0.34 0.076 

PGF_B2 0.873 0.027 0.372 0.029 

PTN_B2 0.32 0.06 0.115 0.122 

TNFRSF12A_B2 0.754 0.249 0.174 0.537 

TNFRSF21_B2 0.047 0.915 0.055 0.788 
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TNFRSF9_B2 0.537 0.036 0.28 0.018 

TNFSF14_B2 0.366 0.057 0.192 0.031 

TRAIL_B2 0.501 0.052 0.202 0.068 

TWEAK_B2 0.42 0.221 0.128 0.389 

VEGFA_B2 0.434 0.35 0.031 0.877 

VEGFR.2_B2 0.307 0.527 0.275 0.229 
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Table 6: Model II Parameter Estimates for All Proteins vs. PRAGMA-%Dis and %Bx  

 

 %Dis (n= 38, repeats=6) %Bx (n=38, repeats=6) 

 Beta 1 Beta 3 Beta 1 Beta 3 

Protein Estimate P-Value Estimate P-Value Estimate P-Value Estimate P-Value 

ADA_B2 -0.383 0.396 0.019 0.109 -0.03 0.883 0.005 0.275 

ARG1_B2 -0.428 0.24 0.02 0.055 -0.068 0.658 0.006 0.147 

CAIX_B2 -0.801 0.307 0.029 0.156 -0.141 0.699 0.005 0.588 

CASP.8_B2 -0.421 0.405 0.017 0.238 -0.154 0.508 0.007 0.286 

CCL17_B2 -0.694 0.155 0.017 0.215 -0.048 0.819 0 0.983 

CCL19_B2 -0.229 0.537 0.006 0.483 -0.036 0.838 0.001 0.728 

CCL20_B2 -0.277 0.335 0.012 0.129 -0.104 0.44 0.005 0.181 

CCL23_B2 -0.577 0.26 0.01 0.412 0.006 0.981 -0.002 0.69 

CCL3_B2 -0.456 0.292 0.02 0.117 -0.179 0.375 0.008 0.164 

CCL4_B2 -0.428 0.324 0.022 0.075 -0.166 0.394 0.009 0.093 

CD244_B2 -0.342 0.59 0.016 0.332 -0.14 0.643 0.006 0.442 

CD27_B2 -0.408 0.53 0.023 0.184 -0.051 0.862 0.007 0.362 

CD4_B2 -0.283 0.666 0.008 0.618 -0.083 0.787 0.002 0.844 

CD40_B2 -0.316 0.562 0.018 0.213 -0.088 0.734 0.007 0.322 

CD5_B2 -0.108 0.804 0.008 0.457 -0.056 0.788 0.003 0.529 

CD83_B2 -1.04 0.193 0.044 0.091 -0.166 0.629 0.008 0.419 

CD8A_B2 -0.052 0.871 -0.002 0.779 -0.123 0.425 0.001 0.717 

CSF.1_B2 -0.549 0.249 0.03 0.043 -0.148 0.498 0.01 0.118 

CX3CL1_B2 -0.278 0.629 0.011 0.423 -0.012 0.963 0.002 0.77 

CXCL1_B2 -0.887 0.149 0.03 0.102 -0.351 0.239 0.011 0.188 

CXCL10_B2 -0.224 0.353 0.004 0.488 -0.066 0.568 0.002 0.463 

CXCL11_B2 -0.109 0.722 0.002 0.826 0.006 0.968 0.001 0.886 

CXCL13_B2 -0.195 0.568 0.007 0.36 -0.031 0.843 0.002 0.573 

CXCL5_B2 -0.351 0.264 0.011 0.228 -0.091 0.533 0.004 0.375 



47 
 
 

 

