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Abstract 

Background: In recent years, the test negative design (TND) has emerged as a popular study design in 

estimating vaccine effectiveness (VE) for COVID-19 vaccines. While a useful and important tool, this 

design has major considerations that must be made before using it to estimate VE. It is vital to 

understand how simple changes in test reporting or differences in added protection in disease severity 

levels can lead to a change in VE estimates. 

Objectives: We would like to characterize how sensitive VE estimates from a test-negative design are to 

changes in test reporting, and how it varies by disease severity and vaccine protection at different levels 

of disease severity. 

Methods: We used a simulation to generate COVID-19 test results and demographic data and study 

this relationship. In particular, we looked at different patterns of testing probabilities and vaccine 

protection and how they would bias VE estimates in five different settings. 

Results: Vaccine effectiveness for protection against infection has been found to be biased by as much 

as 8.64% (an estimated VES of 78.6% and a true value of 70%) in settings where testing probabilities 

were differential by disease severity and there was added vaccine protection against severe cases like 

hospitalization. 

Conclusions: VES is often biased and overestimated when testing probabilities are differential by disease 

severity, and this is exacerbated by added vaccine protection against severe outcomes. These 

overestimations were due to a much greater fraction of hospitalized or severe cases represented in the 

test results compared to those who were mildly symptomatic or asymptomatic.   
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Introduction 

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2). SARS-CoV-2 was first detected in Wuhan, Hubei province, in China in December 

2019 (Page, 2021). The virus quickly spread worldwide, and was declared a pandemic on March 11, 

2020 by the World Health Organization (WHO, 2020).  

The United States began mass vaccination in December 2020 with the BNT162b2 (Pfizer-BioNTech) 

vaccine (Pereira, 2020). BNT162b2 was granted Emergency Use Authorization (EUA) by the Food 

and Drug Administration (FDA, 2020). To receive an EUA, the vaccine was rigorously tested in a 

multinational, placebo-controlled, and observer-blinded clinical trial, where participants 16 years or 

older received two doses of either BNT162b2 or the placebo (Polack et al., 2020). Primary endpoints 

of the study were efficacy of the vaccine against laboratory-confirmed COVID-19 and safety.  

The results of the 2020 Polack et al. Pfizer study found BNT162b2 was 95% (95% CI: 90.3 - 97.6) 

effective against COVID-19 (Polack et al., 2020). Other vaccines available in the US include mRNA-

1273 (Moderna) and Ad26.COV2.S (Janssen/Johnson & Johnson) (Edwards & Orenstein, 2023). 

Later in December 2020, the mRNA-1273 vaccine was granted an EUA, followed by Ad26.COV2.S a 

few months later in February 2021. The mRNA-1273 vaccine was found to have a vaccine efficacy of 

94.1% against COVID-19 illness (Baden et al., 2021). In comparison, the Ad26.COV2.S vaccine 

protected against moderate to severe-critical COVID-19 at 66.1% efficacy (Sadoff et al., 2021). It was 

higher against severe-critical COVID-19, at 85.4% efficacy (Sadoff et al., 2021). By April, all states in 

the US opened vaccine eligibility to residents 16 and over. In May, the FDA gave the Pfizer 
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BNT162b2 vaccine full approval for adolescents aged 12 to 15, and in August full approval was given 

for patients 16 and older. By August, 70% of the US population had received at least one dose.  

Vaccine efficacy, the result of these studies, is estimated as one minus the relative risk of vaccinated 

participants who developed COVID-19 compared to those who took the placebo and developed it 

(WHO, 2021). While clinical trials can show vaccine efficacy in a controlled setting, other factors like 

underlying medical conditions or age can impact how well a vaccine can work for a particular person. 

Vaccine effectiveness (VE), as opposed to vaccine efficacy, looks at how the vaccine performs in the 

real world outside of controlled trial conditions and is calculated the same way. Importantly, vaccine 

efficacy found in clinical trials also tends to be underpowered when looking at rare outcomes, or other 

subgroups (Lipsitch & Dean, 2020).  

