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Abstract

A Study of Benford’s Law for the Values of Arithmetic Functions
By Letian Wang

Benford’s Law characterizes the distribution of initial digits in large datasets across
disciplines. Since its discovery by Simon Newcomb in 1881, Benford’s Law has trig-
gered tremendous studies. In this paper, we will start by introducing the history of
Benford’s Law and discussing in detail the explanations proposed by mathematicians
on why various datasets are Benford. Such explanations include the Spread Hypothesis,
the Geometric, the Scale-Invariance, and the Central Limit explanations.

To rigorously define Benford’s Law and to motivate criteria for Benford sequences,
we will provide fundamental theorems in uniform distribution modulo 1. We will state
and prove criteria for checking uniform distribution, including Weyl’s Criterion, Van
der Corput’s Difference Theorem, as well as their corollaries.

We will then introduce the logarithm map, which allows us to reformulate Benford’s
Law with uniform distribution modulo 1 studied earlier. We will start by examining
the case of base 10 only and then generalize to arbitrary bases.

Finally, we will elaborate on the idea of good functions. We will prove that good
functions are Benford, which in turn enables us to find a new class of Benford sequences.
We will use this theorem to show that the partition function p(n) and the factorial
sequence n! follow Benford’s Law.
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Chapter 1 Introduction

Benford’s Law is a statistical characterization of initial digits distribution over datasets.

Originated from the observation that the beginning pages of a logarithm table wear out

faster than the later ones, Benford’s Law finds broad applications in fraud detection

and image processing, generating hundreds of research papers in Accounting, Computer

Science, Engineering, Statistics, and many other disciplines [7]. In this chapter, we will

begin by examining the historical development of Benford’s Law. We will then give

examples of datasets where the law is satisfied or unsatisfied anecdotally and provide

explanations for both cases, thereby motivate the result of Anderson, Rolen and Stoehr

on partition functions [1].

Before we embark, a few definitions are necessary.

Definition 1. (Significand and Mantissa) We know that any real number x can be

written in scientific notation as S(x) · 10k, where S(x) ∈ [1, 10). We define S(x) as

the significand and k the exponent of x, both in base 10. We will call the integer part

of S(x), or bS(x)c, the leading digit of x. We will call the fractional part of log10 x,

frac
(
(log10 x)

)
or (log10 x mod 1), the mantissa of x in base 10.
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1.1. A Brief History

For example, suppose x = 1234.56, then S(x) = 1.23456, k = 3 by scientific notation,

and the leading digit of x is bS(x)c = 1. The mantissa of x in base 10 is therefore

log10 1234.56 mod 1 = 3.0915 · · · mod 1 = 0.0915 · · · . Notice that all mantissas fall in

the interval [0, 1), and every real number within the same interval is the mantissa of

infinitely many real numbers. In this chapter, we will only consider cases in base 10.

In Section 3.2, we will generalize our investigation to arbitrary bases.

1.1 A Brief History

With the aforementioned definitions in mind, Benford’s Law describes the biased dis-

tribution of the leading digits of numbers in datasets. Should the leading digits be

uniformly distributed, the probability of numbers starting with 1 through 9 should be

identically 11.1̇%. In reality, however, the distribution of leading digits is largely biased.

The first observer of this phenomenon is the Canadian mathematician Simon New-

comb. In his 1881 article Note on the Frequency of Use of the Different Digits in Natural

Numbers, Newcomb observed that the opening pages of logarithm tables wear out much

faster than do the later pages. He claims that “the [leading digit] is oftener 1 than any

other digit, and the frequency diminishes up to 9”[8]. Newcomb quantified the bias in

Table 1, where D1 represents the leading digits 1 through 9, and P (D1) denotes the

probability that the leading digit is D1.

D1 1 2 3 4 5 6 7 8 9
P (D1) 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458

Table 1. Newcomb’s quantification for the distribution of leading digits in nature
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1.1. A Brief History

Newcomb went on to conjecture that “the law of probability of the occurrence of num-

bers is such that all mantissæ of their logarithms are equally probable”. We will explain

Newcomb’s claim in detail in Section 3.1 using logarithmic mapping and uniform dis-

tribution.

Newcomb’s observation, however, did not receive immediate attention from the

academia. It was the study of the American engineer and physicist Frank Benford

published 57 years later that triggered thorough research on this topic. In his 1938 pa-

per The Law of Anomalous Numbers, Benford explored 20 drastically different datasets

ranging from population to atomic weights and counted the occurrence of each leading

digit [2]. Benford’s result, reproduced in Table 2 on page 4, further confirmed that

P (D1) is not uniformly distributed among 1 to 9. It is apparent from the table that

P (1) tends to be the largest while P (9) tends to be the smallest. In addition, even

though the biased distributions coincide with Newcomb’s conjecture for many datasets,

the two differ significantly in other cases. By taking the average amongst all 20 datasets,

the amalgamated probabilities listed in the bottom row of Table 2 are closer to those

listed in Table 1.

In view of the above observations, we now sketch a mathematical definition of Ben-

ford’s Law, named in honor of Frank Benford.

Definition 2. (Benford’s Law) A sequence {xn} satisfies Benford’s Law if the prob-

abilistic condition P (D1) = log10(D1 + 1) − log10(D1) holds in {xn}, in which case we

say that {xn} is Benford.

3



1.2. Examples and Explanations

Dataset P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) Size
Rivers, Area 0.310 0.164 0.107 0.113 0.072 0.086 0.055 0.042 0.051 335

Population 0.339 0.204 0.142 0.081 0.072 0.062 0.041 0.037 0.022 3,259
Constants 0.413 0.144 0.048 0.086 0.106 0.058 0.010 0.029 0.106 104

Newspaper 0.300 0.180 0.120 0.100 0.080 0.060 0.060 0.50 0.050 100
Specific Heat 0.240 0.184 0.162 0.146 0.106 0.041 0.032 0.048 0.041 1,389

Pressure 0.296 0.183 0.128 0.098 0.083 0.064 0.057 0.044 0.047 703
H.P. Lost 0.300 0.184 0.119 0.108 0.081 0.070 0.051 0.051 0.036 690

Mol. Wgt. 0.267 0.252 0.154 0.108 0.067 0.051 0.041 0.028 0.032 1,800
Drainage 0.271 0.239 0.138 0.126 0.082 0.050 0.050 0.025 0.019 159

