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Abstract

Assessing Racial Disparities in Healthcare Expenditures Using Causal Path-Specific
Effects
By Xiaxian Ou

Racial disparities in healthcare expenditures are well-documented, yet the underlying
drivers remain complex and require further investigation. This study employs causal
and counterfactual path-specific effects to quantify how various factors, including so-
cioeconomic status, insurance access, health behaviors, and health status, mediate
these disparities. Using data from the Medical Expenditures Panel Survey, we esti-
mate how expenditures would differ under counterfactual scenarios in which the values
of specific mediators were aligned across racial groups along selected causal pathways.
A key challenge in this analysis is ensuring robustness against model misspecifica-
tion while addressing the zero-inflation and right-skewness of healthcare expenditures.
For reliable inference, we derive asymptotically linear estimators by integrating in-
fluence function-based techniques with flexible machine learning methods, including
super learners and a two-part model tailored to the zero-inflated, right-skewed nature
of healthcare expenditures.
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1 Introduction

Racial disparities in health outcomes are well-documented public health challenges
(32, 81]. Among these, disparities in healthcare expenditures are particularly con-
sequential, reflecting inequities in access to and utilization of medical services [55].
Evidence from the Medical Expenditures Panel Survey (MEPS) consistently highlights
these disparities in the United States [24, 52, 21, 73]. For instance, integrating MEPS
data with the Medicare Current Beneficiary Survey, the National Health Interview
Survey, and the Disease Expenditure project, Dieleman et al. [32] estimated that in
2016, White individuals—who comprised 61% of the U.S. population—accounted for
72% (95% uncertainty interval: 71%-73%) of total healthcare spending across all racial
groups. This disparity underscores differential healthcare utilization between socially
advantaged and marginalized populations, often reflecting avoidable and unjust in-
equities [15]. Understanding the mechanisms driving these disparities is essential for
informing evidence-based strategies aimed at advancing equitable healthcare access.
However, simple aggregate comparisons in healthcare spending overlook how dispar-
ities emerge through distinct pathways, necessitating a framework that isolates the
contributions of different mediating factors.

Racial disparities in healthcare expenditures may arise from a complex interplay
of socioeconomic, structural, and behavioral factors. Socioeconomic status (SES) is
widely recognized as a primary driver, influencing access to resources, quality of care,
and overall health outcomes [92]. Black and Hispanic populations, for instance, expe-
rience higher rates of poverty and lower levels of educational attainment compared to
White populations [19], creating substantial barriers to affording and accessing health-
care [37]. Access to insurance further exacerbates these disparities, as uninsured or

underinsured individuals are less likely to receive timely and adequate care [52, 46].



2
Zuvekas and Taliaferro [99] reported that health insurance accounted for 42% of the

Black-White disparity and 24% of the Hispanic-White disparity in having a usual
source of care. Health behaviors, which are shaped by cultural, social, and economic
contexts, also play a role in shaping disparities [7]. Behavioral differences are evident
across racial groups. For instance, smoking is associated with an annual increase of
$1046 ($846-31247) in per-capita healthcare expenses [1]. Studies also report that
non-Hispanic Asian adults have the lowest prevalence of physical inactivity [20], while
non-Hispanic White adults have the highest rate of cigarette smoking [18]. Health
status, often shaped by cumulative disadvantages, further compounds disparities [53].
Minority populations report poorer self-rated health [9] and have higher rates of chronic
conditions [47]. Despite higher expected medical spending burdens, these groups face
greater barriers to healthcare and are often directed toward lower-quality, less com-
prehensive treatment [21]. Together, these factors create a complex web of influences
driving racial disparities in healthcare expenditures. Understanding their mediating
effects is crucial for identifying intervention points and informing policy solutions.
Empirical studies on racial disparities have traditionally relied on regression-based
methods that compare outcomes or treatments across racial groups while adjusting for
relevant covariates [89, 1, 91]. While informative, these approaches can be problematic
when mediating factors are incorrectly treated as confounders, inadvertently blocking
indirect pathways and failing to properly decompose racial disparities. To address
these limitations, mediation analysis techniques, such as the Baron-Kenny approach,
have been used to examine how disparities arise [8, 45, 12, 48, 31]. However, these
methods often impose strong parametric assumptions, such as linearity, that may bias
estimates when the underlying relationships involve non-linearities or interactions [70].
Moreover, traditional mediation analysis primarily decomposes effects into direct and

indirect components, which can obscure the role of multiple mediators that operate



through distinct pathways.

To address limitations of traditional mediation approaches, we adopt a nonparamet-
ric counterfactual framework for path-specific effects (PSEs) [70, 85, 64]. PSEs allow us
to quantify how race influences healthcare expenditures through distinct causal path-
ways, providing empirical insights for targeted policy interventions. For instance, if the
PSE through insurance access is substantial, this suggests that differences in coverage
contribute meaningfully to healthcare spending disparities. In this case, expanding
Medicaid or implementing broader subsidies could help reduce inequities [61, 27]. Sim-
ilarly, if the PSE through SES is large, policies focusing on education and income
support may be more effective; if health behaviors play a key role, public health cam-
paigns or tobacco taxation may help; if disparities are driven by health status, chronic
disease management and preventive care should be prioritized. Using directed acyclic
graphs [65], we formally map these pathways to quantify their contributions to racial
disparities in healthcare expenditures. Our framework also avoids restrictive paramet-
ric assumptions by integrating flexible statistical and machine learning models into
influence function-based estimators [84, 80, 83].

While causal mediation and path-specific effects provide powerful tools for analyz-
ing disparities, the conceptualization of race as a causal variable remains contention
in both causal inference and health disparities research [41, 88, 36, 86, 66, 39, 44]. As
a socially constructed variable, race cannot be directly manipulated, like a traditional
treatment variable in causal inference, challenging its causal interpretation under the
principle of “no causation without manipulation” [41]. The total or mediated “effect of
race” often reflects a composite of multiple dimensions—including physical phenotype,
genetic background, and cultural context—inherently shaped by historical processes
such as structural and institutional racism (e.g., Jim Crow laws and redlining). This

complexity precludes the definition of plausible hypothetical interventions on race itself
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[89, 43]. Researchers have proposed focusing on manipulable proxies, such as perceived
race, to better understand the mechanisms driving racial disparities. This perspective
aligns with the approach discussed in VanderWeele and Robinson [89], which advo-
cates for estimating the extent to which racial inequality could be reduced through
interventions on manipulable variables, such as insurance access. In line with these
views, this study does not conceptualize race as a manipulable variable but rather as
an analytical starting point to examine disparities in healthcare expenditures. Specif-
ically, we assess how socioeconomic status, insurance access, health behaviors, and
health status mediate racial disparities in healthcare expenditures, a structured frame-
work for identifying interventions that could mitigate inequities. While race itself is
not directly manipulable, targeting its key mediators—shaped by systemic racism and
structural barriers—offers actionable pathways for reducing disparities. For example,
policies that expand educational and economic opportunities, increase insurance cover-
age, promote healthier behaviors through public health initiatives, and improve chronic
disease management can help mitigate inequities. Although such interventions have
inherent limitations—since, for instance, manipulating SES may not fully capture the
broader, nonmodifiable aspects of race—they still provide valuable insights into po-
tential levers for change. By identifying mediated effects along specific pathways, our
analysis highlights critical points for targeted interventions to address inequities in
healthcare spending.

Beyond conceptual challenges, the estimation of path-specific effects presents sev-
eral methodological challenges. Relationships between race, healthcare spending, and
mediating factors are often complex and nonlinear, making model specification a key
concern. Additionally, zero-inflation and right-skewness in expenditure data introduce
further complications, requiring tailored statistical techniques. Existing methods—

including plug-in G-computation [68, 95], inverse odds ratio-weighted estimators [78],
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inverse treatment probability-weighted estimators [50], and regression-based imputa-
tion estimators [90, 98]—are widely used but prone to model misspecification bias. To
mitigate these issues, we employ influence function-based estimators [84, 57, 30, 97],
which provide some degree of robustness against model misspecification in parametric
settings. A key advantage of these estimators, however, is their ability to accommo-
date data-adaptive statistical machine learning techniques, even when the underlying
nuisance estimates converge at rates slower than parametric. Despite this flexibility,
they still retain desirable frequentist properties, such as root-n consistency and asymp-
totic normality, which are crucial for constructing confidence intervals and quantifying
uncertainty [22]. In our estimation pipeline, we employ super learners, which aggre-
gate multiple predictive models to improve robustness and estimation accuracy while
leveraging these statistical guarantees [67]. By integrating these techniques, our ap-
proach enhances the reliability of path-specific effect estimates, offering a more nuanced
understanding of racial disparities in healthcare spending.

This study makes several key contributions to the literature on racial disparities in
healthcare expenditures. First, we develop a path-specific effect framework to quan-
tify the causal mechanisms driving racial differences in healthcare expenditures, offer-
ing a more granular and mechanistic perspective beyond traditional regression-based
methods. Second, we advance estimation techniques by deriving asymptotically lin-
ear estimators based on influence function theory. We further integrate data-adaptive
machine learning methods, such as super learners, to enhance estimation precision,
improve robustness against model misspecification, and effectively handle the complex
data-generating mechanisms underlying healthcare expenditures. Third, we apply this
framework to analyze key mediators—including socioeconomic status, insurance ac-
cess, health behaviors, and health status—using the 2009 and 2016 MEPS data, pro-

viding empirical insights into the pathways through which disparities arise. Finally, we
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contribute the flexPaths R package, expanding the methodological toolkit for causal

path-specific analysis in the study of racial disparities and beyond.


https://github.com/xxou/flexPaths

2 MEPS data and sample description

2.1 Data Source

The Medical Expenditures Panel Survey (MEPS), co-sponsored by the Agency for
Healthcare Research and Quality and the National Center for Health Statistics, is
a large-scale survey that collects detailed data on healthcare costs, use, and insur-
ance coverage from families, individuals, medical providers, and employers across the
United States. MEPS is a crucial resource for health services research and policy
analysis due to its comprehensive individual-level data. For our analysis, we used the
MEPS household components of the 2009 and 2016. The sample size for 2009 MEPS
data was 20,816 after focusing on self-reported non-Hispanic Whites (9,963), non-
Hispanic Blacks (3,971), Asians (1,469), and Hispanics (5,413). The 2016 MEPS data
included 19,529 participants, consisting of self-reported non-Hispanic Whites (8,772),
non-Hispanic Blacks (3,584), Asians (1,537), and Hispanics (5,636).

2.2 Variables

The MEPS samples collected information on individuals’ baseline characteristics, SES,
health insurance access, health behaviors, health status, and healthcare expenditures
across different racial groups. A detailed breakdown of these variables is provided
below.

Baseline characteristics include demographic information such as age and sex, as
well as geographic region. Age is recorded as the exact age of each individual as
of December 31 of the survey year, with the sample ranging from 18 to 85 years
old. Sex, which includes male and female, was verified and corrected during each

MEPS interview. Geographic region is categorized according to U.S. Census regions:


https://meps.ahrq.gov/mepsweb/index.jsp

Northeast, Midwest, South, and West.

SES was measured by income and education. Income level was computed by divid-
ing family income by the applicable poverty line (based on family size and composition)
and classified into one of five categories: negative or poor (less than 100%), near poor
(100% to less than 125%), low income (125% to less than 200%), middle income (200%
to less than 400%), and high income (greater than or equal to 400% of the poverty
line). Education was categorized into four levels: less than high school, high school,
college, and graduate education.

For insurance access, individuals were considered uninsured if they were not covered
by one of the following sources in the survey year: TRICARE, Medicare, Medicaid,
SCHIP, or other public hospital /physician insurance, or private hospital /physician in-
surance.

Health behaviors were assessed using two variables: smoking and exercise. Smoking
status indicated whether an individual was a current smoker, while exercise indicated
whether a person had currently spent half hour or more in moderate to vigorous phys-
ical activity at least five times a week.

Health status was measured across several dimensions: (1) anthropometric mea-
sures, such as BMI (kg/m?); (2) health perception, including perceived health status
and perceived mental health status (both measured on a 5-point scale: excellent, very
good, good, fair, and poor), as well as Physical Component Summary (PCS) and Men-
tal Component Summary (MCS) scores; (3) functional status, assessed by cognition
limitations, social limitations (such as the use of assistive technology and recreation),
and any limitations in daily living activities, functional, or sensory abilities; and (4)
chronic conditions, including diabetes, asthma, high blood pressure, coronary heart
disease, angina, myocardial infarction, stroke, emphysema, cholesterol, arthritis, and

cancer.



9

The outcome of interest is annual total healthcare expenditures, defined as the sum
of direct payments for care provided during the year, including out-of-pocket payments
and payments by private insurance, Medicaid, Medicare, and other sources. Payments

for over-the-counter drugs are not included in MEPS total expenditures.

2.3 Sample description

Table 2.1 presents descriptive statistics on baseline characteristics, SES, insurance ac-
cess, health behaviors, health status, and healthcare expenditures across the four racial
groups in both 2009 and 2016. The racial composition was similar between 2009 and
2016, with non-Hispanic Whites comprising approximately half of the overall sample,
while Asians accounted for the smallest proportion, around 7%. Whites had the highest
median healthcare expenditures at 1,675 $ in 2009 and at 2,093 $ in 2016 repsectively,
whereas Hispanics reported the lowest median expenditures during the same periods.
The medians of healthcare expenditures increased across all racial groups from 2009 to
2016. To assess whether various factors differed significantly across the racial groups,
categorical variables were compared across racial groups using the Chi-square test,
while continuous variables were compared using Kruskal-Wallis rank sum test. Sig-
nificant differences in SES, insurance access, health behaviors, and health status were
observed across all racial groups within 2009 and 2016.

Table 2.2 shows the median healthcare expenditures in both 2009 and 2016 stratified
by race and other characteristic levels. Overall, older adults and those living in northern
and midwest regions tended to have higher median expenditures. Females spent more
in healthcare compared with males. Additionally, individuals with higher educational
attainment and income levels, as well as those enrolled in insurance programs, had
significantly higher healthcare expenditures — nearly 1,400 $ difference of median

for the insured compared to the uninsured. Conversely, participants who engaged in
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regular exercise and reported better health status had lower healthcare expenditures.

