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Abstract 
 
A Bayesian Approach to Modeling Particulate Matter Over an Italian Domain Using MAIA 
Ancillary Geographic Product Data. 

By Harrison Goodall 
 
 

Particulate Matter (PM) is a major cause of morbidity and mortality worldwide. This study 
examines the use of five models using a Bayesian Hierarchical Downscaling model structure to 
predict PM2.5 ( PM < 2.5 μm) across a region in central Italy in 2015. We build upon previous 
modeling work done in this region of Italy and provide an alternative way to create models to 
predict PM2.5 using fewer spatiotemporal and spatial predictors, smaller training data sets as well 
as the ability to calculate uncertainty measurements. The Bayesian models used in this paper 
predicted PM2.5 concentrations with a mean overall cross validation R2 of .72. Using extinction 
as our main predictor (aerosol optic density (AOD) divided by planetary boundary layer (PBL)) 
and data from NASA’s Multiple Angle Imager for Aerosol Ancillary Geographic Product 
(MAIA AGP) and Italian collaborators, we demonstrated that the MAIA AGP variables can be 
used to reliably predict PM2.5 and generate R2 values equivalent to those generated from models 
run with parameters processed by our Italian collaborators. The ability of our Bayesian model to 
integrate MAIA AGP variables and predict annual and daily PM2.5 concentrations with 
reasonable accuracy and uncertainty measurements provides future exposure studies with 
important data about model uncertainty, and the ability to predict PM2.5 across resource limited 
domains. 
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Highlights: 

1. To quantify health effects of PM2.5 across the globe, fine scale spatial and temporal PM2.5 

predictions are needed, especially for regions with limited meteorological and air quality 

data. 

2. We built upon data provided by Italian collaborators to run numerous models over an 

Italian domain. The purpose was to examine ways of predicting PM2.5 with less air 

quality data and ancillary predictors than traditional machine learning approaches. A 

large portion of this project was also aimed at integrating the Multiple Angle Imager for 

Aerosol Ancillary Geographic Product (MAIA AGP) into our models to determine how 

models utilizing this data compare to models utilizing predictor variables collected at a 

local scale.   

3. We used a Bayesian Hierarchical Downscaler model structure with a variety of predictors 

to determine the effects of inputs on PM2.5 prediction capability. 

4. Use of our Bayesian statistical model with MAIA AGP data generated reliable PM2.5 

concentration predictions and uncertainty measurements. 

5. The ability to of our Bayesian statistical model to generate reliable PM2.5 measurements 

in the context of limited ground monitoring data, and few spatiotemporal and spatial 

variables with MAIA AGP data suggests these methods and data sources could be used 

for various domains around the globe with limited PM and meteorological monitoring 

ability.  
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1. Introduction 

Air pollution is a significant cause of morbidity and mortality worldwide (Fuller et al., 

2022). In 2019, it is estimated that air pollution led to 6.7 millions deaths (Fuller et al., 2022). 

Air pollution can be divided into two main categories, ambient and indoor air pollution. While 

indoor air pollution has improved over the past two decades, deaths due to ambient air pollution 

have continued to rise from 2.9 million estimated deaths in 2000 to 4.5 million estimated deaths 

in 2019 (Fuller et al., 2022). As studies across the past several decades have demonstrated, a 

major component health related outcomes are due to small inhalable particles called particulate 

matter air pollution (PM): specifically particles 2.5 microns or less in width, referred to as PM2.5. 

(Brook et al., 2010; Dockery et al., 1993; Franklin et al., 2015). PM2.5 exposure has been linked 

with a wide array of health outcomes including increased cardiovascular-disease related 

mortality(Brook et al., 2010; Franklin et al., 2015) and increased incidence of lung cancer and 

respiratory morbidity and mortality (Faustini et al., 2011; Raaschou-Nielsen et al., 2013; Turner 

et al., 2011). 