Atomic Wgt. 0.472 0.187 0.055 0.044 0.066 0.044 0.033 0.044 0.055 91
n−1,

√
n 0.257 0.203 0.097 0.068 0.066 0.068 0.072 0.080 0.089 5,000

Design 0.268 0.148 0.143 0.075 0.083 0.084 0.070 0.073 0.056 560
Digest 0.334 0.185 0.124 0.075 0.071 0.065 0.055 0.049 0.042 308

Cost Data 0.324 0.188 0.101 0.101 0.098 0.055 0.047 0.055 0.031 741
X-Ray Volts 0.279 0.175 0.144 0.090 0.081 0.074 0.051 0.058 0.048 707
Am. League 0.327 0.176 0.126 0.098 0.074 0.064 0.049 0.056 0.030 1,458
Black Body 0.310 0.173 0.141 0.087 0.066 0.070 0.052 0.047 0.054 1,165

Address 0.289 0.192 0.126 0.088 0.085 0064 0.056 0.050 0.050 342
n, n2, · · · , n! 0.253 0.160 0.120 0.100 0.085 0.088 0.068 0.071 0.055 900
Death Rate 0.270 0.186 0.157 0.094 0.067 0.065 0.072 0.048 0.041 418

Average 0.306 0.185 0.124 0.094 0.080 0.064 0.051 0.049 0.047 1,011

Table 2. Benford’s result on 20 datasets (Table 1.2 in [7])

The definition is a direct characterization of Newcomb’s conjecture. Note that since

P (D1) in Definition 2 is irrational and that P (D1) for finite sequences is always rational,

we assume that {xn} is infinite in size. A generalization of this definition will be

discussed after Definition 4 in Section 3.2.

1.2 Examples and Explanations

Before delving into the reasons why many datasets follow Benford’s Law, we begin by

exhibiting 2 datasets that do not. Plotted in Figure 1 (a) is the daily NYSE group dollar

volume ($) over the 1,762 trading days from 2010 to 2016 (in black) versus Benford’s

Law (in white). This dataset clearly differs from Benford’s Law in that d is heavily

concentrated around 3 and 4 while P (1) is infinitesimal. A reason for such a distribution
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1.2. Examples and Explanations

is that transaction volumes tend to fluctuate by only a small magnitude, leaving the

first digits clustered in a tiny interval [7]. Figure 1 (b) shows the distribution of land

areas of 3,146 U.S. counties (mile2) published by the U.S. Census Bureau. One possible

explanation to such distribution is that early counties on the east coast are small and

easy to manage by the colonial government. As the country extend to the west, county

sizes become increasingly larger. Interestingly, changing the units of Figure 1 (b) from

mile2 to km2 and acre results in different distributions, although none of which follow

Benford’s Law. We will revisit this observation in Subsection 1.2.3.

1 2 3 4 5 6 7 8 9
0

0.2

0.4

First digit D1

P
(D

1
)

1 2 3 4 5 6 7 8 9
0

0.2

0.4

First digit D1

P
(D

1
)

(a) NYSE group dollar volume, 2010 ∼ 2016 ($) (b) U.S. county land areas, 2010 (mile2)

Figure 1. Examples of datasets (black) that do not obey Benford’s Law (white)

We now look at examples of datasets that seem to follow Benford’s Law. Plotted in

Figure 2 on page 5 are first-digit distributions of (a) U.S. population by counties in 2009,

(b) 335 fundamental physical constants listed on the website of National Institute of

Standards and Technology (NIST), (c) first 1000 Fibonacci numbers, and (d) first 1000

factorials starting with 1!. It is visually clear to us that all 4 datasets are approximately

Benford. We will refer to these examples in the subsections to come.
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1.2. Examples and Explanations
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(a) U.S. county populations, 2009 ($) (b) Fundamental physical constants
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(c) The first 1000 Fibonacci numbers (d) The first 1000 factorials

Figure 2. Examples of datasets (black) that appear to obey Benford’s Law (white)

Before we survey various explanations for why so many datasets appear to follow

Benford’s Law, we state a working criterion for being Benford. A formal statement of

Proposition 1.1 will be introduced later in this paper after defining the logarithm map.

We will also delay the proof to Section 3.1.

Proposition 1.1. (A Working Criterion for Benford) A sequence {xn} is Benford if

and only if {(log10 xn) mod 1} is uniformly distributed over [0, 1).

6



1.2. Examples and Explanations

1.2.1 The Spread Hypothesis

The Spread Hypothesis argues that a sequence is likely to be Benford if it spans over

multiple orders of magnitude, as in the cases of (b), (c), and (d) of Figure 2. Although

counterexamples such as {10, 100, · · · , 101000} can be easily constructed, the hypothesis

serves as a convenient rule of thumb. An explanation of the Spread Hypothesis is given

by William Feller [3, 7]. The strategy is to prove that Proposition 1.1 is likely true for

spread out sequences. We sketch his arguments as follows.

Suppose that the random variable X is continuous on R+ with probability density

function fX(x). Suppose also that the anti-derivative of fX(x) is FX(x). Then the

cumulative distribution function of X is P (X < x) =
∫ x

0
fX(x) dx = FX(x). Let

Y = log10X, then cumulative distribution function of Y is P (Y < y) = P (log10X <

y) = P (X < 10y) = FX(10y). Differentiating both sides, we get the probability density

function for Y as fY (y) = fX(10y)10y ln y. The probability that (Y mod 1) ∈ [a, b) is

simply the summation of P
(
(Y mod 1) ∈ [a+ n, b+ n)

)
over n ∈ N, or

P
(
(Y mod 1) ∈ [a, b)

)
=

∞∑
n=−∞

∫ b+n

a+n

fY (y) dy =
∞∑

n=−∞

∫ b+n

a+n

fX(10y)10y ln y dy.

By Fubini’s Theorem, we can switch the orders of integration and summation so that

P
(
(Y mod 1) ∈ [a, b)

)
=

∫ b

a

∞∑
n=−∞

fX(10y+n)10y+n ln y dy. (1.1)

Feller shows that if variable X spreads over multiple orders of magnitude, then the

integrand
∑∞

n=−∞ fX(10y+n)10y+n ln y in (1.1) is close to uniform over [0, 1).
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1.2. Examples and Explanations

1.2.2 The Geometric Explanation

In his paper [2], Benford provided an explanation of Benford’s Law based on geometric

series. We illustrate his idea by looking at the population growth of an imaginary county

at a fixed rate of r = 2% per year. Intuitively, it would take longer for the population to

increase from 1 million to 2 million than from 9 million to 10 million. A quantification

listed in Table 3 suggests that population sizes taken at equal time intervals conform

with Benford’s Law (D1 is the leading digit of population size). For instance, it would

take a total of 116.2767 years for the population to increase from 1 million to 10 million,

during which the first 35.0029 years are spent to grow the population from 1 million

to 2 million. The percentage of time when population is in the interval [106, 2 · 106) is

precisely 30.10%, as in Benford’s Law.