These expenditure trends were consistent across the four racial groups.
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Table 2.1: Characteristics across different racial groups

MEPS data in year 2009 MEPS data in year 2016
Characteristic Overall Asians Blacks Hispanics Whites Overall Asians Blacks Hispanics Whites
N 20,816 1,469 3,971 5,413 9,963 | 19,529 1,537 3,584 5,636 8,772
Expenditure 920.0 540.0  758.0 283.0 1,675.0 | 1,118.0 777.0 888.5 396.0 2,093.0
Expenditure > 0 (%) 81.0% 80.4% 79.8% 67.2% 89.0% | 81.9% 82.3% 78.4% 70.6% 90.6%
baseline characteristics
Age 44.0 43.0 44.0 39.0 48.0 46.0 44.0 46.0 41.0 52.0
Male 45.6%  46.8%  40.2% 46.8% 46.9% | 45.9%  47.4% 41.5% 45.9% 47.3%
Region
North 15.0% 14.8% 17.1% 13.5% 15.1% 16.1% 15.7% 16.7% 14.9% 16.7%
Midwest 20.0% 10.8% 16.1% 10.1% 28.3% 194% 12.0% 16.4% 8.7% 28.7%
South 38.3% 17.2% 58.5% 34.3% 35.6% | 38.4% 204% 57.7% 38.4% 33.7%
West 26.6% 57.2% 8.3% 42.0% 21.0% | 26.1% 51.9% 9.1% 37.9% 20.9%
SES
Income
Below poverty 17.2% 9.9%  25.4% 24.0% 11.3% 17.3% 9.6%  26.0% 23.8% 11.0%
Near poverty 5.5% 2.9% 6.6% 7.5% 4.5% 5.4% 4.8% 6.6% 7.6% 3.6%
Low 16.3% 13.3% 18.4% 22.0% 12.7% 15.6% 11.8% 17.3% 20.9% 12.1%
Middle 31.1%  29.1%  30.2% 31.9% 31.4% | 29.2%  23.5% 29.3% 31.2% 29.0%
High 29.9%  44.8% 19.4% 14.7% 40.1% | 324% 504% 20.8% 16.6% 44.3%
Education
< High school 26.5%  14.4% 26.4% 49.3% 15.8% | 23.6% 13.1% 22.0% 42.8% 13.9%
High school 44.4%  30.9% 51.9% 37.3% 47.3% | 42.8% 29.1% 53.9% 39.2% 43.0%
College 14.7% 31.0% 10.1% 6.9% 18.3% 16.4% 30.3% 10.5% 9.3% 21.1%
Graduate 14.5% 23.8% 11.6% 6.5% 18.5% 171%  27.5% 13.6% 8.7% 22.0%
Insurance access
Uninsured 20.2%  14.0% 18.5% 38.5% 11.8% 12.0% 55%  10.0% 25.4% 5.3%
Health behaviors
Smoke 18.1% 8.8% 21.5% 12.1% 21.4% 14.1% 7.3% 19.5% 8.9% 16.4%
Exercise 56.6%  58.9% 53.1% 52.5% 59.9% | 49.6% 45.2% 50.9% 46.4% 51.8%
Health status
BMI 27.1 23.7 28.3 27.5 26.6 27.4 24.1 29.0 28.2 27.1
Mental health
Excellent 36.3%  42.3% 37.4% 34.8% 35.7% | 35.2% 40.1% 38.2% 36.1% 32.5%
Very good 29.4% 29.6% 25.5% 28.1% 31.6% 28.7% 30.3% 25.1% 24.4% 32.8%
Good 26.5%  23.4% 27.5% 29.5% 24.9% | 26.9% 23.0% 27.1% 30.2% 25.4%
Fair 6.3% 3.3% 7.8% 6.6% 6.1% 7.4% 5.3% 7.8% 8.1% 7.1%
Poor 1.5% 1.4% 1.8% 0.9% 1.7% 1.8% 1.2% 1.8% 1.2% 2.2%
Health
Excellent 23.4%  26.8% 21.5% 21.3% 24.7% | 23.1% 27.9% 22.3% 23.9% 22.1%
Very good 31.5%  34.4% 28.4% 28.0% 34.2% | 31.9% 362% 28.3% 26.0% 36.3%
Good 30.1% 289% 31.8% 33.7% 27.7% | 29.5% 27.3% 31.3% 32.3% 27.4%
Fair 11.6% 77%  14.5% 14.0% 9.6% 12.3% 6.5% 14.6% 15.1% 10.5%
Poor 3.5% 2.2% 3.8% 2.9% 3.8% 3.3% 2.1% 3.5% 2.7% 3.7%
PCS 53.2 54.2 52.1 53.7 52.9 53.5 54.8 52.6 53.8 53.2
MCS 53.0 54.0 53.3 51.7 53.7 54.4 54.9 54.8 54.4 54.2
Any limitation 25.6% 12.8% 28.1% 16.4% 31.5% | 25.8% 12.2% 29.6% 17.5% 32.0%
Social limitation 4.3% 1.5% 5.6% 2.3% 5.4% 6.3% 2.8% 7.1% 3.6% 8.2%
Cognition limitation 4.4% 2.2%  6.0% 3.1% 4.7% 6.3% 3.8%  7.9% 4.5% 7.2%
Diabetes 9.4% 75%  12.4% 9.4% 8.6% 11.6% 9.5%  14.8% 11.9% 10.4%
Asthma 8.8% 5.3% 10.2% 6.5% 10.0% 9.3% 5.5% 11.8% 7.5% 10.0%
High blood pressure 32.8% 25.7% 43.1% 24.1% 34.4% | 34.7%  25.4% 45.0% 26.7% 37.2%
Coronary heart disease 5.6% 2.5% 5.3% 3.7% 7.2% 5.3% 2.7% 4.7% 4.3% 6.6%
Angina 2.7% 1.2% 2.3% 1.8% 3.6% 2.3% 1.3% 1.7% 1.4% 3.3%
Myocardial infarction 3.6% 1.2% 3.6% 1.9% 4.9% 3.8% 1.6% 3.8% 2.4% 5.1%
Stroke 3.6% 1.4% 5.0% 1.9% 4.2% 4.3% 2.1% 6.3% 2.4% 5.1%
Emphysema 2.1% 0.4% 1.6% 0.6% 3.3% 1.9% 0.6% 1.4% 0.6% 3.1%
Cholesterol 30.3% 28.0% 28.7% 24.7% 34.4% | 31.6% 28.0% 29.1% 27.0% 36.1%
Arthritis 24.0% 12.5% 27.2% 13.8% 30.0% | 26.4% 13.7% 28.0% 16.0% 34.6%
Cancer 8.4% 2.7% 5.0% 3.2% 13.4% 9.5% 2.7% 6.0% 4.5% 15.3%

Continuous variables are presented as median
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Table 2.2: Median healthcare expenditures stratified by race and characteristics.

Expenditures in year 2009 Expenditures in year 2016
Characteristic Overall Asians Blacks Hispanics Whites Overall Asians Blacks Hispanics Whites
Baseline characteristics
Age < 45 363 324 284 120 729 389 360 266 181 869
> 45 2,164 1,149 1,799 921 2,901 | 2,516 1,817 2,296 1,195 3,399
Male No 1,326 778 1,110 538 2,236 | 1,578 1,050 1,274 662 2,700
Yes 529 349 331 85 1,146 681 486 413 181 1,470
Region North 1,237 687 964 506 1,924 | 1,459 723 759 775 2.479
Midwest 1,173 371 952 305 1,585 | 1,449 535 1,111 406 1,917
South 857 342 681 249 1,656 922 497 846 290 2,041
West 689 633 732 243 1,696 994 1,021 994 418 2,191
SES
Income Below poverty 553 376 578 174 1,484 884 1,335 896 386 2,175
Near poverty 699 342 862 220 1,668 774 251 1,084 280 2,487
Low 561 477 566 190 1,297 752 589 779 300 1,919
Middle 818 352 842 276 1,408 922 832 683 377 1,731
High 1,533 725 1,036 777 2,031 | 1,692 803 1,225 809 2.339
Education < High school 494 280 750 210 1,411 696 881 1,003 370 1,908
High school 840 349 625 262 1,536 956 720 666 300 1,936
College 1,325 690 1,277 710 1,770 | 1,533 846 1,265 679 2,098
Graduate 1,577 883 1,149 652 2,124 1,806 773 1,401 1,129 2,560
Insurance access
Uninsured No 1,428 703 1,099 699 2,052 | 1,445 875 1,121 695 2,292
Yes 40 40 69 0 150 0 0 0 0 150
Health behaviors
Smoke No 985 590 852 289 1,843 | 1,152 848 918 385 2,252
Yes 615 240 385 202 1,015 923 332 760 547 1,281
Exercise No 1,212 490 1,150 300 2,543 | 1,483 832 1,460 466 2,859
Yes 757 576 484 259 1,261 857 747 525 320 1,569
Health status
BMI < 18.5 617 335 469 170 1,246 | 1,065 1,028 614 206 2,058
18.5-24.9 722 497 340 198 1,305 942 733 408 274 1,768
> 24.9 1,049 642 922 323 1,908 | 1,233 913 1,043 449 2.307
Mental health Excellent 613 386 429 151 1,156 644 520 427 229 1,419
Very good 914 731 594 283 1,573 1,106 735 812 369 1,830
Good 1,118 605 1,159 346 2,272 | 1,475 1,234 1,300 503 3,091
Fair 3,095 2,084 2,808 1,588 4,720 | 3,410 3,357 3,451 2,216 4,757
Poor 6,094 1,785 4,290 5,905 7,050 | 7,108 5,201 7,123 8,329 6,856
Health Excellent 380 300 184 50 823 409 395 190 115 1,046
Very good 792 465 513 203 1,436 948 615 559 333 1,689
Good 1,075 697 1,026 312 2,236 | 1,441 1,254 1,300 485 3,045
Fair 2,912 2,044 2,670 1,229 5,614 | 3,315 2,187 3,386 1,435 6,382
Poor 8,013 2,756 11,078 6,138 9,785 | 11,404 7,190 8,147 10,895 13,032
PCS < 50 2,716 1,196 2,199 1,167 4,094 | 3,574 2,242 3,057 1,890 5,253
> 50 480 360 328 117 945 549 486 344 196 1,171
MCS < 50 1,251 595 1,178 539 2,211 | 1,865 1,054 1,836 847 3,039
> 50 750 499 562 159 1,427 861 659 606 272 1,750
Any limitation No 539 405 389 171 1,078 619 596 393 250 1,255
Yes 3,718 2,322 3,138 2,770 4,248 | 5,237 4,308 4,546 3,774 6,158
Social limitation No 827 516 648 254 1,536 968 735 739 358 1,839
Yes 8,852 7,775 8,852 9,997 8,503 | 9,093 9,005 9,097 9,148 9,140
Cognition limitation No 833 506 646 250 1,556 980 725 729 353 1,908
Yes 7,539 4,338 6,407 6,770 8,142 | 7,977 8,590 7,709 8,196 7,856
Diabetes No 739 465 518 200 1,429 878 623 593 292 1,751
Yes 4,745 3,599 5,291 2,693 6,063 | 5,886 3,142 5,423 3,631 7,624
Asthma No 828 489 676 244 1,557 992 729 766 346 1,934
Yes 2,508 1,480 2,092 1,256 3,395 | 3,115 2,613 2,555 2,207 3,927
High blood pressure No 469 340 245 127 992 557 460 267 223 1,235
Yes 2,713 1,896 2,231 1,548 3,639 | 3,191 2,569 2,662 1,825 4,307
Coronary heart disease No 800 500 648 250 1,477 995 744 805 357 1,883
Yes 6,223 4,220 7,982 3,650 6,799 | 7,394 6,656 7,569 4,526 7,984
Angina No 863 509 725 263 1,579 | 1,058 772 857 383 1,973
Yes 6,129 7,285 6,324 5,600 6,219 | 8,285 2,465 7,422 7,351 9,445
Myocardial infarction No 845 515 694 261 1,550 | 1,022 766 817 372 1,932
Yes 6,332 4,796 8,095 4,624 6,828 | 6,937 4,803 6,736 7,116 7,117
Stroke No 846 507 662 262 1,563 | 1,017 748 776 372 1,934
Yes 6,373 4,352 6,307 3,276 7,185 | 7,268 6,014 7,865 4,446 7,504
Emphysema No 875 533 732 275 1,586 | 1,070 7T 864 391 1,983
Yes 6,386 1,665 6,810 6,648 6,599 | §,119 903 5,570 7,869 9,330
Cholesterol No 492 342 366 135 972 570 436 395 212 1,196
Yes 2,717 1,626 2,68 1,308 3,602 | 3,205 2,387 3346 1,722 4,376
Arthritis No 547 400 383 183 1,028 604 568 435 256 1,208
Yes 3,622 3,299 2,827 2,468 4,370 | 4,442 3,827 3,590 3,179 5,076
Cancer No 757 497 680 250 1,355 916 741 788 358 1,690
Yes 4,919 5,806 3,713 4,694 5,088 | 5,697 5,246 5,343 4,072 5,931

Healthcare expenditures are presented as median
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3 Disparity definition, identification, and estimation

3.1 Path-specific effects as measures of disparity

One approach to measuring racial disparity in healthcare expenditures is to assess
whether differences persist if, counterfactually, everyone in the population were as-
signed to one racial group versus another. Let R denote race and Y denote healthcare
expenditures, with counterfactual outcomes Y (1) and Y (0) representing healthcare ex-
penditures if individuals were, hypothetically, members of racial group R = 1 (e.g.,
White) and R = 0 (e.g., Black), respectively. The total racial disparity can thus be
defined as the population-level contrast E[Y (1)] — E[Y(0)], which captures the overall
effect of race on expenditures.

While this provides a measure of total disparity, interpreting the counterfactuals
Y (1) and Y'(0) is complicated because race is not a manipulable treatment in the con-
ventional sense, as discussed in the introduction. Rather than representing a direct
intervention, race reflects social, historical, and structural factors that shape lived ex-
periences and access to resources [87]. Thus, counterfactual comparisons between racial
groups should be understood as quantifying systemic inequities rather than simulat-
ing hypothetical experiments in which race itself is altered. Despite these conceptual
challenges, the total effect remains a meaningful measure of structural disparities, cap-
turing how racialized differences in social positioning translate into unequal healthcare
expenditures. While it does not directly inform intervention strategies, it serves as
a diagnostic tool for identifying the magnitude of disparities and motivating further
investigation into the mechanisms driving them.

Despite these conceptual challenges, the total effect remains a useful diagnostic

tool. However, even if we accept this interpretation, recovering the total effect in



14

Figure 3.1: A causal diagram where: (a) R affects Y, with X influencing Y but
unaffected by R; (b) X and R share a spurious association (bidirected arrow); (c) M
mediates the effect of R on Y, with X influencing both M and Y.

observational data presents additional challenges. If race were truly exogenous (Fig-
ure 3.1(a)), the observed mean difference, E[Y | R = 1] — E[Y | R = 0], would directly
identify the total effect, E[Y'(1)] — E[Y(0)]. However, in real-world data, race is of-
ten marginally associated with baseline factors such as age, sex, and region. These
associations arise possibly because race, as a socially constructed category, is shaped
by unmeasured variables—such as parental characteristics, neighborhood context, and
historical structural factors—that also influence demographic patterns and geographic
distributions [89, 4, 43]. Although these covariates may not be causally related to race
(as indicated by bidirected arrows in Figure 3.1(b)), adjusting for them (under com-
mon identification assumptions) allows us to recover the total effect via the g-formula
68]: [y{dP(y| R=1,2) —dP(y | R =0,2)}dP(z). The g-formula can be estimated
using a regression-based plug-in estimator; however, this approach may yield a biased
estimate of the total effect due to outcome model misspecification or improper covari-
ate adjustment, such as blocking part of the racial effect by including downstream
mediators like SES or insurance access in the regression model.

Even if we could estimate the total effect without bias, it remains a summary mea-
sure that does not reveal how race influences expenditures. To unpack mechanisms
driving disparities in the presence of multiple mediators, we employ path-specific ef-
fects (PSEs) [70], which decompose the total effect into components corresponding to

different mediating pathways. Unlike standard mediation analysis, which typically par-
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SES (M) Health Behaviors (Ms)
Income Smoke .
Expenditures
Race Education Exercise P
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Figure 3.2: A graphical representation of the relations between race, baseline factors,
mediating factors, and healthcare expenditures, highlighting pathways via SES, Insur-
ance access, Behavioral factors, and Health Status, as described in Chapter 2.

titions effects into a single direct and indirect pathway (Figure 3.1(c)), PSEs provide
a more detailed decomposition by estimating how racial disparities propagate through
specific causal pathways. In our context, these pathways correspond to our four key
mediators: SES (M), insurance access (M), health behaviors (M3), and health status
(My), as illustrated in Figure 3.2.

We define PSEs as population-level contrasts between counterfactual outcomes un-
der two scenarios. In one, race is set to a reference level (R = 0), allowing its influence
to propagate naturally through all downstream variables. In the other, along selected
pathways, mediators take the values they would have under the non-reference racial
group (R = 1), while along non-selected pathways, mediators behave as if race were still
at the reference level. This follows the path intervention framework of [71] and ensures
edge consistency, avoiding the recanting witness problem associated with parameter
non-identifiability.

We consider five PSEs: the direct effect, corresponding to the direct pathway {R —
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Y}, and four mediated effects, each capturing the impact of race through a distinct
mediator My (k=1,...,4). A mediated effect includes all paths from R to Y passing
through My, represented as {R — My — Y, R — My — ... — Y}, or more compactly,
{R — My ~ Y},

To formalize this, let (rg,r) denote the counterfactual race values along the five
specified pathways, where 79 € {0,1} and r = (r1,7r9,73,74) € {0,1}*. The setting
r = 0 reflects a scenario where all mediators take values under the reference racial
group. For a mediated effect through M;, we set r to 1, an indicator vector with
the k-th element set to 1, meaning race is set to the non-reference level only along
pathways involving R — Mj,.

We define the potential outcome:

Y (ro, 1) ::Y(ro,Ml(rl),Mz(rg,Mf),Mg(rg,Mf,M;),M4(r4,Mf,M§,M§)> . (3.1)
=M7 =M§ =M§

where mediators are recursively defined as follows: M(ry) (shorthand: MfY) is the
counterfactual M; if R = ry, Ms(rq, MY) (shorthand: M) is the counterfactual M, if
R =ry and M; = M. This recursive structure continues for all four mediators. Using

this notation, we define the expected potential outcomes:
TR—Y = E[Y(]-a 0)] ) YR—My~Y = E[Y(07 ]-k?)] ) Vref = E[Y(()’ 0)] . (32)

The corresponding path-specific effects are defined as:
PR—Y "= VYR—Y — Vref » PR—My~Y ‘= VYR—M~Y — Vref - (3.3)
In defining the PSEs above, we use a reference-zero potential outcome, i.e., Y'(0,0).
This approach sets race to R = 1 (the “active” value) along the pathways of interest
while holding it at R = 0 (the “inactive” value) elsewhere, and compares the resulting
outcome to the baseline Y'(0,0). The resulting contrasts are often referred to as natural
path-specific effects [97]. These estimands reflect the disparity that would remain (or

be eliminated) if a single mediator were counterfactually aligned across groups, while
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others remained unchanged under the reference race. Importantly, these PSEs are not
mutually exclusive and do not decompose the total effect additively. Rather than parti-
tioning the total effect across mediators, we focus on the individual contribution of each
pathway in isolation. For comparison, we also consider a sequential decomposition—
where the total effect is broken down cumulatively across mediators—in Appendix B
26, 74, 76].

