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Abstract 

 
Early-life exposure to persistent organic pollutants and health outcomes in common 
bottlenose dolphin (Tursiops truncatus) calves: a comparison of weighted exposure 

indices 
 

By Jing Si 
 

 
Objective: The aim of this study is to evaluate the association of maternal exposure to 
POPs with five health outcomes (calf length, calf weight, and three thyroid hormones) in 
bottlenose dolphin calves, comparing results from regression models using each of these 
methods of weighting POP exposures: simple sums, principal component analysis (PCA), 
and weighted quantile sum (WQS). 
 
Method: Data for this study were from a research initiated in 1970 in Sarasota Bay, 
Florida by the Sarasota Dolphin Research Program. Complete exposure data including 69 
different POPs in dolphin blubber from four moms and 32 calves, including 53 
polychlorinated biphenyls (PCBs) congeners, five polybrominated diphenyl ethers 
(PBDEs) congeners, four organochlorine pesticides (OCPs) and five 
Dichlorodiphenyltrichloroethane (DDT) compounds. Health outcomes of interest are calf 
length, calf weight and three thyroid hormones of calves including triiodothyronine (T3), 
thyroxine (T4), and free T4 (fT4). We performed generalized linear regression, principal 
component analysis (PCA) and sparse principal component analysis regression and 
weighted quantile sum (WQS) regression to assess the associations. Root-mean-square 
error (RMSE) of each model were calculated to evaluate the model fit. 
 
Results: Higher concentrations of total PCBs were positively and significantly associated 
with calf length and calf weight regardless of controlling for parity and calf age in WQS 
with associations constrained to be positive. We did not find an association between 
maternal exposure to POPs and any of the five health outcomes using simple sums 
method and PCA method with the statistically significant threshold of 0.0008. WQS 
method (positive or negative) had the root-mean-square error (RMSE) for all the models. 
 
Conclusion: This study showed association between exposure to POPs, especially PCBs, 
with health endpoints of dolphin calves. Models using WQS showed stronger association 
than the simple sums and PCA methods, but the estimation is likely to be unstable due to 
small sample size.  
 
Keywords: marine biology; ecotoxicology; One Health; infant health; epidemiologic 
methods 
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Introduction  

Persistent organic pollutants (POPs) persist long after their release into the 

environment and are widely distributed in the environment (Stockholm Convention). 

Most POPs are lipophilic and hydrophobic (Jones & De Voogt, 1999). When POPs enter 

biota, they tend to be stored in fat tissues and can be bioaccumulated and biomagnified 

through the food chain (Jones & De Voogt, 1999; World Health Organization, 2010). As 

a result, species at higher trophic levels tend to have higher concentrations of POPs in 

their bodies. Marine mammals, especially those such as cetaceans (including whales, 

dolphins and porpoises) that feed at higher trophic levels, have a large amount of fat 

tissue (blubber) that can store many kinds of environmental chemicals, and can accrue 

substantial body burdens of POPs (Yordy et al., 2010).  

Common bottlenose dolphins (Tursiops truncatus) are apex predators (Balmer et 

al., 2011), and they have long lifespans and often inhabit long-term, year-round home 

ranges (Wells et al., 2004). As such, they are excellent sentinel species for coastal 

contamination as well as mammalian toxicological models for understanding the health 

implications of exposure to POPs. Dolphins can thus be used to assess not only the 

potential impacts of exposure to POPs on the health of their own species, but also give 

warning about the potential impacts on human health and the broader health of the whole 

coastal ecosystem ((Bossart, 2011; Wells et al., 2004). 

Although veterinary environmental epidemiology in dolphin populations is 

valuable, conducting exposure and health assessments in dolphin populations is 

challenging. The process of sample collection from dolphins in the open ocean is 

logistically difficult (Yordy et al., 2010), and following dolphins over time to identify 

pregnant females and resulting offspring is even more complex and expensive. The 
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consequently limited sample size of longitudinal dolphin population surveys complicates 

the epidemiological assessment of individual contaminants in relation to dolphin health 

endpoints. It is possible to glean insights from small sample size cohorts, but care must 

be taken when modeling the data and interpreting the findings (Octaria, Rebeiro, & 

Kainer, 2019). 

The impact of POPs on the health of dolphin calves is of interest because calves 

may have substantial POP exposures. POPs can be transferred to offspring through 

placenta and breast milk (USEPA). Wells et al., (2005) found that the concentrations of 

POPs in females decline with successful calf rearing, while the concentrations in males 

will continue to increase throughout their lifetime. As females depurate the chemical load 

to their offspring, the first-born calves tend to receive the majority of their mother’s 

original chemical load. Cockcroft, De Kock, Lord, & Ross, (1989) found that first-born 

calves of bottlenose dolphins receive almost 80 percent of the residue load of 

organochlorines from their mothers, which leads to a higher risk of negative health 

impacts on the calves. 

