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Abstract 

 

AN ADDITIVE SPATIOTEMPORAL COVARIANCE FUNCTION USING STREAM AND RIVER DISTANCE 

By Denis Whelan 

 

BACKGROUND: Modeling all geo-referenced phenomenon using strictly Euclidean distance is 

restrictive and often implausible, especially when measuring the movement of organisms in 

infectious disease research and ecology. Studying the transmission of diarrheal disease incidence 

in developing countries involves studying the movement of waterborne pathogens. In order to 

effectively estimate the spread of diarrheal disease, spatiotemporal heterogeneity must be 

considered explicitly. 

OBJECTIVE: This paper presents a covariance function that incorporates a weighted 

combination of multiple distance metrics to estimate spatiotemporal dependence of a Gaussian 

outcome using a Bayesian framework. 

DATA: Twenty-one communities in northwestern Ecuador were randomly selected from data 

collected as a part of the ECODESS study (Ecología, Desarollo, Salud y Sociedad), which was 

geared towards achieving a better understanding of community-level risk factors of diarrheal 

disease by examining environmental and ecological factors.  

METHODS: An additive covariance function incorporating both Euclidean and river distance is 

proposed to estimate spatiotemporal dependence.  Metropolis-Hastings and Gibbs sampling are 

used for MCMC parameter estimation. We use three fit measures designed for Bayesian models 

to compare the model fit of the additive covariance function to a model with Euclidean distance 

only and a model with river distance only.  

RESULTS: The additive covariance function incorporating both Euclidean and river distance 

was the best performing model in terms of all three Bayesian model fit criteria only when the 

simulated Gaussian was generated using a combination of those simulated distance matrices. 

Results were mixed when this method was applied to observed data. 

CONCLUSIONS: This paper lays the foundation for estimation of covariance functions using 

multiple distance matrices with wide applications in infectious disease and ecology research and 

can motivate a range important methodological extensions. 
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INTRODUCTION 

Modeling all geo-referenced phenomenon using strictly Euclidean distance is restrictive and 

often implausible. In infectious disease research and ecology, many species of interest or 

waterborne pathogens may travel only along a stream network. In operations research or military 

applications, stakeholders may be interested in modeling the movement of goods, people, or 

illicit drugs along transportation networks such as roads. Especially in rural, mountainous, or 

otherwise restricted-movement areas, using a spatial autocovariance function that only depends 

on Euclidean (as the crow flies) distance on a projected map could lead to very unreliable 

estimates. 

For situations such as these, stream distance and road distance may be more appropriate 

metrics for modeling autocovariance. Stream or road distance is defined as the shortest distance 

between two locations, where distance is calculated only within the stream or road network (Ver 

Hoef et al. 2006). However, stream or road distance alone may not be enough to accurately 

characterize spatial autocovariance, given that it would be unrealistic to assume that these 

processes are isotropic. For example, stream and transportation networks may have correlations 

defined by direction and volume of flow. Ver Hoef et al. (2006) have used moving average 

constructions to develop valid spatial autocovariance models using stream distance and 

incorporating directional flow.  

For modeling the spread of infectious diseases transmitted by both humans and 

waterborne pathogens, it is important to not only consider transmission along streams but to 

simultaneously consider multiple routes of transmission. In this paper, we propose a novel 

method to incorporate combinations of Euclidean, river, and road distances to identify the most 

appropriate spatial autocorrelation model. River distances have been used for geostatistics in 
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ecology (Money et al. 2009, Peterson et al. 2010, 2007, 2006, Cressie et al. 2006), however they 

have not yet been incorporated into infectious disease modeling. Despite their practical 

relevance, road networks have very rarely (Saby et al. 2006) been used in geospatial models, 

and, to our knowledge, combinations of distance matrices have never been used together to 

model spatial autocorrelation, in public health settings, or otherwise. 

In addition to the spatial challenges of modeling the transmission of waterborne 

infectious diseases, varying climatological patterns present additional temporal complications. 

To account for this, Reich et al. (2011) proposed a class of spatiotemporal covariance functions 

that allow for meteorological covariates to affect a covariance function. Based on the work of 

[Schmidt, Guttorp et al. (2011) and Schmidt, Rodríguez et al. (2011)], Reich et al. developed a 

framework for nonstationary covariance, such that the correlation between pairs of points 

separated by the same distance may have different correlations depending on precipitation or 

other meteorological factors.       

