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Abstract 

 

Effects of early life heavy metal exposure on the metabolome of mouse lungs  

By Lennox Xu 

 

Heavy metal exposure from metals like cadmium and arsenic in fetal development and early life 

hurts the development of lungs and leads to decreased lung functioning. Previous work has 

shown that cadmium (Cd) and arsenic (As) at levels similar to non-occupational human 

exposures via everyday exposures, such as drinking water, can lead to postnatal lung function 

alterations and susceptibility to lung and airway disease. Additionally, these effects are greatly 

worsened by a combination of both low-level Cd and As. We aim to determine the exact 

mechanistic effects of the early life exposure to heavy metals by examining changes in the 

metabolome. We performed mass spectrometry and metabolomic analysis on early postnatal 

pups after they were exposed to Cd and As in utero. The dams were provided with low levels 

and high levels of Cd and As (50 and 250 ppb, respectively, each) in drinking water and purified 

AIN-93G diet ad libitum for 10 weeks prior to breeding and continued until 3 weeks postpartum, 

exposing the pups to heavy metals during pregnancy and lactation. The exposed postnatal pup 

lungs were processed for metabolite quantification with an Orbitrap mass spectrometer. High-

resolution metabolomics was used to study metabolic changes and discover disease biomarkers. 

Our results have shown significant changes in various pathways vital for the development of 

lungs, as well as changes in the inflammation pathway. The regulation of the arachidonic acid 

inflammation metabolism pathway is especially essential in maintaining a balance between 

beneficial and harmful inflammation. The significant changes we have seen in this path, as well 

as the prevalence of heavy metal exposure in the everyday life of the world population, make this 

field of research a very important area of study. Ultimately, this research presents potential 

metabolites to focus on in the future for anti-inflammatory drugs to target and regulate the 

production for during the early life. There is hope that this would then lessen the risk of long-

term negative health consequences of heavy metals. 
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Introduction  

The prevalence of Chronic Respiratory Diseases (CRDs) has been highlighted more than ever in recent 

years due to the COVID-19 pandemic. Back in 2017, CRDs, which include asthma, chronic obstructive 

pulmonary disease (COPD), lung disease, and any other pulmonary related disease, remained as the 

leading cause of death worldwide with the total number of cases increasing by 39.5% from 1990 to 

2017.[1] Since the pandemic started in 2019, there have been findings that these CRDs, most frequently 

COPD and asthma, can lead to much more severe effects and symptoms from the COVID-19 disease.[2] 

Importantly, while COVID-19 is rarely severe with children, it has a much more significant risk when 

infecting those with pre-existing CRDs.[3] The life-long consequences of chronic respiratory diseases and 

the potential vulnerability to other respiratory diseases throughout people’s lives make them vital 

conditions to study and understand. 

 

A possible culprit of the increasing prevalence of CRDs can be found in the massive industries being built 

and the pollution it brings to our environment. Heavy metals are spread through this pollution, eventually 

finding their way into food and drinking water. Exposure to these contaminants not only have severe 

effects on adults and children, but it also has been seen to affect developing fetuses of pregnant women. 

Arsenic and cadmium specifically (ranked number 1 and 7 respectively on the priority list of health 

hazards[4]), have been detected and found to accumulate in excess in placental or fetal issues of pregnant 

women.[5-7] In a study ranging from 2003-2012, in 4123 children (aged 6-18) were studied and found to 

have Arsenic at a level 98.7% above detectable limit and Cadmium at a level 73.9% above the detectable 

limit.[8] The heightened levels of these heavy metals in children have a very high potential of disrupting 

lung development in the early years and leading to greater health complications in later life stages. 

Considering these findings of heavy metal exposure in utero, there is a need to examine the mechanisms 

in which the exposure directly affects the fetuses of pregnant women in order to develop preventative 

measures that can directly oppose the progression of disease. 
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Previous research by the Dean Jones lab has shown decrease in lung function in mouse pups of dams 

exposed to heavy metals during pregnancy.[9] With this knowledge in mind, there is still a gap in 

knowledge regarding the exact effects of heavy metal exposure in utero to the offspring and the specific 

impacts on the metabolic pathways in these mice. Studying metabolism provides multi-level insight on 

how the body reacts to disease onset. At the mechanistic level, the regulation of the chemical reactions in 

various metabolic pathways is vital for maintaining homeostasis and preventing disease. At the molecular 

level, metabolism involves the transformation of molecules within the body into energy and other 

developmental products, which is critical for sustaining life and maintaining health. Investigating changes 

in metabolic pathways can also reflect changes in organisms that may indicate disease or other 

pathological conditions.[10] Importantly, metabolism can also serve as a biomarker for inflammation 

[11], which can be used to identify and monitor the progression of inflammatory diseases and may be 

useful for developing new treatments and therapies.  

 

The aim of this research is to bridge the gap by examining the metabolome and discovering 

 how inflammation pathways in the body are affected by heavy metal exposure. By conducting pathway 

analysis within metabolomics, it makes it possible to search for exact points in the pathway where 

metabolites are changed as a direct result of exposure.  
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Background  

Cadmium and Arsenic  

Prevalence and Danger of Heavy Metals 

Exposure of heavy metals during pregnancy has been shown to have detrimental effects on offspring, 

even in the early stages of their lives. Heavy metals, specifically arsenic and cadmium, are a major 

environmental health concern, as it is prominent in many parts of the world and have led to deteriorating 

effects on lung health in humans and general health.[12] Aquifers throughout the world have been 

discovered to be contaminated with arsenic with average levels above 0.05 mg/L, 0.04mg/L above the 

Maximum Contaminant Level (MCL) recommended from the U.S. Environmental Protection Agency 

(EPA).[13, 14] Chronic Arsenic Toxicity (CAT) from this toxic drinking water has already become a 

major environmental health concern, causing chronic lung diseases like chronic obstructive pulmonary 

disease, liver disease like non-cirrhotic portal fibrosis, and other diseases like heart disease and 

hypertension.[15] The prominence of arsenic in groundwater and freshwater sources of drinking water 

worldwide makes it a vital pollutant to examine the effects on human metabolism. Additionally, cadmium 

is a naturally occurring environmental toxicant that could affect mitochondria function at l exposure 

levels.[16] It is a common heavy metal, most commonly spread through cigarette smoke, welding, and 

contaminated food and beverages.[17] This is the more common type of everyday exposure that occurs at 

low levels in most populations. This non-occupational exposure and the health effects contains less 

literature written on it but impacts more people. Research has suggested that excessive exposure to Cd 

can lead to impaired lung function and increased risk of lung cancer, and even chronic low exposure 

could also leave to negative effects on the kidney and bones of the general population.[18] The 

prevalence of these elements in everyday human consumption, along with the destructive impacts of them 

on human body systems, makes them an important contaminant to research and discover the metabolic 

pathways it has an effect on.  

 

Harmful Effects of Heavy Metals in utero 
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Previous studies have displayed the ability for heavy metal exposure during pregnancy to have the 

potential to result in harmful effects for their offspring as well. These studies have displayed that maternal 

exposure to Cd has consequences on fetal levels of essential trace elements.[19] Most importantly, it leads 

to the deficiency in iron in the offspring, which is required for cardiovascular system development, 

oxygen homeostasis, and cellular metabolism.[19] Arsenic contains similar negative effects on offspring, 

as studies have shown that exposure to this metal in utero increases the risk of lower respiratory tract 

infections during infancy and mortality from bronchiectasis continuing into adulthood.[20] 

 

Exposure to heavy metals such as cadmium (Cd) and arsenic (As) have been proven a major public health 

concern, with alarmingly high levels in pregnant women and children. Associations of metal levels and 

respiratory disease onset in children have been repeatedly found. Therefore, the common exposure that 

humans have to the heavy metals, along with the destructive impact it can have on offspring from the 

prenatal exposure, makes it important to study the exact mechanism of action of the harmful effects that it 

can result in. 