CXCL9_B2 -0.081 0.837 0.007 0.399 -0.006 0.975 0.003 0.442 

EGF_B2 0.474 0.407 0.002 0.874 0.125 0.687 0 0.952 

FASLG_B2 -0.381 0.692 0.014 0.566 -0.17 0.698 0.009 0.453 

Gal.1_B2 -0.507 0.483 0.019 0.25 -0.106 0.749 0.004 0.62 

Gal.9_B2 -0.41 0.71 0.026 0.315 -0.128 0.806 0.007 0.529 

GZMA_B2 -0.128 0.807 0.007 0.563 -0.1 0.682 0.004 0.478 

GZMB_B2 -0.217 0.511 0.01 0.243 -0.06 0.667 0.005 0.185 

GZMH_B2 -0.129 0.745 0.006 0.533 -0.073 0.691 0.003 0.473 

HGF_B2 -0.345 0.466 0.022 0.09 -0.017 0.94 0.007 0.248 

HO.1_B2 -0.143 0.634 0.002 0.776 0.022 0.881 -0.001 0.688 

ICOSLG_B2 -0.297 0.772 0.031 0.196 0.15 0.742 0.007 0.425 

IL.1.alpha_B2 -0.276 0.597 0.014 0.272 -0.083 0.713 0.008 0.202 

IL12_B2 -0.063 0.935 0.007 0.683 -0.081 0.822 0.005 0.588 

IL18_B2 -0.557 0.292 0.017 0.201 -0.06 0.804 0.003 0.656 

IL6_B2 -0.34 0.383 0.018 0.124 -0.078 0.661 0.005 0.268 

IL7_B2 -0.044 0.96 0.009 0.639 -0.137 0.752 0.005 0.607 

IL8_B2 -0.334 0.384 0.017 0.112 -0.073 0.676 0.006 0.212 

LAMP3_B2 -0.426 0.449 -0.001 0.96 0.147 0.585 -0.01 0.169 

LAP.TGF.beta.1_B2 -1.119 0.284 0.067 0.082 -0.171 0.712 0.021 0.197 

MCP.1_B2 -0.355 0.425 0.019 0.119 -0.061 0.767 0.005 0.307 

MCP.2_B2 -0.174 0.612 0.005 0.586 -0.002 0.991 0.002 0.657 

MCP.3_B2 -0.215 0.671 0.011 0.372 -0.009 0.969 0.002 0.635 

MCP.4_B2 -0.209 0.771 0.006 0.722 -0.091 0.787 0.003 0.702 

MIC.A.B_B2 0.048 0.932 -0.007 0.629 0.121 0.655 -0.005 0.468 

MMP12_B2 -0.183 0.481 0.012 0.102 -0.001 0.991 0.003 0.318 

MMP7_B2 -0.082 0.825 0.009 0.289 -0.083 0.62 0.006 0.157 

PD.L1_B2 -0.53 0.521 0.019 0.348 -0.075 0.841 0.004 0.65 

PDGF.subunit.B_B2 -0.917 0.299 0.039 0.118 -0.167 0.66 0.014 0.2 

PGF_B2 -0.052 0.942 0.021 0.229 -0.044 0.903 0.009 0.278 

PTN_B2 0.033 0.926 0.006 0.418 -0.06 0.733 0.004 0.325 
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TNFRSF12A_B2 -1.277 0.296 0.06 0.106 -0.025 0.965 0.006 0.683 

TNFRSF21_B2 -0.817 0.403 0.026 0.336 -0.245 0.585 0.008 0.483 

TNFRSF9_B2 -0.166 0.714 0.016 0.162 0.003 0.988 0.006 0.212 

TNFSF14_B2 -0.281 0.449 0.017 0.117 -0.027 0.872 0.005 0.224 

TRAIL_B2 -0.229 0.628 0.018 0.156 -0.162 0.499 0.009 0.159 

TWEAK_B2 -1.129 0.277 0.043 0.148 -0.563 0.249 0.018 0.172 

VEGFA_B2 -1.131 0.278 0.044 0.129 -0.474 0.322 0.013 0.274 

VEGFR.2_B2 -0.223 0.808 0.015 0.521 -0.052 0.902 0.009 0.404 
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Table 7a: Model II Contrasts for Main Effects of Proteins vs PRAGMA-%Dis 

