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Abstract

Study designs for estimating association between time-varying exposures
during pregnancy and preterm birth: a simulation study

By Anran Liu

Preterm birth, defined as birth occurring before 37 weeks of gestation, is the leading

cause of perinatal morbidity and mortality, and long-term neurological disabilities. An

increasing number of studies have investigated the association between environmental ex-

posures during pregnancy and preterm birth. However, the results are inconsistent across

studies and across exposure windows because ambient air pollution levels and temperature

have strong seasonal patterns and there is no standard analytic method to study time-

varying exposures. The purpose of our simulation study is to examine the performances of

4 commonly used study designs, including logistic regression, case-crossover design, time-

series analyses, and discrete time survival model. We first simulated the outcome of gesta-

tional age using a discrete time survival model with true relative risk for the exposures of

interest equal to 1.000, 1.002, 1.004, and 1.010 for the exposure of interest. Then we used

the 4 methods to estimate the risk. We compared the root mean square error (RMSE),

power, coverage of 95% confidence interval, bias, and average standard error from the first

3 designs to those from discrete time survival model. We found that logistic regression is as

good as the discrete time survival model when examining time invariant exposure windows;

but it would overestimate the risks when examining the time varying exposure windows.

The longer the exposure window, larger bias is associated with logistic regression. Case-

crossover design and time-series analyses were used to examine the 1-week lag exposure

and we found that case-crossover design would introduce large bias, large average standard

errors, large RMSEs, small power and small 95% coverage. We also found that time-series

analyses with and without stratification give similar results to the discrete time survival

model.
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1 Introduction

Preterm birth, which is defined as birth occurring before 37 weeks of gestation, is the

leading cause of perinatal morbidity and mortality (Goldenberg et al., 2008). Among the

survivors, infants born preterm are at risk of developing a variety of medical complications

in the long term, such as neurodevelopmental disabilities (Saigal et al., 2008; Lorenz et al.,

1998), decreased motor and cognitive functioning, increased behavioral disorders (Anderson

et al., 2003), visual and hearing loss, and chronic lung disease (Swamy et al., 2008). Among

those who do not have medical disabilities, the gestational age at birth is also associated

with socioeconomic status. Specifically, infants born preterm can have lower educational

attainment, income and receipt of Social Security benefits in adulthood when compared

with those born at full term (Moster et al., 2008).

Preterm birth is considered to be a syndrome initiated by multiple mechanisms and

researchers have been trying to identify the risk factors, such as maternal demographic

characteristics, and biological and genetic markers, that are associated with preterm birth.

More recently, an increasing number of studies have investigated the association between

environmental exposures during pregnancy and preterm birth.

For example, a case-control survey nested within a birth cohort was conducted in Los

Angeles. Logistic regression was used and they concluded that exposure to traffic-related

pollutants during the first trimester is associated with preterm birth (Ritz et al., 2007).

Another study in the Republic of Korea found a significant association between air pol-

lution and preterm birth during the third trimester of pregnancy using logistic regression

(Leem et al., 2006). A population-based cohort study was conducted in Vancouver, Canada

and they found positive associations between traffic-related air pollution and preterm birth

during the overall pregnancy period (Brauer et al., 2008). Temperature was also found
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to have a short-term association with preterm birth independent of air pollutants in Cal-

ifornia using case-crossover design (Basu et al., 2010). Time-series approach was used in

a retrospective cohort study conducted in Atlanta and they concluded that most of the

ambient air pollutants they studied did not have late pregnancy effects on preterm birth

(Darrow et al., 2009a). The results were inconsistent across studies. Some of them found

excess risks of environmental exposures to preterm birth while others found no meaning-

ful associations. Even in studies that found significant associations, the associations were

inconsistent across exposure levels and windows (Bosetti et al., 2010). There are 4 areas

that have been identified that contribute to the variation in the findings in the published

studies, including confounding and effect modification, spatial and temporal exposure vari-

ations, vulnerable windows of exposure, and multiple pollutants (Woodruff et al., 2009).

Thus, the epidemiologic evidence remains limited and inconsistent.

Another possible factor that contribute to the variation of these published articles is that

investigators are using different analytic strategies in their studies. The most common ana-

lytic approach is logistic regression in which preterm birth and full term births are treated

as binary outcomes. This approach is most appropriate to examine time invariant expo-

sure windows such as first trimester, second trimester, and first 4-weeks since conception.

For time variant exposures, logistic regression is no longer appropriate because exposure

windows closer to the end of pregnancy are more challenging to assess due to the changing

risk set of ongoing pregnancies across time. For example, If we use logistic regression to

study the long-term air pollution effect (exposure window from conception to birth), bias in

risk estimates may increase because preterm births and full-term births experience different

lengths of exposure. For pregnancies starting from winter, preterm births are more likely to

experience lower average exposure because full term births have longer exposure window ex-
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tending in to the summer when ambient air pollution levels are normally higher. Similarly,

for pregnancies starting from summer, preterm births are more likely to experience higher

average exposure compared to full-term birth. Logistic regression is also inappropriate for

short-term time variant exposure windows (e.g. 1 week or 4 weeks before births), because

this exposure metric, a full-term pregnancy is no longer at risk of being preterm. Also,

using logistic regression on short-term time variant exposures cannot fully use information

from earlier weeks (Chang et al., 2013).

Case-crossover method is a statistical technique well suited to examine 1-week lag expo-

sures (average of the exposure on the case day and the previous 6 days) with acute outcomes.

It is a modification of the matched case-control study. In the case-crossover design, each

preterm birth serves as its own control to adjust for unknown time-invariant confounders.

