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Abstract

The application of degree-day models to study current and
future organism development: cautions, limitations, and

recommendations

By
Julia L Moore

Degree-day models are mathematical models that have been used extensively to
study organism development, particularly in agricultural and public health contexts.
Though simple and easy to use, model specifications and parametric uncertainty can
influence the results of such applications, often substantially. Yet, model limitations
and assumptions are often not considered in the application of degree-day models.
This thesis investigates the structural and parametric choices that must be made
when using degree-day models, and makes recommendations for how these models
can best be applied. First, degree-day model structure and assumptions are
comprehensively reviewed. In particular, linear and non-linear developmental
functional responses are compared, as are the various methods used to incorporate
temperature thresholds and to calculate daily degree-days. Next, uncertainty in two
key degree-day model parameters is explored by using a population model of
Oncomelania hupensis, the intermediate snail host of the parasite that causes
schistosomiasis in East Asia, to make predictions of future snail distributions in
Sichuan Province, China. I conclude that structural and parametric specifications
should be chosen based on the context of the organism under study and the specific
temperature patterns of the region. In addition, future predictions of organism
distribution are highly sensitive to parametric uncertainty, and thus caution should
be used when interpreting the results of degree-day model predictions under
scenarios of future climate change. I conclude that, if degree-day model limitations
are considered and model assumptions met, degree-day models can be a powerful
tool for studying temperature-dependent development.
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Introduction

Organism development is typically thought to be a progression through time.

Yet, some organisms depend not only on time, but on meeting specific temperature

requirements as well. Degree-day models are often used to describe such

development, expressing developmental progression as a composite of time and

temperature. These models are widely used in agricultural and vector-borne disease

contexts, in addition to studies of the potential impact of climate change on such

systems. Though widely used and intuitive, degree-day models are subject to

limitations and assumptions that are often disregarded. This thesis aims to

investigate such limitations and assumptions in order to provide recommendations

for situations in which degree-day models can best be applied. The thesis is broken

into two parts.

First, in Chapter 1, I review the basic framework of temperature-dependent

development models, and compare linear and non-linear developmental functional

response forms. I conduct a limited analysis looking at how the choice of different

functional responses leads to differences in the predicted time of developmental

completion, and discuss the implications of this result for the application of

degree-day models. Next, I review various methods of incorporating temperature

thresholds and estimating degree-day model parameters. I also review common

methods used to calculate daily accumulated degree-days, and perform an analysis



2

to investigate which methods are more appropriately applied given specific

temperature conditions. I conclude Chapter 1 with a discussion on the applicability

of degree-day models to study ecological and infectious disease systems, and

summarize the general limitations and assumptions that should be accounted for.

In Chapter 2, I investigate the sensitivity of degree-day models to uncertainty in

two key models parameters using a population model of Oncomelania hupensis, the

intermediate snail host of the parasite that causes schistosomiasis in East Asia.

With this model, I investigate the sensitivity of mean snail density and time of first

population peak to changes in the two model parameters, at both a single spatial

location, and across Sichuan Province, China. I conclude this chapter by stressing

the importance of interpreting results cautiously when using degree-day models to

make predictions of organism responses to climate change.

I conclude with a brief summary of the main results.
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CHAPTER 1

Modeling temperature-dependent development: structural,

parametric, and experimental issues in degree-day models

1.1. Introduction

Degree-day models are mathematical models that incorporate temperature

dependence into developmental processes. Rather than express development as a

progression through time, these models describe development as a composite of time

and temperature, measured as the cumulative sum of degree-time products, with

daily time steps resulting in units of degree-days. Degree-day models have been in

use since the 1730s (Reaumur, 1735), and were initially developed for agricultural

applications. For instance, agronomists have used these models to estimate optimal

times for fertilization and harvest given anticipated temperatures throughout the

year (Sharratt et al., 1989), and to estimate the suitability of a given region for

specific crops (Ren et al., 2007). Similarly, degree-day models have been used to

investigate the impact of specific agricultural practices that affect ambient crop

temperature (e.g. the use of plastic film mulches (Diaz-Perez, 2009)), and to predict

the timing and intensity of pest infestation, with the goal of determining the

optimal time for pesticide application (Dahlsten et al., 1994; Elliott et al., 2009;

Nahrung et al., 2008). Degree-day models are so widely used in agriculture and pest

management that many local agencies make freely available yearly estimates of
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accumulated degree-days for local crops and pests (University of California, 2011a;

University of Wisconsin, 2011; University of Illinois, 2011).

Outside of biological applications, degree-day models have been used in the

analysis of energy demands of buildings (Buyukalaca et al., 2001), with important

applications in the study of the effects of climate on the energy efficiency of various

building structures (Tzikopoulos et al., 2005) and energy demand (Christenson

et al., 2006). In addition, degree-day models have been used to study the expected

annual amount of snowmelt (Semadeni-Davies, 1997), to reconstruct historical

climates using glacial evidence (Hughes and Braithwaite, 2008), as well as in

forensic studies of decomposition (Dabbs, 2010).

One increasingly popular application of degree-day models is in the study of the

effects of climate change on populations of organisms whose distribution and

development are highly dependent upon temperature, particularly organisms

involved in the maintenance of important human diseases. A common method

involves determining the annual degree-days that are required to support current

populations, and then, using predicted future temperatures, generate distribution

maps of where the annual degree-day requirements are met under future conditions.

Statements are then made regarding the future risk or potential for disease

transmission. Some examples include the use of degree-day models to study the

effects of climate change on malarial mosquito vectors (Lindsay et al., 2010; Yang

et al., 2010), the tick vector of Lyme disease (Ogden et al., 2005, 2006), as well as
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the intermediate snail host and water-borne life stages of schistosomiasis (Zhou

et al., 2008; Yang et al., 2006).

Though simple and easy to use, degree-day model output is sensitive to choices

of model structure as well as uncertainties in model parameters. In many cases,

these limitations are not considered or discussed when applying degree-day models,

potentially leading to conclusions that are invalid. With this in mind, this chapter

reviews basic degree-day model formulations and assumptions, and discusses

circumstances under which the models are best applied to study ecological systems.

First, the basic structure of temperature-dependent development models are

described, and common linear and non-linear functional responses are detailed.

Next, the statistical and experimental methods used to determine temperature

threshold parameters are reviewed, as are the various methods of calculating daily

degree-day units. Finally, the limitations of degree-day approaches, with particular

cautions for their applications in the study of ecological responses to climate change,

are discussed.

1.2. Generalized model of temperature-dependent development

Temperature-dependent development models describe progress towards a

developmental target, such as the completion of an instar stage or the onset of

reproductive maturation. Let ρ be the rate of development (in units of day−1),

where ρ is a function of temperature, T . The gain in development, D, is given by
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dD

dt
= ρ(T ).(1.1)

The total development that occurs in the interval from time t1 to t2 is given by the

integral of the rate function (Logan and Powell, 2001; Powell and Logan, 2005).

Therefore,

D =

∫ t2

t1

ρ(T (t))dt,(1.2)

where D is normalized such that D = 0 at the start of development, and D = 1

when the developmental target is reached. Since temperature dependence is not

uniform over the full range of environmental temperatures, the rate of development

can further be expressed as

ρ(T ) = f(T, δmin, δopt, δmax),(1.3)

where ρ is written in terms of a functional response, f , which is dependent on

temperature and three threshold parameters: δmin, δmax, and δopt. Development is

limited (i.e. goes to zero) below a lower temperature threshold, δmin, and above an

upper temperature threshold, δmax. Development is maximized at an optimum

temperature, δopt.
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While there are many structural forms available to represent the functional

response, most degree-day models express f as a linear function of temperature.

The performance of linear and non-linear functional responses varies depending

upon the specific shape of the diurnal temperature curve – and thus on regional

climate characteristics – in addition to the modeled organisms specific threshold

requirements. These issues will be discussed next.

1.3. Developmental functional response

1.3.1. Linear

Typical degree-day models express the rate of development as a linear function

of temperature, where

ρ =


T
K
− δmin

K
, : δmin < T (t) < δmax

0 : else

,(1.4)

and thus

D(t) =


∫ t2
t1

[
T (t)
K
− δmin

K

]
dt. : δmin < T (t) < δmax

0 : else

,(1.5)

where the optimal threshold, δopt is generally not included (Figure 1.1; but see

Section 1.4). In the linear model, the parameter K is a species- and developmental

target-specific parameter that is interpreted biologically as the total number of
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degree-day units necessary for development to complete. To see how this

interpretation is reached, the linear model can be scaled by multiplying through by

K, leading to

k = K ·D =

∫ t2

t1

[T (t)− δmin] dt,(1.6)

for all T where δmin < T < δmax. In this expression, k represents the number of

degree-day units that are accumulated within a give time interval, and, as described

in the previous section, the developmental target is reached once D = 1, or when

k = K. Rescaling the linear model in this way provides a simple expression that

intuitively relates the degrees above the minimum threshold to the development

that occurs.

The linear model provides a straightforward, accessible method of estimating

development rates. However, for many organisms temperature-dependent

development is non-linear (Beck, 1983), and treating the response as linear leads to

an underestimation of development rates at low temperatures, and an

overestimation of development rates at high temperatures (Hilbert and Logan, 1983;

Figure 1.1). The linear model is thus best applied when environmental temperatures

fall within intermediate temperature ranges for which the linear approximation is

valid (Bergant and Trdan, 2006; Bonhomme, 2000). Since it is not unexpected for

organisms to experience temperature extremes well outside these intermediate
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Figure 1.1: A linear (dashed line) and non-linear (solid line) approximation of the

relationship between the rate of development and temperature, and the locations of the

three key temperature thresholds, δmin, δopt, and δmax.

ranges, several non-linear models have been developed as alternative functional

forms of f .

