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Abstract

Essays on Non-linearities in Stock and Bond Returns: A
Density-Based Approach

By Jiening Pan

The dissertation consists of three essays that revolve around non-linearities embedded
in asset returns.

In the first essay “The Role of Slope Heterogeneity in Bond Excess Returns Predictabil-
ity”, I investigates bond excess return forecastability using current forward rates. The
dynamics of excess return are modeled non-parametrically. Estimation shows heteroge-
neous slopes for independent variables, indicating the existence of non-linearity. Empir-
ically, I find this non-linearity plays an important role in excess return prediction both
in- and out-of-sample. By including non-linearity in the model, the in-sample R2 jumps
to as high as 91%. Meanwhile, lagged forward rates are no longer statistically signif-
icant, in contrast to the results documented in previous research. The out-of-sample
forecasts also favor the non-parametric model. Findings in this paper suggest a poten-
tial important information source embedded in the current forward rates cross-section.
Information associated with non-linearity is largely ignored in the existing literature as
it is averaged out by linear model settings.

The second essay “Do Non-Linearities Matter in the Yield Curve?” tries to answer
the question that do non-yield variables contain information beyond what is contained
in the yield curve? Using a non-linear factor extracted from the yield curve, I find non-
yield factors, which are constructed from a large panel of macro-finance data, are no
longer significant in predicting future bond excess returns both in- and out-of-sample.
Moreover, my non-linear factor generates countercyclical and business cycle frequency
bond risk premia. The findings underscore the importance of non-linearities embedded
in the term structure, suggesting a fully spanned term structure model with non-linear
state factors may be capable of matching features observed in the data.

In the third essay “A Test on Asymmetric Dependence” (joint work with Prof. Maa-
soumi, Lei Jiang and Ke Wu), we provide a model-free test for asymmetric dependence
between stock and market returns, based on the Kullback-Leibler mutual information
measure. Our test has greater power in small samples than previous tests of asymmetric
correlation proposed by Hong, Tu and Zhou (2007). Empirically, we find that asymmet-
ric dependence is a prevailing phenomenon in most commonly used portfolios.
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Preface

The dissertation contains three essays that center on non-linearities associated with financial

assets. More specifically, the first two chapters focus on non-linearities embedded in the

yield curve of the U.S. Treasury bonds. I investigate how non-linearities affect future bond

excess return predictability and their implications in dynamic term structure modeling.

The third chapter proposes a non-linear measure of exceedance dependence and provides a

model free test for asymmetric dependence between stock portfolio and market returns.

Parametric models have dominated financial economics research over past decades,

mainly because they help us decompose and understand the complicated dynamics of finan-

cial variables, as well as more tractable and elegant solutions they provide. However, the

theoretical attractiveness of parametric models does not guarantee the usefulness in prac-

tice. For example in the class of fixed income securities, Aı̈t-Sahalia (1996) tests almost

all existing parametric models of interest rate dynamics and claims none of them describes

the true data generating process. For the equity securities, various empirical studies show

that the classical Capital Asset Pricing Model (CAPM) developed by Sharpe (1964) and

Lintner (1965) fail to fully capture the risk premium of stock returns. In other words, the

CAPM market beta, which only considers the linear correlation between individual stock

and market returns, is not a perfect proxy for the market risk factor.

These findings suggest that commonly used parametric models in finance are misspeci-

fied, which implies potential inconsistent estimation and unreliable testing results. On the

other hand, the density-based non-parametric approach as in Nadaraya (1964) and Watson

(1964), which let the data speak for themselves, provides an ideal alternative.
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Non-linearities in the yield curve

Starting from Vasicek (1977) and Cox, Ingersoll, and Ross (1985) and many others, the

dynamics of interest rates are usually modeled using parametric diffusion processes. Ex-

tending the previous work of Cox, Ingersoll, and Ross (1985) and Heath, Jarrow, and

Morton (1992), Duffie and Kan (1996) develop a class of arbitrage-free multi-factor models

of the term structure of interest rates, which is known as the affine term structure mod-

els (ATSMs). Although ATSMs have closed form solution and they are easy to estimate

from an empirical perspective, later studies show that this class of models fails to match

certain patterns observed in data. For example, the forecast errors in Dai and Singleton

(2000) are negatively correlated with the slope of the yield curve, which produces smaller

model-implied bond excess returns when the slope of yield curve is steeper.1 Duffee (2002)

further modifies Duffie and Kan (1996) and Dai and Singleton (2000) model by separating

the compensation of interest risk and interest rate volatility and proposes the “essentially

affine” term structure models, which later becomes the benchmark model in dynamic term

structure literature. ATSMs share one commonality: the model dynamics are fully captured

by a set of state variables and all yields are linear functions of the same state variables.

Thus an important question in macro-finance term structure literature is that what should

be used as the state variable in a dynamic term structure model?

Empirical research in financial economics has uncovered significant forecastable variation

in bond excess returns. Fama and Bliss (1987) report that the one-year excess return of the

n-year bond can be explained by the spread between the n-year forward rate and one-year

yield. Stambaugh (1988) finds that two- to six-month bond excess returns can be predicted

by one- to six-month forward rates, and recently, Cochrane and Piazzesi (2005) show that

a linear combination of five forward rates can be used to forecast one-year excess bond

return across different maturities. These results suggest that the current yield curve con-

tains substantial information about future interest rates. Therefore an assumption usually

1Empirical results documented in Campbell and Shiller (1991) support the opposite, i.e., steeper current
yield slope suggests larger future bond excess returns.
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adopted in the bond literature is that bond yields or their linear combinations serve as the

state variables. In other words, the model is fully spanned by bond yields. However, more

recent research show that various non-yield variables can provide additional predictability,

which questions the fully spanned assumption. Ang and Piazzesi (2003) modify the original

continuous-time Duffie and Kan model into discrete-time setting. They combine bond yields

with inflation and real productivity factors in a no-arbitrage vector autoregression (VAR)

framework and use this model to study the joint dynamics of macroeconomic activity and

inflation. One of the major conclusions in their paper is that macroeconomic factors im-

prove forecast accuracy of yields. Cooper and Priestley (2009) report that the output gap

has strong predictive power of bond excess returns both in- and out-of-sample. Ludvigson

and Ng (2009) apply dynamic factor analysis (DFA) to a large panel of macro-finance data

and find that factors closely related to real output and inflation can improve forecasting

power for future excess returns. They also show that non-yield factors are the key ingre-

dient in generating countercyclical risk premia. Fontaine and Garcia (2012) construct a

liquidity factor to measure funding conditions confronted by financial intermediaries. They

find that bond excess returns can be predicted by this factor, which suggests that liquidity

risks might be an important source of bond excess return predictability.

As pointed out in Ludvigson and Ng (2009) and Joslin, Priebsch, and Singleton (2014),

the failure of the fully spanned ATSMs is due to the invertibility between the state variables

and yields. To resolve this conflict, Duffee (2011) and Joslin, Priebsch, and Singleton (2014)

propose an ATSM in which part of the state vector is not spanned by the yield curve. Duffee

(2011) assumes the existence of “hidden” factors that are undetectable from the cross section

of yields but that have significant predictive power with respect to future bond excess

returns. Joslin, Priebsch, and Singleton (2014) allow for macroeconomic risks that cannot

be spanned by the yield curve. Two linear combinations of smoothed industrial production

and inflation are chosen as the unspanned factors. They show that the unspanned factors

can explain a substantial portion of the variation in forward terms premia.

Although the results of the unspanned ATSM look promising, the potential problem
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associated with this approach is that economic theory does not tell us which variables should

be used as unspanned factors. For example, Cieslak and Povala (2013) argue the source of

the unspanned risks is inflation. They construct a factor which is equal to the weighted

average of past inflation, where the weights are estimated from survey data. However, it

appears that the weights are chosen such that the dynamics of the factor follow the same

pattern as the dynamics of the yields after smoothing.

In Chapter one and two, I show that non-linearities in the yield curve can provide an

alternative modeling approach to resolve this conflict. Non-linearities in bond yield dy-

namics are well documented in the finance literature. For example, Gray (1996) concludes

that a generalized regime switching (RS) model that nests generalized autoregressive condi-

tional heteroskedasticity (GARCH) structures is able to generate both mean-reversion and

conditional heteroskedasticity pattern for the short rate. Ang and Bekaert (2002) claim

that an ATSM with RS features can replicate some of patterns found by the NP studies.

Dai, Singleton, and Yang (2007) build an affine RS model with a closed form solution. Ang,

Bekaert, and Wei (2008) consider different inflation regimes and construct a RS affine model

for the nominal yield curve. Moreover, by allowing for non-linearities, invertibility between

state variables and yields generally will not exist.

The first essay, “The Role of Slope Heterogeneity in Bond Excess Return Prediction”,

investigates the impact of non-linearities on bond excess return predictability. Similar to

Cochrane and Piazzesi (2005), I also use one-year forward rates as the predictor, but I allow

the conditional expectation of bond excess returns to take an unknown functional form and

estimate it using the non-parametric local constant kernel estimator. The results show a

strong heterogeneous pattern for slopes evaluated at different values of forward rates. I

also find significant improvement in excess return predictability when non-linearities are re-

tained. Moreover, the lagged forward rates no longer help predict future excess returns. The

out-of-sample results also support the in-sample findings. I conclude a potential important

information source is embedded in the current forward rates cross section that is largely

ignored in the existing literature, as a linear model setting averages out the non-linearities.
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The second essay,“Do non-linearities matter in the yield curve?” further addresses the

research question whether non-yield variables can provide additional predictability on bond

excess returns when non-linearities in the yield curve have been taken into account. By using

a non-linear factor extracted from the bond cross section, I show empirically that non-yield

factors in Ludvigson and Ng (2009) are no longer significant in predicting future bond

excess returns both in- and out-of-sample. In addition, I link the risk associated with the

non-linear factor to the fundamental macroeconomic shocks by showing that the non-linear

factor is able to generate countercyclical and business cycle frequency bond risk premia.

Results indicate that excess returns associated with the non-linear risk are compensations

for a risk-averse investor to bear unexpected macroeconomic shocks, which is consistent

with economic theory. My findings also signal the possibility of building a dynamic term

structure model with fully spanned non-linear state factors to jointly model the dynamics

of bond yields and macroeconomic variables.

Non-linearities in stock returns

Since Sharpe (1964) and Lintner (1965) proposed the CAPM in 1960s, one prevailing as-

sumption adopted in empirical asset pricing literature is that the individual stock and

market returns follow joint normal distribution. Joint normality is attractive in at least two

aspects. First, the dependence between two variables can be fully described by their linear

correlation (CAPM Betas), independence is equivalent to 0 in linear correlation. Second,

the return distribution is symmetric in market up and downturn. Therefore under normality

assumption, same factor that is equal to the linear correlation between the individual stock

return and the market return, capture the market risk in both market up and downturn.

However, empirical evidence in various studies suggests that individual stocks exhibit

stronger co-movements with the market during market downturn than in market upturn

(Ball and Kothari, 1989; Ang, Chen, and Xing, 2006; Longin and Solnik, 2001; Kroner

and Ng, 1998). Moreover, similar characteristics are also documented for stock portfolios

(Kroner and Ng, 1998; Conrad, Gultekin, and Kaul, 1991). These results indicate that
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a very important aspect in stock return distribution is missing if normality is assumed,

i.e., asymmetric dependence. Ignoring such asymmetry will lead to underestimation of

portfolio’s market risk during market downturn, which causes suboptimal asset allocation

and utility loss for a risk averse investor.

There are two primary questions associated with the asymmetric dependence in stock

returns. The first is how should “dependence” be defined. As we are deviating from the

normality, linear correlation is no longer equivalent to dependence. In fact, it is quite

easy to find examples such that a correlation coefficient of 0 does not imply two random

variables are independent. And the second, is it possible to test whether the difference of

dependence on different domains of a distribution is statistically significant. Many attempts

have been made to answer these two questions. Ang and Chen (2002) first come up with

a test on asymmetric correlation and conclude that asymmetries are significantly higher

for stocks with various characteristics such as small size, high book-to-market ratio and

past losers. However, their test is that the test is model dependent. It is only able to

judge whether the asymmetries observed in the data can be explained by a given model.

Observing this shortcoming, Hong, Tu, and Zhou (2007) propose a model free test on

asymmetric correlation. Based on this test, they conclude that it is not common to observe

statistically significant asymmetries in portfolio returns. However, linear correlation is not

an ideal measure for dependence once the underlying distribution is not normal. In fact,

we need an alternative dependence measure which is able to capture non-linear dependence

related with all higher order moments.

In the third essay, “A Test on Asymmetric Dependence”, I first propose a new ex-

ceedance dependence measure, which is constructed by a modified Kullback-Leibler mutual

information measure. This dependence measure is defined under the distribution perspec-

tive, which summarizes information of the whole distribution, including all existing mo-

ments. Then I develop a model-free test on asymmetric dependence of stock and market

returns. The sampling distribution of the test statistic is obtained via consistent bootstrap

method. Comparing with existing asymmetry test based on linear correlation, this new
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test possesses greater power in small samples. Moreover in contrast to findings documented

in the existing literature, I find asymmetries in dependence is a prevailing phenomenon in

commonly used portfolios sorted by size, book-to-market ratio and momentum.
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Chapter 1

The role of slope heterogeneity in
bond excess return predictability

Abstract

This paper investigates bond excess return forecastability using current forward rates.

The dynamics of excess return are modeled non-parametrically. Estimation shows heteroge-

neous slopes for independent variables, indicating the existence of non-linearity. Empirically,

I find this non-linearity plays an important role in excess return prediction both in- and

out-of-sample. By including non-linearity in the model, the in-sample R2 jumps to as high

as 91%. Meanwhile, lagged forward rates are no longer statistically significant, in contrast

to the results documented in previous research. The out-of-sample forecasts also favor the

non-parametric model. Findings in this paper suggest a potential important information

source embedded in the current forward rates cross-section. Information associated with

non-linearity is largely ignored in the existing literature as it is averaged out by linear model

settings.

JEL Classification: E0, E4, G0, G1.

Key words: Bond term structure, in- and out-of-sample forecasting, non-linearity, non-

parametric methods, bootstrap.



11

I Introduction

The forecastability of variation in excess returns of U.S. Treasury bonds has been widely doc-

umented in the literature. Fama and Bliss (1987) find that the one-year excess return of the

n-year bond can be explained by the spread between the n-year forward rate and one-year

yield. Stambaugh (1988) reports excess returns forecastability on a shorter time horizon

by regressing two- to six-month bond excess return on one- to six-month forward rates.

Campbell and Shiller (1991) show that excess returns of Treasury bonds are forecastable

by yield spreads. More recently, Cochrane and Piazzesi (2005) use a linear combination of

five forward rates to forecast one-year excess bond return across different maturities simul-

taneously and report substantial forecastibility. Researchers generally accept the failure of

the expectations hypothesis that future bond excess returns are not predictable; however,

disagreement arises with respect to the choice of predictors. There is no doubt that current

bond prices (and their linear functions) have predictive power in future excess returns. In

addition, empirical results show many other variables also contain substantial excess return

forecastability. Cochrane and Piazzesi (2005) notice that the lagged forward rates help im-

prove excess return prediction. Ludvigson and Ng (2009) and Cooper and Priestley (2009)

report that macroeconomic variables contain substantial information about future excess

returns that is orthogonal to the current bond term structure. Fontaine and Garcia (2012)

and Cieslak and Povala (2013) argue that bond risk premia are compensation for investors

to bear liquidity and inflation risks, respectively.

In standard affine term structure models (ATSMs),1 bond yields or their linear com-

binations are chosen as the state vector. To ensure solution tractability and computation

feasibility, the state vector is assumed to evolve linearly. Therefore, standard ATSMs im-

plicitly assume that a linear regression model with linear factors extracted from the bond

cross-section is correctly specified. To accommodate ATSMs with the findings discussed

above, researchers suggest the state vector should also incorporate lagged yields and non-

1For reference, see e.g., Duffie and Kan (1996), Dai and Singleton (2000) and Duffee (2002), among
others.
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yield variables (Ang and Piazzesi, 2003; Duffee, 2011b; Joslin, Priebsch, and Singleton,

2014; Feunou and Fontaine, 2014). However, this approach receives much criticism as these

newly-introduced variables are lack of theoretical foundation (Duffee, 2013).