Post-event control periods are used in this study design even though a pregnant woman is

theoretically no longer at risk of giving birth. Bidirectional and unidirectional sampling of

control days may introduce bias. But we cannot exclude the control period after the case

event because it would typically introduce selection bias when there are within-window

trends in exposure. However, any bias from using control periods after the risk period is

small if the event is rare (Lumley et al., 2000). Another problem with this design is that it

cannot adjust for time-variant risk factors if there are no available measures of the factors;

thus, one of the key assumptions is that aside from the environmental exposure under study,

no other risk factors for preterm birth should be time-variant, unless these factors that vary

systematically within the time window are controlled for (Basu et al., 2010).

Time-series analysis is also widely used in studying the effect of environmental exposure.

In time-series analyses, the outcome of interest is the daily number of preterm births. The

offset is the daily number of births that are still at risk of being preterm. By observing
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the population over time, we could remove the influence of known and unknown time-

invariant risk factors that vary across individuals over short periods of time. However,

a time-series analysis has limited power to detect long-term effects because considerable

temporal variation in the exposure is removed when controlling for seasonality in preterm

births.

Finally, another way is to consider the gestational age as a time-to-event (survival) data.

In this approach, each pregnancy enters the risk set at 27th gestational week or as early

as the 20th week of gestation if early preterm births are of interest. Then the pregnancy

is followed until a birth occurs before 37th week (preterm), or reaches 37th week (full-

term). This way, pregnancies are only compared with each other when they are at risk

of being preterm (i.e. 27-36). Therefore, the long-term effects can be examined using a

time varying cumulative average instead of an average over the entire pregnancy and the

short-term effects can be examined using a time varying lagged average instead of a fixed

period (Chang et al., 2013). Compared to logistic regression, case-crossover design and time-

series analyses, discrete time survival model is an appropriate method to study the exposure

effects on preterm births for 2 reasons, including the strong seasonality of ambient pollution

and temperature, and changes in the risk set of pregnancies at risk for preterm birth. The

limitation of the discrete time survival model is it cannot control potential confounding by

individual-level risk factors like in case-crossover design and time-series analyses.

We conducted a simulation study to compare the root mean square error (RMSE),

bias, coverage, average standard error, and power associated with the first three methods

to that from the discrete time survival approach because the outcome of gestational age

was simulated using a discrete time survival model. We studied 3 environmental exposures

including fine particulate matter (PM2.5), temperature, and ozone because each of these 3
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exposures have their unique seasonal patterns and temporal correlation. We used logistic

regression and discrete time survival model to study both the time-invariant exposures (first

trimester, second trimester, and first 4 weeks since conception) and time-variant exposures

(third trimester, 1-week lag, 4-weeks lag, and the cumulative exposure from conception to

births). We used case-crossover design and time-series analyses to study the 1-week lag

exposure because these 2 methods are specifically designed for short term exposures. For

each exposure, we did the simulation under 4 RRs (1.000, 1.002, 1.005, 1.010) for preterm

birth per one unit increase in the different exposure metrics. Because this is a simulation

study, we only include exposure and gestational week in our models for simplicity, and no

other confounders are considered.

2 Methods

2.1 Data Generation

Our models are defined through pit ∈ [0, 1], which is the hazard rate of birth during

at-risk window week t for pregnancy i. We model the hazard rate using logistic regression.

pit =

h0(t)
1−h0te

β1zit

1 + h0(t)
1−h0te

β1zit
(1)

where h0(t) is the baseline hazard rate of birth for each gestational week t. It is estimated

using Atlanta birth record data. Specifically, h0(t) is the probability of birth for pregnancy

i at week t given that pregnancy i reaches week t when exposure level is 0. The exposures

used in our simulation come from the daily air pollutant level and temperature in Atlanta.

We used the records starting from January 1st 2001 and for each simulation we generated

1000 days and 50 conceptions per day.
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First, for each birth i, we calculated weekly exposure xit for gestational week t, (t ∈

(1, 44). Week 44 is the latest gestational week that a birth can occur based on the Atlanta

birth record data we used. xit is the average exposure concentrations during the 7 days

leading up to the date that gestational week t was completed. For example, for the 50

conceptions on 2001-01-01, we use the exposure data starting from 2001-01-01 to estimate

the weekly exposure (exposure for gestational week 1 is the average of the exposures from

2001-01-01 to 2001-01-07 and exposure for gestational week 2 is the average of the expo-

sures from 2001-01-08 to 2001-01-14); and for the 50 conceptions on 2001-01-02, we use the

exposure data starting from 2001-01-02 to estimate the weekly exposure (exposure for ges-

tational week 1 is the average of the exposures from 2001-01-02 to 2001-01-08 and exposure

for gestational week 2 is the average of the exposures from 2001-01-09 to 2001-01-15).

We investigated average exposures defined over 7 exposure windows (zit in equation (1)).

We considered 3 time invariant exposure windows. Each one of these effects is identical for

all ongoing pregnancies during the entire at-risk window (week 27-36). a) Trimester 1:

average of the exposures from gestational week 1 to week 13. b) Trimester 2: average of

the exposures from gestational week 14 to week 27. c) 4 weeks since conception: average

of the exposures from gestational week 1 to week 4. Given that a pregnancy completed at

gestational week t, we also considered 4 time-varying exposures. a) trimester 3: average of

the exposures from gestational week 27 to week t. b) cumulative: average of exposures from

conception to gestational week t. c) 4-week lag: average of the exposures from gestational

week t− 3 to week t. d) 1-week lag: exposure at gestational week t.

We also used different RRs for each exposure and exposure metric. β1= 0, 0.002, 0.005,

0.010 correspond to an approximate 1.000, 1.002, 1.005, and 1.010 increase in hazard ratio

per one unit increase in weekly exposures. Given β1 and the weekly exposure during the at-
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risk window, the probability of having a preterm birth for pregnancy i at gestational week

t was calculated using formula (1). Then, for each gestational week t during the at-risk

window, whether preterm births occurred (0 for preterm birth not occurred, 1 for preterm

birth occurred) for pregnancy i are generated using a binomial distribution.