1.3.2. Non-linear

Several common non-linear models, in addition to the linear model, are shown

in Figure 1.2, with model parameters obtained from previous work on Nephus

bisignatus, a predatory Coleoptera (Kontodimas et al., 2004). It is clear that these
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models differ significantly in their behavior at low and high temperatures. The first

non-linear model, developed by Sharpe and DeMichele (1977), is based on the

biology of enzyme kinetics and provides a mechanistic equation that accurately

describes a typical non-linear response at temperature extremes, as well as the

linear response at intermediate temperatures. The model is written as

ρ =
Te((φ−

∆H+
A

T
)/R)

1 + e((∆SL−
∆HL
T

)/R) + e((∆SH−
∆HH
T

)/R)
(1.7)

where parameters (Table 1.1) are either physical constants, or organism specific

thermodynamic values (Sharpe and DeMichele, 1977).

Though the Sharpe model is able to provide a good fit to data describing the

relationship between temperature and development (Hilbert and Logan, 1983),

drawbacks to its application include biologically unrealistic symmetry about the

optimal temperature that leads to less accurate estimates of development at high

temperatures, (Hilbert and Logan, 1983), as well as the large number of parameters

that, while biologically meaningful, increase model complexity (Kontodimas et al.,

2004).

A second non-linear model that has received considerable attention

(Kontodimas et al., 2004), was developed by Logan et al. (1976) and is written as

ρ = ψ ·
(
erT − e(rTmax− δmax−T

∆T )
)
,(1.8)
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Figure 1.2: Relationship between temperature and developmental rate for the linear

and several common non-linear models.

where ψ and r are organism specific parameters, and ∆T is equal to the difference

between the maximum and optimum temperatures (Table 1.1). Because the Logan

model approaches zero asymptotically (Figure 1.2), thus preventing the estimation

of δmin (Lactin et al., 1995), Hilbert and Logan (1983) derived a new model in which

low temperatures were described by a Holling Type III function, allowing estimation

of δmin, with high temperatures described as in the Logan model. This model is
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Table 1.1: Parameters for several non-linear developmental models.

Parameter Definition Reference

Sharpe Sharpe and DeMichele (1977)
T Absolute temperature (Kelvin)
K Boltzmann constant
h Planck’s constant
R Gas constant
εc Relative enzyme concentration
∆H±

A Enthalpy of activation
∆HL Difference in enthalpy of activation between first

inactive state and active state at equilibrium
∆HH Difference in enthalpy of activation between active

state and second inactive state at equilibrium
∆S±

A Entropy of activation
∆SL Difference in entropy of activation between first

inactive state and active state at equilibrium
∆SH Difference in entropy of activation between active

state and second inactive state at equilibrium
φ Simplifying parameter, equal to ∆S±

A +ln(Kεc/h)
Logan Logan et al. (1976)

T Air temperature - minimum temperature thresh-
old

δmax Lethal maximum temperature
∆T Difference between Tmax and optimal temperature
ψ Developmental rate at a given base temperate

above the minimum developmental temperature
r Rate increase up to optimal temperature

Holling Hilbert and Logan (1983)
T Air temperature - minimum temperature thresh-

old
δmax Lethal maximum temperature
∆T Difference between δmax and optimal temperature
ψ Developmental rate at a given base temperate

above the minimum developmental temperature
D Fit parameter

Lactin Lactin et al. (1995)
T Air temperature - minimum temperature thresh-

old
δmax Lethal maximum temperature
∆T Difference between δmax and optimal temperature
r Rate increase up to optimal temperature
λ Fit parameter

written as

ρ = ψ ·
(

T 2

T 2 +D2
− e(

δmax−T
∆T )

)
,(1.9)

with model parameters described in Table 1.1. Lactin et al. (1995) similarly

modified the Logan model to estimate the lower threshold by introducing a
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parameter, λ, that forces the equation to intersect the x-axis (Figure 1.2), leading to

ρ = erT − e(rTmax− δmax−T
∆ ) + λ.(1.10)

In certain systems, the Lactin model has been recommended as one of the best

alternatives to the linear functional response due to its ability to accurately fit

developmental data, as well as to estimate all three temperature thresholds

(Kontodimas et al., 2004; Roy et al., 2002).

A number of other non-linear functional forms of f have been developed, and

the reader is referred to Kontodimas et al. (2004) for a review of the merits and

limitations of each.

1.3.3. Comparison of functional response forms

To see how differences in choice of f influence predictions of development, the

linear, Sharpe, Logan, Holling, and Lactin functional responses were used to

investigate the emergence times of Nephus bisignatus, a predatory Coleoptera

distributed throughout Europe. Model parameters were taken from Kontodimas

et al. (2004) who fit linear and non-linear models to developmental data from

laboratory experiments in which N. bisignatus were reared at various constant

temperatures. For models that cannot provide estimates of δmin or δmax, the lower

and upper rearing temperatures at which no development occurred (10 ◦C and 35

◦C, respectively) were used. Temperature data was obtained from the European
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Climate Assessment and Dataset (ECAD, 2011) at hourly increments (from 1 Jan

2003 - 31 Dec 2003) for 16 weather stations in Europe. Stations were chosen to

provide a range of yearly temperature profiles, and included 2 stations each from

Finland, Germany, Greece, Italy, Netherlands, Sweden, France, and Denmark.

Results across all weather stations were consistent, with the exception that

stations in warmer regions yielded an earlier emergence time than those in cooler

climates, as expected. Figure 1.3A shows a representative plot of development rates

for each of the five models from a weather station in Finland (60.17 ◦N, 24.95 ◦E).

At temperatures near the lower threshold, the predicted rate of development is

greatest for the Holling, Sharpe, and Logan models, and lowest for the linear and

Lactin models. This is expected given the shape of the developmental curves at low

temperatures (Figure 1.2). At higher temperatures, the Sharpe and Lactin models

are essentially equivalent, with both predicting the highest rates of development. As

the temperature increases closer to the upper threshold (not shown at this station),

the linear model predicts the highest rate of development, while the Holling model

decreases drastically. This is expected given the absence of an optimal temperature

threshold in the linear model, and the shape of the non-linear models above their

optimal thresholds. At intermediate temperatures, all models are approximately

equivalent.

Over the course of the season, the Holling model predicts the earliest date of

emergence (Figure 1.3B), with the Holling emergence date across all sixteen weather

stations on average 8.6 days sooner than predicted by the linear model (95% CI:
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Figure 1.3: Comparison of the linear functional response and the Sharpe, Logan,

Holling, and Lactin non-linear models. A) Daily temperature (top) and developmental

rates (bottom) for each of the five models using data from the Finland weather station

(see text) from approximately April to October, 2003 (with Day 1 equivalent to Jan

1). Days outside this time range fell below the lower temperature threshold (dotted

line in top panel) and thus had a developmental rate equal to zero. B) Cumulative

developmental rates for each of the five models showing (in inset) differences in

predicted emergence time (when the cumulative rate reaches one) of each model.
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[5.55, 11.58]). The Sharpe, Lactin, and Logan models also predict an emergence

time significantly different than the linear model, with emergence dates across all

weather stations on average 4.44 days (95% CI: [3.39, 5.48]), 3.75 days (95% CI:

[3.01, 4.49]), and 2.81 days (95% CI: [1.64, 3.98]) earlier, respectively.

The differences in predicted emergence time have important implications for the

use of degree-day models in ecological applications. For instance, N. bisignatus is a

predatory insect that is used extensively in the biological control of mealybugs,

aphids, whiteflies, and other insect pests (Obrycki and Kring, 1998). When

considering biological control measures, the synchrony of developmental timing

between the control agent and the pest is known to be important (Corley and

Bruzzone, 2009). In the initial selection of biocontrol species, organisms are chosen

that are climatically adapted to particular regions, such that the timing of predator

emergence coincides with the target life stage of the pest (Samways, 1989). For

instance, adult Coleoptera are often released seasonally to augment existing

populations, and the timing of this release must be matched to pest populations

(Obrycki and Kring, 1998). In addition, many arthropods can complete

development in under fifteen days (Danks, 2006). As model predictions differed by

up to two weeks, clearly the selection of a functional response for f has important

consequences for applications to biological control.

Similarly, selection of a functional response for f is important when examining

the potential for disease transmission. Transmission of malaria, for example, is

dependent upon the successful development of the parasite within the mosquito
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host, a temperature-sensitive developmental process (Beier, 1998), as well as on the

probability of the mosquito surviving long enough for parasite development to

complete (Killeen et al., 2000). Thus, one crude measure of the potential for malaria

transmission in a particular region can be estimated by determining the

development time of the parasite and seeing if this falls within the survival time of

the mosquito (Paaijmans et al., 2009). Clearly, models producing estimates of

parasite development time that differ by several days or even weeks could strongly

determine the outcome of such an analysis.

Functional models for f exhibit different behaviors in response to temperature

extremes, and thus the functional form chosen should be suitable for both the

organism and the climatic conditions under study. Of particular importance given

the widespread use of linear degree-day models is that, though simple and intuitive,

the response assumes a linear approximation of non-linear development, and thus

caution is called for when results are obtained under conditions where temperatures

frequently fall outside the linear response range (Bergant and Trdan, 2006). Where

this is the case, a non-linear functional response should be considered.

1.4. Temperature thresholds

As discussed in Section 1.2, three important temperature thresholds influence

the developmental temperature response. Two thresholds, δmin and δmax, bound the

temperature range at which the organism can develop, such that below δmin or

above δmax development ceases, while the third threshold, δopt, represents the
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temperature at which the organism has the highest rate of development. Though

δmin and δmax can easily be specified in the linear model, δopt is defined only in

non-linear models since linear models have no temperature associated with peak

development (except as T → δmax). To account for the fact that development

exhibits diverse behaviors at high temperatures, several threshold cutoff methods

have been developed (Roltsch et al., 1999; University of California, 2011b). One

method, the vertical cutoff (Figure 1.4A), treats the maximum threshold as

previously described, where above δmax development ceases. In this method, the

optimum temperature threshold is undefined. A second method, the horizontal

cutoff (Figure 1.4B), sets the daily temperature to δmax when the temperature

exceeds the upper threshold. This allows development to continue at a constant rate

at all temperatures exceeding the maximum threshold. With the last method, the

intermediate cutoff (Figure 1.4C), development proceeds at a decreasing rate as the

temperature increases above δmax. Generally, the development that occurs when

T > δmax is set equal to ρ(T )− 2[ρ(T )− ρ(δmax)], which is equivalent to subtracting

twice the development that occurs above the maximum threshold from the

development that would occur if no upper threshold was considered. Other

formulations can be used for intermediate cutoffs to incorporate a steeper or more

gradual decline in development rates above δmax. The intermediate cutoff method is

equivalent to treating δmax as the optimal temperature, and, though not often done,

an additional threshold could then be included above which development ceases



19

δmax	


δmin	


A) Vertical cutoff 

δmax	


δmin	


C) Intermediate cutoff 

δmax	


δmin	


B) Horizontal cutoff 

Te
m

pe
ra

tu
re

 

Time 

Figure 1.4: Three common cutoff methods used when calculating daily degree-days. A)

vertical cutoff; B) horizontal cutoff; C) intermediate cutoff. Each curve represents the

temperature over the course of a single day, while the shaded area indicates the timing

and degree of development.

entirely. Given the diversity of approaches, the cutoff method chosen should reflect

the underlying biological response to temperature of the organism under study.