D1 1 2 3 4 5 6 7 8 9
Years Spent 35.0029 20.4754 14.5275 11.2684 9.2069 7.7844 6.7431 5.9478 5.3205

P (D1) 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458

Table 3. Population growth at a fixed rate of 2% per year.

More generally, for any fixed growth rate r,

P (D1) =
Time to grow from D1 · 106 to (D1 + 1) · 106

Time to grow from 106 to 107

=
log1+r

D1+1
D1

log1+r(10)

= log10(D1 + 1)− log10(D1),

satisfying Definition 2. This explains why Fibonacci numbers in Figure 2 (c) follow

Benford’s Law, since the n-th Fibonacci number Fn = 1√
5

(
1+
√

5
2

)n
− 1√

5

(
1−
√

5
2

)n
≈

1√
5

(
1+
√

5
2

)n
, approaching a geometric series for large n.
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1.2. Examples and Explanations

1.2.3 The Scale-Invariance Explanation

As mentioned earlier in Figure 1 (b) that changing the units of the U.S. county land

areas result in different first-digit distributions, but none of them is Benford. On the

other hand, scaling the first 1000 factorials by a factor of 10 would not change its

first-digit distribution and the augmented sequence is still Benford. This observation

leads to another reason for the prevalence of Benford’s Law because many datasets are

scale-invariant. More precisely, if the first digits of the random variables X and Y = cX

are the same for every real constant c, then X must follow Benford’s Law.

A brief explanation is as follows. Assume the conditions on X and Y . Proposition

1.1 reduces our task to showing that Z = (log10X) mod 1 is uniform. We let X ′ =

log10X and Y ′ = log10 Y = log10 c + log10X = log10 c + X ′. We claim that the

probability density function of Z = X ′ mod 1, denoted by fZ(z), must be constant and

proceed to prove by contradiction. Should fZ(z) be non-constant, it must achieve its

maxima and minima at some values fZ(z)max = log a and fZ(z)min = log b, where a, b ∈

[1, 10) and a > b. Let c =
a

b
, then X ′ is most likely to be congruent to log10 a (mod 1)

whereas Y ′ is least likely to be congruent to log10 c + log10 b ≡ log10 a (mod 1). The

result contradicts the assumption that X ′ and Y ′ share the same first-digit distribution.

Hence, fZ(z)max must be constant and X must be Benford.

1.2.4 The Central Limit Explanation

Another explanation of Benford’s Law utilizes the Central Limit Theorem repeated in

Theorem 1.2. This explanation addresses the fact that many quantities in the real

9



1.2. Examples and Explanations

world are products of other quantities, such as the weight a cuboid (ρxyzg, where ρ is

the density, x, y, z are dimensions, and g = 9.8 ms−2 is the gravitational acceleration).

Theorem 1.2. (Central Limit Theorem, Theorem 4.3.2 in [6]) Let W1,W2, · · · be

an infinite sequence of independent random variables, each with the same distribution.

Suppose that the mean µ and the variance σ2 of fW (w) are both finite. For any numbers

a and b,

lim
n→∞

P

(
a 6

W1 + · · ·+Wn − nµ√
nσ

6 b

)
=

1√
2π

∫ b

a

e−z
2/2 dz.

More precisely, suppose that

X = X1X2 · · ·Xn.

Taking the logarithm of both sides and letting it equal to Z, one obtains that

Z = log10X = log10X1 + log10X2 + · · ·+ log10Xn.

If Xi’s are identically distributed independent random variables, then so are log10Xi.

Let Zi = log10Xi, and suppose that it has mean µ and variance σ2. Then, by Theorem

1.2, Z tends to normal distribution with mean nµ and variance nσ2. Let k be an integer,

then

P (D1) = P
(

log10(D1 + 1) 6 Z mod 1 6 log10D1

)
= lim

n→∞

∫ log10(D1+1)+k

log10D1+k

e
− (z−nµ)2

2(nσ)2 dz

= log10(D1 + 1)− log10D1

Hence, by Definition 2, X = 10Z tends to be Benford. Moreover, by our discussion, X

becomes more and more Benford as n gets larger.

10



1.3. What’s Next

1.3 What’s Next

We conclude this chapter with a grand view of the following chapters.

Chapter 2 will provide the preliminary background of uniform distribution modulo

1. We will state and prove Weyl’s Criterion, Van der Corput’s Difference Theorem, as

well as their respective corollaries.

In Chapter 3, we will establish a rigorous reformulation of Benford’s Law based on

uniform distribution. We will start with cases in base 10 and proceed to arbitrary bases

and initial strings.

Finally, in Chapter 4, we will define good functions. We will show that good func-

tions are Benford and utilize our result to prove established cases of Benford’s Law

discussed in [1]. In particular, we will prove that the partition function p(n) and the

factorials n! are Benford.

11



Chapter 2 Uniform Distribution

With the introduction of Chapter 1, we are now in place to build the infrastructures for

our core theorems. We now introduce some preliminaries on uniform distribution. We

will focus on the unit interval [0, 1) and start by defining uniform distribution modulo

1. We will then introduce two criteria for determining if sequences are indeed uniformly

distributed modulo 1, namely, Weyl’s Criterion and Van der Corput’s Difference The-

orem. We will follow Kuipers and Niederreiter’s organization in Uniform Distribution

of Sequences [5] in presenting this chapter.

2.1 Uniform Distribution Modulo 1

In Chapter 1, we defined the notations for integral and fractional parts of a real number

x. We now introduce frac
(
x
)

as a shorthand notation for the fractional part of x. Also,

for a real sequence {xn}, N ∈ N, and E ⊆ R, let

A
(
E,N, {xn}

)
:= # {1 6 n 6 N : xn ∈ E} .

We remark that A
(
[a, b), N, {frac

(
xn
)
}
)

essentially counts the number of elements

among the first N entries of {xn} such that their fractional parts are in the interval

[a, b).

12



2.1. Uniform Distribution Modulo 1

Proposition 1.1 pertains to the concept that {(log10 xn mod 1)} being uniformly

distributed over [0, 1). We make this idea more precise by defining uniform distribution

modulo 1 in Definition 3.

