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Abstract 
 

100 Years Later: Modeling Why a Modern-day Influenza Pandemic Would Still 
Disproportionately Affect Low and Middle-Income Countries 

By Rebecca Lebeaux 
 

As of the publishing of this thesis, one hundred years have passed since the last severe 
influenza pandemic in 1918 which caused catastrophic morbidity and mortality. Some countries 
and individuals faced worse health outcomes than others. Unfortunately, given the mutation rate 
of the influenza virus and growing globalization, another pandemic will likely occur. Previous 
research has extrapolated that an excess amount of deaths will occur in low and middle-income 
countries. This thesis used SIR models to explore what country-level and individual host factors 
would be most influential in causing inequities in morbidity and mortality across countries in an 
influenza pandemic of similar severity to the 1918 influenza pandemic. The results indicate that 
discrepancies in pandemic preparedness and surge capacity measures, facilitated by variant 
recovery and transmission rates, cause the biggest differentials in total attack rates (TAR), case-
fatality rates, peak day of infection, and the number of individuals affected on the peak day of 
infection across countries of varying income levels. Specifically due to country-level factors, the 
TAR and case-fatality rate for a high-income country was 19.5% and 0.845% respectively 
compared to a low-income country which had a TAR of 72.1% and case-fatality rate of 2.50%. 
Acknowledging that vast disparities between countries can be remedied through better pandemic 
preparedness and surge capacity measures offers policy-makers the opportunity to alleviate the 
impact of another 1918-like influenza pandemic.  
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Introduction 

This was influenza, only influenza. Yet to a layperson at home, to a wife caring for a husband, to 
a father caring for a child, to a brother caring for a sister, symptoms unlike anything they had 
seen terrified. And the symptoms terrified a Boy Scout delivering food to an incapacitated 
family; they terrified a policeman who entered an apartment to find a tenant dead or dying; they 
terrified a man who volunteered his car as an ambulance. The symptoms chilled laypeople, 
chilled them with the winds of fear (Barry, 2005, p. 236). 
  

Citizens of today’s society frequently get sick. In developed countries, individuals may 

get a common cold or the flu multiple times a year. Meanwhile, in developing countries, 

individuals are more frequently stricken with serious infectious diseases such as malaria, 

tuberculosis, or HIV/AIDS. Regardless of the severity of an infectious disease, occasional 

illnesses within populations are likely occurrences. 

         Society, however, is less accustomed to mass outbreaks of infectious diseases that cause 

sickness, the worst of which are pandemics or global epidemics which occur about every 10-50 

years (Vince, 2013). Infectious diseases “are a proxy for poverty and disadvantage...affect 

populations with low visibility and little political voice, ...cause stigma and 

discrimination,...impose a heavy health and economic burden,...and have a greater impact where 

health systems are weak” (WHO, 2012, p. 14). Likewise, pandemics exacerbate inequities of 

modern society such as poverty and racial/ethnic status (Quinn & Kumar, 2014).  

Unfortunately, as this paper will address, an influenza pandemic is almost inevitable. 

Worse yet, numerous scholars and scientific leaders in the field feel that the world is not ready 

for another influenza pandemic (Director-General, 2011; Barry, 2005, p. 454; Fineberg, 2014; 

Walsh, 2017). In the book The Great Influenza, John Barry poses the question “How prepared 

are we for a new pandemic?” and subsequently responds “At this writing, we are not prepared. 

At all” (Barry, 2005, p. 454). While Barry’s statement was made in 2005 prior to the 2009 H1N1 
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influenza pandemic, similar statements have been made post 2009. An international committee, 

chaired by Dr. Harvey Fineberg, was assembled by the World Health Organization (WHO) to 

assess the outcomes of the 2009 influenza pandemic. Similarly to John Barry, they said, “‘the 

world is ill prepared to respond to a severe influenza pandemic or to any similarly global, 

sustained and threatening public-health emergency’” (Fineberg, 2014, p. 1336). 

This thesis will assess how countries of different income levels will fare during an 

influenza pandemic akin in severity to the influenza pandemic of 1918-1919 using Susceptible-

Infected-Recovered (SIR) models. First, country-level and individual host factors that most 

impact the morbidity and mortality of disease will be evaluated. Then, country-level factors will 

be used to establish parameter values and initial conditions for low, middle, and high-income 

country models. These models will be used to establish how many individuals in the given 

population are likely to end up unaffected, infected, or dead as well as the time course of disease. 

This research will enable policy-makers to analyze the predominant factors impacting influenza 

transmission, morbidity, and mortality in order to mitigate the impact of a future influenza 

pandemic. 

 

Background 

History of Influenza Pandemics 

         One hundred years since the writing of this thesis, the H1N1 influenza pandemic of 1918-

1919 began ravaging the globe. Estimated to have killed 50-100 million people and infected a 

third of the world’s population, the 1918 influenza pandemic was one of the deadliest events in 

human history (Taubenberger & Morens, 2006). It killed more people than those who died 

fighting in World War I and was brutal enough to decrease the life expectancy in the United 
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States by more than 10 years (Barry, 2005, p. 238). Secondary pneumonia is a predominant 

theory explaining why there were such high rates of mortality during the 1918 influenza 

pandemic (Brundage & Shanks, 2008). 

Although colloquially referred to as the Spanish influenza, some hypothesize that the 

pandemic started in Haskell County, Kansas (Barry, 2005, p. 456). Carried by World War I 

troops traveling to various army camps, influenza spread rapidly both throughout the United 

States and globally (Barry, 2005, p. 457). The virus circulated throughout the globe in three 

waves (Taubenberger & Morens, 2006). The first wave occurred around March of 1918 and was 

relatively mild. This was followed by a deadly second wave from September to November of the 

same year. Finally, many countries had a third wave that swept through in early 1919. Unlike 

any other pattern of disease spread seen before, three consecutive waves of influenza caused 

mass morbidity and mortality (Taubenberger & Morens, 2006). 

Various other influenza pandemics have occurred since the 1918 influenza pandemic. 

The 1957-1958 Asian Flu (H2N2) pandemic marked the first time that viral strains could be 

immediately recovered and a vaccine could be tested. In 1968, the H3N2 Hong Kong influenza 

pandemic originated in Southeast Asia (Kilbourne, 2006). Unlike the 1918 influenza pandemic 

during which 99% of influenza associated deaths occurred in individuals younger than sixty-five 

years old, only 48% of influenza-associated deaths were seen in the same age group during the 

H3N2 pandemic (Simonsen et al., 1998). Simonsen and colleagues hypothesize the difference in 

percentage of deaths by age-groups likely occurred because of the “intrinsic differences in 

virulence and transmissibility of strains and differences in the susceptibility of the general 

population to influenza infection due to previous exposure to antigenically similar strains and 
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aging of the human population” (Simonsen et al., 1998, p. 58). The H3N2 strain still persists in 

society as the most severe type of the seasonal influenza viral subtypes (Kilbourne, 2006). 

The 2009 H1N1 influenza pandemic, however, has received the most intensive study as 

of late in fear that the pandemic would reach a severity level rivaling the 1918-1919 influenza 

pandemic. Dubbed the “swine flu” due to the crossover of the virus from pigs to humans, this 

was the first influenza pandemic of the twenty-first century. Beginning in early 2009 in Mexico 

and transmitted through trade and contact with the United States, the H1N1 virus spread 

globally. By April 25, the World Health Organization (WHO) declared H1N1 a “public health 

emergency of international concern” (Fineberg, 2014, p. 1336). By June 9, 73 countries reported 

greater than 26,000 laboratory-confirmed cases and shortly after the WHO declared the epidemic 

a phase six pandemic (Fineberg, 2014). A phase six pandemic signals that a pandemic is in 

progress and has caused “sustained community-level outbreaks in at least one other country in 

another WHO region” (Director-General, 2011, p. 102). It has been hypothesized that 100,000 to 

400,000 people directly or indirectly died during the pandemic, which is similar to a typical 

seasonal influenza season (Fineberg, 2014). Unlike normal influenza seasons, however, it is 

estimated that sixty-two percent of all deaths occurred in individuals younger than sixty-fix 

(Simonsen et al., 2013). Accordingly, the 2009 pandemic caused more years of life to be lost 

than seasonal epidemics (i.e. younger individuals with more years of life yet to live, died) 

(Fineberg, 2014; Simonsen et al., 2013). Although this pandemic did not cause more deaths than 

seasonal epidemics, it did expose many governmental and health system weaknesses.   
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Biology of Influenza 

Influenza is a respiratory disease caused by various strains of the influenza virus. 

Common symptoms of seasonal influenza infection include cough, sneezing, fever, sore throats, 

and muscle aches (CDC, 2017a). These symptoms frequently facilitate the airborne, droplet 

transmission of influenza that causes the illness to be spread relatively easily (WHO, 2018b). 

Seasonal influenza is an ongoing public health problem for most countries in the world. Every 

year approximately 3-5 million people have severe consequences of illness and about 290,000 to 

650,000 die (WHO, 2018b). In the United States, it is estimated that annually approximately 

10% of the population is infected with influenza (CDC Foundation, n.d.).                    

 Influenza viruses are negative-sense, single-stranded RNA viruses that are divided into 

seven or eight segments (Bouvier & Palese, 2008). There are three viral types of influenza that 

infect humans: A, B, and C (WHO, 2018b). Within each main influenza viral type, there are also 

a variety of strains and subtypes. These viruses are classified by proteins on the surface of their 

cells that control the entrance and exit of influenza into host cells. These protein subtypes are 

called hemagglutinin (HA) and neuraminidase (NA), which also determine the nomenclature of 

the virus (Bouvier & Palese, 2008). The frequent mutations of HA and NA are responsible for 

the lack of lifelong immunity to influenza viruses (Bouvier & Palese, 2008). Thus far, only novel 

influenza A viruses have ever reached pandemic level (WHO, 2018b). Likewise, according to 

Walsh (2017), the “CDC [Centers for Disease Control and Prevention] ranks H7N9 as the flu 

strain with the greatest potential to cause a pandemic.”      

 Influenza is not a disease specific to humans. Rather, as a zoonotic disease, it exists in 

many animal reservoirs but most notably birds. Novel influenza in humans occurs when there is 

a significant mutation of a dominant viral strain that often originated from another animal source. 
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This occurs through antigenic shift or when there is a reassortment of genes between humans and 

animals (Bouvier & Palese, 2008).   

Each year, three or four viral strains are selected to be included in the seasonal influenza 

vaccine (CDC, 2017b). Due to the unpredictability of influenza viruses, the process of vaccine 

selection is challenging. Vaccines are created for both the northern and southern hemispheres 

due to the rapid antigenic change of influenza and alternating winter seasons when influenza 

most easily spreads. During the creation of the vaccine, viral strains selected must be unique, 

widely prevalent throughout the population, and available for vaccine creation (Stohr et al., 

2012). Vaccine efficacy ranges depending on how well the strains are selected, but vaccines 

generally have between 40 to 60% efficacy (CDC, 2017b). 

Seasonal influenza tends to cause the most morbidity and mortality in young children. 

Death from seasonal influenza is rare in individuals between the ages of one to sixty-five and 

mortality is often described as a “U”-shaped curve (Taubenberger & Morens, 2006). Individuals 

less than one are more likely to die because their immune system is not optimally primed for 

novel infection and elderly adults tend to have reduced immunity due to age or underlying 

medical conditions (Jabr, 2017).  

In contrast to seasonal flu and other epidemics, the 1918 influenza pandemic is described 

as having a “W”-shaped mortality curve, which showed an additional large increase in deaths for 

individuals between the ages of twenty to forty years old (Taubenberger & Morens, 2006). 

Although no definitive reason has been found to explain this abnormal increase of deaths in this 

age group (Simonsen et al., 1998; Morens & Fauci, 2007; Morens et al., 2010), a vigorous 

response to the virus such as a “cytokine storm” or “overexuberant release of proinflammatory 

cytokines” (Morens & Fauci, 2007, p. 1022) may have occurred in this age group. Alternatively, 
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differential exposure to previous viruses (Morens & Fauci, 2007; Simonsen et al., 1998) or 

environmental factors such as smoking or aspirin use (Morens & Fauci, 2007) may have 

contributed to mortality differences between age groups.  

Given the burden of influenza and ease of transmission, it is evident why influenza has 

caused previous pandemics that have created global disruption. These facts also explain why 

many researchers predict that another incidence of pandemic influenza is imminent due to its 

mutation pattern and cross-animal transmission pattern. 

 

Structural Violence, Syndemics, and Disproportionate Health Impacts of Influenza  

         Infectious agents do not indiscriminately choose which people to infect as there 

constantly seems to be aggregations of particular diseases in hosts with similar attributes or risk 

factors. For instance, Murray et al. (2006) estimated that 96% of all mortalities in a future 

pandemic as severe as the 1918 influenza pandemic will occur in developing countries. They 

also found that during the 1918 pandemic there was over a 30-fold difference in mortality across 

countries. Likewise, Barrett and Brown (2008) identified multiple instances of inequities in 

morbidity and mortality that occurred during the 1918 influenza pandemic both within developed 

countries such as the United States and on a global scale. Within the United States, Markel et al. 

(2007) identified discrepancies between cities in mortality outcomes during the 1918 influenza 

pandemic. Modern pandemics have also demonstrated disparities in health outcomes by 

countries. Simonsen et al. (2013) identified up to a 20-fold difference in mortality rates across 

countries during the 2009 H1N1 influenza pandemic. Chowell and Viboud (2016) contend that 

there is not much conclusive evidence regarding the reasons for differences within or between 

countries but identify socioeconomic status, prior immunity, economic, and behavioral factors as 
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potential factors. However, Viboud et al. (2016) found that economic disparities such as country 

GDP could explain 37-99% of mortality differences across countries during the 1957-1959 

influenza pandemic. Other than for geographic reasons, it is apparent that factors both at the 

individual and country-level must compound one another to cause disproportionate morbidities 

and mortality throughout populations. This thesis attempts to understand how some of these 

factors contribute to differential population health outcomes during influenza pandemics. This 

section will focus on disparities encountered by low-income individuals. 

Structural violence defines the oppression and inherent social injustices contextualized in 

inequalities such as disparities in “access to resources, political power, education, health care, 

and legal standing” (Farmer et al., 2006, p. 1686). This concept aligns with the idea of syndemics 

in which there is a “clustering of social and health problems” that cause “some level of 

deleterious biological or behavioral interface that exacerbates the negative health effects of any 

or all of the diseases involved” (Singer et al., 2017, p. 941-942). Co-morbidities such as asthma, 

heart disease, immunosuppression, chronic lung disease, and extreme obesity are risk factors for 

secondary pneumonia, a major cause of severe influenza outcomes (CDC, 2018a), and are 

examples of syndemics.  

To understand the magnitude of inequities caused by income inequality such as lack of 

access to health resources, it is necessary to understand the dynamics of disadvantaged 

individuals and influenza. Populations of low socioeconomic status face substantial health 

inequities throughout influenza pandemics such as reduced health resources (Oshitani et al. 

2008; Rudge et al., 2012), inability or reluctance to skip work (Blumenshine et al., 2008; Bouye 

et al., 2009), and increased hospitalization rates (Lowcock et al., 2012; Quinn & Kumar, 2014).  

In an attempt to account for these disparities, Blumenshine et al. (2008) theorize there are three 
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main factors to explain differential disparities. These are 1) factors affecting the probability of 

coming in contact with the virus, 2) the susceptibility to infection once exposed, and 3) the ease 

of receiving treatment to increase chances of recovery. 

Differences in exposure to disease have been documented for impoverished individuals. 

Individuals that live in public housing are more likely to suffer from poor health due to “unsafe 

drinking water, overcrowding (from urbanization and landfill waste, and inadequate ventilation), 

which could cause serious implications during an influenza pandemic” (Bouye et al., 2009, p. 

S289). Additionally, influenza often infects individuals that live in close proximity to poultry or 

swine and this initial transmission can cause propagation of infection to either other animals or 

throughout communities that rely on animal trade and slaughter for their livelihoods (Leibler et 

al., 2009). Likewise, Blumenshine et al. (2008) notes that individuals with lower socioeconomic 

status use more public transportation putting them at further exposure to infection. Impoverished 

individuals are also less likely to be able to stop working when there is fear of infection due to 

instability of finances putting them at further risk for exposure (Blumenshine et al., 2008).  

Susceptibility differences during an influenza pandemic would likely be caused by 

factors that exacerbate chances of acquiring disease once exposed (Blumenshine et al., 2008). 

Factors causing differential susceptibility include psychosocial stress, malnutrition, and vaccine 

uptake (Quinn & Kumar, 2014). For instance, Linn et al. (2008) found that 56.6% of elderly 

United States adults with a total household income less than $10,000 reported receiving the 

influenza vaccine within the previous year compared to 73.4% of individuals with a total 

household income greater than or equal to $75,000. Factors related to low economic status, can 

lead to a decreased ability of the body’s immune system to fight off viral infections. Inevitably, 

this can cause disproportionate hospitalization rates between individuals of varying 
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socioeconomic statuses (Quinn & Kumar, 2014). Between April and July of the H1N1 influenza 

pandemic of 2009, a Canadian study found a greater odds ratio (OR) of hospitalization in 

individuals who had a high school or lower education (OR = 2.28: 95% CI = 1.13-4.59) or who 

came from a poor neighborhood with high deprivation (OR = 2.58: CI = 1.24-5.35) (Lowcock et 

al., 2012).  

Systemic barriers to treatment and differences in vaccine-seeking behavior prevent 

disadvantaged individuals from receiving equal access to care. On the individual level, “care-

seeking attitudes and behavior” may play a role (Blumenshine et al., 2008, p. 711). Galarce et al. 