Generally, for each exposure metric, we have three matrices, one is the exposure matrix

that records the exposure for each gestational week t and each pregnancy i; one is the

probability matrix that the probability of preterm birth for each gestational week t and

each pregnancy i; and the other one is the birth matrix filled with 0s, 1s, and NAs. For

pregnancy i, once a preterm birth occurred at gestational week t, NAs were assigned to week

t+ 1 to week 36. Each matrix has 50000 rows and 10 columns. In order to apply different

models to estimate risk, different modifications are needed for the simulated dataset that

we describe below.

2.2 Model for the 4 approaches

2.2.1 Logistic Regression

In logistic regression, we needed to add up each row of the birth matrix to identify

whether preterm birth occurred for pregnancy i. The time invariant exposures have the

same effect for all ongoing pregnancies after week 27. For the time variant exposures, we

need to expand the matrices to gestational week 44. The hazard rate during the at-risk

window is still the same and the hazard rate after week 36 equals to the baseline hazard

rate since they are no longer at risk of preterm birth. The exposure used for pregnancy i

is the one when the birth occurred (either preterm birth or not). The model for logistic

regression is,

logit(pi) = β0 + β1xi i = 1, . . . , 50000
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where β1 represents the coefficients for exposure vector xi.

2.2.2 Discrete Time Survival Model

In this design, we viewed gestational age as time-to-event data and each pregnancy

enters the risk set at the 27th week of gestation and is followed until either a birth occurs

before the 37th week (preterm) or it reaches the 37th week and a full-term birth is expected.

Full-term births are censored at week 36, and no censoring occurs within the at-risk window.

We aligned the exposure matrix and birth matrix such that pregnancies are compared with

each other only during a window at risk of being preterm. We fitted the discrete-time

survival model with a logistic link. Specifically, let yit denote the indicator of whether a

birth occurs during gestational week t for pregnancy i. We modeled

logit(pit) = β0 + αt + β1xit t = 1, . . . , 10 i = 1, . . . , 500000

where pit represents Pr(yit = 1| no birth before week t), αt represents the week-specific

intercepts and β1 represents the coefficients for exposure vector xit.

2.2.3 Case-Crossover Design

Case-crossover design is only used for the 1-week lag exposure. We consider a time-

stratified design where the control days are defined as the same day of week and the same

month of the case date. To simplify the simulation, we generated our own date. It has 12

months a year and 28 days a month. In this approach, each preterm birth serves as its own

control. Control periods are limited to the rest 3 weeks in the preterm birth’s month. If a

case of preterm birth occurred in the middle of the month, control periods occurred both

before and after the case period. If a case of preterm birth occurred at the end of the month,

all control periods occurred prior to the case. If a case of preterm delivery occurred at the
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beginning of the month, all control periods would be selected after the case. For example,

if a preterm birth occurred at 2001-03-15, the control periods are 2001-03-01, 2001-03-08,

and 2001-03-22. For each preterm birth, the case and 3 controls form a group. Different

simulated data can have different number of groups. Instead of using dummy variables in a

logistic regression, conditional logistic regression is used for this design. Conditional logistic

regression still has a linear term for exposures and the log(odds) of preterm delivery (yes/no)

served as the outcome measure. It estimates a logistic regression model by maximizing the

conditional likelihood. We used the clogit function in package survival in R.

2.2.4 Time-series Analyses

Poisson regression is used in the time-series analyses. Our outcome of interest is the

daily number of preterm births. For this design, we generated 1063 days and 50 conceptions

per day. For the first 7 days, at each day, only 50 pregnancies reached the at-risk window.

From day 8 to day 14, at each day, another 50 pregnancies reached the at-risk window

and the original 50 pregnancies moved to gestational week 28. Thus, only until day 64,

we can have a total number of 500 pregnancies per day, which means 50 pregnancies for

each gestational week per day. Similarly, starting from day 1064, there are no more new

pregnancies reaches the at-risk window; thus, we no longer have pregnancies in gestational

week 27. Thus, we need to discard the first 63 days and last 63 days, such that our simulated

data have 1000 days and 50 pregnancies per gestational week per day.

The dependent variables are the daily number of preterm births. The offset is the daily

number of pregnancies that are still at-risk of being preterm (between gestational week

27-36 and haven’t been born). We fitted two models for time-series analyses: one stratified

by gestational week and one doesn’t. The two models are given as follows,
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log(λtk) = β0 + αt + β1xtk+ offset(log(Ntk))

log(λk) = β0 + β1xk+ offset(log(Nk))

where ytk = number of preterm births on day k at gestational week t, ytk ∼ Poisson(λtk),

Ntk = number of ongoing births on day k at gestational week t, xtk = 1-week lag exposure

on day k at gestational week t, and αt = gestational week t. And yk = number of preterm

births on day k, yk ∼ Poisson(λk), Nk = number of ongoing births on day k, xk = 1-week

lag exposure on day k.

For logistic regression, discrete time survival analyses, and case-crossover approach, we

simulated 1000 times for each exposure metric and each RRs. For the time-series analyses,

we did the simulations for 200 times due to the long time that is needed to generate each

simulated data set.

2.3 Simulation Evaluation

We examined at the following statistics for each designs:

RMSE =

√∑N
i=1(β̂i−βtrue)2

N

95% Coverage = Pr(βtrue ∈ (β̂i ± 1.96ŝei))

Average SE =
∑N

i=1 ŝi
N

Bias =
∑N

i=1(β̂i−βtrue)
N

Power = Pr(| β̂iŝi | > 1.96)

where N is the total number of simulations. We compare the statistics from logistic regres-

sion, case-crossover design, and time-series analyses to those from discrete time survival

model. For bias, we presented the raw bias times 1000. For RMSE and average standard

error, we use the ones from the 3 testing designs divided by the ones got from the discrete
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time survival model. For 95% coverage, and power, we use the ones from the 3 other designs

to subtract the ones got from the discrete time survival model. If the difference for RMSE

and average standard error is close to 1 and the difference for 95% coverage, and power is

close to 0, it means that the design perform similarly to the discrete survival model. All of

the simulations were done using R and the code is attached in the appendix.

