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Abstract

Deep Learning for EHR-Based Diagnosis Prediction: A General Recipe
By Leisheng Yu

With the rapid accumulation of Electronic Health Records (EHRs) and the recent ad-
vance in data-driven algorithms, deep learning models have been increasingly applied
to tasks in EHR-based predictive healthcare. This paper, motivated by the hierar-
chical structure of EHR data and the identified challenges in predictive healthcare,
mathematically formulates a general architecture for learning patient representations
for diagnosis prediction. With the guidance of the proposed general architecture,
this work further discusses how existing works have incorporated various model de-
signs to overcome certain challenges from four levels: diagnosis, visit, sequence, and
framework-level. Through these discussions, this paper serves as a summary of ex-
isting works in modeling sequential EHR data, a cookbook for novices interested in
EHR-based predictive healthcare, and a foundation for a future work, the idea of
which are also introduced in this paper.
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Chapter 1

Introduction

Electronic Health Records (EHRs) are large-scale and systematic collections of se-

quences of patients’ hospital visits in a chronological order, representing the longitu-

dinal health experience of patients [9, 58]. Each hospital visit of a patient recorded in

EHRs has a time stamp and contains various medical information, such as demograph-

ics, prescriptions, diagnoses, lab test results, vital signs, and output measurements

[26, 21, 35]. Hence, EHR data can be viewed as temporal sequences of high dimen-

sional clinical variables [10].

The broad adoption of electronic healthcare systems, the rapid accumulation of EHR

data, and the recent advance in data-driven algorithms signal an unprecedented op-

portunity to employ deep learning models for predictive healthcare, which is signif-

icant for improving the quality of clinical care, assisting clinical decision making,

promoting personalized medicine, and optimizing the resource allocation in hospitals

[10, 12, 58, 56, 55]. Fortunately, deep neural networks, especially recurrent neural

networks (RNNs), have not disappointed the researchers: deep learning models can

alleviate the need for feature engineering on EHR data and have achieved state-of-

the-art performance in various EHR-based tasks in predictive healthcare [44]. Most of

the tasks are to predict the future health information or medical outcomes of patients
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from their historical EHRs [29]: diagnosis prediction [9, 10], prescription prediction

[9, 26], mortality prediction [44], length-of-stay prediction [44], and readmission time

prediction [1]. EHR-based tasks in other categories include patient subtyping [3], dis-

ease subtyping [49], computational phenotyping [51], patient similarity analysis [51],

and treatment recommendation [49]. Among all these tasks, diagnosis prediction will

be the focus of this paper.

The key of applying deep learning models to EHR-based diagnosis prediction is to

learn robust vector representations of patients [34, 26]. The learned patient represen-

tations can be fed into a classifier to perform predictions. Various model architectures

have been designed to overcome specific challenges in this domain, and these models

can be summarized by a general mathematical recipe. This paper, through proposing

a fundamental architecture that characterizes the functions encoding patient EHR

data for diagnosis prediction, aims to promote a discussion on di↵erent strategies for

overcoming specific challenges and to serve as a cookbook for researchers interested

in deep learning for predictive healthcare.

Before presenting the general recipe, we will first give a mathematical formulation of

the diagnosis prediction task and the structure of EHR data used as input. Moreover,

we will briefly summarize the challenges in modeling longitudinal EHR data, which

motivates the further discussion of model designs in di↵erent levels.

1.1 Longitudinal Patient EHR Data

In general, patient EHR data can be viewed as sequences of unordered sets. Specifi-

cally, a patient in EHR data can be modeled as a time-stamped sequence of n tuples:

(vi, ti) for i = 1, ..., n. The vector vi corresponds to the i-th visit in the sequence, and

each visit vj 2 {0, 1}|C|, j 2 [1, n] is a multi-hot binary vector, where |C| denotes the

number of unique diagnoses and C = {c1, c2, ..., cC} is the set of all unique diagnosis
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Figure 1.1: The hierarchical structure of longitudinal patient EHR data

in the EHR data. vi,j = 1 indicates that the patient was diagnosed with cj in the i-th

hospital visit. The time stamp ti denotes the time of the i-th hospital visit.