I argue that the linear model setting, i.e., the effect of each individual predictor on excess

return remains constant over the domain of that predictor, may be misspecified. In fact,

the literature has reported rich non-linearities in bond yield dynamics. Gray (1996) con-

cludes that a generalized regime switching (RS) model that nests generalized autoregressive

conditional heteroskedasticity (GARCH) structures is able to generate both mean-reversion

and conditional heteroskedasticity pattern for the short rate. Aı̈t-Sahalia (1996a,b) and

Stanton (1997) model the short rate dynamics with a non-parametric (NP) kernel density

estimator and reject almost “every parametric model of spot rate [previously] proposed in

the literature” such as Vasicek (1977) and Cox, Ingersoll, and Ross (1985). Ang and Bekaert

(2002) claim that an ATSM with RS features can replicate some of patterns found by the

NP studies. Dai, Singleton, and Yang (2007) build an affine RS model with a closed form

solution. Ang, Bekaert, and Wei (2008) consider different inflation regimes and construct a

RS affine model for the nominal yield curve.

In this paper, I re-examine the excess bond return predictability with commonly used

predictors after giving up the usual assumption of linearity. Same as in Fama and Bliss

(1987) and Cochrane and Piazzesi (2005), current one-year forward rates are chosen as

predictors. I use NP regression techniques to take into account non-linearities in the yield

curve for the following reasons. First, the RS approach requires a presumed number of

regimes. To ensure computation feasibility, the existing literature usually assumes the total

number of regimes equals two, in which underestimating the number of regimes may cause

a misspecification issue. Second, as Aı̈t-Sahalia (1996b) argues “a single continuous but

nonlinear function that preserves time-homogeneity” would be equivalent to multi-regime,

piece-wise linear functions. Therefore, if one does not care about policy implications in

different regimes, the NP approach would be at least as good as the RS setting.

By allowing for non-linearities, on average 91% of variation in bond excess returns
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can be explained by current forward rates. Compared to the linear regression results for

individual bond in Cochrane and Piazzesi (2005), the NP setting captures a greater portion

of variation, beyond what is documented in the existing literature.

Following Racine (1997), I then construct a studentized test statistic and test the joint

significance of independent variables using the bootstrap method. Two competing models

(one uses only the current forward rates and the other uses both current and one-month

lagged forward rates) are examined. Results suggest that lagged forward rates fail to provide

additional predictive power once non-linearities are preserved.

To investigate whether in-sample results are due to overfitting, I extend the sample

period and conduct pseudo out-of-sample forecasting for different models. I find that pre-

diction generated by the NP model outperform commonly used linear models, especially

when the excess return volatilities are high. The findings in this paper reveal that the

non-linearity could be a potentially important information source which is largely ignored

in the existing literature, as the non-linear effect is averaged out in a misspecified linear

regression model.

The rest of this article is organized as follows. In the next section, I introduce the

notation in this paper. Section 3 introduces the econometric tools used in this paper and

discusses the testing significance of explanatory variables under the NP setting. Section

4 lays out the models’ in-sample performance. Section 5 compares the performance of

different models by examining their out-of-sample forecasting. Section 6 concludes and

discusses potential future research.

II Econometric framework

II.1 Notation

In this paper, each period represents one year. Consider a zero-coupon bond that will

mature in n years with a final payoff of $1. I use p
(n)
t to denote its log price:

p
(n)
t = log price of n-year zero coupon bond at time t.
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Its one-period continuous compound yield is simply written as

y
(n)
t = − 1

n
p

(n)
t .

The one-year log forward rate for this bond is defined as the arbitrage-free one-year rate

between time t+ n− 1 and t+ n,

f
(n)
t ≡ p(n−1)

t − p(n)
t .

I use r
(n)
t+1 to denote the log one-year holding period return from buying an n-year bond at

time t and selling it as an n− 1 bond after one year at t+ 1

r
(n)
t+1 ≡ p

(n−1)
t+1 − p(n)

t .

The log one-year excess return for n-year bond rx
(n)
t+1 is defined as borrowing at the current

short rate at period t, buying n-year bond and then selling after one year to repay the debt:

rx
(n)
t+1 ≡ r

(n)
t+1 − y

(1)
t . (1.1)

Variables in bold font represent vectors across maturity, e.g.,

rxt+1 ≡
[
rx

(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1

]>
,

ft ≡
[
y

(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t

]>
.

II.2 The model

I consider two models in this paper. One only uses current forward rates to predict future

bond excess returns. The conditional mean of excess return for the n-year bond only depends

on ft, following some unknown function gn(·),

Et

(
rx

(n)
t+1

)
= gn(ft).
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The other model assumes that the conditional mean function of the n-year excess return

should also include p lagged forward rates, i.e.,

Et

(
rx

(n)
t+1

)
= hn(ft, ft− 1

12
, . . . , ft− p

12
).

For simplicity, I only consider the case for p = 1 in this paper. In order to avoid model

misspecification and retain non-linearities, I do not assume any specific format for gn(·) and

hn(·) except stationarity.

I run regression of excess return rx
(n)
t+1 on all forward rates,

rx
(n)
t+1 = gn(ft) + ε

(n)
t+1, (1.2)

rx
(n)
t+1 = hn(ft, ft− 1

12
) + ε

(n)
t+1. (1.3)

(1.2) and (1.3) (denoted as NP model) are estimated non-parametrically by the local con-

stant kernel estimator.2 I adopt the commonly used Gaussian kernel in this paper, whose

bandwidth is selected via least square cross validation (Stone, 1984).

To directly compare the impact of non-linearity, the unrestricted excess return regression

model3 in Cochrane and Piazzesi (2005) (CP hereafter)

rx
(n)
t+1 = f̃

′
tβn + u

(n)
t+1, where f̃t ≡

[
1 f

′
t

]>
. (1.4)

serves as the benchmark. The vector βn in (1.4) is estimated using OLS.

II.3 Test joint significance of predictors

Unlike linear regression models, a non-parametric model does not have a specific functional

form for its conditional mean. Moreover, the slope coefficient for an independent variable

under the non-parametric setting is defined point-wisely over the domain of that variable.

For a typical empirical exercise, the estimates will no longer yield a constant.

2Briefly described in Appendix 1.A. Readers can refer to Li and Racine (2006) for details.
3Denoted as linear model, or LM.
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Following Racine (1997), I construct the test statistic with the estimated conditional

mean and associated estimated partial derivatives. I define the non-parametric slope coef-

ficient βnj,t at the observation ft as the partial derivative of the conditional mean function

gn with respect to j-year forward rate f
(j)
t , i.e.,

βnj,t =
∂gn(ft)

∂f
(j)
t

. (1.5)

If the variable f
(j)
t does not have predictive power, equivalently we will have

βnj = 0, a.s.

The subscript t is dropped under the assumption of stationarity. Let λn be the expectation

of the sum of the squared slopes over all forward rates f (j) for the n-year excess return,

λn = E

 5∑
j=1

(
βnj
)2 . (1.6)

If all βjn’s are jointly insignificant, λn will be indistinguishable from 0. Therefore, the

following hypothesis is tested:

H0 : λn = 0

H1 : λn > 0
.

λn is estimated by its unconditional mean

λ̂n =
1

T

T∑
t=1

 5∑
j=1

(
β̂nj,t

)2

 , (1.7)

where β̂nj,t is directly estimated from (1.2).4

As noted in Rilstone (1991) and Robinson (1991, 1994), the sampling distribution of λ̂n

under the asymptotic theory produces misleading finite sample inferences. Racine (1997)

suggests using the sampling distribution constructed from the bootstrap method. The

4Readers can refer to the references in Racine (1997) for technical details.
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algorithm in Racine (1997) is designed for the i.i.d data. Using the block bootstrap method

introduced in Künsch (1989), I modify Racine’s original algorithm to take into account

the serial dependence features in the data. Details of the algorithm are presented in the

Appendix 1.B.

III Excess return forecasts

One-year holding period excess returns are constructed from the monthly Fama-Bliss bond

prices data set available at the Center for Research in Securities Prices (CRSP). All prices

refer to zero-coupon U.S. Treasury bond prices. For bonds with maturities greater than one

year, the Fama-Bliss prices are interpolated from yields on coupon bonds. One- through

five-year prices are used in this paper. 1964/01-2003/12 is chosen as the in-sample period,

the same as in CP.

III.1 In-sample analysis: current forward rates only

Fitted bond excess returns are plotted along with the realized excess returns (solid blue lines)

in Figure 1.1. Results for bonds with different maturities are displayed in four subplots.

The estimated ĝn of the EMH model (1.2) and f̃ ′tβ̂n of the model (1.4) are used as the NP5

(red dashed line) and linear fitting (black dotted-dashed line) respectively in each subplot.

[Figure 1.1 about here.]

Consistent with results documented in CP and many other researches, both models show

that a portion of variation in bond excess return can be explained by the current forward

rates. However, results also show that the linear model performs poorly when the volatility

in excess return is high. For example, when the excess returns fluctuate dramatically, as

they did during the periods of the energy crisis in the 1970s, high inflation in the 1980s,

and after the burst of the dot-com bubble around 2000, the linear model fails to generate

5I do not report the estimation of (1.3) because it produces almost identical fitting results as ĝn.
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excess return dynamics with correct direction and magnitude. Figure (1.2) explains why

the NP model outperforms the linear model. The slope coefficient β
(n)
j,t is estimated point-

wisely over the domain of each independent variable f
(j)
t and plotted in different panels in

Figure (1.2) for all bonds. The estimation shows a clear heterogeneous pattern for almost all

forward rates over their domain. The shape of the slope curves are similar across different

maturities, differing only with respect to some maturity dependent constants. For example,

the slope of the one-year yield (y
(1)
t , the first element in ft) exhibits a clear mean-reversion

pattern for all excess returns, which is consistent with findings in Aı̈t-Sahalia (1996a,b) and

Stanton (1997). The slope estimates also show an interesting RS-like pattern for the two- to

five-year forward rates. For example the estimation suggests there are at least three regimes

in the three-year forward rates: 2-5%, 8.5-11% and 12-15%, which exceeds what is usually

used in the RS literature. The step-like patterns suggest a constant slope estimation within

each regime and different levels across regimes.

[Figure 1.2 about here.]

I plot the time series of forward rates in Figure 1.3. Interestingly, regimes where the

linear model creates a poor fit correspond to extreme forward rate values: the forward rates

reached the maximum and stayed in the range between 10-15% during the high inflation era

in the 1980s; almost all forward rates plummeted and stayed in the regime between 2-4%

in the post-NASDAQ collapse period.

[Figure 1.3 about here.]

The goodness-of-fit is measured in R2 for both models and reported in Table 1.1. By

allowing slope heterogeneity, the range of R2’s of the NP model falls between 0.89 and 0.91,

which is well above the results reported in CP.6 In column three to five of Table 1.1, I report

the p-values of the test on the joint significance of all current forward rates as proposed

6In CP, the R2’s of the unrestricted model (as in (1.4)), which only contains the current forward rates,
range between 32% to 37%.
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in Section II.3. Under the null hypothesis that excess returns are not predictable, the one

year excess return will have an MA(12) structure. Correspondingly I keep 12 lags in the

bootstrap exercise. I also set the block length to be 6 and 18 in the bootstrap to examine the

robustness of the finding. All p-values are calculated based on 199 bootstrap replications.

Results indicate the null hypothesis of no predictability is overwhelmingly rejected at the

5% level for all maturities and block lengths.

[Table 1.1 about here.]

III.2 In-sample analysis: with lagged variables

CP also examine a model with the lagged forward rates,

rx
(n)
t+1 = bnγ

>
[
α0ft + α1ft− 1

12
+ · · ·+ αp−1ft− p

12

]
+ ε

(n)
t+1

. (1.8)

Once three additional lags are included as regressors, the adjusted R2 increases from 35%

to 44%, suggesting the improvement in the marginal predictive power is economically sig-

nificant. Estimations also show both γ>and α> are statistically significant. Their finding

shows current prices do not contain all information that is useful in predicting future excess

returns under the linear setting. As pointed out in the previous section, the improvement in

excess return predictability hints at a rich information structure that is largely omitted in

the current forward rates cross section under the linear setting. In other words, information

is not fully revealed if a linear model is assumed. Once we allow for slope heterogeneity,

we may no longer be able to conclude that lagged forward rates help predict future excess

returns.

I complete the in-sample exercise by inspecting estimations from (1.3). The in-sample

R2’s of the NP estimation ĥn are reported in column 6 of Table 1.1. The average R2 in-

creases from 89% to 93% once the lagged forward rates are included, indicating an econom-

ically small improvement in excess return predictability. The joint significance of lagged

forward rates are tested by examining the hypothesis H0 : λn,L = 0, where λn,L is de-
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fined as the expectation of the sum of squared slope coefficients on lagged forward rates:

λn,L = E

[∑5
j=1

(
βn
j,t− 1

12

)2
]
. P -values are calculated based on the empirical distribution

constructed under the algorithm similar to that which is proposed in Appendix 1.B. I set

the block length to be 12 in the bootstrap, and the results are shown in the column 7. Inter-

estingly, all p-values are greater than 20%, which makes the null hypothesis of no predictive

power far from being rejected at the 5% level for all n. Based on this finding, I focus on

the model with only the current forward rates for the remainder of this article.

III.3 Summary and implications

I emphasize two aspects of the in-sample findings. First, by taking into account the non-

linear effect, a large predictable portion of variation in bond excess returns is discovered

in-sample. By comparing the results from the NP model with the linear model, I show this

predictability is directly linked to the slope heterogeneity in the NP model. Second, theory

tells us that lagged prices Pt−1 are time-(t-1 ) conditional expectation of future stochastic

discount factors (SDF) M ,

P
(n)
t−1 = Et−1(Mt+n−1),

so it is awkward to include them in the time-t state vector to form expectations on future

excess return. In contrast to the findings in CP (in which the authors show that lagged

forward rates have additional predictive power in future excess returns), I show empirically

that the information contained in lagged forward rates has already embedded non-linearly

in the current bond prices. The results of lagged regression in this paper are consistent with

requirements imposed by a reasonable SDF.

IV Out-of-sample prediction

Readers may worry about the possibility of in-sample over-fitting as the NP model produces

suspiciously large R2’s. Clark and McCracken (2013) underscore the importance of pseudo

out-of-sample forecasts in over-fitting detection and model evaluation. If the high R2 in
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the NP model does relate to information that provides additional predictability, as one can

imagine, the NP model will generate more accurate out-of-sample forecasts. In this section,

I evaluate and compare the out-of-sample forecasts generated by different models.

The out-of-sample performance of three models are evaluated and compared. In addition

to the NP (1.2) and linear models (1.4) discussed in the previous sections, I also examine

the model that assumes yields follow a simple random walk (denoted as RW hereafter), in

which

y
(n)
t+1 = y

(n)
t + vt+1, vt+1 ∼ i.i.d. N(0, σ2).

Under the RW model, the time-t expectation of t+1 yield is the time-t observation itself,

i.e.,

ŷ
(n)
t+1 = y

(n)
t . (1.9)

Substituting (1.9) into the conditional expectation of (1.1), the expected excess return

implied by the RW model is written

r̂x
(n)
t+1 = n(y

(n)
t − y(n−1)

t ) + y
(n−1)
t − y(1)

t , n = 2, 3, 4, 5. (1.10)

The RW model for the yield dynamics is a simple benchmark widely used in the litera-

ture. Duffee (2002) finds that the yields generated by the “complete affine” term structure

model proposed in Dai and Singleton (2000) could not beat the random walk benchmark.

Moreover, Duffee (2011a) extends the out-of-sample periods in Duffee (2002) and Diebold

and Li (2006) and concludes both models fail to beat the random walk forecasts. The RW

model is interesting also because it only uses information from the last period. The NP,

linear and RW model essentially correspond to whole sample with different weights, whole

sample with the same weight and latest observation only cases, respectively.

All models are estimated recursively, with the initial estimation using the in-sample

data between 1964/01 and 2003/12 (observations from 1965/01 to 2003/12 for the de-

pendent variable and 1964/01 to 2002/12 for independent variables). The forecast excess

returns for 2004/01 are calculated from the estimated model and forward rates observed in
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2003/01. Models are then re-estimated using data from 1964/01 to 2004/01 (observations

from 1965/01 to 2004/01 for the dependent variable and 1964/01 to 2003/01 for indepen-

dent variables) and forecasts are computed for 2004/02 and so on. The out-of-sample period

covers the time frame between 2004/01 and 2010/12.

[Figure 1.4 about here.]

Figure 1.4 plots the forecasts from all three models along with the realized excess returns

over the out-of-sample period. In this 7-year out-of-sample period, 2007/12/01-2009/06/01

is designated as a recession by the National Bureau of Economic Research (NBER). Realized

excess returns follow a downward trend from 2004 to the beginning of 2007 but suddenly

jumps to a peak in less than six months and generally remains at a relatively high level

during the recession.