Exposure to POPs such as organochlorine pesticides (OCPs), polychlorinated 

biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), or 

dichlorodiphenyltrichloroethane (DDT) have been associated with multiple adverse 

health effects in vivo, including reproductive disorders, immune and endocrine system 

disruption, and some types of cancer (Stockholm Convention; USEPA; Yordy et al., 

2010). Animal experiments and human studies both suggest that exposure to POPs can 

disrupt thyroid homeostasis (Berg et al., 2017; Boas, Feldt-Rasmussen, & Main, 2012); 

POPs have been shown to interfere with the regulation of thyroid hormones in marine 

mammals such as long-finned pilot whales (Globicephala melas) (Hoydal et al., 2016). 
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Therefore, thyroid hormones such as triiodothyronine (T3) and thyroxine (T4) are of 

interest as possible targets of POP toxicity in dolphin calves.  

Studying the associations between multiple POP exposures and calf health in a 

small sample cohort is challenging, and requires adoption of appropriate statistical 

approaches (Octaria et al., 2019) such as suitable dimension reduction techniques 

(Johnstone & Lu, 2009; Y. Ma & Zhu, 2013).  

Summing the total amount of each chemical within a class is a common way to 

consolidate data on multiple POPs into a single exposure index. Using this method, the 

individual chemicals are given equal weight, so the sum is a reflection only of their 

observed concentrations. This has several limitations. First, simply adding the 

concentrations of chemicals in a class assumes similar biologic activity across individual 

chemicals within the class, which may be biologically implausible. Second, there are 

often a greater number of chemicals in a class than can be feasibly measured in a study 

(e.g., PCBs typically have about 100 measurable congeners in marine mammal samples) 

and so an index based on an arbitrary subset of these may lack content validity as a 

measure of overall POP exposure patterns (Lawshe, 1975; Mokkink et al., 2010); Third, 

not all the individual chemicals included in the sum may actually be associated with the 

outcome of interest, and the association observed for the summed measure could be 

driven by some particular individual chemicals. Therefore, using the simple summed 

index in linear regression may add measurement error regarding the etiologically relevant 

exposure, and potentially reduce study power when a common exposure is related to the 

health outcome (de Bakker et al., 2005), attaching greater weight to chemicals that more 

closely correspond to the toxic exposures. 
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 Principal components analysis (PCA) is a multivariate data analysis technique that 

transforms measured data on individual chemical biomarkers into a smaller number of 

uncorrelated variables while maximizing the variances of each chemical (Veyhe et al., 

2015).Individual chemicals’ contribution to the first principal component (PC)’s score is 

weighted based on their contribution to the maximum variance between study units (e.g., 

dolphins). PCs are calculated from the correlation or covariance between input (e.g., 

exposure) variables, regardless of their relationships to the outcome variables (Carrico, 

Gennings, Wheeler, Factor-Litvak, & statistics, 2015). Although PCA is widely used in 

high-dimensional data (S. Ma & Dai, 2011),PCA is limited when the number of variables 

is much larger than the number of observations (Johnstone & Lu, 2009). Sparse principal 

components analysis (SPCA) handles this data sparsity issue by selecting a subset of 

variables with largest variance, while constraining the majority of the variables’ loadings 

to zero ((Erichson et al., 2018; Johnstone & Lu, 2009). 

 Weighted quantile sum (WQS) regression is an alternative approach for 

dimension reduction of exposure data that also incorporates data on the outcome of 

interest. In WQS regression, several chemicals with effects on an outcome that are 

assumed to be in the same direction (all effects positive or all effects negative), are used 

to calculate a body burden index (Czarnota, Gennings, Colt, et al., 2015; Czarnota, 

Gennings, & Wheeler, 2015). The individual chemicals are weighted into an index that 

allows for simultaneous estimation of a ‘mixture’ effect on the outcome in the WQS 

regression model, and identification of relatively important contributors to that overall 

effect estimated in the WQS regression model.  

The objective of this study is to evaluate the association of maternal exposure to 

POPs with five health outcomes (calf length, calf weight, and three thyroid hormones) in 
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bottlenose dolphin calves, comparing results from regression models using each of these 

methods of weighting POP exposures: simple sums, PCA, and WQS. 

 

Methods: 

Study population and analytic cohort 

Data are from a cohort study initiated in 1970 on a multi-decadal, multi-

generational resident community of individually recognizable bottlenose dolphins in 

Sarasota Bay, Florida by the Sarasota Dolphin Research Program, spanning up to five 

concurrent generations and including individuals up to 67 years of age (Wells, 2014; 

Yordy et al., 2010). Selected dolphins in small groups were encircled with a 500m-long 

seine net in shallow water (<2m deep) by a team of >70 trained handlers, biologists, and 

veterinarians (Wells et al., 2004). Individual dolphins were brought aboard a specially 

designed 9m-long veterinary processing vessel for a variety of samples and 

measurements. Full-thickness, 3 cm x 5 cm wedges of skin/blubber were obtained 

surgically under local anesthesia from a standard site approximately 10 cm caudal to, and 

10 cm below, the trailing edge of the dorsal fin (Wells et al., 2005). Wedges were 

subsampled for different analyses before being placed in cryovials in liquid nitrogen for 

transport, and in a -80◦ C freezer for storage, prior to analyses by National Institute of 

Standards and Technology (NIST).   