1.4.1. Estimating temperature thresholds

Accurate organism-specific parameter values for δmin, δmax, and δopt are crucial,

and a variety of methods have been developed to estimate these thresholds

experimentally. The most common method used to determine δmin is to

experimentally derive the temperature-development relationship and then estimate

the x-intercept using linear regression (e.g. Campbell et al., 1974; Nahrung et al.,

2008; Naves and de Sousa, 2009; Lardeux and Cheffort, 1997). The experiment

generally involves determining the number of days, d, required for an organism to

develop at a range of constant temperatures. The rate of development, 1/d, is then

regressed on temperature and the x-intercept estimated by solving for the

temperature at which the rate is equal to zero. Importantly, due to the high

mortality or dormancy commonly experienced at low temperatures (Campbell et al.,
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1974), the x-intercept always falls outside the range of experimental temperature,

and thus represents an extrapolation of the linear fit (Bergant and Trdan, 2006).

Additionally, as described above (Section 1.3.1; Figure 1.1), the non-linearity of

most developmental response functions at low temperatures results in an

overestimation of δmin using linear regression. Extrapolation error and error

associated with linearly approximating a non-linear process can lead to significant

uncertainties in the estimation of δmin (Bergant and Trdan, 2006; Yang et al., 1995).

These uncertainties are often disregarded, though methods to quantify the variance

and associated confidence intervals for δmin are crucial for the accurate application

of degree-day models (Campbell et al., 1974; Kontodimas et al., 2004). Importantly,

there are also indications that development at constant temperatures differs from

development at fluctuating temperatures, and thus care should be taken when

applying laboratory-derived estimates to field conditions (Beck, 1983; Brakefield and

Mazzotta, 1995; Campbell et al., 1974). A second method to estimate the lower

threshold uses iterative techniques in which a range of values for δmin are tested

against various criteria. These methods are not commonly used, and the reader is

referred to Yang et al. (1995) and Snyder et al. (1999) for a detailed discussion of

the approach.

To estimate δmax and δopt, non-linear developmental models are used

(Kontodimas et al., 2004; Roy et al., 2002). For many non-linear models, these

thresholds appear explicitly within the model equation, and thus can be estimated

using non-linear regression (e.g. Briere et al., 1999; Sanchez-Ramos and Castanera,
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2001; Tobin et al., 2001). With non-linear models in which one or both of these

thresholds cannot be directly estimated, δmax or δopt can often be calculated from

other model parameters (Roy et al., 2002). For instance, in the Logan, Holling, and

Lactin models, δmax is explicit in the model, while δopt is calculated using a second

model parameter, ∆T , where ∆T = δmax − δopt. An alternative way to determine

δopt is to maximize the non-linear model equation by setting the first derivative

equal to zero (Briere et al., 1999; Kontodimas et al., 2004).

1.5. Degree-days

1.5.1. Estimating the total degree-days required for development, K

Only linear models can provide a direct estimate of K, the total degree-days

required for development, though the above-mentioned drawbacks to linear

estimates of δmin should be considered when interpreting such results. One method,

similar to the x-intercept method used to estimate δmin, estimates K as the inverse

of the slope of the regression line of development rates and temperature (e.g.

Bergant and Trdan, 2006; Campbell et al., 1974; Trudgill et al., 2005). A second

method uses experimental development data and a known δmin to estimate K. A

laboratory experiment is conducted in which the organism is grown at a constant

temperature, T , and the total degree-days required for development is estimated as

K = d(T − δmin), where d is the number of days required for development (Naves

and de Sousa, 2009). Values of K estimated using this method have been shown to
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be similar to estimates using the linear regression approach (Naves and de Sousa,

2009).

If experimental data are unavailable, K can be calculated from field data using

a known lower threshold, observed development times, and daily temperature data

(Lopez et al., 2001). Since daily temperature is not constant, the degree-days

accumulated per day, k, are calculated using one of the methods presented in the

following section. The summation of the daily accumulated degree-days between the

observed beginning and end of development then provides an estimate of K.

1.5.2. Methods for calculating daily degree-days, k

The temperature fluctuations that occur throughout the diurnal cycle can

greatly influence organism development (Paaijmans et al., 2009), yet records of

hourly or finer temporal resolutions are often unavailable, and thus researchers

instead rely on daily minimum and maximum temperature data. Several common

methods are used to calculate k, the daily degree-days accumulated, using daily

minimum and maximum temperatures. These include the daily average method, the

triangle and double triangle methods, and the sine and double sine methods (Figure

1.5), all of which assume a linear functional response.

1.5.2.1. Daily average

The daily average method (Figure 1.5A) uses daily minimum and maximum

temperatures to estimate accumulated degree-days by applying one of two common
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Figure 1.5: Five common methods used to estimate daily degree-days. Each curve

represents the temperature cycle over two days, while the area of the shaded region

indicates the degree-days that are accumulated (an approximation to the area under

the temperature curve).

calculations (McMaster and Wilhelm, 1997). The first method finds the average,

Tavg, of the minimum, Tmin, and maximum, Tmax, temperatures and then compares

Tavg to the lower threshold. The accumulated degree-days is then calculated as

k =


Tavg − δmin, : Tavg > δmin

0, : Tavg ≤ δmin

.(1.11)
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The second method compares the daily minimum temperature to the lower

temperature threshold before calculating Tavg. The accumulated degree-days is then

calculated as

k =



Tmax+Tmin

2
− δmin, : Tmin > δmin

Tmax+δmin

2
− δmin, : Tmax > δmin and Tmin ≤ δmin

0, : else

.(1.12)

This ensures that so long as the maximum temperature exceeds δmin, some

degree-days will accumulate.

Despite its simplicity, the daily average method tends to produce surprisingly

accurate estimates of the accumulated degree-days when compared to estimates

using hourly temperature data (Wilson and Barnett, 1983). However, significant

error can result using the first method when the minimum daily temperature drops

below the lower threshold, as this often leads to underestimations in the cooler

months when the average temperature drops below the minimum threshold, but the

maximum daily temperature exceeds the lower threshold (Allsopp and Butler, 1987;

Roltsch et al., 1999; Wilson and Barnett, 1983). Additionally, since the average

method assumes a symmetrical diurnal temperature profile, error can occur when

the shape of the daily temperature curve is skewed such that the maximum

temperature occurs closer to either the minimum morning or the minimum evening

temperature (Allsopp and Butler, 1987; Wilson and Barnett, 1983).
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1.5.2.2. Triangle and double triangle

The triangle method estimates the accumulated degree-days by calculating the

area under a triangle, with the base of the triangle set at the daily minimum

temperature, and the peak at the daily maximum temperature. As implied by the

name, the single triangle method (Figure 1.5B) forms a single triangle for each

diurnal cycle, while the double triangle method (Figure 1.5C) fits two triangles to

each diurnal cycle. With the double triangle method, the base of the first triangle is

determined using the minimum temperature of the first half of the day, and the base

of the second triangle is determined using the minimum temperature of the second

half of the day. Given the minor difference between the two triangle methods, it is

perhaps not surprising that they produce similar results (Roltsch et al., 1999).

In the simplest case, both the single and double triangle methods assume a

twelve hour difference between when the daily minimum temperature occurs, and

when the daily maximum temperature occurs (Allsopp and Butler, 1987; Wilson

and Barnett, 1983). This assumption is often modified to better account for the

shape of the daily temperature curve by incorporating information on sunrise and

sunset times, or solar radiation (Reicosky et al., 1989).

The triangle methods, though still rather simple representations of the daily

temperature, can produce results comparable to many of the more complicated

methods (Cesaraccio et al., 2001; Roltsch et al., 1999; Reicosky et al., 1989).

However, as with the daily average method, significant error in degree-day estimates
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typically arise during winter months (Cesaraccio et al., 2001), or when the shape of

the temperature curve is skewed (Allsopp and Butler, 1987; Reicosky et al., 1989).

1.5.2.3. Sine and double sine

The sine method fits a sinusoid to the interval between the minimum and

maximum temperatures. Similar to the triangle methods, the single sine method

(Figure 1.5D) fits a single sinusoid to the diurnal cycle, while the double sine

method (Figure 1.5E) forms one sinusoid between the morning minimum

temperature and the daily maximum, and a second sinusoid between the daily

maximum temperature and the evening minimum. Again, similar to the triangle

methods, both the single and the double sine waves produce similar results (Roltsch

et al., 1999; Wilson and Barnett, 1983). The sine methods typically assume a twelve

hour difference between the daily minimum and maximum temperatures, though

this has been corrected for in several models (Reicosky et al., 1989). The sine

method tends to overestimate degree-days during both the summer (Allsopp and

Butler, 1987) and the winter months (Cesaraccio et al., 2001; Roltsch et al., 1999).

1.5.2.4. Variations

While the above methods represent the most common approaches used to

estimate degree-days, numerous variations have been used. As two examples,

Reicosky et al. (1989) explored a variety of techniques using a combination of linear

equations, sine waves, and exponential decays, and Cesaraccio et al. (2001)

incorporated a square-root function into the double sine method for estimation of
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early morning temperatures. Though these methods can potentially produce more

accurate estimates of the accumulated degree-days, over the course of several days

the results are generally not significantly different from the simpler methods

described above (Reicosky et al., 1989; Roltsch et al., 1999).