Thus, patient EHR data have a hierarchical structure: each patient is a sequence of

hospital visits and each hospital visit is an unordered set of diagnoses. Figure 1.1

gives a graphical illustration.

Another crucial characteristic of EHR data is that every diagnosis in C has a corre-

sponding code in International Classification of Diseases, Ninth Revision1 (ICD-9),

which is a well-organized tree-structure medical ontology consisting of “parent-child”

relations between diseases. Figure 1.2 presents a subgraph of this disease taxonomy.

The diagnosis codes used in Figure 1.1 are from ICD-9.

1.2 EHR-Based Diagnosis Prediction

The task of EHR-based diagnosis prediction can be split into two categories.

The first category is called disease progression modeling [10], which is to predict

what diseases will the patient be diagnosed with in the next hospital visit given the

historical EHR data. This task is not limited to the prediction of one specific disease,

instead, it aims to forecast all diseases that the the patient will be diagnosed with in

the future. Therefore, this is a multi-label classification task.

The second category is called disease risk prediction [28]. Di↵erent from disease

1https://www.cdc.gov/nchs/icd/icd9cm.htm
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Figure 1.2: The tree structure of ICD-9 Ontology

progression modeling, disease risk prediction aims to predict whether a patient will

be diagnosed with a single target disease in his/her next hospital visit. For example,

this target disease can be heart failure [10, 12, 56, 51], renal failure [30], Alzheimer’s

disease [55], or septic shock [58]. Therefore, this is a binary classification task.

The input to these two categories of diagnosis prediction is the same: a collection of

patient records described in Section 1.1. The output of disease progression modeling

is a multi-hot vector oN+1 representing the set of predicted diagnoses in the next visit;

the counterpart of disease risk prediction is a probability of whether the patient will

be diagnosed with the target disease in the next visit.

1.3 Challenges in Modeling Longitudinal EHR Data

Challenges originating from various aspects of predictive healthcare have been moti-

vating the continuous e↵orts in refining the design of deep learning models for diag-

nosis prediction. These challenges mainly come from four sources: the characteristics

of EHR data, the nature of tasks in predictive healthcare, clinical common sense, and
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the inherent defects of RNN models.

Challenges originating from the characteristics of EHR data include temporality

[10, 56], high dimensionality [10, 56], irregular time intervals between consecutive

hospital visits [3, 58, 56, 51, 60], data insu�ciency [31, 12, 56, 51, 40, 26], hetero-

geneity [60], and noisiness [37, 58, 60]. Challenges brought by the nature of tasks

in predictive healthcare are model interpretability [10, 1, 58, 56, 51, 57] and trust-

worthiness [57, 5]. Ample challenges come from clinical common sense: incorporating

patient demographics [16, 5], location factors [5], disease progression stages [17], struc-

tural information [38] as well as clinical relations [49, 27] among diseases, and prior

medical knowledge [11]; modeling fine-grained progression patterns of patient health

conditions [16] and non-stationary disease progression [28]. The failure of RNNs in

capturing long-term dependency [16, 60] and being significantly accelerated with dis-

tributed/parallel computing schemes [34] are also problems that researchers have been

trying to solve in modeling sequential EHR data.

More detailed descriptions of the aforementioned challenges and various strategies

proposed to overcome them will be presented in later chapters.
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Chapter 2

General Recipe

In this chapter, we propose a mathematical formulation of a fundamental architecture

for encoding longitudinal patient EHR data and learning patient representations. The

learned patient representations can be used for diagnosis prediction. The formulation

of this general recipe is motivated by the hierarchical nature of sequential EHR data

[12, 34].

To enable a more convenient representation of an unordered set of diagnosis codes,

we expand vn
i , a multi-hot vector denoting the i-th hospital visit of the n-th patient

in the dataset, as a sum over a set of unique one-hot vectors,

vn
i = ca + cb + ...+ cz (2.1)

where ca, cb, ..., cz 2 C denote unique diagnosis codes in C, which is the set of all

unique diagnosis codes in EHR data. With this expression, we can formulate the gen-

eral architecture for learning the representation of the n-th patient from longitudinal