Since the completion of clinical trials, there has been widespread emergence of new SARS-CoV-2 

variants. Thus, observational studies, in particular the test negative design (TND), have been a major 

source of information in monitoring vaccine performance outside of the controlled setting of a clinical 

trial. Pandemic conditions during the trials were quite different from conditions during vaccine 

rollout, and so it is necessary to understand  what impact this could have on VE. Observational studies 

have been used to assess VE against severe disease and against variants such as Delta or Omicron 

(Polinski et al., 2022; Tang et al., 2021; Tsang et al., 2022). Both the Polinski and Tang papers, in 

finding these estimates, used the TND. The test negative study design has been used to estimate 

vaccine effectiveness for influenza and rotavirus (Bond 2016, Jackson & Nelson 2013, Schwartz 2017), 
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though more recently, has been used in many COVID-19 VE estimates (Lopez-Bernal 2021, Ranzani 

2021, Thompson 2021).  

In a test negative design, patients who seek healthcare for COVID-like symptoms go to their 

healthcare provider and have specimens taken in order to test for SARS-CoV-2. Those who meet the 

clinical case definition of COVID-19 and test positive are considered the test-positive cases, while 

those who tested negative but also met the clinical case definition are the test-negative group. The odds 

of testing positive among vaccinated participants is then compared with the odds of testing positive 

among unvaccinated participants, adjusting for measured confounders like age and location. VE can 

then be calculated from this odds ratio (OR), as VE = (1 - the adjusted OR) * 100%. 

In many retrospective COVID-19 TND studies, there is no consistent symptom presentation. Since 

existing data does not tell us the disease status of the individual, this can result in a mix of 

asymptomatic, mild, moderate, and severe symptoms. Yet it is known that SARS-CoV-2 infections are 

heavily underreported (Lau et al., 2021). Those who seek testing are not representative of the entire 

infected population, as those with mild symptoms may choose not to get tested, or those who present 

as asymptomatic may not be known to test. This is in contrast to individuals with severe disease, who 

are more likely to be captured by the surveillance system (Vandenbroucke et al., 2020). Many TND 

studies calculate and report VE against infection or against symptomatic COVID-19, including mild 

disease. Furthermore, VE is often seen to vary across disease severity, and vaccines usually have higher 

efficacy against severe disease than milder symptoms (Polack et al., 2020). This can be observed in the 
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Sadoff et al. Ad26.COV2.S trial, and similar relationships have been seen for many other diseases (Jain 

et al., 2013; Kulkarni et al., 2017; Trach et al., 1997; Alonso et al., 2004). 

The characteristics of reported tests have also changed over time. In late 2021, during the Omicron 

surge of COVID, access to self-administered at-home rapid antigen tests was expanded, allowing rapid, 

simple-to-use, and sensitive tests to be utilized to quickly diagnose infected patients (Shircliff). 

However, rapid, at-home tests are not required to be reported in surveillance data, which leads to 

further changes in test-reporting patterns – further underreporting, particularly in mildly or 

asymptomatic cases. While under-reporting is not a new issue, the dramatic changes in testing patterns 

over time may exacerbate a pre-existing issue in the TND, and complicate the interpretation of TND 

studies. 

We hypothesize that the expanded use of at-home tests have impacted the COVID-19 case data by 

further decreasing the rate of mild cases or infections reported. We hypothesize that differences in test 

reporting and VE by disease severity can cause under-representation of milder infections, and an over-

representation of severe infections, leading to an overestimation of VE against infection. We would 

like to know how, even without underlying changes in true VE, how changes in test reporting impact 

VE estimated from a TND study. How sensitive are these estimates to changes in test reporting, and 

how does it vary across disease severity? The rollout of at-home testing is a motivating example for this 

setting. 
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Methods 

In order to examine the relationship between disease severity, reporting, and VE, we began by using a 

simulation to generate data for a hypothetical COVID-19 TND study to estimate VE against 

infection, against disease, and against hospitalization. Fixed and varied parameter values used for this 

data generation are defined in Tables 1 and 2 below. 