 Contrast 

 E2 (β1 + 12·β3) E4 (β1 + 36·β3) E6 (β1 + 60·β3) 

Protein Estimate P-Value 

FDR P-

Value Estimate P-Value 

FDR P-

Value Estimate P-Value 

FDR P-

Value 

ADA_B2 -0.151 0.606 0.976 0.313 0.03 0.124 0.777 0 0.001 

ARG1_B2 -0.185 0.403 0.976 0.301 0.01 0.117 0.787 0 0.000 

CAIX_B2 -0.457 0.353 0.976 0.232 0.399 0.626 0.92 0.028 0.059 

CASP.8_B2 -0.216 0.493 0.976 0.192 0.309 0.565 0.6 0.091 0.161 

CCL17_B2 -0.49 0.075 0.976 -0.083 0.735 0.859 0.325 0.443 0.520 

CCL19_B2 -0.154 0.547 0.976 -0.003 0.985 0.989 0.147 0.578 0.652 

CCL20_B2 -0.136 0.46 0.976 0.145 0.192 0.424 0.427 0.01 0.032 

CCL23_B2 -0.453 0.152 0.976 -0.206 0.378 0.617 0.042 0.912 0.943 

CCL3_B2 -0.218 0.409 0.976 0.259 0.091 0.291 0.735 0.006 0.023 

CCL4_B2 -0.16 0.556 0.976 0.375 0.005 0.117 0.911 0 0.000 

CD244_B2 -0.147 0.731 0.976 0.244 0.352 0.589 0.634 0.139 0.233 

CD27_B2 -0.127 0.771 0.976 0.434 0.102 0.291 0.995 0.014 0.038 

CD40_B2 -0.101 0.785 0.976 0.33 0.131 0.324 0.76 0.021 0.046 

CD4_B2 -0.182 0.681 0.976 0.021 0.941 0.989 0.224 0.646 0.715 

CD5_B2 -0.015 0.96 0.976 0.17 0.31 0.565 0.356 0.146 0.238 

CD83_B2 -0.509 0.258 0.976 0.553 0.103 0.291 1.615 0.011 0.032 

CD8A_B2 -0.077 0.729 0.976 -0.127 0.338 0.589 -0.177 0.372 0.452 

CSF.1_B2 -0.192 0.51 0.976 0.522 0.001 0.069 1.236 0 0.000 

CX3CL1_B2 -0.141 0.719 0.976 0.133 0.571 0.748 0.406 0.262 0.353 

CXCL10_B2 -0.17 0.264 0.976 -0.062 0.6 0.755 0.046 0.823 0.865 

CXCL11_B2 -0.088 0.675 0.976 -0.046 0.756 0.859 -0.004 0.986 0.986 

CXCL13_B2 -0.106 0.654 0.976 0.073 0.621 0.755 0.252 0.226 0.342 

CXCL1_B2 -0.522 0.113 0.976 0.209 0.351 0.589 0.939 0.03 0.062 

CXCL5_B2 -0.223 0.24 0.976 0.032 0.825 0.882 0.287 0.248 0.348 

CXCL9_B2 0.008 0.976 0.976 0.186 0.249 0.510 0.364 0.067 0.122 
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EGF_B2 0.494 0.203 0.976 0.535 0.017 0.117 0.575 0.021 0.046 