(2011) state that there are “attitudinal and health belief differences exist[ing] among different 

population subgroups” (p. 5284-5285) that impact vaccine beliefs. For example, individuals with 

a high school education were less likely to believe that the 2009 H1N1 influenza vaccine was 

safe (Galarce et al., 2011). Systemic barriers, as Hutchins et al. (2009) acknowledges, during an 

influenza pandemic may differ from barriers to vaccine acquisition for seasonal influenza as 

pandemic vaccine clinics “may require greater effort by individuals to seek out” (p. S264). 

While understanding the impact of influenza on the individual is important, individuals 

exist within societies and countries that act both in accordance to their own needs on a domestic 

and global scale. Thus, in this thesis I will evaluate the impact of pandemic influenza from a 

country-level perspective by taking into account factors that most affect the severity of a 

pandemic within that particular country. Approaching disparities from this angle may appear to 

reduce the narrative of the individual to simply an average, but is necessary to explore the 

broader global outcomes inherent of pandemics. 
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Country-Level Social Injustices and Geographies of Blame 

During influenza pandemics, inequities between countries are exposed as countries 

attempt to maintain their international image and the health of their citizens. Sparke and 

Anguleov (2012) list and discuss the drastic inequalities that presented themselves during the 

2009 influenza pandemic: “(1) inequalities in blame for the outbreak in the media; (2) 

inequalities in risk management; [and] (3) inequalities in access to medicines…” (p. 726). These 

inequities compound the impact of influenza pandemics on countries with lower socioeconomic 

statuses. 

“Geographies of blame” (Farmer, 2006) describe the “pathologization” (Sparke & 

Anguelov, 2012, p. 727) that disadvantaged individuals and locations often face during 

infectious disease events. This concept can be directly related to both the 1918 and 2009 

influenza pandemics. In the 1918 influenza pandemic, when called the Spanish influenza 

pandemic, it improperly attributes blame to Spaniards for the pandemic (Barett & Brown, 2008). 

Rather, the flu is wrongly attributed to Spain because Spain reported on the influenza pandemic 

while other surrounding war-time countries did not want to publish stories on influenza to avoid 

morale deficits (Valentine, 2006). Likewise, although the 2009 influenza pandemic started in 

Mexico, it was likely the United States that propagated disease due to its global trade and travel 

networks (Sparke & Anguelov, 2012). 

Assessing the impact of a pandemic also relates to countries’ abilities to handle risk 

management. Sparke and Anguelov argue that low-income countries could not divulge influenza 

surveillance or reporting measures during the 2009 influenza pandemic as their health 

infrastructures were already stretched. They also identified multiple studies that cautioned 

against comparing case-fatality rates during the 2009 influenza pandemic across different 
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countries due to variant surveillance systems that caused underreporting. While International 

Health Regulations (IHR) were set in place “‘to prevent, protect against, control and provide a 

public health response,’” (WHO, 2016, p. 1) they are also limited by their inabilities to enforce 

updated surveillance in these countries (Fineberg, 2014).  

Access to antivirals and vaccines, as this paper will address, are influential in preventing 

catastrophic levels of morbidity and mortality during influenza pandemics and yet high-income 

countries are better able to stockpile than low-income countries. Gostin (2009) claims that rich 

countries frequently stockpile vaccines which “leaves poor countries in Africa, Asia, and Latin 

America much more vulnerable” (p. 10). These inequities in manufacturing or obtaining 

antivirals or vaccines played out during the 2009 H1N1 pandemic. Manufacturers were asked to 

reserve some vaccines for other countries (WHO, 2011). However, as Fidler (2010) found, high-

income countries, including Australia and the United States, would not allow manufacturers to 

give vaccines to other countries until “domestic needs” (p. 2) were met. With regards to 

antivirals, low-income countries often may not have the capacity to meet healthcare demands 

including providing access to medications and health professionals (Oshitani et al., 2008). When 

the surge or sudden increase in the number of patients over a short amount of time occurs during 

a pandemic, health systems frequently are overwhelmed. This leads to an inability of low-income 

countries to treat patients with other chronic or infectious diseases that simultaneously occur 

during influenza pandemics (Oshitani et al., 2008).  

 

SIR Models and Influenza 

In the absence of an influenza pandemic, modeling can be used to predict global 

variations in health barriers and outcomes across countries. The dynamics of an influenza 
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epidemic can be represented by Susceptible-Infected-Recovered (SIR) models; indeed, SIR 

models have served as a “basis for all subsequent influenza models” (Coburn et al., 2009, p. 2). 

In this thesis, the simple SIR model discussed in this section will be adapted into a slightly more 

complicated model in the following section to better represent how different factors play a role in 

influenza pandemic outcomes. SIR models are a type of compartmental model. They are defined 

by susceptible, infected or infectious, and recovered individuals’ movement through each 

compartment (see Figure 1 and Table 1).  

  

 
 

Figure 1: A generalized Susceptible-Infected-Recovered (SIR) model. Individuals within a 
population are classified as either susceptible (S), infected (I), or recovered (R). In this figure, 
individuals move from the susceptible to infected class at transmission rate ß. Individuals can 
exit the infected class either by dying from disease at rate µ or entering the recovered 
compartment at rate ν.  
 

The movement of individuals through each compartment can be represented using a set 

of differential equations to demonstrate the rate at which each person moves through each  
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compartment throughout time. Positive terms indicate movement into a population compartment 

while negative signs indicate an outflow of individuals into another compartment or death. 

This model has “mass action transmission” meaning the number of contacts is 

independent of the total number of individuals within the population (Haran, 2009, p. 13). In this 

model, the contact rate or number of contacts per person per unit of time consistently remains 

equal to one. Movement from each compartment occurs at rates ß, ν, and µ. Once an infected 

individual enters the population, susceptible individuals will become infected at transmission rate 

ß. Individuals that are in the infected class will either die at rate µ or recover at rate ν and enter 

the recovered population. This model only considers that once a person enters the recovered 

class, they cannot reenter the susceptible or infected class.  

This type of model makes multiple assumptions, as discussed by Jones (2007). First, the 

population is closed and no individuals can be born into the population or die from any cause 

other than disease-related mortality. Second, the rate of individuals moving through the 

compartments is stable across time; this means that no behavioral or environmental condition 

will affect the rates of change over the time course of the model. Additionally, individuals are 

spatially distributed evenly throughout populations. Lastly, all individuals within the population 

are susceptible to infection. Lack of immunity to the influenza strain could cause this population-

level susceptibility. 

  



15  

Transmissibility of Influenza and R0 

The basic reproductive number (R0) is used to describe the transmissibility of diseases. 

For the purpose of this research, R0 represented the average number of secondary cases infected 

with influenza from one infected person in a susceptible population (Jones, 2007) (see Figure 2). 

 

R0 can be calculated by multiplying the transmissibility of the infection (ß) with the 

duration of infection (1/ν) or the reciprocal of the recovery rate (ν) (Coburn et al., 2009). In non-

stochastic models, or models in which there are set parameters with no randomness, when R0 < 1, 

no influenza outbreak will occur. This is because each infected individual is on average passing 

the influenza infection to less than one person. On the other hand, an R0 > 1 will cause an 

influenza outbreak to occur. 

Depending upon the transmission pattern of a given disease, the R0 value can range from 

1 to 18 for easily transmissible diseases such as whooping cough and measles (Anderson & May 

1982; Keeling & Rohani, 2011). Past studies have estimated the R0 of the 1918 influenza 

pandemic to be between 1.4 and 3 (Ferguson et al., 2006; Mills et al., 2004) with a median R0  of 

1.80 and an interquartile range of 1.47-2.27 (Biggerstaff et al., 2014). As a comparison, 

Figure 2: The reproductive number (R0) is the average number of secondary cases that 
arise from one primary case. In this figure, R0  would be three if on average every primary 
case infected three secondary cases. 
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Biggerstaff et al. (2014) estimated that the median basic reproductive number for seasonal 

influenza is 1.28. 

 

Thesis Dual Group SIR Model Design and Base Model 

In order to evaluate how different factors impact health outcomes between countries, a 

two-group model was established for a better understanding of how some factors alter 

populations. The model used in this thesis is an adaptation to the standard SIR model (see Table 

2 and Figure 3 ). 
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Individuals within this model were broken down into two groups within one population 

(i.e. group 1 or 2). This allowed for differentiation of input parameters and initial conditions 

between the groups. All individuals entered the model as susceptible individuals in the S1 or S2 

class unless they were initially infected with the influenza virus. A new symbol, the force of 

infection (λ), dictated the rate at which individuals moved from the susceptible to infected class. 

The force of infection was the transmission factor (ß) multiplied by the proportion of infected 

individuals out of all individuals from both groups (N1 and N2). Individuals moved through each  

 

compartment at separate rates. The force of infection (λ), however, was dependent upon the 

number of infected individuals in both classes. The transmission rate (ß) was also the same 

parameter for both groups of individuals. Positive terms indicated movement into a population 

compartment while negative signs indicated an outflow of individuals into another compartment 

or death. 

Separate values for the force of infection were not differentiated by group because 

individuals from either infected group were equally likely to infect all susceptible individuals. 

Figure 3: Individuals in this compartmental, SIR model were divided into two groups. In 
both groups, individuals encountered the same force of infection (λ), which controlled 
individuals’ rate of movement from the susceptible class (S1 or S2) into the infected class (I1 
or I2). Respectively, individuals in each group faced separate rates of mortality (µ1 or µ2) or 
recovery rates (ν1 or ν2) entering the recovered class (R1 or R2) as they exited the infected 
class. 
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Infected individuals from variant groups, however, may have left the infected class at different 

rates. They may have died from infection at rate µ1 or µ2 or recovered at rate ν1 or ν2. 

 

Base Model Settings 

To run the SIR models, I used R Studio 1.1.423 and EpiModel 1.6.1 (Jenness et al., 

2017), an R package for SIR modeling. EpiModel enables the user to build deterministic 

compartmental models (DCMs), stochastic individual contact models (ICMs), and network 

models. For this thesis I created a model from a combination of the basic and two-group SIR 

models (EpiModel Basic DCMs, 2017) and adapted code using advice from the New DCMs with 

EpiModel (2017) page. 

 The base model (see Figure 4) will be referred throughout this thesis as the two-group 

model that has consistent parameter values and initial conditions. It can be considered the model 

used to demonstrate the movement of individuals between compartments in one country. The 

initial conditions were set at 10,000,000 susceptible individuals (S1), 1 infected individual (I1), 

and no recovered individuals (R1) and was run for 200 time steps. Time steps in this instance 

represent the number of days of the epidemic. No individuals were placed in the second group 

(S2, I2, or R2) for this base model as there were no subgroups modeled.  
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Figure 4: How individuals progressed through each compartment (S, I, and R) over the 
course of the influenza pandemic. There were initially 10 million susceptible (S) individuals, 1 
infected individual (I), and no recovered individuals (R). By the end of the pandemic, over 7.2 
million people became infected. 

  
The parameter values for the base model were set according to prior literature regarding 

modeling of influenza. The R0 for this thesis was taken from Biggerstaff et al. (2014) who found 

a median R0  of 1.80 for the 1918 influenza pandemic. The recovery rate (ν) is the reciprocal of 

the duration of infection as there is 1 recovery per person per day (Smith & Moore, 2004). The 

recovery rate was set at 1 recovery for every 5 days (ν1 = 1/5) and was adopted from Nichol et al. 

(2010). This falls within the CDC’s stated recovery rate for influenza of 3-7 days (CDC, 2016a). 

Since ß equals R0 x ν, ß or the transmission factor became 0.36. The case-fatality rate of the 1918 

influenza pandemic was found to likely be greater than 2.5% even though case-fatality rates for 

other influenza pandemics were less than 0.1% (Taubenberger & Morens, 2006). However, as 

Murray et al. (2006) established while modeling a modern-day influenza pandemic, there is 

variation in case-fatality rates across countries. This may be due to disproportionate outcomes or 

underreporting (Sparke and Anguelov, 2012). Given the inability to predict the severity of 
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influenza strains and lack of a succinct case-fatality rates provided in the literature, the case-

fatality rate was set at 2.5%.  

Calculating the mortality rate for infected individuals (µ1) was determined once the 

transmission and recovery rates were established. A sensitivity analysis was completed to 

determine what value of µ1 would allow the case-fatality rate to be 2.5%. The case-fatality rate 

was found by dividing the total amount of deceased individuals from the total amount of 

individuals that recovered or died from infection and multiplying the result by 100%. Through 

this process, it was established that the mortality rate of 0.513% (µ1 = 0.00513) produced a case-

fatality rate of 2.50%. Through a review of multiple studies on the 1918 influenza pandemic, 

Brundage and Shanks (2008) identified that the average mortality rate was <0.5% which is very 

close to the mortality rate selected for the base model. 

 Using these settings, 2,788,069 people remained susceptible (uninfected), 7,031,572 

people recovered from illness, and 180,486 people died due to influenza. The peak of the 

epidemic occurred on day 102 with 1,109,342 people infected (see Figure 5). Called the total 

attack ratio (TAR) from Nichol et al. (2010), the TAR is the total percentage of individuals 

infected divided by the total individuals in the population and was 72.1% in this model.  
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Figure 5: Output image using the basic DCM model of peak day of infection (day 102). On 
this day, 1,109,342 people were infected. Also demonstrated is the flow of individuals through 
each compartment. 
 

Once the model was constructed, I validated my model by comparing it to the Bootsma 

and Ferguson (2007) model that assumed no preventative measures or treatments were used in 

the population. In a population of 100,000 they used an R0 of 2, ν = 1/3.5 and found a TAR of 

80%. These parameter values were replicated using my model. I used the same R0 of 2, and set ν1 

= 1/3.5, µ1= 0 , and ß = 2/3.5. I found a TAR of 79.7% which is the same TAR value that 

Bootsma and Ferguson (2007) found in their study. This is important as it established the validity 

of my base model as a representative country with no access to resources. Establishing the best 

estimates for a country that had set characteristics and did not incorporate mitigation factors will 

offer insights on the importance of prevention and protection methods in further models studied 

in this thesis. 

 

Modeling Country-Level and Individual Host Factors  

 The goal of this thesis is to understand how factors contribute to differential health 

outcomes during influenza pandemics for high, middle, and low-income countries. Seven 

factors were selected to be studied as they are a mixture of impacts that cause or are a result of 

income differences across countries. These factors were selected based on available literature 

and theoretical epidemiological importance regarding their effect on transmission, mortality, or 

recovery rates during an influenza pandemic. The seven factors were broken down into factors 

that affected populations at the country-level and individual host level. Country-level and 

individual host factors were modeled differently for this thesis (see Figure 6). 
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Figure 6: Seven factors divided into country-level and individual host factors due to how 
they impacted the population. Country-level factors included: surge capacity, pandemic 
preparedness, population density, and interconnectedness to the world economy. Individual host 
factors included: proportion of individuals sixty-five or older, ethnic heterogeneity, and 
proportion with underlying medical conditions. 
 

Country-level factors are referred to as community or environmental factors in Murray et 

al. (2006) because they impacted all individuals within each country equally. I made the decision 

to change this category’s name from community and environmental factors to country-level 

factors to clarify the extent to which these factors exist beyond the level of individual 

communities. This group consisted of population density, surge capacity, interconnectedness to 

the world economy, and pandemic preparedness. These factors were modeled with one initial 

group of susceptible individuals, one infected individual, and no recovered individuals unless 

otherwise mentioned. Additionally, µ2 and ν2 were set to zero while µ1 and ν1 were altered. This 

meant that only individuals in group 1 were analyzed and there was no flow of individuals within 

group 2. 
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Factors that affected only individuals with certain characteristics (e.g., over 65 years, 

immunocompromised) impacted certain subgroups’ ability to respond to infection. These factors 

included: proportion of country with an underlying medical condition, proportion of individuals 

sixty-five and older, and ethnic heterogeneity. All factors in this category were modeled into two 

subgroups. Some individuals existed in group 1, while others were in group 2. As mentioned 

previously, individuals from either group could infect individuals from the other group. This was 

accounted for through the equation for the force of infection (λ). All scenarios started with one 

individual initially infected in the I1 compartment and no individuals in either recovered 

compartment (R1 or R2). Changing the initially infected individual from group 1 to group 2 did 

slightly change outputs, but not substantially. Within each model µ1, ν1, µ2, and ν2 were altered 

for each factor; which allowed for individuals in each group to have separate mortality and 

recovery rates. 

 The purpose of the base model was to create a country that represents a potential low-

income country that has little or no access to resources. The base model was created under the 

following seven assumptions regarding each factor: low population density (<175 people per 

square mile), low surge capacity, low interconnectedness to the global economy, a weak 

pandemic preparedness program, 20% of the country with an underlying medical condition, no 

variance in age distribution, and ethnically homogeneous. Further information regarding the 

operationalization of each assumption will be discussed in the following sections.  
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Country-level Factors 

 Population Density 

In order to understand the spread of disease throughout countries of different income 

levels, it is necessary to explore spatial orientations of the population. Population density is an 

easily measurable factor that varies between and within countries. The range of population 

densities fluctuates greatly as the World Bank (2018a) reports that there are 0 people per square 

kilometer (PPSK) in Greenland, but 20,204 in Macau. An instance of within country variation 

exists in the United States. On average, the United States has 35 PPSK or 90.6 people per square 

mile (PPSM). However, New Jersey, the most densely populated state, has 1,225 PPSM while 

Alaska only has 1 PPSM (Statista, 2018b).  

For the purpose of this thesis, high population density will alter ß or the transmissibility 

of disease in addition to the rate of mortality (µ1). This is based on the theory that individuals in 

high population density settings may have “more frequent and more severe” outbreaks in 

overcrowded settings (WHO, 2018c). Murray et al. (2006) also consider population density a 

potential contributor to differential mortality across communities.  

         Before discussing how population density could affect ß and µ1, it should be noted that 

many papers have shown that population density is not associated with mortality or disease 

spread (Mill et al., 2004; Pearl 1919; Viboud et al., 2006). However, this does not agree with the 

theory behind population density. Thus, to assess the factors that most greatly impact influenza 

pandemics, it is necessary to ascertain whether population density truly affects ß and µ1 

independent of other factors such as connectedness to world economy and socioeconomic status. 