 

Table 1. Fixed Parameters in the Simulation 

Parameter Value 

Overall Parameters 

Population Size 10,000 people 

Study End Time 1,000 units of time 

Vaccination Coverage 50% of population 

Percent of Population that is Older 0.4 

Hazard Ratio Relating Testing Positive and Older Age 1.2 

Hazard Ratio Relating Testing Negative and Older Age 2.0 

Vaccine Efficacy Against Infection 0.7 
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Parameters Regarding Testing Positive 

Shape Parameter for Weibull Distribution for Testing Positive 1.2 

Rate Parameter for Weibull Distribution for Testing Positive 0.01 

Baseline Probability of a Younger Unvaccinated Person Progressing to 
Symptoms Given Infection 

0.7 

Baseline Probability of a Younger Unvaccinated Person Progressing to 
Severe Disease Given Symptoms 

0.05 

Baseline Probability of an Older Unvaccinated Person Progressing to 
Symptoms Given Infection 

0.7 

Baseline Probability of an Older Unvaccinated Person Progressing to Severe 
Disease Given Symptoms 

0.15 

Parameters Regarding Testing Negative 

Shape Parameter for Weibull Distribution for Testing Negative 0.8 

Rate Parameter for Weibull Distribution for Testing Negative 0.01 

Baseline Probability of a Younger Unvaccinated Person Progressing to 
Symptoms Given Infection 

0.5 

Baseline Probability of a Younger Unvaccinated Person Progressing to 
Severe Disease Given Symptoms 

0.01 

Baseline Probability of an Older Unvaccinated Person Progressing to 
Symptoms Given Infection 

0.5 

Baseline Probability of an Older Unvaccinated Person Progressing to Severe 
Disease Given Symptoms 

0.05 
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Table 2. Varied Parameters in the Simulation 

 

Parameter Values 

Vaccine Efficacy Against Progression to Symptoms Given Infection 0, 0.4 

Vaccine Efficacy Against Progression to Severe Disease Given Symptoms 0, 0.2 

Parameters Regarding Testing Probabilities 

Probability of a Vaccinated Person with no Symptoms Seeks Testing 0.1, 0.2, 0.7 

Probability of a Vaccinated Person with Mild Symptoms Seeking Testing 0.5, 0.7 

Probability of a Vaccinated Person with Severe Symptoms Seeking Testing 0.7, 0.9 

Probability of an Unvaccinated Person with no Symptoms Seeks Testing 0.025, 0.1, 0.2, 0.7 

Probability of an Unvaccinated Person with Mild Symptoms Seeking 
Testing 

0.2, 0.35, 0.7 

Probability of an Unvaccinated Person with Severe Symptoms Seeking 
Testing 

0.3, 0.45, 0.7, 0.9 

 

These simulations aimed to look at the effect of varying levels of vaccine efficacy and different patterns 

of testing probability, while holding other parameters constant. 

Beyond these parameters, there are a few things that should be defined. The age of an individual is 

generated and considered in the simulation, and is split into “older” and “younger”. There is no set age 
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for older vs younger, but 50% of the population is set to be older, giving them a different hazard for 

testing positive or negative, and how likely they are to get infected, progress to symptoms, and/or 

progress to hospitalization.  

There are also three levels of infection severity an individual can have: 1) infection with no symptoms, 

2) non-severe COVID-like or COVID symptoms, and 3) severe COVID-like or COVID symptoms. 

In this paper, severe COVID-like or COVID symptoms are represented by hospitalization. As an 

important part of the research question, true VE is differential by disease severity. VES is vaccine 

efficacy against infection, VEP is vaccine efficacy against progression to symptoms (mild or severe) 

given infection, and VEH is vaccine efficacy against progression to severe disease given symptoms.  

There are several fundamental assumptions made in this model. A major model assumption is that the 

COVID-19 test has 100% sensitivity and specificity. We also assume perfect knowledge of an 

individual’s vaccination status, and there are no coinfections between SARS-CoV-2 and any other 

respiratory pathogens. There is only one type of vaccine, and only one circulating COVID variant. 

Vaccination does not affect the probability of non-COVID infections. That is, there is no cross-

protection from the vaccine. Furthermore, there is no waning in vaccine protection in that protection 

does not fade over time.  