Blubber samples were analyzed by NIST using methods presented in detail 

elsewhere and summarized here (Litz et al., 2007).  Briefly, from 0.5 g to 1 g of blubber 

was macerated while frozen and then added to a pressurized fluid extraction (PFE, ASE 

200 Thermo Scientific) and extracted with dichloromethane.  Prior to extraction a series 

of mass-labeled PCB congeners and organochlorine pesticides were added to the sample 
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as internal standards.  Sample extracts were reduced in volume and then cleaned up by 

size exclusion chromatography followed by solid phase extraction.  Prior to cleanup, a 

weighed portion of the extract was taken and for gravimetric lipid determination.  Final 

extracts were analyzed by capillary gas chromatography mass spectrometry (GC/MS; 

Agilent 6890/5973) for 85 PCB congeners, 2,4’- and 4,4’ DDD, DDE and DDT, cis- and 

trans-chlordane and nonachlor, mirex, hexachlorobenze, hexachlorocyclohexanes, 

dieldrin and 26 PBDE congeners.  Concentrations were determined using the method of 

internal standards based on a six-point calibration curve with individual calibrants 

processed as if they were samples.   Calibration mixtures were prepared from NIST 

Standard Reference Materials (SRMs).  At least one blank and one aliquot of SRM 1945 

Organics in Whale Blubber were processed with each batch of samples.  The limit of 

detection was determined as the mean blank value plus three standard deviations. 

In this study, the exposures of interest are a large number of POPs (p=69) that are 

divided into four classes: PCBs (p=53), PBDEs (p=5), DDT (p=5) and OCPs (p=4), and 

the health outcomes of interest are three thyroid hormones of calves including 

triiodothyronine (T3), thyroxine (T4) and free thyroxine (fT4), as well as calf length and 

calf weight.  

Since females would give the majority of their chemical burden to their first-born 

calf, and dolphins up to 2 years old are getting most of their nutrition from their mothers 

(Wells et al., 2005).we used exposure data from sampled females (two from primiparous 

females, prior to calving, two from pregnant females) and calves sampled 0-2 years of 

age. Using both maternal exposure (n=4) and postnatal exposure (n=35) data, we had 

early-life exposure data for a cohort of 39 calves. Samples with complete exposure and 

outcome data were included in the present analysis (n=36), more specifically, three 



 7 

calves’ samples were excluded due to missing data on PCB15, PCB56, PCB92, PCB119, 

PCB130, PCB137, PCB146, PCB157, PCB163, PCB167, PCB172, PCB174, PCB176, 

PCB178, PCB185, PCB189 and PCB197. Outcome data are from 36 calves (including 32 

original calves and four resulting calves from four mothers). 

 

Statistical analysis 

Data Pre-Processing 

All concentrations of chemicals below the limit of detection (LOD) were 

deterministically imputed as LOD/√2. Specific POP chemicals were excluded from the 

analysis if > 30% of the dolphin samples were below the LOD for that chemical. 53 out 

of 55 individual PCBs congeners (PCB 18, 28+31, 44, 49, 52, 66, 74, 87, 92, 95, 99, 101, 

105, 110, 118, 119, 128, 130, 137, 138, 146, 149, 151, 153/132, 154, 156, 157, 158, 163, 

167, 170, 172, 174, 176, 177, 178, 180/193, 183, 185, 189, 194, 195, 197, 199, 200, 201, 

202, 203/196, 206, 207, 208, 209), all five PBDEs congeners (47, 99, 100, 153, 154), four 

organochlorine pesticides (cis-chlordane, trans-chlordane, cis-nonachlor, AND trans-

nonachlor), five DDTs (2,4′- and 4,4′-DDE, 2,4′- DDD, 4,4′-DDT and 2,4′-DDT+ 4,4′-

DDD) were detected in more than 70% of the samples and therefore were included in the 

present analyses. 