Pearl (1919) studied the initial explosiveness of mortality trends during the 1918 

influenza pandemic throughout American cities. He found that population density did not have a 
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major impact on the magnitude of the original disease peak-time mortality rate. However, he did 

find that greater distance from a city was correlated with a decreased chance of exposure to 

infection. Likewise, Mills et al. (2004) identified only weak correlations between the 

reproductive number and population density in major cities during the 1918 influenza pandemic 

after looking at influenza-associated mortality. Evaluating inter-pandemic influenza epidemics in 

the United States between 1972 and 2002, Viboud et al. (2006) found that movement of the 

workforce is more of factor in disease spread than population density or size. While this study 

was well conceived, novel influenza strains have variant transmission patterns to seasonal 

epidemics based on immunity status within susceptible populations. 

Other studies have found population density to be a major factor in the proliferation of 

disease. Gilbert et al. (2007) analyzed data from outbreaks of avian influenza in Thailand and 

Vietnam. They found that population density was a large factor in viral presence measured by the 

number of reported cases of avian influenza. Likewise, Chandra et al. (2013) used data from the 

1918 influenza pandemic in India. Through evaluation of population densities across different 

regions, they found that areas with higher population densities had a greater percentage of 

population loss than areas with lower population densities. They found that the threshold for 

population density creating a difference in mortality depended on the number of people per 

square mile threshold. The decline in population was 3.72% in places with below 175 PPSM 

while the decline was 4.69% in places above this threshold. While this data may not exclude 

other factors such as socioeconomic variation, it does indicate the possibility that population 

density greatly impacts transmission and mortality rates. An additional limitation to this study, 

and some others, is that the mortality rate is derived from the number of excess deaths during the 

influenza pandemic.  
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Although literature on population density’s effect on mortality and transmission rates has  

been mixed, theoretically population density should have an impact. Thus, the 175 PPSM 

threshold will be used to differentiate between low and high population density models. For the 

purpose of this paper, population density data will be used from the Number of People per 

Square Kilometer of Land Area data set produced by the World Bank using data from 2016 

(World Bank, 2018a). The average population density of a country is 57 PPSK of land area or 

148 PPSM. Average population density by country income status is shown in Table 3.  

 Table 3: Population Density by Country Income Grouping 
Income Class (Defined by Gross 
National Income) 

Population Density (People Per Square Mile of 
Land Area)a 

Low-Income 127 

Lower Middle-Income 337 

Middle-Income 179 

Upper Middle-Income 114 

High-Income 88 

a People per square mile (PPSM) data was calculated by converting population density for square 
kilometer from the Number of People per Square Kilometer of Land Area World Bank Data set. 
1 square mile is equivalent to 2.589988 square kilometers (Calculateme, n.d.). 
 

Surge Capacity 

 When an influenza pandemic occurs, there will be an influx of patients into healthcare 

centers and the ability of countries to respond to these patients at the start and peak of a 

pandemic amounts to differential morbidity and mortality outcomes between countries. 

Researchers frequently refer to the “surge” or “surge capacity” to describe the response “to a 

sudden increase in patient demands” (Hick et al., 2008, p. S51; Watson et al., 2013, p. 90). This 
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is broken down into the components of “trained personnel (staff), comprehensive supplies and 

equipment (stuff), facilities (structure), and, of imperative importance, integrated policies and 

procedures (systems)” (Barbisch & Koenig, 2006, p. 1099). Other factors contributing to surge 

capacity include health expenditure per capita. However, unlike with other factors, there is not a 

clear correlation between greater spending on health care and better health outcomes. The United 

States, for example, spends more on health care than any other nation, yet has a short life 

expectancy and poor health outcomes compared to other countries (Squires & Anderson, 2015). 

For the purpose of this thesis, surge capacity will predominantly focus on the “stuff” and 

“structure” components. Pandemic preparedness will cover the “systems” component of surge 

capacity indirectly. Regarding the “staff” component, there are inherent issues with considering 

staff as a measure of surge capacity. Although Welzel et al. (2010) identified the number of 

medical staff members as a measure of surge capacity and DeLia & Wood (2008) used the 

number of staffed beds, Watson et al. (2013) reported that regardless of current staff levels prior 

to a pandemic, many may decide or be forced to not work during a pandemic.  

 A limitation of literature related to surge capacity is the lack of focus on low-income 

countries (Fischer et al., 2014; Watson et al., 2013). Watson et al. (2013) completed a 

comprehensive literature on papers focused on surge capacity. They found that only 4 out of the 

186 (2.2%) papers assessed low-income countries, while 167 (89.8%) focused on the United 

States. None of the papers evaluating low-income countries provided information on modeling or 

quantifying surge capacity for influenza pandemics. Therefore, many papers in this field use 

extrapolated data from high-income countries with qualitative insights provided by papers 

focusing on developing countries for any analysis of low-income countries. As Oshitani et al. 
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(2008) acknowledges, this may underestimate the magnitude of influenza in low-income 

countries.  

 Countries that already suffer from poor health infrastructures will inevitably face further 

disadvantages during pandemics. For instance, chronic disease treatment or treatment for 

infectious diseases such as AIDS and tuberculosis may be stifled as the health system moves to 

halt the spread of influenza (Oshitani et al, 2008). Thus, countries that have poor health 

infrastructures and higher proportions of individuals with underlying medical conditions will 

inevitably face worse outcomes during an infectious disease epidemic.  

A study by Oshitani et al. (2008) evaluated the impact of influenza pandemics on hospital 

beds by country. Using FluSurge 2.0 software to estimate the number of hospital admissions 

during an influenza pandemic, they found that a greater percentage of hospital beds would be 

needed for influenza patients in low-income than high-income countries. Specifically, if the 

influenza incidence was 35%, then in low-income countries 79.1% of hospital beds would be 

taken by influenza patients while only 20.8% of beds would be occupied by influenza patients in 

high-income countries. African countries were excluded in this study as hospital bed data had not 

been reported.  

Other studies have focused on Sub-Saharan Africa’s ability to handle an influenza 

pandemic. Murray et al. (2006) found that 29% of all global deaths during an influenza pandemic 

would come from Sub-Saharan Africa. This is a significant finding as about 17% of the world’s 

population lives in Africa (Statista, 2018a). Murray et al. (2006) attributes these inequalities to 

factors related to poverty. Breiman et al. (2007) explains how poor health infrastructure would 

contribute to why Sub-Saharan Africa would particularly suffer during an influenza pandemic. 

They state that Sub-Saharan Africa has “vast geographic areas that are difficult to access; uneven 
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socioeconomic development; nearly transcontinental limitations in epidemiologic, surveillance, 

and laboratory capacity; and profound infrastructure weaknesses relating to communications and 

health systems and capacity of government organizations to effectively focus limited resources” 

(p. 1454). This analysis of Africa specifically details that poverty creates inefficiencies in health 

infrastructure. These systemic problems then may lead to poor outcomes during an influenza 

pandemic. 

Studies have looked at the impacts of stockpiling resources and gaps in resource 

availability. Gani et al. (2005) found that if stockpiles can cover 20-25% of the population, they 

could reduce hospitalization rates by 50-77% in a pandemic where the R0 value is 1.28 to 1.39. 

Modeling influenza resource gaps in Southeast Asia, Rudge et al. (2012) identified the impact of 

lacking available influenza-response resources such as antivirals, hospital beds, or ventilators. 

Antiviral medications may be a first line of defense against pandemic influenza depending on the 

strain and could be an important part of a mitigation strategy. They “may be effective for 

treatment and prevention of pandemic influenza, and current antiviral drugs seem to be 

biologically effective against 1918 and 1918-like viruses” (Blumenshine et al., 2008, p. 712). 

Using their models for a moderate influenza pandemic with an R0 of 1.32, Rudge et al. (2012) 

found an overall attack rate of 35.6% for both situations of sufficient and not sufficient 

resources. However, there was a considerable difference in the case-fatality rate. Territories with 

no shortages of hospital resources had a case-fatality rate of 0.018%, while places with no 

resources suffered a case-fatality rate of 0.029%. While this model assumed a lower R0 value 

than the average influenza pandemic R0 finding of 1.80 as identified by Biggerstaff et al. (2014), 

the drastic difference in mortality between resource sufficient and insufficient countries will be 

considered while modeling surge capacity. Understanding the ability of countries to distribute 
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resources will help approximate why high-income countries can respond better than low-income 

countries during influenza pandemics.   

 

Interconnectedness to World Economy 

Globalization has enhanced the spread of microbes through increased travel and trade 

allowing infectious diseases to spread beyond countries’ borders (Frenk et al., 2011). According 

to Ali and Keil (2006), the increase of infectious disease spread is a result of changing modes of 

transportation, the number of individuals traveling, and the new methods of entering countries. 

Air travel has had a large impact on the spread of diseases as incubation periods are often longer 

than a flight which allows microbes to travel undetected by the host to a new location (Ali & 

Keil, 2006). While understanding trade and travel within countries is important, Ferguson et al. 

(2006) found that border or travel constraints must be more than 99% effective to reduce the 

transmission of influenza viruses by more than a couple weeks. Additionally, they found that 

reducing border crossings 10-fold at the beginning of an epidemic would be surpassed once the 

global prevalence of the influenza virus increases 10-fold. Thus, understanding the 

connectedness of countries to the world economy is integral to understanding how quickly 

countries are likely to receive initial influenza cases as they likely will not be able to prevent 

influenza’s entrance into the country.  

The zoonotic transmission of influenza between animals also enhances the likelihood that 

influenza will spread across borders as novel strains of influenza are often initially passed to 

humans by swine or birds through antigenic drift or shift (Bouvier & Palese, 2008). Leibler et al. 

(2009) explains the predominant methods in which wild avian species pass influenza to humans 

using poultry as an intermediate viral host. Poultry pass influenza virus that mutated in either the 
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wild avian flocks or poultry population enough to transmit and infect humans predominantly 

through poultry workers. This concern is exacerbated by the growing pork and poultry 

production industries. Globally, pork production is predicted to increase by 2% in 2018 to 113.1 

million tons and exports will increase by 3% (USDA, 2017). Likewise, broiler meat (poultry) 

production is set to increase by 1% to 91.3 million tons in 2018 and exports are predicted to 

grow by 3% (USDA, 2017). 

The severe acute respiratory syndrome (SARS) epidemic of 2002-2003 and the 2009 

H1N1 influenza pandemic demonstrate how the interconnectedness of countries spread SARS 

from Asia and H1N1 influenza from Mexico. Beginning in the Guangdong province of China, in 

November of 2002, many individuals became infected with an unknown respiratory illness  

which was later called SARS (NPR, n.d.). The illness was transmitted by hotel guests on 

February 21, 2003 in Hong Kong and inevitably spread to Vietnam, Singapore, Ireland, 

Germany, and Canada (NPR, n.d.). By the end of July 2003, the epidemic was contained but had 

spread to 32 countries and infected 8,099 people (NPR, n.d.). Within a span of six months in 

2009, H1N1 influenza spread from Mexico to the United States through trade and travel and 

continued into 73 countries (Fineberg, 2014). The spread of microbes propagated by travel and 

trade in recent years establishes the connection between airborne transmission of diseases and 

commerce between countries.  

The SARS epidemic of 2003 and 2009 H1N1 influenza pandemic both demonstrate the 

woes of globalization. The SARS epidemic began in China and spread through other countries 

quickly. An analysis by Keogh-Brown and Smith (2008) found that the greatest economic loss in 

GDP, investments, and the service sector were in China and Hong Kong, the countries hit hardest 

by the epidemic. Other countries, however, that saw cases of SARS including Canada and 
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Singapore also experienced short-term economic consequences. During the 2009 H1N1 

influenza pandemic, both tourism and pork product exportation were affected. Rassy & Smith 

(2013) estimated that $US 2.8 billion USD was lost to tourism, a major component of their 

service sector and, along with the economic disaster of the previous year, caused a “virtual halt” 

(p. 824) of the tourism industry. While fear perceptions of influenza from pork products was 

unfounded due to the lack of evidence that pork consumption can infect humans (CDC, 2017c), 

many countries, including the United States and Japan, avoided buying meat from Mexico 

(Rassy & Smith, 2013). This amounted to $27 million in lost revenue for Mexico (Rassy & 

Smith, 2013).   

Lee and McKibben (2004) state there are three main ways that SARS impacted the global 

economy, but their analysis can relate more generally to all respiratory disease epidemics. First, 

they hypothesize that consumer demand for services such as retail and travel sales decrease. 

Second, foreign investment money declines as confidence in the country’s growth and stability 

are questioned. Lastly, disease prevention and ultimately the costs associated with eliminating 

disease are expensive. Underlying the economic consequences of pandemics is inevitably the 

fear associated with becoming infected by the disease. Unequal economic circumstances created 

during or after a pandemic may also explain why differential outcomes are exacerbated between 

countries.  

Evaluating economic connectedness is necessary to understand which countries are likely 

to be most adversely impacted by a major influenza epidemic within the country. Low and 

middle-income countries predominantly rely on trade and service industries and thus are more 

greatly economically impacted by trade and travel restrictions (McKibben & Sidorenko, 2006). 

Fortunately, while low and middle-income countries may suffer worse economically during an 
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influenza pandemic, they generally have a lower McKinsey Global Institute (MGI) 

Connectedness Index (Manyika et al., 2016). This index evaluates the flow of people, data, 

services, goods, and finance and ranks countries by each subsect of their economy. As all 

categories evaluated by the MGI could contribute to the spread of influenza pandemics, overall 

country ranking of world connectedness will be used for this thesis. The MGI Connectedness 

Index considers the “size of each flow for a country relative to its own GDP or population (flow 

intensity) as well as its share of each total global flow. Combining these measures avoids making 

large and diversified economies appear closed simply due to the extent of economic activities 

taking place within its own borders” (Manyika et al., 2016, p. 11). Using data collected in 2014 

and published in 2016, the MGI found that Singapore, the Netherlands, and the United States 

were the most interconnected countries with MGI indices of 64.2, 54.3, and 52.7 respectively. 

Within the top ten connected countries, six were European and two were in Asia. The Seychelles 

was at the bottom of the list with a score of 1.1. 

 As this thesis makes broad assumptions regarding countries by income levels, general 

estimates for connectedness index scores will be used relative to one another in modeling 

interconnectedness. In order to establish how global interconnectedness affects health outcomes, 

I will consider a very interconnected country one with a MGI Connectedness Index rating 

between 10.0 and 64.2 (the range of the top twenty-five most connected countries). Moderately 

connected countries will have index scores between 2.0 and 10.0 (the range of countries ranked 

twenty-six through eighty-one). Countries with low levels of interconnectedness will be any with 

an MGI Connectedness Index less than 2.0.  

 For this thesis, it will be assumed that greater economic connectedness will increase the 

likelihood of spread of disease into a country. This will be assumed because trade and travel 
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have been identified as risks leading to the proliferation and appearance of infectious diseases 

and pandemics (Suk et al., 2014). Geographic location and location of country of origin will play 

a significant role in a future pandemic, but for the purposes of this thesis, this model will assume 

geographic independence regarding the pandemic’s country of origin. Using the MGI, a greater 

global connectedness ranking will affect the number of infectious individuals I1 at the start of the 

pandemic. Evaluating global economic connectedness will help demonstrate how the initial entry 

of virus into countries will affect differential population-level health outcomes. 

 

Pandemic Preparedness 

 Although governments may not initially be able to influence entry of influenza within or 

into their country, generally governments have some control over how they respond to 

pandemics. Countries that respond better and faster to the threat of influenza within their country 

will likely have better health outcomes. According to Lee and Fidler (2007), “surveillance, 

protection of the population from the circulating virus, effective response to outbreaks, and 

communication” (p. 218) are the four necessary functions that governments must coordinate in 

order to protect citizens from an influenza pandemic. The factor of pandemic preparedness will 

be considered a result of strong governmental planning prior to and during a pandemic.  

 Flaws in implementing preparedness measures have created distinct groups of countries 

that either do, do not, or are unable to follow the IHR. The IHR were established in 2005 “‘to 

prevent, protect against, control and provide a public health response to the international spread 

of disease in ways that are commensurate with and restricted to public health risks…’” (WHO, 

2016, p. 1). This extends to infectious and noninfectious dangers (Kasolo et al., 2013). All 193 

Member States of the WHO and one State Party are bound by the IHR (Director-General, 2011) 
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and the first full enactment of the IHR occurred during the 2009 H1N1 influenza pandemic 

(Fineberg, 2014). At the time of the 2009 H1N1 pandemic, 74% of countries had preparedness 

plans established (Director-General, 2011). However, according to the Director-General of the 

WHO (2011) many State Parties were not able to meet IHR guidelines for preparedness plans 

and infrastructure improvements by the 2012 deadline. Out of 194 State Parties, 66% responded 

to the WHO questionnaire sent out prior to 2012. Of the reporting State Parties, only 58% had 

“developed national plans to meet core capacity requirements” (p. 13) and 10% had been able to 

meet the IHR requirements. Gostin and Katz (2016) found that only 64 countries had fully 

implemented IHR by 2014. This follows the major criticism of the IHR which is the inability for 

the WHO to impose sanctions on countries that are unable to meet country guidelines (Fineberg, 

2014). This ineptitude to act, in part, has caused differential levels of pandemic preparedness.   

 Pandemic preparedness for influenza has specifically been a focus of the WHO. The 

WHO Checklist (2005) was released for improving country-level preparation. The checklist 

includes a variety of measures that are “essential” for countries to implement including early 

warning surveillance, communication, risk assessment, public health measures, and health 

services, while ethical issues, general surveillance, vaccine programs, and evaluation are 

“desirable” (WHO, 2005). 89 countries currently have influenza preparedness plans publically 

available through the WHO website (WHO, 2018a), but that does not mean they are all equally 

effective. While the list of traits that are necessary for pandemic preparedness are exhaustive, the 

directly-related mitigation factors of vaccine availability and ability to enforce social distancing 

measures will be predominantly evaluated while modeling this factor. 