To continue the study of PM2.5 exposure on health, it is necessary to have accurate 

methods of predicting PM2.5 concentrations across large domains. While it is possible to measure 

ambient air pollution, including PM2.5, with ground monitors, there are rarely enough monitors to 

use ground based data alone to accurately assess PM2.5 exposure across a geographic domain, 

especially if the domain contains rural areas, which typically have fewer ground monitors 

(Stafoggia et al., 2019). Over the past decades, Aerosol optic density (AOD), a satellite based 

parameter, has been widely used to predict particulate matter over large areas (Engel-Cox et al., 

2004; Lee et al., 2016). AOD is a measure of extinction that quantifies the ability of aerosols 

suspended in a vertical column of air to refract, absorb and scatter light (Acharya et al., 2021). 
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AOD has been widely used to predicted PM2.5 , PM10 and other aerosol concentrations in the 

atmosphere around the globe (Acharya et al., 2021; de Hoogh, Héritier, et al., 2018; Engel-Cox 

et al., 2004; Lee et al., 2016; Liu et al., 2007; Stafoggia et al., 2019). The quality of AOD data 

has increased in recent years with the release of NASA’s Multi-Angle Implementation 

Correction (MAIAC), which provides high quality AOD data at 1-km2 resolution(Lyapustin et 

al., 2011, 2018). MAIAC data has been used across various domains, most notably in the United 

States and Europe(Liu et al., 2007; Stafoggia et al., 2019).  

Various statistical and machine learning models have been used to predict PM2.5 based on 

AOD measurements, and overcome the challenges (Hoff & Christopher, 2009) to accurately 

utilizing remote sensing data (Chang et al., 2014; Geng, Murray, Chang, et al., 2018; Shtein et 

al., 2020; Stafoggia et al., 2019). In this paper we use a statistical model to predict PM2.5 values. 

Our model builds off previous research that demonstrated the ability of statistical models using 

MAIAC data to predict PM2.5 at a fine spatial scale(Hu et al., 2014; Kloog et al., 2014; Liu et al., 

2004).  

To overcome the challenge of using aerial gridded AOD data to predict spatial point-

measurements from PM ground monitors, we utilized a unified hierarchical Bayesian 

downscaling model introduced by Chang et al.(Chang et al., 2014). By treating the relationship 

between gridded AOD measurements and the spatial points of PM ground monitors as 

temporally and spatially correlated random effects, statistical downscaling overcomes issues of 

spatial misalignment, allowing for the prediction of PM2.5 at any spatial point within a given grid 

cell (Chang et al., 2014). The unified Bayesian hierarchical framework of this model structure 

allows for quantification of uncertainty of PM2.5 predictions as Bayesian interference allows for 

uncertainty propagation via prediction intervals and prediction standard deviations(Chang et al., 



 

 10 

2014). As in other PM modeling studies, we use meteorological data to increase the predictive 

capacity of our model, as meteorological and land use parameters can influence the relationship 

between PM and AOD (Beloconi et al., 2018; Just et al., 2015; Kloog et al., 2012). 

In this paper we apply this statistical model to central Italy with the domain centering 

around Rome, a large city in Italy, that has been previously shown to have high levels of 

particulate matter air pollution (Fattorini & Regoli, 2020; Stafoggia et al., 2019). This study 

seeks to build upon previous high quality analyses that utilized machine learning (de Hoogh, 

Héritier, et al., 2018; Shtein et al., 2020; Stafoggia et al., 2017, 2019) and land-use regression 

models to predict PM concentrations over Europe (de Hoogh, Chen, et al., 2018; de Hoogh et al., 

2016; Eeftens et al., 2012). While these two forms of modeling, used in conjunction with air 

quality and chemical transport models, appear to be the most popular techniques employed by 

Europe centered analyses, Beloconi et al. used a Bayesian Geostatistical model to predict annual 

PM concentrations across Europe, showing Bayesian statistical models can be used effectively 

over the European domain (Beloconi et al., 2018; Beloconi & Vounatsou, 2021). This paper is 

the first to use a unified Bayesian hierarchical downscaling model to predict daily PM2.5 

concentrations at high resolution across a European domain. We utilize statistical models to 

provide daily as opposed to yearly predictions and use AOD as a central predictor instead of 

relying solely on statistical performance in model selection, differentiating our methods from 

previous Bayesian and statistical models utilized over Europe.  