 

The Mouse Model 

Due to the invasiveness in measuring lung functions, a mouse model must be used in place of the human 

model for bioethical and technological considerations. This model contains many advantages with the 

ability to replicate critical features of human pathophysiology, most importantly in this research being 

human lung disease.  

 

Differences and Similarities with the Human Model 

Similar to the structure of the human organ, the mouse lung is subdivided into lobes of lung parenchyma 

containing a branching bronchial with very vascular pulmonary circulation.[21] Figure 1 displays how the 

five stages of lung development between humans and mice are similar as well. 
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There are some subtle variations in this general structure between species, but the largest differences 

between the mouse and human lung model are related to their vastly different sizes and respiratory 

rate.[21] This naturally leads the mice to have much smaller airway diameters and alveolar size. These 

differences lead to other differences in blood supply as well, which could have consequences when using 

mouse lungs to model human lung function.  

 

As the particular focus for this study is the inflammatory metabolic pathways that heavy metals influence, 

it is important to specifically acknowledge the physical differences in the inflammatory pathways 

between the mouse model and human lungs. Analyzing the cell biology aspect of the lungs is the first step 

in determining the possibility of metabolomic differences between the two models. Mast cells are a key 

factor of human inflammatory lung disease, as they are a leukocyte that is mostly found in connective 

tissues as well as the lungs, regulating vasodilation, vascular homeostasis, innate and adaptive immune 

responses, and angiogenesis, all important aspects of maintaining healthy lung function.[22] The mast 

cells in each of the airways of these models differ in granule composition and localization: Mice mostly 

lack mast cells in the peripheral lung, while humans have many in this area; Mice lack an extensive 

pulmonary circulation due to a smaller size, displaying possible significant effects on leukocyte adhesion 

and migration.[21] The activation of these adhesion and migration molecules on the leukocytes are the 

two steps are initiated by inflammation in tissues.  

 

Understanding the Advantages and Considering the Differences 

It is important to take these differences into consideration when examining mouse models in the 

discovery of the effects of human ailments. The general advantages of the mouse model are their small 

size, fast breeding, ease of handling and extensive availability of biomedical research tools, which makes 

them ideal for practical reasons. Additionally, recent research has also shown similarities between the 

Human species genome and Mus musculus genome, providing greater of using mice as a model for 

human disease and metabolic discovery.[23] Even though mice do not naturally develop allergic asthma, 
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the potential for the manipulation of mice to develop similar phenotypes allow the utilization of the 

mouse model to study the pathobiology of allergic asthma.[21] Previous studies have also displayed 

metabolic similarities between the mouse and human model, which provides validation to the method of 

using a mouse model on this research.[24] In our study, with the differences in size, the dosages of heavy 

metal exposure to the mice are made relative to their size in comparison to the normal human heavy metal 

exposure. 

 

Mass Spectrometry 

A Fusion Tribrid Orbitrap Mass Spectrometer and an Ultra High Performance Liquid Chromatography 

(uHPLC) instrument were the primary analytical tools used in this experiment. Specifically for 

metabolomics, MS has generally been coupled with HPLC for higher sensitivity and better efficiency of 

analysis.[25] The HPLC column effectively separates the compounds for maximum detection by the mass 

spectrometry instrument.  

 

Ultra High-Performance Liquid Chromatography 

The process begins with the sample injection into the HPLC-MS system, where it is run in a solvent under 

high pressure through the HPLC column.[26] They work in cooperation, as HPLC separates the 

components of a sample based on their physicochemical properties such as size, charge, hydrophobicity, 

or affinity, while MS provides information on the mass and structure of individual components after.[27] 

Additionally, the high pressure of HPLC, makes it much preferred over liquid chromatography, which 

operates on gravity.  

The compounds interact with the stationary phase of the column, eluting from the column at different 

time points, known as retention time, depending on their biochemical properties. In the Normal-phase 

(NP) used in this experiment, the stationary phase is polar and the mobile phase is nonpolar, so the 
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nonpolar molecules elute faster. The Reverse phase (RP) is opposite, where the stationary phase is 

nonpolar and the mobile phase is polar. Other properties that might affect retention time are size, charge 

and volatility.[27] Smaller compounds will generally move faster and low volatility compounds, with a 

lower boiling point, will also generally move faster.  

The LC system we used in this project operates two columns, HILIC and C18, in parallel to obtain 

orthogonal chemical separations to maximize chemical detection. The HILIC column is used to separate 

and retain polar compounds, while the C18 column is used to separate and retain nonpolar compounds. 

Specifically, hydrophilic interaction liquid chromatography (HILIC) utilizes a variation of normal-phase 

chromatography method with a polar stationary phase, such as silica gel, but with water-miscible less 

polar organic solvent as its mobile phase, such as acetonitrile and water. The advantages of HILIC are 

that it can analyze molecules that elute too quickly in RP and polar samples are always soluble, a problem 

in NP.[28] C18 in parallel utilizes reverse-phrase chromatography, with the stationary phase being made 

up of a C18 carbon molecules, or octyldecylsilane. The large surface area and number of carbons makes it 

an ideal nonpolar solvent for the stationary phase, allowing nonpolar and slightly polar compounds to 

pass through. [29] 

As the samples elute from the columns, they are ionized using an Electrospray Ionization (ESI) source as 

an ionization source. ESI produces gaseous ions directly from an aqueous or aqueous/organic solvent 

system by creating a spray of highly charged droplets in an electric field. The sample in the 

acetonitrile/water solvent is emitted as a large spray within an electrostatic field, the solvent evaporates 

leaving behind only the charged droplets with the sample molecules, and then the ionization process 

continues. A counterflow of dry gas removes any remaining solvent and further reduces the size of the 

droplets, increasing charge density increases and concentrating the sample molecules. The high charge 

density leads sample molecules to undergo ionization through the transfer of a proton or other charge.[30] 
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Previous metabolomic studies have indicated the most metabolite database matches with positive 

ionization with HILIC columns and with negative ionization with C18 columns,[31] so this is what was 

utilized in the experiment.  

Fusion Tribrid Orbitrap Mass Spectrometer 

The Orbitrap is a Mass spectrometry (MS) instrument that contains many advantages over other 

instruments in the industry. In history, MS has been widely used for protein analysis, but it has also found 

major usage recently in the field of metabolomics.[32] The Orbitrap instrument includes these specific 

steps for MS: ionization, ion trapping, orbital motion, detection.  

The ions are initially produced in the ion source before being subsequently transferred into the mass 

analyzer. The mass analyzer then sorts the ions, in space or time, based on the mass-to-charge ratios 

(m/z). Rather than the traditional method of scanning, where the separated ions are detected by an ion 

detector in the space or time domain, an Orbitrap instead utilizes ion trapping and orbital motion. The 

advantage of trapping resides in its ability to isolate compounds from mixtures, with high mass resolution, 

sensitivity, and accuracy.[33] This is very important for metabolomics studies, as detection of low-

abundance analytes is critical to measure thousands of metabolites within a short chromatography, and the 

high resolution makes it possible for the distinction of compounds with very close masses.[34] 

The trapping tool of the Orbitrap operates with central and outer electrodes, with a radical electric field. 