FASLG_B2 -0.212 0.745 0.976 0.125 0.762 0.859 0.462 0.497 0.570 

Gal.1_B2 -0.275 0.574 0.976 0.188 0.476 0.682 0.65 0.05 0.098 

Gal.9_B2 -0.103 0.893 0.976 0.509 0.185 0.424 1.122 0.019 0.044 

GZMA_B2 -0.049 0.893 0.976 0.108 0.56 0.748 0.265 0.242 0.348 

GZMB_B2 -0.096 0.661 0.976 0.144 0.272 0.528 0.385 0.058 0.109 

GZMH_B2 -0.059 0.83 0.976 0.08 0.618 0.755 0.219 0.344 0.435 

HGF_B2 -0.079 0.803 0.976 0.451 0.01 0.117 0.981 0 0.000 

HO.1_B2 -0.118 0.558 0.976 -0.066 0.576 0.748 -0.015 0.94 0.956 

ICOSLG_B2 0.07 0.923 0.976 0.803 0.026 0.117 1.536 0 0.000 

IL.1.alpha_B2 -0.108 0.764 0.976 0.23 0.253 0.510 0.567 0.043 0.086 

IL12_B2 0.023 0.968 0.976 0.194 0.579 0.748 0.366 0.445 0.520 

IL18_B2 -0.349 0.304 0.976 0.066 0.789 0.859 0.482 0.194 0.301 

IL6_B2 -0.126 0.611 0.976 0.301 0.052 0.203 0.729 0.005 0.021 

IL7_B2 0.064 0.919 0.976 0.279 0.414 0.626 0.495 0.253 0.348 

IL8_B2 -0.134 0.584 0.976 0.264 0.026 0.117 0.662 0 0.001 

LAMP3_B2 -0.434 0.23 0.976 -0.45 0.025 0.117 -0.466 0.183 0.290 

LAP.TGF.beta.1_B2 -0.313 0.618 0.976 1.298 0.016 0.117 2.909 0.003 0.013 

MCP.1_B2 -0.128 0.664 0.976 0.324 0.062 0.215 0.776 0.002 0.008 

MCP.2_B2 -0.117 0.62 0.976 -0.003 0.986 0.989 0.111 0.682 0.742 

MCP.3_B2 -0.086 0.808 0.976 0.172 0.411 0.626 0.43 0.139 0.233 

MCP.4_B2 -0.141 0.781 0.976 -0.004 0.989 0.989 0.133 0.747 0.799 

MIC.A.B_B2 -0.035 0.929 0.976 -0.203 0.427 0.630 -0.37 0.367 0.452 

MMP12_B2 -0.044 0.8 0.976 0.233 0.014 0.117 0.511 0 0.001 

MMP7_B2 0.03 0.909 0.976 0.256 0.108 0.291 0.481 0.018 0.044 

PD.L1_B2 -0.298 0.593 0.976 0.167 0.636 0.758 0.631 0.24 0.348 

PDGF.subunit.B_B2 -0.451 0.409 0.976 0.481 0.122 0.314 1.413 0.006 0.023 

PGF_B2 0.198 0.696 0.976 0.697 0.011 0.117 1.196 0 0.002 

PTN_B2 0.109 0.667 0.976 0.261 0.057 0.206 0.413 0.011 0.032 

TNFRSF12A_B2 -0.558 0.465 0.976 0.881 0.102 0.291 2.32 0.009 0.031 
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TNFRSF21_B2 -0.507 0.412 0.976 0.112 0.79 0.859 0.731 0.326 0.425 

TNFRSF9_B2 0.025 0.937 0.976 0.409 0.023 0.117 0.792 0 0.002 

TNFSF14_B2 -0.082 0.737 0.976 0.318 0.017 0.117 0.717 0.001 0.003 

TRAIL_B2 -0.014 0.964 0.976 0.415 0.022 0.117 0.844 0.001 0.005 

TWEAK_B2 -0.618 0.31 0.976 0.404 0.145 0.346 1.426 0.015 0.039 

VEGFA_B2 -0.605 0.345 0.976 0.445 0.255 0.510 1.496 0.019 0.044 

VEGFR.2_B2 -0.044 0.946 0.976 0.314 0.484 0.682 0.672 0.329 0.425 

 