This paper seeks to build upon a 2019 analysis by Stafoggia et al. that estimated daily 

PM2.5 values for all of Italy at a 1-km2 resolution using random-forest and ensemble learning 

models (Stafoggia et al., 2019). While Stafoggia’s paper provides high quality PM predictions 

across Italy, the hierarchical structure of the model, where outputs from one step are used as 
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inputs for the next, prevent prediction of uncertainty measurements to accompany prediction 

values. Using Stafoggia’s data for the year 2015, we ran our Bayesian hierarchical downscaling 

model to compare the predictive quality of PM measurements generated by machine learning and 

statistical approaches, as well as generate uncertainty measurements to address limitations of 

previous studies. Additionally, we ran several variations of the same model using spatial and 

spatiotemporal predictors from our Italian collaborators and the Multi-angle Imager for Aerosols 

Ancillary Geographic Product (MAIA AGP) to examine model fit across various sources of data, 

from local data to widely available data from the MAIA AGP product. Rome has been the site of 

many epidemiologic investigations of the health effects of PM2.5 and likely will continue to be a 

commonly studied domain in the future, thus uncertainly predictions are crucial to adequately 

quantifying exposure and assessing corresponding health effects(Amoatey et al., 2020; De Marco 

et al., 2018).  

 

2 Materials and Methods:  

 

2.1.1 Domain 

The target domain of this study a 93,143 -km2 region of central Italy that includes the city 

of Rome, the largest city in Italy (Figure 1). The coordinates of the domain were contributed by 

the NASA MAIA team. The Apennine Mountain range extends through the center of the domain, 

separating the east and west coasts of the country. The eastern coast of the domain borders the 

Adriatic Sea, while the western coast borders the Tyrrhenian and Ligurian Seas. The domain 

extends to the south of Rome terminating before Naples and extends to the north up to Parma 
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and Bologna stopping just shy of the Po Valley region. Data was collected across this domain for 

the year 2015.   

 

 

Figure 1: Study domain (indicated by the black box) with PM2.5 monitors (red triangles) and 

Italian Regions (grey outlines).  

 

2.1.2 Data Sets 
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 As mentioned previously, data used in this analysis comes from two sources. The first 

and main source of data was data prepared by Stafoggia et. al (Stafoggia et al., 2019).  The 

second source was the April 2020 MAIA AGP. The AGP is the product of geostatistical 

regression models that calibrate data from MAIA satellite image data and earth surface features 

to aid in the prediction of PM concentration. We chose to focus on one year, 2015, for this 

analysis. All variables used in the analysis can be seen in Table 1.  

 

2.1.3 PM 2.5  

Particulate Matter measurements were provided by the Italian Institute for Environmental 

Protection and Research. The domain included 109 air quality monitoring stations that collected 

daily PM 2.5 measurements. The daily PM 2.5 values used reflect the 24 hour mean from each 

monitor.  

 

2.1.4 AOD 

The AOD values used in this analysis were measurements of AOD at the 550nm (AOD55) 

wavelength based on the MAIAC AOD, which utilized 6 Modis Aqua L1B data for 2015.  

In addition to MAIAC AOD values at 550nm, we utilized a gap filled AOD value to account for 

missing AOD values. This gap filled AOD at 550nm (AOD55.GF) was the result of an 

imputation process completed by Stafoggia et. al (Stafoggia et al., 2019). Stafoggia used co-

located Copernicus Atmospheric Monitoring Service (CAMS) AOD measurements as input for 

their random forest with daily MAIAC AOD as their output variable.  