3 Results

Table 1. shows the results of the differences between logistic regression and discrete

time survival model of all the exposure metrics except the 1-week lag exposure. For RMSE,

coverage, average standard error, and power we presented the statistics relative to the

survival model; for bias, we presented the raw bias times 1000.

First, we look at the time invariant exposure windows. For trimester 1, the RMSEs

and average standard errors from logistic regression are almost the same as the ones from

the survival model, only slightly larger; the 95% coverages and powers are also similar

to the survival result; the biases are small but for temperature and ozone, they have an

increasing trend when RR increases. For trimester 2 and first 4 weeks, the RMSEs for

PM2.5 of logistic regression are similar to the ones from survival model; the RMSEs for

temperature and ozone slightly increases when relative risk increases; the 95% coverage,

averages standard error, and power from the logistic regression are nearly the same as the

ones from the survival model; and the risk estimates from the logistic regression are very

close to the true risks.

In conclusion, for the time invariant exposure windows, logistic regression can perform

almost as good as the survival model.

Then, we look at the time-varying exposure windows. For trimester 3, we can see that
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the relative RMSEs and average standard errors are quite large even when the relative risk

equals to 1 and they increase when the relative risk increases for each exposure. We can

also see that compared to the survival model, the 95% coverage of logistic regression is

smaller and it decreases when the relative risk increases. The raw biases are all positive

which means logistic regression would over estimate the risks and the bias also increases

with increasing relative risk and it is much larger compared to the time invariant exposures.

For temperature and ozone, logistic regression loses the most power when RR=1.002, but

loses almost no power for the other RRs likely due to the positive bias. For PM2.5, when

RR=1.005, logistic regression loses 41.3% power than the survival model.

For the 4-week lag exposure window, the relative RMSE of temperature and ozone when

RR=1 is quite large and it increases when RR increases; but the RMSE of PM2.5 is very

similar to that from the survival model. For temperature and ozone, the 95% coverage of

logistic regression is smaller than the survival model; but for PM2.5, the 95% coverage is

almost the same. The average standard error of logistic regression is almost the same as

the one from the survival model only slightly larger. For the temperature, the bias has

an increasing trend when RR increases. The biases have no increasing trend for ozone

and PM2.5, but they are larger than the biases from the time-invariant exposure. For

temperature and ozone when RR=1.002, logistic regression loses the most power compared

to the survival model. For PM2.5, the power of logistic regression is almost the same as the

power from survival model.

For the cumulative exposure metric, the statistics have the same pattern as the statistics

in trimester 3. The relative RMSEs and raw biases are even larger and logistic regression

loses up to 90% of the power than the survival model. In conclusion, logistic regression

is not appropriate for time-variant exposures because it introduces bias and loses a lot of
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power. And the longer the time-varying exposure window is, the poorer the performance of

logistic regression.

Table 2. shows the results of the 1-week lag exposure. First we look at the biases. They

are presented as raw bias times 1000. From the table, we can see that case-crossover design

has the largest biases and all of them are negative, which means case-crossover design tend

to underestimate the risks. For each exposure, the biases increase when the relative risk

increases in the case-crossover design. The biases of PM2.5 in the logistic regression are also

all negative and increase when the RR increases. Time-series analyses stratified by week or

not have similar results. The biases from these two time-series models are small but there

is still a slightly increasing pattern when the RR increases.

The average standard errors and RMSEs in the case-crossover design are much larger

than those from the survival model even when RR=1. And the average standard errors

and RMSEs from logistic regression and the 2 time-series analyses are very similar to those

from the survival model. And the relative 95% coverage in the logistic regression and case-

crossover design are almost all negative, which means that the 95% coverage of logistic

regression and case-crossover design are smaller than the one from survival model. For

time-series analyses, the 2 models have similar results which are also close to those from

the survival model. The power in the case-crossover design are almost all negative, which

means that case-crossover design loses a lot of power compared to the survival model. The

powers for logistic regression and the 2 time-series analyses are almost the same as those

from a survival model.

In conclusion, for the 1-week lag exposure, case-crossover design has the poorest perfor-

mance among all the study designs. It will lead to large bias, large average standard errors,

large RMSEs, small power, and small 95% coverage. Logistic regression is not as good as
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the discrete time survival model when testing the time-variant exposures. The 2 models of

time-series analyses have similar results, which means whether stratify by gestational week

doesn’t influence the risk estimation very much. And the time-series analyses is almost as

good as the survival model when examining the 1-week lag exposure.

4 Dicussions

There are several limitations of our simulation study. One limitation is that in order to

simplify the simulation, we generated equal number of conceptions for each day. However,

there are seasonal patterns of birth, such as an overall peak in August-September and a

bottom during April–May. It may influence the result of time-series analyses because the

seasonal pattern of birth would change the population at risk in a time-series of pregnancy

outcomes. That could create confounding when examining a seasonally varying exposure

because the risk of preterm birth could differ across seasons due to changing distributions of

risk factors in the pregnancy risk set (Darrow et al., 2009b). Thus, for further simulations,

the number of conceptions each day should be simulated according to the seasonal pattern

of birth.

The second limitation is that how we generated the simulated data for time-series anal-

yses is not very efficient. We only run 200 times for the time-series analyses but 1000 times

for the other study designs. We need to improve the efficiency of our R code so that we

can run the time-series analyses more times which can make the final results more reliable.