Definition 3. (Uniform Distribution Modulo 1 ) A real sequence {xn} is said to be

uniformly distributed modulo 1 if, for all intervals [a, b) ⊆ [0, 1),

lim
N→∞

A
(
[a, b), N, {frac

(
xn
)
}
)

N
= b− a. (2.1)

In other words, this means that the percentage of elements in {xn} with fractional

parts in [a, b) is proportionate to the width of [a, b) for every such interval. Now, we

define the characteistic function as

c[a,b)(x) =


1, if x ∈ [a, b)

0, otherwise

so that the expression
∑N

n=1 c[a,b)

(
frac

(
xn
))

also evaluates the number of elements

among the first N entries of the sequence {xn} such that their fractional part fall

in the interval [a, b). Then (2.1) can be rewritten as

lim
N→∞

1

N

N∑
n=1

c[a,b)

(
frac

(
xn
))

=

∫ 1

0

c[a,b)(x)dx. (2.2)

The left hand side equals to that of (2.1), and the right hand side equals b − a by

the Fundamental Theorem of Calculus. We will show that (2.2) provides a important

tool in proving the following theorem, which shows that the condition on intervals is

13



2.1. Uniform Distribution Modulo 1

equivalent to a uniform distribution criterion for all real-valued continuous functions f .

Theorem 2.1. (Criterion for Uniform Distribution Modulo 1 ) The real sequence

{xn} is uniformly distributed modulo 1 if and only if for every real-valued continuous

function f defined on the closed unit interval [0, 1] the following equality holds:

lim
N→∞

1

N

N∑
n=1

f
(
frac

(
xn
))

=

∫ 1

0

f(x)dx. (2.3)

Proof. We start proving sufficiency by assuming that {xn} is uniformly distributed

modulo 1. Let P : {0 = k0 < k1 < · · · < km = 1} be a partition of the unit interval

[0, 1]. Consider the step function

fstep(x) =
m−1∑
i=0

dic[ki,ki+1)(x),

where di ∈ R for all i. Plugging fstep(x) into (2.3) is in effect multiplying (2.2) applied

to the subinterval [ki, ki+1) by a real constant di. Therefore, (2.3) holds for all step

functions fstep so defined.

Now, let f : [0, 1] → R be a continuous function. By the definition of Riemann

integrals, for any ε > 0, there exist 2 step functions fstep1 and fstep2 such that fstep1 <

f < fstep2 on [0, 1] and
∫ 1

0
(fstep2(x)− fstep1(x))dx < ε. Then,

∫ 1

0

f(x) dx− ε 6
∫ 1

0

fstep1(x) dx = lim
N→∞

1

N

N∑
n=1

fstep1
(
frac

(
xn
))

6 lim inf
N→∞

1

N

N∑
n=1

f
(
frac

(
xn
))
6 lim sup

N→∞

1

N

N∑
n=1

f
(
frac

(
xn
))

6 lim
N→∞

1

N

N∑
n=1

fstep2
(
frac

(
xn
))

=

∫ 1

0

fstep2(x) dx 6
∫ 1

0

f(x) dx+ ε.

14



2.1. Uniform Distribution Modulo 1

Since ε can be arbitrarily small, we can produce fstep1 and fstep2 accordingly so that∫ 1

0
fstep1(x)dx =

∫ 1

0
f(x)dx =

∫ 1

0
fstep2(x)dx. Since step functions satisfy (2.3), so does

f , and hence the sufficiency.

For necessity, suppose that {xn} is a real sequence satisfying (2.3) for all continuous

f : [0, 1]→ R. Suppose also that [a, b) ⊆ [0, 1). We now show that (2.1) is true for {xn}.

For arbitrary ε > 0, there exist continuous functions g1, g2 such that g1 6 c[a,b)(x) 6 g2

on [0, 1] and
∫ 1

0

(
g2(x)− g1(x)

)
dx 6 ε. Consequently,

b− a− ε 6
∫ 1

0

g2(x) dx− ε 6
∫ 1

0

g1(x) dx = lim
N→∞

1

N

N∑
n=1

g1

(
frac

(
xn
))

6 lim inf
N→∞

A
(
[a, b), N, {frac

(
xn
)
}
)

N
6 lim sup

N→∞

A
(
[a, b), N, {frac

(
xn
)
}
)

N

6 lim
N→∞

1

N

N∑
n=1

g2

(
frac

(
xn
))

=

∫ 1

0

g2(x) dx 6
∫ 1

0

g1(x) dx+ ε 6 b− a+ ε.

Since ε can be arbitrarily small, we can produce g1 and g2 so that equality holds.

Therefore, (2.1) holds for xn, completing the proof. �

An important corollary of Theorem 2.1 is as follows.

Corollary 2.2. The sequence {xn} is uniformly distributed modulo 1 if and only if for

every continuous function f : R→ C with period 1, we have

lim
N→∞

1

N

N∑
n=1

f
(
xn
)

=

∫ 1

0

f(x)dx. (2.4)

Proof. We start with sufficiency. Since f is continuous, its real and imaginary parts

Re(f) and Im(f) must be continuous real-valued functions. Applying Theorem 2.1 on

Re(f) and Im(f), we conclude that (2.3) holds for f . With the imposed periodicity, it

is true that f(x) = f
(
frac

(
x
))

, hence (2.4) follows.
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2.2. Weyl’s Criterion

For necessity, we assume that (2.4) is true for all continuous complex valued function

with period 1 and show that {xn} satisfies (2.1) in Definition 3. This can be done by

the same methodology as in the proof of Theorem 2.1. Note that this time we can

produce g1 and g2 such that g1(0) = g1(1) and g2(0) = g2(1). In this way, we can

extend the domain of g1 and g2 to R. Then, following the same proof completes the

proof for necessity. �

2.2 Weyl’s Criterion

Functions of the form f(x) = e2πikx with integer k are continuous complex-valued

functions over R, hence satisfying Corollary 2.2. In other words, if the sequence {xn} is

uniformly distributed modulo 1, then (2.4) holds for f(x) so defined. This fact motivates

the celebrated Weyl’s Criterion by the German mathematician Hermann Weyl. This

criterion dramatically simplifies the task of testing whether a sequence is uniformly

distributed modulo 1.

Theorem 2.3. (Weyl’s Criterion) The real sequence {xn} is uniformly distributed

modulo 1 if and only if

lim
N→∞

1

N

N∑
n=1

e2πik·xn = 0

for any nonzero integer k.