 

Regression Analysis 

 First, linear regressions were performed using summed PCB, summed PBDE, 

summed organochlorine pesticides and summed DDT as independent variables modeled 

separately for each outcome. Second, PCA were conducted separately for chemicals in 

classes of OCPs, PBDEs and DDT, and the first principal component (PC1) was saved 
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for subsequent regression analysis. SPCA was performed for PCBs, because there were 

more individual PCBs than observations. PC1 from the SPCA of PCBs was multiplied by 

-1 for clarity of interpretation since all nonzero PCB loadings were negative; the resulting 

analytic variable corresponds to increases in PCB exposure. The PC1 for each chemical 

class (or negative PC1 for PCBs) was included as predictor in a separate linear regression 

model fitted to each chemical class-calf outcome pair. Finally, weighted quantile sum 

regressions were performed only with the class of PCBs. The other chemicals were not 

suited for WQS because EQS has a step of bootstrap to select the individual chemicals 

(Carrico et al., 2015), but there are only four or five individual chemicals in the other 

three classes. Since the WQS model constrains the direction of the association between 

the outcome and the WQS index in one direction, both positive and negative WQS 

models were fitted for each outcome. Calf age (continuous) and parity (primiparous, 1 

older calf, and ≥ 2 older calves) were adjusted for in all regression models as 

confounders. 

In WQS models, the mixed variables was ranked in dichotomies (q=2), the 

number of bootstrap samples used in parameter estimation was 50 (b=50), to validate the 

model, we set validation = 0, which means the test dataset was used as validation set. 

 

Evaluation of Model Performance 

To evaluate how well each model fit, histogram of residuals from each model 

were graphed. Additionally, Root-mean-square error (RMSE) of each model were 

calculated. 
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Software 

  All statistical analyses were performed using Rstudio (version 1.1.463 1). R 

packages used for analyses included “sparsepca”  (N. Benjamin Erichson, 2018) and 

“gWQS” (Stefano Renzetti & 2018  

) 

Results: 

Contamination data were reported as wet-mass normalized (Appendix Table S1). 

PCB153+132 had the highest median concentration among the PCBs (3, 010 ng/g), 

followed by PCB 138 (1,132 ng/g) and PCB 187 (987 ng/g). PCB 200 has the lowest 

median concentration among the PCBs (6.85 ng/g). PCB 70 and PCB 56 were excluded 

from this study due to a rate of detection below 70% in all 43 samples. BDE 47 and 

BDE153 have the highest (408 ng/g) and lowest (9.87 ng/g) median concentration among 

the PBDEs, respectively. The highest median concentration of organochlorine pesticides 

was trans-nonachlor (3,737 ng/g) and the lowest was trans-chlordane (168 ng/g). Among 

five DDT chemicals, 4,4'-DDE has the highest median concentration (5, 766 ng/g), and 

2,4'-DDD has the lowest median concentration (26.0 ng/g).  

Correlations between individual chemicals within each class are shown in 

Appendix Figures S1 - S4. the intragroup correlations in PCBs had a range from -0.180 

(between PCB 28+31 and PCB 203+196) to 0.994 (between PCB 128 and PCB 138), the 

lowest absolute correlation coefficient was 0.004 between PCB 194 and PCB 28+31. The 

highest correlation coefficient in PBDEs was 0.879 between BDE 153 and BDE 154, the 

lowest correlation coefficient in PBDEs was 0.390 between BDE 100 and BDE 154. The 

strongest correlation among OCPs was between cis.chlordane and cis.nonachlor (r 

=0.972), the weakest correlation among OCPs was between trans.nonachlor and 
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trans.chlordane (r = 0.085). The highest correlation coefficient in DDTs was 0.886 

between 4,4′-DDE and 2,4′-DDT+ 4,4′-DDD, the lowest correlation coefficient in DDTs 

was 0.676 between 2,4′-DDE and 2,4′-DDD.  

 Demographic and health characteristics of the dolphin calves including calf 

length, calf weight, T3, T4, fT4, Parity and calf age are shown in Table 1. The mean 

length of studied calves was 195cm (SD = 10cm), and the mean weight of studied calves 

was 86kg (SD = 14kg). Among the three thyroid hormones, T3 had the largest range from 

0.84ng/ml to 213.00ng/ml and median value of the T3 level was 1.69ng/ml. Among all 36 

samples included in the present analyses, 30 dolphins were 2 years old and 6 dolphin 

calves were 1.5 years old. 

Weights from the simple sums and PCA methods assigned to individual 

chemicals for PCBs (congeners selected by sparse PCA), PBDEs, OCPs and DDTs are 

shown in Table 2. All of the weights assigned in the simple sums method of the 

individual chemicals were equal to 1. PCB-153+132, PCB-138 and PCB-187 comprised 

PC1 for the SPCA, and the weights estimated for those three congeners in PC1 were -

1.10, -0.06 and -0.04. To reorient this axis such that greater PCB exposures corresponded 

to more positive index values, we multiplied these weights by -1. PC1 from PCA of 

PBDEs assigned highest weights to BDE-47 (weight=0.48) and BDE-153 (0.48), 

followed by BDE-99 (0.46), BDE-100 (0.43) and BDE-154 (0.40). PC1 from PCA of 

organochlorine pesticides (OCPs) assigned highest weight to cis-nonachlor (weight = 

0.58) followed by cis-chlordane (0.57), trans-nonachlor (0.56) and trans-chlordane (0.16). 