EHR data as follows,

zn = h{g[
Nvn1X

i=1

f(ci)], g[

Nvn2X

i=1

f(ci)], ..., g[

Nvn
T (n)�1X

i=1

f(ci)], g[

Nvn
T (n)X

i=1

f(ci)]} (2.2)
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where vn
j denotes the j-th visit of the n-th patient, T (n) denotes the total number

of observed hospital visits of the n-th patient, Nvnj
denotes the number of diagnoses

in the j-th visit of the n-th patient, ci denotes the i-th diagnosis in a hospital visit,

f(·) is the function mapping a diagnosis code ci (one-hot vector) to a dense and

continuous vector, g(·) together with the sum operator learns the representation of

a hospital visit by aggregating the constituent diagnosis representations, and h(·) is

the function that learns the final representation of a patient by aggregating his/her

sequence of visit representations. f(·), g(·), and h(·) can either be parameterized or

non-parameterized, depending on the desired level of expressive power and the target

challenges to overcome.

After obtaining the final representation, zn, of the n-th patient, we can feed it to a

classifier that generates the prediction. This classifier is often the final layer of the

model, and it is typically designed as follows,

ŷ = �(FC(zn)) (2.3)

where ŷ is the predicted label, FC denotes a fully connected layer, and � corresponds

to the activation function. If the category of diagnosis prediction that we want to

perform is disease progression modeling, which is a multi-label classification problem,

� should be chosen as the Softmax function; conversely, if disease risk prediction,

which is a binary classification task, is the goal, then we should use the Sigmoid

function as the activation function.

Cross-entropy is a loss function typically used for classification tasks. Specifically, for

disease risk prediction, the loss function is as follows,

l(ŷ, y) = �(y · log(ŷ) + (1� y) · log(1� ŷ)) (2.4)
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and the loss function for disease progression modeling is as follows,

l(ŷ, y) =
1

K

KX

k=1

�(yk · log(ŷk) + (1� yk) · log(1� ŷk)) (2.5)

where K denotes the number of labels, yk denotes the ground truth of label k, and

ŷk denotes the predicted result for label k.

The general architecture for patient representation learning, the final prediction layer,

and the generic loss function together constitute the general recipe of deep learning

for EHR-based diagnosis prediction. In later chapters, we will investigate how exist-

ing works design the three hierarchical encoding functions—f(·), g(·), and h(·)—to

overcome the challenges specified in Section 1.3. Moreover, we will also explore some

existing designs on the framework level, outside of f(·), g(·), and h(·). For example,

the framework-level designs can be relevant to loss functions or optimization tricks.
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Chapter 3

Diagnosis-Level Representation

Learning

This chapter focuses on the design of f(·) in Equation 2.2. The progress of learning

the representations for diagnoses in the EHR data has been constantly motivated

by various challenges, especially data insu�ciency. External knowledge enhancement

and utilizing di↵erent types of clinical information can be the key. We will see how

existing works in this domain have moved from simple embedding approaches to

graph-based methods in the following sections.

3.1 Simple Embedding Table

Most of the early works in leveraging deep learning to model sequential EHR data

chose to encode diagnosis codes to dense and continuous vector representations via a

simple embedding table [9, 10, 1, 37, 38, 34]. Mathematically, this strategy can be

formulated as follows,

di = Wembci (3.1)
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where ci 2 R|C| is a one-hot vector denoting a specific diagnosis code in C, Wemb 2

Rm⇥|C| is an embedding matrix to be learnt, and di 2 Rm is the diagnosis embedding

obtained after passing through this linear embedding layer. Since there are thousands

of unique diagnosis codes in the EHR data, the one-hot vector ci 2 R|C| is extremely

high-dimensional and sparse. However, after being multiplied with Wemb 2 Rm⇥|C|,

the one-hot vector can be mapped to a dense and continuous embedding of a lower

dimension m. Therefore, this simple linear embedding approach can manage to over-

come the challenge of high dimensionality in EHR data.

However, deep learning models typically require a large amount of training data [56],

and unfortunately, a single EHR dataset can have a significant data insu�ciency is-

sue, because a hospital is normally only visited by patients living in nearby areas and

a patient may visit multiple hospitals in one period of time. The phenomenon that a

diagnosis code appearing in the test set does not exist in the training data, which leads

to unsatisfactory representation learning for this diagnosis code and thus unfavorable

performance, is common in healthcare applications. Moreover, this simple embedding

table method learns embeddings of di↵erent diagnosis codes independently, ignoring

the inherent structural information among diseases. For example, introverted per-

sonality (301.21) and Schizotypal personality disorder (301.22) have the same parent

or ancestors in the ICD-9 hierarchy, which means that their embeddings should be

relatively close.