A significant PSE indicates the contribution of specific pathways to population-level
racial disparities. Assuming R = 0 represents Black population and R = 1 represents

White population, the effects defined in (3.3), are described in Table 3.1:



Table 3.1: Interpretation of decomposed racial disparity effects

Effect Interpretation

PR—Y Represents structural disparities—the expected difference in healthcare
expenditures if individuals were White vs. Black, with all mediators
(SES, insurance access, health behaviors, health status) held at levels
observed for Black individuals. Often interpreted as the direct effect
of perceived race [87], capturing inequities not explained by mediators.
Under a weaker interpretation, this is the disparity that persists if me-
diators for Black individuals are set equal to those of Whites.

PR—My~Y Captures the effect of race on expenditures through SES. Compares a
hypothetical Black population to one where SES takes values had indi-
viduals been White, with downstream mediators adapting accordingly.
Suggests that addressing socioeconomic barriers could reduce inequities.

PR—MosY Captures the effect through insurance access. Compares expenditures
for a Black population to one where insurance access reflects that of a
White population, with downstream mediators (health behaviors and
status) adjusting accordingly. SES remains at Black population levels.
Suggests expanded coverage could help reduce inequities.

PR—M3~Y Captures the effect through health behaviors. Compares a Black popula-
tion to one with White-level health behaviors, with health status adjust-
ing accordingly. SES and insurance access remain at Black population
levels. Suggests promoting healthy behaviors may reduce disparities.

PR MY Captures the effect through health status. Compares expenditures for
a Black population to one with White-level health status, holding SES,
insurance access, and health behaviors at Black levels. Suggests improv-
ing chronic disease management may help reduce disparities.
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Let M), = (Mjy,--- , M) and Ty, be a realization of M, (for k = 1,...,4), with M, and

Mo assumed to be the empty sets. We rely on the following assumptions to identify

the counterfactual parameters defined in (3.3):

(A1) Consistency, which indicates that observed outcome and mediators match their

counterfactuals when race and mediator values are set at observed values; i.e.,

Y(T,m4) =Y if R = r and M4 = m4’ and Mk(ramkfl) — Mk if R = r and

My =myp_1.

(A2) Positivity, which declares that P(R=1| X = x) > 0 when P(X = z) > 0, and

P(R=1| M =m, X =) >0 when P(My =y, X =) > 0.

(A3) Ignorability, which states that race is independent of all counterfactuals given X

and any mediator counterfactual is independent of future mediator and outcome

counterfactuals given the observed past,

Y (ro, ma), Ma(ra, m3), M3(rs, ma2), Ma(ra, m1), Mi(r1) L R| X,
Y (ro,my), My(re,ms3), M3(rs, ma), Ma(re,my) L Mi(r) | R, X ,
Y (ro,my), My(re,m3), M3(rs, m2) L Mao(r,mq) | My, R, X ,
Y (ro,m4), My(rq,m3) L Ms(r,ms) | Mo, R, X |

Y(To,m4) L M4(T’, mg) ‘ Mg,R,X .

(A3.1)
(A3.2)
(A3.3)
(A3.4)

(A3.5)

Assumptions (Al) and (A2) are standard in the causal inference literature. As-

sumption (A3) involves “cross-world” independencies, which hold under nonparamet-

ric structural equation models with independent errors [65]. In this framework, each

variable is generated by an unrestricted structural equation—a nonparametric func-

tion of its direct causes (parents in a DAG) and an exogenous error term—where error
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terms are assumed to be mutually independent. The cross-world assumptions in (A3)
are subject to debate, as they govern interdependencies between race, mediators, and
outcomes across hypothetical scenarios that may not co-occur in observable reality.
Alternative mediation effect definitions, such as separable effects or stochastic inter-
ventions [29, 75, 56, 28|, provide different perspectives on mediation estimands and
cross-world identification assumptions. While these approaches offer useful insights,
we do not pursue them here.

Under these assumptions, the counterfactual means vief, Yr—yv, and Yr_ s, -y, for
k =1,2,3,4, defined in (3.2), can be identified using the edge g-formula, as described
in [70, 72].

Theorem 3.2.1. Given Assumptions (A1), (A2), and (A3), the counterfactual means
defined in (3.2), are identified as follows:

Yref = /ydP(y ‘ R = 0,$)dP(CE) s

4
YR—Y = /ydP(y | my, R=1,2) H dP(my | mg_1, R = 0,2)dP(z) , (3.4)
k=1
4
YRS MY :/ydP(y | M4, R =0,2)dP(my | mp—1, R =1,2) [[ dP(m;|m;1,R=0,2)dP(z) .
J=1,j#k

See a proof in Appendix A.1.

Given the identification functionals in Theorem 3.2.1, the effects defined in (3.3)
are simply identified by contrasts of identification functionals for yz_,y and yr_nr, v
against Vyef.

There is a substantial body of literature on flexible estimation of causal effects
within non/semiparametric models [84, 5, 80, 82, 22]. This includes robust estimation
of mediation effects involving one or multiple mediators [79, 57, 11, 97]. In the following
section, we develop one-step corrected plug-in estimators using nonparametric influence

functions for the identification functionals in (3.4). Our estimators are closely related
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to those proposed by [97] for identifiable path-specific effects.

3.3 Estimation techniques and multiply robust estimators

Given n ii.d. copies of observed data, {O; = (Yi, My, Ri, X;) 1 i = 1,...n}, drawn
from distribution P, the effects of interest with the identifying functionals derived from
Theorem 3.2.1 can be estimated using plug-in estimates of nuisance functional param-
eters, including the outcome mean regression and conditional densities of mediators,
while empirically evaluating the distribution over covariates X. However, such plug-in
estimates (i) may suffer from substantial first-order bias, and (ii) can be computa-
tionally challenging due to the need for estimating conditional densities of mixed-type
(discrete and continuous) multivariate mediators in our data. In the following, we
derive estimators to address these two main limitations. We particularly focus on
estimations of counterfactual means vy and yr_,ar, -y, since 7ref is the adjustment
functional [68, 65], and the estimation has been extensively discussed in prior literature
[5, 80, 83, 84, 22].

To address the first issue regarding first-order bias, we can analyze the stochastic
properties of the plug-in estimator by utilizing a linear expansion. For an integrable
function f defined on the observed data O, let Pf := [ f(0)dP(o) denote the ex-
pectation under the true distribution P, and let P,f = 3" | f(O;) represent the
empirical average based on the sample. The linear expansion of the plug-in estimator
for parameter v, denoted by yplug‘i“(Q) (where Q is the collection of nuisance esti-
mates) is given by: APU(Q) = ~(Q) — P®(Q) + Ry(Q,Q), where & denotes the
gradient (or influence function) of the parameter, and RQ(Q, @) denotes the remainder
terms of second and higher orders from the linear approximation. The term —P@(Q)
is the plug-in’s first-order bias, due to substituting Q for the true nuisance parameters

in ®(Q). Although ® has zero expectation under P (i.e., P® = 0), this bias may
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still be significant. By deriving the nonparametric influence functions for the counter-
factual means, we apply a one-step correction that debiases the plug-in estimator by
adjusting for an estimate of its first-order bias (i.e., —P,®(Q)), yielding the estimator
Q) = APER(Q) + PO(Q) (13, 84, 22,

To address the second issue regarding density estimation and numerical integra-
tion, we parameterize the nonparametric influence functions to bypass these tasks. We
rely on the following key nuisance functional components: (i) the propensity score
P(R=1] X), denoted as 7(X); (ii) the binary regressions P(R =1 | M}, X) denoted
as gr(My, X); (iii) the outcome regressions E[Y | My, ro, X] denoted as ju, (M, ro, X);
(iv) the sequential regressions By(My_ 1,75, X) = Elux(My, 10, X) | Myp_1,73, X,
Cp, (11, X) = E[Bp(My_1,74, X) | 71, X], and €, (r1, X) = E[pa(My, 70, X) | r1, X];
and (v) the marginal distribution of covariates, Px. Let @ = {m, {9, tx, Bk, Cs, :
Vk},C,,} collect all the nuisances. The influence functions for yp_,y and yr_ -y,
denoted by ®p_,y(Q) and Pr_ .y (Q), respectively, are given as follows: (See de-

tailed derivations in Appendix A.2.)
R; 1—ga(My;, X;)

Pry(Q)(0;) = 1 7(X)  ga(Mas X0) {Vi— pa(Myi, R=1,X;)} (3.5)
+ 11_;(};12) {pa(M4;,R=1,X;) — €, (R=0,X;)} + Cuy(R=0,X;) — Yay ,
PR M-y (Q)(05)

_1-R ge(Mpi, Xi) 1= g1 (Mp—1,4, X5)
1—m(Xs) 1—gpe(Mpi, Xi)  gr—1(Mp—14, X;)
R; 1 — gp—1(My—1,,X;)

+ - :U’k‘(Mk‘,ia R= OaXZ) - Bk(ﬂk—l,ia R= ]-a X’L)
1—=7m(Xs)  geo1(My—1,4,X5) { ;
1—R; —
+ ?(X) {Bk(Mk—l,ia R= 1,Xi) - eBk(Tlei)} + G‘Bk(rla Xi) — YR—Mjp~Y -

(3.6)

Given the observed sample, we can use flexible statistical and machine learning

models to estimate regressions T, gi, i, while By, Cg,,€,, can be estimated via a
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sequential regression scheme. Estimation of By, involves constructing a pseudo-outcome
variable jij (Mk,i, ro, X;), setting R; = 1 for all observations. This pseudo-outcome is
then regressed on Mj,_1, X using only data points where R; = ry, yielding estimate Br.
Estimation of €z, involves constructing a pseudo-outcome variable @k(ﬂk_u, Ty Xi),
setting R; = 1, for all observations. This pseudo-outcome is then regressed on X using
only data points where R; = ry, yielding estimate égk. Finally, €,, can be estimated
via first constructing the a pseudo-outcome variable ﬂ4(ﬁ47i,ro,Xi), setting R; = o
for all observations, and then regressing this pseudo-outcome on X using only data
points where R; = ry, yielding estimate éu4- Let Q collect the nuisance estimates. Our
one-step estimators of Y,y and Yg_,n -y, defined in (3.2) and identified in (3.4), are

given as follows:

n

L1 R 1—gs(My,, X;) .
IS == : Y; — iu(My;, R=1,X;
Ty (@)= 2 {i= X aaQlaxy O R=1X0)
+1_7Ri{ﬂ4(M4i R=1,X;)—C,(R=0,X;)} +Cu(R=0 XZ-)}
1 _ﬁ_(XZ) 2 ) Ha i M4 I 9

_ 1 { 1-Ri  g1(Mpi, Xi) 1= gr1(My—1,:, Xi)
1—7

~ /T ~ - 1/1 - ,&/k(ﬂk,h R = OvX’L)
(Xi) 1—gs(Mys, Xi)  gp—1(Mp—1,, Xi) { J

i=1
R; 1= g1 (My—14, Xs) (. — S
+ - — : fe(Mpi, R=0,X;) = Bp(Mp—1:, R=1,X;)
1=#(Xs) g1 (Mp—1;, Xi) { }
|- R . — . .
+ T(Xi){i%k(Mk_u, R=1,X;)—Cg, (r, X))} + g, (rl,Xi)} . (3.8)

Let 4 (Q) denote either vf_,(Q) in (3.7) or VEaMka(Q) in (3.8). Asymptotic

~

properties of 47 (Q) can be established through analyzing a linear expansion: 4+ (Q) —

Q) = Pa(®(Q)+H(Pa=P)(2(Q)~®(Q))+Ra(Q, Q). The term P (2(Q)) is Op(n™"/?)
(under central limit theorem), and the term (P, — P)(®(Q) —®(Q)) is op(n~"/2) (under

regularity conditions detailed in Appendix A.3). Thus, 7*(Q) is asymptotically linear
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if Ry(Q, Q) = op(n~/2). The following theorem formally states sufficient requirements

for the one-step corrected plug-in estimators to be asymptotically linear. Detailed

derivations of the remainder terms are provided in Appendix A.3.

Theorem 3.3.1. Assume the the following L*(P) convergence rates for the nuisance
S ER

estimates: HW—WH = op(n=0), [k — gill = op(n %), [€u, — Cpll = 0p(n<), ||Cn, —

Cs, || = op(n ®), 1By — Byl = op(n”®), |l — il = op(n” ™) for k = 1,2,3,4.

Under regularity conditions detailed in Appendiz A.3,

CifE+ 1> 1 and i + m%; > 1 then \/ﬁ(yg_w(@) — YRy (Q)) is asymptotically

normal with variance equal to E[®% 1 (Q)];

2 if et > g ety 2 g and s > 5,k =1,2,3,4, then n(Vh oy (Q)—

fyR%Mkwy(Q)) is asymptotically normal with variance equal to E[@RﬁMkwy(Q)]

See a proof in Appendix A.3. Given that 7 = gy, B; = C3,, we have a = by and
d1 == ll.
The L?(P) convergence assumptions in Theorem 3.3.1 establish that Ry(Q) =

op(n/?), even when flexible models with slower convergence rates than n~'/2

are
used for nuisance functional estimations. Moreover, Theorem 3.3.1 implies certain ro-
bustness behaviors for consistency of 7*(@), formalized in the following corollary. (See

a proof in Appendix A.3.)

Corollary 3.3.2. Under regularity conditions detailed in Appendiz A.3, the one-step

estimators are consistent if at least one of the following estimates are consistent:
1. For v (Q): (i) & and gu, (i) 7 and fis, or (iii) Cp, and jis;

2. For vty y(Q), k=1,2,3,4: (i) #, gx1, and Ge, (i1) 7, gx—1, and fu, (iii) 7,

By, and fu, or (iv) Cs,, By, and fiy.
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Given that m = gp and B; = Cgp,, when k£ = 1, the third set of nuisance estimates for

consistency of v, , Mka(Q) is a superset of the fourth condition, making it redundant.
Corollary 3.3.2 suggests that 7*(@) can achieve consistency even if certain parts of the
underlying observed joint distribution are misspecified.

One-step corrected plug-in estimates of PSEs pr_y and pr_ -y, defined in (3.3),
can be obtained via one-step corrected plug-in estimates of Yr_yy, YrRo My, and Yyer.
Such an estimator for v, is known as the augmented inverse probability weighted es-
timator, which we denote by %fgf(Q), where Q is a slight abuse of notation that refers

to estimates of the propensity score P(R = 1 | ), noted as m(x), and the outcome

regressions E[Y | r, z], represented as pio(r, ). Thus, we can write:

PE%Y(Q) = 'VE—>Y(Q) - ’7;f(Q) ) PE%Mkwy(Q) = 'VE_UV[kwy(Q) - %tf(Q) . (3.9)
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4 Empirical analysis of the MEPS data

We apply our methodological framework to the MEPS data, described in Chapter 2.

4.1 Implementation details

To estimate the PSEs of interest using the estimators outlined in (3.7), (3.8), and
(3.9), we fit each nuisance function-valued parameter in Q@ = {m, {gk, i, B, Cs, :
Vk}, €., }, as described in Chapter 3.3, using super learners. This ensemble learning
method combines flexible statistical and machine learning models via cross-validation to
mitigate model misspecification and improve predictive accuracy [83, 67]. We include
mean, glm, glm.interaction, gam, glmnet, earth, ksvm, xgboost, randomForest,
dbarts as candidate learners.

When estimating outcome regressions g (M, 7o, X ) using MEPS data, challenges
arise from zero-inflated and right-skewed distribution of healthcare expenditures, as
shown in Figure 4.1. In health economics, the two-part model is widely used to address
such complexities [52, 1, 73]. This approach models the data as a mixture by separating
it into two parts [10]: the first part estimates the probability of a non-zero response
P(Y > 0 | My, R, X), and the second part models the distribution of the positive
responses, P(Y | Y > 0, M}, R, X). The conditional mean of the outcome can then be
expressed as E[Y | My, R, X] = P(Y >0 | M},R,X) xE[Y | Y > 0, M, R, X]. The
probability of a non-zero response can be readily estimated using flexible learners, while
the mean of positive responses is often modeled with generalized linear models (GLMs)
that assume a Gamma or Lognormal error distribution to handle right-skewed data
[14, 54]. Wu et al. [94] propose an alternative two-stage super learner, which includes
GLMs with Gamma distribution and various link functions as candidate learners. Using

these estimation methods, predictions for the i-th observation is obtained by combining
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Figure 4.1: The empirical distribution of healthcare expenditures in the MEPS data.

the results from the two-part model, i.e., fi,(M},;, 70, X;) = p(Y > 0| My, 70, X5) X
E[Y | Y >0, My;,70, Xi].