For every individual, vaccination status and age category are randomly generated. From these two 

covariates, a hazard ratio for increased SARS-CoV-2 infection risk for that individual is calculated, 

based on their unique covariates. This hazard ratio is calculated relative to the hazard ratio for a young, 

unvaccinated person – if the individual is vaccinated, the coefficient is 0.3, and if they are older, the 

coefficient is 1.2. A rate parameter is then calculated for that individual, dependent on the previously 
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calculated hazard ratio, the shape parameter of 1.2, and the original rate parameter of 0.01. A COVID-

19 infection time then is drawn from a Weibull distribution (shape parameter = 1.2, and using the 

individual’s newly calculated rate parameter). Once infected, the simulation then looks to see if the 

individual will progress to symptoms. While both younger and older individuals will both have a 

probability of 0.7 in progressing to symptoms, progression from symptoms to severe disease is 

dependent on age. In an older person, the probability is 0.15, compared to 0.05 in a younger person. 

Given these probabilities, as well as vaccination status and whether or not the vaccine has any added 

protection against symptoms or hospitalization, VEP or VEH, it is then randomly determined to see if 

the individual progresses to symptoms or hospitalization. This determines the severity of the COVID-

19 infection, and this individual's probability of testing is then based on their severity as well as their 

vaccination status.  

Based on the individual’s probability of testing, they are randomly assigned testing or not, and if they 

tested, those results are stored and then used to estimate VE. This imitates the reality of the TND, 

where only information about individuals with recorded test results are known.   

A similar process is done to obtain test negative results. Like in a test positive case, an individual’s 

hazard ratio for decreased SARS-CoV-2 infection risk is calculated depending on their age. As test 

negative controls are non-COVID illnesses, the vaccination should have no effect on these and thus, is 

not included in the hazard ratio calculation. The coefficient for age when testing negative is 2. A rate 

parameter is calculated from this hazard ratio, and from a shape parameter of 0.8 and original rate 

parameter of 0.01. An illness time is drawn from a Weibull distribution conditioning on when the last 

test negative test was, the individual’s rate parameter, and shape parameter. Probability of progression 
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is done the same as the test positive process, except the baseline probability for progression to 

symptoms given infection is 0.5 for both old and young individuals. Younger people progress from 

symptoms to severe disease with a probability of 0.01, while that probability is 0.05 for older people. It 

is solely these probabilities that are used to determine whether or not the individual develops 

symptoms or progresses from symptoms to severe disease. Probability of test-seeking is dependent on 

vaccination status and disease severity, and the test result is only stored if the person sought testing. 

This process can go on for multiple times within the time before the study ends, allowing multiple 

non-SARS-CoV-2 infections to occur. Furthermore, this process occurs earlier in the simulation study 

period than the SARS-CoV-2 infection, so the individual obtaining SARS-CoV-2 infection marks the 

end of follow-up for this individual.  

The test results are coded 1 if the individual has COVID, and 0 if otherwise. In order to obtain a VE 

estimate, the TND uses a logistic regression, where in this case the formula was as follows: 

 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟⁡(𝑅𝑒𝑠𝑢𝑙𝑡 = 1)) ⁡= ⁡𝛽1𝑉𝑎𝑥𝑆𝑡𝑎𝑡𝑢𝑠⁡ + 𝛽2⁡𝐴𝑔𝑒⁡ +⁡𝛽3𝑇𝑖𝑚𝑒⁡ 
 

In this formula, Result can be 1 or 0, where the former indicates a positive COVID-19 test and the 

latter is a negative test. VaxStatus is 1 or 0, where the variable is 1 if the individual is vaccinated, and 0 

if not. Age is coded into “older” (Age = 1) and “younger” (Age = 0). Time is fit using a smoothing 

spline with df = 3.   

The formula, using all simulated test results, would give the VE estimate for VES, which looks at 

vaccine effectiveness against infection, and uses the data from all test results. When calculating VESP, 
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we removed asymptomatic people, and in calculating VESPH, only data for hospitalized cases remained. 

All three used the same model and covariates, only with data split by severity.  

While VEP and VEH are used as parameters in the simulation, the TND VE estimates derived from the 

simulated data represent VESP and VESPH. VESPH is what is observed from cohort or TND studies 

looking at VE against hospitalization, since this estimate only looks at  hospitalized cases.  