1.5.3. Comparison of methods used to calculate k

The estimate of accumulated degree-days will vary based on the shape of the

daily temperature curve (Roltsch et al., 1999; Allsopp and Butler, 1987), the type of

upper threshold cutoff used (Roltsch et al., 1999), as well as where the maximum

and minimum temperatures fall relative to the upper and lower thresholds (Allsopp

and Butler, 1987; Roltsch et al., 1999; Wilson and Barnett, 1983). To demonstrate

the sensitivity of k to these factors, accumulated degree-days were estimated using

hourly temperature data (from 1 Jan 2007 to 31 Dec 2010) obtained from three US

Climate Reference Network (NOAA, 2011) weather stations in the eastern United

States (Table 1.2). These stations were chosen to provide a range of yearly

temperature profiles across diverse climate zones in the United States, thus

providing a diverse set of diurnal temperature shapes, and included stations in

northern Maine, western North Carolina, and southwestern Florida. At every

station, k for each day across the three year period was calculated from daily

minimum and maximum temperatures using the daily average method (Eqn. 1.11),

the single triangle method, and single sine method, as well as the horizontal,

vertical, and intermediate upper threshold cutoffs. For each day, k was calculated



28

Table 1.2: Characteristics of weather stations used to compare methods of calculating

daily degree-days. The range of hourly temperatures indicates the maximum and

minimum temperatures that occur between 1 Jan 2007 and 31 Dec 2010, while the

temperature average is the mean temperature over this time period.

Location Latitude Longitude Elevation
(m)

Range of hourly
temperatures (◦C)

Average tem-
perature (◦C)

Everglades City, Florida 25.9◦ -81.318◦ 1.2 -2.3 – 35.7 22.8
Asheville, North Carolina 35.419◦ -82.557◦ 641 -15.2 – 33.5 12.3
Limestone, Maine 46.96◦ -67.883◦ 224.6 -37.9 – 32.1 4.5

using multiple values for δmin and δmax in order to examine how the relative

difference between daily temperature extremes and the threshold values affected the

estimated degree-days. These estimates were then compared to the daily

degree-days estimated using hourly temperatures.

Figure 1.6A shows the results using the horizontal cutoff method and assuming

a twelve hour difference between the daily minimum and maximum temperatures.

The color indicates the difference between the number of degree-days estimated

using a given method, and the number of degree-days calculated using hourly data,

with a positive value (reds) indicating an overestimation of the particular method,

and a negative value (blues) indicating an underestimation. Each of the four

quadrants (Q1-Q4) represents different positions of the thresholds relative to the

daily minimum and maximum (Figure 1.6B). Cases in which no upper threshold is

used are equivalent to the two upper quadrants.

There are distinct differences between the three methods used to calculate k,

and these differences are sensitive to the relationship between threshold values and

daily temperatures. Both the daily average and the triangle method do well when

the daily temperature range falls between the upper and lower thresholds (Q2). The
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Figure 1.6: A) Difference between daily degree-days calculated using hourly data, and

daily degree-days estimated from the daily average (first column), single triangle

(middle column) and single sine (last column) methods, with red colors indicating an

overestimation of the particular method, and blue colors indicating an

underestimation. For each plot, the color at every point represents the average

difference in degree-days for each day of the time series that meets the specified

distance between the minimum and maximum daily temperature (Tmin and Tmax ) and

the lower and upper thresholds, respectively, with distances from the lower threshold

given along the x-axis, and distances from the upper threshold given along the y-axis.

B) Relative positions of the daily minimum and maximum temperatures to the lower

and upper thresholds. Each curve represents the temperature cycle for a single day.
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sine method, in contrast, tends to overestimate the degree-days in this region,

particularly when δmin is close to the daily minimum temperature. If a similar plot

is made that corrects for the time between the daily minimum and maximum

temperatures, rather than assuming a twelve hour difference (data not shown), this

overestimation is greatly reduced, indicating that the estimate is sensitive to the

shape of the temperature curve. This overestimation from the sine method is also

present (and can be corrected for) when δmin is greater than, though still close to,

the daily minimum temperature (Q1). Both the daily average and the triangle

methods produce an underestimation in this region, with the exception of the

triangle method in Maine, which produces overestimations when there are large

differences between δmin and the daily minimum. As discussed in Section 1.5.2.1,

this underestimation of the daily average method is a result of averaging the daily

minimum and maximum temperatures before the comparison with δmin.

When both δmin and δmax fall within the daily temperature range (Q4), the sine

and daily average method behave similarly, producing slight underestimations in the

number of degree-days. The triangle method, in contrast, more severely

underestimates the degree-days when δmin and δmax are both near the daily minimum

and daily maximum temperatures, respectively. However, as the difference between

δmin and δmax decreases, the triangle method begins to overestimate the degree-days.

When δmin is less than the daily minimum temperature and δmax is less than the

daily maximum temperature (Q3), the average method overestimates the

degree-days when δmax is near the maximum temperature. The sine method
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produces underestimates in this region, while the triangle method produces

underestimates when δmax is near the daily maximum and overestimates as δmax

drops far below the daily maximum. Again, this overestimation with the triangle

method is significantly reduced when the time between the daily minimum and

maximum temperatures is corrected for, indicating that this overestimation is

sensitive to the shape of the diurnal temperature cycle.

In summary, the daily average method generally provides accurate estimates of

daily degree-days, with the exception of overestimates when δmax and δmin drop

below the daily maximum and minimum temperatures, respectively, and

underestimates when δmax and δmin fall above the daily maximum and minimum

temperatures, respectively. The triangle method performs well when the daily

temperature range falls within both threshold values. In the other regions, the

triangle method tends to either over or underestimate the daily degree-days.

Finally, the sine method tends to underestimate the daily degree-days, with the

exception of regions where δmax exceeds the daily maximum temperature and δmin is

close to the daily minimum temperature.

Comparing the different geographic regions indicates that the shape of the

diurnal temperature curve, which changes with latitude and elevation, affects the

accuracy of the estimation methods. For instance, when the minimum and

maximum thresholds are less than the daily minimum and maximum temperatures,

respectively (Q3), the triangle method tends to overestimate the degree-days in

Florida, while tending to underestimate the degree-days in Maine. This result is
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also observed with the sine method when the temperature range falls within both

thresholds (Q2). Since the relative difference between the daily temperature

extremes and the threshold values is the same between the regions, the shape of the

diurnal temperature cycle is clearly responsible for this effect.

If a vertical threshold cutoff is used rather than a horizontal cutoff, the results

are similar with only a few differences (data not shown). First, the vertical cutoff

improves performance of the triangle and sine methods when both thresholds fall

within the daily temperature range (Q4), whereas the daily average method tends

to overestimate the degree-days in this region. When δmin and δmax are both less

than daily minimum and maximum temperatures, respectively (Q3), the

performance of the sine method improves, while the triangle method now

significantly overestimates the degree-days. Importantly, where the daily average

method produced overestimates in Q4 using the horizontal cutoff, the vertical cutoff

exacerbates this overestimation. When δmax exceeds the daily maximum

temperature (Q1 and Q2), there is no change in the performance of the methods, as

no cutoff is ever applied. Similar results are observed using the intermediate

threshold cutoff, with the effects of the underestimation more pronounced.

It is apparent that there are many factors that affect the accurate estimation of

daily degree-days, and the results presented here indicate than no one method is

universally superior to another, but rather each exhibits behaviors sensitive to

where the thresholds fall relative to the daily minimum and maximum

temperatures, the type of cutoff used, as well as the shape of the daily temperature
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Table 1.3: A summary of the performance of the daily average, single triangle, and

single sine methods used to calculate degree-days, given different relative positions of

the thresholds and the daily temperature extremes (with table quadrants corresponding

to quadrants Q1-Q4 in Figure 1.6B). Methods shown in bold indicate the best method

for the given quadrant.

δmax > Tmax, δmin < Tmin (Q2) δmax > Tmax, δmin > Tmin (Q1)

Average: generally accurate Average: slight underestimates
Triangle: generally accurate Triangle: strong underestimates,

strong overestimates
Sine: strong underestimates, Sine: slight underestimates,

strong overestimates (strong overestimates when δmin close to Tmin)

δmax < Tmax, δmin < Tmin (Q3) δmax < Tmax, δmin > Tmin (Q4)

Average: generally accurate, Average: slight underestimates,
(slight overestimates when δmax close to Tmax) slight overestimates

Triangle: strong underestimates, Triangle: strong underestimates,
strong overestimates strong overestimates

Sine: strong underestimates Sine: slight underestimates

curve (as implied by differences between regional zones). Table 1.3 summarizes the

performance of the various methods and indicates the method(s) that are likely the

most appropriate given the relative positions of the thresholds. Importantly, this

analysis only considers error on a daily basis; these errors might be amplified, or

might cancel out, over the course of an entire season or year, depending on the

frequency with which daily temperature profiles land in each of the quadrants.

1.6. Discussion

Degree-day models are useful tools for analyzing the temperature-dependent

development of organisms important for agriculture and infectious disease

transmission, among other applications. By assuming a linear response to

temperature and relying on a minimal number of parameters that can be estimated
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through simple growth experiments, these models are straightforward to apply and

are thus accessible to a wide variety of researchers.