 Vaccines, even when only partially effective against a novel pandemic influenza strain, 

can still greatly reduce the total number of infected individuals within a population (Ferguson et 
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al., 2006). Ferguson et al. (2006) created a model to evaluate how pandemic mitigation strategies 

in the United States and England would reduce the spread of a pandemic. They found that 

vaccines need to be distributed within the first 120 days of a pandemic to be effective. As they 

also identify that it generally takes vaccine manufacturers longer than four months to produce a 

vaccine, it becomes obvious that countries need a stockpile of vaccines prior to pandemics. 

Luckily, even if stockpiled vaccines are “poorly matched to circulating strains” (p. 5935) of 

influenza, disease spread can be reduced to less than 10% even with an R0 equal to 1.9 if children 

are vaccinated primarily (Germann et al., 2006). 

 During the pandemic, the government may also decide to enact measures to keep citizens 

from coming in contact with infected individuals. Certain measures may include “limiting large 

groups of people coming together, closing buildings, and canceling events” (Public Health Dept. 

of Santa Clara, n.d., p. 1) but could also include border control (Ferguson et al., 2006). Ferguson 

et al. (2005) considers the impact of 90% school and 50% workplace closures within a 5 

kilometer radius of a detected case in addition to an 80% quarantine of the immediate space 

surrounding infectious individuals. They found that area quarantine, in combination with 

prophylactic drug treatment of individuals located near an infected individual and school and 

workplace closures could increase the likelihood of epidemic containment to 90% when the R0 is 

1.8. Ferguson et al. (2006) found that border control could delay the peak of an epidemic in the 

United States. Regarding antiviral use in conjunction with social distancing measures, Germann 

et al. (2006) found that for an R0 of 1.8, the United States would need a stockpile of 51 million 

antiviral drugs for 281 million Americans to mitigate the attack rate to approximately 10%. The 

amount of antiviral drugs needed for mitigation, however, decreased significantly with every 

decrease in R0.  
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 While mitigation factors can be effective at reducing severe population health outcomes, 

prior research indicates that they must be applied early and effectively. Reluga (2010) asserted 

that utilization of social distancing measures by individuals are most effective when the basic 

reproductive number is close to 2. Markel et al. (2007) discussed how mitigation factors other 

than pharmaceutical interventions affected population health outcomes in United States cities 

during the 1918 influenza pandemic. They found that cities had large discrepancies in excess 

deaths per 100,000 both in magnitude of the first peak of infection and in overall mortality rates. 

For instance, New York City had the lowest excess mortality burden of Eastern seaboard cities 

with 452/100,000 individuals. The success was attributed at least in part to “mandatory case 

reporting and rigidly enforced isolation and quarantine procedures” (Markel et al., 2007, p. 651). 

On the other hand, Pittsburgh suffered from high excess mortality (807/100,000) likely due to its 

limited and slow mitigation responses. Thus, while nonpharmaceutical interventions can cause 

substantial differences in health outcomes, research declares that they must be applied with 

appropriate discretion to be effective.  

Therefore, countries with strong pandemic preparedness should make efforts to reduce 

the R0 value of a pandemic through measures such as social distancing and vaccination to reduce 

the initial surge of cases and limit the need for other resources. Multiple papers have also used a  

decreasing R0 to establish the strength of a mitigation program (Ferguson et al., 2005; Ferguson 

et al., 2006; Mills et al., 2004). For this thesis, reduction of R0  and hence the transmission factor 

(ß), will be the outcome of strong vaccine production capabilities and social distancing measures. 

Ability to mitigate the effect of a pandemic within the country may be a contributing factor to 

why high-income countries tend to have better health outcomes than low-income countries.  
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Individual Host Factors  

Proportion of Country with Underlying Medical Conditions 

         Different countries inherently have variant proportions of individuals in the population 

with underlying medical conditions and this may substantially alter morbidity and mortality rates 

by country. Both developing and developed countries face health burdens due to the 

epidemiologic transition which is a result of industrialization. For instance, cardiovascular 

disease causes 5-10% of deaths in less developed regions including Sub-Saharan Africa and 

South America as opposed to around 50% of deaths in Western Europe and North America 

(Yusuf et al., 2001). The types of cardiovascular disease deaths, however, vary due to the risk 

factors in the region (i.e. nutritional cardiomyopathies versus old age) which may in part be 

explained by the epidemiologic transition (Yusuf et al., 2001). According to McKeown (2009) 

the “epidemiologic transition describes changing patterns of population distributions in relation 

to changing patterns of mortality, fertility, life expectancy, and leading causes of death” (p. 1). 

As part of the transition, infectious diseases slowly fade as the leading cause of morbidity and 

mortality as urbanization brings wealth and food surplus to societies consequently leading to 

better public health services and nutrition (Gaziano, 2010). This leads to the third stage of the 

epidemiologic transition in which man-made diseases such as cardiovascular disease and cancer 

occur once individuals increasingly make unhealthy lifestyle choices (Gaziano, 2010). According 

to Yusuf et al. (2001), countries are at varying stages in the epidemiologic transition generally 

with developing (i.e. low and middle-income) countries in the earlier stages and developed (i.e. 

high-income or industrialized) countries at the latter stages of the epidemiologic transition. For 

countries transitioning from developing to developed, there often exists a high prevalence of both 

chronic and infectious diseases (Yusuf et al., 2001). 
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Given the predominance of chronic conditions as leading causes of death globally (WHO, 

2017), it is no surprise that many studies have found associations between pre-existing medical 

conditions and severe health outcomes of influenza. Underlying conditions of consideration for 

this research will include conditions considered by the CDC to put individuals at-risk for 

complications from influenza such as chronic respiratory diseases, immunosuppression, chronic 

kidney disease, chronic neurological diseases, cardiovascular disease, lung disease, and extreme 

obesity (CDC, 2018a). 

Individuals with chronic conditions frequently have higher hospitalization and mortality 

rates from influenza than other individuals within the population. Campbell et al. (2010) used 

2009 pandemic influenza surveillance in England to quantify the risk of hospitalization due to 

influenza in individuals with pre-existing conditions such as chronic respiratory diseases, 

immunosuppression, chronic kidney disease, and chronic neurological diseases. They found that 

having one of these pre-existing conditions increased risk of hospitalization 10- to 20-fold. 

Additionally, they found an OR of 1.6 (95% CI: 0.9-2.9) for death in individuals with one or 

more chronic conditions in hospitalized individuals and had a 1.5 OR (95% CI: 1.1-2.1) of 

having any severe outcome compared to patients with no underlying medical condition. Van 

Kerkhove et al. (2011) found that the OR for death after influenza-related hospitalization was 

significantly higher for those with respiratory disease, diabetes, cardiac disease, renal disease, 

liver disease, neurological disease, or patients who were immunocompromised. Likewise, during 

the 2009 influenza pandemic in Mexico, it was estimated that 70% of all hospitalized individuals 

had a pre-existing condition (Echevarria-Zuno et al., 2010). Although not a disease alone, 

obesity has also been shown to be a notable risk factor for more severe outcomes of novel 

influenza as it can lead to other underlying conditions such as cardiovascular disease. A study in 



40  

California identified that half of patients twenty years or older hospitalized during the 2009 

H1N1 influenza pandemic were obese (Louie et al., 2011). These results suggest that the 

prevalence of underlying conditions and the distribution of that burden globally is central to 

understanding how a 1918-like influenza pandemic would impact the world today. 

Although no estimates for proportions of individuals with pre-existing conditions have 

been directly calculated for all countries, approximate rates of underlying conditions have been 

found for some countries and can be extrapolated for other countries. The United States (U.S.) 

has well-documented rates of underlying medical conditions. As of 2000, 45% of the U.S. 

population was found to have a chronic condition (Anderson & Horvath, 2004). That number is 

likely higher currently due to the increasing prevalence of obesity and diabetes. Additionally, a 

more recent study by Claxton et al. (2016) found that 27% of all Americans younger than 65 had 

a pre-existing condition. Health conditions defined for the Claxton et al. (2016) study were 

characteristics that would have made the participants ineligible for health insurance before the 

Affordable Care Act. Regarding obesity, the Organization for Economic Cooperation and 

Development (OECD), often considered ‘“a club of mostly rich countries”’ (Buttonwood, 2017), 

found that on average in 2015 that 19.5% of individuals fifteen and older were obese in OECD 

countries (OECD, 2017). In the United States, the obesity rate was 38.2% (OECD, 2017). 

As a result of pre-existing conditions, two key parameters in the SIR model will be 

impacted, the recovery rate, ν2, and mortality rate, µ2. As related to mortality, Campbell et al. 

(2010) found that the OR for death increased to 1.6 given hospitalization, so the case-fatality rate 

will be adjusted accordingly. For the recovery rate, it will be assumed that individuals with 

chronic conditions will have a prolonged duration of infection as individuals as they are more 

likely to be hospitalized or die (Campbell et al., 2010; Echevarria-Zuno et al., 2010; Louie et al., 
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2011). Understanding the proportion of individuals with chronic conditions by country will 

enable a better understanding of how co-morbidities at the individual level compound 

population-level outcomes. 

   

Proportion of Individuals Sixty-Five and Older 

 Influenza can infect individuals of all ages, but generally does not at the same rate. 

Variant age distributions between countries may impact the severity of health outcomes in 

countries with different income levels. Despite the high prevalence of chronic conditions in 

elderly adults (Christ & Diwan, 2008), this section will detail why during influenza pandemics 

elderly individuals die at a decreased rate than anticipated. This may be a contributing factor to 

explain why high-income countries have lower mortality rates than low-income countries. 

During the 1918 influenza pandemic, for instance, mortality rates formed a “W”-shape 

with the highest death rates in the youngest and oldest individuals and a distinctive spike in 

individuals twenty to forty years old (Taubenberger & Morens, 2006). As Morens et al. (2010) 

and Morens and Fauci (2007) explain, this is surprising because more young adults than 

expected died and mortality in elderly individuals was “less pronounced” (p. 1023) than 

individuals of any other age. Morens and Fauci (2007) clarified that, while there was an 

association between mortality and age, mortality was not as high as expected in the elderly 

population.  

 Simonsen et al. (1998) found a distinct difference in mortality between individuals 

younger than or greater than 65. They found that during the 1918 influenza pandemic, 99% of 

deaths likely caused by influenza were in individuals younger than sixty-five. In addition, “the 

absolute risk of influenza-associated mortality was higher among persons <65 than those ≥ 65” 
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(Simonsen et al., 1998, p. 54). They also found that the risk ratio of death in those greater than 

sixty-five to younger than sixty-five was 0.3 to 1 meaning that individuals older than sixty-five 

had a significantly reduced chance of dying from influenza than younger adults. 

Results suggest that regardless of the high proportion of underlying medical conditions in 

elderly individuals, adults sixty-five and older likely have some immune advantage during 

influenza pandemics. Data from the 2009 influenza pandemic seem to also indicate that lower 

than expected rates of mortality in the elderly occurred. Shrestha et al. (2011) found that during 

the 2009 H1N1 pandemic in the United States, there were 4.2 deaths per 100,000 in individuals 

sixty-five and older compared to an overall death rate of 4.1 per 100,000. This is significantly 

lower than the average death rate from 1990 to 1999 from influenza in individuals over sixty-five 

which was 22.1 deaths per 100,000 people. Murray et al. (2006) found through looking at data 

for 27 countries, some US states, and Indian provinces that if an influenza pandemic were to 

occur today, some countries would have “almost no excess mortality in individuals aged over 60 

years” while others may have “substantial mortality in the same age group” (Murray et al., 2006, 

p. 2213). Murray et al (2006) also made predictions of age distribution and mortality across 

countries if an influenza pandemic occurred in modern times. They predicted that only 7% of all 

deaths would occur in individuals sixty years or older while 58% and 28% of deaths would occur 

in those 15-44 and individuals younger than fifteen respectively. They suggest that deaths of 

individuals 15-40 years old would be caused by high mortality rates while there would be a 

larger population of individuals younger than fifteen years old who would face a moderate 

mortality rate.  

 Data on the proportion of individuals older than sixty-five for 180 countries was acquired 

from the World Bank (2018b) dataset. The average percentage of individuals older than sixty-



43  

five has a wide range across countries but the mean is 8%. On average, 17% of the population in 

high-income countries is greater than or equal to sixty-five while low-income countries only 

have 3% of their population sixty-five and older. Although it is still likely that the proportion of 

elderly individuals dying in a pandemic will be increased due to a high proportion of elderly 

individuals with underlying medical conditions, it will be assumed that this group will have an 

immune advantage due to prior exposure to an antigenically similar influenza strain. The 

mortality rate (µ2) and recovery rate (ν2) for elderly individuals will be reduced in the model, to 

account for this prior exposure to disease and will reduce the severity and duration of infection. 

Through accounting for prior immunity to the virus, countries with larger percentages of 

individuals greater than or equal to sixty-five (high-income countries) will likely reduce their 

mortality and morbidity compared to countries with lower percentages (low-income countries). 

 

Ethnic Heterogeneity and Minority Populations 

Another factor that may impact pandemic influenza outcomes across countries is how 

ethnic heterogeneity reduces access to health care and can cause societal inequalities. Ethnic 

diversity has been shown to be largely negative in many instances and high proportions of ethnic 

heterogeneity may affect morbidity and mortality totals for different countries. Easterly and 

Levine (1997) found that high ethnic diversity is related to “low schooling rates, underdeveloped 

financial systems, … and insufficient infrastructure” (p. 1203). They evaluated African countries 

and found there was a correlation between low economic growth and ethnic diversity. They  

concluded that this trend was not unique to Africa. Alesina et al. (2003) compiled literature 

based on the United States and also found that, in more ethnically diverse locations, public goods 



44  

were less well distributed and community trust was reduced. Churchill and Smyth (2017) also 

have identified a link between increased poverty and high ethnic or linguistic heterogeneity.  

 Similarly to structural violence caused by income or wealth status, racial or ethnic status 

can create disadvantaged individuals throughout countries. Citing multiple studies, Hutchins et 

al. (2009) states that minority populations have “higher rates of injuries, poor health conditions, 

adverse health outcomes, and lack of access to health care” (p. S261). Minorities may also suffer 

from stigmatization and unequal care over the course of inpatient care (Blumenshine et al., 

2008). According to Barrett & Brown (2008) stigmatization within populations can reduce health 

care seeking, cause an increase of disease spread among disadvantaged individuals, reduce the 

cooperation between susceptible individuals and health or governmental experts, and cause an 

exacerbation of societal panic.  

Minority groups also disproportionately suffer from influenza due to a variety of factors. 

Hutchins et al. (2009) states that racial or ethnic minorities may face worse health outcomes 

because minority groups tend to have higher rates of pre-existing health conditions, less access to 

health care, lower rates of seasonal influenza vaccination, and greater socioeconomic barriers to 

implement pandemic interventions in their homes or communities. Likewise, Van Kerkhove et 

al. (2011) summarizes hypotheses from papers as to why influenza-related health disparities 

occur including “a higher prevalence of chronic medical conditions known to increase risk of 

severe influenza, delayed or reduced access to healthcare, cultural differences in healthcare-

seeking behavior and approaches to health, potential differences in genetic susceptibility, and 

social inequalities” (p. 8-9). According to Hutchins et al. (2009), ethnic/racial minorities also 

have a greater risk of secondary pneumonia independent of pre-existing conditions. They argue 

that the increased chance of secondary infection may be caused by “lower pneumococcal 
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vaccination coverage and differential access to health care” (Hutchins et al., 2009, p. S264). As 

this paper already considers chronic conditions, the factor of ethnic heterogeneity will reflect 

how minority groups suffer from differences in healthcare access, healthcare-seeking behavior, 

and social inequalities.  

Studies conducted in high-income countries including the United States, Canada, 

Australia, and New Zealand have shown a significant difference between morbidity and 

mortality totals during the 2009 H1N1 (Dee et al., 2011; Tricco et al., 2012; Van Kerkhove et al., 

2011) and 1918 influenza pandemics (Frost, 1920; Garrett, 2008; Groom et al., 2009; Hutchins et 

al., 2009) between minority and non-minority populations. Of interest, Dee et al. (2011) found 

that during the 2009 H1N1 influenza pandemic in the United States, minorities had age-adjusted 

hospitalization rates of pediatric cases that were two times greater than those for Whites. 

Evaluating data on individuals from nineteen countries admitted to the hospital during the 2009 

H1N1 pandemic, Van Kerkhove (2011) found that individuals from minority populations or 

vulnerable groups had a risk ratio for death of 2.4 (IQR 1.2-3.8). Data, however, was not 

consistent across all countries as Mexico and Thailand reported less severe outcomes for 

minority populations than the general population. As Hutchins (2009) acknowledged, Frost 

(1920) and Garrett (2008) both found that minority population suffered in cities in the U.S. 

during the 1918 influenza pandemic. Groom et al. (2009) identified that influenza outcomes in 

American Indians and Native Alaskans were more severe in 1918 and are still present in modern 

influenza outbreaks. 

 As high ethnic group diversity may be harmful to countries, the fractionalization or  

measure of evaluating the number of ethnicities within a country will be considered. Alesina et 

al. (2003) created an ethnic fractionalization index that evaluates the diversity of ethnicities 
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within populations based on anthropological insights. The values given to each country vary 

from 0-1 with 0 being a perfectly homogeneous country and 1 being completely heterogeneous. 

The mean for the 180 countries available was 0.435. The country with the greatest 

fractionalization was Liberia at 0.9084 while Comoros was completely homogenous at 0.0000, 

meaning that all individuals were of the same ethnic group. Westernized countries including 

Sweden and Japan tended to have lower ethnic fractionalization, while Sub-Saharan African 

countries such as the Democratic Republic of Congo had higher ethnic fractionalization score.  