Proof. Let f(x) = e2πikx. Suppose {xn} is real sequence uniformly distributed modulo

16



2.2. Weyl’s Criterion

1. By Corollary 2.2, we have that

lim
N→∞

1

N

N∑
n=1

f
(
xn
)

=

∫ 1

0

f(x)dx =

∫ 1

0

e2πikxdx = 0.

For necessity, suppose that {xn} satisfies lim
N→∞

1
N

∑N
n=1 e

2πik·xn = 0. We will show

that (2.4) is true for every continuous functions f : R → C with period 1 and then

claim that {xn} is uniformly distributed modulo 1 by Corollary 2.2.

We pick an arbitrary ε > 0. By Weierstrass Approximation Theorem, there exists

a trigonometric polynomial p(x) (a linear combination of terms of the form e2πikx with

complex coefficients) such that

sup
06x61

|f(x)− p(x)| 6 ε. (2.5)

Therefore, by triangular inequality,∣∣∣∣∣
∫ 1

0

f(x)dx− 1

N

N∑
n=1

f
(
xn
)∣∣∣∣∣ 6

∣∣∣∣∫ 1

0

(
f(x)− p(x)

)
dx

∣∣∣∣︸ ︷︷ ︸
Term 1

+

∣∣∣∣∣
∫ 1

0

p(x)dx− 1

N

N∑
n=1

p
(
xn
)∣∣∣∣∣︸ ︷︷ ︸

Term 2

+

∣∣∣∣∣ 1

N

N∑
n=1

(
f
(
xn
)
− p
(
xn
))∣∣∣∣∣︸ ︷︷ ︸

Term 3

.

Terms 1 and 3 are less than ε because of (2.5). Note that this is true irrelevant of

the value of N . Term 2 can be less than ε if N is sufficiently large by assumption on

{xn}. Therefore,
∣∣∣∫ 1

0
f(x)dx− 1

N

∑N
n=1 f

(
xn
)∣∣∣ vanishes, completing the proof. �

Weyl’s Criterion results in another powerful result, Fejér’s Theorem, that will be

17



2.2. Weyl’s Criterion

incorporated in the proof of Section 2.3.

Theorem 2.4. (Uniform Distribution of f(n)) Let {f(n), n = 1, 2, · · · } be a sequence

of real numbers such that ∆f(n) = f(n + 1) − f(n) is monotone as n increases. Let,

furthermore,

lim
n→∞

∆f(n) = 0 and lim
n→∞

n |∆f(n)| =∞.

Then the sequence f(n) is uniformly distributed modulo 1.

Proof. We first note that the following inequality holds for any pair of real u and v.

|e2πiu − e2πiv − 2πi(u− v)e2πiv| =
∣∣e2πi(u−v) − 1− 2πi(u− v)

∣∣
= 4π2

∣∣∣∣∫ u−v

0

(u− v − w)e2πiwdw

∣∣∣∣
6 4π2

∣∣∣∣∫ u−v

0

(u− v − w)dw

∣∣∣∣
= 2π2(u− v)2

(2.6)

Now let u = kf(n + 1) and v = kf(n) with k ∈ Z being a nonzero constant. Then

by dividing (2.6) by ∆f(n),

∣∣∣∣e2πikf(n+1)

∆f(n)
− e2πikf(n)

∆f(n)
− 2πike2πikf(n)

∣∣∣∣ 6 2π2k2 |∆f(n)|

where n > 1. Therefore, by triangle inequality, we have∣∣∣∣ e2πikf(n+1)

∆f(n+ 1)
− e2πikf(n)

∆f(n)
− 2πike2πikf(n)

∣∣∣∣
6

∣∣∣∣ 1

∆f(n)
− 1

∆f(n+ 1)

∣∣∣∣+ 2π2k2 |∆f(n)| ,
(2.7)
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2.2. Weyl’s Criterion

where n > 1. Consequently,∣∣∣∣∣2πik
N−1∑
n=1

e2πikf(n)

∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
n=1

(
2πike2πikf(n) − e2πikf(n+1)

∆f(n+ 1)
+
e2πikf(n)

∆f(n)

)
+
e2πikf(N)

∆f(N)
− e2πikf(1)

∆f(1)

∣∣∣∣∣
6

N−1∑
n=1

∣∣∣∣2πike2πikf(n) − e2πikf(n+1)

∆f(n+ 1)
+
e2πikf(n)

∆f(n)

∣∣∣∣+
1

|∆f(N)|
+

1

|∆f(1)|

6
N−1∑
n=1

∣∣∣∣ 1

∆f(n)
− 1

∆f(n+ 1)

∣∣∣∣+ 2π2k2

N−1∑
n=1

|∆f(n)|+ 1

|∆f(N)|
+

1

|∆f(1)|
,

where the last step uses our result in (2.7). Now, since ∆f(n) is monotonous, so is

1
∆f(n)

. Note that
∑N−1

n=1

∣∣∣ 1
∆f(n)

− 1
∆f(n+1)

∣∣∣ is merely the sum of consecutive differences

of 1
∆f(n)

, it equals to
∣∣∣ 1

∆f(N)
− 1

∆f(1)

∣∣∣ due to monotonicity. By triangular inequality,∣∣∣ 1
∆f(N)

− 1
∆f(1)

∣∣∣ 6 1
|∆f(N)| + 1

|∆f(1)| . Thus, dividing the above inequality by 1
2π|k|N yields

∣∣∣∣∣ 1

N

N−1∑
n=1

e2πikf(n)

∣∣∣∣∣ 6 1

π|k|

(
1

N |∆f(1)|
+

1

N |∆f(N)|

)
+
π|k|
N

N−1∑
n=1

|∆f(n)|.

By assumption, lim
n→∞

∆f(n) = 0 and lim
n→∞

n |∆f(n)| =∞. The above equation therefore

reduces to

lim
N→∞

1

N

N−1∑
n=1

e2πikf(n) = 0,

satisfying Weyl’s Criterion. Thus, {f(n)} is uniformly distributed modulo 1. �

Refining Theorem 2.4 by replacing ∆f(n) with f ′(n) gives the Fejér’s Theorem for

differentiable functions. Corollary 2.5 becomes apparent when we take into account the

Mean Value Theorem in calculus.

Corollary 2.5. (Fejér’s Theorem) Let f(x) be a function defined for x > 1 that

is differentiable for x > x0. If f ′(x) tends monotonically to 0 as x → ∞ and if
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2.3. Difference Theorem

limx→∞ x |f ′(x)| = ∞, then the sequence f(n), n = 1, 2, · · · is uniformly distributed

modulo 1.

