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Abstract

Evaluation of color space transformations in separating anemia

vs control subjects

By

Chenlu Shan

Anemia detection requires invasive blood testing with the gold standard hemoglobin level
by a complete blood count (CBC). This procedure involves phlebotomy, which could lead to
certain adverse effects. We consider a recently proposed non-invasive method for monitoring
anemia with a fingernail image taken from patients [1]. Non-invasive anemia detection
involves procedure of extracting color data from patients’ fingernail bed smartphone
images. Usually, color data are extracted in RGB (Red,Green,Blue) color space. Since it
is unknown that which color space transformation is most useful in discriminating anemia
population vs healthy population, our work focused on determining which transformation
of RGB (Red,Green,Blue) data would produce the best separation among anemic and
control subjects. Several metrics are used to access the separation between anemia and
healthy groups based on within sum of squares and between sum of squares Metric 1:Ratio
of within to between variation). It is shown that HSI (Hue,Saturation,Intensity) color
space perform the best in comparison to all other color spaces (Metric 1: 1.02 (0.82-1.35)
for HSI, Metric 1: 0.76 (0.56-1.05) for RGB). The HSI color space also produced the least
mean squared errors in predicting anemia status using Lasso Regression method - (MSE
for HSI: 0.085).

We conclude the HSI color space has the best discriminative power in separating anemia
vs control and the future prediction models or clustering models should focus on the
analysis with HSI color space.

Keywords – non-invasive anemia detection, color space transformation, cluster method,
better separation
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1 Introduction

Anemia is caused by the body’s inability to produce enough hemoglobin, which is a

protein that transports oxygen to read blood cells and various tissues of the body. The

common symptoms of anemia include fatigue exhaustion, moodiness, and irritability.

Other symptoms include dizziness, fainting, apathy, irritability, decreased concentration

and unbearable cold feeling [2]. There are about 3 billion people in the world with varying

degrees of anemia, and tens of millions of people die every year due to various diseases

caused by anemia according to statistics form the World Health Organization (WHO,2008).

In the United States, iron deficiency, thalassemia, and anemia of chronic disease are three

major causes of anemia [3]. Therefore, detection and timely treatment for anemia is

crucial as it affects people in all populations. In particular, anemia among children and

older adults may lead to more severe problems like infant mortality and many serious

short- and long- term complications such as heart failure, gout attacks, cancer etc. [4].

According to the Word Health Organization definition of anemia, the threshold for

detecting anemia vary for different population of subjects. For example, hemoglobin less

than 11g/dL for children aged 0 to 4 years and pregnant women, hemoglobin less 12g/dL

for children aged 5 to 12 years and non-pregnant women, and hemoglobin less than 13/dL

for men [5]. Diagnosing anemia requires invasive blood testing with the gold standard

hemoglobin level by a complete blood count (CBC). This procedure involves phlebotomy,

which could lead to certain adverse effects. Adam C. Salisbury’s work [6] showed that

blood loss from greater use of phlebotomy is independently related to Hospital-Acquired

anemia. As a result, the procedure of invasive detection of anemia may contribute to

worsening anemia. Furthermore, phlebotomy is painful, especially for infants, which makes

difficult to complete the procedure. In addition, the procedure of taking blood and testing

may take a considerable amount of time. As such, there is a strong need for non-invasive

detection and monitoring of anemia, particularly for infant populations.

The Integrated Management of Childhood Illness strategy developed by the World Health
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Organization recommends the use of clinical pallor in various anatomical sites as the initial

screening tool for anemia in children under 5 years of age for whom laboratory-based

hemoglobin is not readily available (WHO, 1997). Recent technology advancements such as

smartphones have allowed convenient detection of anemia of subjects. M D Anggraeni [7]

introduced a method that allowed non-invasive early detection of anemia among pregnant

women. MD Anggraeni’s study [7] utilized a smartphone camera to capture digital images

of the inferior palpebral conjucttiva of pregnant women and then extracted color intensity

of Red, Green, Blue from images of the inferior palpebral conjucttiva. Recently, Manninio

et al. [1] introduced a smartphone app which holds promise for detecting anemia non-

invasively based on images of patients’ fingers. They extracted color data (Red,Green,Blue)

on a 51×51 pixel domain from fingernail bed regions and then utilized an algorithm based

on robust multi-linear regression with a bisquare weighting algorithm to transfer color data

to CBC hemoglobin levels. The smartphone app utilized data of pallor in patient-sourced

photos to do the non-invasive diagnosis of anemia. This procedure has many advantages.