Motivated by the two challenges mentioned above, several models have been proposed

to make use of ICD-9, a well-organized public medical ontology.

3.2 Incorporating Medical Ontology

GRAM [11] is a predecessor of incorporating ICD-9 taxonomy into modeling sequen-

tial EHR. Since the diagnosis codes recorded in most EHR datasets correspond to
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Figure 3.1: A subgraph of MKG consisting of heterogeneous medical entities and
relations

the leaf nodes in the ICD-9 hierarchy, GRAM proposed to obtain the embedding for

each diagnosis code in the EHR data by aggreagting the embeddings of corresponding

ancestors:

di =
X

j2A(i)

↵ijej (3.2)

where A(i) denotes the indices of diagnosis code ci and ci’s ancestors, ej denotes the

basic embedding of either a diagnosis code in C or an ancestor in the ICD-9 hierarchy,

and ↵ij denotes the weight learned by an attention mechanism and
P

j2A(i) ↵ij = 1.

Many works following GRAM have adopted this approach for learning diagnosis code

representations [31, 56, 16, 52].

Besides the parent-child structural information among diseases, rich information con-

tained in external medical knowledge graphs (MKGs) is also valuable to be incor-

porated into the modeling process. From Figure 3.1, we can observe that there are

di↵erent types of clinical relations attached to the edges in MKGs. Therefore, some

existing works have proposed to utilize MKGs to further alleviate data insu�ciency.

3.3 Incorporating External Medical Knowledge Graph

Motivated by the success of graph neural networks (GNNs) in recent years [24, 19],

some existing works proposed to leverage TransE [4] together with a message passing
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module to learn the embeddings of the diagnosis codes from external MKGs [56, 51].

Then the learnt diagnosis embeddings can be either directly aggregated to obtain the

visit-level embeddings or first concatenated with the embeddings learned from the

ICD-9 ontology and then aggregated.

Although the ICD-9 ontology and the MKGs can provide rich information in terms

of parent-child as well as causal relationships between diseases, the clinical relations

between diseases can be overlooked if disease co-occurrences are not incorporated in

the modeling process. Some diseases that are not relevant in the ICD-9 taxonomy

can frequently be diagnosed with simultaneously; in contrast, some diseases close in

the hierarchy can rarely co-occur in a single hospital visit: taking into account the

clinical relations can be beneficial for disease progression modeling.

3.4 Incorporating Disease Co-Occurrence Graph

Chet [27] constructs a directed co-occurrence graph following the idea that there is

an edge between two diagnoses if their number of co-occurrences is larger than a

threshold of relative frequency. RGNN [26] constructs a time-aware diagnosis graph

based on the rule that diagnoses in visit vi are connected to the diagnoses in visits

vi�1 and vi+1, and the edge weight corresponds to the time interval between two

consecutive visits. These two works both proposed to leverage a GNN model to learn

the node embeddings on the constructed co-occurrence graph.

Heterogeneity is an important feature of EHR data: fully utilizing various types of

information in EHR can better assist the prediction. Therefore, MiME [12] constructs

a co-occurrence graph among diseases and treatments, and GMAN [52] includes the

co-occurrence among diseases and symptoms to learn the embeddings of diagnoses in

a more comprehensive way.
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Chapter 4

Visit-Level Representation

Learning

This chapter investigates how existing works in sequential EHR modeling have de-

signed the function g(·) in Equation 2.2, and some ideas that can potentially be

borrowed from the domain of set representation learning.

Since a hospital visit can be modeled as an unordered set of diagnoses codes, the

function g(·) should be permutation invariant [53], which means g(·) needs to be in-

di↵erent to the ordering of the constituent diagnoses. The simplest way of modeling

an unordered set in a permutation invariant way is to add up the embeddings of all

the elements in the set. Most of the existing works in modeling sequential EHR data

resorted to this sum operation to obtain visit embeddings [9, 10, 11, 31, 37, 12, 38, 27].