 

2.1.5 Meteorologic Parameters 
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Meteorologic parameters were downloaded from the European Center for Medium-Range 

Weather forecasts, specifically from the ERA (ECMWF Re-Analysis) Interim Reanalysis at 

resolution of 0.125° × 0.125°. These parameters include temperature, wind speed and direction, 

and planetary boundary layer height. Wind speed and direction are composed of two vectors, 

u10, which represents wind moving parallel to the x axis, and v10, which represents wind 

moving parallel to the y axis. 

 

2.1.6 Spatial Parameters  

Elevation data was provided at a 30-meter spatial resolution by the Copernicus Land Monitoring 

Service- European Digital Elevation Model. 

 

2.1.7 Other Spatiotemporal Parameters 

We utilized monthly estimates of Normalized Difference Vegetative Index (NDVI) taken from 

the MODIS NDVI product (MOD13A3) at 1km resolution.  

 

2.1.8 MAIA AGP Variables 

Land Use/Land Cover from the AGP product was sourced from the 2009 European Space 

Agency global land cover data (“GlobCover”) at a resolution of 30m/pixel. The data was reduced 

to 1km/pixel resolution in the conversion to the AGP target area.  

 

Population Density data was taken from the Gridded Population of the World Version 4 

(GPWv4) based on United Nations data from 2015 and processed at a 1km2 resolution.  
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Urban Density data was taken from the Urban Settlement Density Product of the AGP, which 

utilized data from Open Street Map (OSM), Global Man-made Impervious Surface (GMIS), and 

Global Human Built-up And Settlement Extent (HBASE) at a 30m/pixel resolution. Weighted 

30m pixels were tabulated to provide urban density scores at a 1km resolution.  

 

The Land/Water Identifiers product utilized data from a variety of sources, however most of the 

data came from the European Commission’s Joint Research Center “Global Surface Water 

Transitions” product, which provides data at a 27m/pixel scale which was converted to a 1km 

scale using a nearest neighbor algorithm.  

 

Elevation Slope Aspect was calculated using a 3x3 kernel projection of image elevation at a 

333.3m/pixel resolution within 1km of the Albers Equal Area projection. 

 

Average Elevation was calculated using the mean elevation of 100m/pixel elevation values 

within 1km of the Albers Equal Area projection. Elevation values used originated from the 

MAIA IAGP DEM elevation data set.   
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Table 1: Description, source, and spatial resolution of variables 

Variable  Description  Source  Spatial Resolution  

Domain  93,143 x 1km2 grid cells MAIA AGP Target Area  1 km 
PM2.5 Concentration 
(μg/m3) 

Average daily measurements from 
109 ground monitors  

Italian Institute for Environmental 
Protection and Research - 

AOD55 Aerosol Optic Density at 550nm MAIAC AOD  0.125° × 0.125° 
AOD55.GF Gap filled AOD at 550nm Stafoggia et al. 2019 1 km 

Elevation (meters) 
Average Elevation Value per 1 km 
grid 

Copernicus Land Monitoring 
Service- European Digital Elevation 
Model 30 m 

Normalized 
Difference 
Vegetative Index 

Spatiotemporal green space 
predictor MODIS NDVI product (MOD13A3) 1 km 

Wind Speed (u10, 
v10) 

Wind direction and speed parallel 
to x and y axes 

ERA (ECMWF Re-Analysis) Interim 
Reanalysis 0.125° × 0.125°  

Temperature 
(degrees Celsius) Averaged temperature per grid cell 

ERA (ECMWF Re-Analysis) Interim 
Reanalysis 0.125° × 0.125°  

Planetary Boundary 
Layer  

Layer of atmosphere with 1km of 
earth's surface 

ERA (ECMWF Re-Analysis) Interim 
Reanalysis 0.125° × 0.125°  

Average Elevation  
Average Elevation Value per 1km 
grid MAIA AGP 2020 1 km 

Elevation Slope 
Aspect  

Representation of the average 
surface-normal azimuth angle MAIA AGP 2020 1 km 

Urban Density  

Aggregate of roads, impervious 
substances, and human settlement 
data MAIA AGP 2020 1 km 