 This model for ethnic heterogeneity will establish intervals for ethnic fractionalization 

scores to understand how variant populations throughout countries may partially explain why 

there are differential health outcomes between countries. Countries with ethnic fractionalization 

scores between 0.00 and 0.3 will be considered relatively homogeneous countries. Moderately 

heterogeneous countries will have indices between 0.3001 and 0.6000. Highly heterogeneous 

countries will have an ethnic fractionalization score between 0.6001 and 1.000. These varying 

values of ethnic heterogeneity will impact the number of individuals in each susceptible 

population group.  

 

Results by Country-Level and Individual Host Factor 

 This section will detail how each country-level and individual host factor will impact 

countries’ abilities to respond to influenza pandemics. The operationalization of how each factor 

was modeled along with the parameters and initial conditions used are discussed and can be 

viewed in Table 4 and Table 5. Descriptive population-level health outcome measures by factor 

are also detailed. Comparisons between factors will be considered in the discussion section. 
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Table 4: Input Parameters and Initial Conditions by Country-Level Model 

 Base 
Model 

High Pop. 
Density 

High 
Surge 
Capacity 

Moderate 
Surge 
Capacity 

Highly 
Connected 

Moderately 
Connected 

High Prep. Moderate 
Prep. 

S1 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 

I1 1 1 1 1 40 20 1 1 

ß 0.36 0.396 0.36 0.36 0.36 0.36 0.28 0.32 

R0 1.8 1.98 1.44 1.62 1.8 1.8 1.4 1.6 

µ1 0.00513 0.00651 0.00213 0.00394 0.00513 0.00513 0.00513 0.00513 

ν1 1/5 1/5 1/4 1/4.5 1/5 1/5 1/5 1/5 

Note: Values for R1,S2,   I2, R2, µ2,ν2 are not shown as they are 0 in all models and are only used in subgroup modeling. 
Pop. stands for population and prep. stands for preparedness 
 
Table 5: Input Parameters and Initial Conditions by Individual Host Model 

 Base 
Model 

High UMC Moderate 
UMC 

High 65+ Mod. 65+ Low 65+ High Het. Med. Het. Low Het. 

S1 10,000,000 9,000,000 7,000,000 8,300,000 9,300,000 9,700,000 8,000,000 4,500,000 1,500,000 

I1 1 1 1 1 1 1 1 1 1 

S2 0 1,000,000 3,000,000 1,700,000 700,000 300,000 2,000,000 5,500,000 8,500,000 

ß 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 

R0
A 1.8 2.16  2.16  1.44  1.44 1.44 2.16 2.16 2.16 

µ1 0.00513 0.00513 0.00513 0.00513 0.00513 0.00513 0.00513 0.00513 0.00513 

µ2 0 0.00695 0.00695 0.00171 0.00171 0.00171 0.0106 0.0106 0.0106 

ν1 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 

ν2 0 1/6 1/6 1/4 1/4 1/4 1/6 1/6 1/6 
A: Subgroup R0  value shown. 
Note: UMC stands for underlying medical conditions, mod. stands for moderate, prop. stands for proportion, and het. stands for 
heterogeneity 

 

Population Density 

 Population density was operationalized into high (>175 PPSM) and low (<175 PPSM) 

population density. Low population density used the same parameters as the base model. For 
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high population density, ß was increased by 10% to 0.396. Increasing the population density by 

10% increased the R0 value to 1.98. I increased the case-fatality rate by 26% to 3.15% which is in 

line with the findings of Chandra et al. (2013) who found a decline in mortality of 4.69% in high 

population density (>175 PPSM) and 3.72% in low population density (<175 PPSM) countries. 

This was facilitated by an increased mortality rate (µ1) of 0.00651.  

The peak day of infection occurred on day 85 with 1,407,694 people infected. The peak 

day of infection occurred 17 days before the peak day of infection in the low population density 

model (see Figure 7). The TAR for the high population density model was 78.0%. 

 
Figure 7: Number of infected individuals over time in the low and high population density 
models. The peak of infection for high (>175 PPSM) population density (blue) occurred at day 
85 which was 17 days earlier than in the low (<175 PPSM) population density model (black). 
1,109,342 were infected on this peak day in the low population density model and 1,407,694 
were infected in the high population density model. The TAR for the low population density 
model was 72.1% and was 78.0% in the high population density model.   
 
 As identified through the literature review, there were no strong conclusions regarding 

increased transmission in high versus low population density areas despite the high theoretical 

likelihood that population density is an important factor. To test the high population density 

model with no transmission rate increase, only the mortality rate (µ1) was altered to 0.00651 and 
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ß was held constant at 0.36. The recovery rate and all initial conditions remained the same as the 

base model. Only changing the mortality rate did not cause a significant difference in health 

outcome measures from the base model. While the literature was mixed regarding population 

density, this thesis’s goal is to address all possible factors affecting the severity of a modern-day 

influenza pandemic in low, middle, and high-income countries. Thus, it was assumed for the 

purpose of this thesis that population density did affect both the mortality and transmission rates. 

 

Surge Capacity 

 Low, moderate, and high surge capacity was modeled. The low surge capacity model had 

the same characteristics as the base model. The high surge capacity model had a case-fatality rate 

of 1.0% based on the 60% reduction identified by Rudge et al. (2012). This equated to a 

mortality rate (µ1) of 0.213%. It was estimated that with moderate surge capacity, the case-

fatality rate would be decreased by 30% to 1.75% making the mortality rate (µ1) 0.00394 

(0.394%). The recovery rate was decreased by half a day (ν1 =1/4.5) for the moderate surge 

capacity scenario and by a full day (ν1 =1/4) in the high surge capacity scenario given the 

effectiveness of early antiviral treatment (CDC, 2018b). This decreased the R0 to 1.62 and 1.44 

in the high and moderate surge capacity models respectively. 

 Both the moderate and high surge capacity scenarios increased the time to the peak day 

of infection and reduced the total number of individuals infected over the low surge capacity 

model (see Figure 8). The moderate surge capacity scenario saw the peak day of infection occur 

after 115 days with 804,568 individuals infected. The TAR was 64.2%. In the high surge 

capacity scenario, the peak day occurred on day 137 with 504,594 individuals infected and a 

TAR of 53.3%.  
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Figure 8: The number of infected individuals by low, moderate, and high surge capacity 
capabilities. The low surge capacity model (black) had the same characteristics as the base 
model. The moderate surge capacity scenario (orange) had a case-fatality rate of 1.75% and TAR 
of 64.2%. Peak day of infection occurred on day 115 with 804,568 individuals infected. In the 
high surge capacity scenario (blue), the peak day of infection occurred on day 137 with 504,594 
individuals infected. The TAR was 53.3% and the case-fatality rate was 1.00% 
 
 
Interconnectedness to the World Economy 

 Interconnectedness to the world economy was modeled for countries that were 

considered as having a low, moderate, or high connectedness to the world economy. Country’s 

connectedness were defined by the MGI Connectedness Index as discussed earlier. The low 

connectedness to the world economy model was the same as the base model. A moderately 

connected country had an increase in initial infected individuals to 20 (I1 = 20) and a highly 

connected country started with 40 initial individuals infected (I1 = 40).  

 The case-fatality rate, TAR, and number of infected individuals on the peak day of 

infection remained consistent while the peak day of infections decreased with increasing 

connectedness (see Figure 9). The case-fatality rate for all models was 2.50% with a TAR of 

72.1%. The moderately connected scenario had a peak day of infection on day 82 with 1,109,691 
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infected while the highly connected scenario had a peak day of infection on day 78 with 

1,109,846 infected.  

 
Figure 9: The number of infected individuals by low, moderate, and high connectedness to 
the world economy. The case-fatality rate, TAR, and number of infected individuals on the day 
of peak infection were stagnant across the three scenarios. The peak day of infection for the low 
(black), moderate (orange), and high (blue) connectedness models were day 102, 82, and 78 
respectively. This signified that an increase in connectedness to the world economy decreased 
the number of days until the peak of the infection. 
 
 

Pandemic Preparedness 

 Low, moderate, and high pandemic preparedness scenarios were modeled based on 

reductions in the basic reproductive number, R0. Low pandemic preparedness kept the ascribed 

R0 of 1.8, while in the moderate and high pandemic preparedness models the R0 decreased to 1.6 

and 1.4 respectively. To operationalize these R0 decreases, ß was decreased to 0.32 and 0.28 for 

each given the relationship between R0 and ß (R0 = ß/ν1). A second change that was made to the 

base model was an increase in the number of steps or time modeled (t = 400). This was to 

accommodate the longer timespan of the pandemic preparedness models due to the decreasing R0 

value. 
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 The case-fatality rate remained 2.50% for all scenarios, but the TAR, peak day of 

infection, and number of individuals infected on the peak day of infection changed (see Figure 

10). Moderate pandemic preparedness had its peak infection on day 133 with 749,301 people 

infected. The high pandemic preparedness scenario’s peak day of infection was on day 194 with 

401,042 people infected. The TAR for the moderate preparedness scenario was 62.7% and was 

48.9% for the high preparedness scenario. 

 

 
Figure 10: The number infected by the level of pandemic preparedness in the country. Low 
pandemic preparedness had the same characteristics as the base model (black) with 72.1% 
infected and a peak day of infection on day 102. The peak day of infection was extended to day 
133 and 194 for the moderate (orange) and high (blue) pandemic scenarios respectively. The 
TAR decreased with increasing pandemic preparedness levels from 72.1% to 62.7% and 48.9% 
respectively.  
 
Proportion of Country with Underlying Medical Condition 

 The proportion of a country with an underlying medical condition was modeled as low, 

moderate, and high proportions of individuals with these chronic conditions. The base model 

assumed that 20% of individuals had these chronic conditions based on the average levels of 
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obesity in OECD countries (OECD, 2017). The moderate proportion scenario had 10% more 

individuals with underlying medical conditions than the base scenario (S1 = 9,000,000 and S2 

=1,000,000) and the high proportion scenario had 30% more individuals than the base model 

with underlying medical conditions (S1 = 7,000,000 and S2 =3,000,000).  

 The case-fatality rate was made to be 60% greater in the population of individuals with 

underlying medical conditions to match the findings from Campbell et al. (2010). This made the 

case-fatality rate 4.00% in a population with 10,000,000 individuals with a mortality rate of 

0.695% (µ2 = 0.00695). The recovery rate was also decreased in this subpopulation so that 

recovery occurred once every six days (ν2 = 1/6). This increased the R0 in this subpopulation to 

2.16. All other parameters and initial values remained the same as the base model. 

 The moderate and high proportion of individuals with underlying medical conditions 

model displayed variant characteristics than the low proportion model (see Figure 11). The 

scenario in which there was a moderate proportion of individuals with an underlying medical 

condition had an overall case-fatality rate of 2.65% and TAR of 73.4%. The peak day of 

infection occurred on day 100 with 1,166,348 infected. In the scenario where a high proportion 

of individuals had underlying medical conditions, the peak day of infection occurred on day 97 

with 1,278,564 individuals infected. The TAR was 75.8% and the case-fatality rate was 2.95%. 
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Figure 11: Number of individuals infected by proportion of underlying medical conditions 
(UMCs). Individuals in countries with a high proportion of underlying medical conditions (blue) 
had the highest rate of deaths with a 2.95% case-fatality rate and a TAR of 75.8%. There was 
less than 5 days of change in the peak day of infection between scenarios but the greatest number 
of individuals infected on the peak day occurred in the high proportion of individuals with 
underlying medical conditions model.  
 
Proportion of Individuals 65 and Older 

 The proportion of individuals sixty-five and older was modeled by no, low, moderate, 

and high proportions of individuals sixty-five and older. Individuals who are sixty-five and older 

were considered partially immune to the virus because their immune system had been previously 

exposed to this viral strain. The elderly population was split into their own separate group and 

their mortality rate was reduced by 2/3 to 0.171% (µ2 = 0.00171) based on the reduction in 

mortality rate identified by Simonsen et al. (1998). The recovery rate was also reduced by one 

day to account for a shorter recovery period in individuals that are immune (ν2 = 1/4). 3%, 7%, 

and 17% of individuals were considered sixty-five or older in the low, moderate, and high 

proportion models based on the World Bank’s Population ages 65 and above (% of total) 

(2018b) data set for low, middle, and high-income countries. For the low proportion of 

individuals with underlying medical conditions model, 9,700,000 were placed in the S1 group 

and 300,000 were initially put in S2 group. S1 for the moderate and high proportion of individuals 

sixty-five or older models was 9,300,000 and 8,300,000, while S2 was 700,000 and 1,700,000 

respectively. 

 All population health outcomes remained similar in all models (see Figure 12). The TAR 

for high to low proportion of individuals sixty-five or older ranged from 69.7% to 71.7%. 

Likewise, there were small reductions to case-fatality rates with the lowest reduction in the high 

proportion of individuals sixty-five or older model at 2.19%. Peak day of infected individuals 
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ranged within one week of the base model. Number of infected individuals ranged from 

1,001,216 to 1,090,470 compared to the 1,109,342 individuals infected in the base model.  

 
Figure 12: Number of individuals infected by proportion of individuals aged sixty-five or 
older. No significant differences in peak time of infection, case-fatality rates, or TAR were seen 
in the high (red), moderate (orange), or low (blue) proportions of individuals 65 or older models. 
There was, however, a significant decrease in the number of individuals infected on the peak day 
of infection in the high proportion of individuals sixty-five or older model. 
 
Ethnic Heterogeneity and Minority Populations 

 The amount of ethnic heterogeneity within a country was measured as homogeneous or 

low, moderate, or high heterogeneity. This measure was used to determine how much cultural 

barriers such as self or community-imposed limited access to health care and social inequalities 

acted as factors during influenza pandemics. The homogeneous scenario had the same 

parameters and initial conditions as the base model. The relative distinctions of heterogeneity 

were determined using the ethnic fractionalization groupings from Alesina et al. (2003). The low 

ethnically heterogeneous model had a majority population that made up 80% of the country (S1 = 

8,000,000 and S2 = 2,000,000), the moderately heterogeneous model had a majority population 
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that made up 45% (S1 = 4,500,000 and S2 = 5,500,000), and the highly heterogeneous scenario 

was composed of one majority group of 15% (S1 = 1,500,000 and S2 = 8,500,000). The case-

fatality rate in the minority population (group 2) was 2.4 times higher than in the base model 

(Van Kerkhove et al., 2011). The 6.00% case-fatality rate was adjusted by increasing the length 

of recovery by one day (ν2 = 1/6) and altering the mortality rate to 0.106% (µ2 = 0.0106) in a 

population of 10,000,000 susceptible individuals with these characteristics. This made the R0 = 

2.16 in the group 2 population.  

 The case-fatality rate and TAR for each decreasing level of ethnic homogeneity 

increased, while the peak day of infection stayed relatively stagnant (see Figure 13). The low 

ethnically heterogeneous scenario had a 3.20% case-fatality rate and a peak day of infection on 

day 99 with 1,210,256 individuals infected. The TAR was 74.4%. In the moderately 

heterogeneous model, the case-fatality rate was 4.41% with a peak day of infection on day 94. 

During the peak day of the infection, 1,390,014 were infected and the TAR was 78.0%. In the 

highly heterogeneous model, the case-fatality rate was 5.46% with a peak day of infection on day 

91 with 1,545,332 people infected and a TAR of 80.6%. 
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Figure 13: Then number of infected individuals by the level of ethnic heterogeneity within 
the population. A completely homogeneous country (black) had the same characteristics as the 
base model with a case-fatality rate of 2.50% and TAR of 72.1%. In increasing order of ethnic 
heterogeneity, the low ethnically heterogeneous (red) scenario had a case-fatality rate of 3.20% 
and TAR of 74.4%, the moderately heterogeneous scenario (orange) had a case-fatality rate of 
4.41% and a TAR of 78.0%, and the highly heterogeneous country (blue) had a case-fatality rate 
of 5.46% with a TAR of 80.6%. 
 

Modeling Countries by Income Level—Country-Level Factor Analysis 
 

 In order to build model countries by income level to establish discrepancies in health 

outcomes for low, middle, and high-income countries, it was necessary to combine the values of 

the parameters from each factor. For the purposes of this thesis, only country-level factors were 

considered in the low, middle, and high-income models. These factors affect all individuals 

within populations and are necessary for a better understanding of differential health outcomes 

caused by a severe influenza pandemic.  

Four model countries were constructed based on typical characteristics of high, middle, 

and low-income countries. Low, middle, and high-income countries were defined by the World 

Bank Country and lending groups (2018c) data set. The characteristics of these four models are 

detailed in Figure 14. The low-income country model was assumed to have the characteristics of 

the base model as previous research had demonstrated that countries with full susceptibility and 

no mitigation strategies would have similar epidemic outcomes to the base model. A dense (>175 

PPSM) and non-dense (<175 PPSM) middle-income country were selected as there was  
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Figure 14: Four main models were used to establish how country-level factors differ across 
a high-income, low-income, densely populated middle-income, and less densely populated 
middle-income country. All four models started with 10 million susceptible individuals, one 
infected individual, and no recovered individuals. 
 
disagreement in the literature regarding the importance of population density as a factor. 

Additionally, the population density of upper middle-income countries was less than the 175 

PPSM threshold while the population density of middle-income countries was greater than 175 

PPSM (Calculateme, n.d.; World Bank, 2018a). This created a need to evaluate both low and 

high population density countries to establish better representative countries. 