This sum operation is similar and closely related to Equation 3.1:

xi = Wembvi (4.1)

where vi is a multi-hot vector denoting the i-th hospital visit, Wemb is same as

the one in Equation 3.1, and xi is the learnt visit embedding. The problem of this

straightforward approach is that it assumes that every diagnosis in the set contributes



14

equally to the visit embedding, which fails to provide interpretations of the predicted

result to clinical doctors.

Interpretability of the employed model is crucial for healthcare applications. In order

to trust the prediction of the model, clinical doctors must be able to understand the

rationale behind the model prediction: why does the model make such a prediction

[1]?

4.1 Attention Pooling

The attention mechanism has been introduced to model a hospital visit with inter-

pretability. Some of the existing works proposed to leverage attention pooling to

aggregate diagnosis embeddings. In this way, the hospital visit, a composite object,

can be represented as a weighted sum of the diagnosis embeddings, where the weights

are attention weights learned by certain attention mechanisms [10, 1, 34]. Moreover,

to capture unique disease progression patterns, Timeline [1] calculates another set of

weights to be combined with attention weights, by utilizing a disease-specific progres-

sion function. Through observing the weight value corresponding to each diagnosis,

domain experts can tell which diagnoses in a visit are the most important for the

prediction.

Although some of the aforementioned works utilized attention pooling to obtain visit

embeddings, this department, the design of g(·), has not received much attention.

However, following Deep Sets [53], a work that proposed a general architecture for

deep learning models operating on set-structured data, there has been a branch of

research focusing on leveraging deep learning models to learn set representations.

The ideas proposed in the domain of set representation learning can potentially be

exploited in modeling hospital visits. Therefore, several existing works leveraging

deep learning techniques for set representation learning are briefly introduced in the



15

following section.

4.2 Set Representation Learning

The most important principle for representation learning on unordered sets is per-

mutation invariance. PointNet [36] applies multi-layer perceptron (MLP) and feature

transformations on the elements in the set and used max-pooling to aggregate infor-

mation. RepSet [43] measures the similarity between the input set and each one of

the hidden sets by bipartite matching to learn the representation. [23] proposed a

di↵erentiable Expectation-Maximization model to represent a set of objects and [13]

provided an optimal transport based way to learn set representation. Some of the

existing permutation invariant approaches can also manage to tackle other nontrivial

challenges in set representation learning. Specifically, to incorporate the interactions

among elements in the set, SetRank [33] leverages a stack of induced multi-head self

attention blocks, and DMPS [42] constructs a latent graph from the set and performs

message passing on it. Moreover, to weight elements in the set, Set Transformer [25]

employs multi-head attention for both processing every elements and pooling.
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Chapter 5

Sequence-Level Representation

Learning

The design of h(·) is the focus for most of the existing works in diagnosis prediction,

because temporality and sequentiality are the most significant and explicit charac-

teristics of EHR data, and diagnosis prediction is a sequential prediction problem

in essence. Since RNNs are popular for modeling sequential data, the variants of

RNNs, Long Short-Term Memory (LSTM) [20] and Gated Recurrent Units (GRU)

[8] are part of the first wave of success that deep learning had achieved in modeling

longitudinal EHR data.

5.1 Recurrent Neural Networks

Some works directly applied RNN models like LSTM or GRU, without any modifi-

cations, to encode the sequence of hospital visits [9, 1, 11, 12]. Although this simple

architecture can capture the sequentiality of EHR data, it has many limitations. For

example, RNNs are like black box, which means domain experts cannot understand

why the model makes a certain prediction. Moreover, RNNs are known to su↵er

from capturing long-term dependency because of its forgetfulness when the sequence



17

is long.

To overcome RNNs’ drawback in modeling long-term dependency, Dipole [29] utilizes

bidirectional RNN to consume the input sequence from two opposite directions; some

other works [16, 60] resorted to augmenting RNN models with an external memory

network which can store detailed information of all the hidden states in the long

sequence, thus the fine-grained progression patterns of patient health conditions can

also be captured.