The forecasts from the RW model fail to match either the magnitude or dynamics of

excess returns in this period. Although showing a gradual decline, the RW model con-

sistently produces exaggerated forecasts in the pre-recession period; on the other hand, it

consistently underestimates bond excess returns during the great recession in 2008. It is

because the RW forecasts from (1.10) only use the time-t yield spreads to forecast excess

returns one year later, which will cause severe problem if a policy shock hits the economy

and structure breaks occur afterwards. In November 2008, the US Federal Reserve launched

the first round of Quantitative Easing (QE). They accelerated the pace of asset purchasing

in the second half of 2009. As a result, excess returns plunged with yields of long term

bond. For example, the estimated 5-year excess return in October 2009, which is com-

puted from the yield spreads observed in October 2008, before the QE started, blows out

in the opposite direction. The forecasts from the linear model do not look promising either,

especially in the post 2007 period. By assuming a constant slope for each independent vari-

able, the linear model implicitly assumes an identical marginal effect for changes in forward

rates in boom and recession periods. Essentially only the average effect (across potential

structure changes) of an independent variable is retained under the linear setting, which



23

conflicts with the empirical findings documented in Gray (1996) and Dai, Singleton, and

Yang (2007), among others. As indirect evidence, linear forecasts in Figure 1.4 do indicate

that the volatility in excess returns is underestimated. The NP model produces the most

accurate forecasts among the three models, particularly in the post QE period, where the

other two models fail. The discussion above indicates it is crucial to assume heterogeneous

slopes, especially under the case of potential structure breaks.

To quantitatively evaluate models’ performance, I adopt Diebold and Mariano (1995)(DM)

test7 to compare different models’ mean squared predictive errors (MSPE). Table 1.2 presents

results from the out-of-sample test. Under the columns labeled “MSPE”, I report the

MSPE’s of the three models. The linear and RW model produce MSPE’s of about the same

magnitude, which on average is more than twice as large as that of the NP model. I use

the DM test statistic to evaluate whether the difference in MSPE’s from different models is

statistically significant. P -values of the test are reported in the last two columns of Table

1.2. For both LM vs. NP and RW vs. NP cases, the null hypothesis of equal MSPE’s is

immediately rejected for all excess returns, which supports the qualitatively finding that

the NP model produces more accurate forecasts.

[Table 1.2 about here.]

V Concluding remarks

This paper contributes to the literature by showing that the non-linearity in the yield

curve, which is introduced by allowing heterogeneous slopes defined on different parts of the

forward rates domain, plays an important role in bond excess return forecastability. Both

the in- and out-of-sample results show that the constant-slope setting essentially takes into

consideration only the average marginal effect of an independent variable, which will result

in the failure of matching excess returns in the high volatility period.

This paper offers two major contributions to the literature. First, a greater portion of

7Readers can refer to Appendix 1.C for details about the test.
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predictable variation in excess returns are discovered when the non-linearity in the current

bond term structure is incorporated. In contrast to the existing literature, I also show

that lagged prices do not contribute to return predictability under the NP setting. Second,

the out-of-sample results mitigate the concern of in-sample overfitting. The NP model

does quite well in the out-of-sample period. It produces a much smaller MSPE than the

competing linear model and the simple RW benchmark. The fitted excess returns in the

post recession period also provide indirect evidence that supports non-linearities.

The analysis in this paper is still considered as incomplete in many aspects. Bond yields

are the only predictor used in this paper. Should this configuration be viewed as complete?

The EMH says yes. However, it has been widely documented that many macroeconomic

variables could provide additional predictive power. Ludvigson and Ng (2009) point out

“specifications using pure financial variables omit pertinent information about future bond

returns associated with macroeconomic fundamentals”. Similar results are found in the

hidden factor model under the affine framework. Barillas (2010) estimates two versions of

hidden factor models with the Kalman filter. One only uses the current yields as observables

while the other one uses yields and macro indicators. He finds the hidden factor contributes

little in the former while the predictive power increases dramatically after including macro

variables. An interesting extension in the future is to investigate the relation between the

information embedded in heterogeneous slopes and that in macro economic variables.
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1.A Appendix: Local constant estimator

In this paper, the non-parametric regression is implemented with the local constant kernel

estimator, which was originally proposed in Nadaraya (1964) and Watson (1964). For the

time series data, the general model being considered is

yt = g(xt) + εt+1, t = 1, 2, . . . , T,

where xt denotes n × 1 independent variables (x1t, x2t, · · · , xnt). The conditional mean

function g(·) is assumed to be smooth. Let (yt,xt) form a stationary joint distribution

f(x, y). By definition, the conditional mean

g(xt) ≡ E(yt|xt) =

ˆ
yf(y|x)dy

=

ˆ
y
f(x, y)

f(x)
dy

=
1

f(x)

ˆ
yf(x, y)dy

The unknown densities f(x) and f(x, y) are then replaced by the estimates f̂(x) and f̂(x, y)

respectively, which gives the non-parametric estimates of

ĝ(xt) =
1

f̂(x)

ˆ
yf̂(x, y)dy (1.11)

The local constant estimator calculates f̂(x) and f̂(x, y) in the following manner:

f̂(x) =
1

Th1h2 · · ·hn

T∑
t=1

K

(
x− xt
h

)
(1.12)

f̂(x, y) =
1

Th0h1h2 · · ·hn

T∑
t=1

K

(
x− xt
h

)
K

(
y − yt
h0

)
(1.13)

Substituting (1.12) and (1.13) into (1.11), the unknown conditional mean function ĝ is
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simply given by

ĝ(x) =

∑T
t=1 YtK

(
x−xt
h

)∑T
t=1K

(
x−xt
h

) ,

whereK
(
x−xt
h

)
≡
∏n
i=1 k

(
xi−xit
hi

)
. k(·) is a kernel function which gives weight to each point

on the domain of the probability density based on how far it is from actual data points. The

literature suggests that different kernel functions K(·) have very little impact on estimation

results Epanechnikov (1969). The bandwidth parameter hi is also known as the smoothing

parameter. When implementing the nonparametric estimation, one bandwidth is chosen

for each explanatory variable to minimize some loss functions. Following the literature, the

bandwidth vector h = (h1, h2, · · · , h5)> is selected via least square cross validation. Details

of least square cross validation and its properties can be found in references such as Li and

Racine (2006).

1.B Appendix: Bootstrap algorithm and decision rule

In this section, I present the detailed bootstrap procedures for jointly testing the significance

of current forward rates. The algorithm for testing the joint significance of lagged forward

rates is essentially the same, so I skip the details here. As pointed out in much of the

literature8, statistical inferences based on the pivotal method are more reliable than the

results obtained directly from the bootstrap without pivotaling. In this paper, instead of

bootstrapping λ̂n directly, a studentized statistic

t̂n =
λ̂n

s.e.(λ̂n)

is bootstrapped and calculated. A block bootstrap algorithm with fixed block length l is

designed for highly cross- and auto-correlated right-hand variables.

The resampling algorithm is developed using the restricted wild bootstrap method,

which generally follows Racine (1997). The detailed procedure is listed as follows:

8See, for example, Beran (1988), Hall (1986) and Horowitz (2001), among others.
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1. All forward rates do not have explanatory power jointly under the null hypothesis, so a

null data sample
{
rx

(n)
t+1, f

∗
t

}T
t=1

can be created by randomly shuffling right-hand variables in

blocks (size l) with replacement. Estimate the restricted conditional mean r̂x
(n)∗
t+1 = ĝn (f∗t ).

2. Generate residuals ε̂
(n)
t+1 = rx

(n)
t+1 − r̂x

(n)∗
t+1 , then recenter around them 0.

3. Divide
{
ε̂

(n)
t+1

}T
t=1

into T − l+ 1 overlapping blocks, in which the jth block covers the

residuals from period j to j + l− 1. Construct the empirical distribution function (ECDF)

Fn for these blocks by assigning an equal probability of 1
T−l+1 to each block.

4. Randomly create a bootstrap residual sample with replacement under Fn, denoted

as
{
ε̂

(n)∗
t+1

}T
t=1

.

5. For each ε̂
(n)∗
t+1 , define ε̂

(n)∗
t+1 = ε̂

(n)∗
t+1 · v, where

v =


−(
√

5− 1)/2 w/ prob.(
√

5 + 1)/2
√

5

(
√

5 + 1)/2 w/ prob.(
√

5− 1)/2
√

5

to take into account possible heteroskedasticity (Wu, 1986). Generate a null bootstrap data

sample in which the dependent variable is obtained from r̃x
(n)
t = r̂x

(n)∗
t + ε̂

(n)∗
t and the

independent variables f t are inherited from the original sample.

6. Estimate (1.2) non-parametrically for the data set
{
r̃x

(n)
t+1, ft

}T
t=1

, use (1.7) to calcu-

late λ̂n,i for the ith bootstrap data sample.

7. For each bootstrap sample, resample
(
r̃x

(n)
t+1, ft

)
by pair with the same block length

l, compute λ̂∗ based on this resample. Repeat this procedure for B1 times, to obtain a

sequence λ̂∗1, λ̂
∗
2, · · · , λ̂∗B1

. The s.e.
(
λ̂n,i

)
in step 6 is the standard error of λ̂∗1, λ̂

∗
2, · · · , λ̂∗B1

.

8. Compute the studentized statistic t̂n,i for the bootstrap data sample in step 6.

9. Repeat steps 4-8 independently B2 times and create a sequence {t̂n,i}B2
i=1, construct

the ECDF F̂ ∗n of {t̂n,i}B2
i=1.

10. Compute t̂ for the original sample and report its percentile under F̂ ∗n , the null will

be rejected if t̂ is located within the top α-percentile for a given level of significance α.
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1.C Appendix: Diebold and Mariano (D-M) test

Let εit+1|t be the t+ 1 prediction error associated with the model i at t, i.e.,

εit+1|t = rxt+1|t − r̂xit+1|t, i = NP, LM, RW.

The accuracy of model forecasts is measured by the square loss function

L(εit+1|t) =
(
εit+1|t

)2
.

The D-M test proposed in Diebold and Mariano (1995) compares two models’ expected

loss, which is the mean squared predictive error (MSPE) for the models. A model with

smaller expected loss would be considered outperform. To determine if model i predicts

better than model j, we may test the following null hypothesis

H0 : E

[(
εit+1|t

)2
]

= E

[(
εjt+1|t

)2
]

against the one-sided alternative

H1 : E

[(
εit+1|t

)2
]
< E

[(
εjt+1|t

)2
]

The D-M test is based on the loss difference dt =
(
εjt+1|t

)2
−
(
εit+1|t

)2
, noting the original

hypothesis could be rewritten as

H0 : E [d] = 0

H1 : E [d] > 0
(1.14)

Diebold and Mariano (1995) use the following test statistic

Ŝ =
d̄(

v̂ar
(
d̄
))1/2
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where

d̄ = 1
T

∑T
t=1 dt

v̂ar
(
d̄
)

= 1
T

(
γ̂0 + 2

∑T−k
k=1 γ̂k

)
, γj = cov(dt, dt−k)

.

They proved that under the null hypothesis, Ŝ will converge asymptotically in distribu-

tion to a normal random variable for a stationary process.
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Table 1.1: Summary of model’s in-sample performance

Current forward rates only With lags

n R2 6 12 18 R2 12

2 0.90 0.04 0.02 0.01 0.90 0.32

3 0.91 0.04 0.02 0.04 0.91 0.23
4 0.89 0.04 0.00 0.00 0.93 0.35

5 0.89 0.03 0.02 0.00 0.97 0.32

Note: This table provides the in-sample performance of the non-parametric model under two specifications.
Both R2 and p-values obtained from block bootstraps are reported. For the NP model only with the current
forward rates (1.2), bootstrap with block lengths of 6, 12 and 18 are considered. For the NP model includes
one-lagged forward rates (1.3), block length of 12 is used in the bootstrap. The in-sample period spans from
January 1964 to December 2003.

Table 1.2: Summary of models’ out-of-sample performance

Mean square predictive error p-value of DM test

n RW LM NP LM vs. NP RW vs. NP

2 3.78 3.09 1.36 0.00 0.00
3 9.33 11.15 4.66 0.00 0.00
4 14.26 21.62 9.18 0.00 0.01
5 28.79 32.56 13.51 0.00 0.00

Note: This table compares the out-of-sample performance of the non-parametric (NP) model (1.2), linear
model (LM) and random walk model (RW) using the Diebold and Mariano (DM) test. Column 2-4 report
the out-of-sample mean square predictive errors (MSPE) of all three models are reported for bonds with
different maturities. In column 5 and 6, we report the p-values of the hypothesis that the MSPE of NP is
equal to that of the competing model against one side alternative. The out-of-sample period spans from
January 2004 to December 2010.
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Chapter 2

Do non-linearities matter in the
yield curve?

Abstract

Do non-yield variables contain information beyond what is contained in the yield curve?

This paper answers the question using a non-linear factor extracted non-parametrically

from the yield curve. When the non-linear factor is included, non-yield factors, which are

constructed from a large panel of macro-finance data, are no longer significant in predicting

future bond excess returns both in- and out-of-sample. Moreover, my non-linear factor

generates countercyclical and business cycle frequency bond risk premia. The findings

underscore the importance of non-linearities embedded in the term structure, suggesting a

fully spanned term structure model with non-linear state factors may be capable of matching

features observed in the data.

JEL Classification: E0, E4, G0, G1.

Key words: Bond term structure, affine model, non-linearity, non-parametric methods,

time-varying risk premia.
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I Introduction

Empirical research in financial economics has uncovered significant forecastable variation in

bond excess returns since the early work conducted in Fama and Bliss (1987), Stambaugh

(1988) and Campbell and Shiller (1991). In most of the literature, factors constructed from

the cross section of bond term structure are used as predictors. For example, Litterman

and Scheinkman (1991) use principal component analysis (PCA) to construct the “level”,

“slope” and “curvature” factors, which are then used to forecast returns for holding bond

portfolios. Cochrane and Piazzesi (2005) find that a linear combination of forward rates

on average can explain 35% of future excess return variation. Therefore, a natural choice

for the state vector in the standard affine term structure model1 (ATSM) framework is to

use yields or their linear combinations. However, more recent research shows that various

measures of economic activity can provide additional predictability. Ang and Piazzesi (2003)

combine bond yields with inflation and real productivity factors in a no-arbitrage vector

autoregression (VAR) framework and find that models including macro factors can produce

more precise forecasts. Cooper and Priestley (2009) report that the output gap has strong

predictive power of bond excess returns both in- and out-of-sample. Ludvigson and Ng

(2009) apply dynamic factor analysis (DFA) to a large panel of macro-finance data and

find that factors closely related to real output and inflation can improve forecasting power

for future excess returns. They also show that non-yield factors are the key ingredient in

generating countercyclical risk premia. Fontaine and Garcia (2012) construct a liquidity

factor to measure funding conditions confronted by financial intermediaries. They find that

bond excess returns can be predicted by this factor, which suggests that liquidity risks

might be an important source of bond excess return predictability.

These findings question the assumption made in the fully spanned ATSM that the yield

curve contains all the information investors need to make future forecasts by suggesting that

certain non-yield variables help predict bond yields and excess returns. Ludvigson and Ng

(2009) and Joslin, Priebsch, and Singleton (2014), among many others, point out that the

1See for example, Duffie and Kan (1996), Dai and Singleton (2000) and Duffee (2002).
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failure of the fully spanned ATSM is due to the invertibility between the state vector and

yields. In other words, if the state vector is fully linearly spanned by the yield curve, so are

the non-yield variables. Then, as Joslin, Priebsch, and Singleton (2014) point out, a direct

implication of the fully spanned ATSM would be “macro [and other non-yield] variables are

uninformative about the expected excess returns (risk premiums) [after conditioning on the

current yield curve in a linear regression model].” Unfortunately, this statement is strongly

rejected in the empirical research cited above. To resolve this conflict, Duffee (2011) and

Joslin, Priebsch, and Singleton (2014) propose an ATSM in which part of the state vector

is not spanned by the yield curve. Duffee (2011) assumes the existence of “hidden” factors

that are undetectable from the cross section of yields but that have significant predictive

power with respect to future bond excess returns. Joslin, Priebsch, and Singleton (2014)

allow for macroeconomic risks that cannot be spanned by the yield curve. Two linear

combinations of smoothed industrial production and inflation are chosen as the unspanned

factors. They show that the unspanned factors can explain a substantial portion of the

variation in forward terms premia. Barillas (2011) investigates the optimal portfolio choice

problem when unspanned macro risks exist and shows significant utility gains for a risk

averse agent who incorporates these unspanned macro risks.