Table 7b: Model II Contrasts for Main Effects of Proteins vs PRAGMA-%Bx 

 Contrast 

 E2 (β1 + 12·β3) E4 (β1 + 36·β3) E6 (β1 + 60·β3) 

Protein Estimate P-Value 

FDR P-

Value Estimate P-Value 

FDR P-

Value Estimate P-Value 

FDR P-

Value 

ADA_B2 0.036 0.800 0.997 0.166 0.015 0.095 0.297 0.002 0.009 

ARG1_B2 0.006 0.957 0.997 0.153 0.007 0.095 0.300 0.000 0.006 

CAIX_B2 -0.083 0.738 0.997 0.033 0.816 0.878 0.149 0.518 0.594 

CASP.8_B2 -0.069 0.642 0.997 0.101 0.236 0.488 0.271 0.100 0.218 

CCL17_B2 -0.050 0.730 0.997 -0.053 0.638 0.796 -0.056 0.776 0.789 

CCL19_B2 -0.018 0.884 0.997 0.018 0.821 0.878 0.054 0.666 0.700 

CCL20_B2 -0.047 0.598 0.997 0.069 0.170 0.407 0.184 0.018 0.058 

CCL23_B2 -0.024 0.880 0.997 -0.084 0.452 0.774 -0.143 0.448 0.558 

CCL3_B2 -0.082 0.514 0.997 0.111 0.113 0.326 0.305 0.017 0.058 

CCL4_B2 -0.054 0.664 0.997 0.168 0.006 0.095 0.391 0.000 0.002 

CD244_B2 -0.067 0.740 0.997 0.078 0.529 0.781 0.223 0.286 0.455 

CD27_B2 0.031 0.879 0.997 0.196 0.115 0.326 0.361 0.058 0.133 

CD40_B2 -0.008 0.962 0.997 0.150 0.129 0.333 0.309 0.048 0.118 

CD4_B2 -0.064 0.757 0.997 -0.027 0.835 0.878 0.010 0.965 0.965 

CD5_B2 -0.018 0.898 0.997 0.057 0.470 0.774 0.132 0.267 0.455 

CD83_B2 -0.066 0.769 0.997 0.135 0.415 0.774 0.336 0.282 0.455 
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CD8A_B2 -0.108 0.288 0.997 -0.078 0.197 0.436 -0.048 0.593 0.645 