Ions are injected into the volume between the electrodes in a special slot with a deflector electrode to 

control the overall trajectory of the ions. When voltage is applied between the central and outer 

electrodes, a radial electric field bends the ion trajectory toward the central electrode, creating a 

centripetal force, while the tangential velocity creates an opposing centrifugal force with the ion’s inertia. 

This creates the orbital motion of the Orbitrap.[33] 

While in orbit, a radio frequency (RF) voltage is applied by the conical electrodes, exciting the ions and 

initiating harmonic axial oscillations that will determine the m/z of each ion.[33] The outer electrodes are 
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used as receiver plates for image current detection of these axial oscillations resulting from free induction 

decay (ions dropping back down to ground state), which have frequencies that are proportional to the 

mass-to-charge ratio of each compound.[35] The ions with the same m/z group together and the digitized 

image current goes through a mathematic Fourier-transformation feature into the frequency domain and 

converted into a mass spectrum.[36] 

The Orbitrap contains many scan modes, however the one chosen for this search is the Full MS mode, 

without Higher-energy collisional dissociation (HCD).[37] The quadrupole in front of the Orbitrap mass 

analyzer is operated as a wide-pass mass filter[37], which prevents filling the C-Trap with ions outside 

the defined mass range of 85–1275 m/z. This provides full detection of all compounds ionized in the 

electrospray (ESI) ion source with m/z values in this range. The Full MS mode is the most frequently 

used mode since it contains comprehensive information about individual masses and provides strong 

quantitative data.[37] 

Overall, the Fusion Tribrid Orbitrap Mass Spectrometer is a powerful tool with its strong ability to 

analyze narrow mass ranges in a single composite MS spectrum and its rapid fragmentation of masses in 

succession.[38] During analysis it continuously stores and transmits ions from an ion source into the mass 

analyzer with a high rate of efficiency. Overall, it holds advantages with its fast speed, high mass 

resolution, high mass accuracy, and its ability to measure a complex mixture of ions.[35]  

 

Metabolomics 

Metabolomics is the study of small molecules, known as metabolites, that are produced by living 

organisms as they go through various metabolic processes. Metabolomics aims to identify and quantify all 

the metabolites within a biological sample, such as a cell or tissue, and to understand their biological 

functions and interactions. It involves highly precise, detailed characterizations of metabolic phenotypes, 
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allowing for the potential to discover new therapeutic targets biomarkers that may be used to diagnose 

disease and monitor effects of therapeutics.[39] 

Metabolites are the end products of many pathways within cellular metabolism, and their levels can be 

influenced by a variety of factors such as diet, lifestyle, genetics, and disease. Studying metabolism 

provides multi-level insight on how the body reacts to disease onset. Metabolism involves the 

transformation of molecules within the body into energy and other developmental products through 

chemical reactions, which is critical for sustaining life and maintaining health. Changes in these metabolic 

pathways can also reflect changes in organisms that may indicate disease or other pathological 

conditions.[10] Importantly, metabolism serves as biomarkers for inflammation [11], which can be used 

to identify and monitor the progression of inflammatory diseases. Knowing the negative consequences of 

some of these factors, one could study the metabolite levels in response to these stimuli, gaining insight 

into the metabolic pathways that are involved in various physiological and pathological processes. New 

technologies in this field provide detailed characterizations of metabolic phenotypes and contain potential 

applications in a wide range of areas, including disease diagnosis and treatment, drug development, and 

personalized medicine.[39] 

Metabolomics is the focus of this research, as there is still a lack of knowledge regarding the mechanisms 

of early life heavy metal exposure on offspring lung function, especially through the disruption of 

metabolic pathways.  

 

Computational workflow of metabolomics 

After the production of the individual mass spectrums from the LC-MS instrument, this extracted raw 

data must be processed for interpretation of the metabolites using statistical association methods. Multiple 

measures during this process are also taken to enhance metabolite identity prediction in high and low 

abundance metabolites. The major steps in this data process are as follows: peak detection and alignment, 
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parameter optimization, and quality assessment and data Correction.[40] apLCMS [41] and xMSanalyzer 

[42] are coupled together for efficient data extraction in this process. 

They are both R packages that automatically processes the metabolomics data to enhance the 

aforementioned workflow. They improved this process by providing sensitive feature detection, accurate 

feature quantification, and reliable alignment. 

apLCMS [41] performs peak detection, noise removal, peak quantification, peak alignment, and recovery 

of weak signals. The output of apLCMS includes retention times, m/z features that appeared in the LCMS 

run, and the ion intensities of each of these m/z features for every sample. Peak detection and alignment 

specifically detect peaks for individual mass-to-charge ratios and only retains those that meet the signal-

to-noise threshold and peak shape criteria. apLCMS assists this by grouping features together based on 

m/z cutoff, splitting each group of m/z features based on the differing retention times, and using a run 

filter to identify true peaks.[41] The run filter considers the minimum retention time, as well as the 

proportion of the signal’s intensities at the specific retention time. If the signal does pass through the 

filter, it is considered a feature, and if it does not, then it is considered noise. It constructs Extracted Ion 

Chromatography (ETC), which displays the intensities of individual mass-to-charge ratios at different 

times.  

In this analysis, apLCMS generates two feature tables for each of the m/z values using two sets of 

parameters of min.press and min.run, which define the peaks by the minimal percentage of presence of 

data points and the minimal time for continuous data points. xMSanalyzer then picks the best quality 

features from each of the two features tables with different parameters and merges the tables together. 

Higher correlation of feature intensities between replicates of samples indicates good quality peaks with 

low noise and is kept.[42] This also accounts for systemic errors, as it only keeps results with low 

technical variation. 
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The quality of individual features is evaluated based on coefficient of variation (CV) within technical 

replicates, variability across pooled reference/quality control (QC) samples, percent missing values, 

signal-to-noise ratio, principal component analysis to identify outliers, and pairwise correlation within 

technical replicates to evaluate analytical reproducibility.[40, 42]  

After the data is extracted into feature tables, it is then further processed and analyzed. xmsPanda is 

another R package that normalizes the data with a log2 transform quantile normalization and runs 

statistical tests. The Linear Models for Microarray Data (limma) test run is run on the data, which is a 

powerful tool for time course experiences, multi-variable comparisons, and significance testing.[43] 

Similar to t-tests and one-way ANOVAs, the process generates a p-value and test statistic for each 

feature. It also adjusts false discovery rates for multiple tests with the False Discovery Rate (FDR) 

Benjamin-Hochberg correction method. With a significance threshold of q < 0.05, it can then determine if 

a specific feature is significantly different in the mice exposed to heavy metals in utero compared to the 

control mice. xmsPANDA also provides visualizations, such as a heatmap and boxplot for individual 

mass-to-charge ratios. 

 

Pathway analysis and metabolite annotations 

Annotations for metabolite feature table data has been optimized over the years, with recent technology 

attempting to further automate the workflow. Mummichog [44] is a program that aims to predicts 

metabolic pathway data directly from feature table data, allowing for more efficient metabolite 

identification.[44] It requires the mass-to-charge ratio and retention time, as well as the p-value and test 

statistic resulting from limma test run from xmsPanda. 

 

For each individual feature, mummichog searches for all possibly matched metabolites, and then cross 

references three reference metabolic networks, Kyoto Encyclopedia of Genes and Genomes (KEGG) [38], 
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University of California San Diego (UCSD) Recon1 [15], and Edinburgh human metabolic network [16]. 

By doing this, the program searches for every possible pathway that the features could be involved in. A 

null distribution is made between the pathways and the m/z’s, and significant features are calculated and 

marked. The program produces a list of the predicted metabolites in the significant pathways and forms 

visualizations, including an “activity network.”[44] Understanding this allows for the understanding of 

which specific metabolites in individual pathways change as a result of heavy metal exposure in utero. 