First, it does not require phlebotomy, which could avoid blood loss of patients and reduce

the risk of aggravating anemia of patients. Secondly, this device only needs data of

patients’ fingernail images and does not make patients uncomfortable during diagnosis.

Thirdly, this smartphone app makes the detection of anemia convenient and efficient, not

requiring a long time to get the results. The fundamental idea behind of Manninio et

al. [1] is that skin detection is useful in diagnosing anemia. In Manninio et al.’s work [1],

color data of pallor in patient-sourced photos are collected as RGB(Red,Green,Blue) data.

RGB(Red,Green,Blue) is the color space representing the three channels of red, green,

and blue. This standard includes almost all the colors that human vision can perceive,

which is one of the most widely used color systems.

Development of prediction rules or cluster classification algorithm depends on the structure

and types of the data in color space. For example, often, certain model based algorithms

requires the assumption of normal distribution to obtain valid predictions. It is also known

that certain transformations of data may facilitate the separation between populations.

In computer vision community, there are many other color space transformations done
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in expressing data in addition to the RGB form [8]. These include NRGB (normalized

RGB), HSI(Hue,Saturation,Intensity), YUV(Luma,Blue projection,Red projection),YIQ

(NTSC color TV system), CIEXYZ [9], CIELAB. HSI space represents color with three

components: hue(H), saturation(S), intensity(I) and can be viewed as transforming the

points in the RGB(Red,Green,Blue) color to a cylindrical coordinate system. YUV space

represents color with one luma component(Y) and two chrominance components which is

U(blue projection) and V(red projection) respectively. YIQ color space is used by the

NTSC color TV system. It has Y component which represents the luma information and

I and Q component which represents the chrominance information. CIEXYZ color space

is the first color space based on the perception of human color vision and the basis of all

other color spaces [9].

In the diagnosis of anemia based on clinical pallor, it is unknown that which color space

transformation based on patient-sourced photos is most useful in discriminating anemia

population vs control population. The objective of this thesis is to determine which

transformation of RGB data would produce the best separation among anemic and control

subjects. We use the data collected in Mannino et al. [1] to address this objective. After

performing 7 color space transformations including RGB, NRGB, HSI, YUV, YIQ CIEXYZ

and CIELAB [10], we measure the distance between anemia cluster and healthy cluster

under different color spaces. We use two indices to quantify the distance between cases

and controls for each color transformation based on the comparison of within sum of

squares and between sum of squares. Furthermore, we apply three clustering algorithm

including K-means algorithm, discriminative functional mixture model (funFEM) and the

K-mean alignment for curve clustering (fdakma) to the whole mixed data set, and evaluate

the performance of each clustering algorithm under 7 different color spaces. Finally, we

apply Lasso Regression model to the training data set(155 observations) and drive the

estimated parameters. The we test the Lasso Regression model using testing data and

present the mean squared error.



4

2 Methodology

2.1 Data Sources

Our study is based on a data set collected in Mannino et al. [1]. During Mannio et al.’s

study, data were obtained from a clinical assessment which was conducted at Children’s

Healthcare of Atlanta, Emory University of School of Medicine, and Georgia Institute

of Technology [1]. In the clinical assessment, 265 patients who were diagnosed with the

Homozygous Sickle Cell Anemia (HbSS) were recruited and have their hemoglobin levels

measured via a complete blood count (CBC). Another 72 healthy subjects from Emory

University and The Georgia Institute of Technology were also recruited to the study and

have their hemoglobin levels measured via a CBC. Then images of both patients and

healthy subjects’ fingernail beds were taken. An Apple iPhone 5s (Apple, Cupertino, CA)

with default settings were used to take fingernail pictures from four fingers (excluding

thumb) of those subjects. Before taking images, brightness adjustment and auto-focus

of the smartphone’s camera were set in order to make camera lens focus on fingernail

bed. Distance between smartphone and subjects’ fingernail were set as 0.5m. Images

were taken at invariant lighting conditions and room illuminations. In our study, the

data set consists 221 subjects. Among 221 subjects, 152 subjects were diagnosed with the

Homozygous Sickle Cell Anemia (HbSS), 69 subjects were at a healthy status. Fingernail

images of total 221 subjects were obtained. After manually selecting regions of interest,

color data were extracted in RGB color space with 51× 51 pixel matrix. Figure 2.1 shows

the fingernail image and the extracted color data. Finally there were RGB color data

with 51× 51 pixel matrix of 221 subjects including 152 anemia subjects and 69 healthy

subjects.
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Figure 2.1: Fingernail images collected in Mannio et al. [1]’s study. Color data were
extracted in RGB color space with 51× 51 pixel matrix.