Population Density  Number of persons per square km MAIA AGP 2020 1 km 
Land/Water 
Identifiers  

Signifies land, ocean, inland water, 
and ephemeral water classes MAIA AGP 2020 1 km 

Land Cover/Use  Provides 23 descriptions of land use MAIA AGP 2020 1 km 
 

 

 

2.3 Model Structure 

 We utilized a unified Bayesian Hierarchical downscaling model to predict PM2.5 based on 

AOD measurements and planetary boundary layer height at noon (PBL12). The details of this 

model are briefly enumerated below, if desired, more detail can be found in Chang et. al’s 2014 
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paper (Chang et al., 2014). We applied the downscaling model to calibrate the relationship 

between daily average AOD/PBL12 values and PM2.5 across our domain for all of 2015. As 

provided by Chang et al. (2014) and Geng et al. (2018) the relationship can be written as the 

following:  

 

Yst= αst + βstXst + γstZst + εst 

 

Yst represents the PM2.5 concentration at monitor location s on day t. Xst is the main predictor at 

location s on day t. In this analysis AOD/PBL12 was the value used for Xst in the model. 

Similarly Zst is a vector containing land use and meteorological parameters for location s on day 

t. αst and βst represent spatial covariate random effects which serve to correct the additive and 

multiplicative bias associated with AOD (Geng, Murray, Tong, et al., 2018). γ is a fixed-effects 

regression coefficient associated with Zst. εst is a term representing the residual error which is 

assumed to have an independent and normal distribution with a mean of 0. 

 

Using this model structure, we evaluated five models with different Z vectors to determine how 

robust this model is to variation of spatiotemporal inputs. Additionally, we examined model 

performance using data gathered from our Italian collaborators compared to data from the MAIA 

AGP. Each model used the same model structure and PM2.5 ground monitor data. The X and Z 

values across the model variations can be seen in Table 2. The training data sets were smaller for 

Models 1 and 3, as there were many missing AOD55 values, which decreased the training data 

size compared to models utilizing AOD.GF which had no missing. 
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Table 2: X and Z values used in each model variation. 
  Main Predictor (X) Training Data Set Size  Spatial and Spatiotemporal Variables (Z) 
Model 1 AOD55/PBL12 12,271 Elevation, Temperature, u10, v10, NDVI 
Model 2 AOD55.GF/PBL12 36,389 Elevation, Temperature, u10, v10, NDVI 

Model 3 AOD55/PBL12 12,271 
Land Water Identifiers, Urban Density, Population Density, 
Land Cover, Elevation Slope Aspect, Average Elevation 

Model 4 AOD55.GF/PBL12 36,389 
Land Water Identifiers, Urban Density, Population Density, 
Land Cover, Elevation Slope Aspect, Average Elevation 

Model 5 AOD55.GF/PBL12 36,389 
Elevation, Temperature, u10, v10, NDVI, Urban Density, 
Population Density, Land Cover 

  

 

2.4 Model Evaluation 

We used a 10-fold regression calibration on the spatial and temporal components of PM2.5 

predictions separately, as well as overall calibration.  

 

All statistical analysis was performed on R version 4.1.1. All maps were created in ArcGIS 

Desktop version 10.8.2 (ESRI, Redlands, CA).  

 

3. Results:  

 

3.1 Descriptive Statistics of Training Data Set  

 The descriptive statistics of the training data set can be seen in Table 3. The training data 

sets for models 1 and 3 were a subset of the main data set created by omitting rows with missing 

AOD55 values. This resulted in a training data set of n=12,271 for models using AOD55 

(models 1 and 3), and a training data set of n=36,389 for models using AOD55.GF (Models 2,4 
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and 5). Both AOD55 and gap filled AOD (AOD.GF) share a mean of .15 and standard deviation 

of .08. 