PC1 from PCA of DDT compounds assigned highest weight to 2,4'-DDT+4,4'-DDD 

(weight = 0.47), followed by 4,4'-DDE (0.46), 4,4'-DDT (0.45), 2,4'-DDE (0.43) and 2,4'-

DDD (0.43). Figure 1 shows the weights of PCBs contributing to the ‘PCB exposure 
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index’ under each method, including the outcome-specific, direction-of-association-

constraint-specific WQS results. 

Associations between POPs and five calf health outcomes are presented in Table 

3 (unadjusted) and Table 4 (adjusted for parity and age). In WQS with associations 

constrained to be positive, PCBs were significantly and positively associated with calf 

length and calf weight. After controlling for parity and calf age, in WQS with 

associations constrained to be positive, PCBs were still significantly associated with calf 

length and calf weight. There were not significant associations between POPs and any of 

the five health outcomes with the simple sums method and PCA method under the 

statistical significance threshold of 0.0008. 

When examining how well the models performed, Appendix Table S2 and 

Appendix Table S3 show the root-mean-square error (RMSE) of each model for each 

chemical class (relevant histograms are also shown in supplement materials). For PCBs, 

models with T3 as the outcome had the highest RMSE among all the five health 

outcomes. Of the three methods applied, WQS method (positive or negative) had the 

lowest RMSE for all the models, more specifically, WQS negative method had the lowest 

RMSE for models with T3 as the outcome and WQS positive method had the lowest 

RMSE for models with the other four outcomes. For the other three chemical classes, 

model fit was similar between the simple sums method and the PCA method. Appendix 

Figures (S5- S29) shows the distribution of residuals in each model by outcome in each 

chemical class. 
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Discussion: 

In this paper, we reported the possible association between maternal exposure to 

four classes of POPs and five health outcomes of dolphin calves with three ways of 

weighting individual chemicals. More specifically, in our results, PCBs were 

significantly and positively associated with calf length and calf weight in WQS with 

associations constrained to be positive. After controlling for parity and calf age, PCBs 

were still significantly associated with calf length and calf weight in WQS with 

associations constrained to be positive. There were not significant associations between 

POPs and any of the five health outcomes with the simple sums method and PCA method 

under the statistical significance threshold of 0.0008. 

Findings from human studies about associations between exposure to POPs and 

birth weight is inconsistent. A cross-sectional study based on a Swedish cohort showed 

prenatal exposure to PCBs was associated with higher birth weight while prenatal 

exposure to PBDEs was associated with lower birth weight (Lignell et al., 2013). A meta-

analysis within 12 European birth cohorts showed PCBs was significantly associated with 

lower birth weight (Govarts et al., 2011). In this study, we found PCBs were significantly 

associated with calf length and calf weight with WQS positive method.  

Several studies have shown that exposure to POPs is associated with the 

disruption of thyroid hormones in cetaceans: Schwacke et al., (2011) found a negative 

association between concentrations of PCBs measured in blubber and T4, fT4 and T3 

levels in bottlenose dolphins from Georgia, USA. Additionally, negative associations 

between PBDEs with fT3, T4 and fT4 were also found in a study of white whales 

(Delphinapterus leucas) from Svalbard, Norway.(G. Villanger et al., 2011). Studies have 

also shown the disruption of thyroid hormones under the exposure to POPs happened in 
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other marine mammals such as walruses, seals and polar bears ((Routti et al., 2010; 

Routti et al., 2019; G. D. Villanger et al., 2011). We did not find any statistically 

significant association between exposure to POPs and calf thyroid hormones. This result 

may be biased since female dolphins that have the highest concentration of POPs burden 

may not be able to successfully reproduce (Alonso Farré et al., 2010). We did not account 

for this competing risk in our analysis. 

The three methods gave different weights on individual chemicals. The simple 

sums method gave every individual the same weight of 1, so the chemicals with higher 

detected concentrations will be weighted more in this method. In PCBs class, PCB 

153+132, PCB 138 and PCB 187 had the top three highest median concentration, so they 

were weighted more in the simple sums methods. These three PCBs congeners were also 

selected by sparse PCA and were included in the first PC that entered the PCA models 

with the same rank of weight, so the coefficient results based on these two methods were 

similar in terms of the direction and significance. Table 2 also showed the weights 

assigned to individual chemicals within PBDEs, OCPs, and DDT class are close to each 

other, which is similar to the weights assigned by the simple sums method, the results of 

these two methods were also similar.  