Proof. According to the Mean Value Theorem, on any interval [n, n+ 1], there exists

at least one real number cn ∈ (n, n + 1) such that f ′(cn) = f(n + 1) − f(n) = ∆f(n).

By assumption, lim
n→∞

∆f(n) = lim
n→∞

f ′(cn) = 0 and lim
n→∞

n |∆f(n)| = lim
n→∞

n |f ′(cn)| =

∞. We can now apply Theorem 2.4 to conclude that for n > x0, f(n) is uniformly

distributed modulo 1.

Since there are only finitely many integer n smaller than x0, they do not affect

uniform distribution modulo 1 when n tends to infinity. As a result, the corollary holds

for n = 1, 2, · · · . �

We will refer back to Corollary 2.5 in the proof Corollary 2.8 in Section 2.3.

2.3 Difference Theorem

We now proceed to prove Van der Corput’s Difference Theorem and an important

corollary that will be useful in Chapter 4. Our first step in this section is Lemma 2.6.

Lemma 2.6. (Van der Corput’s Fundamental Inequality) Let u1, · · · , uN be complex

numbers, and let H be an integer with 1 6 H 6 N . Then

H2

∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣
2

6 H(N +H − 1)
N∑
n=1

|un|2

+2(N +H − 1)
H−1∑
h=1

(H − h)Re

(
N−h∑
n=1

unūn+h

)

where Re(z) is the real part of z ∈ C, and z is the complex conjugate of z.
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2.3. Difference Theorem

Proof. Setting un = 0 for n 6 0 and n > N , we obtain

H

N∑
n=1

un =
N+H−1∑
p=1

H−1∑
h=0

up−h. (2.8)

Squaring both sides of (2.8) and using the Cauchy-Schwarz inequality, we have

H2

∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣
2

6 (N +H − 1)
N+H−1∑
p=1

∣∣∣∣∣
H−1∑
h=0

up−h

∣∣∣∣∣
2

= (N +H − 1)
N+H−1∑
p=1

(
H−1∑
r=0

up−r

)(
H−1∑
s=0

up−s

)

= (N +H − 1)
N+H−1∑
p=1

H−1∑
h=0

|up−h|2

+2(N +H − 1)Re
N+H−1∑
p=1

H−1∑
r,s=0
s<r

up−rup−s

= (N +H − 1)

(
H

N∑
n=1

|un|2 + 2Re
∑)

,

where
∑

in the last row contains terms of the form unun+h for n = 1, 2, · · · , N and

h = r− s = 1, 2, · · · , H − 1. For fixed n and h within their respective ranges, the pairs

of r and s contributing the term unun+h are (h, 0), (h + 1, 1), · · · , (H − 1, H − h − 1).

Furthermore, for each of these choices, the value of p is unique. As a result, we have

exactly H − h occurrences of unun+h in
∑

. Therefore,

∑
=

H−1∑
h=1

(H − h)
N∑
n=1

unun+h.

Note that we can limit n so that 1 6 n 6 N − h because un vanishes for all n > N by

our previous definition, hence finishing the proof. �

With the help of Lemma 2.6, we are now in place to prove the difference theorem .

Theorem 2.7. (Van der Corput’s Difference Theorem) Let {xn} be a given sequence
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2.3. Difference Theorem

of real numbers. If for every positive integer h the sequence {xn+h − xn, n = 1, 2, · · · }

is uniformly distributed modulo 1, then {xn} is uniformly distributed modulo 1.

Proof. Let m 6= 0 be some fixed integer, and let un = e2πim·xn for n = 1, 2, · · · .

Dividing the equation in Lemma 2.6 by H2N2, one obtains∣∣∣∣∣ 1

N

N∑
n=1

e2πim·xn

∣∣∣∣∣
2

6
N +H − 1

HN
+ 2

H−1∑
h=1

(N +H − 1)(H − h)(N − h)

H2N2

·

∣∣∣∣∣ 1

N − h

N−h∑
n=1

e2πim(xn−xn+h)

∣∣∣∣∣ .
(2.9)

By assumption, the sequence {xn+h − xn} is uniformly distributed modulo 1 for any

h > 1, so

lim
N→∞

1

N − h

N−h∑
n=1

e2πim(xn−xn+h) = 0 (2.10)

for any h > 1. Substituting the second summand in (2.9) with (2.10),

lim sup
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

e2πim·xn

∣∣∣∣∣
2

6 lim
N→∞

N +H − 1

HN
=

1

H
. (2.11)

Since H = 1, 2, · · · , N and N tends to infinity, we have

lim
N→∞

1

N

N∑
n=1

e2πim·xn = 0.

By Weyl’s Criterion, the sequence xn is uniformly distributed modulo 1. �

Theorem 2.7 provides yet another criterion for determining whether a sequence is

Benford or not. Its consequence, Corollary 2.8 proved below, will be an important tool

for proving Theorem 4.1.

Corollary 2.8. Let k ∈ N and f(x) be a function defined for x > 1 which is k-

times differentiable for all x > x0 for some x0 ∈ R+. Suppose that f (k) is eventually
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2.3. Difference Theorem

monotonic. Suppose also that

lim
x→∞

f (k)(x) = 0 and lim
x→∞

x|f (k)(x)| =∞.

Then {f(n) : n ∈ N} is uniformly distributed modulo 1.

Proof. We will prove the corollary by a simple induction on k. The base case is already

taken care of by Fejér’s Theorem in Corollary 2.5. For our induction step, we assume

the corollary for k, and show that it also holds for f if it is (k+1)-times differentiable for

x > x0 and is eventually monotonic with lim
x→∞

f (k+1)(x) = 0 and lim
x→∞

x|f (k+1)(x)| =∞.

For a positive integer h, let gh(x) = f(x + h) − f(x) for x > 1. Then g
(k)
h (x) =

f (k)(x + h) − f (k)(x) for x > x0. By the induction hypothesis, {gh(n), n = 1, 2, · · · }

is uniformly distributed modulo 1. By Van der Corput’s result in Theorem 2.7, the

corollary holds for k + 1. �
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Chapter 3 Mathematical Framework for Benford’s Law

In this chapter, we will reformulate Benford’s Law with mathematical rigor. We will

start by introducing the Benford Space B, and proceed to talk about cases in base 10.

Finally, we will generalize Benford’s Law to all bases.

3.1 Benford’s Law in Base 10

We start by introducing the space of Benford functions.

Theorem 3.1. (Space of Benford Functions) Benford functions form a vector space,

which we denote by B.

We remark that although the 0 function is in every vector space, it is obviously not

Benford. The Benford property only applies to the non-zero functions in B.