The third limitation is that for case-crossover design, we only used a time-stratified ap-

proach to sample the control days. We can also examine the unidirectional or bidirectional

sampling of control days and see how does sampling methods affect the performance of the

case-crossover design.
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Appendices

Tables

Table 1: Discrete Time Survival Model vs. Logistic Regression

Trimester 1

Exposure Relative risk RMSE 95% Coverage Average SE Raw Bias × 1000 Power

Temperature 1.000 1.045 0.005 1.042 -0.003 -0.005

1.002 1.019 0.005 1.048 0.102 0.016

1.005 1.071 -0.016 1.060 0.270 0.003

1.010 1.396 -0.080 1.087 0.870 0.000

Ozone 1.000 1.008 0.014 1.042 0.015 -0.014

1.002 1.065 -0.012 1.046 0.113 -0.001

1.005 1.086 0.001 1.052 0.261 0.002

1.010 1.195 -0.031 1.065 0.639 0.000

PM2.5 1.000 1.047 -0.004 1.042 -0.320 0.004

1.002 1.026 0.007 1.044 0.151 -0.012

1.005 1.040 0.011 1.045 0.093 -0.005

1.010 1.071 -0.006 1.050 0.388 0.001

Trimester 2

Exposure Relative risk RMSE 95% Coverage Average SE Raw Bias × 1000 Power

Temperature 1.000 1.094 -0.015 1.042 0.054 0.015

1.002 1.008 0.003 1.048 0.052 -0.058

1.005 1.101 -0.003 1.060 0.302 -0.003

1.010 1.397 -0.068 1.086 0.823 0.000

Ozone 1.000 0.997 0.016 1.042 -0.053 -0.016

1.002 1.006 0.003 1.046 0.035 0.004

1.005 1.151 -0.026 1.052 0.249 0.000

1.010 1.248 -0.054 1.065 0.609 0.000

PM2.5 1.000 1.073 -0.014 1.042 0.147 0.014

1.002 1.014 0.007 1.043 0.173 -0.004

1.005 1.056 -0.004 1.046 0.100 -0.009

1.010 1.034 -0.010 1.050 0.553 -0.026

First 4 weeks

Exposure Relative risk RMSE 95% Coverage Average SE Raw Bias × 1000 Power

Temperature 1.000 0.963 0.039 1.042 -0.014 -0.039

1.002 1.066 -0.003 1.048 0.107 -0.014

1.005 1.099 -0.012 1.059 0.248 0.001

1.010 1.472 -0.096 1.086 0.834 0.000

Ozone 1.000 1.074 -0.006 1.042 -0.014 0.006

1.002 1.104 -0.016 1.046 0.106 -0.020

1.005 1.162 -0.023 1.053 0.253 0.000

1.010 1.371 -0.082 1.065 0.668 0.000

PM2.5 1.000 1.049 -0.003 1.042 -0.203 0.003

1.002 1.029 0.011 1.044 -0.052 0.001

1.005 1.031 -0.010 1.046 0.223 -0.007

1.010 1.011 0.030 1.051 0.053 -0.036
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Trimester 3

Exposure Relative risk RMSE 95% Coverage Average SE Raw Bias × 1000 Power

Temperature 1.000 1.298 -0.036 1.122 0.680 0.036

1.002 1.570 -0.096 1.127 1.125 0.232

1.005 2.020 -0.255 1.137 1.617 0.002

1.010 3.434 -0.732 1.160 2.789 0.000

Ozone 1.000 1.256 -0.016 1.132 0.400 0.016

1.002 1.445 -0.082 1.135 0.831 0.172

1.005 2.071 -0.264 1.141 1.484 0.000

1.010 3.160 -0.677 1.153 2.625 0.000

PM2.5 1.000 1.883 -0.144 1.208 6.473 0.144

1.002 1.955 -0.212 1.209 7.504 0.269

1.005 2.187 -0.251 1.212 8.407 0.413

1.010 2.458 -0.353 1.216 10.353 0.365

4-week lag

Exposure Relative risk RMSE 95% Coverage Average SE Raw Bias × 1000 Power

Temperature 1.000 1.130 -0.015 1.048 0.442 0.015

1.002 1.132 -0.016 1.055 0.525 0.148

1.005 1.283 -0.054 1.066 0.705 0.000

1.010 1.651 -0.144 1.093 1.011 0.000

Ozone 1.000 1.204 -0.041 1.048 0.612 0.041

1.002 1.219 -0.035 1.052 0.647 0.224

1.005 1.335 -0.070 1.059 0.741 0.000

1.010 1.655 -0.145 1.073 0.976 0.000

PM2.5 1.000 0.990 0.017 1.042 0.815 -0.017

1.002 1.006 0.006 1.044 0.568 -0.007

1.005 0.993 0.007 1.047 0.793 0.022

1.010 1.055 0.006 1.051 0.643 -0.001

Cumulative

Exposure Relative risk RMSE 95% Coverage Average SE Raw Bias × 1000 Power

Temperature 1.000 4.688 -0.796 1.368 11.624 0.796

1.002 5.557 -0.892 1.369 12.928 0.848

1.005 6.965 -0.943 1.373 14.832 0.407

1.010 9.488 -0.966 1.383 17.311 0.000

Ozone 1.000 4.319 -0.685 1.372 8.757 0.685

1.002 5.272 -0.846 1.374 10.519 0.825

1.005 6.155 -0.906 1.376 12.337 0.340

1.010 8.274 -0.944 1.381 15.615 0.001

PM2.5 1.000 5.555 -0.889 1.334 66.916 0.889

1.002 5.367 -0.898 1.335 67.857 0.900

1.005 5.640 -0.908 1.336 69.369 0.902

1.010 6.196 -0.926 1.338 72.224 0.856
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Table 2: 1-week Lag Exposures: Logistic Regression, Case-Crossover