Although the results of the unspanned ATSM look promising, the potential problem

associated with this approach is that economic theory does not tell us which variables should

be used as unspanned factors. For example, Cieslak and Povala (2013) argue the source of

the unspanned risks is inflation. They construct a factor which is equal to the weighted

average of past inflation, where the weights are estimated from survey data. However, it

appears that the weights are chosen such that the dynamics of the factor follow the same

pattern as the dynamics of the yields after smoothing. Therefore, Duffee (2013) argues that

“there are good theoretical and empirical reasons to be skeptical of the evidence” and “the

robustness of these results is not yet known.” In this paper, I suggest that a term structure

model with fully spanned but non-linear state variables may also be able to resolve the

conflict. In fact, the non-linear features of yield dynamics are widely documented both
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empirically and theoretically.2 By allowing for non-linearities, invertibility between state

factors and yields generally will not exist. Therefore, in principle, it is possible that models

with fully spanned non-linear state factors are compatible with the well-known empirical

findings.

I empirically investigate this possibility with a non-linear factor extracted from the cross

section of bond yields. The factor is constructed using non-parametric (NP) techniques.3

I use this factor to simultaneously predict one-month ahead one-year excess returns for

bonds with different maturities. Compared to the linear factor in Cochrane and Piazzesi

(2005), the non-linear factor captures a greater portion of variation in bond excess returns.

Results indicate that the information embedded non-linearly in the yield curve can provide

substantial excess bond return forecastability. More importantly, the non-linear factor

predicts excess returns beyond what is documented in the existing literature.

I then examine whether non-yield factors are informative about future bond excess

returns when the non-linear factor is included. Using the same non-yield factors as in

Ludvigson and Ng (2009), I find that non-yield factors fail to provide additional predictive

power for future excess returns beyond what is already captured by the non-linear factor.

The results are robust both in- and out-of-sample, implying that the information contained

in non-yield factors is already incorporated non-linearly in the yield curve.

To answer the question of whether non-linear risks are related to macroeconomic shocks,

I construct the model implied risk premia dynamics and analyze their cyclicality. The non-

linear factor is able to generate countercyclical and business cycle frequency bond risk

premia, while the risk premia generated by the linear Cochrane and Piazzesi (2005) factor

are generally acyclical. I conclude that non-linearities in the yield curve add substantial

predictability beyond what is contained in linear bond factors. Non-yield variables are not

needed once non-linearities in the yield curve have been taken into account. Moreover, non-

2Non-linear yield dynamics are documented empirically in Gray (1996), Aı̈t-Sahalia (1996a,b) and Stanton
(1997). Theoretical approach to model non-linearities usually assumes regime switching (RS). Example
includes Ang and Bekaert (2002), Dai, Singleton, and Yang (2007) and Ang, Bekaert, and Wei (2008).

3The NP estimation is conducted by evaluating the joint density of excess returns and yield cross section,
hence non-linearities in the yield curve would be retained under the NP setting.
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linearities may relate to fundamental macroeconomic shocks, which would allow us to build

structure models with fully spanned non-linear state factors to jointly model the dynamics

of bond yields and macro variables.

The remainder of this paper is organized as follows. In section 2, I introduce the factors

used in this article and the econometric model to estimate. In section 3, I show the in- and

out-of-sample performance of the non-linear factor, followed by the potential implications of

the results on affine models. The risk premia decomposition and cyclicality pattern analysis

are conducted in section 4. Section 5 concludes.

II The factors

II.1 Factors from the yield curve

The notation used in this paper generally follows that in Cochrane and Piazzesi (2005)

(hereafter CP). The one-year bond excess return rx
(n)
t+1 for the n-year bond is defined as the

net return for simultaneously taking a long position in the n-year bond and a short position

in the one-year bond from time t to t+1,

rx
(n)
t+1 = r

(n)
t+1 − y

(1)
t .

Two factors extracted from the yield curve are used: the linear factor CP t and the

non-linear factor NP t. In CP, the authors construct the linear factor CP t by regressing the

average excess returns on current forward rates in a linear model

rxt+1 = γ0 + γ>ft + εt+1. (2.1)

where rxt+1 is the simple average of excess returns for two- to five-year bonds

rxt+1 =
1

4

5∑
n=2

rx
(n)
t+1,
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and ft represents the vector of forward rates at time t across maturities, i.e., ft = [y
(1)
t , f

(2)
t ,

· · · , f (5)
t ]>.The vector of slope coefficients

[
γ0, γ

>]> in (2.1) is estimated by OLS and CP t

is defined as the fitted value γ̂0 + γ̂>ft.

To construct the non-linear factor, I assume that there exists a stationary function gn(·)

for the n-year bond such that

rx
(n)
t+1 = gn(ft) + ε

(n)
t+1, n = 2, 3, 4, 5. (2.2)

In order to retain non-linearities in the yield curve, I do not make additional assumptions

on the format of gn(·). (2.2) is estimated non-parametrically using the local constant kernel

estimator (Nadaraya, 1964; Watson, 1964). Given the dependent variable rx
(n)
t+1 and the

independent variables ft, the local constant kernel estimator of ĝn(f) is written as

ĝn(f) =

∑T
t=1 rx

(n)
t+1 ·K

(
f−ft
h

)∑T
t=1 K

(
f−ft
h

) , (2.3)

where K
(
f−ft
h

)
≡ K

(
y(1)−y(1)t

h1

)
·
[∏5

i=2K

(
f (i)−f (i)t

hi

)]
. K(·) is called a kernel function and

assigns weight to each point based on how far it is from actual data points. The literature

suggests that different K(·) have very little impact on estimation results (Epanechnikov,

1969). In this paper, I adopt the commonly used Gaussian kernel K(x) = (2π)−
1
2 e−

1
2
x2 .

The bandwidth parameter hi is also known as the smoothing parameter. When imple-

menting the non-parametric estimation, one bandwidth is chosen for each explanatory

variable to minimize some loss functions. Following the literature, the bandwidth vector

h = (h1, h2, · · · , h5)> is selected via least square cross validation.4

By allowing for non-linearities, I essentially drop the constant-slope assumption made

in the linear model. In a non-parametric model, the slope coefficient for an independent

variable is defined as the partial derivative of the conditional mean function with respect

to that variable, which is evaluated point-wisely over its domain. In this paper, I define βnj

4Section 2.2.2 of Li and Racine (2006) provides further discussion of least square cross validation and its
properties.
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as the slope coefficient of the forward rate f (j) for the n-year bond, i.e.,

βnj =
∂gn(f)

∂f (j)
. (2.4)

Substituting gn(f) in (2.4) with (2.3), β̂nj = ∂ĝn(f)

∂f (j)
is a consistent estimator of βnj .

Estimations of (2.2) show a substantial increase in bond excess return predictability

across different maturities. On average, 90% of the variation in bond excess returns can

be explained once non-linearities are incorporated.5 The slope coefficient βnj is estimated

point-wisely over the domain of each forward rate f (j) and plotted in different panels in

Figure (1.2) for all bonds. Plots of β̂nj exhibit clear heterogeneous patterns for almost all

forward rates over their domain. More importantly, the shape of the slope curves βnj are

similar, differing only with respect to some maturity dependent constants.

Figure 1.2 motivates the following parsimonious model,

rx
(n)
t+1 = βn · g(ft) + ε

(n)
t+1. (2.5)

The same non-linear function of forward rates g(ft) forecasts excess returns at all maturities.

Different maturities differ only in loadings βn on g(ft). Model (2.5) is not identified unless

an additional restriction is introduced. I use the same restriction as in CP,

1

4

5∑
n=2

βn = 1. (2.6)

Combining (2.5) and (2.6), we have

rxt+1 = g(ft) + εt+1, (2.7)

I estimate (2.7) using the same non-parametric estimator as that which is discussed above.

The non-linear factor NP t is defined as the fitted value ĝ(ft) in (2.7).

5Detail results are available upon request.
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II.2 The non-yield factors F̂t

I use the same non-yield factors F̂t as those in Ludvigson and Ng (2009) (hereafter LN),

which are summarized from a 132-variable panel of macro-finance data using the DFA

discussed in Bai and Ng (2002, 2006). Under the information criteria developed in Bai and

Ng (2002), the first 8 principal components (PCs) form a good proxy for this panel. The

components of F̂t are then determined by assessing the predictive regression

rx
(n)
t+1 = γn + α′nF̂t + βnZt + ε

(n)
t+1. (2.8)

Combinations of these eight PCs (including the current and lagged PCs and their simple

power functions) are examined in LN. The preferred set of F̂t is the one that minimizes the

Bayesian information criterion (Stock and Watson, 2002b). Depending on the choice of Zt,

two versions of (2.8) are estimated. In the restricted model

rx
(n)
t+1 = γn + α′nF̂t + ε

(n)
t+1,

the non-yield factors F̂t are given by F̂t =
−→
F6t =

(
F̂1t, F̂

3
1t, F̂2t, F̂3t, F̂4t, F̂8t

)>
. The second

PC F̂2t, which loads heavily on variables in the categories of money, credit and the financial

sector, will lose its marginal predictive power once CP t is included in the model. LN argue

that the information contained in F̂2t is generally contained in CP t as well. As a result,

the five-factor vector
−→
F5t =

(
F̂1t, F̂

3
1t, F̂3t, F̂4t, F̂8t

)>
is used in (2.8) instead of

−→
F6t when

Zt=CP t. Since the non-linear factor NP t captures more information from the yield curve

than the linear factor CP t, following the same argument in LN, I expect F̂2t will become

insignificant when Zt=NP t. In this paper, both non-yield factors
−→
F6t and

−→
F5t are examined.

II.3 The econometric model

If the non-linear factor NP t is truly a part of the state vector, it should have unconditional

predictive power for future bond excess returns. I first examine the validity of this statement
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by testing the significance of βn’s in (2.9),

rx
(n)
t+1 = βn ·NP t + ε

(n)
t+1. (2.9)

for bonds with different maturities.

Then, I address the question of whether the information contained in the non-yield

factor F̂t overlaps with that contained in NP t. In other words, I investigate whether non-

yield factors are informative about future excess returns when conditioning on the potential

non-linear state factor NP t. Two specifications of regression (2.8) are evaluated for all n, in

which the vector F̂t denotes the six-factor vector
−→
F6t and five-factor vector

−→
F5t respectively.

The factor Zt in (2.8) is set to be NP t for both specifications, i.e.,

rx
(n)
t+1 = γn + α′nF̂t + βn ·NPt + ε

(n)
t+1. (2.10)

The results are compared with the linear benchmark in LN, where Zt=CP t.

III Empirical results

III.1 Data

The forward rates and one-year bond excess returns are constructed using the monthly

Fama-Bliss (F-B) bond prices data set obtained from the Center for Research in Securities

Prices (CRSP). The F-B data set contains zero-coupon U.S. treasury prices interpolated

from yields of coupon bonds. I use bonds maturing in one to five years to construct excess

returns rx
(n)
t+1 (n=2,3,4 and 5) between 1964/01 and 2003/12 for the in-sample period. The

large macro-finance panel, which is used to construct the non-yield factors
−→
F6t and

−→
F5t, are

provided by Stock and Watson (Stock and Watson (2002a, 2005, 2006)). It covers broad

macro-finance categories including output and income, employment and hours, orders and

housing, money, credit and prices of financial assets. For the details of the Stock and Watson

macro-finance panel, readers can refer to Ludvigson and Ng (2009), in which the complete
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list is provided in their appendix.

The in-sample analysis covers four specifications of (2.8): (a) NP t only , (b)
−→
F6t only,

(c)
−→
F6t + NP t, (d)

−→
F5t + NP t. Results are discussed in the following subsections.

III.2 In-sample analysis: NP t only

If the non-linear factor NP t is truly able to serve as a state factor, it should have uncondi-

tional predictive power of future bond excess returns, which is tested under the NP t only

specification. The multiple regressions in (2.9) are evaluated for different n. The point

estimates β̂n, heteroskedasticity and serial-correlation adjusted t-statistics, together with

the adjusted R2, are reported in rows labeled (a) in Table 2.1. The non-linear factor NP t is

quite persistent with a first order autocorrelation of 0.92; hence, I adjust the estimates of β̂n

to take into account the small sample bias in Stambaugh (1999). Following the argument

in LN, the standard errors are obtained using the Newey and West (1987) correction with

18 lags.

The estimated β̂n’s are positive for all bonds, hinting that the dynamics of NP t are

countercyclical. Figure 2.1 shows the time series plots of the 12-month moving average of

industrial productivity growth (IP growth, IP t) and the non-linear factor NP t (in panel A)

and the linear factor CP t (in panel B) over the in-sample period. Shaded areas indicate dates

designated by the National Bureau of Economic Research (NBER) as recession periods.

The correlation coefficient between IP growth and the factor is reported in the upper left

corner of each panel. The non-linear factor is negatively correlated with IP growth (with

a correlation of -0.25) while the dynamics of the linear factor are almost acyclical (the

correlation between the IP growth and CP t is just -0.09). The countercyclicality of NP t

is also directly seen in the plot. For example, the factor NP t rebounded from its low in

1981/06, which is just one month before the recession started. It continued to rise during

the whole recession period until 1982/11, when the recession officially ended. Then NP t
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decreased dramatically as the economy recovered.

[Figure 2.1 about here.]

The non-linear factor NP t is significant both statistically and economically for all bonds.

On average, 85% of the variation in bonds excess returns can be captured by this factor.

By comparison, the linear factor CP t, on average, can explain only 35% of the next year’s

excess returns. Results indicate that the factor NP t has unconditional predictive power, in

which most of the predictability comes from non-linearities in the yield curve.

III.3 In-sample analysis: non-yield factors

The specification (b) replicates what has been done in LN. On average, the non-yield factors

−→
F6t explain 22% of the variation in excess returns. Parameter estimates α̂ in (2.8) are

statistically significant at the 5% level or better. As LN conclude in their paper, the

non-yield factors
−→
F6t contain substantial information about future bond excess returns

unconditionally.

Specifications (c) and (d) investigate the extent to which the information contained in

the non-yield factors
−→
F6t and

−→
F5t are orthogonal to that incorporated in NP t, which is

essentially equivalent to examining the possibility that NP t could serve as the state factor

of a fully spanned model. As discussed in the introduction, if NP t is a plausible candidate

for the state factor, other variables that are not obtained from the yield curve (such as

non-yield factors) should be conditionally uninformative about future excess returns. Zt in

(2.8) is set as NP t for both specifications. The point estimates of each parameter (except for

the constants γ̂n), heteroskedasticity and serial correlation robust t-statistics, and adjusted

R2 are reported in the rows labeled (c) and (d) in Table 2.1. I also test and report the joint

significance of the slope coefficients αn using the χ2 statistic and its corresponding p-value,

where the standard errors are calculated after a Newy-West (18) correction.

[Table 1.1 about here.]
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Table 2.1 shows that in specifications (c) and (d), the second PC F̂2t loses its marginal

significance, as expected, in all predictive regressions both economically and statistically

when the regression (2.8) is evaluated conditionally on the non-linear factor NP t. Results

also show that the non-linear factor NP t possesses the largest marginal effect on future

bond excess returns among all factors. For instance, a 1% increment in NP t, on average,

boosts the five-year excess return by 1.56%. Meanwhile, the predictability of non-yield

factors deteriorates. The first PC F̂1t— which is strongly correlated with employment and

production (also named the “real factor” in LN)—has the largest marginal effect on future

excess returns in specification (b). However, the marginal impact of F̂1t drops more than

60% for all bonds when NP t is included as a predictor. A 1% increment in F̂1t used to

cause the five-year excess return to decline by 2.24% on average in (b), but causes only

a 0.29% decline after incorporating NP t. Moreover, the slope coefficients associated with

non-yield factors also lose their statistical significance as maturity increases. For example,

the t-statistic of F̂1t decreases from -5.13 to -3.18 (in (c)) and -3.24 (in (d)) respectively

for the two-year bond, but the same t-statistic for the five-year bond declines from -4.29 to

-1.13 (in both (c) and (d)), in which case we fail to reject the null hypothesis of no predictive

power. The same pattern can be found in other non-yield factors as well. For example,

the eighth PC F̂8t, which produces the second largest marginal effect on excess returns in

(b), loses its predictive power even for the two-year bond (point estimation falls from 0.35

to 0.04; t-statistics from 4.23 to 1.2). The results of χ2 tests reach the same conclusion.

Although the null hypothesis that non-yield factors are jointly insignificant is rejected for

the two-year bond, we fail to reject the same null hypothesis for bonds that will mature in

three to five years at the 5% level or better.

III.4 Out-of-sample results

The in-sample findings support the idea of fully spanned non-linear factors. Following

suggestions in Clark and McCracken (2013) and Duffee (2013), I examine the robustness

of in-sample results using out-of-sample forecasts. The goal of this exercise is to determine
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whether the insignificance of non-yield factors in-sample is caused by non-linearities. Two

comparisons on four models are conducted. In the first comparison, I simply follow LN by

comparing the out-of-sample performance of the model (2.8) with
−→
F5t and the linear factor

CP t (the unrestricted model) to the model with CP t and a constant (the restricted model).