 

Inflammation  

Inflammation is the body’s defense against disease and is the process where the immune system 

recognizes and removes harmful foreign substances and attempts to heal the body. The natural response 

includes the release of hormones to dilate the blood vessels and allow more blood flow, letting more 

immune system cells to reach that part of the body.[45] 

The arachidonic acid pathway is an extensive metabolic pathway that has been known to produce 

metabolites that mediate inflammatory reactions. Going through 3 pathways, cyclooxygenases (COXs), 

lipoxygenases (LOXs), and cytochrome P450 (CYPs), many of the later metabolites in these pathways are 

considered potential targets for cardiovascular and inflammatory disease.[46] It is important to examine 

this pathway to validate these previous findings and ensure that these metabolites are still the ones to 

focus on with offspring exposed in utero to heavy metals. 
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Methods  

Experiment 

Animal Conditions and Sample Collection 

Animal protocols were approved by the Institutional Animal Care and Use Committee at Emory 

University (Atlanta, GA), and experiments were performed in accordance with the relevant guidelines and 

regulations. 6 week old Female C57/BL6 mice were purchased from Jackson Laboratory and housed in 

clean facilities under conventional conditions of 21–24 °C and 12 h light/dark cycle with the purified 

AIN-93G diet ad libitum. Mice were then treated with low levels of cadmium (Cd) and arsenic (As) (50 

and 250 ppb each) in the drinking water for 10 weeks before mating and continued to be under this 

treatment until the pups were 3 weeks old. The pups were not provided with any food outside of the 

lactation from the dams. For metabolomics, half of the original female mice were randomly divided (n= 

6-8 per group) and assigned to vehicle control and two Cd/As treatment groups exposed to varying level 

of Cd and As in drinking water. The control group was given drinking water [provided with purified 

water by reverse osmosis system, no detectable Cd/As (< 0.0008 ppb)] for the entire study.  At three 

weeks old, the pups were euthanized and intact mouse lungs (n >8 per group) from the pups were 

harvested and stored. The mouse lung samples were then weighed. Extraction solvent which is 

acetonitrile and water mixture (2:1 ratio) spiked with 2.5% (v/v) mixture of stable isotope-labeled internal 

standards. The acetonitrile:water extraction solution was added to a weighed tissue sample 

(approximately 20-40 mg tissue) at a ratio of 15 μL/mg tissue. The internal standards include: [13C6]-D-

glucose, [15N,13C5]- L-methionine, [13C5]-L-glutamic acid, [15N]-L-tyrosine, [3,3- 13C2]-cystine, 

[trimethyl13C3]-caffeine, [U13C5, U15N2]-L-glutamine, [15N]-indole, and will be used to monitor the 

data quality during data acquisition and extraction. 

Following homogenization and incubation on ice for 30 min, extracts were centrifuged to remove protein, 

randomized, and 10 μL aliquots were analyzed with three technical replicates using C18 chromatography 
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(C18) with negative electrospray ionization (ESI) or hydrophilic interaction liquid chromatography 

(HILIC) with positive ESI and mass spectrometry (85–1275 m/z) on Fusion Orbitrap mass spectrometer 

(Thermo Fisher) [29,30].  

 

HILIC–positive chromatography method summary [47] 

The HILIC column is a normal phase column used for simultaneous separation and flushing using a dual 

head HPLC pump equipped with switching valves. During HILIC separation, a 10 µL sample is injected 

onto the HILIC column while the reverse phase column is flushed with a wash solution. The flow rate is 

maintained at 0.35 mL/min for 1.5 min, increased to 0.4 mL/min at 4 min, and held for 1 min. The mobile 

phase consists of solvents A, B, and C, with a linear gradient from 22.5% A, 75% B, 2.5% C to 77.5% A, 

20% B, 2.5% C over 4 min, followed by a 1 min hold, for a total run time of 5 min. The MS is operated in 

positive ion mode. During the flushing phase, the HILIC column is equilibrated with a wash solution of 

77.5% A, 20% B, 2.5% C. 

 

C18–negative chromatography method summary [47] 

The C18 column is a reverse phase column that is used in parallel with the HILIC column for 

simultaneous separation and flushing using a dual head HPLC pump equipped with switching valves. 

During C18 separation, a 10 µL sample is injected onto the C18 column while the HILIC column is 

flushed with a wash solution. The flow rate is maintained at 0.4 mL/min for 1.5 min, increased to 0.5 

mL/min at 2 min, and held for 3 min. The mobile phase consists of solvents A, B, and C, with a linear 

gradient from 60% A, 35% B, 5% C to 0% A, 95% B, 5% C over 1.5 min, followed by a 3.5 min hold, for 

a total run time of 5 min. The MS is operated in negative ion mode. During the flushing phase, the C18 

column is equilibrated with a wash solution of 0% A, 95% B, 5% C until 2.5 min, followed by an 

equilibration solution of 60% A, 35% B, 5% C for 2.5 min. 
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Metabolomics 

HRM: High Resolution Metabolomics  

Mass spectrometry data were extracted with apLCMS [41] and xMSanalyzer [42] as metabolic features 

with high-resolution mass-to-charge ratios paired with retention times. Data were prefiltered to keep only 

features with nonzero values in with above 80% abundance in all samples, and data from triplicate 

analyses were averaged before statistical and bioinformatic analyses. 

 

Metabolomics Data Analysis  

Limma test, which is similar to analysis of variance, using xmsPanda, was used to discover features that 

differed between the control and exposure groups. Significant features (with a q < 0.05 [q < 0.1 for high 

dose versus control group]) were further studied by pathway enrichment analyses using mummichog 

version 2.0. This approach protects against type 2 statistical error by including all features at q < 0.1 and 

protects against type 1 statistical error by permutation testing in pathway enrichment analysis (with a p < 

0.05 for the pathways). Hierarchical clustering analysis and principal component analysis were used for 

untargeted comparison of the significant features differentiating treatment groups (q < 0.05 by limma 

test). Selected metabolic features from metabolic pathway enrichment analysis was done using 

mummichog. Metabolite annotations were made conservatively by searching accurate m/z at 5 ppm 

tolerance, with M+H adduct formed by positive ionization or M-H adduct formed by negative ionization. 

For each chromatography, whether multiple adducts could be detected at the same retention time were 

considered in annotation, a feature implemented by mummichog 2.0. Identities of selected metabolites 

were confirmed by co-elution of detected features relative to authentic chemical standards. 

 

Statistical Analysis 
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Quantification data were analyzed using xmsPanda. Metabolomics data was analyzed as described above. 

q < 0.1 was considered statistically significant, and subject to mummichog pathway analysis. The 

significance level for the mummichog permutation test was p < 0.05. Due to the thousands of tests being 

run simultaneously, there is a high probability of false positives (Type I Error). The False Discovery Rate 

(FDR) Benjamin-Hochberg correction accounts for this error in the statistical analysis process by 

controlling the proportion of false discoveries among all the significant results. The FDR correction 

involves a stepwise procedure that ranks the p-values of all the tests from smallest to largest and then 

comparing them to a set threshold value. This threshold value is determined based on the desired false 

discovery rate (FDR), which was set at 0.1. The Benjamin-Hochberg method then calculates the critical 

value for each p-value, which is determined by multiplying the p-value by the number of tests being 

performed and then dividing by the rank of the p-value. All the tests with critical values below the FDR 

threshold value are then considered statistically significant. 
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Results 

This study comprised of a Metabolome Wide Association Study (MWAS), where a collaboration of high-

throughput metabolomic technologies was used to investigate the association between all the metabolites 

in a biological sample and health consequences of heavy metal exposure.[48] This was done using limma 

and performing a one-way Analysis of Variance (ANOVA) test. 

apLCMS [41] and xMSanalyzer [42] were utilized to extract the feature tables from the mass 

spectrometry instrument, providing mass-to-charge ratios and retention times for each feature. xmsPanda 

ran a limma test for individual features, providing a p-value and test statistic for each feature as well. 