The relationship between these values can be found in the following equations: 

 

𝑉𝐸𝑆𝑃 = 1⁡ − ⁡(1 − 𝑉𝐸𝑆)(1− 𝑉𝐸𝑃) 
𝑉𝐸𝑆𝑃𝐻 = 1 − (1− 𝑉𝐸𝑆)(1− 𝑉𝐸𝑃)(1− 𝑉𝐸𝐻) 

 

In this simulation, we want to evaluate the possible bias of VE estimates under different settings in 

order to determine how VE changes by disease severity and under-reporting. In this paper, bias is 

defined as the estimated value minus the true value. Table 2 below lists the five scenarios tested by the 

simulation. The first is the base scenario, where the probability of testing is the same, no matter 

vaccination status or disease severity. These probabilities are listed, alongside VES, VEP, VEH, and VESP 

and VESPH.  

The second scenario is where the probability of testing is the same between vaccinated and 

unvaccinated persons, but different by disease severity. The third scenario further changes things by 

making the probability of testing among the unvaccinated half of that in the vaccinated group, where 

VE is still differential by symptom severity. The fourth scenario represents the potential influence of 

self-testing, where all probabilities of testing are much lower than that of the previous scenarios, as a 

way to represent those who self-tested or used rapid-testing at home and did not report the results. 
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Additionally, the relationship between vaccinated and unvaccinated testing probabilities is not just 

half. Finally, the last setting looks at when the vaccine only protects against infection, so that VES, 

VESP, and VESPH would all be the same. 

 

Table 2. Table listing tested scenarios and VE parameters 

Test Reporting VE by 

severity 

True VE 

values 

Same Probability of Testing by Disease Severity and Vaccination Status 

PInfected,Vaccinated = 0.7 PInfected, Unvaccinated = 0.7 VES → 0.7 VES → 0.7 

PMildly Symptomatic, Vaccinated = 0.7 PMildly Symptomatic, Unvaccinated = 0.7 VEP → 0.4 VESP → 0.82 

PHospitalized, Vaccinated = 0.7 PHospitalized, Unvaccinated = 0.7 VEH → 0.2  VESPH→  0.856 

Probability of Testing Differential by Disease Severity, Same by Vaccination Status 

PInfected,Vaccinated = 0.2 PInfected, Unvaccinated = 0.2 VES → 0.7 VES → 0.7 

PMildly Symptomatic, Vaccinated = 0.7 PMildly Symptomatic, Unvaccinated = 0.7 VEP → 0.4 VESP → 0.82 

PHospitalized, Vaccinated = 0.9 PHospitalized, Unvaccinated = 0.9 VEH → 0.2  VESPH→  0.856 

Probability of Testing Differential by Disease Severity and Vaccination Status 
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PInfected,Vaccinated = 0.2 PInfected, Unvaccinated  = 0.1 VES → 0.7 VES → 0.7 

PMildly Symptomatic, Vaccinated = 0.7 PMildly Symptomatic, Unvaccinated = 0.35 VEP → 0.4 VESP → 0.82 

PHospitalized, Vaccinated = 0.9 PHospitalized, Unvaccinated = 0.45 VEH → 0.2  VESPH→  0.856 

Self Testing (More Extreme Under-Reporting, Unvaccinated Testing Probability Not Half of 

Vaccinated) 

PInfected,Vaccinated  = 0.1 PInfected, Unvaccinated = 0.025 VES → 0.7 VES → 0.7 

PMildly Symptomatic, Vaccinated = 0.5 PMildly Symptomatic, Unvaccinated = 0.2 VEP → 0.4 VESP → 0.82 

PHospitalized, Vaccinated = 0.7 PHospitalized, Unvaccinated = 0.3 VEH → 0.2  VESPH→  0.856 

Vaccine Effectiveness Same Across Symptom Severity 

PInfected,Vaccinated = 0.2 PInfected, Unvaccinated = 0.1 VES → 0.7 VES → 0.7 

PMildly Symptomatic, Vaccinated = 0.7 PMildly Symptomatic, Unvaccinated = 0.35 VEP → 0 VESP → 0.7 