Then, I replace the linear factor with the non-linear factor NP t in both models and re-

evaluate the performance in the out-of-sample period. Under this setting, the unrestricted

model will always outperform the restricted model in-sample because the unrestricted model

includes more explanatory variables. However, the out-of-sample results depend on whether

the non-linear factor truly has predictive power.

Four different out-of-sample time periods are examined: 1. 1987/01-2003/12; 2. 1987/01-

2008/12; 3. 1995/01-2003/12; 4. 1995/01-2008/12. Forecasts are conducted on a rolling

window basis. Using the first sample period as an example, the forecast results are obtained

as follows. The initial estimates are obtained from the regression over the period 1964/01

to 1986/12 (observations between 1965/01 and 1986/12 for the dependent variable; 1964/01

and 1985/12 for the independent variables). Next, I substitute the parameter estimations(
γ̂, α̂, β̂

)
into (2.8) to calculate the expected excess returns for 1987/01 using the observa-

tion on 1986/01. The parameters (γ, α, β) are then re-estimated with data from 1964/02 to

1987/01 and a forecast is computed for 1987/02, and so on. A similar procedure is applied

to the other sample periods. I use the adjusted mean squared predictive errors (MSPE-adj)

test statistic proposed in Clark and West (2007) to compare the out-of-sample MSPE of the

restricted model and the unrestricted model. The null hypothesis being tested is that the

MSPE of the unrestricted model is the same as that of the restricted model (the restricted

model encompasses the unrestricted model).

Table 2.2 shows the results of one-year excess returns for all bonds in the out-of-sample

periods. The MSPE of the unrestricted (labeled MSEu) and restricted models (labeled

MSE r), the value of the MSPE-adj test statistic and its corresponding p-value are reported

in the table. Clark and West (2007) prove that MSPE-adj approximately follows the stan-
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dard normal distribution.

[Table 1.2 about here]

At least two conclusions can be drawn from the results presented in the table. First,

the out-of-sample results support the conclusion reached by LN,6 Duffee (2011) and Joslin,

Priebsch, and Singleton (2014) that the linear factor CP t cannot be used as the state factor.

I find from the first comparative study that the MSPE from the unrestricted model (
−→
F5t +

CP t) is significantly (at the 5% level or better) smaller than that from the restricted model

(const + CP t) for all bonds in all sample periods. The out-of-sample results imply that

the non-yield factors truly provide additional information about future bond excess returns

in-sample. In fact, the results indicate that the non-yield factors are informative about

excess returns conditional on any linear function of bond prices. The second conclusion

is much more interesting. The results show that if the information in the yield curve is

summarized non-linearly (NP t is just one of the candidates), the restricted model (const

+ NP t) will encompass the unrestricted model (
−→
F5t + NP t) in the out-of-sample periods.

In the first two forecast samples, with a 22-year rolling window period, two out of eight

comparisons favor the unrestricted model under the Clark and West criterion.7 With a

30-year rolling window period, the MSE r is smaller than MSEu in all eight comparisons!

The findings suggest that conditional on the non-linear factor NP t, the non-yield factors

are uninformative about future excess returns, which supports the idea that a fully spanned

non-linear factor (such as NP t) may be able to serve as the state factor in a dynamic term

structure model (DTSM).

Another comparison can be made between the model with
−→
F5t + CP t and the model

with const + NP t. The out-of-sample MSPE of the model with linear and non-yield factors

is much larger than the MSPE of the model with the non-linear factor. I do not apply a

6Although the same predictors as in LN are used in this paper, LN’s model updates under the recursive
scheme.

7Although the unrestricted model produces smaller MSPE for the two- and three-year bonds in the
shorter out-of-sample period between 1987/01 to 2003/12, the results reverse when the out-of-sample period
extends to 2008/12.
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formal test8 to investigate whether the difference is significant, but the conclusion should

be obvious.

III.5 Implications of the findings

The results in Tables 2.1 and 1.2 indicate that a properly constructed non-linear factor

from the yield curve can produce good forecasts of excess bond returns both in- and out-of-

sample. The non-yield factors in LN provide additional predictability when the information

set only contains linear yield factors (such as CP t).

These findings reveal the failure of the commonly employed fully spanned ATSM (as we

expect), in which the state vector is a linear combination of bond yields. Under invertibility,

it follows that bond yields can serve as state factors. The model produces counterfactual

empirical results. The existing literature proposes several potential resolutions to this con-

flict, the main theme of which is to break the invertibility. Besides the unspanned ATSM

framework in Duffee (2011) and Joslin, Priebsch, and Singleton (2014), Ang, Piazzesi,

and Dong (2007) model all yields with measurement errors; Collin-Dufresne and Goldstein

(2002) assume unspanned stochastic volatility. The findings in this paper show that a fully

spanned non-linear state factor may also be able to resolve this conflict. In addition, the

results indirectly show that the excess return forecasts based on this non-linear state vari-

able (NP t) are more accurate than those generated by the the unspanned framework (
−→
F5t

+ CP t) in Joslin, Priebsch, and Singleton (2014). Although the non-linear factor in this

paper is constructed by a purely data driven method, there is hope that similar results can

be obtained from a properly modeled non-linear pricing kernel.

IV Risk premia decomposition

Excess returns are compensation for a risk averse investor to bear various risks; hence, a

natural question to ask is what is the source of the risk as related to non-linearities? The

8One can apply the Diebold and Mariano (1995) test to compare the out-of-sample performance of the
two models.
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answer to this question is crucial in both theory and policy. In much of the literature,9

the macro risks, which are associated with business cycles and general macro activities,

are modeled as the source of time varying risk premia. Therefore, for a fully spanned

DTSM with non-linear state variables to be consistent with economic theory, macro risks

should be captured by non-linear state factors. In other words, the model implied risk

premia dynamics must be consistent with the consumption decision made by a risk averse

agent. One direct implication is that the model implied risk premia dynamics should be

countercyclical, i.e., long term bonds should offer higher expected excess returns in a bad

state (when the economy is contracting), and lower expected excess returns in a good state

(when the economy is expanding). As pointed out in LN, policy makers care about the

answer because they are concerned about “the extent that fluctuations in long term yields

reflect investor expectations of future short rates vs. changing risk premia”.

To figure out whether the macro risks have been incorporated in the yield curve, I

directly examine the cyclicality of the risk premia dynamics generated by different factors.

Consider a bond that will mature in n years. The current yield y
(n)
t can be written as sum

of the average expected future short rates and yield risk premium κ(n)
t , i.e.,

y
(n)
t =

1

n
Et

(
y

(1)
t + y

(1)
t+1 + · · ·+ y

(1)
t+n−1

)
︸ ︷︷ ︸

average expected future short rates

+ κ(n)
t︸︷︷︸

yield risk premium

. (2.11)

where κ(n)
t is the average expected future return risk premia of declining maturity:

κ(n)
t =

1

n
Et

[
rx

(n)
t+1 + rx

(n−1)
t+2 + · · ·+ rx

(2)
t+n−1

]
. (2.12)

The expectations in (2.12) are obtained based on the information set at time t. To form

the multi-step ahead forecast of return risk premia, I follow LN by adopting the VAR(12)

9For example, Campbell and Cochrane (1999) introduce a slow-moving habit term to the investor’s utility
function. In this model, the equity risk premium varies with the difference between consumption and the
habit term. Shocks to aggregate consumption will produce countercyclical risk premia, i.e., the risk premia
increase in an economic down turn and vice versa. Wachter (2006) extends Campbell and Cochrane’s work
and show that similar countercyclical dynamics can also be found in bond risk premia.
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model on monthly bond excess returns.

Zt+ 1
12

= c+ Φ1Zt + Φ2Zt− 1
12

+ · · ·+ Φ12Zt− 11
12

+ εt+ 1
12
. (2.13)

The role non-linearities play in risk premia dynamics is examined by three Zt specifications.

All specifications include the current excess returns rx
(n)
t as the common components. Dif-

ferences are attributed to the choice of bond yield factors and whether the non-yield factors

are included. The configurations of Zt are listed as follows:

Z1t =
[
rx

(2)
t , rx

(3)
t , rx

(4)
t , rx

(5)
t ,CP t

]>
, (5× 1)

Z2t =
[
rx

(2)
t , rx

(3)
t , rx

(4)
t , rx

(5)
t ,CP t,

−→
F5t

]>
, (10× 1)

Z3t =
[
rx

(2)
t , rx

(3)
t , rx

(4)
t , rx

(5)
t ,NP t

]>
. (5× 1)

The differences in risk premia dynamics are caused by the unique components in Zt, which

are the linear factor CP t, the linear factor CP t and the non-yield factors
−→
F5t, and the

nonlinear factor NP t, respectively.
(
ĉ, Φ̂1, Φ̂2, · · · , Φ̂12

)
is estimated from (2.13) via OLS.

Under the VAR setting, multi-step ahead forecasts can be obtained by iterating the one-

step ahead forecasts. Hence, I re-define the variables in Zt as their deviations from the

unconditional mean µ̂,

Z̃t = Zt − µ̂,

where µ̂ = (I − Φ̂1 − Φ̂2 − · · · − Φ̂12)−1ĉ. I can then write the one-step ahead forecasts

EtZ̃t+ 1
12

as

EtZ̃t+ 1
12

=

11∑
i=0

Φ̂i+1Z̃t− i
12

(2.14)

Defining the stack vector ξt =
[
Z̃t, Z̃t− 1

12
, · · · , Z̃t− 11

12

]>
, (2.14) can be rewritten as

Etξt+ 1
12

=Aξt,
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where

A =



Φ̂1 Φ̂2 Φ̂3 · · · Φ̂11 Φ̂12

I 0 0 · · · 0 0

0 I 0 · · · 0 0

0 0 I · · · 0 0

0 0 0 · · · I 0


.

Hence, the h-step ahead forecasting is simply

Etξt+ h
12

= Ahξt.

Defining the vector ei such that ei
′ξt picks out the ith element of ξt, the h

12 -year return risk

premia of the n-year bond Etrx
(n)

t+ h
12

= e′n−1A
hξt.

The cyclical properties of the yield risk premia κ(n)
t and the return risk premia Etrx

(n−i)
t+i+1

from different VAR vectors are illustrated in Figures 2.2 to 2.4. Figure 2.2 plots the time

series of the 12-month moving average of the model implied return risk premia for the five-

year bond, Etrx
(5)
t+1, along with the 12-month moving average of the IP growth in three

panels. Results under specifications Z1t, Z2t and Z3t are displayed in panels A, B and C,

respectively. At first glance, all specifications successfully generate business cycle frequency

risk premia dynamics. However, if we take a closer look at the correlation between the return

risk premia and the IP growth (correlation -0.09), results indicate that the risk premia in Z1t

specification are almost acyclical. If the non-yield factors
−→
F5t are also included in the VAR

vector, as LN suggest (corresponding to Z2t), the return risk premia dynamics will show

stronger countercyclical patterns with a correlation of -0.16. Interestingly, the model implied

return risk premia from Z3t exhibit much stronger countercyclical patterns (correlation -

0.23). Results also show that the return risk premia from the non-linear factor (Z3t) are

largest in magnitude and volatility. Panel A of Figure 2.4 plots the time series of 12-month

moving average of return risk premia for all three Zt. The mean/standard deviation of the

expected return risk premia per annum are 1.03%/4.86%, 1.08%/4.94% and 1.13%/5.77%

for the linear, linear and macro, and non-linear factor models, respectively. Although these
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numbers appear almost the same in magnitude, the figure shows that a major difference

happens during the recession period. For example, during the 2002 recession, the figure

shows that the maximum difference between the specifications Z3t/Z1t (Z3t/Z2t) was 6.29%

(4.77%) per annum, which is about five (four) times greater than the mean value.

[Figure 2.2 about here.]

[Figure 2.4 about here.]

Similar patterns can be found in the estimated yield risk premia. Figure 2.3 shows the

time series plots of the 12-month moving average of the model implied κ(5)
t for the five-year

bond, together with the IP growth. When I only use the linear factor to estimate (2.13),

the yield risk premia κ(5)
t is almost acyclical (panel A, correlation -0.03). The dynamics

generated by the non-yield factors (panel B, correlation -0.38) and the non-linear factor

(panel C, correlation -0.22) show stronger countercyclical patterns. Properties of the mean

and standard deviation of the expected yield risk premia are similar to those of the expected

return risk premia. The time series of κ(5)
t from different models are displayed in panel B

of Figure 2.4. By incorporating non-linearities, the mean yield risk premia increases from

0.7% per annum (produced by Z1t) to 0.74% per annum (produced by Z3t). The standard

deviations for the three specifications are 1.06%, 1.14% and 1.21% respectively.

[Figure 2.12 about here.]

All figures share at least two common aspects. First, with all specifications of Zt,

the model implied risk premia generally increase during the recession period and decline

during recovery. However, the linear factor constructed from the yield curve fails to generate

noticeable countercyclical dynamics for the risk premia, which is inconsistent with economic

theories. Second, in contrast to LN, introducing non-yield factors is not the only way to

resolve the conflict. By including the non-linear factor, which only uses the information
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embedded in the yield curve, risk premia dynamics also exhibits strong countercyclicality.

Moreover, the risk premia produced by the non-linear factor is much larger than those from

other specifications in the recession period.

The results show that fully spanned DTSMs with non-linear state variables may be able

to generate risk premia compatible with economic theories, which provides indirect evidence

about the source of the risks associated with the non-linear factor. As opposed to the linear

channel assumption in standard macro finance models (Ang and Piazzesi, 2003), results

in this paper suggest that bond prices may be affected by fundamental shocks through a

non-linear channel. The impact of the non-linear channel on macro finance models are

generally unknown and model dependent. How to incorporate such a channel into macro

finance models to match features observed in the data remains an open question, which can

lead to potentially interesting theoretical research in the future.

V Concluding remarks

In the standard fully spanned ATSM, when conditioning on factors constructed from yields,

non-yield variables should not have predictive power on future bond excess returns. How-

ever, a conflict arises as the data shows the opposite. In the existing literature, researchers

seek to resolve the conflict by amending the model to include non-yield variables as the un-

spanned factors. I provide empirical evidence that questions the necessity of this approach.

This paper contributes to the literature by showing that this conflict can be resolved by

allowing for fully spanned but non-linear state variables. To show this, I construct a non-

linear factor from the yield curve non-parametrically and use it to simultaneously predict

bond excess returns.

The following aspects of this paper can be emphasized. First, I show that information

contained in the non-yield factors is also contained in this non-linear factor. When condi-

tioning on the non-linear factor, non-yield factors that used to be informative about future

bond excess returns in the fully spanned ATSM no longer provide extra predictive power.

Second, results suggest that fully spanned DTSMs with non-linear state variables may be
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able to bypass the difficulties we have in standard ATSMs. The dynamics of estimated risk

premia show that the non-linear factor successfully produces business cycle frequency and

countercyclical risk premia, indicating that non-linear risks may originate from fundamental

macroeconomic shocks.

The main goal of this paper is to discuss the potential of the non-linear mechanism.

The non-parametric regression method used in this paper is not the only way to introduce

non-linearities. The research question remains open on how to incorporate the non-linear

feature into a structure model, as it can provide a deeper understanding of the macro

economy. Christensen, Diebold, and Rudebusch (2011) extend the dynamic Nelson and

Siegel (1987) model in Diebold and Li (2006) by introducing the no-arbitrage restriction;

Feldhütter, Heyerdahl-Larson, and Illditsch (2013) assume explicit non-linear dynamics in

the stochastic discount factor. Both models generate promising forecasting results on bond

yields, but the extent to which we can rule out the non-yield factors in their models is

still unknown. Interesting extensions also include jointly predicting stock and bond returns

Koijen, Lustig, and Nieuwerburgh (2014) and optimal portfolio choice Sangvinatsos and

Wachter (2005); Barillas (2011), which I leave for future investigation.
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Table 2.1: Regression of bond excess returns on lagged factors.

Model : rx
(n)
t+1 = γ + α′F̂t + βNP t + εt+1.