To visualize the pattern of missing AOD55 values we created a plot of the percentage of 

AOD55 values missing over the domain (Figure 2). This plot reveals a pattern of longitudinal 

lines where 100% of the AOD55 values are missing during out study period. As AOD55 was 

used in the X predictor position of our model, days with no AOD55 value cannot yield a PM2.5 

concentration prediction, which resulted in patterns of missing prediction values in our models 

using AOD55.  

 

Table 3: Descriptive statistics of dependent and independent variables in the training dataset. 

Training data set size differed based on use of AOD55 or AOD.GF, as there were only 12,271 

observations with complete AOD55 data. PM2.5 concentrations from each size of data set are 

provided. Descriptive statistics of other variables are given for the full training data when 

utilizing AOD.GF, and have an n = 36,389. 

Variable  Mean  SD Min  Max 

PM2.5 (μg/m3 , n=36,389) 19.07 15.54 0 170 

PM2.5 (μg/m3 , n=12,271) 18.29 14.21 0 170 
PBL12 (meters, n=36,389) 1102.28 631.24 12.19 3366.63 

AOD55 (n=12,271) 0.15 
     
0.08 0.01 0.82 

AOD55.GF (n=36,389) 0.15 0.08 0.01 0.83 
Elevation (meters, n=36,389) 160.49 212.58 -4.81 1000.95 
Temperature (degrees Celsius, n=36,389) 10.38 6.92 -7.2 27.45 
u10 (n=36,389) -0.26 1.76 -11.42 8.76 
v10 (n=36,389) -0.28 1.86 -13.18 6.48 
NDVI (n=36,389) 0.44 0.13 -0.02 0.88 
Urban Density (n=36,389) 10.86 7.99 0 29 
Population Density (population/km2, n=36,389)  2983 3800.2 0 17569 
Land Cover/Use (n=36,389) 108.1 82.88 11 210 
Land Water Identifiers (n=36,389) 1.01 0.22 0 2 
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Elevation Slope Aspect (n=36,389) 76 86..49 0 253 
Average Elevation (meters, n=36,389) 166.7 220 0 977 
 

 

Figure 2: Percentage of Missing AOD55 values  

 

3.2 Model Performance   

 

Regression plots of observed and predicted PM2.5 concentrations for each model can be seen in 

Figure 3. Overall, the intercepts are close to 0 (average -.22) and slopes are close to 1 (average 

1.01).  
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Table 4 shows the result of the 10-fold cross validation. The highest overall R2 values in the 

cross validation were generated by Models 2, 4 and 5 (R2 values of .726, .721, .725 respectively). 

Spatial cross validation results yielded higher R2 values (.02 higher on average), lower RMSE 

(.12 lower on average) and standard deviation values (2.05 lower on average) and slopes closer 

to unity than the temporal cross validation results. The overall R2 values were higher than either 

spatial or temporal results, with a range from .712 to .725. 

 

 

 

 

 

 

Figure 3: Linear Regression for observed and predicted PM concentrations for each model. 

Regression line represented by the blue line. 
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Table 4: Results of 10-fold cross validation 

    R2 RMSE Rate Slope SD 

Model 1             
  Overall 0.716 7.6129 0.958 0.958 7.594 
  Spatial 0.664 8.378 0.943 0.960 7.595 

  Temporal  0.665 8.200 0.960 0.934 8.566 

Model 2             
  Overall 0.726 8.140 0.951 0.992 8.213 
  Spatial 0.659 9.055 0.936 0.978 8.276 

  Temporal  0.641 9.3623 0.969 0.913 10.894 

Model 3             
  Overall 0.712 7.681 0.957 0.962 7.688 
  Spatial 0.652 8.583 0.942 0.944 7.645 