We will suppress the complete proof of Theorem 3.1 and only check some of its

properties. For instance, B is closed under scalar multiplication. If c ∈ R − {0},

then cf(n) ∈ B. This is true because multiplying a nonzero constant c translates the

distribution of frac
(

logk
(
cf(n)

))
by frac

(
logk c

)
, and it would not change the uniform

distribution of the logarithm. Explicitly,
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3.1. Benford’s Law in Base 10

lim
N→∞

#{1 6 n 6 N : frac
(

logk
(
cf(n)

))
∈ [a, b)}

N

= lim
N→∞

#{1 6 n 6 N : frac
(

logk c+ logk
(
f(n)

))
∈ [a, b)}

N

= b− a

As another example, we show that if f(n) is nonzero, then its inverse 1/f(n) ∈ B.

This holds since taking reciprocal would leave the uniform distribution unchanged.

That is,

lim
N→∞

#{1 6 n 6 N : frac
(

logk
(
1/f(n)

))
∈ [a, b)}

N

= lim
N→∞

#{1 6 n 6 N : frac
(
− logk

(
f(n)

))
∈ [a, b)}

N

= lim
N→∞

#{1 6 n 6 N : frac
(

logk
(
f(n)

))
∈ [a, b)}

N

= b− a

We will see in later discussions of this chapter that for all functions of B, Benford’s Law

must be true for any initial string of digits in any base [1].

Recall that in scientific notation, we write all real numbers in the format x =

S(x) · 10k, where S(x) ∈ [1, 10). To quickly get our hands on the leading digit of x, we

introduce the logarithm mapping ϕ : R→ [0, 1) defined as

x 7→ log10 x mod 1.

Under logarithm mapping, ϕ(x) = log10

(
S(x) · 10k

)
mod 1 =

(
log10 S(x) + k

)
mod 1.

Since k is always an integer, ϕ(x) = log10 S(x) mod 1, the mantissa of x. As S(x)

goes from 1 to 10, ϕ(x) varies from 0 to 1. Therefore, the position of ϕ(x) in [0, 1) is

sufficient for determining the leading digit of x. For instance, if x has leading digit 1,

then 1 6 S(x) < 2 and 0 = log10 1 6 ϕ(x) < log10 2. Similarly, if x has leading digit
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3.2. Generalization to All Bases

D1, then D1 6 S(x) < D1 + 1 and log10D1 6 ϕ(x) < log10(D1 + 1). Likewise, we find

the leading digit of x based on where ϕ(x) lands on the interval [0, 1), as in Figure 3.

[ )[ )[ )[ )[ )[ )[ )[ )[ )

0 1

lo
g 10

2
→

lo
g 10

3
→

lo
g 10

4
→

lo
g 10

5
→

lo
g 10

6
→

lo
g 10

7
→

lo
g 10

8
→

lo
g 10

9
→

D 1
=

1

D 1
=

2

D 1
=

3

D 1
=

4

D 1
=

5

D 1
=

6

D 1
=

7

D 1
=

8

D 1
=

9

Figure 3. Logarithm Map

In the light of uniform distribution modulo 1, we now give a revised version of

Proposition 1.1 credited to Persi Diaconis.

Proposition 3.2. (Diaconis) A sequence a(n) ∈ B if and only if log10

(
a(n)

)
is

uniformly distributed modulo 1.

A generalized version of Proposition 3.2 will be proven in Section 3.2, and we shall

delay the proof until then.

3.2 Generalization to All Bases

Recall that the base of a number system is the number of distinct digits in its representa-

tion. Thus far, our discussion has been limited to base 10 only, where the distinct digits

are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. In Section 1.2.3, we considered the scale-invariant ex-

planation of Benford functions. Our discussion in Section 1.2 Benford sequences should

be scale invariant. Particularly, if the sequence {xn} is Benford under base 10, it should
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3.2. Generalization to All Bases

be Benford under any bases. This conjecture motivates us to generalize Benford’s Law

to arbitrary bases in Definition 4.

Definition 4. (Generalized Benford’s Law) For a sequence of positive integers {xn},

let

B(d,N, k; {xn}) =
# {n 6 N : first digits of xn in base k are the string d}

N
.

If

lim
N→∞

B(d,N, k; {xn}) ≡
(

logk(d+ 1)− logk d
)

(mod 1)

for all k > 2, then we say that {xn} ∈ B.

To illustrate this, we consider the binary system. By Definition 4, the percentage

of numbers starting with the string d = 101 is log2(1012 + 1)− log2(1012) = log2(6)−

log2(5) = 26.3%, and the percentage of numbers starting with the string d = 10101

is log2(101012 + 1) − log2(101012) = log2(22) − log2(21) = 6.7%. The same is true no

matter what base we choose.

We now state and prove Diaconis’ Criterion for Benford functions in Theorem 3.3.

Note that its special case in base 10 has already served as a fundamental theorem in

our discussion so far.

Theorem 3.3. (Diaconis’ Criterion for Benford) Suppose {xn} is a real sequence,

then {xn} ∈ B if and only if {logk xn} is uniformly distributed modulo 1 for all k.

Proof. In base k ∈ Z, we can write any real number x as S(x) · kn, with S(x) being
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3.2. Generalization to All Bases

the generalized significand and n the exponent of x. In the light of Section 3.1, taking

the logarithm of x, we discover that the first digits of xn are the string d if and only if

logk S(x) mod 1 ∈
[

logk d, logk(d + 1)
)
. Therefore, we seek to prove that {logk xn} is

uniformly distributed modulo 1 if and only if the significands of {xn} are Benford.

Since the probability of logk xn ∈ [a, b) ⊂ [0, 1) is simply that of log(xn) ∈ [0, b)

minus that of log(xn) ∈ [0, a), without loss of generality, we only need to show that the

probability of log(xn) ∈ [0, t) is t for any t ∈ [0, 1). Let s ∈ [1, 10) be any significand.

By previous discussion, we have that

{n 6 N : logk xn mod 1 ∈
[
0, logk s

)
} = {n 6 N : S(xn) < s}.

It then follows that

lim
N→∞

#{n 6 N : logk xn mod 1 ∈
[
0, logk s

)
}

N
= lim

N→∞

#{n 6 N : S(xn) < s}
N

(3.1)

If {logk xn} is uniformly distributed modulo 1, then the left hand side of (3.1) implies

that

lim
N→∞

B(d,N, k; {xn})
N

= logk(d+ 1)− logk d,

namely xn is Benford. Conversely, if {xn} ∈ B, then the right hand side equals logk s.