F̂1t F̂ 3
1t F̂2t F̂3t F̂4t F̂8t NP t R̄2 χ2

rx
(2)
t+1

(a)
0.50

0.82
(28.66)

(b)
-0.93 0.06 -0.38 0.19 -0.33 0.35

0.25
(-5.13) (2.75) (-2.96) (2.42) (-2.95) (4.23)

(c)
-0.34 0.01 0.07 0.14 -0.13 0.04 0.47

0.86
40.24

(-3.18) (2.06) (1.75) (4.85) (-3.03) (1.20) (27.37) (0)

(d)
-0.35 0.01 0.14 -0.13 0.05 0.46

0.86
29.60

(-3.24) (2.14) (5.10) (-3.25) (1.30) (28.74) (0)

rx
(3)
t+1

(a)
0.93

0.87
(38.26)

(b)
-1.57 0.11 -0.80 0.21 -0.53 0.63

0.23
(-4.91) (2.98) (-3.20) (1.54) (-2.51) (4.28)

(c)
-0.45 0.02 0.05 0.12 -0.14 0.06 0.89

0.89
10.38

(-2.68) (1.94) (0.85) (2.41) (-2.05) (1.04) (38.05) (0.11)

(d)
-0.46 0.02 0.12 -0.14 0.06 0.89

0.89
10.18

(-2.72) (2.02) (2.50) (-2.13) (1.10) (43.60) (0.07)

rx
(4)
t+1

(a)
1.30

0.89
(40.69)

(b)
-2.02 0.15 -1.19 0.22 -0.62 0.94

0.22
(-4.71) (3.05) (-3.24) (1.09) (-2.02) (4.27)

(c)
-0.44 0.02 0.01 0.09 -0.07 0.12 1.26

0.90
7.39

(-2.08) (1.77) (0.14) (1.39) (-0.83) (1.77) (37.72) (0.29)

(d)
-0.44 0.02 0.09 -0.07 0.12 1.26

0.90
7.08

(-2.09) (1.78) (1.40) (-0.83) (1.82) (41.86) (0.21)

rx
(5)
t+1

(a)
1.57

0.89
(42.59)

(b)
-2.24 0.18 -1.50 0.23 -0.77 1.12

0.20
(-4.29) (2.90) (-3.33) (0.92) (-2.04) (4.27)

(c)
-0.29 0.02 -0.01 0.07 -0.10 0.12 1.56

0.89
3.44

(-1.13) (0.84) (-0.15) (0.87) (-0.99) (1.47) (37.36) (0.75)

(d)
-0.29 0.02 0.07 -0.10 0.12 1.56

0.89
3.43

(-1.13) (0.83) (0.86) (-0.98) (1.48) (40.81) (0.63)

Note: The table reports estimates from the OLS regressions of four specifications of (2.8). Point estimates
are reported, along with the value of t-statistics in the parentheses. As in LN, t-statistics are carried out
based on a corrected variance-covariance matrix following the Newy and West (1987) correction with 18

lags. The R
2

in the table stands for adjusted R2. For specifications (c) and (d), I also conduct a χ2 test for

the joint significance of non-yield factors
−→
F6t and

−→
F5t. The value of test statistics and p-values are reported

below (in the parentheses). Estimates of the constant γ are not reported in this table. The in-sample period
spans from January 1964 to December 2003.



61

Table 2.2: Out-of-sample predictive power of the NP factor

Forecast Sample Comparison MSEu MSEr Test Statistic p-value

rx
(2)
t+1

1987:01-2003:12

−→
F5t+CP vs. const +CP 1.58 1.78 4.09 0.000
−→
F5t+NP vs. const +NP 0.59 0.61 2.49 0.006

1987:01-2008:12

−→
F5t+CP vs. const +CP 1.67 1.78 3.45 0.000
−→
F5t+NP vs. const +NP 0.62 0.61 1.58 0.060

1995:01-2003:12

−→
F5t+CP vs. const +CP 2.07 2.12 2.13 0.020
−→
F5t+NP vs. const +NP 0.69 0.63 0.17 0.430

1995:01-2008:12

−→
F5t+CP vs. const +CP 2.17 2.11 1.85 0.030
−→
F5t+NP vs. const +NP 0.69 0.62 0.01 0.500

rx
(3)
t+1

1987:01-2003:12

−→
F5t+CP vs. const +CP 6.11 6.78 4.17 0.000
−→
F5t+NP vs. const +NP 1.88 1.91 1.74 0.040

1987:01-2008:12

−→
F5t+CP vs. const +CP 6.13 6.48 3.53 0.000
−→
F5t+NP vs. const +NP 1.91 1.85 0.57 0.280

1995:01-2003:12

−→
F5t+CP vs. const +CP 7.75 8.27 2.58 0.005
−→
F5t+NP vs. const +NP 2.21 2.14 0.48 0.320

1995:01-2008:12
−→
F5t+CP vs. const +CP 8.04 8.16 2.30 0.011
−→
F5t+NP vs. const +NP 2.15 2.01 0.21 0.420

Notes: The table reports out-of-sample forecast comparisons of n-year excess bond returns rx
(n)
t+1.

−→
F5t is

defined as the vector of PCs of the macro-finance panel
(
F̂1t, F̂

3
1t, F̂2t, F̂3t, F̂4t, F̂8t

)>
. “
−→
F5t + CP” refers to

(2.8) with the specification that F̂t =
−→
F5t and Zt = CP t. “

−→
F5t + NP” refers to (2.8) with the specification

that F̂t =
−→
F5t and Zt = NP t. “const + CP” and “const + NP” denote two restricted specifications of (2.8)

with α = 0. In each row, an unrestricted model is compared with a restricted model. The corresponding
MSE (labeled “MSEu” and “MSE r” respectively) are used to test whether the restricted model encompasses
the unrestricted model. The test statistic reports f = MSE r − (MSEu − adj.) as in Clark and West (2007),
the p-value is calculated under the standard normal curve and reported in the last column.



62

Table 2.2: (Cont’d) Out-of-sample predictive power of the NP factor

Forecast Sample Comparison MSEu MSEr Test Statistic p-value

rx
(4)
t+1

1987:01-2003:12

−→
F5t+CP vs. const +CP 11.73 12.89 4.19 0.000
−→
F5t+NP vs. const +NP 3.55 3.56 1.02 0.150

1987:01-2008:12

−→
F5t+CP vs. const +CP 11.38 12.05 3.66 0.000
−→
F5t+NP vs. const +NP 3.45 3.33 -0.14 0.560

1995:01-2003:12

−→
F5t+CP vs. const +CP 14.15 15.13 2.68 0.004
−→
F5t+NP vs. const +NP 4.02 3.94 0.32 0.380

1995:01-2008:12

−→
F5t+CP vs. const +CP 14.92 15.34 2.47 0.007
−→
F5t+NP vs. const +NP 3.74 3.61 0.04 0.490

rx
(5)
t+1

1987:01-2003:12

−→
F5t+CP vs. const +CP 18.11 19.56 4.02 0.000
−→
F5t+NP vs. const +NP 5.61 5.56 0.25 0.400

1987:01-2008:12

−→
F5t+CP vs. const +CP 16.83 17.76 3.72 0.000
−→
F5t+NP vs. const +NP 5.14 4.97 -0.63 0.740

1995:01-2003:12

−→
F5t+CP vs. const +CP 21.91 23.37 2.63 0.004
−→
F5t+NP vs. const +NP 6.84 6.82 0.54 0.290

1995:01-2008:12
−→
F5t+CP vs. const +CP 22.43 23.17 2.52 0.006
−→
F5t+NP vs. const +NP 5.79 5.71 0.33 0.370

Notes: The table reports out-of-sample forecast comparisons of n-year excess bond returns rx
(n)
t+1.

−→
F5t is

defined as the vector of PCs of the macro-finance panel
(
F̂1t, F̂

3
1t, F̂2t, F̂3t, F̂4t, F̂8t

)>
. “
−→
F5t + CP” refers to

(2.8) with the specification that F̂t =
−→
F5t and Zt = CP t. “

−→
F5t + NP” refers to (2.8) with the specification

that F̂t =
−→
F5t and Zt = NP t. “const + CP” and “const + NP” denote two restricted specifications of (2.8)

with α = 0. In each row, an unrestricted model is compared with a restricted model. The corresponding
MSE (labeled “MSEu” and “MSE r” respectively) are used to test whether the restricted model encompasses
the unrestricted model. The test statistic reports f = MSE r − (MSEu − adj.) as in Clark and West (2007),
the p-value is calculated under the standard normal curve and reported in the last column.
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Figure 2.1: Time series plot of the 12-lagged moving average of CP and NP factor vs. IP
growth.

A: CP factor and IP growth.

B: NP factor and IP growth.

Note: Variables are reported under standardized units. Shadings denote periods designated as recessions
by the National Bureau of Economic Research. The correlation between variables is displayed on upper left
corner.
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Figure 2.2: Implied return risk premia constructed by different factors.
A: Return risk premium constructed from the CP factor.

B: Return risk premium constructed from the non-yield factors.

C: Return risk premium constructed from the NP factor.

Note: Variables are reported under standardized units. Shadings denote periods designated as recessions
by the National Bureau of Economic Research. The correlation between variables is displayed on upper left
corner.
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Figure 2.3: Implied yield risk premia constructed by different factors.
A: Yield risk premium constructed from the CP factor.

B: Yield risk premium constructed from the non-yield factors.

C: Yield risk premium constructed from the NP factor.

Note: Variables are reported under standardized units. Shadings denote periods designated as recessions
by the National Bureau of Economic Research. The correlation between variables is displayed on upper left
corner.
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Figure 2.4: Yield and return risk premia from different VAR estimation.

A: Fitted return risk premium from different factors.

B: Fitted yield risk premium from different factors.

Note: Variables are reported under standardized units. Shadings denote periods designated as recessions
by the National Bureau of Economic Research. The correlation between variables is displayed on upper left
corner.
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Chapter 3

A Test on Asymmetric Dependence
(Joint with Lei Jiang, Esfandiar Maasoumi, and Ke Wu)

Abstract

We provide a model-free test for asymmetric dependence between stock and market returns,

based on the Kullback-Leibler mutual information measure. Our test has greater power in

small samples than previous tests of asymmetric correlation proposed by Hong, Tu and

Zhou (2007). Empirically, we find that asymmetric comovment is a prevailing phenomenon

in most commonly used portfolios.

JEL Classification: C12, C15, C32, G12.

Key words: Asymmetric dependence, Kullback-Leibler entropy, mutual information, copu-

las, GARCH, Monte-Carlo simulation.
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I Introduction

For the individual stock returns and market return in the U.S. stock market, joint nor-

mal distribution and symmetric assumption during market upturns and downturns have

prevailed since the Capital Asset Pricing Model (CAPM) (see, e.g. Sharpe, 1964; Lintner,

1965, and many others). However, empirical evidence indicates that during market down-

turns, the cross-sectional average of three conceptually similar measures, the Betas (Ball

and Kothari, 1989, Braun, Nelson, and Sunier, 1995, and Ang, Chen, and Xing, 2006), cor-

relations (Ang and Chen, 2002 and Longin and Solnik, 2001) and covariance (Kroner and

Ng, 1998, Cho and Engle, 1999 and Conrad, Gultekin, and Kaul, 1991) are much higher

than during market upturns, especially for size portfolios (Kroner and Ng, 1998 and Con-

rad, Gultekin, and Kaul, 1991). Therefore, two important questions are still under debate:

whether the observed difference in comovement is statistically significant, and whether the

difference is a common phenomenon for the U.S. stock market. A positive answer to these

questions may call for different methods of portfolio management when the market collapses.

In order to answer the questions mentioned above, Ang and Chen (2002) first come

up with a test for asymmetric correlation and conclude that asymmetric comovements are

significant, and stocks with certain characteristics (such as small size, high book to market

ratio, and losers) have higher asymmetries than otherwise. However, more recent work by

Hong, Tu, and Zhou (2007) point out that the evidence provided by Ang and Chen (2002)

may reflect the fact that the joint densities of individual stock returns and market return

are different from normal rather than asymmetry. That is why they propose a model-free

test and conclude that asymmetric comovement in fact rarely occurs. Many commonly

used portfolios such as book to market portfolios and momentum portfolios do not exhibit

a significant difference in comovement conditional on market downturns and upturns.

In this paper, we interpret the empirical evidence in Hong, Tu, and Zhou (2007) dif-

ferently. We argue that the insignificant difference in the correlation does not necessarily

imply that the comovements, which should be more precisely measured by dependence,

are the same. The reason is based on the stylized fact documented in various empirical
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research that stock returns are not normally distributed (Embrechts, McNeil, and Strau-

mann, 2002), where the dependence between two random variables are fully captured by

the linear correlation. Therefore, we propose a model-free test for asymmetric dependence

(a direct nonlinear extension of correlation) of individual stock returns and market return

based on the Kullback-Leibler mutual information measure. The new method directly tests

the equality of the dependence of returns at a given exceedance level of the return distribu-

tion and generates greater power than Hong, Tu, and Zhou (2007) in small samples. The

empirical evidence indicates that the comovements of market return and individual stock

return are significantly higher during market downturns for many portfolios. Portfolio man-

agers must pay special attention to diversification during market downturns because of the

excessive comovements.

Ang, Chen, and Xing (2006) also notice the correlation is higher in downturns. But they

did not extend the correlation into dependence as we do to capture the nonlinear statistical

relation between stock returns and market return. Kelly and Jiang (2014) propose a time-

dynamic tail risk factor to capture the adverse effect of extremely small return on stocks.

In contrast, we consider the asymmetric dependence of individual stock returns and market

return, which also differs from Chabi-Yo, Ruenzi, and Weigert (2014), who propose a left

tail dependence measure to capture crash sensitivities.

The rest of the paper is organized as follows. Section 2 introduces the test for asymmet-

ric dependence based on the relative entropy measure. Section 3 examines the asymptotic

size and finite sample performance of the test statistic. Section 4 applies the test to in-

vestigate asymmetry dependence in common portfolios sorted by size, book-to-market and

momentum. Section 5 concludes.
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II A Relative Entropy Based Test on Asymmetric Depen-

dence

In this section, we first present an entropy based measure of exceedance dependence which

is motivated by the Kullback-Leibler mutual information measure. A test for asymmetric

dependence based on this measure is developed. The bootstrap algorithm for obtaining the

sampling distribution of the test statistic is also discussed in detail.

II.1 A relative entropy based measure of exceedance dependence

Let R1t, R2t be the returns on two portfolios in period t, and both of them are assumed to be

stationary with E(Ri) = µi, Var(Ri) = σ2
i , i = 1, 2. For any exceedance level c, we consider

how R1 and R2 co-move with each other when both of them exceed c standard deviations

away from their means, respectively. In most of the existing literature, (see, e.g. Longin and

Solnik, 2001; Ang and Chen, 2002; Hong, Tu, and Zhou, 2007, and many others), researchers

use exceedance correlation to measure the co-movements. However, sample moment-based

dependence measures such as linear correlation and co-skewness only capture dependence

up to the order of that moment. Therefore, any possible higher order dependence would

be ignored, as pointed out by Jiang, Wu, and Zhou (2014), which implies huge information

loss when the underlying distribution is not jointly normal. Meanwhile, non-normality

of financial time series is widely documented in the literature (Embrechts, McNeil, and

Straumann, 2002). Therefore, an ideal dependence measure should be able to summarize

general dependence in certain areas of a given distribution.

Originating in physics and information theory, entropy has a long history of use as

an aggregate measure of information contained in a distribution. During recent years,

Kullback-Leibler relative entropy (Kullback and Leibler, 1951) has been employed more

frequently in finance and economics research (see, for example Backus, Chernov, and Mar-

tin, 2011; Hansen, 2012; Backus, Chernov, and Zin, 2014, among others). In particular,

Kullback-Leibler relative entropy has also been used to construct a widely used mutual
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information (MI) measure that can measure the mutual dependence between two random

variables from the distributional perspective.

The MI for random variables R1 and R2 is defined as the Kullback-Leibler relative

entropy between the joint density g(R1, R2) and product of their marginals g1(R1) · g2(R2):

I(R1;R2) ≡ E(log
g(R1, R2)

g1(R1) · g2(R2)
) =

ˆ +∞

−∞

ˆ +∞

−∞
g(R1, R2) log

g(R1, R2)

g1(R1) · g2(R2)
dR1dR2.

(3.1)

Essentially, MI measures the expected difference between the log likelihood of g(R1, R2)

and g1(R1) · g2(R2). To serve as a measure for dependence, the MI measure yields the

following desirable properties. First, MI is always non-negative, i.e., I(R1;R2) ≥ 0. I = 0

if and only if R1 and R2 are independent, and it increases as the dependence between them

grows.1 Second, the measure is obtained by comparing the whole distribution g(R1, R2)

and g1(R1) · g2(R2). Hence, it captures all higher order dependencies between R1 and R2

beyond commonly employed moment-based dependence measures.