Design, and Time-series Analyses vs. Discrete Time Survival Model

Raw Bias × 1000

Exposure Relative Logistic Case-crossover Time-series w/o Time-series

risk Regression Design factor week with factor week

Temperature 1.000 -0.135 -0.489 0.028 0.056

1.002 -0.137 -0.465 -0.269 -0.200

1.005 -0.004 -0.818 -0.184 -0.169

1.010 0.232 -1.154 -0.653 -0.580

Ozone 1.000 0.354 -1.174 0.147 -0.121

1.002 0.383 -1.204 -0.038 -0.067

1.005 0.429 -1.317 -0.272 -0.290

1.010 0.533 -1.534 -0.554 -0.431

PM2.5 1.000 -0.976 -2.554 -0.098 0.216

1.002 -1.039 -2.710 0.292 -0.175

1.005 -1.014 -2.852 -0.106 -0.839

1.010 -1.190 -3.179 -0.637 -0.665

Average Standard Error

Exposure Relative Logistic Case-crossover Time-series w/o Time-series

risk Regression Design factor week with factor week

Temperature 1.000 1.041 2.969 0.987 0.988

1.002 1.047 2.966 0.985 0.985

1.005 1.060 2.960 0.983 0.983

1.010 1.086 2.937 0.975 0.976

Ozone 1.000 1.050 1.966 0.992 0.993

1.002 1.054 1.957 0.992 0.990

1.005 1.062 1.941 0.9892 0.990

1.010 1.078 1.918 0.985 0.984

PM2.5 1.000 1.045 1.322 0.993 0.990

1.002 1.046 1.324 0.989 0.990

1.005 1.049 1.327 0.990 0.992

1.010 1.055 1.335 0.990 0.989

RMSE

Exposure Relative Logistic Case-crossover Time-series w/o Time-series

risk Regression Design factor week with factor week

Temperature 1.000 1.059 3.075 0.917 0.938

1.002 0.993 2.847 0.854 1.005

1.005 1.044 3.050 0.979 0.912

1.010 1.137 3.323 1.264 1.125

Ozone 1.000 1.148 2.382 1.057 0.918

1.002 1.148 2.481 0.968 0.958

1.005 1.170 2.598 0.946 0.970

1.010 1.321 2.912 1.360 1.191

PM2.5 1.000 1.048 1.562 0.984 1.061

1.002 1.174 1.631 1.040 0.987

1.005 1.055 1.581 0.976 0.879

1.010 1.121 1.734 0.930 0.985
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95% Coverage

Exposure Relative Logistic Case-crossover Time-series w/o Time-series

risk Regression Design factor week with factor week

Temperature 1.000 -0.011 -0.009 -5.00E-03 0.015

1.002 0.011 0.009 3.60E-02 0.006

1.005 -0.009 -0.017 -1.00E-03 -0.001

1.010 -0.018 -0.04 -1.03E-01 -0.023

Ozone 1.000 -0.012 -0.05 -2.90E-02 0.011

1.002 -0.016 -0.079 3.20E-02 0.002

1.005 -0.026 -0.093 2.10E-02 0.001

1.010 -0.053 -0.146 -1.12E-01 -0.072

PM2.5 1.000 -0.011 -0.055 -3.00E-02 -0.02

1.002 -0.026 -0.041 -1.90E-02 -0.009

1.005 0.001 -0.054 -3.00E-03 0.017

1.010 -0.011 -0.084 1.80E-02 -0.022

Power

Exposure Relative Logistic Case-crossover Time-series w/o Time-series

risk Regression Design factor week with factor week

Temperature 1.000 0.011 0.009 0.005 -0.015

1.002 -0.091 -0.427 -0.095 -0.025

1.005 0.001 -0.68 0.001 0.001

1.010 0 -0.041 0 0

Ozone 1.000 0.012 0.05 0.029 -0.011

1.002 0.09 -0.636 0.001 0.001

1.005 0 -0.299 0 0

1.010 0 0 0 0

PM2.5 1.000 0.011 0.055 0.03 0.02

1.002 -0.022 -0.043 0.027 -0.043

1.005 -0.139 -0.296 0.034 -0.106

1.010 -0.088 -0.512 -0.006 -0.026



20/ 23

Sample R code

1 ### Get Simulation Parameters

2 load ("GW.RData") ## Gestational age by birth date in ATL

3 gestAge = subset (gestAge , gestweeks >= 27)

4
5 ### Estimate baseline hazards from week 27 to 44

6 HZ = rep(NA, 18)

7 #hazard =#(X=t)/#(X>=t)

8 #the probability of birth for pregnancy i at week t given that pregnancy i reaches t

9 for(i in 1:18){

10 HZ[i] = sum(gestAge$gestweeks == i+26)/sum(gestAge$gestweeks >= i+26)

11 }

12 rm (gestAge)

13 ## Daily air pollutant level in ATL

14 aq = read.csv ("atl_aq_met.csv")

15 aq$DATE = as.Date (aq$DATE , "%m/%d/%Y")

16 aq = subset (aq, DATE >= as.Date ("2001 -01 -01"))

17 ### Simulate Exposure Data

18 aq = aq[, c("DATE","PM25_CMS", "O3_M8_CMS", "TEMPMX")]

19 ozone = aq$O3_M8_CMS ##Ozone

20 pm=aq$PM25_CMS ##PM

21 temp=aq$TEMPMX ##Temperature

22
23 poll = ozone

24 #poll = pm

25 #poll = temp

26
27 dat.sim = data.frame (Day = rep(1:N.day , each = N.con))

28 ## Get daily pollution concentration from week 1 to week 36

29 X.sim = matrix (NA , nrow = N.con*N.day , ncol = 36)

30 for (j in 1:N.day){

31 poll.j = poll[j:(j+36*7-1)]

32 #7*36, calculate the average pollution of each week

33 poll.j = apply (matrix (poll.j, ncol = 36), 2, mean)

34 X.sim[ dat.sim$Day == j, ] = rep(poll.j, each = N.con)

35 }

36 ## Calculate exposure at each gestational week

37 T1 = T2 = T3 = Lag1 = Lag4 = First4 = Total = matrix (NA , nrow=N.con*N.day , ncol =

10)