 To create the income level models, parameter or initial condition values from every 

country-level factor had to be considered. Any value that differed from the base model was 

changed for every income model. For example, consider ß for the densely populated (> 175 

PPSM) middle-income country model. The model’s four primary characteristics included: high 

population density, moderate surge capacity, moderate pandemic preparedness, and moderate 

connectedness to the world economy. This meant that ß, µ1, I1, and ν1 had to be altered. For the 

parameter settings, an additive and subtractive process was used in conjunction with the base 
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model. Specifically for the transmission rate, ß for high population density was 0.396 while the ß 

for moderate pandemic preparedness was 0.32. The base model setting for ß was 0.36. Therefore, 

the population density ß setting was 0.036 greater than the base model ß setting and the ß setting 

for pandemic preparedness was 0.04 less. To the base model ß, 0.036 was added to 0.36 and then 

0.04 was subtracted. This additive and subtractive process gave a ß setting for the densely 

populated middle-income country of 0.356. This same process was used for µ1 and ν1. For the 

initial number of individuals infected (I1), I1 was set to the exact value for the interconnectedness 

to the world economy factor (I1 =20 for the densely populated middle-income country) as no 

other factor altered the initial number of infected individuals. Any parameter that was not 

changed from the base model retained the base model value. 

 
Results of Modeling by Income Status of Country 

 To evaluate how countries of varying income status would fare in an influenza 

pandemic akin to the 1918 influenza pandemic, all country-level factors were modeled 

together for a high, densely populated middle, less populated middle, and low-income 

country. All models retained the 10 million susceptible individuals (S1 =10,000,000) in the 

initial population and individuals were placed only into group 1 as opposed to two groups. To 

compare parameters and initial conditions of the models, see Table 6. 

Table 6: Input Parameters and Initial Conditions by Country Income Level Models 

 Base/Low-Income >175 PPSM Middle-
Income 

<175 PPSM 
Middle-Income 

High-Income 

S1 10,000,000 10,000,000 10,000,000 10,000,000 

I1 1 20 20 40 

R1 0 0 0 0 

ß 0.36 0.356 0.32 0.28 
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R0 1.8 1.60 1.44 1.12 

µ1 0.00513 0.00532 0.00394 0.00213 

ν1 1/5 1/4.5 1/4.5 1/4 

 

High-Income Country Model 

 The high-income country model involved altering all parameters. ß was set to 0.28 due to 

the reduction in R0 caused by high pandemic preparedness. µ1 was set to 0.00213 and ν1 

decreased by one day to 1/4 due to the high surge capabilities of high-income countries. The R0  

became 1.12. Due to the decreased R0, the length of the epidemic increased and the timescale 

was expanded to t = 500 days. The initial infected individuals (I1) was set to 40 because high-

income countries are generally well-connected to the world economy. No changes were made 

due to population density because high-income countries on average have population densities 

lower than 175 PPSM (World Bank, 2018a).  

 Using these settings, the high-income country model produced a TAR of 19.4% and case-

fatality rate of 0.845%. The peak day of infection occurred on day 309 with 51,681 individuals 

infected (see Figure 15). 
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Figure 15: How individuals moved through each compartment in a high-income country 
versus in a low-income country (base model). Individuals in high-income countries (solid 
lines) moved into the the infected class (red) at a much slower pace than in low-income countries 
(dashed lines). The case-fatality rate for high-income countries was 0.845% while in the low-
income country it was 2.50%. Likewise, the TAR for the high-income country was 19.4% while 
the TAR in low-income countries was 72.1%. 
 
Middle-Income Countries  

 The densely populated (>175 PPSM) middle-income country involved changing all 

parameters from the base model. ß was changed to 0.356 after accounting for the decreased value 

from possessing a moderate surge capacity and the increased value for population density. µ1 was 

increased to 0.532% (0.00532) in accordance with the increased surge capacity and high 

population density. ν1 was decreased to 1/4.5 because of the country’s ability to have moderate 

surge capacity. This made the R0 value 1.60. The initial number of infected individuals was set to 

20 due to middle-income countries’ moderate connectedness to the world economy.  

 The less densely populated (<175 PPSM) middle-income country model did not involve 

adjusting for population density. In this case, ß = 0.32 and µ1 = 0.00394. This made R0 = 1.44. 

No other parameter values were different from the densely populated middle-income model.  

 The output values were drastically different for the middle-income countries based on the 

calculation for population density (see Figure 16, 17, & 18). The densely (>175 PPSM) 

populated country model produced a case-fatality rate of 2.34% while the less (<175 PPSM) 

populated model had a case-fatality rate of 1.74%. Likewise, the TAR of the densely populated 

model was 62.9%, while it was 52.8% in the less densely populated model. The peak day of 

infection occurred on day 96 for the densely populated model with 756,715 people infected, but 

occurred on day 125 with 484,800 people infected for the less populated model.  
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Figure 16: Flow of individuals through each compartment in a high density (>175 PPSM) 
middle-income country versus a low-income country.  Individuals in a high density middle-
income country (solid lines) fared only slightly better than individuals in a low-income country 
(dashed lines). The TAR for the densely populated middle-income country was 62.9% with a 
case-fatality rate of 2.34% compared to the 72.1% TAR of a low-income country with a case-
fatality rate of 2.50%. The peak day of infection for the densely-populated middle-income 
country occurred six days prior to the peak day of infection in the low-income country.  
 

 
Figure 17: Flow of individuals through each compartment in a low density (<175 PPSM) 
middle-income country versus a low-income country. Individuals in a low density middle-
income country (solid lines) had better population-health outcomes than individuals in low-
income countries (dashed lines). 52.8% of individuals in this densely populated middle-income 
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country were infected with a case-fatality rate of 1.74% while 72.1% of individuals in a low-
income country were infected and 2.50% died. 
 

 
Figure 18: Flow of individuals through each compartment in the low (<175 PPSM) versus 
high (>175 PPSM) population density middle-income country models. The high population 
density model (dashed lines) showed an earlier peak of infection and higher TAR than the less 
densely populated middle-income country (solid lines) model.  
 
 
Evaluating Impacts of Parameters and Initial Conditions on Each Income Country Model 

 This next section evaluates which parameter or initial condition adjustment caused the 

largest difference in population-level health outcomes across the country income models. 

Understanding the adjustment of parameters or initial condition (ß, µ1, I1, and ν1) in conjunction 

with income level models may help explain why certain factors such as pandemic preparedness 

and surge capacity cause more severe epidemic outcomes than population density and 

interconnectedness to the world economy. 

 The previously established parameter and initial condition values from the high (ß = 0.28, 

µ1 = 0.00213, I1 = 40, and ν1 = 1/4), densely populated middle (ß = 0.356, µ1 = 0.00523, I1 = 20, 

and ν1 = 1/4.5), less densely populated middle (ß = 0.32, µ1 = 0.00394, I1 = 20, and ν1 = 1/4.5), 

and low-income (ß = 0.36, µ1 = 0.00513, I1 = 1, and ν1 = 1/5) country models were utilized in this 
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analysis. In each subsection below, one parameter or initial condition was “controlled for.” This 

meant that one parameter or initial condition was selected to be held constant throughout the 

high, middle, and low-income country models. Meanwhile, all the parameter or initial condition 

values from the original income country model remained the same. For instance, controlling for 

the transmission factor (ß) in the high-income country model entailed setting ß=0.36 instead of 

the prior 0.28 value. The other parameters and initial conditions set for the high-income model 

(µ1 = 0.00213, I1 = 40, and ν1 = 1/4) remained the same. This process was conducted for all 

income models and for all parameter or initial condition values changed throughout this thesis. 

The specific parameter and initial condition values selected as “controlled for” came from the 

value for that parameter or initial condition in the base or low-income country model. 

 

Controlling for the Transmission Factor (ß) 

 ß was set to 0.36 for each country scenario while all other parameters and initial 

conditions were kept constant (see Figure 19). Making this change did not alter the values for 

the low-income model as ß was previously set to 0.36. This adjustment did not significantly 

change the case-fatality rate for any of the models. For the high-income model, however, the 

TAR increased to 53.5% and the basic reproductive number increased (R0) to 1.44. Additionally, 

the peak day of infection increased to day 103 with 504,660 people infected. The R0 for both 

middle-income country models increased to 1.62. The densely populated middle-income country 

had a TAR increase to 63.9% and a peak day of infection at day 93 with 789,648 infected. 

Meanwhile, the less densely populated middle-income country had a 64.2% TAR with a peak 

day of infection on day 92 with 804,712 people infected.  
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Figure 19: Number of infected individuals by country income level adjusting the 
transmission factor (ß) to one constant value (0.36). The high-income (red) country model 
predicted the lowest number of individuals infected with 53.5% infected at an R0 of 1.44. Both 
middle-income models (blue and orange) showed similar characteristics when controlling for  the 
transmission factor. The low-income model (black) remained unadjusted.  
 
 
Controlling for the Mortality Rate (µ1) 

 The mortality rate (µ1) was set to 0.513% (µ1 = 0.00513) for all models (see Figure 20). 

This did not alter the low-income country model as it already used µ1 = 0.00513. The case-

fatality rates were similar between the high-income and middle-income countries models ranging 

between 2.01 and 2.26%. The high-income country still had a late peak day of infection at day 

337 with 41,439 people infected and a TAR of 17.5%. The densely populated middle-income 

country had a TAR of 62.9% and a peak day of infection on day 95 with 758,858 people 

infected. The less populated middle-income country’s TAR was 52.3% with a peak day of 

infection on day 126 with 473,307 people infected.  
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Figure 20: Number of infected individuals after adjusting for a consistent mortality rate of 
µ1 = 0.00513 (0.513%). This alteration did not greatly change any model’s original epidemic 
outcome factors with regards to TAR or number of infected individuals on the peak day of 
infection. The case-fatality rate, however, did increase for the high-income (red) and less 
populated (orange) middle-income country models. The peak day of infection for the high-
income country occurred almost a month later than its original peak day. 
 
 
Controlling for Number of Initially Infected Individuals (I1) 

 To test the impact of changing the number of infected individuals, I1 was set to 1 in all 

models (see Figure 21). Again, this did not alter the base model as I1 was already set to 1. The 

case-fatality rate and TAR did not change significantly from the original model for any of the 

models. In all cases, setting I1 =1 increased the time until the peak of infection. For the high-

income country, the peak of infection occurred on day 442 with 51,647 people infected. In the 

densely populated middle-income country scenario, the peak day of infection occurred on day 

199 with 757,147 people infected. In the less populated middle-income country, the peak day of 

infection occurred on day 157 with 482,797 infected people.  

While evaluating the impact of changing the initial number of infected individuals, it 

became evident that the number of infected individuals predominantly only affected the peak day 
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of infection. Even if in the high-income country model I1 was changed to 100,000, the TAR only 

increased to 25.1% and there was no change to the case-fatality rate.  

 
 
Figure 21: Number of infected individuals for each country level income model when one 
infected individual entered the population. There was little change to any characteristic of 
these models except for the peak day of infection. The most dramatic change to the peak day of 
infection occurred in the high-income model (red). The peak day of infection increased from day 
309 to day 442. In the densely-populated middle-income model (orange), the peak day of 
infection also increased by more than 100 days from day 96 to 199. There was also a delay of 
infection in the less populated middle-income country (blue), but was less pronounced than in 
the densely populated middle-income country.  
 
Controlling for the Recovery Rate (ν1) 

 In all country-level models, ν1 was set to one recovery for every five days (1/5). This did 

not alter the base model as ν1 was already set to 1/5. This greatly affected the TAR, case-fatality 

rate, peak day of infection, number of individuals affected on the peak day of transmission, and 

basic reproductive number (see Figure 22). The R0 for the high-income country model was 1.4 

while the R0 for middle-income countries was 1.6. The TAR for the high-income countries rose 
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to 50.2% and case-fatality rate increased to 1.05%. The peak day of infection occurred on day 

140 with 431,532 people infected. In the densely populated middle-income country model, the 

peak day of infection occurred on day 84 with 1,071,383 people infected with a TAR of 71.3% 

and case-fatality rate of 2.59%. For the middle-income country with less than 175 PPSM, the 

peak day of infection occurred on day 106 with 763,736 people infected. The TAR became 

63.0% and the case-fatality rate was 1.93%. 

 
Figure 22: Number of infected individuals by country income level with a recovery rate (ν1) 
of one infection for every five days. Recovery rate distinctly altered the behavior of all models. 
Of interest, the TAR of the high-income country (red) was elevated to 50.2% and had a peak day 
of infection in almost half the duration of the model when the recovery rate is one recovery for 
four days. There was also an increase in TAR for the middle-income country models (blue and 
orange). 

 
Discussion 

 This thesis has explored how different country-level and individual host factors affect 

population-level health outcomes in an influenza pandemic as severe as the 1918 pandemic in 

modern-day high, middle, and low-income countries. Through building SIR models 

representative of countries of different income levels, I found that high-income countries would 
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have less severe mortality and infection outcomes than low or middle-income countries in a 

modern-day pandemic similar in severity to the 1918 influenza pandemic. There have already 

been multiple papers detailing how disparities and inequalities experienced during the 1918 

influenza pandemic (Frost, 1920; Garrett, 2008; Groom et al, 2009) and a modern-day pandemic 

(Murray et al., 2006) caused differential health outcomes within and between countries. This 

thesis, however, explored what factors contribute to modern inequalities that cause differential 

pandemic influenza-related mortality and morbidity. Policy-makers should consider the 

magnitude of these factors while creating initiatives that protect citizens. 

 While SIR modeling is effective, it does offer some limitations. The primary concerns 

stem from generalizations. Selecting values for parameters can be subjective, but published 

values from literature were incorporated in this thesis whenever possible. Additionally, 

assumptions made in the modeling process inevitably impacted this research’s findings. For 

example, there is mixed literature on the influence of population density, but I made the 

assumption based on theory and limited literature that population density does have an effect on 

mortality and transmission rates. In future research, the seven factors that I selected could be 

updated as more information becomes available to better replicate reality. If more time allowed, 

other factors, including household transmission, sex, asymptomatic versus clinical cases, or 

geography, would have been considered as these have been considered as possible factors related 

to influenza mortality and transmission. Individual host factors could have also been added into 

the low, middle, and high-income country models if further subgroups were created. Finally, the 

pattern of disease spread through SIR models is likely not fully representative of how disease 

networks work as individuals have behavioral responses that cannot be boiled down to 

differential equations. With more time, a spatiotemporal model would have been constructed.  
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Bearing these limitations in mind, my thesis produced a number of interesting results. 

Prior to evaluating how factors impact morbidity and mortality across low, middle, and high-

income models, the base or low-income country was modeled. Specifically, the base model 

considered a low-income country had low population density (<175 people per square mile), low 

surge capacity, low interconnectedness to the global economy, a weak pandemic preparedness 

program, 20% of the country with an underlying medical condition, no individuals sixty-five or 

older, and ethnic homogeneity. Using these base factor assumptions, I evaluated how different 

factors independently mitigate or aggravate country income models. 

The base model assumptions used in this thesis were made in conjunction with prior 

literature which identified similar TARs, mortality rates, and case-fatality rates. Although the 

base model may have seemed to have a high TAR (72.1%), this model aligned well with other 

models when there is no population-level immunity to a virus and no preventative or treatment 

measures invoked. Nichol et al. (2010) built a seasonal influenza outbreak model within a 

college population given that 0% of the population was vaccinated. As it is likely that few 

individuals will have immunity to a novel influenza strain, at the start of the epidemic it was 

assumed that the majority of individuals would be susceptible in my model (CDC, 2016b). They 

found a TAR of 69% with day 47 as the peak day of infection with 3,450 people in the 

population. Likewise, Bootsma and Ferguson (2007) found that, without any prevention methods 

or reactive control measures, 80% of individuals would become infected with a R0 of 2 and 

Ferguson et al. (2006) found that 55-68% of all individuals would become infected with an R0 

between 1.7 and 2. As the base model aligned well with models created to demonstrate full 

susceptibility and a lack of mitigation strategies, it was assumed to be a valid model to represent 

how an influenza pandemic would affect low-income countries. 
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The epidemic outcome variables (i.e. TAR, case-fatality rate, peak day of infection, 

number of individuals infected on the peak day of infection) depicted the relevance of country-

level factors (see Table 7). This thesis found that interconnectedness to the global economy and  

Table 7: Country-Level Factor Models’ Epidemic Outcomes 

 Base 
Model 

High Pop. 
Density 

High 
Surge 
Capacity 

Moderate 
Surge 
Capacity 

Highly 
Connected 

Moderately 
Connected 

High 
Prep. 

Moderate 
Prep. 

TAR 72.1% 78.0% 53.3% 64.2% 72.1% 72.1% 48.9% 62.7% 

Case-
fatality 
rate 

2.50% 3.15% 1.0% 1.75% 2.50% 2.50% 2.50% 2.50% 

Peak Day 
of 
Infection 

102 85 137 115 78 82 194 133 

Number 
Infected 
at Peak 
Day 

1,109,342 1,407,694 504,594 804,568 1,109,846 1,109,691 401,042 749,301 

 

population density are noteworthy factors during an influenza pandemic, but not as influential as 

pandemic preparedness or surge capacity. As discussed in the section focused on controlling 

parameters, this outcome predominantly arises because neither factor directly changes the 

recovery or transmission rate. Connectedness to the world economy did not impact any factor 

other than peak day of infection which concurs with findings by Ferguson et al. (2006). This 

result is also worth celebrating as border control measures would have to be greater than 99% 

effective in order to reduce the entrance of influenza by a few weeks (Ferguson et al., 2006). 

Having high population density increased the basic reproductive number to almost two and 

sequentially increased the TAR to 78%. Conclusively, high population density produced similar 

results to having an influenza strain with high transmissibility, while connectedness to the world 

economy delayed the peak day of infection. 
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Depending on the goals of respective countries to prioritize reducing the number of 

individuals infected or dying, either improving pandemic preparedness or increasing surge 

capacity should be prioritized. High pandemic preparedness is the most effective measure for 

reducing the TAR, increasing the time until the peak day of infection, and reducing the number 

of individuals infected on the peak day of infection. The importance of these attributes cannot be 

understated. Reducing the TAR from 72.1% to 48.9%, inevitably reduces the amount of 

mortalities and morbidities caused by the pandemic. Increasing the time until the peak day of 

infection by 92 days allows more time for researchers to create a pandemic-specific influenza 

vaccine as it takes at least four months for vaccines to be manufactured (Ferguson et al., 2006). 