In this paper, we present a covariance function that incorporates multiple distance metrics 

to estimate spatiotemporal dependence of a Gaussian outcome. We first use simulated 

spatiotemporal data to evaluate the method’s performance based on different model fit criteria 

for Bayesian models. We then apply this model to estimate spatiotemporal dependence of 

village-level incidence rates of diarrheal disease in the Esmeraldes region on the northwestern 

coast of Ecuador. 

Diarrhea is the second leading cause of death in children under five, with 1.7 billion cases 

of childhood diarrheal disease each year (WHO). Worldwide, nearly 1.9 million children die 

from diarrheal disease annually, which is 19% of all deaths in this age group (WHO). This global 

burden of diarrheal disease disproportionately affects developing regions like northwestern 
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Ecuador, largely because of the lack of safe water and basic sanitation (Boschi-Pinto et al., 2008, 

Kotloff et al., 2013). 

It has been shown (Patz et. al, 2005, Jones et. al 2008, Lipp et al. 2001) that pathogens 

are influenced by rainfall and temperature. Checkley et al. (2000) found that diarrhea increased 

by 8% for each one-degree Celsius increase in mean ambient temperature in Peru during the 

period before El Niño. In Canada, Thomas et al. (2006) found that waterborne outbreaks (1975 – 

2001) were significantly associated with total maximum degree-day above 00C and accumulated 

rainfall. In the U.S., waterborne diseases outbreaks (1948-1994) due to surface water 

contamination showed a strong association with extreme precipitation (Curriero et al., 2001).  

However, not all results have been consistent. In Bangladesh, the number of cholera cases 

increased with both high and low rainfall in the weeks preceding hospital visits (Hashizume et 

al., 2008). In Botswana, Alexander et al. (2013) found that forecasted increases in temperature 

and decreases in precipitation may lead to a prolongation of the present dry season peak and a 

subsequent increase in diarrheal disease. However, the same study predicted that incidence of 

diarrheal disease in the wet season would decline.  

Research focused on modeling associations between rainfall and waterborne disease 

incidence (Singh et al 2001, Peng et al. 1999, Auld et. al 2004, Gordon et al. 2009, and many 

others) does not account for spatiotemporal heterogeneity of the effect of rainfall on diarrheal 

disease. Though this paper’s focus is on the heterogeneity of the covariance, better understanding 

of the heterogeneity of the covariance is an important step to an enhanced understanding of the 

spatial heterogeneity of the effect of rainfall on the disease. Ignoring this crucial characteristic of 

the data may limit investigators’ ability to detect and estimate accurate associations between 

precipitation and disease, predict patterns of disease based on precipitation, and interpret the 
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relative importance of other community-level risk factors. The covariance function proposed in 

this paper should allow us to better examine what geographical factors (i.e. distance measures) 

and environmental factors (i.e. precipitation) will influence the spatiotemporal dependence 

between relative risks of diarrheal disease between villages.  

 

DATA 

Data for this analysis were collected as a part of the ECODESS study (Ecologia, Desarrollo, 

Salud, y Sociedad), which was designed to contribute to a better understanding of the 

community-level risk factors of diarrheal disease by examining how environmental and 

ecological factors such as social networks and sanitation impact transmission (Eisenberg et al., 

2006). Initial findings and study design have previously been described in detail (Eisenberg et 

al., 2006) and further discussion is included elsewhere (Ahn et al., 2014).  

Twenty-one communities were randomly selected from the 158 communities in the 

Esmeraldas province of northwestern Ecuador based on a randomized-block design which used 

location, size, population and relative distance to Borbón, the main population center of the 

region (Figure 1a). (Actual village names have been replaced by numbers for confidentiality 

throughout.) This region forms a part of the Chocó rainforest, a tropical rainforest that cuts 

through parts of Panamá, Colombia, and Ecuador, and known to be one of the most biologically-

diverse regions in the world. These communities are found along the three river system in the 

region (Río Onzole, Río Cayapas, and Río Santiago), with 18 villages located beside one of the 

three major rivers (Figure 1b). Due to the recent construction of roads connecting villages 

fostering increased movement between communities, this region is an ideal place to study 
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community-level risk factors of disease. (Ten of the 21 villages are now connected by the new 

road system.) 

Research team members recruited and surveyed households from February 2004 to July 

2007 for 177 consecutive weeks to identify diarrhea cases, defined as three or more loose stools 

in a 24-hour period. Other community-level factors such as remoteness, social cohesion, travel 

patterns, and sanitation were collected, but are not yet available for analysis at this time. 