This means that the probability of logk xn ∈ [0, logk s) is logk s, implying the uniform

distribution of {logk xn}. �
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3.3. Asymptotic Property

3.3 Asymptotic Property

Lemma 3.4 is an asumptotic property of Benford functions. We shall see later that it

will be useful in the proof of Theorem 4.1 in Chapter 4.

Lemma 3.4. (Asymptotically Benford) If f(n) ∈ B and f(n) ∼ g(n), then g(n) ∈ B.

Proof. Suppose that f(n) ∈ B, then {logk
(
f(n)

)
} is uniformly distributed modulo 1

by Theorem 3.3. By Definition 3,

lim
N→∞

#{1 6 n 6 N : frac
(

logk
(
f(n)

))
∈ [a, b)}

N
= b− a.

It follows from Theorem 2.3 that

lim
N→∞

1

N

N∑
n=1

e2πik·f(n) = 0

for any nonzero k ∈ Z. Since f(n) ∼ g(n), for any ε > 0, we can produce N0 such that

|g(n)− f(n)| < ε. Then, we have that

lim
N→∞

1

N

N∑
n=1

e2πik·g(n) = lim
N→∞

1

N

N0−1∑
n=1

e2πik·g(n) + lim
N→∞

1

N

N∑
n=N0

e2πik·g(n).

Since the first sum on the right hand side is bounded, the limit vanishes. The second

term reduces to

lim
N→∞

1

N

N∑
n=N0

e2πik·g(n) 6 e±ε lim
N→∞

1

N

N∑
n=N0

e2πik·f(n).

With |ε| being arbitrarily small, this term goes to 0 by assumption on f . We have

therefore proved that g(n) ∈ B by Weyl’s Criterion. �
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Chapter 4 Benford Arithmetic Functions

This final chapter exhibits arithmetic functions that conform to Benford’s Law. We

will define good functions, and then use our results for uniform distribution modulo 1

to prove that good functions are Benford. This is important because it enables us to

find a new class of Benford functions, among which are the partition function p(n) and

the factorials n!.

4.1 Good Functions

We now introduce another criterion for Benford based on the idea of good functions

defined in Definition 5.

Definition 5. (Good Functions) An integer-valued function a(n) is good whenever

a(n) ∼ b(n)ec(n) and the following conditions are satisfied.

1. There exists some integer h > 1 such that c(n) is h-differentiable and c(h)(n) tends

to zero monotonically for sufficiently large n.

2. lim
n→∞

n|c(h)(n)| =∞.

3. lim
n→∞

D(h) log b(n)

c(h)(n)
= 0, where D(h) denotes the hth derivative.
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4.2. The Partition Function p(n) is Benford

The following theorem proven by Anderson, Rolen and Stoehr [1] would serve as a

convenient tool in proving a number of arithmetic functions in the Benford space B.

It is important because it immediately proves that the partition function p(n) and the

factorials n! are Benford, as we shall see in Sections 4.2 and 4.3.

Theorem 4.1. (Good Implies Benford) If {xn} is good, then {xn} ∈ B.

Proof. Since {xn} is good, we can find functions b(n) and c(n) that satisfy the

conditions in Definition 5. Then, Lemma 3.4 suggests that we only have to show that

b(n)ec(n) is Benford. By Theorem 3.3, we only need to show that log b(n) + c(n) is

uniformly distributed modulo 1.

By conditions 1 and 2 in Definition 5, c(n) satisfies the limit assumptions of Theorem

2.8, and is therefore uniformly distributed modulo 1. By condition 3 in Definition 5,

lim
n→∞

D(h) log b(n)

c(h)(n)
= 0. Therefore adding log b(n) would leave the uniform distribution of

c(n) unaffected, hence completing the proof. �

4.2 The Partition Function p(n) is Benford

The partition function p(n) for non-negative integer n counts the number of ways to

write n as the sum of a non-increasing sequences. For instance, when n = 4, there are

5 distinct ways to decompose n as desired. That is,

4 = 4

= 3 + 1
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4.2. The Partition Function p(n) is Benford

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1.

Therefore, p(4) = 5. Similarly, we can compute that p(5) = 7, p(6) = 11 and so

on. It is worth noting that as n increases, p(n) grows exponentially. When n = 100,

p(n) = 190569292, and when n = 200, p(n) = 3972999029388.

We now list the first digit distribution of p(n) below. Tables 4 and 5 are repro-

ductions of Tables 1 and 2 in [1], with Table 4 for the case of base 10 and Table 5 for

base 2. In both cases, the data suggests that p(n) ∈ B. In the light of Theorem 4.1,

the following corollary automatically holds due to the Hardy-Ramanujan asymptotic

partition formula.

x d = 1 2 3 4 5 6 7 8 9
102 0.330 0.160 0.140 0.090 0.070 0.060 0.070 0.050 0.030
103 0.305 0.177 0.127 0.094 0.076 0.068 0.057 0.052 0.044
104 0.302 0.177 0.126 0096 0.078 0.067 0.057 0.051 0.046

...
...

...
...

...
...

...
...

...
...

∞? 0.301? 0.176? 0.125? 0.097? 0.079? 0.067? 0.057? 0.051? 0.046?

Table 4. B
(
d, x, 10; p(n)

)
x d = 100 101 110 111

200 0.285 0.270 0.205 0.225
400 0.308 0.273 0.209 0.205
600 0.313 0.267 0.217 0.198
800 0.314 0.263 0.219 0.201
1000 0.315 0.262 0.220 0.200
5000 0.321 0.264 0.222 0.194

...
...

...
...

...
∞? 0.322? 0.263? 0.222? 0.192?

Table 5. B
(
d, x, 2; p(n)

)
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4.3. Factorials are Benford

Corollary 4.2. The partition function p(n) ∈ B.

Proof. By Hardy-Ramanujan in [4], we know that

p(n) ∼ 1

4n
√

3
· eπ
√

2n/3.

By Definition 5, p(n) is good, and by Theorem 4.1, p(n) ∈ B. �

4.3 Factorials are Benford

We have exhibited the first digit distributions in both Table 2 and Figure 2 (d). In

fact, with the help of Stirling’s formula, we can easily prove that n! ∈ B.

Corollary 4.3. The sequence of factorials n! ∈ B.

Proof. Stirling’s formula in [9] states that

n! ∼
√

2π · nn+1/2e−n.

By Definition 5, n! is good, and by Theorem 4.1, n! ∈ B. �
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