2.2 Methods

The fundamental concept behind clustering is that given a set of objects, objects within

a cluster are more similar to each other than to those in other clusters. This concept

lead to different measurements of similarity and dissimilarity within and between clusters.

Our study focuses on discriminating anemia cluster and control cluster, which requires

quantifying class separability in the respective feature space. In our study, we utilize three

methods to evaluate class separability in different color spaces. The first is metrics based

on the comparison between between-cluster sum of squares and within-cluster sum of

squares. [11]. The second is applying clustering methods to mixed data set and comparing

performance of these clustering methods in different color spaces. The third is using Lasso

regression model and calculating the minimum square error (MSE) of the model in each

color space.
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2.2.1 Univariate Case

Suppose that we observe a random univariate variable xi1, i = 1, ...,m1 of sample size m1

and xi2, i = 1, ...,m2 of sample size m2. The similarity within a cluster of size m1 and m2

can be summarized as within-cluster sum of squares. That is,

dwithin =
2∑
i=1

mi∑
j=1

(xij − xi)2

Within-cluster sum of squares examines the error variation or variation of individual

scores around each group mean. The deviation between two clusters can be summarized

as between-cluster sum of squares, that is

dbetween =
2∑
i=1

mi(xi − x)2

Between-cluster sum of squares implies how center of one group is away from the overall

mean. The ratio within-cluster sum of squares to between-cluster sum of squares provides

the extent to which two clusters are dissimilar while accounting for similarity within the

cluster.

Ratio(withintobetween) =
dwithin
dbetween

When the subjects within a group are close to each other and far from subjects of the

other group, within-cluster sum of squares becomes lower and between-cluster sum of

squares becomes larger. Then the ratio of within-cluster sum of squares to between-cluster

sum of squares becomes lower. Therefore, lower values of this ratio indicates that clusters

are very well separated to each other.

2.2.2 Multivariate Case

Suppose that a random vector X = [X1, ..., Xp]
′ of p × 1 is observed. Define E(X) =

µp×1,var(X) = Σp×p. Then the variance-covariance matrix is defined as the following
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p× p matrix:

Σ = cov(X) =



var(X1) cov(X1, X2) · · · cov(X1, Xp)

cov(X2, X1) var(X2) · · · cov(X2, Xp)

...
... . . . ...

cov(Xp, X1) cov(Xp, X2) · · · var(Xp)


Suppose X1, ..., Xm observations are considered. The sample mean is

X =
m∑
k=1

Xk

and sample variance-covariance matrix is

S1 =
1

m− 1

m∑
i=1

(Xi −X)(Xi −X)
′

Consider two sample case. Let Xi1, i = 1, ...,m1 be a vector of p× 1,observation from a

sample of size m1 and Xi2, i = 1, ...,m2 be a vector of p× 1, observation from a sample

of size m2. Let Pk = mk

m1+m2
, k = 1, 2, sample mean and estimator of variance-covriance

matrix is given by

Xk =

mk∑
i=1

Xik, k = 1, 2

and

Sk =
1

mk − 1

mk∑
i=1

(Xik −Xk)(Xik −Xk)
′

Then within-clsuter sum of squares is defined as

Swithin =
2∑

k=1

PkSk

where Sk is the variance-covariance matrix for class k, k = 1, 2 here we can use trace[Swithin]

as a measure of the total within variance of the features.
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The between-cluster sum of squares is defined as

Sbetween =
2∑

k=1

Pk(Xk −X)(Xk −X)
′

where X is the global mean vector, that is

X =
2∑

k=1

PkXk

Usually trace[Sbetween] is a measure of the average distances of the each class mean from

the global value. Based on the matrix above, a number of class-separability measures are

built around them. Our study used two main measures which are defined as following:

metric1 =
trace[Swithin]

trace[Sbetween]

Metric1 takes small values when samples of each class are well clustered around their class

mean and the clusters of the different classes are well separated.

metric2 = trace[Swithin
−1Sbetween]