 

METHODS  

Model Formulation 

In order to estimate spatiotemporal dependence of village-level incidence rates of diarrheal 

disease, we propose an additive covariance function that incorporates stream or road distance and 

Euclidean distance. First, let’s consider the following spatial-temporal regression model: 

𝒀(𝑠𝑖, 𝑡𝑖) = 𝑾(𝑠𝑖, 𝑡𝑖) +  𝜀𝑖 

where 𝑠𝑖 and 𝑡𝑖 denote the spatial location and week for observation i. The independent mean-

zero Gaussian residual error term εi is assumed to be iid with mean zero and variance σ2. At each 

time point ti, W(si, ti) is a mean-zero Gaussian process with stationary and isotropic covariance 

function ∑.  Hence, the joint distribution Y= [Y(s1)…Y(sn)]’ is Gaussian with mean zero and 

variance ∑ + σ2 Inxn For the application of our model to the Ecuador data, we let Y(sij,tij) to 

represent the log of proportion of of the local population at risk that are incident cases per week 

in village s during week t. The element ∑ij is determined by a parametric covariance function 

Cov (d1ij, d2ij; θ, τ2, ρ1, ρ2) where d1ij is the Euclidean distance between si and sj and d2ij is the 

stream or road distance between si and sj: 
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𝑺 = 𝐶𝑜𝑣[𝑑1𝑖𝑗, 𝑑2𝑖𝑗] = 𝜏2[ɵ ∗ exp (
−𝑑1𝑖𝑗

𝜌1
) + (1 − ɵ) ∗ exp (

−𝑑2𝑖𝑗

𝜌2
)] 

When only one distance metric is used, θ is assumed to be zero or one a priori. 

Parameter estimation is accomplished under a Bayesian Framework. We further specify the 

above regression model as a Bayesian model with parameters Ω = {θ, σ2, β, W, τ2, ρ1, ρ2), 

allowing hierarchical specification of model elements. For Bayesian inference, each element in 

Ω is treated as a random variable and requires a prior distribution.  The joint posterior 

distribution is given by 

𝜋(Ω|Y) =
𝐿(𝑌|Ω) ∗ 𝜋(Ω)

𝑓(𝑌)
 

Where L(Y|Ω) is the data likelihood, which describes a probabilistic description of how the data 

arise, π(Ω), which describe prior information in unknown parameters, and f(Y), a normalizing 

constant ensuring a proper posterior distribution.  

The data likelihood and prior distributions for the above model are given below 

𝐿(𝒀|𝜃, 𝜎2, 𝑾, 𝜏2, 𝜌1, 𝜌2) ~ 𝑁(𝑾, 𝜎2𝑰)  

𝜋(𝜃, 𝜎2, 𝑾, 𝜏2, 𝜌1, 𝜌2) =  𝜋(𝑾|𝜏2, 𝜌1, 𝜌2, ) ∗ 𝜋(𝜃) ∗ 𝜋(𝜎2) 

𝜋(𝑾|𝜏2, 𝜌1, 𝜌2, 𝜃)~ 𝑁(0, ∑(𝜏2, 𝜌1, 𝜌2, 𝜃)) 

𝜋(𝜎2)~ 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) 

𝜋(𝜏2)~𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) 

𝜋(𝜌1)~𝐺𝑎𝑚𝑚𝑎(c, 𝑑)  
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𝜋(𝜌2)~𝐺𝑎𝑚𝑚𝑎(c, 𝑑)  

𝑙𝑜𝑔𝑖𝑡(𝜃) = log (
𝜃

1 − 𝜃
) ~ 1 

where hyper-parameters are given by the values a=0.0001, b=0.0001, c=0.6, and d=0.1. 

Estimation 

In order to simulate samples from the joint posterior distribution π(θ, σ2, β, W, τ2, ρ1, ρ2), we use 

Markov Chain Monte Carlo (MCMC). MCMC consists of Monte Carlo integration using 

Markov chains. Monte Carlo integration draws samples from the specified posterior distribution 

and uses sample averages to approximate expectations. Estimation uncertainty as measured by 

posterior standard deviation and posterior intervals can also be calculated from quantiles of the 

posterior samples. MCMC draws these samples by updating model parameters via Markov 

chains and has the useful property of gradually “forgetting” its initial state—subject to certain 

regularity conditions—and eventually converging to a set of samples from a unique stationary 

distribution that is equivalent to the joint posterior distribution of interest. Thus after “burning 

in” over sufficient iterations, subsequent iterations will represent dependent samples from the 

posterior distribution based on the ergodic theorem (Eckman & Ruelle, 1985). For our models, 

we run 5,000 iterations and discard the first 1,000 as burn-in samples. We use a combination of 

Gibbs sampling and the Metropolis-Hastings algorithm to define our Markov chain samples.  