Degree-day models, however, have key limitations when used to estimate when

specific development targets will be reached, or the temperature suitability of a

given region for specific organisms. Temperature is unquestionably important in the

developmental processes of many organisms, but both linear and non-linear models

may be insufficient for representing the complete effects of temperature on an

organism. For instance, though organisms may continue to develop at the extremes

of their temperature range, stress sustained at these temperatures can have

important implications. For example, in agriculture, heat stress can lead to

diminished crop quality or yield (Thakur et al., 2010); in a public health context,

temperature can also influence vector competence or host immunity (Kilpatrick

et al., 2010; Bensadia et al., 2006). Additionally, temperature is not the only factor

that influences development, as organisms are also dependent upon the availability

of sufficient resources (Campbell et al., 1974; Hagstrum and Milliken, 1988; Logan

et al., 2007), are affected by numerous environmental conditions (e.g. humidity,

precipitation) (Hagstrum and Milliken, 1988), and interact with their surrounding

biotic and abiotic environment (Logan et al., 2007). Thus, establishing that the

necessary temperature requirements for development are met is not likely sufficient

for assessing the viability or establishment of an organism in a particular region or

climate.
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Caution, then, is needed when applying degree-day models to questions

regarding species’ range expansions or contractions in response to climate change

(e.g. Lindsay et al. (2010); Zhou et al. (2008)). First, the degree-day model should

not be applied to future climates that fall outside the temperature range for which

the model was parameterized. Second, temperature may interact with other

climate-mediated ecological changes (e.g. changes in predator densities), and

therefore incorporating degree-day models into dynamical population models that

account for relevant biotic interactions offers promise (Kingsolver, 1989).

Anthropogenic impacts, such as habitat degradation or altered land use, can also

interact with temperature to produce novel effects that can be understood by

dynamical models in combination with the degree-day framework.

Importantly, degree-day models assume constant threshold values, even when

applied to questions posed over long time scales, such as in studies of future climate

change. It is well established, however, that populations can adapt to local

conditions, as evidenced by species in more temperate regions, for example, having a

lower temperature threshold than those in the tropics (Trudgill et al., 2005). This

implies that minimum, maximum, and optimum temperatures determined for

organismal development today may not be valid under future conditions. This is

especially important when studying coupled organisms, such as consumer-resource

pairs (Logan, 2007). Parasites, for instance, often have a higher temperature

threshold than their hosts, ensuring that host development is completed before the

parasite becomes viable (Campbell et al., 1974). If the temperature thresholds, or
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the shape of the temperature-development response for either organism changes, it

is possible that this synchrony might be disrupted. This has important implications,

not only for disease systems, but also for the persistence and distribution of other

coupled organisms, such as plants and their pollinators, or predators and their prey

(Visser and Both, 2005).

A major limitation to improving degree-day model applications is obtaining

suitable temperature data. Often, mean monthly temperatures (e.g. Craig et al.,

1999; Yang et al., 2006) are used to calculate degree-days, yet even daily

temperature fluctuations can have significant effects on organism development, as

well on disease transmission (Paaijmans et al., 2009, 2010a). Thus daily, or even

hourly, temperature data should be used whenever available. In addition, careful

consideration should be given to the location at which the temperature is measured.

In some cases, micro-environmental temperature, such as soil temperature (Zhang

et al., 2008), or water temperature (Paaijmans et al., 2010b), rather than ambient

air temperature, might better represent the conditions experienced by the organism.

Finally, the distance between the station where the weather is collected and the

population under study also influences the reliability of the temperature data

(Dabbs, 2010). Though these limitations are important to consider, often

researchers are constrained by the availability of site-specific temperature data

collected at sufficiently short increments. In these cases, model predictions should

be interpreted cautiously.



37

The degree-day model provides a simple and effective means of describing and

estimating temperature-dependent development of a diverse set of organisms.

Attention paid to meeting the assumptions of the approach and recognizing its

limitations can yield models that provide considerable insight into questions of

organism distribution, emergence times, and the effect of environmental change.
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CHAPTER 2

Cautioning the use of degree-day models for climate change

projections: predicting the future distribution of parasite

hosts in the presence of parametric uncertainty

2.1. Introduction

Research that quantitatively examines the relationship between climate and

patterns of diseases carried by vectors or intermediate hosts often relies on

degree-day models, mathematical models that incorporate temperature dependence

into developmental processes. Degree-day models express the temperature and time

requirements for development in units of degree-days, which accumulate only when

the temperature exceeds a minimum threshold. Degree-day models have been used

since the early 18th century (Reaumur, 1735) to study plant and pest development

in agriculture, and are increasingly being applied, either singly or coupled with

population dynamics modeling, to study the effects of climate change on organisms

associated with important human infectious disease. For this application,

degree-day models are often used to predict changes in the geographic distribution

of vectors, intermediate hosts, or pathogens under future climate conditions. Table

2.1 lists recent examples, with a description of the structural and parametric choices

that were made in each case.
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Table 2.1: Applications of degree-day models to predict vector or intermediate host

responses to climate change.

Disease: Vector Environmental

variable(s)

Temperature

data

Temperature

thresholds

Model type Citation

Malaria:

Anopheles

species

temperature mean daily minimum

developmental

temperature

biology-based

model

Lindsay et al. (2010)

temperature,

rainfall,

humidity

mean daily minimum

developmental

temperature

biology-based

and statistical

model

Yang et al. (2010)

Schistosomiasis:

Oncomelania
hupensis

temperature mean daily minimum

developmental
temperature,

minimum lethal
temperature,

maximum

lethal
temperature

biology-based

model

Zhou et al. (2008)

temperature mean monthly minimum
developmental

temperature

time-series Yang et al. (2006)

Lyme disease:

Ixodes

scapularis

temperature mean monthly minimum

developmental

temperature

biology-based

model

Ogden et al. (2005, 2006)

Leishmaniasis:

Lutzomyia
longipalpis

temperature,

surface/soil
moisture

mean monthly minimum

developmental
temperature

growing

degree-day
water-budget

model

Nieto et al. (2006)

West nile virus:

Culex pipiens

temperature daily

minimum and
maximum

minimum

developmental
temperature

GIS

degree-day
model

Zou et al. (2007)

The degree-day model can be expressed as

D =

∫ t2

t1

(
T (t)

K
− δmin

K

)
dt,(2.1)

for δmin < T (t) < δmax, where D is the development that occurs in the interval from

time t1 to t2, T (t) is the temperature at time t, δmin is the lower temperature

threshold, below which no development occurs, and δmax is the upper temperature

threshold, above which no development occurs. Development begins when D = 0
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and ends when D = 1. The parameter K is interpreted biologically as the total

degree-days necessary for the completion of development. This interpretation

becomes clear if Eqn. 2.1 is rescaled such that

k = K ·D =

∫ t2

t1

(T (t)− δmin) dt,(2.2)

where k represents the number of degree-day units that accumulate in the given

interval. In this equation, the onset of development occurs when k = 0, and

completes when D = 1, or, equivalently, when k equals K degree-days. Depending

on model implementation and the biology of the organism under study, additional

model parameters can be incorporated, such as optimal and lethal temperature

thresholds.

Considerable uncertainty exists in the estimation of degree-day model

parameters. Typically, estimates of δmin and K are obtained experimentally by

measuring the rate of organismal development under a range of constant

temperatures. A linear function is then fit to these data and extrapolated, often

considerably, outside the experimental temperature range to determine both the

minimum temperature at which development can proceed, δmin, as well as the total

number of degree-days necessary for development to complete, K (Campbell et al.,

1974). Uncertainty due to measurement error, as well as the extrapolation

procedure, can lead to significant challenges in generating accurate parameter

estimates (Bergant and Trdan, 2006). As an example, Kontodimas et al. (2004)



41

calculated δmin and K for a predatory beetle, Nephus bisignatus, as 9.39 ◦C (95%

CI: [8.31, 10.46]) and 614.25 degree-days (95% CI: [563.96, 664.54]), respectively.

Similarly, Nahrung et al. (2008) calculated δmin and K for an immature life stage of

Paropsis atomaria, a pest of eucalypt plantations, as 5.4 ◦C (95% CI: [-0.28, 11.08])

and 166.7 degree-days (95% CI: [114.17, 219.23]), respectively. These confidence

intervals are sizable, and such wide variance may have a substantial impact on

predictions of organism emergence times, or in determining the suitability of specific

regions for organism establishment or persistence.

In applications of degree-day models to study a species’ response to future

climates the effects of variance in model parameters are rarely considered; even

when confidence intervals are available from previous work, point estimates of

parameters are often borrowed directly from the literature for use in such analyses,

with the influence of parametric uncertainty remaining unexplored (e.g. Lindsay

et al., 2010; Yang et al., 2006, 2010). Thus, while degree-day models provide a

simple, easy tool for making predictions of how infectious disease systems may

respond to climate change, there has been limited critical assessment of whether

these models are sufficiently robust to inform public health planning and

decision-making. Here, the implications of uncertainty in degree-day model

parameters are explored through a developmental model of Oncomelania hupensis,

the intermediate snail host of the parasite that causes schistosomiasis in East Asia.

The model is used to generate predictions of O. hupensis distribution in Sichuan

Province, People’s Republic of China (PRC), under future climate conditions. Note
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that the purpose is not to develop the definitive model for estimating the

distribution of O. hupensis in future climatic conditions, but rather to examine the

influence of parametric uncertainty on the output of a plausible model. The

sensitivity of 1) model-predicted O. hupensis density at selected locations within

Sichuan, and 2) model-predicted geographic distributions of O. hupensis, is explored

with respect to changes in the two key model parameters, δmin and K. The results

are then discussed in the context of the suitability of degree-day models for

examining ecological responses to climate change.

2.2. Materials and methods

The analysis was structured as follows. First, a temperature-dependent

population model for O. hupensis was developed to simulate current and future snail

populations. Temperature datasets generated for both contemporary and future

conditions served as model inputs, and to ensure biological plausibility, the model

was fit to historical data on the distribution of O. hupensis in Sichuan Province.

Finally, to investigate the influence of uncertainty in δmin and K, a sensitivity

analysis was conducted at selected locations within Sichuan, as well as on the

predicted future distribution of O. hupensis across Sichuan. The following sections

detail each of these steps.
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2.2.1. Population model

Schistosoma japonicum, the intestinal trematode that causes schistosomiasis,

infects more than 700,000 people in China (Zhou et al., 2007). The presence of the

intermediate snail host, Oncomelania hupensis, is required for transmission to

humans and other mammals (Ross et al., 2001), and thus the geographic

distribution of the snail restricts transmission in China. In Sichuan Province, O.

hupensis inhabits irrigation canals and terraces, and environmental factors such as

humidity, precipitation, and temperature are all important for snail survival and

reproduction (Ross et al., 2001). Temperature is an especially important variable,

and models used to describe the population dynamics and geographic range of O.

hupensis frequently include the influence of temperature using degree-day

formulations (Liang et al., 2002, 2005; Remais et al., 2007; Zhou et al., 2008).