We adapted a two-part model to estimate the regressions u;(My, ro, X), incorpo-
rating a log-transformation of the positive healthcare expenditures. Given the skewed
distribution of these expenditures, reporting effects on the arithmetic mean scale (i.e.,
without log-transformation) can be overly sensitive to extreme values. By applying a
log-transformation, we instead report the effects on the geometric mean scale, which
is less influenced by extremes and thus more appropriate for skewed data, as detailed
below [6].

Assuming healthcare expenditures are positive, we consider the log-transformation
of the potential outcomes defined in (3.1), and express the direct and indirect effects
as:

exp(prsy) = exp(Ellog ¥ (1,0)] — Eflog Y(0,0)]) ~ Go(Y(1,0)) /G, (Y (0,0)) ,

exp(prom—y) = exp(E[log Y (0,1)] — E[log Y (0,0)]) =~ G, (Y (0,1%))/Gr(Y (0,0)) ,

where G,,(f) denotes the geometric mean of f, i.e., G,(f) = {I]\_, fi}!/". These ex-
pressions represent the ratio of geometric means of the respective potential outcomes,

providing a clear interpretation of the relative difference in healthcare expenditures
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attributable to racial differences. A value greater than one suggests higher geometric
mean expenditures under the active condition, while a value less than one indicates
lower expenditures. Identification and estimation, as discussed in Chapther 3, extend
naturally by considering the log-transformed positive healthcare expenditures as the
observed outcome. The delta method is then used to compute the variance of the
transformation for inference. The calculated effects are then reported using expo-
nential re-transformation, placing them to the original scale with a geometric mean
interpretation.

To address the zero-inflated nature of expenditures in our data, we redefine the ob-
served outcome as [(Y > 0) x log Y, ensuring that the log transformation is restricted
to positive responses. We then modify the second part of the two-part model to esti-
mate EflogY | Y > 0, M}, 79, X] under the assumption of a normal error distribution.
Effects are reported as exp(pr_y) and exp(pr—m,~v ), interpreted as the ratio of geo-
metric means of positive potential outcomes, adjusted for the probability of observing
positive expenditures. This approach accounts for the zero-inflated nature of the data
while maintaining the geometric mean interpretation. Further details are provided in

Appendix C.1.

4.2 Empirical results

The total effect and natural PSEs are reported as ratios of scaled geometric means in
Table 4.1. Meanwhile, we provide cumulative PSEs using sequential decomposition in
Appendix B.1.

The total effect was significant across all six racial group comparisons (White vs.
Black, White vs. Asian, White vs. Hispanic, Black vs. Asian, Black vs. Hispanic, and
Asian vs. Hispanic) in 2009. This effect reflects how expenditures for one racial group

would change on average if, hypothetically, they belonged to another racial group.
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Whites consistently exhibited the highest scaled geometric mean expenditures in com-
parisons involving other racial groups. One potential explanation for this pattern is
systemic advantages in healthcare access and utilization, as suggested in [52, 3, 32].
Comparisons among minority groups revealed additional disparities: for instance, His-
panics consistently had the lowest counterfactual expenditures, further highlighting
structural inequities across racial hierarchies. These racial disparities persisted in 2016,
except for the non-significant total effect between Black and Asian groups. The total
effect for the White vs. Black comparison increased in 2016, consistent with findings
by Dickman et al. [31], who reported a widening gap in total healthcare expenditures
between White and Black populations from the periods 2010-2013 to 2014-2019. Con-
versely, the total effects for the White vs. Asian, White vs. Hispanic, Black vs. Asian,
and Black vs. Hispanic comparisons declined in 2016, suggesting a partial narrowing of
disparities among these groups. These patterns may reflect changes in socioeconomic
conditions, policy environments, or healthcare access across racial groups, though fur-
ther research is needed to fully understand these trends.

The effect through SES (M;), assessed by income and education, was significant
across five racial group comparisons, except for White vs. Asian, in both 2009 and
2016. This effect can be interpreted as aligning the SES distribution (conditioned on
covariates) across the two racial groups. In 2009, if a hypothetical Black or Hispanic
population had an SES distribution aligned with that of Whites, the scaled geometric
mean expenditures would increase to 1.114 (95% CI: 1.054-1.173) times or 1.450 (95%
CI: 1.344-1.557) times, respectively. Similarly, if a hypothetical Asian or Hispanic
population had an SES distribution aligned with that of Blacks, the scaled geometric
mean expenditures would decrease by 16.5% or increase by 19.2%, respectively. No-
tably, aligning the SES of a hypothetical Hispanic population with that of Asians would

result in a nearly doubling of scaled geometric mean expenditures. These results sug-
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gest that SES plays a major role in racial disparities in healthcare expenditures. Asians
tend to have high SES levels [93], while Black and Hispanic populations face higher
poverty rates and lower levels of higher education compared to Whites and Asians [19].
These SES variations help explain some of the disparities observed in SES-mediated
effects. In 2016, SES-mediated effects showed a slight increase compared to 2009,
suggesting a growing role of income and education disparities in shaping healthcare
expenditures. These findings highlight SES as a key driver of racial disparities, both
through direct economic effects on healthcare access and through its influence on other
mediators, including insurance access, health behaviors, and health status.

The effect through health insurance (M;) was significant across all racial group
comparisons, except for White vs. Black, in 2009. This effect can be interpreted as the
impact of an alignment of insurance access distribution (conditioned on covariates and
SES) between racial groups. If the insurance coverage of a hypothetical Asian popula-
tion was aligned with that of Whites or Blacks, the scaled geometric mean expenditures
would increase by 9.1% or 7.9%, respectively. Similarly, if the insurance coverage of a
hypothetical Hispanic population was aligned with that of Whites, Blacks, or Asians,
the scaled geometric mean expenditures would increase to 1.372 (95% CI: 1.306-1.439),
1.478 (95% CI: 1.393-1.562), or 1.265 (95% CI: 1.176-1.355) times, respectively. No-
tably, Hispanics had the highest rate of being uninsured in 2009—more than three
times that of Whites. By 2016, the insurance-mediated disparities had disappeared
in the White vs. Asian and Black vs. Asian comparisons, coinciding with a decline
in observed uninsured rates across all racial groups, and particularly small differences
between Asians and Whites. One contributing factor could be the Affordable Care Act,
enacted in 2010 and fully implemented in 2014, which expanded coverage for econom-
ically disadvantaged minorities [35, 63, 16]. However, significant insurance-mediated

disparities persisted in all racial group comparisons involving Hispanics. In fact, the
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disparities increased in the White vs. Hispanic and Asian vs. Hispanic comparisons
(1.380, 95% CI: 1.318-1.441 and 1.320, 95% CI: 1.245-1.395, respectively). Although
overall insurance coverage improved, Hispanics continued to have the highest rate of
uninsurance, and the gap in healthcare expenditures between insured and uninsured
groups widened in 2016, underscoring the growing importance of insurance in health-
care disparities. Barriers for Hispanics may include unclear eligibility policies, difficulty
navigating enrollment processes, and language or literacy challenges [40, 91]. Without
insurance, individuals often delay seeking care, while having coverage facilitates access
and may increase overall expenditures through more timely care [34].

Although small, the effect through health behaviors (M3), assessed by smoking sta-
tus and physical activity, was significant only in the White vs. Hispanic comparison
in 2009 (1.076, 95% CI: 1.014-1.137), and in the Asian vs. Hispanic comparison in
2016 (1.022, 95% CI: 1.006-1.038). Consistent with the observed data, smoking preva-
lence was higher among Whites—nearly twice that of Hispanics. Given that smoking
is strongly associated with an elevated risk of diseases such as cancer, respiratory,
and cardiovascular conditions [60], it contributes substantially to the overall health-
care costs [1]. In contrast, the proportion of individuals who regularly exercised was
marginally lowest among Asians in 2016. Exercise plays a critical role in improving
health at both individual and population levels [42]. Overall, these findings underscore
the influence of health behaviors on healthcare expenditure disparities, highlighting
both the risks associated with smoking and the opportunities for intervention through
increased physical activity and preventive care.

Health status (M,) emerged as an important mediator in healthcare expenditure
disparities. Prior studies have shown that, compared with Whites, minorities tend to
report poorer self-rated health and are more likely to suffer from chronic conditions

due to lower SES, limited insurance access, and less favorable living environments
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[12, 48, 91]. These factors would typically suggest that minorities bear higher medical

spending burdens relative to Whites [21]. However, when focusing solely on the effects
mediated through health status—excluding the influence of SES, insurance, and health
behaviors—our study revealed a different pattern. In 2009, health status-mediated
effect was significant for all racial group comparisons except for the White vs. Black
comparison, and by 2016, this effect was significant across all racial group comparisons.
Specifically, if the health status of a hypothetical Black, Asian, or Hispanic population
were aligned with that of Whites, their geometric mean expenditures would increase
by 10.1%, 43.7%, and 53.8%, respectively in 2016. Likewise, aligning the health sta-
tus of a hypothetical Asian or Hispanic population with that of Blacks would increase
expenditures by factors of 1.393 and 1.253, respectively, whereas aligning the health
status of a hypothetical Hispanic population with that of Asians would reduce expen-
ditures to 79.6%. The divergence between our findings and previous literature may
be attributable to a higher observed disease prevalence among Whites, which could
reflect both their greater access to screening and diagnostic services [33] and potential
differences in genetic, dietary, or other inherent factors.

The direct effect of race was only significant in comparisons between Whites and
any minority group in 2009, and not significant between any two minority groups. One
explanation for this direct effect is that some factors were not included in the mediation
analysis, leading to the direct effect capturing the influence of unobserved mediators.
For instance, early life adversity—such as poverty, abuse, and traumatic stress, which
vary by race and SES—has been shown to affect multiple indicators of physical and
mental health later in life, ultimately influencing healthcare expenditures [69]. Another
potential explanation is structural racism. A systematic review has demonstrated that
healthcare professionals’ implicit biases are associated with treatment decisions, adher-

ence to treatment recommendations, and patient health outcomes [38]. These biases
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may result in poorer communication during medical visits and lower ratings of care,
leading minority patients to be less willing to adhere to medical advice [51, 25]. By
2016, the direct effect in the White vs. Asian and White vs. Hispanic comparisons
declined, while those for Whites vs. Blacks, Blacks vs. Hispanics, and Asians vs. His-
panics deviated significantly from 1, suggesting an increase in disparities in healthcare
expenditures attributable to race for these groups. This shift underscores persistent
and evolving structural inequities and points to systemic biases that disproportionately
affect certain racial groups.

In summary, our analysis reveals persistent racial disparities in healthcare expen-
ditures, with Whites generally exhibiting higher expenditures compared to minority
groups. In 2009, significant disparities emerged across all racial comparisons, primarily
mediated by differences in SES and health status, while insurance coverage also played a
critical role—particularly in differentiating outcomes for Hispanics. By 2016, although
some insurance-mediated gaps (notably for Asians) narrowed, significant disparities
persisted, especially for Hispanics, underscoring that insurance remains a key factor
alongside SES and health status. These findings highlight the multifaceted drivers
of healthcare inequities and underscore the need for targeted interventions—such as
enhancing educational opportunities for minority populations, expanding accessible in-
surance coverage, and equipping healthcare providers with training to recognize and
address implicit biases—to mitigate these disparities, while also encouraging further
research to explore additional pathways and unmeasured factors contributing to these

outcomes.
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Table 4.1: Natural path-specific effects across racial group comparisons (scaled geo-
metric mean ratios)

MEPS data in year 2009

MEPS data in year 2016

Path Effect 95% CI p-value Effect 95% CI p-value
Whites vs Blacks™*

R— M1~Y 1.114 1.054 — 1.173 <0.001 1.191 1.124 — 1.259 <0.001
R— M2~Y 1.017 0.984 — 1.050 0.321 1.005 0.977 — 1.033 0.704

R— M3~Y 0.981 0.959 — 1.003 0.089 1.013 0.992 — 1.035 0.219

R—M4—Y 1.023 0.954 — 1.092 0.513 1.101 1.023 — 1.179 0.011

R—Y 1.772 1.616 — 1.929 <0.001 1.869 1.688 — 2.050 <0.001
Total effect 2.138 1.894 — 2.382 <0.001 2.390 2.108 — 2.672 <0.001
Whites vs Asians*

R— M1~Y 0.975 0.884 — 1.067 0.598 0.935 0.812 — 1.058 0.299

R— M2~Y 1.091 1.024 — 1.157 0.007 1.023 0.990 — 1.056 0.175

R— M3~Y 0.970 0.903 — 1.036 0.373 0.975 0.931 — 1.019 0.269

R— M4—>Y 1.418 1.242 — 1.594 <0.001 1.437 1.247 — 1.626 <0.001
R—Y 2.399 2.073 — 2.724 <0.001 1.944 1.655 — 2.233 <0.001
Total effect 2.863 2.377 — 3.350 <0.001 2.446 2.033 — 2.859 <0.001
Whites vs Hispanics*

R— M1~Y 1.450 1.344 — 1.557 <0.001 1.537 1.423 — 1.652 <0.001
R—> M2~Y 1.372 1.306 — 1.439 <0.001 1.380 1.318 — 1.441 <0.001
R— M3~Y 1.076 1.014 — 1.137 0.016 1.047 0.996 — 1.099 0.073

R— M4—Y 1.426 1.322 — 1.531 <0.001 1.538 1.419 — 1.656 <0.001
R—Y 2.097 1.916 — 2.279 <0.001 1.938 1.767 — 2.109 <0.001
Total effect 4.634 4.141 — 5.128 <0.001 4.297 3.823 — 4.771 <0.001
Blacks vs Asians*

R— M1~Y 0.835 0.721 — 0.949 0.004 0.820 0.710 — 0.929 0.001

R— M2~Y 1.079 1.009 — 1.149 0.027 1.024 0.976 — 1.072 0.325

R— M3~Y 0.974 0.931 — 1.017 0.233 0.996 0.956 — 1.037 0.856

R— M4—-Y 1.440 1.242 — 1.637 <0.001 1.393 1.213 — 1.573 <0.001
R—Y 1.044 0.876 — 1.212 0.610 0.882 0.744 — 1.019 0.092

Total effect 1.307 1.032 — 1.583 0.029 0.979 0.782 — 1.175 0.831

Blacks vs Hispanics™*

R— M1~Y 1.192 1.130 — 1.254 <0.001 1.184 1.126 — 1.241 <0.001
R— M2~Y 1.478 1.393 — 1.562 <0.001 1.405 1.336 — 1.474 <0.001
R— M3~Y 1.023 0.986 — 1.060 0.225 1.023 0.976 — 1.069 0.337

R— M4—Y 1.302 1.202 — 1.402 <0.001 1.253 1.161 — 1.344 <0.001
R—Y 1.024 0.943 — 1.104 0.568 0.879 0.802 — 0.956 0.002
Total effect 2.085 1.774 — 2.396 <0.001 1.698 1.454 — 1.941 <0.001
Asians vs Hispanics*

R— M1~Y 1.768 1.569 — 1.967 <0.001 1.904 1.701 — 2.106 <0.001
R— M2~Y 1.265 1.176 — 1.355 <0.001 1.320 1.245 — 1.395 <0.001
R— M3~Y 0.999 0.980 — 1.017 0.891 1.022 1.006 — 1.038 0.006
R— M4i—Y 0.788 0.719 — 0.857 <0.001 0.796 0.706 — 0.885 <0.001
R—Y 1.015 0.939 — 1.091 0.697 1.164 1.069 — 1.259 0.001

Total effect 1.855 1.521 — 2.189 <0.001 1.866 1.540 — 2.192 <0.001

“Reference group; M;: SES, M,: Insurance, Ms: Health behaviors, My: Health status.
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5 Simulation studies

In this chapter, we evaluate our one-step estimators for PSEs using two simulation
studies. The first study demonstrates theoretical properties and the robustness of the
proposed estimators and illustrates benefits of flexible nuisance parameter estimation
by highlighting the poor performance of estimators based on misspecified parametric
models. The second assesses the finite sample performance with data mimicking our

real-data application.