Metric2 takes large values when samples of each class are well clustered around their class

mean and the clusters of the different classes are well separated. Since these metrics are

symmetric positive definite, their eigenvalues are positive. The trace is equal to the sum

of eigenvalues, while the determinant is equal to their product, this leads to

metric2 = trace[Swithin
−1Sbetween] =

d∑
i=1

λi

where λ1, ..., λd are the eigenvalues of trace[Swithin−1Sbetween]. In our study, smaller

metric1 and larger metric2 are desirable for better separation between anemia group and

control group.
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2.2.3 Color Space Transformation

In order to determine which transformation of RGB (Red, Green, Blue) data would produce

the best separation among anemic and control group, We make color space transformation

to transform RGB (Red, Green, Blue) data to 6 other color spaces including NRGB

(Normalize Red, Green, Blie) color space, HSI (Hue, Saturation, Intensity) color space,

YUV (Luma, Blue projection, Red projection) color space, YIQ (Luma, Chrominance

information, Chrominance information) color space, CIEXYZ (CIE Red, Green, Blue)

color space and CIELAB [9] color space.

NRGB Color Space

We use following transformation formula to transform RGB data to NRGB space:

r =
R

R +G+B

g =
G

R +G+B

b =
B

R +G+B

NRGB space can be viewed as normalizing the RGB (Red, Green, Blue) values. It is

a simple and effective way to get rid of distortions caused by lights and shadows in an

image.

HSI Color Space

To convert RGB color space to HSI space, we utilized following transformation formula:

H =


arcos( (R−G)+(R−B)

2
√

(R−G)2+(R−B)(G−B)
) , G > B

2π − arcos( (R−G)+(R−B)

2
√

(R−G)2+(R−B)(G−B)
) , G ≤ B

S = 1− 3

R +G+B
min(R,G,B)

I =
R +G+B

3
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. HSI space represents color with three components: hue(H), saturation(S), intensity(I)

and can be viewed as transforming the points in the RGB color to a cylindrical coordinate

system.

YUV Color Space

We use following transformation formula to transform RGB data to YUV space:

Y = 0.229R + 0.587G+ 0.114B

U = 0.492(B − Y )

V = 0.877(R− Y )

YUV space represents color with one luma component(Y) and two chrominance components

which is U(blue projection) and V(red projection) respectively.

YIQ Color Space

We use following transformation formula to transform RGB data to YIQ space:

Y = 0.299R + 0.587G+ 0.114B

I = 0.596R− 0.275G− 0.321B

Q = 0.212R− 0.523G+ 0.311B

YIQ color space is used by the NTSC color TV system. It has Y component which

represents the luma information and I and Q component which represents the chrominance

information.

CIEXYZ Color Space

We use following transformation formula to transform RGB data to CIEXYZ space:

X =
1

0.17697
(0.49R + 0.31G+ 0.2B)
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Y =
1

0.17697
(0.177R + 0.812G+ 0.011B)

Z =
1

0.17697
(0.01G+ 0.99B)

CIELAB Color Space

We uitilize following transformation formula to transform CIEXYZ color space to CIELAB

color space:

L∗ = 116f(
Y

Yn
)− 16

a∗ = 500(f(
X

Xn

)− f(
Y

Yn
))

b∗ = 200(f(
Y

Yn
)− f(

Z

Zn
))

where t = X
Xn
, Y
Yn
, or Z

Zn
:

f(t) =


3
√
t ift > δ3

t
3δ3

+ 4
29

otherwise

δ =
6

29

X,Y,Z describe the color simulus considered and Xn,Yn,Zn describe a specified white

achromatic reference illuminant [12]. For Standard illuminant D65 [13]:

Xn = 85.0489, Yn = 100, Zn = 108.8840

2.2.4 Statistical Analysis

We employ three methods for measuring separability of anemia and control subjects in

different color spaces.

We separate data set consisting of 221 subjects to two groups. The first is case group which

includes 152 subjects who are diagnosed with who were diagnosed with the Homozygous

Sickle Cell Anemia (HbSS). The second is control group includes 69 healthy subjects. We

vectorize each subject using 51× 51 and get a 2601× 1 vector. Actually we have 51× 51
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for three coordinates and get a 2601× 3 matrix.