Here, a temperature-dependent, dynamic O.hupensis population model was

adapted from previous work (Liang et al., 2002), and is expressed as a delay

differential equation given by

dS

dt
=
∑
λ∈Nt

[
e−λµe[−αSt−λ]βe[−κ(Tt−λ−δopt)2]St−λ

]
− µSt,(2.3)

where S is the snail density, µ is the snail mortality rate, Tt−λ is the temperature at

time (t− λ), and the summation represents the total number of snails that complete

development at time t. The value within the summation is determined by the

recruitment of snails at time (t− λ), given by βe[−κ(Tt−λ−δopt)2]St−λ, reduced by a
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Table 2.2: Parameters for the O. hupensis population model, with ranges obtained

from Liang et al. (2005).

Parameter Definition Range

S0 Initial snail density (per Kuang [1 Kuang = 0.11 m2]) 17-35
µ Snail mortality rate (per day) 0.0023-0.007
β Maximum snail reproduction rate (per day) 0.01 -2
α Density dependence 0.001-0.3
κ Recruitment kurtosis 1-5.2
δopt Optimum reproduction temperature (◦C) 20-25
δmin Minimum temperature threshold for development (◦C) 7-12
K Total degree-days required for completion of snail development 1200-1500
λ Time delay varies

density dependent factor, e[−αSt−λ], and by mortality that occurs between snail birth

and the completion of development, e−λµ. Nt is the set containing all time points

prior to time t for which
∫ t
t−λ(T (t)− δmin)dt = K. That is, Nt represents the set of

all delays, λ, for which the snails born at time (t− λ) complete development at time

t. Under certain temperature conditions, snails born at different time steps can

complete development on the same time step.

Mean daily temperature is used here, as in other models (Table 2.1), but see

Chapter 1 and Paaijmans et al. (2009, 2010a) for a discussion on the implications of

using daily vs. hourly temperature data. The daily average method of calculating

daily degree-days (Wilson and Barnett, 1983) was used, and no upper threshold was

incorporated. Definitions for individual parameters in Eqn. 2.3 are given in Table

2.2.

2.2.2. Temperature data

To generate a surface of contemporary and future daily temperature values for

Sichuan Province, mean daily temperature data from 1 Jan 1980 to 31 Dec 2009
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were obtained from the National Oceanic and Atmospheric Administration National

Climatic Data Center (NOAA, 2011) for 68 weather stations located within a

rectangular region (longitude 97.933 ◦W and 104.73 ◦W, latitude 26.367 ◦N and 34.1

◦N) encompassing Sichuan Province. Mean daily temperature in these datasets were

reported in ◦F and were derived from a minimum of four observations per day. All

weather stations within a 200 km buffer distance around the boundary of Sichuan

province were selected so as to ensure accurate temperature interpolation at border

regions. Only those weather stations reporting daily mean temperature for more

than three years between 1980 and 2009 were included. Weather station locations

were geo-coded to Sichuan Province using ArcGIS (version 9.2) and overlaid on a

digital elevation model (DEM) of the region. Geospatial modeling, described below,

was conducted using Spatial Analyst in ArcGIS (version 9.3).

From the station data, an interpolated contemporary temperature dataset was

generated at a grid of 90 by 90 meter cells across Sichuan Province as follows. First,

mean daily temperature values for each station were averaged on each day of the

year over all years between 1980 and 2009 for which data were reported. This

produced a single year of averaged daily temperature data at each station (366 days

of data, as a consequence of leap years). To interpolate these daily temperatures

across every grid cell in Sichuan, a multiple linear regression model was constructed

that predicts daily temperature from elevation, latitude and longitude variables

following methods described elsewhere (Chuanyan et al., 2005). A separate model

was fit for each day using data from all stations, with modeling carried out
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iteratively using the R statistical package (version 2.7.1). Regression coefficients for

each of the 366 days were then used to predict a mean daily temperature at each 90

by 90 meter cell across the full spatial domain, yielding a contemporary temperature

dataset consisting of 366 surfaces, each representing one day of interpolated mean

temperature.

To generate a future temperature dataset for 2050, the original temperature data

for all 68 weather stations were entered into a statistical model that incorporates

latitude, elevation, and time variables. The resulting future temperature projection

makes the simple assumption that the rate of temperature increase observed

between 1980 and 2009 in Sichuan will continue unchanged into the future. First,

daily mean temperature data from 1980 to 2009 was averaged at each station to

provide monthly means. A mixed-effects model was constructed to fit mean

monthly temperature to elevation, latitude, longitude, and seasonal variables (Table

2.3) using the STATA function for cross-sectional time-series analysis, xtgee, and

weather station as the panel variable. An F-test was used to compare a reduced

model to the full model, and the final model was selected by evaluating the accuracy

of predictions in a data-splitting procedure, using the first 10 years of temperature

data to predict the last 20 years of data, and using the first 20 years of temperature

data to predict the last 10 years of data. The final model was also evaluated by

comparing model predictions to the 2050 Intergovernmental Panel on Climate

Change (IPCC) estimates of seasonal temperature in western China (Solomon et al.,

2007). The selected model was applied at every 90 by 90 meter cell of the spatial
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Table 2.3: Predictor variables tested for significance in the statistical temperature

projection model, resulting p-values in the full and final models, and variable

coefficients included in the final model.

Variable Description p-values Coefficients
Full model Final model Final model

s Station number, equal to 1–68
m Month in series, beginning with Jan 1980 = 1
mc Month in series centered, equal to m−mavg 0.000 0.000 0.006
mc2 Month in series centered, squared 0.008 0.023 0.000012
x Latitude 0.250 0.000 -1.174
y Longitude 0.555 — —
z Elevation (meters) 0.000 0.000 -0.007
x2 Latitude, squared 0.591 — —
y2 Longitude, squared 0.444 — —
xy Cross-product of latitude and longitude 0.330 — —
cos1 cos(mπ

6
) 0.000 0.000 -13.221

cos2 cos( 2mπ
6

) 0.000 0.000 -1.425
cos3 cos( 3mπ

6
) 0.022 0.022 -0.241

cos4 cos( 4mπ
6

) 0.018 0.018 -0.132
sin1 sin(mπ

6
) 0.000 0.000 -7.249

sin2 sin( 2mπ
6

) 0.000 0.000 -0.584
sin3 sin( 3mπ

6
) 0.003 0.003 -0.191

sin4 sin( 4mπ
6

) 0.007 0.008 -0.081

domain using the associated predictor variables, with the month in series variable

(Table 2.3) projected forward to 2050 to yield a one year time-series of monthly

temperature. The resulting monthly temperature dataset was linearly interpolated

to yield a daily temperature value at each cell for 2050. For both contemporary and

future datasets, all temperatures were converted to ◦C, and the 366 days of daily

temperature were looped to provide three years of simulation input.

2.2.3. Parameter estimation using historical Oncomelania hupensis

presence in Sichuan Province

Using the parameter ranges in Table 2.2 as a starting point, the dynamic

population model (Eqn. 2.3) was fit to the historical distribution of O. hupensis to

generate a final set of parameter values for use in the sensitivity analysis (Section
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Figure 2.1: County level data of historical Oncomelania hupensis presence (shaded

regions) and absence (white regions) in Sichuan Province.

2.2.4). Historical data on the presence and absence of O. hupensis between

1950-1970 was obtained from routine surveys conducted bi-annually (April-May,

September-October) at 63 anti-schistosomiasis stations located throughout counties

in Sichuan Province (Ministry of Health, 1992; Qian, 1987). The data was

aggregated such that if any life stage of O. hupensis was observed (e.g. egg, juvenile,

or adult) at any time within the range of dates examined, the county in which the

snail was observed was marked as a presence. This method leads to a conservative

estimate of snail presence (Figure 2.1), and is intended to approximate the natural

range of O. hupensis while being robust to the decades of snail control measures

conducted in the region (Wang et al., 2009).

To narrow the parametric values from the starting ranges given in Table 2.2, the

model in Eqn. 2.3 was fit to the historic O. hupensis presence/absence data as
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follows. First, to reduce computation time, a subset (n=365) of the total number of

cells within the spatial grid was chosen at equal intervals within counties in central

and eastern Sichuan, with the number of cells per county proportional to county

size. At each cell of the subset, a total of 2000 simulations of Eqn. 2.3 were run

using the contemporary temperature dataset as input and parameter values drawn

randomly from the ranges in Table 2.2. The minimum snail density over the three

years of simulation time was found at every cell of the subset for each simulation,

and this minimum was used to generate a threshold snail density, smin, such that

agreement between cells classified as present (minimum snail density > smin) or

absent (minimum snail density < smin) and the historical distribution described

above was maximized. Simultaneously, simulation performance (i.e. agreement with

historical distribution) was evaluated with respect to parameter values drawn.

Thus, the constraint on model output provided by the historical distribution data

was used to reduce parametric uncertainty, treating the threshold density for

“presence” as a parameter, in addition to those listed in Table 2.2.

A full exploration of the multi-dimensional parameter space across the entire

spatial domain is computationally prohibitive, and, what is more, the goal is simply

to produce a plausible population model (and associated parameter values) that

agrees generally with observations, not to produce a definitive method of predicting

O. hupensis distribution in Sichuan. Thus, parameter sets were selected for use in

the sensitivity analysis when the following four criteria were met: 1) the agreement

between simulated presence and historical presence was greater than 50%; 2) the
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agreement between simulated absence and historical absence was greater than 60%;

3) the total agreement between simulated data and historical data was greater than

60%; 4) the agreement at selected locations with specific regional characteristics was

greater than 80%. These rather flexible criteria allowed parameters to be selected

even when fitting the model to the coarse historical data using only temperature as

a predictive variable. Indeed, higher agreement between simulations and historical

data is not expected. For the fourth criteria, three counties in mountainous regions

(n=31 cells) and three counties in the warmer, low-lying regions of the Province

(n=9 cells) were chosen to ensure that selected parameter sets yield output that is

regionally consistent.