Importing these values into mummichog generated enriched pathways containing metabolites that were 

changed as a result of heavy metal dosage (q < 0.05). For the hilic positive HPLC columns, 2670 and 633 

features, from male and female pups, respectively, were significantly changed. For the c18 negative 

columns, 1550 and 605 features, from male and female pups, respectively, were significantly changed. 

This is visualized in Figures 2 and 3. Additionally, these Manhattan plots illustrate the significance 

threshold and the fold change of features that were significantly different. 

Results from this experiment have displayed significant change in metabolic pathways in mouse pup 

lungs. In unsupervised two-way hierarchical cluster analysis (HCA) (Figures 6 and 7), samples from the 

control, high dose exposure, and low dose exposure groups cluster together, showing samples from the 

same group have more similar metabolic profiles.  On the y axis, the metabolic features that differed 

among three groups (q < 0.05 by limma test) were grouped into clusters. The clusters of metabolic 

features in samples from the high-dose group had different intensities compared to the control group, 

either increased or decreased, and samples from the low group showed intermediate difference that 

supported a dose-response relationship. The separated clustering validates the significant difference 

between the three groups. Further validation of the study method is proven with the Manhattan plots 

produced by mummichog software (Figures 2 and 3). There were two datasets that were inputted into this 

analysis: (1) all three groups, high dose, low dose, and control, or just (2) high dose and control. The 
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results of this study can be found in Figures 2 and 3. The similarities in shape for the graphs between 

these two analyses validate the metabolites found in the study by showing consistency and continuity 

between low and high dosages. 

The pathway analysis produced by mummichog is illustrated in figures 4 and 5, illustrating trends in 

pathways that tend to change with the early life exposure to heavy metals. Besides the main inflammation 

pathways, other notable pathways found include those involved with development of the body and lipid 

metabolism. Pathways involved with lipid metabolism include glycerophospholipid metabolism, carnitine 

shuttle, and fatty acid biosynthesis. Pathways involved with development include the vitamin and gene 

pathways. Analysis of the mummichog results and manual annotation of the features display a variety of 

metabolites to examine within some of these pathways. Additionally, this study provides information on 

individual metabolites that were affected as a result of this experiment. Tables 1-4 display the mass-to 

charge ratios that were significantly changed from the control group and the potential compounds in these 

aforementioned pathways that they match with. The test statistics are included, with positive values 

meaning a significant increase and negative values meaning a significant decrease. 

Pathways that are in high demand in early life development include: Pyrimidine metabolism, Purine 

metabolism, Vitamin A (retinol metabolism), and Vitamin E metabolism. Vitamin metabolism has been 

proven in previous to be important in the development of biological functions, with both vitamin A and E 

in particular being vital for lung development.[49]  

There has been long standing literature on the importance of pyrimidine, purine, and hexose metabolism 

for genetic growth and development as well. Some potential metabolites associated with the pathways 

include deoxyuridine, inosine, and phosphatide. Overall, after examining the tests statistics of the 

significant metabolites, there were mixed responses for each path, with some metabolites increasing and 

others decreasing in the treatment groups. With the expectation for many of these features to be decreased 

due to the faltered lung development seen in previous models, the mixed responses are important to look 

more into for the future. 
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Lipid metabolism is largely connected to the arachidonic acid pathways (Figure 8), as the cell membranes 

and lipids are the main source of fatty acids for this pathway. Additionally, they play a large role in 

energy consumption has the main source during this newborn period.[50] The lipid and energy pathways 

include these pathways: Carnitine shuttle, glycerophospholipid metabolism, glycosphingolipid 

metabolism.  Some of the potential metabolite associated with the pathways include: linoelaidyl carnitine, 

diacylglycerol, and sn-glycerol 3-phosphate. The test statistics of these features tended to show an 

increase of these features in the treatment group. The increase of these metabolites is understandable 

based on the contribution lipid metabolism has on energy needs of the fetus, as well as their role as the 

precursors of inflammation pathways. 

The pathways mainly focused on in this study are the inflammation pathways discussed earlier. It includes 

arachidonic acid metabolism and its associated pathways, such as prostaglandin formation, leukotriene 

metabolism, and linoleate metabolism. Figure 7 displays the core arachidonic acid metabolism pathway 

with the downstream pathways and metabolites as well, such as the prostaglandins and leukotrienes. 

Linoleate metabolism is a precursor to arachidonic acid, suggesting that pro-inflammatory precursors 

were also broadly impacted by the metals. As discussed previously, the arachidonic pathway and the 

pathways associated with it have already been proven to be inflammation biomarkers. The inflammation 

pathways marked by mummichog (Figures 4-5) include these pathways: Prostaglandin formation, 

arachidonic acid metabolism. The potential metabolite list associate with the pathways include: 

Thrombaxane B2, prostaglandin B1, prostaglandin A2, prostaglandin G2, leukotriene A4, eicosatetranoic 

acid (arachidonic acid). The test statistics of these features showed a consistent increase in the treatment 

groups. The increase of these metabolites is understandable due to their nature as inflammation 

metabolites.  The prostaglandin, thromboxane, and leukotriene pathways are inflammatory mediators 

produced simultaneously in the arachidonic pathway, and changes in one pathway will also lead to change 

in the others.[51] Prostaglandins are lipid metabolites derived from arachidonic acid through the COX 

pathway, which sustain homeostasis and mediate pathogenic mechanisms, including the inflammatory 
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response.[52] Additionally, there has been some debate in their potential function in both the promotion 

and resolution of inflammation.[52] Thromboxanes are produced by platelets and has been linked 

implicated in many cardiovascular conditions, such as asthma.[51] Leukotrienes produced by immune 

system cells that facilitate the production of immune system signaling molecules and are linked to many 

pathological conditions, such as bronchospasms and asthma.[51] Overall, this displays the specific 

metabolites that are targeted from the early life heavy metal exposure and illustrates how the 

inflammation pathway is affected at all levels. The boxplots representing some of these significant 

changes in metabolites within the inflammation pathway is visualized with Figures 10-12. These figures 

illustrate the large and significant changes in metabolite intensities in the body, as there is little to no 

overlap in the overall ranges of each of the groups. 
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Discussion 

The results of this research successfully accomplished the original research aims at the beginning of this 

project. Studying metabolomics data has provided insight into potential metabolites that are affected as a 

result of early life arsenic and cadmium in utero exposure. Previous human studies have shown the 

negative consequences of heavy metal exposure on the fetal lungs, shown by increased asthma risks in 

children with higher Cd levels in cord blood at birth.[7] As this past work has largely been focused on the 

health effects of occupational exposure, the mechanisms are not fully understood with low levels of 

exposure.  