WQS method gave individual chemicals weights based on each outcome, so for 

each outcome, the weight rank of PCBs was different, which allow us to interfere the 

possible higher toxic individual chemicals to each outcome, and the inference is set in a 

specific direction (positive or negative). Among the three methods, WQS showed higher 

frequencies of statistically significant associations between exposure to POPs and the five 

health outcomes, the simple sums method and PCA method performed similarly with 

regards to the direction and the statistical significance in the associations. Based on our 
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results, WQS method has the lowest RMSE all the models, which indicated WQS method 

provided a stronger association between PCBs and calf outcomes than other methods 

(Carrico et al., 2015). However in this study, we used the entire dataset for WQS rather 

than using a training vs. validation datasets due to a small sample size, and the models 

using WQS were overfitting the data. The estimation of models with WQS might be 

unstable. We also found chemicals in each class were highly correlated with each other 

(see Appendix Figures S1 - S4), which might also decrease the estimation stability of 

the WQS method since a cluster of highly associated individual chemicals tend to have 

lower weights (Carrico et al., 2015). The limitation based on small sample size would 

also affect the estimation stability of models using the simple sums method and PCA 

method. Another limitation of this study is that all the models were only adjusted for 

parity and calves’age, mother’s condition such as mother’s size would also be a 

confounder for the health endpoints of the calves (Robinson et al., 2017). Studies showed 

that the trends of concentration of POPs in the biota is decreasing (Rigét, Bignert, 

Braune, Stow, & Wilson, 2010; Vorkamp, Rigét, Glasius, Muir, & Dietz, 2008),  the 

levels of thyroid hormones will also change on a seasonal basis (Suzuki et al., 2018), 

which indicated that the sample timing could also be a influence factor when study the 

association, we did not account for the sample timing in this present study. 

Statistical methods to analyze exposure to mixtures of environmental toxicants 

such as POPs are of higher concern in environmental health research in recent years 

(Lazarevic, Barnett, Sly, & Knibbs, 2019). The coefficient results from the simple sums 

method is easier to interpret but it gives more weight on the chemicals with higher 

detected concentration, which may not be the most toxic chemicals to the outcome 

(Braun, Gennings, Hauser, & Webster, 2016). The PCA method is known for its 
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reduction of high dimensionality and collinearity of mixtures of data, but it is hard to 

interpret since it is based on the difference of variance of chemicals (Forns et al., 2016). 

This study indicated the difference between WQS with the traditional analysis methods 

but it was effected by the small sample size of current study, which indicated further 

direction for future studies in environmental health and veterinary epidemiology area. 
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Tables  

Table 1. Characteristics of the dolphin calves included in the study 
 

 Mean ± SD Median Range 
Length(cm) 195 ± 10 194 175, 214 
Weight (kg) 86 ± 14 84 62, 121 
T3(ng/ml) 19.48 ± 49.41 1.69 0.84, 213.00 
T4(mcg/dl) 15.76 ± 2.33 15.37 11.71, 22.40 
fT4(ng/dl) 2.91± 0.81 3.16 1.20, 4.13 

Parity 2.7 ± 1.9 2.0 1.0, 8.0 
Calf age 2 ± 0 2.0 1.5, 2 
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Appendix  

Tables 

                        Table S1 Characteristics of POPs included in the study 
 

Compound  Mean ± S.D. 
Media

n Range 
Number of values below LOD 

(%) 
PCB_18 27.77 ± 14.28 28.957 1.414 57.461 3(6.98%) 

PCB_28+31 33.17 ± 17.55 30.639 4.729 80.915 0 
PCB_44 24.98 ± 11.63 25.688 1.653 55.01 0 
PCB_49 73.48 ± 29.43 74.893 6.434 128.545 0 
PCB_52 331.41 ± 248.37 272.88 8.529 1067.63 0 
PCB_56 9.47±5.96 11.55 1.414 20.762 12 (27.91%) 
PCB_66 82.89 ± 29.75 85.861 4.977 145.163 0 
PCB_70 7.13±13.93 1.414 1.414 86.55 23 (53.49%) 
PCB_74 80.45 ± 37.66 89.244 2.546 151.81 0 
PCB_87 24.70 ± 10.74 23.66 1.414 51.14 1(2.33%) 

PCB_92 139.74 ± 109.06 
123.54

2 2.136 548.911 0 

PCB_95 189.06 ± 194.86 
180.50

9 1.414 910.278 10 (23.26%)) 

PCB_99 957.59 ± 746.14 
758.74

2 18.765 3400.39 0 

PCB_101 359.33 ± 152.64 
343.42

3 14.365 811.901 0 

PCB_105 136.25 ± 69.34 
128.93

5 3.242 357.623 0 
PCB_110 19.16 ± 9.06 15.883 3.7 36.088 0 

PCB_118 503.42 ± 255.62 
465.38

9 12.035 1190.15 0 
PCB_119 30.07 ± 19.25 27.509 1.414 103.683 2(4.65%) 

PCB_128 205.53 ± 163.72 
163.45

4 3.161 757.635 0 
PCB_130 65.70 ± 43.26 54.78 1.414 193.745 1(2.33%) 
PCB_137 46.64 ± 35.73 32.555 1.414 122.6 1(2.33%) 