  Temporal  0.639 8.619 0.955 0.916 8.708 
Model 4             
  Overall 0.721 8.205 0.952 0.991 8.323 
  Spatial 0.655 9.125 0.936 0.957 8.360 

  Temporal  0.639 9.386 0.971 0.920 11.265 

Model 5             
  Overall 0.725 8.146 0.9521 0.993 8.247 
  Spatial 0.653 9.113 0.935 0.956 8.254 

  Temporal  0.632 9.300 0.970 0.908 10.932 
3.3 Pm2.5 predictions  

 

Figure 4 shows the spatial distribution of annual averages of predicted PM2.5 values across the 

target domain. There are lower predicted PM2.5 concentrations over the Apennine mountains in 

the center of the country, and higher PM2.5 concentrations around Rome and Naples in the South, 

and the southern regions of the Po valley, at the northern most edge of the domain. Models that 

used AOD55 (1 and 3) have a similar pattern of missing data as seen in Figure 2.  
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Table 5 displays the descriptive statistics of predicted PM2.5 across all five models. These values 

are taken from the output of the Bayesian Hierarchical Downscaling training model. Descriptive 

statistics of inputs for this training model can be seen in Table 3. 

 

Figure 5 shows the spatial distribution of annual averages of standard deviation of predicted 

PM2.5 values across the domain. The same pattern of missing data from Figure 2 can be clearly 

seen in models 1 and 3. However models using AOD55.GF (2,4 and 5) have unusually uniform 

distributions of standard deviation values across the central and upper portions of the target 

domain compared to the models utilizing AOD55.  

 

Figure 6 shows the monthly averages of observed and predicted PM2.5 concentrations. Figure 7 

shows the daily averages of observed and predicted PM2.5 concentrations. 

 

An enlarged image of the spatial distribution of annual averages of predicted PM2.5 values over 

Rome can be found in the supplementary materials (S1).   
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Figure 4: Annual Average Concentration of Predicted PM2.5 (μg/m3)  

Table 5: Observed and predicted PM2.5 concentrations (μg/m3) 
  Mean SD Percentile         
      5 25 50 75 95 
Observed  18.3 14.2 5 10 14 21.4 46 
Predicted – Model 1 18.3 12.24 4.8 10 15 22.6 42.3 
Predicted – Model 2 18.3 12.26 4.6 10 16 22.9 41.7 
Predicted – Model 3 18.3 14.21 4.7 10 16 23 41.6 
Predicted – Model 4 18.3 12.21 4.7 10 15 23 41.6 
Predicted – Model 5 18.3 12.26 4.6 10 16 22.9 41.7 
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Figure 5: Annual Average Standard Deviation of Predicted PM2.5 Concentration (μg/m3) 
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Figure 6: Monthly averages of observed and predicted PM2.5 concentrations. 

 

 

Figure 7: Daily averages of observed and predicted PM2.5 Concentrations.  

 

4. Discussion 

 This paper applies a Bayesian hierarchical downscaling model to produce PM2.5 

predictions across a large portion of Italy. Working within a domain identified by NASA’s 

MAIA team, we compared different versions of the downscaling model with various 

spatiotemporal and spatial predictor inputs. We then compared these model variations to each 
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other, and previous work done in Italy by Stafoggia et. al in 2019. Our results show that the 

downscaling model can provide reliable PM2.5 predictions across the domain. Each model 

explained 71 to 72% of the overall variability of PM2.5 in left out monitors during cross 

validation as seen in Table 5. Additionally, the daily average predicted PM2.5 mirrored daily 

averages concentrations of monitoring stations, showing that predictions from this model can be 

used on a fine temporal scale in future exposure research. 