The longer time until peak infection also reduces the amount of stress put on the health care 

system. During this time, antivirals can be stockpiled and hospitals can begin preparations for the 

surge of patients. For reducing the mortality and case-fatality rates, having high surge capacity is 

ideal and can reduce the mortality rate to 0.213% and case-fatality rate to 1.00%. Having a high 

surge capacity also drastically lowers the TAR from 72.1% to 53.3%, but only increases the peak 

day of infection by 35 days. Ultimately, countries that have high pandemic preparedness with 

high surge capacity can best improve population-level health outcomes. 

This thesis found that individual host factors vary considerably in their impact on the 

TAR, case-fatality rate, peak day of infection, and number of individuals affected on the peak 

day of infection (see Table 8). Out of the traits that vary by host studied, ethnic heterogeneity  

Table 8: Individual Host Factor Models’ Epidemic Outcomes 
 Base 

Model 
High 
UMC 

Moderate 
UMC 

High 
Prop. 65+ 

Mod. 
Prop. 65+ 

Low 
Prop. 65+ 

High 
Het.. 

Moderate 
Het. 

Low Het. 

TAR 72.1% 75.8% 73.4% 69.7% 71.1% 71.7% 80.6% 78.0% 74.4% 

Case-
fatality 
rate 

2.50% 2.95% 2.65% 2.19% 2.38% 2.45% 5.46%  4.41% 3.20% 
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Peak 
Day of 
Infection 

102 97 100 106 103 102 91 94 99 

Number 
Infected 
at Peak 
Day 

1,109,342 1,278,564 1,166,348 1,001,216 1,065,153 1,090,470 1,545,332 1,390,014 1,210,256 

Notes: UMC stands for underlying medical conditions, mod. stands for moderate, prop. stands for proportion, and het. stands for 
heterogeneity 
 
caused the greatest magnitude changes in health outcomes and produced a TAR of 81%. The 

increased mortality rate (0.513% to 1.06%) for individuals in minority populations, as up to 85% 

of individuals within the population were considered minority individuals, contributed to ethnic 

heterogeneity becoming the predominant individual host factor. The case-fatality rate also rose 

significantly to 5.46% in the model with high ethnic heterogeneity. High underlying medical 

conditions also appeared to be a strong factor driving increased case-fatality rates and TARs. The 

proportion of individuals sixty-five and older did not seem to cause a major change in the 

epidemic dynamics. The results for proportions of individuals with underlying medical 

conditions and sixty-five and older clarifies that age distribution of countries likely does not 

impact overall health outcomes, but rather is important to understanding individual-level health. 

While these outcomes are largely a result of the parameter values selected, the values for 

differential mortality or case-fatality rates were based on real-life research. Thus, the results 

suggest that culture and society’s implications on individuals are the most important factors that 

vary by host in understanding population-level health outcomes. 

 Country-level factors were then used to build low, middle, and high-income country 

models that looked at morbidity and mortality caused during an influenza pandemic. Modeling 

countries by low, middle, and high-income levels demonstrated that the high-income 

country model will fare the best in an influenza pandemic of similar magnitude to the 1918 
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influenza pandemic (see Figure 23 and Table 9). The high-income country model reduced the 

TAR to 19.4%, decreased the case-fatality rate to 0.845%, increased the peak day of infection by 

 
 
Figure 23: Number of infected individuals within all model income groups. The high-income 
country model (red) had the latest peak day of infection but the lowest TAR, case-fatality rates, 
and individuals infected on the peak day of infection. The middle-income country models 
(orange and blue) also produced better epidemic outcomes than the low-income country model 
(black), but resembled the low-income country model more than the high-income country model. 
 
Table 9: Country Income Level Models’ Epidemic Outcomes 

 Base/Low-Income >175 PPSM 
Middle-Income 

<175 PPSM 
Middle-Income 

High-Income 

TAR 72.1% 62.9% 52.8% 19.4% 

CFR 2.50% 2.34%  1.74% 0.845% 

Peak Day of 
Infection 

102 96 125 309 

Number Infected 
at Peak Day 

1,109,342 756,715 484,800  51,681 
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more than 200 days, and reduced the number of individuals infected on the peak day. Middle-

income country models differed greatly due to the change in population density. This indicates 

the importance of further research to establish the impact of population density on communities 

and countries as population density created a distinct difference in epidemic outcomes. The 

results also demonstrated that population-level health outcomes in middle-income countries were 

more similar to low-income than high-income countries. 

In order to understand which parameters created the greatest magnitude changes to 

epidemic outcomes, I evaluated how parameters and initial conditions affected the income 

country models. By holding all but one parameter and initial condition constant while adjusting 

only one in the income models, altering the transmission factor (ß) and the recovery rate (ν1) 

changed the models the most. Using the high-income country model for comparison, adjusting ß 

to 0.36 increased the TAR to 53.5% from 19.4%, while the case-fatality rate remained consistent. 

Altering the transmission factor essentially reverted the peak day of infection (day 103) to that of 

the base model (day 102). This meant that the high-income country no longer had the advantage 

of increasing the time until the surge. Changing ν1 to one recovery for five days in the high-

income country model increased the case-fatality rate to 1.05% and decreased the peak day of 

infection to day 140. Increasing the average recovery time per person identified that this 

increased the case-fatality more than just adjusting the mortality rate. In terms of interventions, 

this result suggests prioritizing faster as opposed to better treatment for infected individuals. 

Ultimately, this thesis found that reducing the recovery or transmission rate of influenza most 

effectively reduces morbidity and mortality burdens caused by influenza pandemics. 

These findings suggest that mitigation strategies for influenza pandemics should 

specifically aim to reduce the transmission and recovery rates as opposed to reducing the 
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number of individuals entering the country or decreasing the mortality rate. Specifically, 

this should be completed through pandemic preparedness and surge capacity measures. 

Focusing resources and attention to these types of interventions will enable countries to best 

reduce morbidity and mortality caused directly or indirectly by severe influenza pandemics. 

Attention to socially disadvantaged individuals should also be prioritized. While many high-

income countries already have high levels of pandemic preparedness and surge capacity, it is 

necessary for low and middle-income countries to invest in strengthening services and policies as 

well.  

 

Conclusion 

 Ultimately, the results depicted in this thesis offer a somewhat heartening reality; proper 

pandemic preparedness and a high surge capacity make a drastic impact on the course of an 

influenza pandemic within countries. While low and middle-income countries may suffer from 

disproportionate amounts of individuals with underlying medical conditions, high ethnic 

fractionalization, and high population density, pandemic preparedness and surge capacity can 

and should be improved. These conclusions are not exclusive to influenza pandemics, but are 

applicable to many disease pandemics including SARS or Ebola.  

 When considering which intervention strategies to employ in countries with low 

resources, it is likely beneficial to prioritize nonpharmaceutical interventions. As Markel et al. 

(2007) detailed while exploring the impacts of the 1918 influenza pandemic in the United States, 

nonpharmaceutical interventions can have large impacts on population health outcomes between 

countries. Government-enforced mitigation measures such as quarantine and school closures 

may be logistically challenging to enact, but likely are more fiscally feasible for low and middle-



77  

income countries than acquiring pharmaceutical interventions such as antivirals, vaccines, and 

other health resources. Additionally, nonpharmaceutical interventions reduce disadvantaged 

countries’ reliance on other countries during influenza pandemics. This concern was evidenced 

in the 2009 H1N1 influenza pandemic when high-income countries decided not to give away 

vaccines away until their own citizens received the vaccine (Fidler, 2010). While there will still 

be discrepancies between countries by income level if not all resources are shared, 

nonpharmaceutical interventions are the best self-sustainable options for low and middle-income 

countries during influenza pandemics. 

Regardless of the disease causing a pandemic, high-income countries will likely fare 

better than low or middle-income countries both in short and long-term population health and 

economic outcomes at this time. While the WHO will likely try to orchestrate a coordinated 

response, health is not truly currently ensured as a human right. The greatest reductions in global 

morbidity and mortality will occur if countries are able to share resources such as data, drugs, 

and healthcare workers. Then, once more countries become truly altruistic, maybe the world will 

no longer be unprepared for a major influenza or infectious disease pandemic.  

 

 

 

 

 

 

 

 
 
 



78  

References 
 
Alesina, A., Devleeschauwer, A., Easterly, W., Kurlat, S., & Wacziarg, R. (2003). 
 Fractionalization. Journal of Economic Growth, 8(2), 155-194. 
Ali, S. H., & Keil, R. (2006). Global cities and the spread of infectious disease: the case of 
 severe acute respiratory syndrome (SARS) in Toronto, Canada. Urban Studies, 43(3), 
 491-509. 
Anderson, G., & Horvath, J. (2004). The growing burden of chronic disease in America. Public 
         Health Reports, 119(3), 263-270. 
Anderson, R. M., & May, R. M. (1982). Directly transmitted infectious diseases: control by 
         vaccination. Science, 215(4536), 1053-1060. 
Anderson, R. M., May, R. M., & Anderson, B. (1992). Infectious diseases of humans: dynamics 
         and control (Vol. 28). Oxford: Oxford university press. 
Barbisch, D. F., & Koenig, K. L. (2006). Understanding surge capacity: essential elements. 
 Academic Emergency Medicine, 13(11), 1098-1102. 
Barry, J. M. (2005). The great influenza. United States: Penguin Group. 
Biggerstaff, M., Cauchemez, S., Reed, C., Gambhir, M., & Finelli, L. (2014). Estimates of the 
         reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review 
         of the literature. BMC Infectious Diseases, 14(1), 480. 
Blendon, R. J., Benson, J. M., DesRoches, C. M., Raleigh, E., & Taylor-Clark, K. (2004). The 
 public's response to severe acute respiratory syndrome in Toronto and the United States. 
 Clinical Infectious Diseases, 38(7), 925-931. 
Blumenshine, P., Reingold, A., Egerter, S., Mockenhaupt, R., Braveman, P., & Marks, J. (2008). 
         Pandemic influenza planning in the United States from a health disparities perspective. 
         Emerging Infectious Diseases, 14(5), 709. 
Bootsma, M. C., & Ferguson, N. M. (2007). The effect of public health measures on the 1918 
 influenza pandemic in US cities. Proceedings of the National Academy of Sciences, 
 104(18), 7588-7593. 
Bouvier, N. M., & Palese, P. (2008). The biology of influenza viruses. Vaccine, 26(Suppl 4), 
         D49–D53. 
Bouye, K., Truman, B. I., Hutchins, S., Richard, R., Brown, C., Guillory, J. A., & Rashid, J.  

(2009). Pandemic influenza preparedness and response among public-housing residents, 
single-parent families, and low-income populations. American journal of public health, 
99(S2), S287-S293. 

Breiman, R. F., Nasidi, A., Katz, M. A., Njenga, M. K., & Vertefeuille, J. (2007). Preparedness 
 for highly pathogenic avian influenza pandemic in Africa. Emerging Infectious Diseases, 
 13(10), 1453. 
Brundage, J. F., & Shanks, G. D. (2008). Deaths from bacterial pneumonia during 1918–19 
 influenza pandemic. Emerging infectious diseases, 14(8), 1193. 
Buttonwood. (2017, July 6). What is the OECD? The Economist. Retrieved from  
 https://www.economist.com/blogs/economist-explains/2017/07/economist-explains-2 
Calculateme.com. (n.d.) Convert square kilometers to square miles. Retrieved from 
 https://www.calculateme.com/Area/SquareKilometers/ToSquareMiles.htm 
Campbell, A., Rodin, R., Kropp, R., Mao, Y., Hong, Z., Vachon, J., ... & Pelletier, L. (2010). 
 Risk of severe outcomes among patients admitted to hospital with pandemic (H1N1) 
 influenza. Canadian Medical Association Journal, 182(4), 349-355. 
Campbell, C. N. J., Mytton, O. T., McLean, E. M., Rutter, P. D., Pebody, R. G., Sachedina, N.,  



79  

         ... & Ellis, J. (2011). Hospitalization in two waves of pandemic influenza A (H1N1) in 
         England. Epidemiology & Infection, 139(10), 1560-1569. 
CDC Foundation. (n.d.) Flu prevention. Retrieved from 
         https://www.cdcfoundation.org/businesspulse/flu-prevention-infographic 
Centers for Disease Control and Prevention (CDC). (2016a). Influenza (Flu): Clinical signs and  
 symptoms of influenza. Retrieved from 
 https://www.cdc.gov/flu/professionals/acip/clinical.htm 
Centers for Disease Control and Prevention (CDC). (2017a). Influenza (Flu): Flu symptoms & 
         complications. Retrieved from https://www.cdc.gov/flu/consumer/symptoms.htm 
Centers for Disease Control and Prevention (CDC). (2017b). Influenza (Flu): Vaccine 
         effectiveness- How well does the flu vaccine work? Retrieved from 
         https://www.cdc.gov/flu/about/qa/vaccineeffect.htm 
Centers for Disease Control and Prevention (CDC). (2017c). Key facts about human infections 
 with variant viruses. Retrieved from 
 https://www.cdc.gov/flu/swineflu/keyfactsvariant.htm 
Centers for Disease Control and Prevention (CDC). (2016b). Pandemic basics. Retrieved from 
 https://www.cdc.gov/flu/pandemic-resources/basics/index.html 
Centers for Disease Control and Prevention (CDC). (2018a). People at high risk of developing  
 flu-related complications. Retrieved from 
 https://www.cdc.gov/flu/about/disease/high_risk.htm 
Centers for Disease Control and Prevention (CDC). (2018b). What should you know about flu 
 antiviral drugs. Retrieved from https://www.cdc.gov/flu/antivirals/whatyoushould.htm 
Chandra, S., Kassens-Noor, E., Kuljanin, G., & Vertalka, J. (2013). A geographic analysis of 
         population density thresholds in the influenza pandemic of 1918–19. International 
         Journal of Health Geographics, 12(1), 9. 
Chowell, G., & Viboud, C. (2016). Pandemic influenza and socioeconomic disparities: Lessons  
 from 1918 Chicago. Proceedings of the National Academy of Sciences, 113(48), 13557- 
 13559. 
Christ, G., & Diwan, S. (2008). Chronic Illness and Aging: Section 1: The Demographics of  
 Aging and Chronic Disease. Counsel on Social Work Education. 
Churchill, S. A., & Smyth, R. (2017). Ethnic diversity and poverty. World Development, 95, 285-
 302. 
Claxton, G., Cox, C., Damico, A., Levitt, L., & Pollitz, K. (2016). Pre-existing conditions and 
         medical underwriting in the individual insurance market prior to the ACA. Menlo Park, 
         CA: Kaiser Family Foundation. 
Coburn, B. J., Wagner, B. G., & Blower, S. (2009). Modeling influenza epidemics and 
         pandemics: insights into the future of swine flu (H1N1). BMC Medicine, 7(1), 30. 
Dee, D. L., Bensyl, D. M., Gindler, J., Truman, B. I., Allen, B. G., D’Mello, T., ... & Fowlkes, 
 A. (2011). Racial and ethnic disparities in hospitalizations and deaths associated with 
 2009 pandemic influenza A (H1N1) virus infections in the United States. Annals of 
 Epidemiology, 21(8), 623-630. 
DeLia, D., & Wood, E. (2008). The dwindling supply of empty beds: implications for hospital 
 surge capacity. Health Affairs, 27(6), 1688-1694. 
Director-General on behalf of the World Health Organization. (2011). Implementation of  



80  

  the international health regulations (2005): Report of the review committee on the 
 functioning of the international health regulations in relation to pandemic (H1N1) 2009. 
  Retrieved from http://apps.who.int/gb/ebwha/pdf_files/WHA64/A64_10-en.pdf 
Easterly, W., & Levine, R. (1997). Africa's growth tragedy: policies and ethnic divisions. The 
 Quarterly Journal of Economics, 112(4), 1203-1250. 
Echevarría-Zuno, S., Mejía-Aranguré, J. M., Mar-Obeso, A. J., Grajales-Muñiz, C., Robles-  
         Pérez, E., González-León, M., ... & Borja-Aburto, V. H. (2010). Infection and death from 
         influenza A H1N1 virus in Mexico: a retrospective analysis. The Lancet, 374(9707), 
         2072-2079. 
EpiModel. (2017). Basic DCMs with EpiModel. Retrieved from     
  http://statnet.github.io/tut/BasicDCMs.html 
EpiModel. (2017). New DCMs with EpiModel. Retrieved from 
 http://statnet.github.io/tut/NewDCMs.html 
Farmer, P. (2006). AIDS and accusation: Haiti and the geography of blame, updated with a new 
  preface. Univ of California Press. 
Farmer, P. E., Nizeye, B., Stulac, S., & Keshavjee, S. (2006). Structural violence and clinical 
         medicine. PLoS Medicine, 3(10), e449. 
Fidler, D. P. (2010). Negotiating equitable access to influenza vaccines: global health diplomacy 
 and the controversies surrounding avian influenza H5N1 and pandemic influenza H1N1. 
 PLoS medicine, 7(5), e1000247. 
Fineberg, H. V. (2014). Pandemic preparedness and response—lessons from the H1N1 influenza 
 of 2009. New England Journal of Medicine, 370(14), 1335-1342. 
Fearon, J. D. (2003). Ethnic and cultural diversity by country. Journal of Economic Growth, 
 8(2), 195-222. 
Ferguson, N. M., Cummings, D. A., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., ... & 
 Burke, D. S. (2005). Strategies for containing an emerging influenza pandemic in 
 Southeast Asia. Nature, 437(7056), 209. 
Ferguson, N. M., Cummings, D. A., Fraser, C., Cajka, J. C., Cooley, P. C., & Burke, D. S. 
         (2006). Strategies for mitigating an influenza pandemic. Nature, 442(7101), 448-452.     
Fischer, W. A., II, M. G., Bhagwanjee, S., & Sevransky, J. (2014). Global burden of influenza: 
 contributions from resource limited and low-income settings. Global heart, 9(3), 325. 
Frenk, J., Gómez-Dantés, O., & Knaul, F. M. (2011). Globalization and infectious diseases.  
 Infectious Disease Clinics of North America, 25(3), 593-599.   
Frost, W. H. (1920). Statistics of influenza morbidity: with special reference to certain factors in 
 case incidence and case fatality. Public Health Reports (1896-1970), 584-597. 
Galarce, E. M., Minsky, S., & Viswanath, K. (2011). Socioeconomic status, demographics, 
 beliefs and A (H1N1) vaccine uptake in the United States. Vaccine, 29(32), 5284-5289. 
Gani, R., Hughes, H., Fleming, D., Griffin, T., Medlock, J., & Leach, S. (2005). Potential impact 
 of antiviral drug use during influenza pandemic. Emerging infectious diseases, 11(9), 
 1355.  
Garrett, T. A. (2008). Pandemic economics: The 1918 influenza and its modern-day 
 implications. Federal Reserve Bank of St. Louis Review, 90(March/April 2008). 
Gaziano, J. M. (2010). Fifth phase of the epidemiologic transition: the age of obesity and  
  inactivity. Jama, 303(3), 275-276.                    
Gilbert, M., Xiao, X., Pfeiffer, D. U., Epprecht, M., Boles, S., Czarnecki, C., ... & Martin, V. 
         (2008). Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia. 