PCB_138 
1475.54 ± 
1281.57 

1132.0
8 23.51 5932.35 0 

PCB_146 441.82 ± 288.64 
371.30

5 8.776 1457.19 0 

PCB_149 618.70 ± 512.72 
517.11

6 14.023 2644.84 0 

PCB_151 250.52 ± 237.03 
185.23

4 4.437 1162.4 0 

PCB_153+132 
3986.80 ± 
3,167.65 

3009.8
1 64.329 

14681.6
2 0 

PCB_154 115.09 ± 74.80  
100.88

1 2.61 323.613 0 
PCB_156 41.18 ± 17.38 42.857 1.453 93.277 0 
PCB_157 19.16 ± 11.66 18.417 1.414 49.1 2(4.65%) 
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PCB.158 92.48 ± 71.22 66.959 1.414 281.443 1(2.33%) 

PCB_163 475.00 ± 367.05 
366.65

2 6.807 1788.19 0 
PCB_167 42.58 ± 22.78 39.939 1.414 97.93 1(2.33%) 

PCB_170 383.08 ± 309.27 
300.49

7 7.104 1254.67 0 
PCB_172 52.12 ± 28.77 45.711 2.811 115 0 
PCB_174 119.24 ± 106.59 86.976 1.604 472.639 0 
PCB_176 28.22 ± 23.62 18.956 1.414 88.836 1(2.33%) 

PCB_177 241.82 ± 207.32 
166.39

9 4.731 952.01 0 

PCB_178 207.62 ± 169.41 
154.93

4 3.93 808.58 0 

PCB_187 
1191.13 ± 

885.34 
987.31

4 26.611 4387.09 0 

PCB_180+193 879.71 ± 690.82 
681.05

4 8.074 2844.18 0 

PCB_183 296.40 ± 223.42 
228.66

6 6.886 913.411 0 
PCB_185 21.61 ± 17.91 14.151 1.414 72.438 2(4.65%) 
PCB_189 14.44 ± 13.26 10.22 1.414 76.2 2(4.65%) 

PCB_194 192.41 
169.99

7 9.854 394.165 0 
PCB_195 44.64 ± 26.83 38.313 1.814 105.84 0 
PCB_197 16.21 ± 9.54 13.546 1.414 40.382 1(2.33%) 

PCB_199 275.33 ± 156.77 
238.58

9 8.569 602.209 0 
PCB_200 8.33 ± 5.72 6.849 1.414 21.273 2(4.65%) 
PCB_201 49.27 ± 27.14 45.225 2.194 106.39 0 

PCB_202 149.17 ± 93.40 
135.63

9 5.853 455 0 

PCB_203+196 299.80 ± 484.50 
208.19

5 13.742 3190 0 
PCB_206 72.48 ± 36.65 66.285 10.906 203.889 0 
PCB_207 12.93 ± 6.74 12.189 1.414 34.3 1(2.33%) 
PCB_208 42.22 ± 22.87 40.282 1.414 127 1(2.33%) 
PCB_209 9.41 ± 10.12 8.374 1.414 62.469 11 (25.58) 

BDE_47 407.83 ± 204.76 
407.76

3 9.171 947.279 0 
BDE_99 41.18 ± 33.19 33.61 2.095 212.98 0 

BDE_100 100.96 ± 63.21 
101.22

5 1.414 241.855 1(2.33%) 
BDE_153 12.23 ± 8.32 9.873 1.414 50.118 1(2.33%) 
BDE_154 31.33 ± 16.30 24.825 2.987 70.955 0 

trans.chlordane 153.56 ± 114.47 
168.39

8 1.831 397.79 0 

cis.chlordane 408.16 ± 469.39 
361.60

9 19.963 3043.61 0 

trans.nonachlor 
5995.08 ± 
9261.01 

3737.3
9 50.093 

57540.9
2 0 
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cis.nonachlor 
1034.12 ± 

928.37 
928.09

4 20.037 5910.07 0 
2,4′-DDE 43.18 ± 20.02 41.617 1.439 88.535 0 

4,4′-DDE 
7675.95 ± 
5702.25 

5765.8
4 

180.93
5 23969.1 0 

2,4′-DDD 35.33 ± 23.56 26.015 1.414 89.671 1(2.33%) 
2,4′-DDT+ 4,4′-

DDD 592.99 ± 331.15 
493.82

5 20.554 1467.13 0 
4,4′-DDT 96.19 ± 60.33 81.536 1.414 304.007 1(2.33%) 

 

Table S2 Root-mean-square error (RMSE) of each regression model of POPs 
exposures and dolphin calf health outcomes 