5.1 Simulation 1: Asymptotic properties and robustness

This simulation evaluates the estimators’ asymptotic properties and robustness to
model misspecification for Corollary 3.3.2. Data are generated using four uniform
covariates, a binary treatment, four ordered univariate continuous mediators (normally
distributed), and a normally distributed outcome (X1, X, X3, X4, R, My, My, M3, My, Y).
This simulation runs for sample sizes of 250, 500, 1000, 2000, 4000, and 8000, with

1000 replications per scenario.

X1, Xo, X3, X4 % Uniform(0, 1),
R ~ Bernoulli(expit(Vz[1 X]T),
Mi~NWi[t x R)".1),
My~NVap[1 x B M]"0),
My~ NWVi,1 X R M, M) ,1),
My~ N[l X R M, My M) 1),

Y~NW[ X R My My My M) ,1). (5.1)
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Specifically, the coefficients are:

Vi = (—0.10,1.00, 0.20, —0.40, 0.80),

Var, = (—0.13,0.23, —0.18,0.15, —0.16, 0.13),

Vi, = (—0.11, —0.06,0.20, 0.25,0.02, —0.12, 0.16),

Var, = (—0.24, —0.08, —0.15,0.03, 0.14, 0.06, —0.14, 0.09),

Var, = (—0.13,—-0.09, —0.04, 0.10, —0.25, —0.05, —0.08, 0.19, —0.20),

Vy =(0.43,0.29,0.28, —0.26, —0.38,0.18,0.39, —0.22, —0.13, 0.28).

First, we examine the asymptotic properties of the estimators by evaluating the
convergence of the root-n-scaled bias and n-scaled variance. The proposed one-step
estimators for for counterfactual means (’yg _,y and ’y}g N Mkwy) are constructed using
estimates of nuisance functions Q@ = {7, {gx, tx, Bx, Cs, : Vk}, Cus}. These nuisance
functions can be consistently estimated via GLMs based on linear combinations of the

predictors [97]:

T=oxpit(bo[1 x]7), g =expit(61 X )
=l X R M;JT, Br=0-1[1 X R Mk,l}T,

Cs,=vs,[1 X R]'. Cu=va[l X R] - (5.2)

Then, we evaluate the consistency of 4% ., under three conditions: (i) only 7 and
g4 are consistent; (i) only 7 and fi4 are consistent; (iii) only ém and [i4 are consistent.
Similarly, the the consistency of 47, . M,y s evaluated under three conditions:(i) only
# and §; are consistent; (i) only #, and ji; are consistent; (iii) only By, and ji; are

consistent. For k = 2, 3,4, the the consistency of &E_)Mkwy(é)), k = 2,3,4 is evaluated

under four conditions: (i) only 7, gr_1, and gy are consistent; (ii) only 7, gx_1 and fig
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are consistent; (iii) only 7, B, and fir are consistent; (iv) only égk, By, and fi, are
consistent. We obtain misspecified nuisance estimates by applying nonlinear transfor-
mations to the covariates. Specifically, a set of false covariates is generated from the
correct covariates X as X8 = (X2 X2 (X3)03 (X; + (X3)%3)/(e*2 + X2)), which

are then used to construct misspecified functions for Q¢ via GLMs:

alse . * T alse : * =7 17
7Tf1 :explt(90 [1 Xfalse} )7 g]ffl :eXplt(Qk[l Xfalse Mk] ))7

T

/Jlialse _ Oéz [1 Xfalse R M}J : Bialse — 5271 [1 Xfalse  p Mk_l]T,

e%"ise _ V%k [1 xfalse R}T’ efilse _ I/’Z4 [1 X false R}T (53)

The one-step estimators under each condition are derived by combining estimated
nuisance functions from both @ and Q™*°. In addition, we also consider two additional
scenarios where all nuisance functions are misspecified using both GLMs and super
learner.

Figure 5.1 illustrates that the one-step estimators achieve root-n consistency under
correct model specification and specific model misspecification conditions, underscoring
their robustness. In contrast, estimators based solely on misspecified GLM nuisance
estimates do not maintain the root-n-scaled bias property. Notably, the super learner
offers a significant advantage, achieving root-n consistency even with misspecified mod-

els in large samples.
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Figure 5.1: Simulation results validating the \/n-consistency behaviors when the nui-
sance functions are misspecified under different conditions. “false” refers to estimators
that utilize all misspecified GLM nuisance functions from Q™ while “false (SL)”
refers to estimators that rely on all nuisance functions from @Q°".

5.2 Simulation 2: Finite sample performance

In this simulation, we evaluate the finite-sample performance of our estimators in
the ratio of scaled geometric mean (p}, ., and pj M,y ), using both super learner
and GLM. We generated data with ten covariates, one binary treatment, four ordered
multivariate mediators, and a zero-inflated, right-skewed outcome, incorporating strong

nonlinearities via the following models as a complex data structure

(X17 s 7X107 R7 M117 M127 M217 M227 M317 M327 M417 M427 Y) :

X, N Uniform(0,1),7 € {1,...,8}, Xy ~ Bernoulli(0.646), Xy ~ Bernoulli(0.599)
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Z = |:X?5 X22 Xg’ exp(X4) |10g(X5+05)| SiH(X(;) COS(X7—O.5) Xg Xg X10
R ~ Bernoulli(expit(Vz[1 Z}T))

M, = | My, Mu} , Mi5 ~ Bernoulli(expit(M7,)),

Mll

s 11 05
NN VM1[1 R Z RZg_l()] ) )
05 1

My = | My, Mzz} , My ~ Bernoulli(expit(MJ,)),

s 11 05
~N(Vu,[1 R Z Rz, M), :
05 1

M;s = | My, Mgz} , M35 ~ Bernoulli(expit(M3,)),

11 05
~N{Vi[l R Z My, My RMy) ’

M;, 05 1

My = | My M42} , Mo ~ Bernoulli(expit(M},)),

M41

s |1 05
~N{Va, 1 R Z M, My, M|, :
05 1

My
Y* = VY [1 R Z M; M, M3 My, M41M42]T - 57
I(Y > 0) ~ Bernoulli(expit(Y™)),

Y|Y > 0 ~ LogNormal(logi = 0.15Y ", logsd = 0). (5.4)
where

Zy—4 = [Z1,Z2,23,2Z4), Zg—10 = [Z9, Z10),

Vg = [0.60,0.39, —0.12,0.08, —0.50, —0.46, 0.28,0.25,0.14, —0.45, —0.16],

Vi Ve Vi Ve
Vi, = Vi, = Vg = LV, = 1
Viyo VMo, Viso Viyo
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Vi, =1[0.76,0.25,-0.23,0.34, —0.21, 0.18,0.41, —0.32,0.15,0.99, —0.03, 0.41, 0.26, 0.85],

Vs = [—0.21,0.27,-0.13,0.22, —0.50, —0.35, —0.04, 0.09, 0.38, 0.29, —0.42, 0.82, 0.18, 0.06],

Vo, = [0.06,—0.19,—0.36,0.10, —0.15,0.13, —0.33, —0.50, —0.07, 0.28, —0.34, —0.09, —0.04, —0.06, 0.06, 0.04, —0.13, —0.16],
Viary, = [0.24,-0.15,—-0.20, —0.06, —0.19, 0.23, —0.27, —0.50, 0.03, 0.44, —0.15, —0.07, —0.17, 0.03, 0.06, 0.09, —0.18, —0.11],
Vs, = [0.28,0.27,0.25, -0.92, —0.18,0.13, —0.04, 0.96, 0.40, 0.37,0.07, 0.25,0.04,0.15, —0.89, —0.65],

Vo = [—0.99,0.33,0.11, —0.89, —0.11,0.12, —0.25, 0.28, 0.20,0.15, —0.29, 0.17,0.06, 0.12, —0.84, —0.94],

Var,, =[—0.26,0.73,0.33,—0.82,0.22,0.11,0.53, —0.28, —0.29, 0.25,0.14, —0.32, 0.16, 0.19, —0.58, —0.44, 0.85, 0.74],

Vi, = [—0.87,0.51,-0.29, -0.93,0.31,0.21,0.88, —0.87, —0.46,0.07, 0.08, —0.69, 0.14,0.04, —0.82, —0.63, 0.78, 0.36],

Vy = [~0.76,0.96,0.36,0.49, 0.64, 0.78, 0.68, —0.24, —0.64, 0.60, 0.22, 0.43, 0.69, 0.72, —0.93, —0.81, 0.94, 0.84, 0.72, 0.65].

In details, covariates X consist of 10 dimensions, including 8 continuous variables and
2 binary variables. Latent variables Z are transformations of X designed to introduce
greater complexity and nonlinearity into the data generation process. We have four
ordered mediators and each with two dimensions: one continuous and one binary vari-
able. The binary dimension of each mediator is generated using latent variable M}
(i € {1,2,3,4}), accounting for internal correlations within each mediator. The out-
come Y is generated as a zero-inflated and right-skewed distribution, where a binomial
distribution determines whether ¥ = 0, and a lognormal distribution is used to gen-
erate positive values of Y. This simulation runs for sample sizes of 1000, 2000, 4000,
and 8000, with 1000 replications per scenario.

We assess our estimators using bias, standard deviation (SD), mean squared error
(MSE), 95% confidence interval (CI) coverage, and average CI width. We use the same
candidate learners as in the empirical analysis, with GLM-based nuisance estimation
limited to simple linear or logistic regressions (without interactions or higher-order
terms). Table 5.1 shows that the super learner approach yields low bias, reduced SD
and MSE, and good coverage, whereas GLM-based estimators suffer from large bias
and poor coverage.

These findings confirm the reliability of our empirical results and highlight the
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super learner’s advantage in capturing complex relationships, particularly in large-
sample settings. In addition, we present a supplementary simulation with a simplified
data structure in Appendix D. Table D.1 shows that GLM performs well under mild

nonlinearities, making it a valuable, computationally efficient option in simpler settings.

Table 5.1: Comparative performance of one-step estimator using super learner (SL) vs.
GLM in complex data structure

Bias SD MSE Coverage Rate CI width

sample size SL GLM SL GLM SL GLM SL GLM SL GLM

pEﬁleY
1000  -0.004 -0.004 0.041 0.050 0.002 0.003 0.866 0.949 0.133 0.193

2000 0.000  -0.002 0.032 0.037 0.001 0.001 0889 0.935 0.106 0.137
4000 0.000  -0.004 0.024 0.024 0.001 0.001 0910 0957 0.083 0.096
8000 0.001 -0.004  0.018 0.017 0.000 0.000 0925 0952 0.065 0.068

pE—>Msz
1000 0.007 0.012 0.041 0.045 0.002 0.002 0.902 0.966 0.139 0.184

2000  0.003 0.008 0.031 0.033 0.001 0.001 0902 0957 0.104 0.128
4000  0.003 0.007  0.023 0.023 0.001 0.001 0910 0943 0.078  0.090
8000  0.001 0.007  0.016 0.015 0.000 0.000 0.937 0947 0.058 0.064

pEeMng
1000 -0.001  0.013 0.025 0.033 0.001 0.001 0.833 0.947 0.070 0.127
2000  -0.001 0.012 0.017  0.024 0.000 0.001 0.868 0.929 0.054 0.089
4000  -0.001 0.012 0.012 0.016 0.000 0.000 0.907 0.909 0.041 0.063
8000  0.000 0.013  0.009 0.011 0.000 0.000 0.916 0.816 0.031  0.045

pEHM4~>Y
1000  -0.003 0.025 0.018 0.031 0.000  0.002 0.823 0.915 0.051 0.124

2000 -0.002  0.025 0.013 0.023 0.000 0.001 0.866 0.839 0.040 0.088
4000  0.000 0.025  0.010 0.017 0.000 0.001 0.868 0.665 0.031  0.063
8000  0.000 0.026  0.007 0.012 0.000 0.001 0904 0371 0.025 0.044

ij;ﬁY
1000  -0.004 -0.001 0.006 0.010 0.000 0.000 0.817 0948 0.020 0.036
2000  -0.002 -0.001  0.005 0.007 0.000 0.000 0.893 0.947 0.016 0.027
4000 -0.001  -0.001  0.003 0.006 0.000 0.000 0925 0.962 0.012 0.019
8000  0.000  -0.001 0.003 0.004 0.000 0.000 0922 0933 0.010 0.013
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6 Discussion

This study examines racial disparities in U.S. healthcare expenditures using a causal
path-specific effects framework. We evaluate how socioeconomic status (SES), insur-
ance access, health behaviors, and health status contribute to these disparities. Our ap-
proach integrates flexible estimation with data-adaptive modeling and is implemented
via the flexPaths R package, providing a methodological template for pathway anal-
ysis in disparities research.

Our path-specific decomposition offers valuable insights for policy. The strong SES-
mediated disparities indicate that investments in education and income support may
help reduce healthcare inequities. Similarly, the pronounced role of insurance access
disparities suggests that targeted expansions of coverage for groups with historically
high uninsurance rates could substantially improve expenditure equity. By pinpointing
the key pathways driving disparities, our analysis provides a data-driven basis for
targeted policy interventions addressing structural inequities.

Cost data are widely used to predict healthcare needs, yet they often mirror un-
derlying disparities. Prior work has shown that algorithms relying solely on cost data
may underestimate Black patients’ needs relative to White patients, potentially de-
prioritizing those most in need [62]. This highlights the necessity for fairness-aware
adjustments, with counterfactual and causal reasoning emerging as essential tools for
quantifying fairness [58, 59, 96, 49, 23, 17]. Our path-specific decomposition reveals
that the effect of race on health spending is significantly mediated by factors such as
SES and insurance access. If predictive models overlook these mediated disparities,
they risk reinforcing existing inequities. A fairness-aware algorithm could constrain
either the direct or indirect effects of race, thereby aligning predictions more closely

with equitable healthcare access.


https://github.com/xxou/flexPaths
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Despite its strengths, this study has several limitations. First, the reliance on
self-reported data introduces potential reporting biases, as participants may misreport
conditions due to recall errors or social desirability. Although cross-referencing with
clinical records could mitigate this issue, such data are often difficult to access. Second,
selection bias is a concern if marginalized populations are underrepresented; future
research should assess this bias and incorporate more diverse data sources to capture
healthcare access comprehensively. Third, the causal interpretation of race is inherently
challenging because race is a social construct and not directly manipulable. Although
our framework focuses on actionable mediators such as SES and insurance access, the
underlying assumptions of causal mediation—especially the cross-world counterfactual
independence—are difficult to verify empirically. These limitations warrant cautious
interpretation and call for further methodological refinement.