81  

         Proceedings of the National Academy of Sciences, 105(12), 4769-4774. 
Germann, T. C., Kadau, K., Longini, I. M., & Macken, C. A. (2006). Mitigation strategies for 
 pandemic influenza in the United States. Proceedings of the National Academy of 
 Sciences, 103(15), 5935-5940. 
Gostin, L. O. (2009). Swine flu vaccine: what is fair?. Hastings Center Report, 39(5), 9-10. 
Gostin, L. O., & Katz, R. (2016). The international health regulations: the governing framework 
 for global health security. The Milbank Quarterly, 94(2), 264-313. 
Groom, A. V., Jim, C., LaRoque, M., Mason, C., McLaughlin, J., Neel, L., ... & Bryan, R. T. 
 (2009). Pandemic influenza preparedness and vulnerable populations in tribal 
 communities. American Journal of Public Health, 99(S2), S271-S278. 
Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., & Morris, M. (2008). statnet: 
 Software tools for the representation, visualization, analysis and simulation of network 
 data. Journal of Statistical Software, 24(1), 1548. 
Haran, M. (2009). An introduction to models for disease dynamics. Retrieved from 
 http://www.unc.edu/~rls/s940/samsidisdyntut.pdf 
Hick, J. L., Koenig, K. L., Barbisch, D., & Bey, T. A. (2008). Surge capacity concepts for health 
 care facilities: the CO-S-TR model for initial incident assessment. Disaster Medicine and 
  Public Health Preparedness, 2(S1), S51-S57. 
Hutchins, S. S., Fiscella, K., Levine, R. S., Ompad, D. C., & McDonald, M. (2009). Protection of 
         racial/ethnic minority populations during an influenza pandemic. American Journal of 
         Public Health, 99(S2), S261-S270.                                                                 
Jabr, F. (2017, December 18). How does the flu actually kill people? Scientific American. 
 Retrieved from        
 https://www.scientificamerican.com/article/how-does-the-flu-actually-kill-people/ 
Jenness, S., Goodreau, S. M., & Morris, M. (2017). EpiModel: An R Package for Mathematical 
 Modeling of Infectious Disease over Networks. bioRxiv, 213009. 
Jones, J. H. (2007). Notes on R0. Department of Anthropological Sciences Stanford University. 
 Retrieved from https://web.stanford.edu/~jhj1/teachingdocs/Jones-on-R0.pdf 
Kasolo, F., Yoti, Z., Bakyaita, N., Gaturuku, P., Katz, R., Fischer, J. E., & Perry, H. N. (2013). 
 IDSR as a platform for implementing IHR in African countries. Biosecurity and 
 Bioterrorism: Biodefense Strategy, Practice, and Science, 11(3), 163-169.               
Keeling, M. J., & Rohani, P. (2011). Modeling infectious diseases in humans and animals. 
         Princeton University Press. 
Keogh-Brown, M. R., & Smith, R. D. (2008). The economic impact of SARS: How does the 
 reality match the predictions? Health Policy, 88(1), 110-120. 
Kilbourne, E. D. (2006). Influenza pandemics of the 20th century. Emerging Infectious Diseases, 
         12(1), 9. 
Lee, K., & Fidler, D. (2007). Avian and pandemic influenza: Progress and problems with global 
 health governance. Global Public Health, 2(3), 215-234. 
Lee, J. W., & McKibbin, W. J. (2004). Globalization and disease: The case of SARS. Asian 
 Economic Papers, 3(1), 113-131.  
Leibler, J. H., Otte, J., Roland-Holst, D., Pfeiffer, D. U., Magalhaes, R. S., Rushton, J., ... & 
 Silbergeld, E. K. (2009). Industrial food animal production and global health risks: 
 exploring the ecosystems and economics of avian influenza. Ecohealth, 6(1), 58-70. 
Linn, S. T., Guralnik, J. M., & Patel, K. V. (2010). Disparities in influenza vaccine coverage in  
 the United States, 2008. Journal of the American Geriatrics Society, 58(7), 1333-1340. 



82  

Louie, J. K., Acosta, M., Samuel, M. C., Schechter, R., Vugia, D. J., Harriman, K., & Matyas, B. 
         T. (2011). A novel risk factor for a novel virus: obesity and 2009 pandemic influenza A 
         (H1N1). Clinical Infectious Diseases, 52(3), 301-312. 
Lowcock, E. C., Rosella, L. C., Foisy, J., McGeer, A., & Crowcroft, N. (2012). The social 
         determinants of health and pandemic H1N1 2009 influenza severity. American Journal of 
         Public Health, 102(8), e51-e58. 
Manyika, J., Lund, S., Bughin, J., Woetzel, J., Stamenov, K., & Dhingra D. on behalf of the 
 McKinsey Global Institute. (2016). Digital Globalization: The New Era of Global Flows. 
 Retrieved from https://www.mckinsey.com/business-functions/digital-mckinsey/our-
 insights/digital-globalization-the-new-era-of-global-flows 
Markel, H., Lipman, H. B., Navarro, J. A., Sloan, A., Michalsen, J. R., Stern, A. M., & Cetron, 

 M. S. (2007). Nonpharmaceutical interventions implemented by US cities during the  
1918-1919 influenza pandemic. Jama, 298(6), 644-654. 

Martcheva, M. (2015). Introduction to epidemic modeling. An introduction to mathematical 
 epidemiology (pp. 9-31). Springer, Boston, MA. 
McKeown, R. E. (2009). The epidemiologic transition: changing patterns of mortality and 
 population dynamics. American journal of lifestyle medicine, 3(1_suppl), 19S-26S. 
McKibbin, W. & Sidorenko A. (2006). Global Macroeconomic Consequences of Pandemic 
         Influenza. Centre for Applied Macroeconomic Analysis.          
Mills, C. E., Robins, J. M., & Lipsitch, M. (2004). Transmissibility of 1918 pandemic influenza. 
         Nature, 432(7019), 904-906. 
Morens, D. M., & Fauci, A. S. (2007). The 1918 influenza pandemic: insights for the 21st 
 century. The Journal of infectious diseases, 195(7), 1018-1028. 
Morens, D. M., Taubenberger, J. K., Harvey, H. A., & Memoli, M. J. (2010). The 1918 influenza 
 pandemic: lessons for 2009 and the future. Critical care medicine, 38(4 Suppl), e10. 
Murray, C. J., Lopez, A. D., Chin, B., Feehan, D., & Hill, K. H. (2006). Estimation of potential 
         global pandemic influenza mortality on the basis of vital registry data from the 1918–20 
         pandemic: a quantitative analysis. The Lancet, 368(9554), 2211-2218. 
National Public Radio (NPR). (n.d.) SARS timeline. Retrieved from 
 https://www.npr.org/news/specials/sars/timeline.html 
Nichol, K. L., Tummers, K., Hoyer-Leitzel, A., Marsh, J., Moynihan, M., & McKelvey, S. 
 (2010). Modeling seasonal influenza outbreak in a closed college campus: impact of pre-
 season vaccination, in-season vaccination and holidays/breaks. PloS One, 5(3), e9548. 
OECD. (2017). OECD health statistics 2017. Retrieved from     
 https://www.oecd.org/els/health-systems/Obesity-Update-2017.pdf 
Oshitani, H., Kamigaki, T., & Suzuki, A. (2008). Major issues and challenges of influenza 
         pandemic preparedness in developing countries. Emerging Infectious Diseases, 14(6), 
         875. 
Pearl, R. (1919). Influenza Studies: I. On Certain General Statistical Aspects of the 1918 
         Epidemic in American Cities. Public Health Reports (1896-1970), 1743-1783. 
Public Health Department of Santa Clara Valley Health & Hospital System. (n.d.). Information 
 about social distancing. Retrieved from 
 http://www.cidrap.umn.edu/sites/default/files/public/php/185/185_factsheet_social_dista
 ncing.pdf 



83  

Quinn, S. C., & Kumar, S. (2014). Health inequalities and infectious disease epidemics: a 
 challenge for global health security. Biosecurity and bioterrorism: biodefense strategy, 
 practice, and science, 12(5), 263-273. 
Rassy, D., & Smith, R. D. (2013). The economic impact of H1N1 on Mexico's tourist and pork 
 sectors. Health Economics, 22(7), 824-834. 
Reluga, T. C. (2010). Game theory of social distancing in response to an epidemic. PLoS 
 Computational Biology, 6(5), e1000793.  
Rudge, J. W., Hanvoravongchai, P., Krumkamp, R., Chavez, I., Adisasmito, W., Ngoc Chau, P., 
 … on behalf of the AsiaFluCap Project Consortium. (2012). Health System Resource 
 Gaps and Associated Mortality from Pandemic Influenza across Six Asian Territories. 
 PLoS ONE, 7(2), e31800. http://doi.org/10.1371/journal.pone.0031800 
Shrestha, S. S., Swerdlow, D. L., Borse, R. H., Prabhu, V. S., Finelli, L., Atkins, C. Y., ... & 
 Brammer, L. (2011). Estimating the burden of 2009 pandemic influenza A (H1N1) in the 
 United States (April 2009–April 2010). Clinical Infectious Diseases, 52(suppl_1), S75-
 S82. 
Sparke, M., & Anguelov, D. (2012). H1N1, globalization and the epidemiology of inequality. 
 Health & Place, 18(4), 726-736. 
Stöhr, K., Bucher, D., Colgate, T., & Wood, J. (2012). Influenza virus surveillance, vaccine 
         strain selection, and manufacture. Influenza Virus: Methods and Protocols, 147-162. 
Simonsen, L., Clarke, M. J., Schonberger, L. B., Arden, N. H., Cox, N. J., & Fukuda, K. (1998). 
         Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. 
         Journal of Infectious Diseases, 178(1), 53-60. 
Simonsen, L., Spreeuwenberg, P., Lustig, R., Taylor, R. J., Fleming, D. M., Kroneman, M., ... & 
         Paget, W. J. (2013). Global mortality estimates for the 2009 Influenza Pandemic from the 
         GLaMOR project: a modeling study. PLoS Medicine, 10(11), e1001558. 
Singer, M., Bulled, N., Ostrach, B., & Mendenhall, E. (2017). Syndemics and the biosocial 
 conception of health. The Lancet, 389(10072), 941-950.  
Smith, D. & Moore, L. (2004). The SIR model for spread of disease--the differential equation 
 model. Convergence. Accessed from the Journal of Online Mathematics and its 
 Applications. Retrieved from https://www.maa.org/press/periodicals/loci/joma/the-sir-
 model-for-spread-of-disease-the-differential-equation-model 
Sparke, M., & Anguelov, D. (2012). H1N1, globalization and the epidemiology of inequality. 
 Health & Place, 18(4), 726-736. 
Squires, D., & Anderson, C. (2015). US health care from a global perspective: spending, use of 
 services, prices, and health in 13 countries. The Commonwealth Fund, 15, 1-16. 
Statista. (2018a). Distribution of the global population 2017, by continent. Retrieved from 
 https://www.statista.com/statistics/237584/distribution-of-the-world-population-by-
 continent/ 
Statista. (2018b). Population density in the U.S. by federal states including the District of 
 Columbia in 2017. Retrieved from https://www.statista.com/statistics/183588/population-
 density-in-the-federal-states-of-the-us/ 
Stöhr, K., Bucher, D., Colgate, T., & Wood, J. (2012). Influenza virus surveillance, vaccine 
         strain selection, and manufacture. Influenza Virus: Methods and Protocols, 147-162. 
Suk, J. E., Van Cangh, T., Beaute, J., Bartels, C., Tsolova, S., Pharris, A., ... & Semenza, J. C.  
 (2014). The interconnected and cross-border nature of risks posed by infectious  
 diseases. Global health action, 7(1), 25287. 



84  

Taubenberger, J. K., & Morens, D. M. (2006). 1918 Influenza: the mother of all pandemics. Rev 
         Biomed, 17, 69-79. 
Tricco, A. C., Lillie, E., Soobiah, C., Perrier, L., & Straus, S. E. (2012). Impact of H1N1 on 
         socially disadvantaged populations: systematic review. PLoS One, 7(6), e39437.  
United States Department of Agriculture (USDA). (2017). Livestock and Poultry: World Markets 
  and Trade. Retrieved from
 https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf  
Valentine, V. (2006, February 20). Origins of the 1918 Pandemic: The Case for France. 
 National Public Radio. Retrieved from 
 https://www.npr.org/templates/story/story.php?storyId=5222069          
Van Kerkhove, M. D., Vandemaele, K. A., Shinde, V., Jaramillo-Gutierrez, G., Koukounari, A., 
  Donnelly, C. A., ... & Vachon, J. (2011). Risk factors for severe outcomes following 
 2009 influenza A (H1N1) infection: a global pooled analysis. PLoS Medicine, 8(7), 
 e1001053. 
Viboud, C., Bjørnstad, O. N., Smith, D. L., Simonsen, L., Miller, M. A., & Grenfell, B. T. 
         (2006). Synchrony, waves, and spatial hierarchies in the spread of influenza. Science, 
         312(5772), 447-451. 
Viboud, C., Simonsen, L., Fuentes, R., Flores, J., Miller, M. A., & Chowell, G. (2016). Global  
 mortality impact of the 1957–1959 influenza pandemic. The Journal of infectious  
 diseases, 213(5), 738-745. 
Vince, G. (2013). Global transformers: What if a pandemic strikes? BBC. Retrieved from 
 http://www.bbc.com/future/story/20130711-what-if-a-pandemic-strikes 
Walsh, B. (2017). The world is not ready for the next pandemic. Time. Retrieved from 
 http://time.com/4766624/next-global-security/ 
Watson, S. K., Rudge, J. W., & Coker, R. (2013). Health systems’ “surge capacity”: state of the 
 art and priorities for future research. The Milbank Quarterly, 91(1), 78-122. 
Welzel, T. B., Koenig, K. L., Bey, T., & Visser, E. (2010). Effect of hospital staff surge capacity 
 on preparedness for a conventional mass casualty event. Western Journal of Emergency 
 Medicine, 11(2), 189. 
World Bank. (2018a). Population density (people per by square kilometer of land area). 
         Retrieved from https://data.worldbank.org/indicator/EN.POP.DNST 
World Bank. (2018b). Population ages 65 and above (% of total). Retrieved from 
 https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS?locations=FI 
World Bank. (2018c). World Bank Country and lending groups. Retrieved from 
 https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-
 and-lending-groups 
World Health Organization (WHO). (2018a). Influenza preparedness plans. Retrieved from 
 http://www.who.int/influenza/preparedness/plans/en/ 
World Health Organization (WHO). (2018b). Influenza (seasonal). Retrieved from 
         http://www.who.int/mediacentre/factsheets/fs211/en/ 
World Health Organization. (2016). International health regulations (2005). Retrieved from 
 http://apps.who.int/iris/bitstream/10665/246107/1/9789241580496-eng.pdf?ua=1 
World Health Organization. (2011). Pandemic influenza preparedness framework for the sharing 
 of influenza viruses and access to vaccines and other benefits. Retrieved from 
 apps.who.int/gb/pip/pdf_files/pandemic-influenza-preparedness-en.pdf 



85  

World Health Organization (WHO). (2012). The Global Report for Research on Infectious 
 Diseases of Poverty (p. 14). World Health Organization. 
World Health Organization (WHO). (2017) Top 10 causes of death. Retrieved from 
 http://www.who.int/gho/mortality_burden_disease/causes_death/top_10/en/ 
World Health Organization (WHO). (2018c). What are the health risks of overcrowding? 
 Retrieved from 
 http://www.who.int/water_sanitation_health/emergencies/qa/emergencies_qa9/en/ 
World Health Organization (WHO). (2005). WHO checklist for influenza pandemic 
 preparedness planning. Retrieved from 
 http://www.who.int/influenza/resources/documents/FluCheck6web.pdf?ua=1      
Yusuf, S., Reddy, S., Ôunpuu, S., & Anand, S. (2001). Global burden of cardiovascular diseases: 
 part I: general considerations, the epidemiologic transition, risk factors, and impact of 
 urbanization. Circulation, 104(22), 2746-2753.      
Zhang, X., Meltzer, M. I., & Wortley, P. M. (2006). FluSurge—a tool to estimate demand for 
 hospital services during the next pandemic influenza. Medical Decision Making, 26(6), 
 617-623. 
 
 