 
Outcome  SUM PCA WQS+ WQS- 

 PCBs     

Length  9.57 9.57 7.9 9.57 
Weight  11.65 11.67 9.36 11.76 

T3  35.2 35.25 34.04 33.55 
T4  2 1.99 1.72 2.01 
fT4  0.79 0.8 0.73 0.82 

 PBDEs     

Length  9.5 9.52 - - 
Weight  11.39 11.48 - - 

T3  34.51 34.96 - - 
T4  2.01 2 - - 
fT4  0.81 0.8 - - 

 OCPs     

Length  9.41 9.52 - - 
Weight  11.61 11.74 - - 

T3  35.17 34.96 - - 
T4  1.99 2.01 - - 
fT4  0.79 0.8 - - 

 DDTs     

Length  9.34 9.39 - - 
Weight  10.7 10.7 - - 

T3  35.23 35.13 - - 
T4  1.97 2 - - 
fT4  0.79 0.78 - - 
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Table S3 Root-mean-square error (RMSE) of each adjusted regression model of 
POPs exposures and dolphin calf health outcomes 

 
Outcome  SUM PCA WQS+ WQS- 

 PCBs     

Length  9.04 9.03 7.57 9.47 
Weight  10.28 10.26 9.21 10.59 

T3  33.88 34.08 33.88 31.77 
T4  1.86 1.86 1.73 1.8 
fT4  0.73 0.73 0.7 0.72 

 PBDEs     

Length  9.01 9.05 - - 
Weight  10.31 10.35 - - 

T3  32.17 32.89 - - 
T4  1.84 1.84 - - 
fT4  0.74 0.73 - - 

 OCPs     

Length  8.92 9.01 - - 
Weight  10.22 10.32 - - 

T3  34.47 34.22 - - 
T4  1.83 1.84 - - 
fT4  0.71 0.71 - - 

 DDTs     

Length  8.72 8,83 - - 
Weight  9.81 9.89 - - 

T3  34.08 33.9 - - 
T4  1.87 1.86 - - 
fT4  0.73 0.73 - - 
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Figures  

Figure S1 Correlation plot of individual chemicals in PCBs 
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Figure S2 Correlation plot of individual chemicals in PBDEs 
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Figure S3 Correlation plot of individual chemicals in OCPs 
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Figure S4 Correlation plot of individual chemicals in DDTs 
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Figure S5 Patterns of residuals in regression models of PCBs exposures and 
dolphin calf length 

 
 

Figure S6 Patterns of residuals in adjusted regression models of PCBs exposures 
and dolphin calf length 
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Figure S7 Patterns of residuals in regression models of PCBs exposures and 
dolphin calf weight 

 
 

Figure S8 Patterns of residuals in adjusted regression models of PCBs exposures 
and dolphin calf weight 
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Figure S9 Patterns of residuals in regression models of PCBs exposures and 
dolphin calf T3 level 

 

 
Figure S10 Patterns of residuals in adjusted regression models of PCBs 

exposures and dolphin calf T3 level 
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Figure S11 Patterns of residuals in regression models of PCBs exposures and 

dolphin calf T4 level 

 
Figure S12 Patterns of residuals in adjusted regression models of PCBs 

exposures and dolphin calf T4 level 
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Figure S13 Patterns of residuals in regression models of PCBs exposures and 

dolphin calf fT4 level 

 
Figure S14 Patterns of residuals in adjusted regression models of PCBs 

exposures and dolphin calf fT4 level 
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Figure S15 Patterns of residuals in regression models of PBDEs exposures and 
dolphin calf length  

 
 

Figure S16 Patterns of residuals in regression models of PBDEs exposures and 
dolphin calf weight 
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Figure S17 Patterns of residuals in regression models of PBDEs exposures and 
dolphin calf T3 level 

 
Figure S18 Patterns of residuals in regression models of PBDEs exposures and 

dolphin calf T4 level 
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Figure S19 Patterns of residuals in regression models of PBDEs exposures and 
dolphin calf fT4 level 

 

 
 

Figure S20 Patterns of residuals in regression models of OCPs exposures and 
dolphin calf length 
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Figure S21 Patterns of residuals in regression models of OCPs exposures and 
dolphin calf weight 

 
Figure S22 Patterns of residuals in regression models of OCPs exposures and 

dolphin calf T3 level 
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Figure S23 Patterns of residuals in regression models of OCPs exposures and 
dolphin calf T4 level 

 
Figure S24 Patterns of residuals in regression models of OCPs exposures and 

dolphin calf fT4 level 
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Figure S25 Patterns of residuals in regression models of DDTs exposures and 
dolphin calf length 

 
Figure S26 Patterns of residuals in regression models of DDTs exposures and 

dolphin calf weight 
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Figure S27 Patterns of residuals in regression models of DDTs exposures and 
dolphin calf T3 level 

 
Figure S28 Patterns of residuals in regression models of DDTs exposures and 

dolphin calf T4 level 
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Figure S29 Patterns of residuals in regression models of DDTs exposures and 
dolphin calf fT4 level 

 

 
 

 

 

 

 

 

 

 

 

 

 

 