Method1:

Suppose X1 = [X11, X21, X31]
′ is a random vector for case group and X2 = [X12, X22, X32]

′

is a random vector for control group. X1k, k = 1, 2 represents red color, X2k, k = 1, 2

represents green color, X3k, k = 1, 2 represents blue color. Then the mean vector of

Xk, k = 1, 2 can be computed as

Xk =


E(X1k)

E(X2k)

E(X3k)

 k = 1(anemia), 2(control)

The variance-covariance matrix of each vector can be computed as

Sk = cov(Xk) =


var(X1k) cov(X1k, X2k) cov(X1k, X3k)

cov(X2k, X1k) var(X2k) cov(X2k, X3k)

cov(X3k, X1k) cov(X3k, X2k) var(X3k)

 , k = 1, 2

Let Pk = mk

m1+m2
, k = 1, 2, P1 is equal to 0.688 and P2 is equal to 0.312. Then within-cluster

sum of squares can be computed as

Swithin =
2∑

k=1

PkSk

where Sk is the variance-covariance matrix for class k, k = 1, 2

Between-cluster sum of squares can be computed as

Sbetween =
2∑

k=1

Pk(Xk −X)(Xk −X)
′

where X is the global mean vector, that is

X =
2∑

k=1

PkXk
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Then metric1 = trace[Swithin]
trace[Sbetween]

and metric2 = trace[Swithin
−1Sbetween] can be calculated.

Bootstrap Method

In order to dirive 95% confidence interval of the metric1 and metric2, we apply Bootstrap

method [14]. By resampling observations with replacement 1000 times, 95% confidence

interval are presented for metric1 =
trace[Swithin]

trace[Sbetween]
and metric2 = trace[Swithin

−1Sbetween].

Method2:

Clustering

After measuring the distance between anemia cluster and healthy cluster under six color

spaces, we combine anemia cluster and healthy cluster together. Now the whole data set

consists of 221 subjects without anemia information. We apply three clustering methods

including K-means Algorithm, discriminative functional mixture model (funFEM) and the

K-mean alignment for curve clustering (fdakma) to the whole mixed data and evaluate

the accuracy, sensitivity and specificity of these algorithms with respect to the two groups.

In K-means clustering, given a data set with n points in l-dimensional space Rl and a set

of k points in Rl, we need to minimize the mean squared distance from each point to the

closest center of this point [15,16]. The discriminative functional mixture model (funFEM)

is to cluster a set of observed curves x1, ..., xn into K groups in each group the curves are

homogenous [17]. The k-mean alignment for curve clustering (fdakma) performs clustering

and alignment of functional data by means of k-mean alignment [18]. By comparing

clustering results with its true anemia status, we can get sensitivity, specificity, positive

predictive value, negative predictive value and accuracy of each clustering method under

6 color spaces.

Method3:

Lasso Regression Model

In the third method of measuring class separability in different color spaces, we apply Lasso

regression model to the whole data set consisting of 221 subjects with information about

anemia status. We separate the whole data set to training data set (155 observations) and
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testing data set (66 observations). Then we apply Lasso regression model to the training

data set and drive the estimated parameters. Finally we test the Lasso Regression model

using testing data set and calculate the mean squared error (MSE).
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3 Results

Class separability measurement results in RGB, NEGB, HSI, YUV, YIQ, CIEXYZ and

CIELAB color spaces are summarized in Table 3.1. metric1 is the ratio of within-cluster

sum of squares to between-cluster sum of squares. Since within-cluster sum of squares

calculates the deviation of every subject value away from the overall mean within that

particular group and between sum of squares calculate the deviation between two groups,

metric1 takes small value when two groups are well separated. Similarly, metric2 takes

large value when two groups are well separated.

As seen in Table 3.1, metric1 takes smallest value 7.02 (95% CI, 4.22-12.17) in HSI color

space while takes largest value 12 (95% CI, 6.26-30.40) in YUV and YIQ color spaces.

This means HSI color space performs pretty well in separating among anemic and control

groups based on metric1 while YUV and YIQ color spaces appear to be unsatisfactory in

separation among these two groups. Based on metric1, CIEXYZ,CIELAB and RGB color

spaces perform pretty well in separating anemia and healthy groups since their metric1

values are relatively small. The result of NRGB appears to be unsatisfactory since its

value was above 10. Metric2 takes largest value 1.02 (95% CI, 0.82-1.35) in HSI color

space while takes smallest Value 0.6 (95% CI,0.47-0.84) in NRGB color space. This means

HSI color space performs pretty well among anemic and control groups based on metric2

while NRGB produces bad separation among two clusters. Under metric1, NRGB is also

not doing well. CIELAB color performs also pretty well since its metric2 value is 0.78

(95% CI, 5.65-12.99), which is larger than other color spaces except HSI.