Some existing works also proposed multi-thread GRUs, which means employing mul-

tiple GRUs simultaneously, to overcome specific challenges. ConCare [32] utilizes a

GRU for each type of sequential information in EHR (including lab test results and

historical diagnoses) to make good use of the heterogeneity of EHR data. Chet [27]

splits the diagnoses in each hospital visit into three types and applies a GRU for each

type, in order to capture the fine-grained progression patterns.

Lack of interpretability is the major challenge of applying RNNs to diagnosis pre-

diction. Similar to what we have introduced in Chapter 4, some works integrated

the attention mechanism with RNN models [10, 29, 37]: applying self-attention on

the sequence of hidden states generated by the RNN model to get attention weights.

After obtaining the attention weights, the weighted aggregation of hidden states can

serve as the context vector:

cn =
T (n)X

i=1

↵ihi (5.1)

where T (n) denotes the number of visits for the n-th patient, hi denotes the hidden

state of the i-th visit generated by the RNN, ↵i corresponds to the attention weight

associated with hi, and cn denotes the context vector for the n-th patient. Concate-

nating the context vector with the hidden state at the last time stamp, we can arrive

at the final patient representation. Following this scheme, the clinical doctors will be

able to identify the visits that contribute the most to the prediction by inspecting the

attention weights.
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As the attention mechanism has demonstrated its potential in providing interpretabil-

ity and RNN models need to process elements in the sequence one by one, recent

works began to follow the Transformer architecture [44, 28, 34, 40], which means no

recurrence in modeling the sequence of visits [46], so that the computation can be

significantly accelerated with distributed computing schemes [34].

5.2 Transformers

SAnD [44] is an early work modeling sequential EHR solely based on attention mech-

anisms: it leverages a self-attention mechanism coupled with a dense interpolation to

enable sequence modeling. Several works following SAnD also chose to employ the

self-attention mechanism to aggregate visit information [28, 34, 40].

Although both RNNs and Transformer can model the sequential characteristics of

EHR data, they do not take the sequence of time stamps as input, which means they

cannot capture the irregular time intervals. However, irregular time intervals between

consecutive visits are important information that needs to be incorporated into the

modeling process because they can indicate certain health status of a patient. For

example, a patient will probably visit the hospital more frequently if he/she is having

a severe health problem; on the contrary, if a patient has not been visiting the hospi-

tal for a long period of time, then it implies that he/she is in a good shape, without

any abnormalities. Thus, many existing works injected time interval information into

sequence models in various ways.

5.3 Time-Aware Sequence Models

Some works having RNNs as backbones incorporated the time interval information

via di↵erent ways. T-LSTM [3] converts the time intervals into weights discounting

the cell memory of LSTM through a decay function. ATTAIN [58] adjusts the mem-
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ory of LSTM to retrospect memories of all previous events and discount them by

weights generated from attention mechanism and time intervals. StageNet [17] takes

the concatenation of time interval information and the visit embedding as the input

to LSTM. DG-RNN [51] encodes time interval as a vector, taking the encoded time

and visit embedding as the input to LSTM.

There are also various strategies for models based on Transformer to include time

interval information. Specifically, HiTANet [28] and RAPT [40] embed time informa-

tion into the visit representation which is the input to sequence models. ConCare [32]

includes time interval as a factor in calculating attention weights for hospital visits.
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Chapter 6

Framework-Level Design

In order to overcome certain challenges, some works have been “thinking outside of

the box,” not focusing on the design of f(·), g(·), or h(·) but making modifications

to loss functions or optimization procedures.

Incorporating prior medical knowledge into prediction can be challenging, because

prior medical knowledge usually takes the form of discrete arbitrary rules which are

di�cult to be converted to continuous values. To overcome this challenge, PRIME

[30] uses a log-linear model to estimate the desired distribution of diseases according

to the given medical knowledge, and applies posterior regularization.

To capture the phenomenon that the diagnosis codes in EHR data all correspond to

the leaf nodes of ICD-9 hierarchy, MHM [38] makes predictions and calculates loss at

each level of the ICD-9 ontology, resulting in a layer-wise loss function.

In order to provide model trustworthiness, which means o↵ering an uncertainty level

of the prediction made by the model, INPREM [57] and UNITE [5] incorporates a

variational inference loss.