Motivated by the fact that I(R1, R2) measures the dependence between R1 and R2 in the

whole sample space R2, we propose a partial MI measure defined on subspaces to measure

variables’ exceedance dependence. For a given exceedance level c, we define left and right

tail exceedance dependence ρ−c,o and ρ+
c,o as

ρ−c,o =

ˆ µ2−cσ2

−∞

ˆ µ1−cσ1

−∞
g(R1, R2) log

g(R1, R2)

g1(R1) · g2(R2)
dR1dR2, (3.2)

ρ+
c,o =

ˆ +∞

µ2+cσ2

ˆ +∞

µ1+cσ1

g(R1, R2) log
g(R1, R2)

g1(R1) · g2(R2)
dR1dR2. (3.3)

ρ+
c,o and ρ−c,o measure the general dependence between R1 and R2 in the upper (in the

subspace (µ1 +cσ1,+∞)×(µ2 +cσ2,+∞)) and lower tail (in the subspace (−∞, µ1−cσ1)×

(−∞, µ2 − cσ2)), respectively. Testing for asymmetric dependence simply requires testing

1See, for example, Cover and Thomas (2006) pp.42 for reference.
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hypothesis

H0 : ρ+
c,o = ρ−c,o. (3.4)

Evaluating ρ+
c,o and ρ−c,o involves integration with respect to the unknown parameters µi

and σi. Following Hong, Tu, and Zhou (2007) and other finance literature, we focus on the

standardized returns X and Y with zero mean and unit variance. Similar to (3.2) and (3.3),

we define the partial MI measure for X and Y at level c by

ρ−c =

ˆ −c
−∞

ˆ −c
−∞

f(X,Y ) log
f(X,Y )

f1(X)f2(Y )
dXdY, (3.5)

ρ+
c =

ˆ +∞

c

ˆ +∞

c
f(X,Y ) log

f(X,Y )

f1(X)f2(Y )
dXdY, (3.6)

where f(X,Y ), f1(X) and f2(Y ) denote the joint and marginal densities for the standardized

returns. Although the MI measure is not invariant under general linear transformation, the

following theorem shows that invariability holds under simple standardization.

Theorem II.1. Under the assumptions made in Section II.1, the partial MI measure is

invariant under simple standardization, i.e., ∀c, ρ+
c,o = ρ+

c and ρ−c,o = ρ−c .

Proof. See Appendix.

To compare the exceedance dependence of R1 and R2 at any given level c, we can simply

test the equivalence of the partial MI measure on standardized returns X and Y,

H0 : ρ+
c = ρ−c for a given exceedance level c. (3.7)

If the null hypothesis is rejected, the dependence measure between the positive returns

of the two portfolios is different from that between their negative returns. In other words,

dependence measures are asymmetric. Hence, the alternative hypothesis is H1 : ρ+
c 6= ρ−c .
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II.2 The non-parametric estimator

Now we consider how to estimate the partial MI measure given the data. Similar to as the

MI in (3.1), ρ−c and ρ+
c also can be interpreted as expectations,

ρ−c =
´ +∞
−∞
´ +∞
−∞ f(X,Y ) log f(X,Y )

f1(X)f2(Y ) · 1(X < −c, Y < −c)dXdY

= E(log f(X,Y )
f1(X)f2(Y ) · 1(X < −c, Y < −c)),

ρ+
c =

´ +∞
−∞
´ +∞
−∞ f(X,Y ) log f(X,Y )

f1(X)f2(Y ) · 1(X > c, Y > c)dXdY

= E(log f(X,Y )
f1(X)f2(Y ) · 1(X > c, Y > c)),

where 1(·) denotes the indicator function.

ρ−c and ρ+
c can be estimated by their sample analogues. For a random sample of returns

which consists of T observations {Xt, Yt}Tt=1, let T+
c and T−c be the number of observations

in which both Xt and Yt are simultaneously larger and smaller than c, respectively. We can

express the sample exceedance dependence as

ρ̂−c =
1

T−c

T∑
t=1

log
f̂(Xt, Yt)

f̂1(Xt)f̂2(Yt)
1(Xt < −c, Yt < −c), (3.8)

ρ̂+
c =

1

T+
c

T∑
t=1

log
f̂(Xt, Yt)

f̂1(Xt)f̂2(Yt)
1(Xt > c, Yt > c), (3.9)

where the probability density functions f̂(Xt, Yt), f̂1(Xt) and f̂2(Yt) are estimated by robust

non-parametric kernel estimators as proposed in Rosenblatt (1956) and Parzen (1962).

Kernel estimation provides consistent estimators for estimating the joint density of a set

of random variables. Given a series of m-dimensional random vectors Z that consists of T

observations z1, z2, . . . , zT , the Parzen-Rosenblatt kernel density estimator of f(z) is

f̂(z) =
1

Th1h2 · · ·hm
·
T∑
t=1

K

(
zt − z
h

)
, (3.10)

where K
(
zt−z
h

)
≡
∏m
i=1 k

(
zi,t−zi
hi

)
. k(·) is a symmetric nonnegative bounded function and
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hi is the bandwidth (or smooth parameter). The density at any point z is estimated based

on its distance to the observations zt, scaled by the bandwidth h. The kernel density

estimator is a generalization of a multidimensional histogram, as rectangles are chosen for

k(·) in a histogram. Various studies (see, for example, Epanechnikov, 1969) suggest that

different kernel functions have very little impact on estimations. In this paper, we use the

popular Gaussian kernel k(z) = 1√
2π
e−z

2/2.On selecting the bandwidth, we choose to use the

likelihood cross-validation method. The method is also known as the Kullback-Leibler cross-

validation (see Li and Racine, 2006, for details), since it minimizes the Kullback-Leibler

relative entropy measure between the actual density and the estimated one. Specifically, it

solves the following maximum likelihood problem,

max
h1,h2,··· ,hm

L =
T∑
t=1

ln
[
f̂−t(z)

]
, (3.11)

where

f̂−t(z) =
1

Th1h2 · · ·hm
·
T∑
s 6=t

K

(
zt − z
h

)
, (3.12)

which is equal to f̂(z) without the t-th realization. Based on the efficient market hypothesis

(Fama, 1970), stock returns can be seen as i.i.d., or weakly dependent series, and under

such assumptions, the estimated density (3.10) converges to the actual density at a fairly

fast speed (see, e.g., Li and Racine, 2006, for technical details).

II.3 Test statistic and its sampling distribution

Let θ̂ = ρ̂+
c − ρ̂−c . (3.7) can be tested using an intuitive t-type test statistic

t̂ =
θ̂

σ̂θ
. (3.13)

Although asymptotic theory for the MI measure under the null hypothesis of independence

has been developed in previous research (see, e.g., Robinson (1991) and Hong and White

(2005)), the asymptotic distribution for the partial MI measure (ρ̂+
c and ρ̂−c , as in the
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numerator of (3.13)) when allowing for general dependence is unavailable. Moreover, while

the asymptotic normality looks appealing at first glance, various studies, including Rilstone

(1991) and Robinson (1991), report that inferences based on the asymptotic distribution are

not reliable in finite samples. Part of the reason is that the test statistic does not depend

on bandwidth asymptotically, as h vanishes when the number of observations T → ∞.

However, in finite samples, the test statistic is highly sensitive to ĥ, which varies across

different approaches for bandwidth selection. Following the suggestion of Racine (1997);

Hong and White (2005), and many others, we construct the sampling distribution for t̂

using the pivotal bootstrap resampling approach.2

Stock returns are known to be stationary and weakly dependent across time. Following

Künsch (1989), a natural choice to take into account the dependent structure would be

bootstrap resampling with overlapping blocks. Stationarity is ensured by letting the length

of each block be randomly sampled from the geometric distribution (Politis and Romano,

1994), whose mean is determined by the algorithm proposed in Politis and White (2004)

and Patton, Politis, and White (2009). We use their method because it was designed to

minimize the mean squared error of the estimated long-run variance of the time series. To

achieve asymptotic refinement (Horowitz, 2001), θ̂ in (3.13) is pivotalized by its standard

error σ̂θ, which is obtained by the nested resampling method (Hinkley and Shi, 1989; Efron

and Tibshirani, 1993). The details of the bootstrap resampling procedure are described

below.

Obtaining the test statistic t̂0 for the original data sample is straightforward. After

calculating θ̂0 for the original data sample using (3.8) and (3.9), we use the stationary

geometric bootstrap to create a sequence of B1 nested samples of the original data sample.

For each of the B1 nested samples, we calculate its sample estimates for θ̂ and form a

sequence {θ̂(i)
0 }

B1
i=1. The standard error for the original data sample is simply the sample

2General properties of the bootstrap resampling approach can be found in Efron (1982). Horowitz (2001)
provides excellent reviews of the literature.
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standard deviation of these B1 nested samples.

σ̂θ0 =
1

B1 − 1

B1∑
i=1

(
θ̂

(i)
0 − θ̂

(i)
0

)2

.

Given both θ̂0 and σ̂θ0 , t̂0 can be directly computed by (3.13).

For the sampling distribution of the t-statistic, we first generate B bootstrap samples

from the original data set using the stationary block bootstrap. For the jth bootstrap

sample, we calculate θ̂j following (3.8) and (3.9). σ̂θj is also constructed using nested block

bootstrap resampling with the same mean in the underlying geometric distribution: we

create B1 nested bootstrap samples by resampling from the given bootstrap sample and

calculate θ̂
(i)
j for each nested sample. σ̂θj is then simply computed by the sample standard

deviation of {θ̂(i)
j }

B1
i=1. Following Horowitz (2001), the t-statistic from the bootstrap samples

are adjusted for sampling bias,

t̂j =
θ̂j − θ̂0

σ̂θj
.

We then estimate the empirical distribution F for {t̂j}Bj=1 and report the percentile of

t0 under F . For a given level of significance α, the null hypothesis of symmetric dependence

will be rejected if t0 is located in the upper 1− α/2 or lower α/2 percentile.

II.4 Asymmetric Dependence vs. Asymmetry in Distribution

Jiang, Wu, and Zhou (2014) propose an entropy-based test on asymmetry of stock return

distributions, i.e., to determine whether the joint distribution of market and individual stock

returns is symmetric around its mean. Under the null hypothesis of symmetry, a rotation of

the return distribution around the mean would have no impact on its shape. In their paper,

a normalized Hellinger measure Sρ proposed by Granger, Maasoumi, and Racine (2004) is

used to measure the distance between return distributions before and after rotation. Sρ = 0

under the null hypothesis that the distribution is symmetry.

Although there are similarities shared by symmetry and symmetric dependence, the

difference between them is essentially crucial. The exceedance dependence measure in this
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paper describes the average co-movement of two random variables in subspaces of the sam-

ple space. Symmetric exceedance dependence means that two random variables on average

have the same co-movement in two tails of the distribution while symmetry in distribu-

tion requires distributions before and after rotation to be equal point-wisely. Symmetry in

distribution is sufficient but not necessary for a joint distribution to have symmetric depen-

dence. The main reason for an investor to be concerned about asymmetry in exceedance

dependence is that different co-movement behaviors in different return regimes may cause

failure of a portfolio hedge. Therefore, the exceedance dependence measure proposed in

this paper is more suitable.

III Simulation results

A valid test should possess the following asymptotic properties. First, as the sample size

increases, the probability of falsely rejecting a true null hypothesis should converge to

its nominal size. Second, the power of the test increases monotonically with the sample

size and converge to 1 when the sample size tends to infinity. In this section, we present

both asymptotic size and finite sample performance (size and power) of our test using

copula-GARCH Monte Carlo simulation. To mitigate the concern that different bandwidth

selection methods may have an impact on the final result, we also examine the robustness

of our test results with respect to different bandwidth selection approaches.

III.1 Simulation setup

Our test focuses on detecting potential asymmetries in exceedance dependence of two ran-

dom variables, thus data with different dependence structures are needed. In statistics and

risk management, dependence structure is usually modeled by copulas. Therefore, a natural

choice for our simulation is to generate random samples using parametric copulas with dif-

ferent tail behaviors. Among commonly used parametric copulas, Gaussian and Student’s t

copulas are known to have symmetric tail dependencies while Clayton and Gumbel copulas

have strong asymmetric dependence in their tails. To study the empirical size of our test, a
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copula with symmetric exceedance dependence, i.e., ρ−c = ρ+
c , is needed. In our paper, we

use Student’s t copula

Cd(u, v; ρ) = td,ρ(t
−1
d (u), t−1

d (v)),

where ρ ∈ (−1, 1) is the correlation coefficient between the marginal distributions and d is

the degree of freedom for the Student t distribution. Compared with the Gaussian copula,

the t copula has fatter tails and thus is an ideal candidate for examining the empirical size

of our test in large samples.

In order to study the power of our test, we use distribution with different levels of asym-

metric dependence. Following Hong, Tu, and Zhou (2007) and many others, the random

samples are generated using the mixture copula. Different levels of asymmetric dependence

are achieved by mixing the Gaussian copula, which has symmetric tail dependence, with

the Clayton copula, which exhibits stronger left tail dependence. The mixture Gaussian-

Clayton copula has the following specification,

Cmix(u, v; ρ, τ, κ) = κCnor(u, v; ρ) + (1− κ)Cclay(u, v; τ), κ ∈ [0, 1] (3.14)

The parameter ρ in the Gaussian copula is the correlation coefficient, and the parameter

τ governs the dependence between the marginal distributions in the Clayton copula. A

higher τ indicates stronger left tail dependence. The parameter κ represents the weight we

put on the Gaussian copula. Different levels of asymmetric dependence can be achieved by

adjusting κ. When κ = 1, equation (3.14) reduces to the Gaussian copula with symmetric

tail dependence. Asymmetries in tail dependence gradually increase as κ decreases. When

κ = 0, equation (3.14) reduces to the Clayton copula, which shows strongest asymmetric

tail dependence.

The mixture copula only determines the dependence structure between two random

variables. In order to obtain the joint density, the marginal density of each random variable

is needed. Since our ultimate goal is to investigate whether asymmetric dependence exists

between stock portfolio and market returns, marginal distributions that mimic portfolio
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return distributions are used in our simulation. As in Jiang, Wu, and Zhou (2014), the

value-weighted size 5 portfolio is selected as the benchmark. Following the finance literature,

we model the marginal distributions of stock return with a GARCH (1,1) specification with

no ARMA components.

When conducting the simulation, we first fit copula-GARCH model to the portfolio

and market returns and obtain Maximum Likelihood estimates of parameters in copula

and GARCH specification. The true data generating process (DGP) is assumed to follow

the copula-GARCH model with all parameters set as the ML estimates. For each sample

size T , 1,000 simulated random samples are generated under the same DGP, on which the

properties of our test are examined.

III.2 Asymptotic size

To examine the asymptotic size of our bootstrap test, random samples with large sample

size are needed. In the simulations, we set the sample size T to be 1,000 and 1,500, re-

spectively. Table 3.1 shows the probabilities of rejecting the null hypothesis of symmetric

dependence at the exceedance level c = 0 under the nominal sizes of 10%, 5% and 1%. The

rejecting probabilities are computed as the portion of rejection decisions made in 1,000 sim-

ulated random samples. For each random sample, the inference is based on 199 stationary

bootstraps. Since the random samples are generated by the t-copula, the null hypothesis of

symmetric exceedance depedence is correct under the true DGP. The rejecting probabilities

are thus empirical sizes. Patterns in Table 3.1 clearly suggest that our test possesses the

correct asymptotic size. As the sample size increases from 1,000 to 1,500, the empirical size

at the 10% level increases from 8.2% to 9.7%, which converges to the nominal size of 10%.

For the 5% nominal level, the empirical sizes of both samples stay at 4.4%, which are also

very close to the nominal level. Moreover, the empirical size of the 1,500 sample exactly

hits the nominal size at the 1% level.

[Insert Table 3.1 about here]
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III.3 Finite sample performance

The empirical size and power of our test in finite samples are examined for three sample

sizes T = 240, 420 and 600, which are equivalent to 20, 35 and 50 years’ monthly data,

respectively. In this paper, the empirical size and power are computed as the portion of

rejecting the null hypothesis of symmetric dependence at the exceedance level c = 0 in

1,000 simulated random samples. For each given random sample, inference is made based

on 199 stationary bootstraps. The DGPs of our simulation follow equation (3.14) where

the parameter κ governs the level of asymmetries in data exceedance dependence. In our

simulation, we consider the case that κ = 0, 0.25, 0.375, 0.5, and 1, representing five levels

of dependence asymmetries, from the highest to the lowest.

Panel A of Table 3.2 reports the empirical size and power of our asymmetric dependence

test for nominal size of 10%, 5% and 1%. For any given nominal size, when an asymmetric

dependence exists in the true DGP (which corresponds to κ = 0, 0.25, 0.375 and 0.5 in our

simulation), the empirical power of our test increases monotonically with the sample size.

When distributions show stronger asymmetric dependence (κ = 0 and 0.25), we are able

to reject the null hypothesis in all simulated samples under the nominal size of 5%. These

findings suggest that our test is consistent. Our test suffers slight size distortion in small

samples (reflected as under rejecting the null hypothesis under κ = 1). However, this is

not a problem because we already show that our test possesses correct asymptotic size, and

under rejection in the small sample is mainly due to the weak correlation embedded in the

DGP.