Cd and As are both commonly found in natural environment. According to USDA soil survey, areas of 

the United States, including some southwestern and midwestern states, have high levels of Cd and As in 

the soil. At molecule level, Cd is known to causes oxidation of mitochondrial proteome by attacking 

mitochondrial anti-oxidant system and As is known to replace phosphate and interfere with enzyme 

activities (termed “arsenolysis”), most commonly found in cytosolic glycolysis. [53, 54] Therefore, mixed 

exposure to Cd and As may attack the multi-compartmentalized enzymatic reactions in cell metabolism 

and cause a synergistic impact. This was discovered in our preliminary studies of fetal lung branching 

morphogenesis (i.e. the process to generate airway branches in development).[9] 

Additionally, we are more concentrated on the health effects of low level exposure, which we have less 

knowledge, but causes a much wider impact on worldwide populations.[55] In order to study these low-

levels of exposure, the dosages to the mouse model are adjusted to be relative to the what would affect the 

human model. This takes into account the largest difference been the mice and human model, being the 

size differences. 

The average Arsenic level was as high as 120 ppb in some county populations in community water 

systems , greatly exceeding the United States Environmental Protection Agency’s 10 ppb maximum.[56, 

57] Therefore, based on this literature and previous experiments done on mice, for in vivo studies, female 
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mice were treated with 50 and 250 ppb Cd and As (as CdCl2 reach a steady body homeostasis under this 

treatment, with continued exposure the entire time until euthanization. 50 ppb represents the lower dose, 

and 250 ppb represents the higher dose. The 50 ppb dose level (HED [human equivalent dose]: 0.72 

µg/kg bodyweight [bw]/day [58]) is similar to the Reference Dose (RfD) for iAs (0.3 µg/kg bw/day) and 

estimated exposure scenarios for average Americans (total As: 0.36, iAs: 0.25 µg/kg bw/day).[59, 60] The 

doses of Cd (HED: 0.5 -2.8 µg/kg bw daily) are also similar to the average non-smoking human daily oral 

Cd intake of 0.14-0.5 µg/kg bw. [57] The diet is accompanied with the AIN-93G diet as well to avoid 

uncontrolled intake of Cd and As. Importantly, it has also been shown that some of the metabolites and 

pathways, such as prostaglandins, found in our study were compounds that had similar metabolism 

patterns in both the human and mouse models.[24] 

Previous work done in the Dean Jones Lab has seen lowered lung function in the mouse model. The 

experiments done with this thesis was done on the same group of mice, treated with the same conditions. 

The mice were split in half for this metabolic research and the previous lung function testing research due 

to the possibility of the Flexivent machine affecting the metabolism and mass spectrometry analysis. In 

order for this machine to measure lung function parameters with forced oscillations through air flow, it 

requires anesthetic, paralyzing injection, and tracheostomizing. This procedure has the possibility of 

affecting metabolism, so this research split the sample of dams in half for each experiment. This work 

builds off the previous research by conducting a metabolomics study and thoroughly examining the 

metabolic pathways for points of interest. The significant pathways discovered as a result of this analysis 

aligns with the prior expectations of this project. As illustrated previously, the developmental, energetic, 

and inflammation pathways found to the most affected pathways by the heavy metal exposure. Due to the 

use of glycerophospholipids for general energy consumption, as well as being the main building blocks 

for the arachidonic inflammation pathways, the general increase of the metabolites in the pathway aligns 

with our previous knowledge. The effects on the vitamin and developmental pathways are also 

understandable considering their large role in early development of offspring.  
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The arachidonic pathway and the inflammation mediators they contain have been continuously mentioned 

throughout this paper due to their direct connections with pathological conditions. The biosynthesis of 

prostaglandins, thromboxanes, leukotrienes have long been considered pathological agents in the human 

body. These mediators play crucial roles in the body's response to injury and infection. However, 

excessive or prolonged inflammation can lead to tissue damage and chronic disease. The regulation of 

arachidonic acid metabolism is, therefore, essential in maintaining a balance between beneficial and 

harmful inflammation. This information, as well as the extreme prevalence of heavy metal exposure in the 

everyday life of most humans, illustrates why this field of research is vital for maintaining the well-being 

of our worldwide populations. Our research presents possible metabolites to focus on in the future for 

anti-inflammatory drugs to target and regulate the production. This has the potential to lessen the risk of 

long-term negative consequences of heavy metal exposure in the early life. Additionally, even at the 

lower dosages for this experiment, similar pathways were found to be significantly different from the 

control group of mice. This displays the potential for even commonplace exposure to have negative 

consequences on the lung function at the early stages of life.  

 

Through examination of the data, there were large differences in the male and female mouse in the 

metabolomics data. There were much fewer pathways and metabolic annotations found for the female 

mice compared to the male mice. Previous studies in humans have stated that lipid metabolism in 

particular contains the most significant differences between the two sexes, with males having a higher 

abundance of various metabolites in these lipid pathways.[61] This is seen in our research, as more 

significant features were found in the c18 negative column (most effective in separating and retaining 

non-polar compounds) with the male pups versus the female pups (Figures 3 and 4). However, there is 

still a lack of research done on why there are the differences between the number of metabolites for each 

sex in the early stages and in mice. For future directions, it would be interesting to do a full scan MS with 

fragmentation in order to have an MS/MS spectrum of the significant features found in the data. This 
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fragmentation data would provide exact structural groups and functional groups of the features, allowing 

for the confirmation of the characterization of the mass-to-charge ratios and retention times. This would 

also help differentiate isomers from each other, which is especially important with the arachidonic 

pathway, as many of the prostaglandins and other downstream metabolites have the same masses. We 

could also run a transcriptomics study with RNA sequencing, as RNA transcripts would reflect enzymatic 

activity and provide more insight on the regulation of the metabolites in these pathways. 

 

In conclusion, our study shows that early life cadmium and arsenic at levels that are comparable to human 

exposure found in the environment can cause issues with lung development and function that are also 

reflected in changes within the metabolome. We discovered changes in many metabolites, such as 

prostaglandins and different fatty acids, within various metabolic pathways, with the lipid, developmental, 

and inflammation pathways being the most prominent. These differences represent specific metabolites 

that were changed as a result of the heavy metal exposure and have the potential to be biomarkers for 

inflammation in the early development and function of lungs. In the future, we will look to confirm the 

exact identities of the proinflammatory metabolites and mark them as therapeutic targets for future drug 

discovery. 
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Figures 

 

 
Figure 1. Five stages of lung development for humans and mice. The stages are as listed: embryonic 

(formation of lung buds), pseudoglandular (branching morphogenesis), canalicular (formation of 

epithelial sacs and appearance of capillaries), saccular (production of alveolar ducts and surfactant 

protein), and alveolar (maturation of the alveoli). [62] The timeline of the mouse stages is represented as 

embryonic (E) or postnatal (P) days, and the timeline of the human stages is shown by post-conception 

weeks (pcw). [62] Reprinted with permission. 
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Figure 2. Manhattan plots of number of significant features for male pups. These plots display the 

significant metabolites that surpass the set threshold (shown in green dots, FDR corrected q < 0.05). Y-

axis [-log(p-value)] represents the fold change (level of significance for each feature). Plots were 

generated by mummichog 2.0. a) Results from hillic positive column for male pups, comparing high dose, 

low dose, and control groups; 22650 original features, 2670 significant (FDR corrected q < 0.05) features. 

b) Results from c18 negative column for male pups, comparing high dose, low dose, and control groups; 

13151 original features, 1550 significant features (FDR corrected q < 0.05). c) Results from hillic positive 

column for male pups, comparing high dose and control groups; 19966 original features, 1073 significant 

features (FDR corrected q < 0.1). d) Results from c18 negative column for male pups, comparing high 

dose and control groups; 12853 original features, 1076 significant features (FDR corrected q < 0.1). The 

different q value threshold shown here was to ensure there were comparable number of significant 

features for pathway analysis.  