PHospitalized, Vaccinated = 0.9 PHospitalized, Unvaccinated = 0.45 VEH → 0 VESPH→  0.7 

 

The number of runs for each scenario was chosen to be 500, estimated using the same method as 

Morris et al. and some trial and error (Morris, 2019). Bias was the key performance measure of interest 

in this study, so we used the corresponding equation. After some preliminary runs, we found that 

standard error was less than 0.01, meaning that the variance was less than 0.001. Given the following 
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equation (1) and a desire to have a Monte Carlo SE of bias lower than 0.005, we obtain 400 as the 

number of simulation runs. 

 

𝑀𝑜𝑛𝑡𝑒⁡𝐶𝑎𝑟𝑙𝑜⁡𝑆𝐸(𝐵𝑖𝑎𝑠) ⁡= ⁡√𝑉𝑎𝑟(�̂�)/𝑛𝑠𝑖𝑚 (1) 

 

When running preliminary results, a simulation run of 400 times on occasion had a MCSE of over 

0.005, so the number of runs was increased to 500. 

 

Results 

Table 3 shows the results of running the simulation 500 times for each scenario with a population size 

N of 10,000. It reports the estimated parameter (VES, VESP, and VESPH), the expected or true value, the 

average of all 500 runs, standard error of the estimate, mean bias, Monte Carlo SE of the bias, and root 

mean squared error.  

 

Table 3. Results with population size (N) = 10,000 and number of simulation runs = 500 

Estimated 

Parameter 

True 

Value 

Average 

Estimate 

(of 500 

runs) 

Standard 

Error of the 

Estimate 

Across 

Mean 

Bias 

Monte 

Carlo 

Standard 

Error of 

Root 

Mean 

Squared 

Error 
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Simulations Bias 

Same Probability of Testing by Disease Severity and Vaccination Status 

VES 0.7 0.699 0.00994 -0.001 0.000447 0.00998 

VESP 0.82 0.820 0.00871 -0.0002 0.000389 0.00870 

VESPH 0.856 0.845 0.0297 -0.0109 0.00141 0.0316 

Probability of Testing Differential by Disease Severity, Same by Vaccination Status  

VES 0.7 0.778 0.00926 0.0775 0.00350 0.0781 

VESP 0.82 0.820 0.00861 0.000493 0.000386 0.00861 

VESPH 0.856 0.845 0.0255 -0.0107 0.00124 0.0276 

Probability of Testing Differential by Disease Severity and Vaccination Status 

VES 0.7 0.769 0.0117 0.0689 0.00313 0.0699 

VESP 0.82 0.813 0.0108 -0.00722 0.000582 0.0130 

VESPH 0.856 0.837 0.0321 -0.0194 0.00168 0.0375 

Self Testing (More Extreme Under-Reporting, Unvaccinated Testing Probability Not Half of 

Vaccinated) 
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VES 0.7 0.786 0.0155 0.0864 0.00393 0.0878 

VESP 0.82 0.811 0.0152 -0.00883 0.000786 0.0176 

VESPH 0.856 0.835 0.0380 -0.0210 0.00194 0.0434 

Vaccine Effectiveness Same Across Symptom Severity 

VES 0.7 0.691 0.0149 -0.00931 0.000785 0.0175 

VESP 0.7 0.692 0.0163 -0.00841 0.000821 0.0183 

VESPH 0.7 0.686 0.0487 -0.0136 0.00226 0.0505 

 

For all scenarios and parameter estimates, Monte Carlo Standard Errors of the Bias were lower than 

0.005. Most average estimates were close to the true value of the parameter, save a few. For instance, 

VES in the second, third, and fourth scenarios (0.778, 0.769, and 0.786, respectively, compared to the 

true value of 0.7). Standard error of the estimate was generally larger for VESPH than when estimating 

VESP and VES (around 0.03 for VESPH and 0.01 for VESP and VES). This was the same pattern seen in 

root mean square error in the base scenario and VE same by severity scenario (around 0.03 or 0.05 for 

VESPH, and 0.01 for VESP and VES). However, the root mean square error for the other three scenarios 

had higher values for VES and VESPH than VESP.  