 When we compare the models to each other, we see that there is very little variation of R2 

among the models, and the regression plots for the models have slopes close to unity and 

negative intercepts of -.21 or -.22 (Figure 3). Notably the results of temporal cross validation 

showed lower R2 values and higher RMSE and SD values than the spatial cross validation 

results. These findings may suggest that the model performs best on the spatial scale, although 

temporal performance is still adequate. The most notable result across each model is the similar 

performance between models despite large differences in Z vector contents (Table 1). Each Z 

vector was chosen from Italy data or MAIA AGP data in accordance with MAIA guidance of 

utilization of spatiotemporal and spatial predictors when predicting PM2.5 (provided in the MAIA 

AGP). The performance of the model is similar when using data provided from Italian 

collaborators (models 1 and 2) compared to using data from the MAIA AGP (models 3 and 4). 

This suggests that MAIA AGP data could successfully be used to predict PM2.5 in the context of 

our downscaling model, which could eliminate the need for large amounts of local data 

collection. These results also highlight that the X predictor is the main determinate of predictive 

ability when utilizing the downscaling model. We used extinction (AOD/PBL) as our X 

predictor. The PBL used in each model remained constant and was contributed by our Italian 

collaborators. Given the importance of the X variable in our model structure, it is logical that we 
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observed the largest amount of variation in cross validation results between models using 

AOD55 versus gap filled AOD55. When gap filled AOD55 was used as the main predictor, the 

R2 increased (average of .01). This is not surprising as the training sets for models using gap 

filled AOD55 were larger than non-gap filled AOD55 (Table 2), which likely resulted in the 

increased the R2. However, as Figure 5 shows, standard deviation of the predicted PM2.5 

concentrations increased when using gap filled AOD55, which is a result that must be 

investigated further.  

 As mentioned above, this analysis utilized and built upon work done by Italian scientists 

(Stafoggia et al., 2019). In their 2019 paper, Stafoggia et al. utilized a machine learning model to 

generate PM predictions across all of Italy. To accomplish this, they used many spatiotemporal 

predictors and spatial predictors (approximately 39). Before using small scale predictors to 

improve PM predictions, their model generated an R2 of .81 and a RMSE of 6.39 across the 

entire domain of Italy using training data from 229 stations in 2015. While their model remains 

superior to ours, with higher R2 values, our model serves as useful compendium to their previous 

findings. Despite only using 5 to 6 variables in the Z vector for each model, and utilizing training 

data from 109 PM monitoring stations, our model was able to generate robust R2 values. These 

results indicate that our model can be utilized in resource limited settings where generating a 

myriad of spatiotemporal and spatial predictors may not be an option. Our model can make 

predictions of PM2.5 with limited training data and sparse ground monitoring measurements, 

making it a useful addition to the field of PM modeling. Additionally, our data augments that 

provided by our Italian collaborators and other ensemble machine learning models by its ability 

generate uncertainty measurements, which are important when considering the use of this model 

to generate predictions for future epidemiologic research. 
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Limitations of this study include the presence of data gaps within all prediction maps. These 

missing predictions are largely due to the lack of X predictor values within a given grid cell, 

however a small subset of missing data persist when using gap filled AOD measurements in the 

models using MAIA data. The lack of AOD55 data across the domain was a significant 

limitation of this project and interfered with our model’s ability to yield PM predictions across 

the entire domain when using AOD55 in the X predictor. Additionally our model occasionally 

yields negative PM predictions, which is a limitation of its design.  

 

5. Conclusion 

By comparing multiple models with different predictor variables, we showed that our Bayesian 

Hierarchical Downscaling model can provide robust predictions of PM2.5 concentrations across a 

large domain with limited monitor data and spatiotemporal predictors. Additionally, the model 

can provide uncertainty measurements, which distinguishes it from previous models generating 

PM predictions over the Italian domain. The model’s adequate performance on a spatial and 

temporal scale, and ability to utilize MAIA AGP data without sacrificing prediction quality 

suggest it could be a useful tool to great PM exposure maps across Italy as well as domains with 

limited ground monitoring and meteorological data. 
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