[Insert Panel A of Table 3.2 about here]

To investigate whether our test is able to capture the non-linear dependence that is as-

sociated with higher order moments in data, the asymmetric correlation test proposed by

Hong, Tu, and Zhou (2007) (HTZ test thereafter) is selected as the benchmark. In addi-

tion to using the sampling distribution derived from asymptotic theory, we also examine

the performance of the HTZ test when its sampling distribution is obtained by stationary



86

bootstrap resampling. The HTZ test is conducted with the same simulated random sam-

ples at the same exceedance level. Its empirical size and power are presented in Panel B of

Table 3.2. By comparing the Panel B results with the results in Panel A, several interesting

patterns are discovered. First, the HTZ test based on asymptotic distribution does not

provide reliable inferences in small samples, especially when the simulated data has very

tiny asymmetries in its dependence structure. For example, when κ = 0.5, the HTZ test

based on asymptotic distribution fails to make any rejection at the 1% nominal level even

in the sample with T = 600. Second, on average, our asymmetric dependence test is more

powerful. In the table, we report the difference in power at all nominal levels for all DGPs

in which dependence asymmetries exist. The difference in power is defined as the rejecting

probability of the asymmetric dependence test minus that of the HTZ test. Except for

very rare cases, e.g., κ = 50% with stationary bootstrap, our asymmetric dependence test

consistently beats both versions of the HTZ test. Moreover, the average power increment

becomes greater as the nominal size decreases. In the sample with T = 600 of DGP where

κ = 25%, the minimum power difference is 5.9% when the nominal size is set at 10%, but

this difference jumps to 22.4% when the nominal size is 1%. Another reason that our test is

favorable is that the power difference is most significant when the dependence asymmetries

are not very strong in the underlying DGP. When the DGP is a 37.5% Gaussian-62.5%

Clayton mixture copula, our test on average rejects 28.68% more than the HTZ test.

It is clear that our relative entropy based asymmetric dependence test performs better

than the HTZ test in finite samples, but it is more critical to realize the role of information

in the power improvement. The HTZ and other asymmetric correlation tests only use

information up to the second moment. On the other hand, by using the kernel density

estimation, our test essentially uses all information embedded in the distribution.

[Insert Panel B of Table 3.2 about here]
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III.4 Robustness of results

Although the asymmetric dependence test performs well in finite samples, robustness of all

results requires further investigation. As we discussed in section (II.3), the main reason

for not using the asymptotic distribution is that the value of our kernel based test statistic

relies on the choice of bandwidth parameters in finite sample. Hence, it is worthwhile to

investigate the impact of different bandwidths on the test. Moreover, the block length used

in the bootstrap resampling procedure does not have any meaning because the algorithm

in Patton, Politis, and White (2009) is a purely data-driven approach to minimize the

variable’s long-run variance. For stock returns, we must also examine how the test results

are affected when fixed block lengths that reflect investor’s beliefs are used in resampling.

The impact of bandwidth is determined using fixed bandwidths for all simulated random

samples in each DGP. Given a specific DGP, we first conduct non-parametric kernel density

estimation and obtain the least square cross-validated bandwidth for all 1,000 simulated

random samples. All random samples are generated under the same DGP; thus, differences

in bandwidth across simulated random samples are the results of sampling variation. In

our simulation, we fix the bandwidth parameters as the simple average of all individual

bandwidths and use this fixed bandwidth to re-conduct the test.

In Table 3.3 we report the asymptotic size of the asymmetric dependence test using the

fixed average bandwidth. Compared with the size presented in Table 3.1, where a sample

specific bandwidth used in the test, we find that the asymptotic size of the asymmetric test

shows consistent pattern as the sample size increases. As the sample size increases from

1,000 to 1,500, the empirical size increases from 8.7% to 9.2% at the 10% nominal level.

When the nominal size is set at 5% or 1% level, the test’s empirical sizes are quite close to

the nominal sizes in both samples.

[Insert Table 3.3 about here]

Table 3.4 provides the empirical size and power of the test under fixed average band-
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width. When asymmetric dependence exists in the sample (κ 6= 1), the power of test using

fixed average bandwidth consistently beats the test using individual bandwidth (as in Panel

A of Table 3.1). Moreover, the size of the test also shows a promising pattern. When the

sample size equals 600, the empirical size equals 9.6% at the 10% level. At the 5% nominal

level, the empirical size increases from 2.8% to 3.7% as the sample size increases from 240

to 600. All results indicate that changing bandwidth has almost no impact on the testing

results.

[Insert Table 3.4 about here]

To examine the robustness of the test with respect to block length, we use fixed block

lengths of 6 and 12 when conducting simulations. The block lengths are selected to reflect

6- and 12-month’s memory in monthly return data, which is enough to take care of the

weak serial correlation in stock returns. The test is re-conducted on the samples with size

600.

[Insert Table 3.5 about here]

We present the robustness check of the asymmetric dependence test with respect to fixed

block length in Table 3.5. Comparing the results of fixed block length to those obtained

using Patton, Politis, and White’s algorithm, different approaches to selecting block length

are not likely to affect the size and power of the asymmetric dependence test. For example,

when the block length is fixed at 6, the empirical size of the asymmetric test is 8.6%, 4.3%

and 0.8% for the nominal level of 10%, 5% and 1%, respectively, which is almost identical to

the results when the block length is obtained using the algorithm from Patton, Politis, and

White (8.7%, 3.7%, 0.7%). When we use a fixed block length of 6, the average difference in

testing power (for κ = 0, 0.25, 0.375 and 0.5) between two block length selection approaches

is just 0.55% at 5% nominal level. Similar results can also be found when the block length

is fixed at 12, which shows the robustness of the asymmetric dependence test with respect

to different block lengths.
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IV Asymmetric dependence in stock returns

In this section, we apply our test to equity portfolios sorted by size, book-to-market and

momentum to investigate whether asymmetric dependence is a common phenomenon in

stock returns.

IV.1 Data

Following the existing literature on asymmetric correlation, equity portfolios sorted by size,

book-to-market ratio and momentum are used in this paper. As in Ang and Chen (2002) and

Hong, Tu, and Zhou (2007), among others, we consider excess returns for value-weighted

size and book-to-market decile portfolios and equal-weighted decile momentum portfolios

which are formed based on cumulative returns from 12 to 2 months prior to formation.

The CRSP (Center for Research in Security Prices) value-weighted index return, which

includes all stocks listed in NYSE/AMEX/NASDAQ, is used as a proxy for the market

return. All returns are recorded in excess of the rate on one-month T-bill. The entire data

set is available on Kenneth French’s site. The sample is formed in monthly frequency from

January 1965 to December 2013, which includes 588 observations in total.

IV.2 Empirical results

We apply the asymmetric dependence test and the asymmetric correlation test in Hong,

Tu, and Zhou (2007) to the equity portfolios. The exceedance level is set at 0 for both

tests. P -values of the asymmetric dependence test are obtained based on 399 stationary

bootstrap resamplings and we use the asymptotic Chi-square distribution to compute the

p-values for the asymmetric correlation test. Table 3.6 provides the results on all three

sets of portfolios. The asymmetric dependence test is able to reject the null hypothesis

of symmetric dependence for the 1st to the 8th smallest size portfolios (Panel A) at the

5% level. Meanwhile, the HTZ test, which considers dependence up to the second order,

can only reject symmetry for the smallest size portfolio. This finding is quite intuitive.

Since our proxy for the market portfolio is a value-weighted index, larger firms will co-move
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more closely with the market. Therefore the asymmetries in dependence vanish as the firm

size increases. For value-weighted book-to-market portfolios (Panel B), the asymmetric

dependence test rejects symmetry for all except the first and the fourth smallest book-to-

market portfolios. Our findings are consistent with what has been documented in past

studies. For example, Ang and Chen (2002) and Jondeau (2015) report that value stocks

exhibit more asymmetric co-movement with the market. On the other hand, the HTZ test

fail to detect any asymmetry for all book-to-market portfolios. In Panel C, we present the

results for equal-weighted momentum portfolios. Both tests find significant asymmetries for

the highest (the past winner) and lowest (the past loser) momentum portfolio. In addition,

we also find a statistically significant difference in the remaining equal-weighted momentum

portfolios at the 1% level under our asymmetric dependence test. This finding suggest that

the exceedance dependence of the middle decile momentum portfolios is associated with

higher order moment beyond the second.

[Insert Table 3.6 about here]

V Conclusion

Whether individual stock return comoves with market return significantly more during

market downturns than during upturns and whether the phenomenon is prevailed enough

to be considered in asset management are questions under debate. Ang and Chen (2002)

give a positive answer, but their test concerns joint normality rather than asymmetry.

Hong, Tu, and Zhou (2007) is model-free but lacks sufficient power because it focuses on

correlation rather than dependence.

In the paper, we propose a test of asymmetric dependence between stock returns and

market return. The test is motivated by the Kullback-Leibler mutual information measure.

We find a better power in finite samples than the previous model-free test by Hong, Tu,

and Zhou (2007). The power comes from the fact that we test the difference in dependence

rather than correlation. Furthermore, dependence is a more relavant question based on the
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fact that empirically, stocks return are not normally distributed (Embrechts, McNeil, and

Straumann, 2002). Using the new measure of asymmetry, we test the portfolios sorted by

size, book to market ratio and momentum. We find that most of the time, although sym-

metric correlation cannot be rejected, those portfolios are in fact asymmetric in dependence.

Portfolio managers should pay more attention to risk-hedging when the market is down.
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3.A Appendix: Proofs

3.A.1 Proofs of Theorem II.1

Proof. We want to show that the exceedance dependence measure is invariant under simple

standardization. Without loss of generality, we will prove the equality for upper tail depen-

dence measures ρ+
c,o and ρ+

c in detail. The same proof also works for lower tail dependence

measures ρ−c,o and ρ−c .

Under simple standardization

X =
R1 − µ1

σ1
and Y =

R2 − µ2

σ2
. (3.15)

we have the following equalities hold for the marginal densities g1, g2 and f1, f2:

g1(R1) =
1

σ1
f1

(
R1 − µ1

σ1

)
=

1

σ1
f1(X),

g2(R2) =
1

σ2
f2

(
R2 − µ2

σ2

)
=

1

σ2
f2(Y ).

For the joint density g and f , we have

g(R1, R2) = f

(
R1 − µ1

σ1
,
R2 − µ2

σ2

)
· |J |,

where J is the Jacobian of the transformation, which is defined as

J =

 ∂X
∂R1

∂X
∂R2

∂Y
∂R1

∂Y
∂R2

 .

Particularly under the simple standardization (3.15),

det(J) =

∣∣∣∣∣∣∣
1
σ1

0

0 1
σ2

∣∣∣∣∣∣∣ =
1

σ1σ2
.
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Hence

ρ+
c,o =

ˆ +∞

µ2+cσ2

ˆ +∞

µ1+cσ1

g(R1, R2) log
g(R1, R2)

g1(R1)g2(R2)
dR1dR2

=

ˆ +∞

c

ˆ +∞

c
|J | · f(X,Y ) log

|J | · f(X,Y )
1

σ1σ2
· f1(X)f2(Y )

· 1

|J |
dXdY

= ρ+
c .

Similarly, we also have

ρ−c,o = ρ−c .
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Table 3.1: Asymptotic Size of the Asymmetric Dependence Test

Sample size (T) 1000 1500

Nominal size 10% 5% 1% 10% 5% 1%

Empirical size 0.082 0.044 0.009 0.097 0.044 0.01

Note:The table reports the probabilities of rejecting the null hypothesis of symmetric exceedance
dependence under different nominal sizes, which are estimated based on the statistical inferences made in
1,000 simulated random samples. The random samples are generated by t copula, which exhibits
symmetric tail dependence. For each random sample, the inferences are made based on 199 stationary
bootstrap resamplings and the exceedance level c = 0 in all scenarios.

Table 3.2: Size and Power Comparison: Asymmetric Dependence test and HTZ test.

Panel A. Asymmetric dependence test at the exceedance dependence level c=0

Weight on Normal Copula (κ %)

Sample size (T) Nominal size 100% (Size) 50% 37.50% 25% 0%

240
10% 0.080 0.277 0.658 0.893 0.972
5% 0.035 0.170 0.503 0.800 0.942
1% 0.006 0.052 0.204 0.497 0.706

420
10% 0.075 0.44 0.880 0.993 1.000
5% 0.029 0.288 0.790 0.977 0.998
1% 0.004 0.092 0.448 0.816 0.958

600
10% 0.087 0.563 0.966 1.000 1.000
5% 0.037 0.418 0.929 1.000 1.000
1% 0.007 0.173 0.702 0.964 0.996

Note: The table reports the probabilities of rejecting the null hypothesis of symmetric exceedance
dependence under different nominal sizes, which are estimated based on the statistical inferences made in
1000 simulated random samples. All random samples are generated by the mixture copula in equation
(3.14), whose degree of asymmetry in exceedance dependence is governed by the parameter κ. When κ = 1,
equation (3.14) reduces to Gaussian copula with symmetric tail dependence. In all other cases, equation
(3.14) produces distributions with asymmetric tail dependence. For each random sample, the inferences are
made based on 199 stationary bootstrap resamplings and the exceedance level c = 0 in all scenarios.
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Table 3.3: Asymptotic Size of the Asymmetric Dependence Test using Fixed Average Band-
width

Sample size (T) 1000 1500

Nominal size 10% 5% 1% 10% 5% 1%

Empirical size 0.087 0.044 0.012 0.092 0.043 0.013

Note: The table reports the probabilities of rejecting the null hypothesis of symmetric exceedance
dependence under different nominal sizes, which are estimated based on the statistical inferences made in
1,000 simulated random samples. The random samples are generated by t copula, which exhibits
symmetric tail dependence. Fixed bandwidth, which equals the average least square cross-validated
bandwidth for individual random samples, is used in the test. For each random sample, the inferences are
made based on 199 stationary bootstrap resamplings and the exceedance level c = 0 in all scenarios.

Table 3.4: Size and Power of the Asymmetric Dependence Test using Fixed Average Band-
width

Asymmetric dependence test with fixed bandwidth at the exceedance dependence level c=0

Weight on Normal Copula (κ %)

Sample size (T) Nominal size 100% (Size) 50% 37.50% 25% 0%

240
10% 0.079 0.288 0.680 0.904 0.976
5% 0.028 0.182 0.493 0.818 0.952
1% 0.007 0.054 0.212 0.510 0.704

420
10% 0.076 0.417 0.878 0.994 1.000
5% 0.033 0.299 0.780 0.980 1.000
1% 0.008 0.096 0.467 0.819 0.967

600
10% 0.096 0.571 0.967 1.000 1.000
5% 0.037 0.423 0.922 0.998 1.000
1% 0.005 0.175 0.723 0.969 0.997

Note: The table reports the probabilities of rejecting the null hypothesis of symmetric exceedance
dependence under different nominal sizes, which are estimated based on the statistical inferences made in
1000 simulated random samples. All random samples are generated by the mixture copula in equation
(3.14), whose degree of asymmetry in exceedance dependence is governed by the parameter κ. When κ = 1,
equation (3.14) reduces to Gaussian copula with symmetric tail dependence. In all other cases, equation
(3.14) produces distributions with asymmetric tail dependence. Fixed bandwidth, which equals the average
least square cross-validated bandwidth for individual random samples, is used in the test. For each random
sample, the inferences are made based on 199 stationary bootstrap resamplings and the exceedance level
c = 0 in all scenarios.
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Table 3.5: Robustness of finite sample performance with fixed block length

Asymmetric dependence test at the exceedance dependence level c=0

Weight on Normal Copula (κ %)

Block Length Nominal size 100% (Size) 50% 37.5% 25% 0%

6
10% 0.086 0.548 0.960 1.000 1.000
5% 0.043 0.413 0.914 0.998 1.000
1% 0.008 0.157 0.691 0.955 0.991

12
10% 0.077 0.559 0.962 1.000 1.000
5% 0.036 0.416 0.912 1.000 1.000
1% 0.007 0.182 0.690 0.951 0.996

Note: The table reports the probabilities of rejecting the null hypothesis of symmetric exceedance
dependence under different nominal sizes, which are estimated based on the statistical inferences made in
1000 simulated random samples of size 600. All random samples are generated by the mixture copula in
(3.14), whose degree of asymmetry in exceedance dependence is governed by the parameter κ. When κ = 1,
equation (3.14) reduces to Gaussian copula with symmetric tail dependence. In all other cases, equation
(3.14) produces distributions with asymmetric tail dependence. In stationary bootstrap resampling, fixed
block length is used. We examine the cases where the block length is equal to 6 and 12, which stands for 6-
and 12-month’s memory in stock return distribution. For each random sample, the inferences are made
based on 199 stationary bootstrap resamplings and the exceedance level c = 0 in all scenarios.
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