Future studies should extend our findings by broadening the scope of mediators
to isolate specific pathways—for example, examining the direct link between SES and
expenditures independently of its downstream effects. Additionally, sensitivity analyses
to assess the robustness of our causal assumptions, particularly concerning unmeasured
confounding, are essential. Further research could also explore modifications to the
mediation framework to capture dynamic changes over time and incorporate alternative
measures of health outcomes. These efforts will enhance our understanding of the

multifaceted mechanisms driving healthcare inequities.
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A Proofs

A.1 Identification claims

Under the ignorability assumptions from Chapter 3, the estimands in Theorem 3.2.1
are identified via an identification of the counterfactual mean E(Y (rg,ry,72,73,74)), as

follows:

E(Y (ro,71,72,73,74))

:/E[Y(rmm@ | M1(r1) = my, Ma(ra,my) = ma, M3(rs, Ma) = mg, My(rs,m3) = m47X}
dP(M4(r47m3) =my | M1(r1) = mq, Ma(re, m1) = mo, Ms(rs, ma) = mg,X)
dP(M3(T37m2) =mg | M1(r1) = my, Ma(ra,mq) = mg,X)

(

My (re,m1) = mo | My(r1) =mq, X)dP(M;(r1) =my | X)dP(z)

o
IIg
—
=

Y (ro,ma) | Mi(r1) = mq, Ma(re,my) = ma, M3(r3,M2) = ms, My(rs,ms) = my, R = 7”07X}

My(rq,m3) = my | My(r1) = ma, Ma(ra, m1) = ma, M3(rs,m2) = ms, R =14, X)

M3(r3,m2) = mg | My(r1) = my, Ma(r2,m1) = mo, R =13, X)

U
T
—_ o~

My(ra,m1) = mg | Mi(r1) = mi, R =ry, X)dP(Mi(r1) = m1 | R =11, X )dP(x)

Y(ro,m4) | Ml(rl) = ml,Mg(Tg,m1) = mz,Mg(T:;,mg) = m:;,R = To,X:|

15
o
—
=

(My(ra,ms) = my | My(r1) = my, Ma(ra,m1) = ma, Ms(rs, ms) = mz, R =14, X)
dP(Ms(rs,ma) = mg | My(r1) = my, Ma(r2,m1) = ma, R =r3, X)

dP MQ(T‘Q,ml) = M2 | Ml(T‘l) :ml,R:rg,X)dP(Ml(rl) =mi ‘ R:ThX)dP(ZL')

A:'4/IE[Y(7“07W4) | Mi(r1) = my, Ma(ra,mq) = ma, R = TO,X}
AP (My(rs,mz) = my | Mi(r1) = my, Ma(ra, my) = ma, R =14, X)
dP(Ms(r3,m2) = mg | My(r1) = my, Ma(ra,m1) = mg, R = r3, X)

(Mz(rz,m1) = ma | Mi(r1) = ma, R = ry, X)dP(My(r1) = m1 | R =11, X)dP ()

AéS/E[Y(T(Lm;;) | Ml(rl) =mi,R= To,X} dP(M4(T4,m3) =My | Ml(Tl) =mi,R= T4,X)

dP(M3(T37m2) =ms | Ml(Tl) = ml,R: T3,X)dP(M2(T27m1) = M2 | Ml(rl) = ml,R: TQ,X)

dP(M;(r1) =mi | R =71, X)dP(z)
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Ag2/E[y(r07m) |R= rO,X} AP (My(rs, ) = my | R = r4, X)dP(Ms(rs, miz) = ms | R =5, X)

dP(MQ(T‘Q,ml) = Mg | R:TQ,X)dP(Ml(Tl) =m | R:T1,X)dp((£)

A3'2:&‘41/IE[Y(7"07W4) | My =mq, R =ro, X} AP (My(ra, /i) = ma | My = m1, R = r4, X)

dP(Mg(T’&WQ) = ms | M1 = mhR = 7"37X)dP(M2(r2,m1) = My | M1 = ml,R: TQ,X)
dP(M(r1) =my | R=ry,X)dP(z)

A3'3:&A1/E[Y(T()7m4) | My =mq, My =mo, R = T‘o,X:|dP(M4(T4,m3) =My | My =mq, My =mo,R= T4,X)

dP(M3(7”37m2) = ms | M1 = mhMg = mg,R: r3,X)dP(M2(r2,m1) = Ma | M1 = ml,R = T‘Q,X)
dP(Ml(Tl) = ma | R= 7‘1,X>dp($)

A3‘4:‘§"A1/E[Y(ro,m4) | My =my, My = mg, M3 =m3, R = TO’X}

dP(My(rs,ms) = my | My = my, My = my, Ms = m3, R =ry, X)

QU

(
P(Ms(rs,m2) =mg | My =mq, My =ma, R =r3,X)
dP(Mg(rg,ml) =my | My =my,R= TQ,X)

(My(r1) =m1 | R=r1,X)dP(x)

A3'5:&A1/IE[Y(TO,W4) | My = my, My = ma, My = ma, My = ma, R =10, X
dP(My(ra,ms) = my | My = my, My = ma, M5 = m3, R =14, X)
dP(M3 r3,Ma) = M3 |M1:m1,M2:m2,R:r3,X)
dP(MQ ro,mi) =ma | M1 =mi,R= TQ,X)

dP (M, =my | R=r,X)dP(z)

Al/ydp(y ‘ T(),m4, )d‘P(m4 ‘ r47m37x)dp(m3 ‘ r37m27x)d‘P(m2 ‘ r27m17x)dp(m1 ‘Tlvx)dp(x) .

These derivations yield the identification functionals for the estimands in Theorem

3.2.1.

A.2 Estimation claims

Let o = (x, 7,7y, y) denote the vector values of O = (X, R, M,,Y).
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First, note that by the Bayes’ rule, we can write:

p(my, | my—1, R=1,x) _ p(R=1|my,x)p(mg | Mg—1,2)/p(R=1|Myp_1,2
p(mk |mk_1,R:0,l’) p(R:O |mk7$)p(mk |mk’—lax)/p(R:0 |mk—17$) (A 1)
_ gr(Mk, ) 1 — gr_1(Mi_1,2) '
1 —gu(Mp,z)  ge—r(Mp—1,2)
e EIF derivation for vg_,y:

0

“ P.

@6,YR—>Y( ) 0

0 _ _
= 5% /ydPa(y | My, R =1,2)dP-(Thy | R =0,2)dP.(x)
e=0

:/yﬂMW%RzleHyW%RzleHmﬂRzO@MP@) (1)
+ /yS(m4 | R=0,2)dP(y | my, R =1,2)dP(my | R =0,z)dP(x) (2)

+ /yS(as)dP(y | My, R=1,2)dP(my | R =0,2)dP(x) . (3)

Line (1) simplifies to:

/yS(y | My, R=1,2)dP(y | my, R=1,2)dP(my | R =0,2)dP(x)

I(R=1) p(m.|R=0,x) _ _
= P
/p(R=1Ix)p(mIRzl,x)yS<y’m4’R’x)d 7, £,2)

A:l/]I(R = 1) 1 —g4(m4,x)

L—m(x) ga(My,x)

(y — pa(iis, R = 1,2))S(0)dP(0) .

Line (2) simplifies to:

/yS(m4 | R=0,2)dP(y | m4, R=1,2)dP(my4 | R =0,2)dP(x)

I(R=0
—— (Mg, R=1 i AP (71
/p(R —0 | :L‘):U’4<m47R ,ZE)S(m4 | R, ]7) (m47R7 q;)

/}i(]—%—:(f:))(ml(m‘l’}% =Lz)—-CL(R= 0,$))S(O)dp(o) )
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Line (3) simplifies to:

/yS(x)dP(y | My, R=1,2)dP(my | R =0,2)dP(x)
= /GM(R =0,2)S(x)dP(o)

- / (€u(R=10,2) — Y-y )S(0)dP(0) .

Therefore, the EIF for yg_,y, denoted by ®., ., (Q), is given as follows:

R 1 —g4(ﬂ4,X)

@vaﬂy(Q)(O)zl_ﬂ(X) 2 X) {V - iu(My, R=1,X)}
+11;(};){M4(M4,R:1,X)—(?M(R:O,X)}+6M4(R:O,X)—71:Hy.

(A.2)

e EIF derivation for ygp_,n, -y, k = 2, 3,4, where:

YR My ~Y = /ydP(y | Mg, R =0,2)dP(my | mk_1, R=1,2)dP(mi_1 | R =0,2)dP(x) .

0
%’VR%M;CWY(PE)

e=0

= %/ydps(y ‘ my, R = O,J?)dPE(mk |mk_17R = Lx)dps(mk_l | R = 0,1‘)dPE(1')
e=0

= /yS(y | Mg, R =0,2)dP(y | mg, R = 0,2)dP(my | Mg—1, R =1,2)dP(Mi_1 | R =0,2)dP(x)

(1)
+ /yS(mk | Mk—1, R =1,2)dP(y | Mg, R = 0,2)dP(my, | Mg—1,R = 1,2)dP(Mk_1 | R =0,z)dP(z)

(2)
+ /yS(mk_l | R=0,2)dP(y | My, R =0,2)dP(my | Mi—1, R =1,2)dP(M_1 | R =0,2)dP(z)

3)

+ /yS(x)dP(y | Mg, R =0,2)dP(my | Mp—1, R=1,2)dP(Mk_1 | R =0,2)dP(z) . (4)
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Line (1) simplifies to:

/yS(y | Mg, R=0,2)dP(y | Mg, R =0,2)dP(my | mk_1, R =1,2)dP(mi_1 | R =0,z)dP(x)

mklmk 1, —1$

_ / I(R = giémk ’?}c 17 =1 xiys(y | Mk, R, x)dP(y, My, R, x)
)§E i@_ugmszowDS@MPQ)

mg | mi—1, R=0,z
) gr(Mp,z) 11— gp_1(Mi—_1,2)
1—7(x) 1 —gp(Mp,x)  gr—1(Mr—1,)

(v — pu (Wi, R = 0,))S(0)dP(o) .

Line (2) simplifies to:

/yS(mk | Mk—1, R = 1,2)dP(y | My, R = 0,2)dP(my, | M1, R = 1,2)dP (M1 | R = 0,2)dP(z)
_ / I(R=1) p(i|R=0z)

p(R=1]|z)p(mr_1 | R=1,2)
,4:,1 / H(R = 1) 1-— gk_l(mk_l,:E)

1 —m(x) gr—1(Mp—1,2)

(Mg, R = 0,2)S(my, | mg—1, R, )dP(my, R, r)

(i (M, R = 0,2) — B(my—1, R =1,2))S(0)dP(0) .
Line (3) simplifies to:

/yS(mk_l | R=0,2)dP(y | mp, R=0,z)dP(my | mk—1, R =1,2)dP(my_1 | R =0,2)dP(z)
N /mgk(mk—lﬁ =L, 2)S(mp—1 | R, 2)dP (M1, R, x)
= / W(Bk(mth =1,z) — €3, (R = 0,2))S(0)dP(o) .

Line (4) simplifies to:
/yS(x)dP(y | Mg, R = 0,2)dP(my, | mg—1, R=1,2)dP (-1 | R=0,2)dP(x)

_ / Ca, (R = 0,2)S(2)dP(x)

~ [ (€a.(R=0.0) ~ vesps ) S(0)AP(O)
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Therefore, the EIF for yg_a,y, denoted by ©., ., . (Q), is given by:

1-R  g(My,X) 1—gu1(My_1,X)

® 0) = i M
ropry (@)(O) 1=m(X)1 - gr(Mg, X)  grp—1(Mp—1,X)
n R 1_gk—l(Mk:—1>X)
1—m(X) g1 (Mp_1,X)
L 1R
1—7(x)

{Y — i (My,R=0,X)}

{p(My, R =0,X) — Bp(My_1,R=1,X)}
{3k(mk717 R = 171:) - eBk (R = 071.)}

+ G‘Bk (R = 07 1’) — YR—=M~Y -
(A.3)

e EIF derivation for yg—ar,-~y, Where

YR—My—Y = /ydP(y | my, R=0,2)dP(my | R=1,2)dP(x) .

0
%7R—>M1WY(PE)

e=0

= % /ydPa(y | my, R=0,2)dP.(m; | R=1,2)dP.(z)
e=0

= /yS(y | mi, R=0,2)dP(y | mi, R=0,2)dP(my | R=1,2)dP(z) (1)

+ /yS(m1 | R=1,2)dP(y | mi, R =0,2)dP(m; | R=1,z)dP(x) (2)

+ /yS(as)dP(y | my, R=0,2)dP(m; | R=1,2)dP(x) . (3)



Line (1) simplifies to:

\,

Y (y | my1, R=0,2)dP(y | mi, R =0,2)dP(m; | R =1,2)dP(x)

pmllel,x)
S :

m1|R—1:c)
S R, z)dP R,
/ ) pmllR_O )y (y|m17 ax) (y7ml .Z')
A_/ =
n I

Line (2) simplifies to:

R=0,z)dP(y,m;, R =0,x)

gl my, .ZU)

1 — g1(my, x) (v = m(mu, R = 0,))S(0)dP(o) .

[ uStm | R=1.0)dP(y | R = 0.0)dP(ms | R = 1L )dP()

= /%Ml(mhR = 0,2)S(my | R, z)dP(my, R, x)

I(R=1) 0
[ e =0

€. (R =1,2))S(0)dP(o0) .

Line (3) simplifies to:

/yS(m)dP(y | mi, R=0,2)dP(my | R =1,2)dP(x)

_ / Cu(R = 1,2)S(x)dP(x)

[ (@R = 1.0) = o) S0P

Therefore, the EIF for vz, denoted by ®., . (Q), is given by

B (QUO) = Lo IR gy (01, R = 0.00))

R
=) {p(M1,R=0,X)—Cu(R=1,X)} 4+ Co (R =1,2) — Yrosar—y -

(A.4)
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Due to the identities go(Mo, X) = 7(X) and B1(R = 1,z) = Cg,(R = 1,z), the

EIF for yr— s~y can be incorporated into the expression for yp_ s,y for k = 2,3, 4.

A.3 Inference claims

In Theorem 3.3.1 and Corollary 3.3.2, certain regularity conditions are required for
the empirical process term to be negligible, i.e., (P, — P)(®(Q) — ®(Q)) = op(n~1/2)).

These conditions are as follows:

1. (D(Q) — ®(Q) belongs to a P-Donsker class with probability tending to 1, and

2. ®(Q) is L2(P)-consistent: P{®(Q) — ®(Q)}2 = op(1).

The first condition can be relaxed using sample-splitting procedures [22]. Additionally,
we require, for 6 >0: < <l—-dandd<gp<1—-90,k=1,23,4.

It remains to derive the remainder terms for 775, (Q) and ~vf;_, Mka(Q), denoted by
Ryrp .y (@Q,Q) and Ry, Mkwy(QA, @), respectively. In below, we show these remainder

terms are: (m = go and By = Cg,)

0= 1)t — ) + T = (@~ €)] (A5)

1— 7

R277R—>Y (Q) Q) =P |:

) 11 (11— o . .
Ronpnny oy (@, Q) = P{l — Qk—l{ . ];kl (gr — 9r) (ke — pe) + (Gr—1 — gr—1) (B — Bk)}
1 R
+ = (r—®) (s, —€s,)| , k=1,2,34. (A.6)

Note that conditions for RQ(Q, Q) = op(n~1/?) are equivalent to each nuisance product
term having an L?(P) convergence rate equal or faster than op(n~'/2), with finite
scaling factors.

Let h(Q)(0) = B(Q)(0) +~(Q), and thus (@) = Pu[A(Q)] = L 57, h(Q)(05).

We propose a special set of estimated nuisance parameters CNQ = (7,g,C, B, u) where
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all the outcome and sequential regression nuisances are correctly estimated. Our first

step is to prove that P[h(Q)] = v, where P[h(Q)] = [ h(Q)(0)dP (o).

e For vp ,y:

~ R 1—g _
=0
R
+P —E (1~ €, | R=0,X)| +P[C,]
=0
=P [Gm] = TYR—-Y - (A.7)

® For Yry oyt

~ I-R g 1—gi
P[h'YR%]Mkwy(Q)] =P :

E(Y — p, | My, R=0,X)

L=71l=gr gr-1 ~ - ,
=0
R 1— g, _
4P =L By — By | Moy, R=1,X)
]__71- gk_l " ~ ',
i =0
1—-R
+P | BBy =y, | R=0,X)| + Py
i =0
=P [egk] = YR—My~y - (A8)

With P[h(Q)] = 7(Q), the second-order remainder term can be re-written as
Ry(Q,Q) = P[h(Q)] — v(Q) = P[h(Q) — h(Q)]. Using this fact, the second-order

remainder terms can be derived as follows:

R (QQ) =P { 2220 — ) = (v = ]}

+P{1_Ij{ [([M—ém) —(N4—eu4)}}+P(éu4 _€u4>

1—7
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[ 4(@4—#4)]4‘]3[ — (M_M)]
PR

- [1iﬁg14(§4—94)(ﬂ4—u4)} + P Liﬁ(w—fr)(éM _QM)] . (A9)

R 1-R g 1—gr_1 .
- , =P — ~ — Y — — (Y —
Ranoonr(Q.@) =P { 10 I LB (v
R 1—gk17py/. 5
—I—P{l_ﬁgkl[(Mk—Bk)—(Mk—Bk)]}

{ (Be—Cs,) - (Bk—egk)}}
crfenca)
_p|lo B 10 (ﬂk—ﬂk)]+P[ o %(ﬂk—ﬂk)]
|1 -7 1—-0gr Ggr—1 1—7 gk
[ 1—g - 1—9gr_1 /-
N (Bk—3k>] +P[ g1 (Bk—3k>]

11 —7 Ggra 1—7
[1— .
R <eBk GB'“)} r [ef‘k - GB'@}

[1 ! - 1A 1jgkl(9k—§k)(ﬂk—uk)}

—71—=0gr Gk
cp|t (Gr—1 — )(Br, — By)
1— 7 6p1 9k—1 — Gk—1 k k
1 A
+ P |:1 _ﬁ_(ﬂ'—ﬂ')(egk — 83k>:| , (A.lO)

for k =1,2,3,4. Note that when k£ = 1, the Ry term reduces to:

Ry psiy-y (Q, Q) =P [} _191 (91 — 1) (fi1 — M1)] +P E(w —7) (B, —B1)|. (A1)

w1

With the second-order remainder terms expressed as a sum of cross-product terms, reg-
ularity conditions are required to ensure that these terms are negligible, i.e., op(n=1/2).

Specifically, all denominators must be bounded away from zero. Thus, the propensity
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score estimates m and g, for £ = 1,2,3,4 must satisfy 0 < 7 < 1 and 0 < g, < 1.