2.2.4. Sensitivity analysis

To explore the implications of degree-day model parametric uncertainty, an

analysis of the sensitivity of model output to uncertainty in δmin and K was carried

out at two scales. First, uncertainty was explored intensively at individual locations

(n=6) within Sichuan Province, examining changes in model output with

incremental changes in only δmin, only K, or both δmin and K simultaneously.

Second, sensitivity was explored on a broader scale at cells located across the spatial

domain (n=655), examining the distributional change to larger modifications in δmin

or K. The following sections discuss these analyses.
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2.2.4.1. Individual location analysis

Simulations were run at six cells representing a range of climate conditions

across eastern Sichuan Province (Figure 2.2). At each cell, a baseline time-series of

snail density was obtained by running a single simulation with the parameter set

from the fitting procedure (Section 2.2.3) that had the highest overall agreement

with historical data and using the contemporary temperature dataset as model

input. Next, using the same parameter set, δmin and K were modified by increasing

and decreasing (±40%, in increments of 2%) the original value from the parameter

set. Simulations were then run using these modified parameter sets, leading to a

total of 1681 simulations per cell. For each simulation, mean snail density and day

of first peak in snail density were examined, and their deviation from the baseline

simulation was calculated.

2.2.4.2. Distributional analysis

To investigate how uncertainty in δmin and K affects predictions of future O.

hupensis distribution, simulations were run using the future temperature dataset as

input at a subset (n=655) of cells chosen at equal intervals across Sichuan Province,

with the number of cells per county proportional to county size. For each

simulation, the model was applied at every cell of the subset using the parameters

sets estimated from the fitting procedure. Each simulation produced a daily snail

density at every cell for the three years of simulation input. Daily snail density

across the three years of simulation input was averaged to provide an estimate of
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Figure 2.2: Locations of the six cells chosen for the small-scale sensitivity analysis.

mean snail density, and then averaged across all parameter sets. This process was

repeated to generate a minimum snail density estimate at each cell for use in

projecting regions of snail presence. The minimum snail density threshold, smin (as

described in Section 2.2.3), was used to define snail presence in projected

distributions. To investigate the sensitivity of the results to this threshold, the

analysis was repeated for several values of smin. Mean and minimum snail density

values from the subset grid were spatially interpolated to yield values at all 90 x 90

meter cells across the spatial domain, yielding a baseline distribution and snail

presence estimate for 2050. Finally, sensitivity to changes in δmin and K was

investigated by increasing or decreasing the respective parameter in each set by 5%,
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15%, 25%, or 35% and generating a new geographic distribution and snail presence

estimate that was compared to the future baseline case.

All sensitivity analyses were conducted using MATLAB (version R2009a).

2.3. Results

2.3.1. Temperature projection model

The variables retained in the final model used to generate future temperature

projections are shown in Table 2.3, along with model coefficients. When compared

to the full model, which significantly and systematically over-predicted observed

temperatures (Student’s t, H0:(pred-obs)avg = 0, p < 0.00005), the final (reduced)

model did not significantly over- or under-predict station temperatures (p = 0.72).

The mean difference between the observed mean monthly temperature and the

model-predicted monthly temperature was 0.027 ◦C. What is more, when the final

model was used to project the linear trend observed from 1980-2009 into future

years, there was broad agreement with the IPCC predicted increase of 2.3–4.9◦C by

2100 for the region (Solomon et al., 2007). Thus, the simple linear projections of the

historic warming trend in Sichuan to 2050 were taken as a plausible future scenario

for examining the influence of parametric uncertainty in degree-day models.

2.3.2. Parameter estimation

Among the density thresholds for “presence” explored, a threshold of smin = 7

snails per Kuang (a traditional Chinese sampling frame, equal to 0.11 m2), yielded
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the greatest number of parameter sets with the highest agreement with historical

data, and thus this value was used. However, the simulated distribution of snail

presence across Sichuan was approximately the same over a range of threshold

values. While this minimum density threshold was found to be the best fit to

historical presence/absence data, this does not imply that O. hupensis populations

require this minimum density to persist.

From the 2000 simulations that were run, a total of 81 parameter sets met the

first three criteria. Of these parameter sets, 8 were excluded for failing the fourth

criteria. This yielded a total of 73 parameter sets that were used in subsequent

analyses, with agreement between simulated and historical snail presence ranging

from 50% to 63%, agreement between simulated and historical snail absence ranging

from 61% to 73%, and total agreement between simulations and historical data

ranging from 60% to 66%.

Figure 2.3 shows simulations for each of the 73 parameter sets at two

representative locations, one marked as historical snail presence (left), and one as

historical snail absence (right). Note that since the model was fit using a minimum

density criteria and flexible agreement criteria, the observed variance in snail

density is expected. Additionally, Figure 2.4 shows simulations for each parameter

set using temperature data that was looped to generate twelve years of simulation

input, indicating that model equilibrium is generally achieved within the first three

years of the simulation.
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Figure 2.3: Representative variation in model output (i.e. mean snail density) from

the 73 parameter sets selected in the fitting procedure. Variation is shown at a cell fit

to historical snail presence (left), and a cell fit to historical snail absence (right).
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Figure 2.4: Simulated mean snail density from all 73 parameter sets using twelve

years of looped contemporary temperature data as input.

2.3.3. Sensitivity analysis

2.3.3.1. Individual cell analysis

The sensitivity of model output at three representative cells (locations A, C,

and D; see Figure 2.2) for the contemporary temperature dataset is shown in Figure

2.5, with plots showing the change in mean snail density and the first population
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peak relative to the baseline simulation, given changes in δmin and K. Red colors

indicate an increase in these outputs above the baseline value, while blue colors

indicating a decrease below the baseline value. Results for locations B, E, and F

exhibited similar patterns (data not shown). Decreases in δmin and/or K generally

lead to increases in mean snail density and an earlier first population peak, and

increases in δmin and/or K generally lead to decreases in mean snail density and a

delayed first peak time. Note that the diagonal pattern observed in Figure 2.5 is

due to the inverse relationship between δmin and K, a relationship that can be seen

mathematically in Eqn. 2.1, and indicates a biological trade-off between these two

parameters (Trudgill et al., 2005).

Often, the change in model output tends to be gradual, such as at locations C

and D. However, in some regions even small changes in δmin and/or K can lead to

large changes in model output. First instance, at location A, the baseline snail

density using the contemporary dataset is 7.23 snails per 0.11 m2, with the first

population peak occurring in approximately July of the second year of the

simulation. Decreasing either δmin or K by only 5% (such that δmin changes from 8.5

to 8.075 or K changes from 1440 to 1368) leads to a mean snail density of

approximately 9.8 snails per 0.11 m2 and the first population peak now occurring in

November of the first year of the simulation. Even a change of 0.2% increases the

mean snail density by approximately 24.5% and bumps the first population peak up

to November of the first year (data not shown). Cells that exhibit the more gradual

sensitivity to δmin and K appear to be in areas with temperatures that are often
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Figure 2.5: Percent deviation from baseline simulation output (left column: mean

snail density; right column: time of first population peak) given changes in δmin and

K at three representative locations (Figure 2.2) within Sichuan Province. Red colors

indicate a value greater than the baseline case, while blue colors indicate a value less

than the baseline case. Baseline simulations were run using parameter values of

S0=22.642, µ=0.0049, β=0.4648, α=0.0195, κ=4.4672, δopt=23.08, δmin=8.5, and

K=1440. Percent changes in δmin and K are given along the y- and x-axes,

respectively. Black lines in the plot of mean snail density at Location D (lower left)

indicated the banding pattern observed (see text), while the green symbols in this same

plot correspond to simulation output shown in Figure 2.7.
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Figure 2.6: A) Contemporary temperature data at Locations A (dark grey line), C

(light grey line), and D (black line). B) Baseline simulation output at Locations A

(dark grey line), C (light grey line), and D (black line), using parameter values of

S0=22.642, µ=0.0049, β=0.4648, α=0.0195, κ=4.4672, δopt=23.08, δmin=8.5, and

K=1440.

close to or greater than the minimum temperature threshold (light grey and black

lines, Figure 2.6A) and that exhibit stable population cycles (light grey and black

lines, Figure 2.6B). Alternatively, cells that exhibit a strong sensitivity to δmin and

K appear to be those with temperature that often falls below the minimum

threshold (grey line, Figure 2.6A) or that have unstable population cycles (i.e.

exhibit an inconsistent number of population peaks per year; grey line, Figure 2.6B).

Mean snail density does not always increase strictly monotonically as δmin and

K decrease. Instead, in some cases the mean snail density initially increases as δmin

and K decrease, but then a region appears where the mean snail density is less than

the baseline snail density, producing the banding pattern shown in the lower left

corner of location D (Figure 2.5). As δmin and K decrease further, the mean snail

density is once again greater than the baseline value. To investigate this pattern

further, simulation output at Location D was plotted using parameter values for
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Figure 2.7: Simulation output at Location D using the baseline parameter values

(black line), and two modified parameter sets (grey lines). The first modified

parameter set (dotted grey line) decreased both δmin and K by 26%, while the second

modified parameter set (dashed grey line) decreased both δmin and K by 38%. Legend

symbols corresponding to those found in Figure 2.5.

δmin and K from each of these regions (green symbols, Figure 2.5) and then

compared to the baseline simulation output (Figure 2.7). We see that, following the

first year, the baseline population (solid line, Figure 2.7) experiences two population

peaks per season, one in late spring–early summer, and the second in the fall.

However, when the values of δmin and K fall within the range where the unexpected

decrease in mean snail density was observed (dotted line, Figure 2.7), the seasonal

peaks become disrupted as the timing of the completion of snail development no

longer fully coincides with suitable temperature conditions. The small population

peak observed early in the season is lost, and without this smaller peak to boost the

population size, mean snail density decreases. As δmin and K both become much

smaller than the baseline values (dashed line, Figure 2.7), the seasonal peaks are

again disrupted. However, since δmin and K are now very small, population peaks



60

can occur even in the winter months, leading to two large peaks occurring at regular

intervals throughout the year, and a subsequent increase in mean snail density.