b) 

d) 

a) 

c) 
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Figure 3. Manhattan plots of number of significant features for female pups. These plots display the 

significant metabolites that surpass the set threshold (shown in green dots, FDR corrected q < 0.05). Y-

axis [-log(p-value)] represents the fold change (level of significance for each feature). Plots were 

generated by mummichog 2.0. a) Results from hillic positive column for female pups, comparing high 

dose, low dose, and control groups; 22160 original features, 633 significant features (FDR corrected q < 

0.05). b) Results from c18 negative column for female pups, comparing high dose, low dose, and control 

groups; 12832 original features, 605 significant features (FDR corrected q < 0.05). c) Results from hillic 

positive column for female pups, comparing high dose and control groups; 17951 original features, 616 

significant features (FDR corrected q < 0.1). d) Results from c18 negative column for female pups, 

comparing high dose and control groups; 12291 original features, 454 significant features (FDR corrected 

q < 0.1). The different q value threshold shown here was to ensure there were comparable number of 

significant features for pathway analysis. 

b) 

d) 

a) 

c) 



29 
 

 

Figure 4. Top pathways with significant changes in metabolite features for male pups. These plots 

illustrate the top pathways with the most significant metabolites for each column and sex. a) hilic positive 

male pups with comparison between high dose, low dose, and control groups; full feature list was 

matched to 800 empirical compounds with 174 of them being significant. b) c18 negative male pups with 

comparison between high dose, low dose, and control groups; full feature list was matched to 852 

empirical compounds with 156 of them being significant. c) hilic positive male pups with comparison 

between low dose and control groups; full feature list was matched to 769 empirical compounds with 128 

of them being significant. d) c18 negative male pups with comparison between low dose and control 

groups; full feature list was matched to 832 empirical compounds with 131 of them being significant. 
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Figure 5. Top pathways with significant changes in metabolite features for female pups. These plots 

illustrate the top pathways with the most significant metabolites for each column and sex. a) hilic positive 

male pups with comparison between high dose, low dose, and control groups; full feature list was 

matched to 788 empirical compounds with 56 of them being significant. b) c18 negative male pups with 

comparison between high dose, low dose, and control groups; full feature list was matched to 841 

empirical compounds with 75 of them being significant. c) hilic positive male pups with comparison 

between low dose and control groups; full feature list was matched to 737 empirical compounds with 66 

of them being significant. d) c18 negative male pups with comparison between low dose and control 

groups; full feature list was matched to 807 empirical compounds with 54 of them being significant 
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Figure 6. Dendrogram unsupervised two-way hierarchical cluster analysis (HCA) for male pups 

using c18 negative data. Metabolic features, shown on the y-axis, that differed among three groups 

(q<0.05 by limma test) were hierarchically grouped into clusters based on similarities without any prior 

classification of the samples. The top bar, on the x-axis, displays the group that the significant features 

belong to, labelled after the analysis. The yellow bar (far left) represents the high dosage group, the green 

bar (middle) represents the low dosage group, and the blue bar (far right) represents the control group. 

Row Z score represents normalized peak intensity of metabolic features (red: high; blue: low). Red box 

indicates an increase in metabolites and a blue box indicates a decrease in metabolites. 
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Figure 7. Dendrogram of unsupervised two-way hierarchical cluster analysis (HCA) for female 

pups using c18 negative data. Metabolic features, shown on the y-axis, that differed among three groups 

(q<0.05 by limma test) were hierarchically grouped into clusters based on similarities without any prior 

classification of the samples. The top bar, on the x-axis, displays the group that the significant features 

belong to, labelled after the analysis. The yellow bar (far left) represents the high dosage group, the green 

bar (middle) represents the low dosage group, and the blue bar (far right) represents the control group. 

Row Z score represents normalized peak intensity of metabolic features (red: high; blue: low). Red box 

indicates an increase in metabolites and a blue box indicates a decrease in metabolites. 
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Figure 8. Annotated KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolism pathways 

figure. (https://www.kegg.jp/pathway/map01100) The highlights pathways represent the pathways 

most changed from the early life heavy metal exposure done in the experiment. Arachidonic acid, lipid, 

and pyrimidine and purine metabolism pathways are all labeled. Reprinted with permission. [63] 
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Figure 9. Full arachidonic acid metabolic and biosynthetic pathway. 3 main downstream pathways of 

arachidonic acid: cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P450 (CYPs). Also 

displays the links to lipid metabolism and the carnitine shuttle. Reprinted with permission.[64] 

 

Figure 10. Box plot of Thromboxane B2 significant increase. In the high (H) and low (L) dosage 

treatment groups compared to the control group (N), Thromboxane B2 has significantly increased. 
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Thromboxanes are produced by platelets and have been linked to many cardiovascular conditions, such as 

asthma.[51] This feature was taken from the c18 negative male feature table. 

 

Figure 11. Box plot of Prostaglandin B1 significant increase. In the high (H) and low (L) dosage 

treatment groups compared to the control group (N), Prostaglandin B2 has significantly increased. 

Prostaglandins are lipid metabolites derived from arachidonic acid through the COX pathway, which 

sustain homeostasis and mediate pathogenic mechanisms, including the inflammatory response.[52] This 

feature was taken from the c18 negative male feature table. 



36 
 

 

Figure 12. Box plot of Arachidonic Acid significant increase. In the high (H) and low (L) dosage 

treatment groups compared to the control group (N), Arachidonic Acid has significantly increased. 

Arachidonic acid is the core metabolite that is the foundation of the inflammation pathways. There is 

slight overlap in the ranges. This feature was taken from the c18 negative male feature table. 
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Table 1. Top annotations for potential metabolites using hilic positive male pup data. Listed are the 

top metabolites (with corresponding m/z and retention time) in important pathways for inflammation, 

lipid, and developmental pathways. “m/z diff” is the difference between the m/z from the data gathered 

and the exact mass of the actual compound. A positive test statistic represents an increase in the 

metabolite and a negative test statistic represents a decrease in the metabolite, after early life heavy metal 

exposure. Annotations were made by mummichog and manually. The mass-to-charge ratios and their 

corresponding retention times were compared between this list of potential metabolites and a reference 

list (from Dean Jones Laboratory). A strong match between the two lists allowed for a strong 

confirmation (marked in the confirmed column) of a changed abundance of the metabolite in the 

metabolome.  

 

 

 

 

m/z Retention 

Time (sec) 

Potential Metabolite 

Names 

Pathways m/z diff Test 

Statistic 

Confirmed 

424.3419 23.3 Linoelaidyl carnitine Carnitine shuttle -2.00E-04 1.7 
 

1048.306 129.2 timnodonyl coenzyme A De novo fatty acid 

biosynthesis, Carnitine shuttle 

6.00E-04 -2.07 
 

665.5133 23.7 Diacylglycerol Glycerophospholipid 
metabolism 

0.003 2.59 
 

385.1292 76.5 S-Adenosyl-L-

homocysteine 

Glycerophospholipid 

metabolism, Methionine and 
cysteine metabolism 

-0.0011 -1.61 Yes 

398.3264 23.4 Hexadec-enoyl carnitine Carnitine shuttle -1.00E-04 1.19 
 

337.2373 25.7 Prostaglandin B1 Arachidonic acid metabolism, 

Prostaglandin formation from 
arachidonate, Leukotriene 

metabolism 

-1.00E-04 2.57 
 

476.3732 23.7 Adrenyl carnitine Carnitine shuttle -2.00E-04 1.43 
 

376.2596 24.6 9'-carboxy-gama-chromanol Vitamin E metabolism -0.0018 -1.45 
 

297.2425 24.8 12(13)-EpOME Linoleate metabolism 0.0023 2.88 
 

420.3103 24.3 stearidonyl carnitine Carnitine shuttle -5.00E-04 1.29 
 

302.3053 23.1 Sphinganine Glycerophospholipid 

metabolism, 
Glycosphingolipid 

metabolism 

0.0025 1.52 Yes 

428.3735 23.9 stearoylcarnitine Carnitine shuttle -0.0013 1.32 
 



38 
 

m/z Retention 

Time (sec) 