Combining the results of two metric1 and metric2, HSI has good performance based on

both metric1 and metric2, which means under HSI color space anemia group and control

group are well separated. NRGB performs poorly in the cluster separation. Interestingly,

RGB color space does relatively well. Also, CIELAB color space performs pretty well too,

which means it did well in producing separation among anemia group and healthy group.
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Table 3.1: Performance of different color spaces in separating
anemia and control groups

metric1 metric2
Color Space mean 95% CI mean 95% CI

RGB 8.92 4.99,19.82 0.76 0.56,1.05
NRGB 10.63 6.33,17.35 0.60 0.47,0.84
HSI 7.02 4.22,12.17 1.02 0.82,1.35
YUV 12.04 6.26,30.40 0.76 0.56,1.05
YIQ 12.04 6.26,30.40 0.76 0.56,1.05
CIEXYZ 8.54 4.71,19.17 0.76 0.56,1.05
CIELAB 8.81 5.65,12.99 0.78 0.58,1.07
Smaller values of metric1 and larger values of metric2 indicate better performance

Figure 3.1: Box plots for metric1 in different color spaces

Figure 3.1 presents box plots for metric1 in RGB, NRGB, HSI, YUV, YIQ, CIEXYZ and

CIELAB color spaces. The distribution of HSI color space is lower than others, however,
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it overlaps with CIELAB, CIEXYZ and RGB color spaces. Also, metric1 in HSI color

space is significantly smaller than NRGB, YIQ and YUV color space. Figure 3.1 gives us

more intuitive understanding that HSI, RGB, CIEXYZ and CIELAB color spaces produce

well separation among case and control class while YUV, YIQ and NRGB color spaces

produce least separation among case and control groups.

Figure 3.2: Box plots for metric2 in different color spaces

Figure 3.2 presents box plots for metric2 in RGB, NRGB, HSI, YUV, YIQ, CIEXYZ and

CIELAB color spaces. The distribution of HSI color space does not overlap with other

color spaces. This gives us information that HSI has the best performance in producing

separation among anemia and healthy groups.

Table 3.2 shows the performance of K-means cluster model in 7 different color spaces

( accuracy,sensitivity, specificity) with the whole data set. The whole data set consists

of 221 subjects without information about anemia status. Then K-means algorithm is
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applied to the mixed data set. With regard to the accuracy, K-means algorithm has the

highest accuracy value 0.64 (95% CI,0.64-0.65) in HSI and CIEXYZ color spaces. The

accuracy values of k-means algorithm in RGB is also pretty high as its value is above

0.60. With regard to the sensitivity, RGB color space has the highest value 0.68 (95% CI,

0.64-0.74). The sensitivity of HSI color space is 0.66 (95% CI,0.64-0.65) and the sensitivity

of CIELAB color space is 0.67 (95% CI, 0.67-0.68), which also indicate good performance

of these two color spaces. With regard to the specificity, the value of HSI color space is

0.64 (95% CI,0.64-0.65) and the value of CIEXYZ color space is 064 (95% CI, 0.64-0,65),

which is the highest specificity value among all color spaces.

Table 3.2: Accuracy, sensitivity and specificity of the k-means clustering method
under different color spaces

ACC SEN SPE
Color Space mean 95% CI mean 95% CI mean 95% CI

RGB 0.63 0.60,0.64 0.68 0.64,0.74 0.60 0.54,0.64
NRGB 0.60 0.60,0.60 0.63 0.62,0.63 0.48 0.47,0.48
HSI 0.64 0.64,0.65 0.66 0.65,0.67 0.64 0.64,0.65
YUV 0.60 0.60,0.60 0.64 0.63,0.64 0.59 0.59,0.60
YIQ 0.60 0.60,0.60 0.64 0.64,0.65 0.59 0.59,0.60
CIEXYZ 0.64 0.64,0.65 0.65 0.64,0.65 0.64 0.64,0.64
CIELAB 0.60 0.60,0.61 0.67 0.67,0.68 0.57 0.57,0.57
ACC: Accuracy; SEN: Sensitivity; SPE: Specificity

Table 3.3 shows the performance of the discriminative functional mixture model (funFEM)

in 7 different color spaces (accuracy, sensitivity, specificity) with the whole data set. With

regard to the accuracy, funFEM algorithm has the highest accuracy value 0.67 (95%

CI,0.66-0.67) in HSI color space. The accuracy values of k-means algorithm in RGB and