CSF.1_B2 -0.033 0.822 0.997 0.196 0.023 0.102 0.425 0.001 0.008 

CX3CL1_B2 0.011 0.955 0.997 0.057 0.600 0.795 0.103 0.551 0.621 

CXCL10_B2 -0.037 0.625 0.997 0.021 0.707 0.829 0.078 0.428 0.558 

CXCL11_B2 0.012 0.900 0.997 0.025 0.709 0.829 0.038 0.740 0.765 

CXCL13_B2 -0.006 0.958 0.997 0.045 0.502 0.777 0.096 0.335 0.490 

CXCL1_B2 -0.214 0.206 0.997 0.059 0.568 0.795 0.333 0.116 0.240 

CXCL5_B2 -0.047 0.622 0.997 0.042 0.525 0.781 0.130 0.273 0.455 

CXCL9_B2 0.033 0.797 0.997 0.112 0.116 0.326 0.190 0.043 0.112 

EGF_B2 0.130 0.550 0.997 0.139 0.214 0.457 0.148 0.263 0.455 

FASLG_B2 -0.066 0.824 0.997 0.142 0.449 0.774 0.351 0.266 0.455 

Gal.1_B2 -0.063 0.786 0.997 0.022 0.862 0.891 0.107 0.499 0.584 

Gal.9_B2 -0.042 0.909 0.997 0.130 0.480 0.774 0.302 0.184 0.368 

GZMA_B2 -0.054 0.750 0.997 0.038 0.655 0.796 0.130 0.230 0.445 

GZMB_B2 0.003 0.978 0.997 0.128 0.022 0.102 0.254 0.004 0.017 

GZMH_B2 -0.035 0.780 0.997 0.040 0.580 0.795 0.116 0.282 0.455 

HGF_B2 0.061 0.702 0.997 0.218 0.009 0.095 0.374 0.001 0.008 

HO.1_B2 0.004 0.969 0.997 -0.032 0.560 0.795 -0.068 0.491 0.584 

ICOSLG_B2 0.238 0.465 0.997 0.416 0.017 0.095 0.593 0.000 0.006 

IL.1.alpha_B2 0.008 0.960 0.997 0.188 0.025 0.104 0.369 0.002 0.010 

IL12_B2 -0.027 0.917 0.997 0.083 0.603 0.795 0.192 0.395 0.544 

IL18_B2 -0.027 0.872 0.997 0.039 0.738 0.847 0.105 0.572 0.633 

IL6_B2 -0.012 0.920 0.997 0.120 0.104 0.326 0.251 0.043 0.112 

IL7_B2 -0.078 0.796 0.997 0.038 0.810 0.878 0.155 0.450 0.558 

IL8_B2 -0.005 0.965 0.997 0.131 0.018 0.095 0.268 0.001 0.009 

LAMP3_B2 0.029 0.873 0.997 -0.206 0.035 0.129 -0.442 0.002 0.009 

LAP.TGF.beta.1_B2 0.087 0.774 0.997 0.602 0.018 0.095 1.118 0.021 0.064 

MCP.1_B2 0.002 0.990 0.997 0.128 0.125 0.333 0.255 0.033 0.094 

MCP.2_B2 0.020 0.852 0.997 0.064 0.402 0.774 0.108 0.392 0.544 

MCP.3_B2 0.021 0.898 0.997 0.081 0.406 0.774 0.140 0.295 0.457 
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MCP.4_B2 -0.056 0.813 0.997 0.014 0.921 0.936 0.083 0.664 0.700 

MIC.A.B_B2 0.061 0.739 0.997 -0.057 0.622 0.796 -0.176 0.340 0.490 

MMP12_B2 0.036 0.689 0.997 0.110 0.016 0.095 0.185 0.003 0.014 

MMP7_B2 -0.008 0.947 0.997 0.143 0.035 0.129 0.293 0.002 0.009 

PD.L1_B2 -0.025 0.923 0.997 0.074 0.648 0.796 0.173 0.490 0.584 

PDGF.subunit.B_B2 -0.001 0.997 0.997 0.330 0.018 0.095 0.661 0.005 0.019 

PGF_B2 0.069 0.785 0.997 0.296 0.018 0.095 0.522 0.001 0.009 

PTN_B2 -0.012 0.923 0.997 0.085 0.185 0.425 0.182 0.024 0.071 

TNFRSF12A_B2 0.046 0.904 0.997 0.189 0.474 0.774 0.331 0.449 0.558 

TNFRSF21_B2 -0.143 0.630 0.997 0.061 0.755 0.851 0.265 0.443 0.558 

TNFRSF9_B2 0.078 0.589 0.997 0.229 0.003 0.095 0.379 0.000 0.002 

TNFSF14_B2 0.038 0.739 0.997 0.168 0.005 0.095 0.299 0.001 0.009 

TRAIL_B2 -0.054 0.735 0.997 0.163 0.046 0.160 0.379 0.002 0.010 

TWEAK_B2 -0.344 0.223 0.997 0.094 0.487 0.774 0.531 0.055 0.132 

VEGFA_B2 -0.316 0.294 0.997 -0.002 0.992 0.992 0.312 0.302 0.457 

VEGFR.2_B2 0.059 0.842 0.997 0.279 0.151 0.375 0.499 0.102 0.218 
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8. APPENDIX C: Scatterplots of Significant Proteins 

C.1 Proteins Significant in Cross-Sectional Analysis 
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C.2 Proteins Significant in Linear Mixed Models and Lasso Penalized Regression 
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