Under this regularity assumption, the second-order remainder terms can be expressed

as:

~ A~

Ry ry(Q,Q) =P [my(7,94) - (Ga — ga) - (fta — pa)] + P [mz(ﬁ) (=) (Cuy — Cuy)|

(A.12)
R, kosityy (Q, Q) =P [ma(#, gk gk—1) - (9 — 9n) - (i — )]

P, i) - (@ = gie1) - (B — By

+P [mg(fr) (m—#) - (Cq, — egk)} . (A.13)

Here, the functions my, my and mg are bounded. Consequently, the overall negligibility
of the second-order remainder terms depends only on the L?(P) convergence rates of the
nuisance estimates in combinations corresponding to the product terms. Specifically,
as long as the combined L?(P) convergence rate of the two nuisance estimates in
each product term is faster than o,(n~'/2), the remainder term RQ(Q, @) would also be
op(nfl/ 2). This negligibility condition enables the discussion of the asymptotic linearity
of the one-step corrected plug-in estimators. Given that 7" (Q) — v(Q) = P (®(Q)) +
0,(n"1/2), the central limit theorem implies /n(y(Q) —~) —* N(0, E[®2(Q)]). This
is formally presented in Theorem 3.3.1.

Regarding consistency, as long as at least one component of each nuisance product
term is consistently estimated (i.e., the difference between the nuisance estimate and

its true value is 0, (1), the one-step corrected plug-in estimator will be consistent. This

robustness property is discussed in detail in Corollary 3.3.2.



o7
B Effect decomposition

There are various ways to define path-specific effects when dealing with multiple or-
dered mediators, as discussed by Daniel et al. [26] and Steen et al. [74]. Assume there
are K ordered mediators, M, ..., M. Generalizing (3.1) to incorporate K mediators,
we can define the nested potential outcome as Y (rg,r), where r = (ry,--- ,rx) with
each 1, € {0,1} and 79 € {0,1}. The effect through My (k=1,..., K) can be defined

as a contrast of the form:

Prosm-y = E[Y (ro, (r1,...,re =1,...,rx))] — E[Y (ro, (r1, ..., 7. =0,...,7x))] .

Given the possible value combinations for rq and the vector r (with the k-th element

fixed), there are 2% potential contrasts. This also holds for the direct effect, defined as

PR—Y = ]E[Y(L I’)} - E[Y(Ov I‘)] :

This flexibility allows for nuanced interpretations of how distinct pathways con-
tribute to the overall effect, and two popular approaches to decomposing PSEs are the
sequential and reference-zero decompositions. To illustrate, consider a setting with two
mediators, shown in Figure B.1. Let Y (rg,r1,r2) = Y (1o, M1(r1), Ma(re, Mi(r1))) rep-
resent the potential outcome if R were set to rg, M; to its natural value under R = rq,
and My to its natural value under R = ry and M;(r;). Below, we give examples of
these two decompositions.

(1) Sequential decomposition: In this approach, specific pathways are “deactivated”

in a fixed order. For the two-mediator setup shown in Figure B.1, the PSEs can be
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X

Figure B.1: A DAG with two ordered mediators.

defined as:

PRy = E[Y(1,1,1)] = E[Y(1,0,1)] , (B.1)
PR—My—Y = E[Y(l, 0, 1)] - E[Y(la 0, 0)] ) (B'Q)
PR—Y = E[Y(L 0, 0)] - E[Y(O’ 0, 0)] : (B'B)

These effects are referred to as cumulative path-specific effects in [97]. The total effect is
partitioned into K + 1 components, with each component representing the cumulative
contribution of a specific mediator to the total effect. This decomposition is particularly
valuable in applications where investigators aim to quantify the proportion of the
overall effect attributable to each component.

We derive the PSEs using a saturated model without confounders as an illustra-
tive example. Consider the following expression for the mean of the nested potential

outcome:

E[Y (ro,r1,r2)] =f1r1 + Biarira + Boiror: + BoraTorim
+ Bara + Boorors
+ Boro

+6. (B.4)
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Thus, based on (B.1) — (B.3), the PSEs are given by:

PR~y = B1 4 Bz + Bor + Boiz s Prome—y = B2+ B2, Proy = Po -

Notably, pr_san~y includes the main effect of r; (/1) but also all interaction terms
involving r1 (B12, Bo1, Por2). Similarly, pr_a,—y captures the main effect of ro (52) and
the interaction terms involving 7o that does not relate to r; (fp2). The direct effect,

Pr_sy, does not include any interaction terms.

(2) Reference-zero decomposition: This method focuses on specific pathways of inter-
est, treating variables as if the treatment is set to the “active value” (R = 1) along the
pathways of interest, while along other pathways, variables behave as if the treatment
variable is set to the “baseline value” (R = 0). For the two-mediator setup shown in

Figure B.1, the PSEs can be defined differently, as:

ﬁR—>M1WY = E[Y(Oa L, O)] - E[Y«)’ 0, 0)] ) (B5)
ﬁR—>Mz—>Y = E[Y(Ov 0, 1)] - E[Y(O’ 0, 0)] ) (BG)
proy = E[Y(1,0,0)] = E[Y(0,0,0)] . (B.7)

These effects are referred to as natural path-specific effects in [26]. Cumulative PSEs
and natural PSEs share the same representation for the direct effect but differ in how
they represent effects through specific mediators. Natural PSEs offer a more intuitive
interpretation, such as the average change in Y if the controlled group’s mediator is
set to levels observed for the treatment group.

The natural PSEs derived using the model in B.4 are given by:

PRoM~Y = B1,  PrRoMa—sy = B2, Pproy = Bo -
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Natural PSEs capture only the main terms (31, 8s, 5y (for effects through M, M,, and

the direct effect, respectively), excluding any interaction terms. When there are no
interactions among (7, ..., k), natural PSEs and cumulative PSEs coincide; other-
wise, they can diverge—except for the direct effect, which remains the same under
both definitions. Additionally, natural PSEs cannot simply be summed to obtain the
total effect, nor do their proportions match the “proportion mediated” often reported
in mediation analysis. Beyond these considerations, Tai et al. [77] proposed decompos-
ing fully mediated interaction from the average causal effect, thereby offering further

insight into how complex mediator interactions shape exposure-outcome relationships.

B.1 Cumulative PSEs in MEPS data

The total effect and cumulative PSEs obtained via sequential decomposition are pre-
sented as ratios of scaled geometric means in Table B.1. The product of the PSEs
equals the total effect. Notably, greater deviation of a PSE from 1 indicates that the
corresponding pathway accounts for a larger contribution to the racial disparities in
healthcare expenditures.

Similar to the natural PSEs reported in Table 4.1, direct effects were statistically
significant only in comparisons between White groups and minority groups, but not in
comparisons between two minority groups in 2009. As shown by the ratios of scaled
geometric means, direct effects emerged as the most dominant factor driving disparities
in Whites vs minorities. This finding highlights the presence of structural discrimina-
tion in healthcare and underscores the importance of further granular investigation
into unobserved factors.

Focusing specifically on the four mediators, we observe that in 2009, SES occupied
as the dominant mediator in comparisons between Whites vs. Blacks and Asians vs.

Hispanics. Health insurance was the primary mediator in disparities between Whites
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vs. Hispanics and Blacks vs. Hispanics. Additionally, health status played the most

significant role in disparities between Whites vs. Asians and Blacks vs. Asians. These
findings further reinforce the conclusions presented in the main text. In particular, SES
and health insurance were the most critical mediators in improving healthcare resource
utilization among Hispanic individuals, emphasizing the policy relevance of expanding
insurance coverage within this population. These dominant mediators mostly persisted
in 2016, with the exception that health status became the most influential factor in the
White vs. Black comparison. This shift may be associated with the rising prevalence of
chronic diseases, potentially driven by changes in economic conditions, dietary habits,
and other lifestyle factors|2].

Compared to the natural PSEs, most results were consistent across both decompo-
sitions, with a few exceptions. The effects through health status in the White vs. Black
comparison, SES and health behaviors in the White vs. Asian comparison, and SES in
the Black vs. Hispanic comparison showed the same direction in both the natural and
cumulative PSEs, but differed in statistical significance. However, the effect of health
behaviors in the White vs. Hispanic comparison reversed direction between the two

decompositions. These discrepancies reflect underlying interaction effects.
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Table B.1: Cumulative path-specific effects across racial group comparisons (scaled
geometric mean ratios)

MEPS data in year 2009 MEPS data in year 2016

Path Effect 95% CI p-value Effect 95% CI p-value

Whites vs Blacks*

R— M1~Y 1.161 1.125 — 1.196 <0.001 1.125 1.084 — 1.167 <0.001

R— M2~Y 0.995 0.966 — 1.025 0.745 0.997 0.971 — 1.024 0.849
R— M3~Y 0.985 0.968 — 1.003 0.096 0.997 0.978 — 1.015 0.718
R—M4—-Y 1.064 1.013 — 1.116 0.014 1.145 1.084 — 1.207 <0.001
R—=Y 1.764 1.609 — 1.920 <0.001 1.863 1.684 — 2.043 <0.001
Total effect 2.137 1.894 — 2.381 <0.001 2.387 2.106 — 2.668 <0.001

Whites vs Asians*

R—M1~Y 0.887 0.859 — 0.916 <0.001 0.932 0.903 — 0.961 <0.001
R— M2~Y 1.062 1.012 — 1.113 0.015 1.023 0.992 — 1.054 0.148

R— M3~Y 0.947 0.924 — 0.971 <0.001 0.926 0.902 — 0.950 <0.001
R—M4—-Y 1.323 1.237 — 1.410 <0.001 1.416 1.320 — 1.513 <0.001
R—Y 2.420 2.086 — 2.755 <0.001 1.970 1.678 — 2.262 <0.001
Total effect 2.861 2.371 — 3.351 <0.001 2.462 2.047 — 2.876 <0.001

Whites vs Hispanics

R— M1~Y 1.282 1.202 — 1.362 <0.001 1.252 1.176 — 1.327 <0.001
R— M2~Y 1.409 1.338 — 1.480 <0.001 1.417 1.351 — 1.483 <0.001

R— M3~Y 0.911 0.856 — 0.967 0.002 0.912 0.859 — 0.966 0.001
R— M4—-Y 1.332 1.237 — 1.427 <0.001 1.393 1.287 — 1.499 <0.001
R—-Y 2.113 1.931 — 2.296 <0.001 1.907 1.739 — 2.075 <0.001
Total effect 4.633 4.141 — 5.126 <0.001 4.298 3.819 — 4.776 <0.001

Blacks vs Asians*

R— M1~Y 0.820 0.743 — 0.897 <0.001 0.738 0.669 — 0.807 <0.001

R— M2~Y 1.064 1.003 — 1.125 0.038 1.012 0.969 — 1.055 0.587
R— M3~Y 1.009 0.976 — 1.041 0.604 0.995 0.960 — 1.030 0.798
R— M4—-Y 1.426 1.267 — 1.585 <0.001 1.498 1.337 — 1.659 <0.001
R—Y 1.045 0.876 — 1.214 0.602 0.881 0.745 — 1.016 0.083
Total effect 1.311 1.033 — 1.589 0.028 0.981 0.783 — 1.178 0.848

Blacks vs Hispanics*

R— M1~Y 1.086 0.979 — 1.194 0.116 1.119 1.031 — 1.206 0.008
R— M2~Y 1.449 1.318 — 1.579 <0.001 1.414 1.327 — 1.500 <0.001
R— M3~~Y 0.958 0.894 — 1.021 0.193 0.958 0.906 — 1.011 0.122
R—M4—-Y 1.356 1.211 — 1.502 <0.001 1.282 1.164 — 1.400 <0.001
R—Y 1.023 0.943 — 1.103 0.577 0.875 0.793 — 0.957 0.003
Total effect 2.091 1.779 — 2.403 <0.001 1.701 1.457 — 1.945 <0.001

Asians vs Hispanics™*

R— M1~Y 1.868 1.579 — 2.157 <0.001 1.727 1.442 — 2.011 <0.001

R— M2~Y 1.219 1.119 — 1.320 <0.001 1.222 1.058 — 1.387 0.008
R— M3~Y 0.977 0.930 — 1.024 0.340 0.975 0.915 — 1.035 0.413
R—-M4—-Y 0.819 0.703 — 0.935 0.002 0.773 0.587 — 0.959 0.017
R—Y 1.019 0.943 — 1.095 0.624 1.169 1.070 — 1.268 0.001
Total effect 1.858 1.523 — 2.194 <0.001 1.860 1.534 — 2.187 <0.001

“Reference group; M;: SES, Ms: Insurance, Ms: Health behaviors, My: Health status.



63
C The responses in MEPS data

C.1 Geometric mean interpretation

Positive responses
Assume responses are all positive. Consider the potential outcome Y (rg, r), defined

n (3.1). Let Y(rg,r) =log Y (rg,r). The effects are defined as:

E[Y (ro,r) — Y (0,0)] = E[log Y (rp,r) — log Y(0,0)] = E {log Y(ro, r)} ,

To interpret the above on the scale similar to the healthcare expenditures, we

exponentiate E[Y (rg,r) — Y (0,0)]:

exp (E[Y (ro, 1) — Y(0,0)]) = exp (E {log 5;/(( )D

0,
(e} e
(o)™

where G,,(f) denotes the geometric mean of f, i.e., G,(f) = {[I, i }*/™
We note that identification and estimation arguments for E[Y (ro,r) — Y (0, 0)] re-
main the same by simply defining the outcome as log of healthcare expenditures. The

identification functionals are given by:

logy x dP(y | R=10,z) x dP(x) ,

k=1

4
E[Y(1,0)] = /logy % dP(y | T4, R = 1,2) x [[ dP(my | 51, R = 0,) x dP(z) |
/logy X dP(y | my, R =0,2) x dP(my | Mgx—1, R =1,2)X
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[[dP(m; | m;-1,R=0,z) x dP(z) . (C.1)
j=1
J#k

Positive and zero responses

In our setting, we have both positive and zero responses. Let Y (rg,r) = I(Y (1o, r) >

0)log Y (rg,r). The effects are defined as:

E[Y (ro,r) — Y (0,0)] = E[I(Y (ro,r) > 0)log Y (ro,r) — I(Y(0,0) > 0)log Y (0, 0)]
= P(Y(ro,r) > 0) x Ellog Y (r9,r) | Y(r0,1) > 0]

— P(Y(0,0) > 0) x E[logY(0,0) | Y(0,0) > 0] .

To interpret the above on the scale similar to the healthcare expenditures, we expo-

nentiate E[Y (ro,r) — Y(0,0)]:

e (BIY () = Y00.00) = o 0 e v 011 70,07 > 0
{ exp (E [log Y (ro,r) | Y(ro,r) > 0]) }P<Y<ro,r>>o>
) { exp (E[log Y(0,0) | Y (0, 0)>0])}P(Y(0’0)>0)
{HZ 1 Zpos(ro,r)}P(Y(”“ )>0)/n
{HZ 1 ZPOS(O7O)}P<Y(0,0>>0>/TL
_ Gn (Ypos(ro7r>)lf(Y(ro,r)>0) o

G (Vpou(0,0)) 7000

where G, (Ypos(70,T)) and G,,(Yp0s(0,0)) denote the geometric mean of positive coun-
terfactual responses Yjus(70,r) and G, (Yp0s(0,0)), respectively. Therefore, the effect
can be interpreted as ratio of scaled geometric means.

We note that identification and estimation arguments for E[Y (ro,r) — Y (0,0)] re-
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main the same by simply defining the outcome as zero if expenditure is zero, and log

of expenditure otherwise. The identification functionals are given by:

E[Y (0,0)] = /H(y > 0)logy x dP(y | R = 0,2) x dP(z) ,

4
E[Y(1,0)] = /H(y > 0)logy x dP(y | m4, R =1,2) X H dP(my, | mp—1,R=0,z) x dP(x) ,
k=1

E[Y(0,1%)] = /H(y > 0)logy x dP(y | M4, R =0,2) X dP(my, | mp—1, R =1,2)%

4

[ 4P(m; | m;1,R=0,2) x dP(x) . (C.3)
=1
ik

Remark 1 (Asymptotic variance). By delta method, we can write:

\/ﬁ(exp(f);ﬁy(@)) —exp(pr-v(Q)))
= A (0,exp(pry (Q)) X (€5 (Q) = 5, (@)))

and

A

V(exp(ph gy (@) = exP(pro sy (@)

N (0, X0 (Pt oy (@) X E[( @ (@) = 1, (Q)])

Remark 2 (Probability of positive counterfactual responses). In addition to
reporting effects with the interpretations outlined in (C.2), we also report effects based
on a binary indicator for zero or positive responses in table C.1, i.e., P(Y(rg,r) >
0) — P(Y(0,0) > 0). The identification and estimation arguments remain unchanged,

with the outcome simply redefined as I(Y > 0).