CIEXYZ are also pretty high as their values are above 0.65. With regard to the sensitivity,

YUV color space has the highest value 0.68 (95% CI, 0.68-0.68). The sensitivity of HSI

color space is 0.66 (95% CI,0.65-0.66), the sensitivity of CIELAB color space is 0.65

(95% CI, 0.65-0.66), the sensitivity of CIEXYZ color space is 0.65 (95% CI, 0.65-0.65),

the sensitivity of RGB color space is 0.64 (95% CI,0.63-0.64), which also indicate good

performance of these color spaces. With regard to the specificity, HSI color space has the
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best performance with value 0.68 (95% CI,0.67-0.68). RGB, CIEXYZ and CIELAB color

spaces also perform well since their specificity is above 0.65.

Table 3.3: Accuracy, sensitivity and specificity of the discriminative functional
mixture model (funFEM) under differnt color spaces

ACC SEN SPE
Color Space mean 95% CI mean 95% CI mean 95% CI

RGB 0.66 0.66,0.67 0.64 0.63,0.64 0.66 0.66,0.66
NRGB 0.53 0.52,0.53 0.51 0.51,0.51 0.55 0.54,0.55
HSI 0.67 0.66,0.67 0.66 0.65,0.66 0.68 0.67,0.68
YUV 0.65 0.65,0.66 0.68 0.68,0.68 0.64 0.64,0.65
YIQ 0.63 0.62,0.63 0.61 0.61,0.61 0.64 0.64,0.65
CIEXYZ 0.66 0.65,0.67 0.65 0.65,0.65 0.66 0.66,0.67
CIELAB 0.65 0.65,0.65 0.65 0.65,0.66 0.67 0.66,0.67
ACC: Accuracy; SEN: Sensitivity; SPE: Specificity

Table 3.4 shows the performance of the k-mean alignment for curve clustering (fdakma)

in 7 different color spaces (accuracy, sensitivity, specificity) with the whole mixed data

set. With regard to the accuracy, fdakma algorithm has the highest accuracy value 0.65

(95% CI,0.64-0.65) in HSI color space, which indicates good performance of HSI color

space. With regard to the sensitivity, HSI color space has the highest value 0.75 (95% CI,

0.73-0.76). The performance of RGB color space is also pretty good since its sensitivity is

0.72 (95% CI,0.70-0.73). With regard to the specificity, the value of HSI color space is

0.52 (95% CI,0.51-0.52), which is the highest specificity value among all color spaces..

Table 3.4: Accuracy, sensitivity and specificity of the k-mean alignment for curve
clustering(fdakma) under different color spaces

ACC SEN SPE
Color Space mean 95% CI mean 95% CI mean 95% CI

RGB 0.52 0.51,0.52 0.72 0.70,0.73 0.42 0.41,0.45
NRGB 0.49 0.48,0.51 0.52 0.52,0.52 0.48 0.47,0.48
HSI 0.65 0.64,0.65 0.75 0.73,0.76 0.52 0.51,0.52
YUV 0.58 0.58,0.59 0.65 0.65,0.65 0.46 0.45,0.46
YIQ 0.58 0.57,0.59 0.64 0.63,0.64 0.46 0.46,0.46
CIEXYZ 0.57 0.56,0.57 0.64 0.63,0.64 0.45 0.45,0.45
CIELAB 0.58 0.57,0.58 0.68 0.68,0.68 0.46 0.45,0.47
ACC: Accuracy; SEN: Sensitivity; SPE: Specificity
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Table 3.5: Mean squared error (MSE) of Lasso regression model (n=221)

Color Space MSE

RGB 0.096
NRGB 0.123
HSI 0.085
YUV 0.091
YIQ 0.109
CIEXYZ 0.100
CIELAB 0.094

Table 3.5 shows the performance of the Lasso regression model in 7 different color spaces.

It shows that in HSI color space, Lasso regression model has the smallest MSE 0.085, which

means the Lasso regression model performs best in HSI color space. In YUV,CIELAB and

RGBcolor space, the Lasso regression model also performs well with MSE 0.091, 0.094

and 0.096. Result shows that NRGB’s performance is unsatisfactory.