Overall, mean bias seemed to be more negative than positive, indicating more underestimation than 

overestimation. While the first setting had little bias, the second, third, and forth settings all had major 
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overestimation when looking at VES (0.778, 0.769, and 0.786 were estimated, compared to the true 

value of 0.7). Some milder underestimation was seen in the VESPH estimates for those settings (0.845, 

0.837, and 0.835 compared to the true value of 0.856). The last scenario mildly underestimated all VE 

estimates.  

Next, plots were made to further examine the relationship between testing probability and VE 

estimates for VES, VESP, and VESPH. The first set of plots are shown below in Figure 1. 

 

 

Figure 1. VES, VESP, and VESPH Estimates for Varying Testing Probability. VEP and VEH are 0.4 and 0.2, 

respectively. The true VES is 0.7, shown as a dotted blue horizontal line on VES. The true VESP is 0.82, and 

the true VESPH value is 0.856, both plotted on their respective graphs.  Plot a) shows VES as testing probability 

for infected people increases from 0.1 to 1 as testing probability for symptomatic people and hospitalized 
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people remain at 0.8 and 0.9, respectively. Plot b) follows the same setting but shows VESP instead of VES. 

Plot c) is the same setting as the previous two, with VESPH estimates. Plot d) shows VES as testing probability 

for symptomatic people increases from 0.2 to 1 and testing probability for infected people increases from 0.1 

to 0.9, always 0.1 lower than symptomatic people. The testing probability for hospitalized people is constant 

at 0.9. Plot e) is the same setting, but shows VESP. Plot f) likewise, is the same setting but shows VESPH. 

 

In this figure, we can see that the general patterns are the same no matter if testing probability for 

symptomatic people is included. VESP and VESPH both show flat lines that approximate the true VE 

values (Figure 1b, 1c, 1e, and 1f). Meanwhile when looking at the VES plots, we can see that as the 

testing probability increases, the estimate approaches the true value. There is a good amount of 

overestimation when testing probabilities for infected (and symptomatic) people are low. In Figure 

1a), the VES estimate starts to be underestimated as testing probability for infected people becomes 

greater than 0.9.  

Figure 2 looks at a similar setting as Figures 1d, 1e, and 1f), but varies VEP and VEH values.  
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Figure 2. VES, VESP, and VESPH Estimates for Varying Testing Probability and Changing VEP and VEH. 

In all the plots, testing probability for hospitalized people is constant at 0.9. Testing probability for 

symptomatic people increases from 0.2 to 1, and testing probability for infected persons is always 0.1 lower, 

starting from 0.1 and ending at 0.9. Plot a) shows VES estimates under changing symptomatic and 

infected testing probabilities when VEP and VEH = 0.1. The true VES = 0.7 is the blue dotted horizontal 

line. Plot b) is the same, but for VESP estimates. The true VESP = 0.73. Plot c) looks at VESPH, and the true 

VESPH value is shown by the blue dotted line at 0.757. Plot d) is VES as symptomatic and infected testing 

probabilities change and VEP = 0.1 and VEH = 0.9. VES = 0.7. Plot e) is the same setting with VESP, where 

the true VESP value = 0.73. Plot f) then looks at VESPH and its true value, 0.973. Plot g) shows the effect of 
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changing symptomatic and infected testing probabilities on VES. True VES = 0.7. Plot h) shows the same 

for VESP. True VESP here = 0.97. Plot i) is the same for VESPH, and true VESPH = 0.997. 

 

General patterns in this set of plots were similar to those of Figure 1. All VESPH estimates were constant 

over changing testing probabilities for symptomatic and infected people, with a flat line that closely 

matched the true VESPH values (Figures 2c, 2f, and 2i). When VEP and VEH were both set to be 

similarly low (at 0.1) or high (0.9), the plots were similarly flat and closely followed the true VESP 

values (Figures 2b and 2h). Figures 2a, 2d, 2e, and 2g all had similar patterns. When testing 

probabilities for symptomatic people and infected people were low, overestimation of VES (Figures 2a, 

2d, and 2g) and VESP (Figure 2e) were high. The overestimation lessened and the estimate approached 

the true value as those testing probabilities approached 1.  