38
39 #exposure from week 1 to week 13 influence week 27 to 36 equally

40 for (g in 1:10){

41 ## Time -invariant exposure

42 T1[,g] = rowMeans (X.sim [ ,1:13])

43 T2[,g] = rowMeans (X.sim [ ,14:26])

44 First4[,g] = rowMeans (X.sim [ ,1:4])

45 ## Time -variant exposure

46 T3[,g] = rowMeans (as.matrix(X.sim [ ,27:(26+g)]))

47 Lag4[,g] = rowMeans (X.sim[,(23+g):(26+g)])

48 Lag1[,g] = X.sim[,26+g]

49 Total[,g] = rowMeans(X.sim [ ,1:(26+g)])

50 }

51 P_T1 = P_T2 = P_T3 = P_Lag1 = P_Lag4 = P_First4 = P_Total =

52 matrix (NA, nrow = nrow (dat.sim), ncol = 10) ## Probability of birth

53 ################## T1 ###################

54 for (g in 1:10){

55 tmp = HZ[g]*exp(T1[,g]*beta)/(1-HZ[g])

56 P_T1[,g] = tmp / (1+tmp)

57 }

58 for (g in 1:10){

59 tmp = HZ[g]*exp(T2[,g]*beta)/(1-HZ[g])

60 P_T2[,g] = tmp / (1+tmp)

61 }

62 for (g in 1:10){

63 tmp = HZ[g]*exp(T3[,g]*beta)/(1-HZ[g])

64 P_T3[,g] = tmp / (1+tmp)

65 }
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66 for (g in 1:10){

67 tmp = HZ[g]*exp(Lag1[,g]*beta)/(1-HZ[g])

68 P_Lag1[,g] = tmp / (1+tmp)

69 }

70 for (g in 1:10){

71 tmp = HZ[g]*exp(Lag4[,g]*beta)/(1-HZ[g])

72 P_Lag4[,g] = tmp / (1+tmp)

73 }

74 for (g in 1:10){

75 tmp = HZ[g]*exp(First4[,g]*beta)/(1-HZ[g])

76 P_First4[,g] = tmp / (1+tmp)

77 }

78 for (g in 1:10){

79 tmp = HZ[g]*exp(Total[,g]*beta)/(1-HZ[g])

80 P_Total[,g] = tmp / (1+ tmp)

81 }

82
83 Y = matrix (NA, nrow = N.con*N.day , ncol = 10)

84 for (g in 1:10){

85 Y[,g] = rbinom ( nrow(Y), 1, P_T1[,g] )

86 }

87 #Fill in NA

88 for (g in 1:9){

89 Y[ Y[,g] == 1, (g+1) :10] <- NA

90 }

91 ### Take trimester 1 as an example

92 ### Fit discrete time survival model

93 time = rep (c(1:10) , each = N.con*N.day)

94 fit = glm (c(Y)~c(T1)+factor(time),family = "binomial")

95
96 ### Fit logistic regression

97 dat.sim$PTB = rowSums(Y==1, na.rm = T)

98 fit = glm (dat.sim$PTB~T1[,1],family = "binomial")

99
100 ### Fit case -crossover design

101 ### Simulate birth at gestational week 24 to 39

102 Y = matrix (NA, nrow = N.con*N.day , ncol = 16)

103 for (g in 1:16){

104 Y[,g] = rbinom (nrow(Y), 1, P_Lag1[,g])

105 }

106 #Fill in NA

107 for (g in 1:15){

108 Y[ Y[,g] == 1, (g+1) :16] <- NA

109 }

110 Lag1 .16 <-Lag1

111 Lag1 .10 <-Lag1 [ ,4:13]

112 Y.16 <-Y

113 Y.10 <-Y[ ,4:13]

114
115 table10 <-matrix(NA,nrow =10*N.con*N.day ,ncol =7)

116 colnames(table10)<-c("ID","Exposure","Year","Month","Date","Week","Birth")

117 table10 [,1]<-rep (1:(N.con*N.day) ,10)

118 for (ii in 1:10){

119 mm<-N.con*N.day*(ii -1)+c(1:(N.con*N.day))

120 table10[mm ,2] <-Lag1 .10[,ii]

121 }

122 for (ii in 1:10){

123 mm<-N.con*N.day*(ii -1)+c(1:(N.con*N.day))

124 table10[mm ,7] <-Y.10[,ii]

125 }

126
127 table16 <-matrix(NA,nrow =16*N.con*N.day ,ncol =7)

128 colnames(table16)<-c("ID","Exposure","Year","Month","Date","Week","Birth")

129 table16 [,1]<-rep (1:(N.con*N.day) ,16)

130 for (ii in 1:16){

131 mm<-N.con*N.day*(ii -1)+c(1:(N.con*N.day))

132 table16[mm ,2] <-Lag1 .16[,ii]

133 }
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134 for (ii in 1:16){

135 mm<-N.con*N.day*(ii -1)+c(1:(N.con*N.day))

136 table16[mm ,7] <-Y.16[,ii]

137 }

138
139 ### a1 -a16 , b1 -b16 , c1 -c16 , d1 -d16 are the dates we generated

140 table10 [,3]<-c(a4 ,a5,a6,a7 ,a8,a9,a10 ,a11 ,a12 ,a13)

141 table10 [,4]<-c(b4 ,b5,b6,b7 ,b8,b9,b10 ,b11 ,b12 ,b13)

142 table10 [,5]<-c(c4 ,c5,c6,c7 ,c8,c9,c10 ,c11 ,c12 ,c13)

143 table10 [,6]<-c(d4 ,d5,d6,d7 ,d8,d9,d10 ,d11 ,d12 ,d13)