The over mean by pixels for each color space for anemia and control groups are ploteed in

Figure A0.1, Figure A0.2, Figure A0.3, Figure A0.4, Figure A0.5, Figure A0.6, Figure

A0.7. HSI color space shows clear separation between cases and controls compared to

other color spaces.
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4 Discussion

In the study, we evaluate the separability of anemia and healthy groups in RGB, NRGB,

HSI, YUV, YIQ, CIEXYZ and CIELAB color spaces by three methods. The first method

is based on comparison between within-cluster sum of squares and between-cluster sum of

squares. The first method indicates that HSI has the best separation performance based

on both metric1 and metric. The second method is applying three clustering methods

(k-means,funFEM,fdakma) to the mixed data set without information about anemia

status. Results show that all the three clustering algorithm perform well in HSI color

space. Furthermore, the performance of RGB, CIEXYZ and CIELAB color spaces appear

to be reasonable. The third method involves Lasso regression model. Results shows that

in HSI color space Lasso regression model has minimum MSE, which indicates better

performance of HSI color space. Meanwile, RGB and CIELAB color spaces also show

good results. All the three methods combine together indicates that HSI color space

produce better sepatation among anemia and healthy groups than any other color space.

There are some limitations of our study. Our study assumes that color data are capable of

separating anemia and healthy groups. This might be a reasonable assumption given that

WHO recommends color can produce separation between anemia and healthy subjects.

In our study, anemia patients may have other chronic diseases. This may confound the

results.

Given separation information of these color spaces, we can further improve non-invasive

detection device using HSI color data. Also, for classification problems which involve

image analyses, HSI color space transformation could be used for better classification.
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Appendix

Table A0.1: Positive predictive value and negative
predictive value of the k-means clustering method
under different color spaces

PPV NPV
Color Space mean 95% CI mean 95% CI
RGB 0.44 0.42,0.45 0.81 0.80,0.82
NRGB 0.43 0.43,0.44 0.89 0.89,0.89
HSI 0.45 0.45,0.46 0.81 0.80,0.81
YUV 0.41 0.41,0.41 0.78 0.78,0.79
YIQ 0.41 0.41,0.42 0.78 0.78,0.79
CIEXYZ 0.45 0.45,0.46 0.80 0.80,0.80
CIELAB 0.41 0.41,0.42 0.79 0.79,0.80
PPV: Positive predictive value; NPV: Negative predictive value

Table A0.2: Positive predictive value and negative
predictive value of the discriminative functional
mixture model (funFEM) under differnt color spaces

PPV NPV
Color Space mean 95% CI mean 95% CI
RGB 0.46 0.46,0.47 0.80 0.80,0.80
NRGB 0.34 0.34,0.34 0.71 0.71,0.72
HSI 0.52 0.50,0.53 0.85 0.84,0.85
YUV 0.46 0.46,0.47 0.82 0.82,0.82
YIQ 0.43 0.43,0.43 0.78 0.78,0.79
CIEXYZ 0.47 0.47,0.47 0.81 0.81,0.82
CIELAB 0.46 0.46,0.46 0.80 0.80,0.81
PPV: Positive predictive value; NPV: Negative predictive value

Table A0.3: Positive predictive value and negative
predictive value of the k-mean alignment for curve
clustering(fdakma) with under different color spaces

PPV NPV
Color Space mean 95% CI mean 95% CI
RGB 0.48 0.46,0.49 0.76 0.75,0.76
NRGB 0.32 0.32,0.33 0.70 0.68,0.71
HSI 0.49 0.47,0.50 0.83 0.82,0.83
YUV 0.46 0.45,0.46 0.77 0.76,0.78
YIQ 0.48 0.48,0.49 0.78 0.78,0.78
CIEXYZ 0.49 0.47,0.50 0.78 077,0.78
CIELAB 0.49 0.49,0.49 0.79 0.78,0.79
PPV: Positive predictive value; NPV: Negative predictive value
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Figure A0.1: Heatmaps for the mean color data at each pixels for anemia and control
groups in RGB color space.

Figure A0.2: Heatmaps for the mean color data at each pixels for anemia and control
groups in NRGB color space.
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Figure A0.3: Heatmaps for the mean color data at each pixels for anemia and control
groups in HSI color space.

Figure A0.4: Heatmaps for the mean color data at each pixels for anemia and control
groups in YUV color space.
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Figure A0.5: Heatmaps for the mean color data at each pixels for anemia and control
groups in YIQ color space.

Figure A0.6: Heatmaps for the mean color data at each pixels for anemia and control
groups in CIEXYZ color space.
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Figure A0.7: Heatmaps for the mean color data at each pixels for anemia and control
groups in CIELAB color space.