Potential Metabolite 

Names 

Pathways m/z diff Test 

Statistic 

Confirmed 

179.0562 25.3  Galactose Glycerophospholipid 

metabolism, Glycolysis and 

Gluconeogenesis 

1.00E-04 -0.62 Yes 

369.2284 22.1 thomboxane b2 Prostaglandin formation from 

arachidonate 

2.00E-04 4.07 
 

353.2334 25  11,12,15-THETA Prostaglandin formation from 

arachidonate, Arachidonic acid 
metabolism 

1.00E-04 2.88 
 

335.2228 32.8 Prostaglandin B1 Prostaglandin formation from 

arachidonate, Arachidonic acid 
metabolism, Leukotriene 

metabolism 

0 4.25 
 

377.27 76.1 2-Arachidonoylglycerol Prostaglandin formation from 

arachidonate 

3.00E-04 5.69 
 

315.1983 16.3 all-trans-18-

Hydroxyretinoic acid 

Vitamin A (retinol) metabolism 0.0013 3.18 
 

394.2601 211.2 Prostaglandin E2 

ethanolamide 

Prostaglandin formation from 

arachidonate 

2.00E-04 7.02 
 

171.0065 19.8 sn-Glycerol 3-phosphate Glycerophospholipid 

metabolism 

1.00E-04 0.86 
 

242.0799 23.1 Cytidine Pyrimidine metabolism 0.0017 -0.84 
 

333.2071 214.6 Prostaglandin A2 Prostaglandin formation from 

arachidonate 

0 1.17 
 

227.0674 22.4 Deoxyuridine Pyrimidine metabolism 1.00E-04 1.24 Yes 

367.2149 149.5 Prostaglandin G2 Prostaglandin formation from 
arachidonate 

0.0025 1.22 
 

267.0733 24.4 Inosine Purine metabolism -2.00E-04 -0.88 Yes 

317.2131 19.4 Leukotriene A4 Arachidonic acid metabolism, 

Leukotriene metabolism 

9.00E-04 1.32 
 

303.2434 214.1 eicosatetranoic acid 
(Arachidonic Acid) 

Arachidonic acid metabolism, 
Fatty acid activation 

0.01117 1.36 Yes 

637.5397 245.3 Triacylglycerol Glycerophospholipid 

metabolism 

-0.0016 2.39 
 

699.502 221.7 Phosphatidate Vitamin A (retinol) 
metabolism, 

Glycerophospholipid 

metabolism 

0.005 2.2 
 

Table 2. Top annotations for potential metabolites using c18 negative male pup data. Listed are the 

top metabolites (with corresponding m/z and retention time) in important pathways for inflammation, 

lipid, and developmental pathways. “m/z diff” is the difference between the m/z from the data gathered 

and the exact mass of the actual compound. A positive test statistic represents an increase in the 

metabolite and a negative test statistic represents a decrease in the metabolite, after early life heavy metal 

exposure. Annotations were made by mummichog and manually. The mass-to-charge ratios and their 

corresponding retention times were compared between this list of potential metabolites and a reference 

list (from Dean Jones Laboratory). A strong match between the two lists allowed for a strong 

confirmation (marked in the confirmed column) of a changed abundance of the metabolite in the 

metabolome.  
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m/z Retention 

Time (sec) 

Potential Metabolite 

Names 

Pathways m/z_diff Test 

Statistic 

Confirmed 

283.2056 24.2 Leukotriene A4 Leukotriene metabolism, 
Arachidonic acid metabolism 

-1.00E-04 1.92 
 

331.2268 26.8 17alpha-

Hydroxyprogesterone 

C21-steroid hormone 

biosynthesis and metabolism 

0 -2.17 Yes 

351.2528 24.9 Tetrahydrocorticosterone C21-steroid hormone 
biosynthesis and metabolism 

-2.00E-04 5.82 
 

218.1386 34.5  propionyl-carnitine Carnitine shuttle -1.00E-04 -1.16 Yes 

229.0473 47.3 (R)-5-Phosphomevalonate Squalene and cholesterol 

biosynthesis 

1.00E-04 -3.81 
 

291.2318 24.4 5beta-Dihydrotestosterone C21-steroid hormone 

biosynthesis and metabolism, 
Androgen and estrogen 

biosynthesis and metabolism 

-1.00E-04 2.36 
 

Table 3. Top annotations for potential metabolites using hilic positive female pup data. Listed are 

the top metabolites (with corresponding m/z and retention time) in important pathways for inflammation, 

lipid, and developmental pathways. “m/z diff” is the difference between the m/z from the data gathered 

and the exact mass of the actual compound. A positive test statistic represents an increase in the 

metabolite and a negative test statistic represents a decrease in the metabolite, after early life heavy metal 

exposure. Annotations were made by mummichog and manually. The mass-to-charge ratios and their 

corresponding retention times were compared between this list of potential metabolites and a reference 

list (from Dean Jones Laboratory). A strong match between the two lists allowed for a strong 

confirmation (marked in the confirmed column) of a changed abundance of the metabolite in the 

metabolome.  

 

m/z Retention 

Time (sec) 

Potential Metabolite 

Names 

Pathways m/z_diff Test 

Statistic 

Confirmed 

421.0751 17.1 Lactose 6-phosphate Galactose metabolism, Sialic 
acid metabolism 

-1.00E-04 1.88 
 

699.502 221.7 Phosphatidate Glycerophospholipid 

metabolism, Vitamin A (retinol) 
metabolism 

0.005 1.37 
 

171.0065 19.8 sn-Glycerol 3-phosphate Glycerophospholipid 

metabolism 

1.00E-04 0.94 
 

298.2751 166.9 Sphingosine Glycerophospholipid 
metabolism, Glycosphingolipid 

metabolism 

0 5.3 
 

258.0384 17.8 D-Glucosamine 6-

phosphate 

Hexose phosphorylation, 

Pentose phosphate pathway, 
Aminosugars metabolism 

0 1.55 
 

214.0487 21.4 sn-glycero-3-

Phosphoethanolamine 

Glycerophospholipid 

metabolism 

1.00E-04 -0.83 
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253.0931 22.7 3-beta-D-Galactosyl-sn-

glycerol 

Glycerophospholipid 

metabolism, Galactose 

metabolism 

2.00E-04 -1.75 
 

179.0562 25.3 Galactose Glycerophospholipid 

metabolism, Glycolysis and 
Gluconeogenesis 

1.00E-04 -0.73 Yes 

Table 4. Top annotations for potential metabolites using c18 negative female pup data. Listed are the 

top metabolites (with corresponding m/z and retention time) in important pathways for inflammation, 

lipid, and developmental pathways. “m/z diff” is the difference between the m/z from the data gathered 

and the exact mass of the actual compound. A positive test statistic represents an increase in the 

metabolite and a negative test statistic represents a decrease in the metabolite, after early life heavy metal 

exposure. Annotations were made by mummichog and manually. The mass-to-charge ratios and their 

corresponding retention times were compared between this list of potential metabolites and a reference 

list (from Dean Jones Laboratory). A strong match between the two lists allowed for a strong 

confirmation (marked in the confirmed column) of a changed abundance of the metabolite in the 

metabolome.  
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