144
145 table16 [,3]<-c(a1 ,a2,a3,a4 ,a5,a6,a7 ,a8,a9,a10 ,a11 ,a12 ,a13 ,a14 ,a15 ,a16)

146 table16 [,4]<-c(b1 ,b2,b3,b4 ,b5,b6,b7 ,b8,b9,b10 ,b11 ,b12 ,b13 ,b14 ,b15 ,b16)

147 table16 [,5]<-c(c1 ,c2,c3,c4 ,c5,c6,c7 ,c8,c9,c10 ,c11 ,c12 ,c13 ,c14 ,c15 ,c16)

148 table16 [,6]<-c(d1 ,d2,d3,d4 ,d5,d6,d7 ,d8,d9,d10 ,d11 ,d12 ,d13 ,d14 ,d15 ,d16)

149
150 #Find the IDs that had a preterm birth

151 table10[is.na(table10 [,7]) ,7]<-0

152 table10 .1<-table10[order(table10 [,1]) ,]

153 table10 .2<-table10 .1[ table10 .1[ ,7]==1 ,]

154 table10 .2<-data.frame(table10 .2)

155
156 table16[is.na(table16 [,7]) ,7]<-0

157 table16 .1<-table16[order(table16 [,1]) ,]

158 table16 .1<-data.frame(table16 .1)

159
160 table16 .2<-subset(table16.1,ID%in%table10 .2$ID)

161
162 table16 .2$label <-paste(table16 .2$ID ,table16 .2$Month)

163 junk=subset(table16.2,Birth ==1)

164 table16 .3<-subset(table16.2,label%in%junk$label)

165
166 table16 .4<-cbind(rep(1: length(table10 .2$ID),each =4),table16 .3[,c(2,7)])

167 colnames(table16 .4) <-c("group","exposure","ptb")

168 table16 .4<-data.frame(table16 .4)

169
170 fit <-clogit(ptb~exposure+strata(group),data=table16 .4)

171
172 ### Fit time -series analyses

173 Y = matrix (NA, nrow = N.con*N.day , ncol = 10)

174 for (g in 1:10){

175 Y[,g] = rbinom ( nrow(Y), 1, P_Lag1[,g] )

176 }

177 #Fill in NA

178 for (g in 1:9){

179 Y[ Y[,g] == 1, (g+1) :10] <- NA

180 }

181 #Create a data frame that help to find cases and controls

182 table10 <-data.frame(matrix(NA,nrow =10*N.con*N.day ,ncol =5))

183 colnames(table10)<-c("ID","Exposure","Date","Week","Birth")

184 table10 [,1]<-rep (1:(N.con*N.day) ,10)

185 for (ii in 1:10){

186 mm<-N.con*N.day*(ii -1)+seq(1,N.con*N.day ,by=1)

187 table10[mm ,2] <-Lag1[,ii]

188 }

189 Date.week1 <-rep(seq(as.Date("2001 -01 -05"),as.Date("2001 -01 -05")+N.day -1,by=1),each=N.

con)

190 for (ii in 1:10){

191 mm<-N.con*N.day*(ii -1)+seq(1,N.con*N.day ,by=1)

192 table10[mm ,3] <-as.character(Date.week1+7*(ii -1))

193 }

194 table10 [,4]<-rep (27:36 , each=N.con*N.day)

195 for (ii in 1:10){

196 mm<-N.con*N.day*(ii -1)+seq(1,N.con*N.day ,by=1)

197 table10[mm ,5] <-Y[,ii]

198 }

199 table10$Date <-as.Date(table10$Date)

200 table10$label <-paste(table10$Date ,table10$Week ,sep="/")
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201 table10 <-table10[order(table10$Date),]

202
203 y<-tapply(table10$Birth ,table10$label ,sum ,na.rm=T)

204 cases=data.frame(label=names(y),cases=y)

205 cases [1] <-lapply(cases[1],as.character)

206 xx<-strsplit(cases$label ,"/")

207 xx1 <-do.call(rbind ,xx)

208 cases$Date <-as.Date(xx1[,1])

209 cases$Week <-xx1[,2]

210
211 exp <-table10[,c(2,3)]

212 exp <-unique(exp)

213
214 table10 <-table10[order(table10$ID) ,]

215 junk <-subset(table10 ,Birth ==1)

216 table10 .1<-subset(table10 ,ID%in%junk$ID)

217 table10 .1$B_Date <-rep(junk$Date ,each =10)

218 table10 .2<-subset(table10 ,!(ID%in%junk$ID))

219 table10 .2$B_Date <-max(table10$Date)+7

220 table10 .3<-rbind(table10.1,table10 .2)

221 table10 .3<-table10 .3[ order(table10 .3$ID ,table10 .3$Date),]

222
223 ind <-seq(from=1,to=10*N.con*N.day ,by=10)

224 ind1 <-ind+9

225
226 table10 .3$Start <-rep(table10 .3$Date[ind],each =10)

227 table10 .3$End <-rep(table10 .3$Date[ind1],each =10)

228
229 control <-data.frame(matrix(NA,nrow=nrow(cases),ncol =3))

230 colnames(control)=c("Date","Week","control")

231 control [ ,1:2] <-cases [,3:4]

232 for (jj in 1:nrow(cases)){

233 print(c(kk ,jj))

234 temp <-table10 .3[ table10 .3$Date==cases$Date[jj] & table10 .3$Week==cases$Week[jj],]

235 control[jj ,3] <-sum(temp$Date >=temp$Start & temp$Date <=temp$End & temp$Date <temp$B_

Date)

236 }

237 case.control <-merge(cases ,control ,by=c("Date","Week"))

238 final <-merge(case.control ,exp ,by="Date")

239 ttt <-which(table(table10$Date)==500)

240 tt<-names(ttt)

241 final.new <-final[final$Date%in%as.Date(tt) ,]

242 fit.t<-glm(cases~Exposure+offset(log(control))+factor(Week),family="poisson",data=

final.new)