Because of the high rate of human errors and missing diagnoses in EHR data, PacRNN

[37] formulates the disease progression modeling task as an events recommendation

problem, utilizing a pairwise ranking method regularized by disease co-occurrence to
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rank probabilities of potential diagnoses.

It is common that some diagnoses are extremely rare in EHR data. Thus, TC-EMNet

[60] provides an idea that the model can be trained with the loss (MSE) of recon-

structing the observation from the learnt representation when the labels associated

with the target disease risk prediction task are not su�cient.

For methods incorporating MKGs, one problem is that MKGs are noisy and su↵er

from the issue of missing edges. To tackle this problem, MendMKG [49] pre-trains

the graph attention network [47] applied to the MKG in a self-supervised manner:

first learn the node embeddings based on the observed edges in the MKG, then use

the learnt embeddings to predict missing edges, and finally the edges assigned with a

high importance score by the unlabeled EHR data reconstruction task are added to

the MKG. This iterative mutual enhancement between MKG and EHR data guides

the completion of MKG, which in turn results in better learnt patient representa-

tions. Similarly, RAPT [40] pre-trains a time-aware Transformer model via three

tasks—similarity prediction, masked prediction, and reasonability check—in order to

overcome data insu�ciency. With a similar purpose, MetaPred [55] incorporates a

meta-learning framework in which the model parameters are first adjusted on the

training data from the source domains and then further tuned on the simulated tar-

get domain.
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Chapter 7

Conclusion

This work summarized the existing challenges in Electronic Health Record-based pre-

dictive healthcare, and provided the mathematical formulation of a general architec-

ture for leveraging deep learning models to learn patient representations for diagnosis

prediction. Motivated by the specified challenges and guided by the proposed general

architecture, this work further discussed how existing works had devised di↵erent

strategies from four levels: diagnosis-level, visit-level, sequence-level, and framework-

level. Through these discussions, this paper could serve as a cookbook for novices

interested in applying deep learning to EHR-based diagnosis prediction. Interestingly,

the proposed general recipe in this work is not limited to the task of diagnosis pre-

diction; instead, any tasks in predictive healthcare for which learning a high-quality

patient representation is desired can gain insights from this recipe.
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Chapter 8

Future Work

This paper also serves as a foundation for a future work. Currently this future work

is at an embryonic stage and the basic ideas are introduced in this chapter from four

levels.

8.1 Diagnosis-Level Representation Learning

For learning the representations of diagnosis codes, we plan to jointly utilize the

disease co-occurrence graph and ICD-9 ontology. Specifically, motivated by existing

works in learning graph embeddings with the guidance of a hierarchical structure

[59, 50, 15, 39], we plan to utilize a GNN-based model that can learn node embeddings

on the disease co-occurrence graph and simultaneously preserve the ICD-9 hierarchy

in the learnt embeddings.

8.2 Visit-Level Representation Learning

Motivated by how existing works leveraged counterfactual reasoning and information

bottleneck for learning robust representations in the domain of recommender systems

[48], we plan to obtain counterfactuals by randomly dropping out diagnoses in a
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hospital visit and facilitate balanced learning between the factual and counterfactual

domains. In this way, the learnt embeddings can be more robust against the noise in

EHR data.

8.3 Sequence-Level Representation Learning

Motivated by the recent advance of neural ordinary di↵erential equations and relevant

success in time series modeling [6, 14, 41, 22, 7], we plan to leverage neural ODEs

with deep learning models to aggregate the sequence of hospital visit embeddings. In

this way, the issues including irregular time intervals and sporadical observations can

be properly handled.

8.4 Framework-Level Design

Firstly, inspired by [54] and the message passing characteristics of graph neural net-

works (GNNs) [19, 24], we plan to incorporate a message passing module that can

take into account similar patients in the training data after obtaining patient repre-

sentations following the proposed general architecture in Chapter 2. In this way, the

model can mimic real doctors who depend on past experience with similar patients

to attend a new patient.

Since some recent works in recommender systems have demonstrated that weights gen-

erated by attention mechanisms are not suitable for providing interpretability [45],

and counterfactual explanations have great potential in opening a black-box deep

learning model [18, 2, 45], we plan to device an external counterfactual explainer to

provide interpretations for the predictions made by our model.
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