 

Discussion 

The simulation model ran five different settings to simulate bias in the test negative design when 

estimating vaccine effectiveness for COVID-19. The first setting was when the probability of testing 

was the same by disease severity and vaccination status. VES, VESP, and VESPH estimates were all close to 

the true value, as expected. Scenarios two, three, and four all had testing probabilities that were 

differential in some way by disease severity. These scenarios also had major overestimations of VES. It is 

likely due to an overrepresentation of hospitalized people when calculating effectiveness. That is, the 

symptomatic and infected populations have low testing probabilities, so a fewer percentage of those 

populations would show up in the test result data. In comparison, the testing population for 
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hospitalized people is much higher, and so more of that population (at least, more than their 

representative sample in the entire test-seeking population) would be found in the test result data. 

Furthermore, the vaccine had an additional protective effect (VEH = 0.2) against hospitalization, which 

meant less people would be hospitalized and instead be infected or symptomatic – both groups with 

lower testing probabilities. 

The final scenario had only VES as a non-zero amount, and this resulted in overall underestimation of 

the true VE values. This scenario, like the previous three, had differential testing probabilities by 

disease severity. However, since VEP and VEH were both zero, the impact of this was different than in 

the other settings. While testing probabilities for hospitalized persons were still the highest of the three, 

and still caused an over-representation of those cases in the testing data, the impact was lessened due to 

the lack of an additional protective effect provided by the vaccine (VEH). This may have been 

overshadowed by a general underestimation that may be due to the size of this population and how 

much it accurately represents the total, unobserved, population. In general, the results obtained by test 

results may not be entirely representative of the test-seeking population.   

The relationship between testing probability, VEH, and all VE estimates were also further examined in 

the plots. Figure 1 focused on how changing testing probability and an over-representation of 

hospitalized people in the sample population can cause major overestimation when testing 

probabilities for the other groups are low, as shown in plots a) and d). Figure 2 also looked at changing 

testing probabilities for symptomatic people and infected people, but added changes in added 

protection to progression to symptoms and progression to severe disease by varying levels of VEP and 

VEH. These results, especially those of the first row (Plots 2a, 2b, and 2c), further emphasized the 
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findings of the final scenario previously tested. When VEP and VEH were very small, the impact of 

differential testing probabilities by disease severity is lessened greatly, and can be essentially negated. 

We also saw that when there is a big difference between VEP and VEH, the pattern previously seen in 

VES estimates showed up (Plot 2e): overestimation of VESP occurred when testing probabilities for 

symptomatic people and infected people were low compared to that of hospitalized people. This seems 

to indicate that differential testing probabilities by disease severity can cause bias in VE estimates, and 

that these differences are accentuated by large additional vaccine protection against different levels of 

disease severity.  

There are a few limitations to this simulation study. In practice, some sources of bias may be present 

simultaneously, and the simulated population does not accurately reflect the complexity and nuance 

of a real population. Additionally, this simulation censors after the first SARS-CoV-2 infection, which 

does not allow us to see how bias can occur when multiple SARS-CoV-2 infections are possible but 

some are not observed. Furthermore, we have a few strong assumptions in this simulation. One of 

which is that the test for COVID is 100% sensitive and 100% specific. How could the addition of more 

false negatives bias VE? However, this simulation study is ultimately a good basis in which to 

understand general patterns between under-representation of case populations and the impact of 

differences in disease severity on VE bias in the test negative design. 

Overall, this study indicates bias occurs when introducing different testing probabilities depending on 

disease severity, which is an effect that is made stronger by increased vaccine effectiveness against 

symptomatic disease or severe outcomes. VE against infection is most heavily affected, and very much 

overestimated. On the other hand, VE against symptomatic COVID-19 and against severe outcomes 
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like hospitalization are slightly underestimated. Going forward, more complexity could be added to 

the simulation, including the impact of other covariates on top of age. More importantly, a good next 

step would be to see how differences in testing probability by disease severity can be accounted for 

analytically when using the TND.  
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