Remark 3 (Smearing transformation). The smearing transformation is often ap-

plied to adjust for the bias introduced when exponentiating E[Y (ro,r) — Y (0,0)] to
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estimate the arithmetic mean of the differences, E[Y (r,r) — Y (0,0)], rather than the

geometric mean. As an example, assume:

Y (ro,r) — Y (0,0) ~ N(E[Y (19, 1) — Y (0,0)],0?)

Y (ro,r) — Y(0,0) = E[Y (ro, 1) — Y(0,0)] + e, €5 N(0,0?) .
Therefore:
Y (ro,r) — Y(0,0) = exp (E[Y (ro,r) — Y(0,0)] + €) ,
and

E[Y (ro,r) — Y(0,0)] = E [exp (E[Y (r¢,r) — Y (0,0)] + ¢)]
= exp (E[Y (ro,r) = Y(0,0)]) x E [exp (¢)]

= exp (E[Y (ro,r) — Y(0,0)]) x exp (67/2) .

The last equality holds by the moment-generating function of a Normal distribution.
Here, 02 is the variance of Y (rg,r) — Y(0,0), that is the variance of the difference
between the log-transformed Y (rg,r) and log-transformed Y (0, 0).
If the assumption of a normally distributed error term is violated, the empirical
1

mean can be used to estimate I [exp (¢)], specifically as ~>"" | exp(e;), where ¢ =

Yi(ro,r) - Y;(0,0) — E[Y (ro, ) — Y/(0,0)].

C.2 Two-stage super learner

Let Y (rg,r) = Y (ro,r), where the outcome is defined as the original healthcare expen-

ditures, which include both positive and zero responses. The effects, as defined in 3.3,
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are interpreted as differences in arithmetic means. To obtain the one-step estimates,
outlined in 3.9, the function p,(My, 7o, X) was estimated using the two-stage super
learner, as demonstrated in an example here [link]. The two-stage super learner library
comprises all pairwise combinations of two constituent algorithms: one for estimating
P(Y > 0| M, ro,X) and another for E[Y | Y > 0, My, 1, X]. Using a two-stage
super learner is expected to improve predictions for each individual outcome.

Table C.2 presents the results of PSEs calculated as differences in arithmetic means.
These findings differ notably from those in Table 4.1 and Table C.1, where results
in the latter two tables are mostly aligned. For instance, the effect through SES
(R — M; ~ Y) for Whites vs. Blacks and the total effect for Asians vs. Hispanics
were significantly positive in Table 4.1 and Table C.1 but became significantly negative
in Table C.2. These discrepancies underscore the risks of directly using arithmetic
means in the analysis of skewed data, which may lead to potential misinterpretations

of the results.


https://github.com/wuziyueemory/Two-stage-SuperLearner/blob/main/MEPS%20data%20analysis/MEPS.R
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Table C.1: Path-specific effects for different racial group comparisons on the probability
of positive healthcare expenditures, reported on the difference scale.

MEPS data in year 2009

MEPS data in year 2016

Path Effect 95% CI p value Effect 95% CI p value
Whites vs Blacks*

R— M1~Y 0.016 0.010 — 0.023 <0.001 0.024 0.018 — 0.031 <0.001
R— M2~Y 0.001 -0.003 — 0.005 0.628 0.001 -0.002 — 0.004 0.495

R— M3~Y -0.001 -0.004 — 0.002 0.516 0.000 -0.002 — 0.002 0.779

R—M4—-Y 0.000 -0.007 — 0.007 0.953 0.009 0.002 — 0.017 0.012

R—Y 0.057 0.045 — 0.069 <0.001 0.061 0.048 — 0.074 <0.001
Total effect 0.075 0.061 — 0.089 <0.001 0.091 0.077 — 0.104 <0.001
Whites vs Asians™

R— M1~Y -0.010 -0.021 — 0.002 0.117 -0.010 -0.019 — -0.001 0.034

R— M2~Y 0.009 0.001 — 0.017 0.023 0.002 -0.003 — 0.006 0.424

R— M3~Y -0.003 -0.008 — 0.002 0.236 -0.002 -0.006 — 0.002 0.323

R—-M4—-Y 0.025 0.009 — 0.040 0.002 0.024 0.011 — 0.037 <0.001
R—Y 0.063 0.043 — 0.083 <0.001 0.055 0.037 — 0.074 <0.001
Total effect 0.069 0.047 — 0.092 <0.001 0.063 0.043 — 0.083 <0.001
Whites vs Hispanics*

R— M1~Y 0.048 0.038 — 0.058 <0.001 0.047 0.038 — 0.057 <0.001
R— M2~Y 0.036 0.030 — 0.042 <0.001 0.037 0.031 — 0.042 <0.001
R— M3~Y 0.006 -0.001 — 0.014 0.090 0.003 -0.003 — 0.010 0.335

R—M4—-Y 0.031 0.022 — 0.039 <0.001 0.043 0.034 — 0.051 <0.001
R—Y 0.084 0.072 — 0.096 <0.001 0.069 0.057 — 0.081 <0.001
Total effect 0.163 0.150 — 0.177 <0.001 0.148 0.135 — 0.161 <0.001
Blacks vs Asians*

R— M1~Y -0.016 -0.038 — 0.006 0.147 -0.028 -0.047 — -0.009 0.003

R— M2~Y 0.009 0.000 — 0.017 0.048 0.002 -0.004 — 0.007 0.530

R—M3~Y -0.005 -0.010 — 0.001 0.122 -0.002 -0.007 — 0.003 0.407

R— M4—-Y 0.030 0.011 — 0.048 0.002 0.023 0.008 — 0.037 0.003

R—Y -0.019 -0.043 — 0.005 0.124 -0.026 -0.048 — -0.004 0.020

Total effect -0.010 -0.038 — 0.019 0.515 -0.038 -0.063 — -0.013 0.003

Blacks vs Hispanics™*

R— M1~Y 0.023 0.016 — 0.030 <0.001 0.014 0.008 — 0.020 <0.001
R—M2~Y 0.045 0.037 — 0.052 <0.001 0.039 0.033 — 0.045 <0.001
R— M3~Y 0.004 -0.001 — 0.009 0.163 0.002 -0.004 — 0.008 0.499

R— M4—-Y 0.031 0.022 — 0.041 <0.001 0.022 0.014 — 0.031 <0.001
R—Y 0.007 -0.005 — 0.019 0.253 -0.016 -0.029 — -0.004 0.010

Total effect 0.088 0.068 — 0.108 <0.001 0.056 0.037 — 0.075 <0.001
Asians vs Hispanics*

R— M1~Y 0.075 0.060 — 0.089 <0.001 0.068 0.055 — 0.081 <0.001
R— M2~Y 0.028 0.018 — 0.038 <0.001 0.033 0.024 — 0.042 <0.001
R— M3~Y 0.000 -0.002 — 0.003 0.900 0.001 -0.001 — 0.004 0.287

R—M4—-Y -0.012 -0.025 — 0.001 0.062 -0.013 -0.027 — 0.000 0.058

R—Y 0.029 0.018 — 0.041 <0.001 0.032 0.021 — 0.043 <0.001
Total effect 0.111 0.086 — 0.136 <0.001 0.099 0.076 — 0.123 <0.001

* Reference group; My: SES, Ms: Insurance access, Ms: Health behaviors, M,: Health status.
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Table C.2: Path-specific effects for different racial group comparisons using two-stage

super learner, reported on the difference scale (arithmetic mean).

MEPS data in year 2009

MEPS data in year 2016

Path Effect 95% CI p value Effect 95% CI p value
Whites vs Blacks*

R— M1~Y -167.6 -448.6 — 1134 0.242 -129.0 -406.3 — 148.2 0.362

R— M2~Y -18.1 -80.0 — 43.9 0.567 -17.0 -65.2 — 31.3 0.491

R— M3~Y N -191.2 — 35.7 0.179 27.2 -57.5 — 111.8 0.529

R—M4—-Y 388.3 11.7 — 764.9 0.043 757.1 349.0 — 1165.3 <0.001
R—Y 521.3 7.4 — 1035.2 0.047 1,322.8 748.0 — 1897.6 <0.001
Total effect 161.3 -353.9 — 676.5 0.540 1,022.2 407.7 — 1636.7 0.001

Whites vs Asians™*

R— M1~Y 6.6 -206.6 — 219.8 0.952 291.0 -677.8 — 1259.8 0.556

R—> M2~Y 109.3 38.6 — 180.1 0.002 32.5 -64.7 — 129.6 0.512

R—M3~Y -30.7 -118.3 — 56.9 0.492 89.3 -2.5 —181.0 0.056

R— M4—-Y 1,167.4 802.1 — 1532.7 <0.001 1,666.1 1082.3 — 2250.0 <0.001
R—Y 1,973.5 1562.8 — 2384.2 <0.001 1,773.4 1088.2 — 2458.6 <0.001
Total effect 2,512.2 2032.7 — 2991.7 <0.001 2,834.0 2122.2 — 3545.7 <0.001
Whites vs Hispanics*

R— M1~Y -90.7 -336.9 — 155.5 0.470 376.1 -14.8 — 767.0 0.059

R— M2~Y 432.8 331.7 — 533.9 <0.001 377.5 294.4 — 460.6 <0.001
R— M3~Y 80.1 -38.4 — 198.5 0.185 159.8 -26.3 — 345.8 0.092

R— M4—-Y 1,451.9 1143.7 — 1760.1 <0.001 1,712.7 1389.7 — 2035.8 <0.001
R—Y 787.1 452.4 — 1121.9 <0.001 1,148.7 740.8 — 1556.7 <0.001
Total effect 1,543.1 1194.7 — 1891.5 <0.001 2,115.8 1626.0 — 2605.7 <0.001
Blacks vs Asians™*

R— M1~Y 53.9 -207.9 — 315.6 0.687 329.5 -106.7 — 765.7 0.139

R— M2~Y 40.5 -45.8 — 126.7 0.358 17.2 -77.1 — 111.6 0.720

R— M3~Y -44.3 -140.8 — 52.2 0.368 89.6 -36.6 — 215.8 0.164

R—M4A—-Y 1,682.3 1204.6 — 2160.1 <0.001 2,139.4 1606.9 — 2671.9 <0.001
R—Y 1,087.0 662.2 — 1511.8 <0.001 650.8 117.0 — 1184.7 0.017
Total effect 2,176.0 1628.4 — 2723.7 <0.001 1,695.2 1031.1 — 2359.2 <0.001
Blacks vs Hispanics*

R—M1~Y 25.3 -120.3 — 171.0 0.733 284.7 120.9 — 448.5 0.001

R— M2~~Y 526.9 400.7 — 653.1 <0.001 406.8 323.0 — 490.7 <0.001
R— M3~Y 60.5 -25.2 — 146.3 0.166 46.5 -102.3 — 195.3 0.541

R—M4—-Y 1,242.7 914.6 — 1570.8 <0.001 954.8 594.7 — 1314.8 <0.001
R—Y 249.0 -49.7 — 547.6 0.102 104.2 -253.2 — 461.6 0.568

Total effect 1,146.0 683.3 — 1608.6 <0.001 854.6 305.4 — 1403.8 0.002

Asians vs Hispanics*

R— M1~Y 84.5 -275.8 — 444.8 0.646 553.8 229.3 — 878.3 0.001

R— M2~Y 298.6 169.6 — 427.6 <0.001 258.7 148.9 — 368.4 <0.001
R— M3~Y -9.6 -71.7 — 52.5 0.762 26.8 -384 — 92.1 0.420

R—M4—-Y -391.8 -697.9 — -85.6 0.012 -527.4 -917.5 — -137.3 0.008

R—-Y -50.0 -319.0 — 219.1 0.716 370.0 42.6 — 697.4 0.027
Total effect -719.2 -1089.0 — -349.3 <0.001 -596.1 -1062.3 — -130.0 0.012

* Reference group; M;: SES, Ma: Insurance access, Ms: Health behaviors, My: Health status.
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D Additional simulation

The variables (Xla XQ, X3, R, M117 M12> MQ, M317 Mgz, M41, M42, Y) in this simulation

study are generated via the following models:

X1, Xo i Uniform(0,1), X3 ~ Bernoulli(0.5), R ~ Bernoulli(expit(Va[1 X; X, XB]T)),

M, = | My, M12} , M1 ~ Bernoulli(expit(M75)),

)

My N< Vir,(1 R X1Xo  X3)7T 1 05 )
Vi, (1 R X2 XoxX3)T| |05 1

*

T
M ~ Bernoulli(expit(Vay, [1 —RXs M; X; XQ] ))s

M3z = | Ms, MSJ , M1 ~ Bernoulli(expit(Ms;)), M3z ~ Bernoulli(expit(Mss)),

i

M3, N( Vi,(1 R My My X7 Xo RX3)T 1 05 )
V(1 R My My X095 Xo  X3)T -05 1
My =My MQ},M42NBernouHi(expit(MIQ)),

My N( Vi, (1 R My My Mz X1 Xo XoX3)T 1 05 )
V(1 R My My Ms; X; X2 X3)7 05 1

R

* T
Y*=W[1 R M; My My M, MuyX, Xs RX3| :
I(Y > 0) ~ Bernoulli(expit(Y™)),

Y |Y > 0~ LogNormal(logy = 0.5Y ", logsd = 0.5). (D.1)
where

Vi = [—0.12,0.12,0.24, —0.2],

Vi, = [0.33,0.04,0.25,0.35],
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Vi, = [0.48,0.4,0.49, 0.23],
Vi, = [0.14,0.02, —0.21, 0.05, —0.4, —0.16],
Vi, = [0.42,—0.01, —0.02, —0.05, 0.43, —0.07, —0.2, —0.18],
Vi, = [0.36,0.38,0.1, —0.13, —0.05, 0.39, 0.18, —0.1],
Vi, = [~0.01,0.49,0.29, —0.07,0.41,0.01, —0.1, —0.1, 0.13, 0.38],
Vi, = [—0.15,0.18,0.4, —0.13, —0.15,0.21, 0.07, 0.38, 0.38, 0.44]

Vi = [0.14,0.29, —0.44, 1,0.47,0.09, 0.31, 0.88, 0.34, 0.81, 0.92, 0.98].

We adopt the same variable generation strategy as described in Chapter 5.2, but
with a simplified data structure that more closely resembles MEPS. Specifically, we
use only three covariates, with My as a unidimensional binary variable and M; as a

two-dimensional variable, where each dimension is binary.
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Table D.1: Comparative performance of one-step estimator using super learner (SL)
vs. GLM in MEPS data structure

Bias SD MSE Coverage Rate CI width
sample size SL GLM SL GLM SL GLM SL GLM SL GLM
p;—»leY
1000  0.001 0.000  0.016 0.015 0.000 0.000 0.943 0.954 0.061 0.058
2000  0.001 0.000  0.011 0.010 0.000 0.000 0.930 0.949 0.040 0.040
4000  0.000 0.000  0.007  0.007 0.000 0.000 0.936  0.950 0.027 0.028
8000  0.000 0.000  0.005 0.005 0.000 0.000 0.936 0.955 0.019 0.020
PR My
1000  0.002 0.001  0.017 0.016 0.000 0.000 0924 0.959 0.057 0.061
2000  0.000 0.000  0.011 0.011  0.000 0.000 0.929 0.953 0.039 0.043
4000  0.000 0.000  0.008 0.008 0.000 0.000 0.934 0.950 0.028 0.030
8000  0.000 0.000  0.005 0.005 0.000 0.000 0951 0.960 0.020 0.021
p;—>M3->Y
1000  0.001 0.001  0.009 0.008 0.000 0.000 0.942 0.963 0.034 0.030
2000  0.000 0.000  0.005 0.005 0.000 0.000 0.930 0.954 0.019 0.019
4000  0.000 0.000  0.003 0.003 0.000 0.000 0.926 0.956 0.012 0.013
8000  0.000 0.000  0.002 0.002 0.000 0.000 0.925 0.947 0.008  0.009
pEHM4~>Y
1000 -0.006 -0.001 0.060 0.061 0.004 0.004 0.900 0.939 0.207 0.234
2000 -0.001  0.003 0.040 0.041 0.002 0.002 0.938 0.955 0.151 0.165
4000 -0.001  0.001  0.030 0.030 0.001 0.001 0926 0.946 0.109 0.117
8000  -0.001  0.000 0.021 0.021 0.000 0.000 0.933 0.941 0.078 0.082
pE*)Y
1000  -0.006  0.000 0.056 0.057 0.003 0.003 0.904 0.947 0.192 0.221
2000  0.000 0.003  0.038 0.039 0.001 0.002 0.931 0.948 0.140 0.156
4000  0.000 0.002  0.027 0.027 0.001 0.001 0.948 0.963 0.101 0.110
8000  -0.001  0.000 0.019 0.019 0.000 0.000 0948 0.959 0.072 0.078
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