2.3.3.2. Distributional analysis

The sensitivity of predicted mean snail density across Sichuan Province to

changes in δmin and K is shown in Figure 2.8 for the 2050 temperature dataset.

Comparable to the results at individual cells, mean snail density tends to increase as

either δmin or K decreases, and tends to decrease as either δmin or K increases.

Importantly, even a 5% change in δmin or K can lead to large changes in snail

density, particularly around the edge of the snail distribution.

Additionally, the total area of snail presence (defined using a minimum snail

density threshold of smin = 5, 6, 7, or 8 snails per 0.11 m2) changes noticeably with

changes in δmin or K (Table 2.4, Figure 2.9), particularly as either of these

parameters increases. As δmin decreases by 35%, the total area of snail presence

increases modestly by approximately 2%. A similar effect is observed when K

decreases. However, as δmin or K increases up to 35%, the area of snail presence

decreases, in some cases quite substantially. Using smin = 7, a 5% increase in δmin or

K yields an approximately 56% and 42% decrease in area of snail presence,

respectively (equivalent to a decrease of approximately 94,109 or 70,885 km2 from

the baseline area of 167,884 km2). Interestingly, this dramatic decrease is much

reduced as δmin or K are increased further. The large change in area of snail

presence with small changes in δmin or K is not sensitive to the choice of smin (Table
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Figure 2.8: Predicted mean snail density across Sichuan Province in 2050. Each plot

represents the average snail density of the 73 parameter sets, with the center plot

using the original parameter values, the top plots modifying δmin in each parameter

set by the specified amount, and the bottom plots modifying K in each parameter set

by the specified amount. Regions traced in black indicate areas of snail presence using

a minimum snail density threshold of smin = 7.
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Figure 2.9: Predicted mean area and standard error of snail presence in Sichuan

Province in 2050 for smin = 5 (dotted-dashed lined), smin = 6 (dotted line), smin = 7

(dashed line), and smin = 8 (solid line). A) Predicted area given specified changes in

δmin. B) Predicted area given specified changes in K.

2.4, Figure 2.9), although high smin values tend to exhibit even greater sensitivity to

changes in δmin or K.
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Table 2.4: Area of simulated snail presence given changes in δmin or K, with a

minimum snail density threshold of smin = 5, smin = 6, smin = 7, or smin = 8. Values

represent the mean of all 73 parameter sets, ± the standard error.

Change in smin = 5 smin = 6 smin = 7 smin = 8
δmin (%) Area ± s.e. (km2) Area ± s.e. (km2) Area ± s.e. (km2) Area ± s.e. (km2)

−35 200,478 ± 919 188,980 ± 1,639 168,534 ± 3,601 138,316 ± 6,001

−25 200,874 ± 841 190,630 ± 1,434 170,529 ± 3,705 138,858 ± 6,397

−15 201,272 ± 1,029 190,279 ± 1,722 169,932 ± 4,075 132,598 ± 7,151
−5 201,327 ± 887 190,364 ± 1,402 171,023 ± 3,166 139,308 ± 5,827

Baseline 198,736 ± 653 189,507 ± 1,103 167,884 ± 4,173 124,614 ± 7,721

5 151,454 ± 5,677 109,581 ± 7,986 73,775 ± 7,959 34,122 ± 6,353
15 194,830 ± 804 182,048 ± 2,306 144,161 ± 6,921 102,185 ± 8,306

25 188,193 ± 1,064 167,893 ± 4,233 120,732 ± 8,292 86,930 ± 8,347

35 176,676 ± 3,370 145,718 ± 6,365 106,611 ± 8,479 65,993 ± 7,743

Change in smin = 5 smin = 6 smin = 7 smin = 8

K (%) Area ± s.e. (km2) Area ± s.e. (km2) Area ± s.e. (km2) Area ± s.e. (km2)

−35 202,760 ± 837 192,815 ± 1,534 176,674 ± 3,150 145,285 ± 6,087

−25 201,953 ± 804 191,929 ± 1,484 175,564 ± 3,336 139,993 ± 6,711

−15 200,823 ± 765 191,303 ± 1,414 174,300 ± 3,538 135,474 ± 7,240
−5 204,612 ± 807 196,396 ± 1,046 181,682 ± 2,676 155,406 ± 5,176

Baseline 198,736 ± 653 189,507 ± 1,103 167,884 ± 4,173 124,614 ± 7,721
5 177,966 ± 2,741 149,699 ± 5,614 96,999 ± 8,067 51,578 ± 7,386

15 195,105 ± 667 185,398 ± 1,013 149,241 ± 6,095 105,390 ± 8,299

25 191,877 ± 784 178,677 ± 1,947 138,807 ± 6,696 88,751 ± 8,358
35 187,360 ± 1,011 167,894 ± 3,581 120,435 ± 7,505 73,502 ± 8,194

2.4. Discussion

Considerable uncertainty exists in key degree-day model parameters, and even

modest uncertainty in a parameter can have a significant effect on model output.

The analyses presented here show that the timing of peak population levels and the

total area of snail presence are highly sensitive to even moderate changes in two

parameters, the minimum temperature threshold of development, δmin, and the total

degree-days required for development to complete, K. Decreases in these two

parameters generally cause simulated snail populations to exhibit higher mean snail

densities and an earlier first peak in population size, while increases in these two

parameters generally cause simulated snail populations to exhibit lower mean snail
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densities and a delayed first peak in population size. Importantly, even changes as

low as 0.2% can have a striking effect.

This result has important implications in the application of degree-day models,

particularly for predictive forecasting. For instance, reliable predictions of peak

population levels are necessary to inform vector or host control measures (e.g.

predator release, pesticides, chemotherapies), since these measures are often timed

to target specific organism densities or life stages. Estimated peak population dates

that are off by several weeks or months could thus have severe consequences for the

efficacy of timed intervention. In addition, the sensitivity to δmin and K is

particularly pronounced in regions where snail populations are unstable, or where

the yearly temperature profile often falls below or near the minimum temperature

threshold. These regions are likely prevalent along the edges of the existing snail

distribution, and as these regions are highly sensitive to errors in specifications of

δmin and K, the uncertainty in a resulting map of organism distribution using the

degree-day framework is particularly high. Identifying regions that could currently

support vector or host populations, or that might support vector or host

populations under future climate change conditions, is necessary for effective disease

monitoring and for the planning of control and treatment options. If identified

regions are inaccurate, decisions on where to conduct vector or host control or

monitoring activities now, or in the future, will be misinformed.

Another interesting result that emerges from incorporating the degree-day

model into a dynamical population model is the disruption of seasonality that can
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occur given changes in δmin and K. In some cases, a decrease in either of these

parameters will lead to a shift toward a population peak earlier in the season,

enabling the population to peak twice per year. This additional peak could lead to

increases in disease risk, and thus increase the need for control and monitoring

activities. In other cases, this shift in the timing of the population peaks disrupts

the population cycling, leading to dampening, single peaks over the three year

simulation. This predicted decrease in snail density may imply a reduced risk of

transmission, or might indicate that control methods being conducted are effective.

However, since all three results (declining snail density, one peak per season, and

two peaks per season) can be generated by uncertainty in δmin and K, it seems clear

that in order for control measures to be effectively implemented, this uncertainty

needs to be better understood and accounted for.

In addition, parametric uncertainty is only one of several factors to be

considered when applying degree-day models (Chapter 1). Of particular concern is

the assumption of a linear relationship between the rate of development and

temperature (Kontodimas et al., 2004). Although this assumption simplifies the

model and increases its ease of use, insect development is often non-linear (Beck,

1983), exhibiting an exponential increase in the rate of development up to an

optimal temperature, followed by a declining rate above the optimal temperature.

Portions of the nonlinear response curve can be represented linearly; however, this

approximation is only accurate within a limited range of temperatures (Bonhomme,

2000). Thus, the application of these models is constrained to temperature ranges
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that fall within the bounds for which the model was parameterized. In changing

environments, or when applied to questions of climate change, temperatures may

shift outside the range for which the degree-day model can be reliably applied.

Though not incorporated in the analyses above, other factors such as additional

environmental variables (e.g. precipitation, humidity, vegetation, etc.),

anthropogenic effects, and uncertainties associated with estimating future

temperatures (Bergant et al., 2006) should also be considered when making

statements of organism distribution in response to changing climates.

2.5. Conclusion

Care should be used when applying degree-day models to make predictions of

organism distribution and dynamics under scenarios of climate change. Model

output is highly sensitive to changes in model parameters, and thus parametric

uncertainty should always be considered when applying degree-day models.

Researchers should consider conducting their own sensitivity analysis with regard to

model parameters when reporting results; at the very least, the potential impact of

model uncertainty on specific conclusions and recommendations should always be

discussed. Additionally, degree-day models are valid only at intermediate

temperature ranges for which the linear approximation is accurate, and thus, if the

temperature often falls at or beyond the extremes of organism development, an

alternate model should be considered. However, with these cautions in mind, the
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degree-day model shows promise for applications to ecological responses to climate

change, and can be a useful tool for studying temperature-dependent development.
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Conclusion

In this thesis I examined the structural and parametric issues related to the

application of degree-day models, specifically to study the response of organisms to

a changing climate. I found that model specifications are important to consider in

the context of the specific organism and region under study, as different model

specifications (i.e. the choice of a functional response, temperature threshold

cutoffs, and degree-day calculation methods) can lead to substantially different

results. Additionally, I found that degree-day model results are highly sensitive to

uncertainty in model parameters, and that this uncertainty should be accounted for

when applying these models. I conclude that, given the limitations and assumptions

of the degree-day model, their use should be restricted to scenarios for which the

assumptions hold, and used cautiously in studies of climate change. However, when

used within these bounds, the degree-day model can be an insightful tool for

studying temperature-dependent development.
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