Gibbs-Sampling Steps 

The first MCMC technique we use is Gibbs sampling. Gibbs sampling generates posterior 

samples by sampling from the full conditional distribution of each parameter with all other 

parameters remaining fixed at their current values, resulting in a Markov chain whose stationary 
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distribution is the posterior distribution. Thus, instead of sampling directly from the posterior 

distribution, samples are simulated by passing through all posterior conditionals and updating 

each parameter, one at a time. The following parameters in are model are sampled using Gibbs 

samplers W, τ2, and σ2. 

Metropolis-Hastings Algorithm 

For certain parameters, however, it is not possible to specify the full conditional distribution in a 

convenient closed form and we must use another technique called Metropolis-Hastings. The 

Metropolis-Hastings algorithm is an approach to simulate a distribution where we only know the 

density up to a proportional constant and can be used when the full conditional distribution is not 

available. At each iteration k, for a parameter ω2: 

1.)  A proposal value ω2* is drawn from the distribution π(ω2*| ω2
(k-1)) 

2.) ω2* is accepted as ω2
(k) with probability: 

min {1,
𝜋(𝑾|𝜛1, 𝜛2

∗) ∗ 𝜋(𝜛2
∗) ∗ 𝜋(𝜛2

(𝑘−1)
|𝜛2

∗)

𝜋(𝑾|𝜛1
𝑘 , 𝜛2

𝑘−1) ∗ 𝜋(𝜛2
𝑘−1) ∗ 𝜋(𝜛2

∗|𝜛2
(𝑘−1)

)
} 

Otherwise, if ω2* is not accepted, then ω2
(k) = ω2

(k-1). For our method, for each ω € Ω we must 

take care to ensure to propose a value in the support of π(ω).  

Details of the MCMC algorithm for the proposed model is given below.  

1.) Define initial values for the unknown parameters: σ2, τ2, ρ1, and ρ2. Use those initial 

values to initialize R, S, and W.  

𝑹 =  ɵ ∗ exp (
−𝑑1𝑖𝑗

𝜌1
) + (1 − ɵ) ∗ exp (

−𝑑2𝑖𝑗

𝜌2
) 
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2.) Update W: 

𝜋( 𝑾 | 𝜃, 𝜎2, 𝜏2, 𝜌1, 𝜌2)  𝛼  𝐿(𝒀|𝑾, 𝜎2) ∗ 𝜋(𝑾|𝜏2, 𝜌1, 𝜌2, 𝜃)  

𝜋(𝑾|𝜏2, 𝜌1, 𝜌2, 𝜃)~ 𝑁(�̂�, ∑̂) 

𝑽𝑽𝑽 =
1

𝜎2
𝑰𝑛∗𝑡 𝑥 𝑛∗𝑡 

+
1

𝜏2
𝑅−1 

𝑿𝑿𝑿 = 𝑰𝑛∗𝑡 𝑥 𝑛∗𝑡 
𝒀 

�̂� =
1

𝜎2
𝑉𝑉𝑉−1𝑋𝑋𝑋 

 ∑̂ = 𝑉𝑉𝑉−1 

3.) Update σ2: 

𝜋(𝜎2| 𝜃, 𝑾, 𝜏2, 𝜌1, 𝜌2)  𝛼  𝐿(𝒀|𝜃, 𝜎2, 𝑾) ∗ 𝜋(𝜎2) 

𝜋(𝜎2| 𝜃, 𝑾, 𝜏2, 𝜌1, 𝜌2)~ 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(𝑎 +
𝑛 ∗ 𝑡

2
, 𝑏 +

(𝒀 − 𝑾)′(𝒀 − 𝑾)

2
) 

4.) Update τ2: 

𝜋(𝜏2| 𝜃, 𝑾, 𝜌1, 𝜌2) 𝛼 𝜋( 𝑾| 𝜏2, 𝜌1, 𝜌2)𝜋( 𝜏2)  

𝜋(𝜏2| 𝜃, 𝑾, 𝜏2, 𝜌1, 𝜌2)~ 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(𝑎 +
𝑛 ∗ 𝑡

2
, 𝑏 +

𝑾′𝑹 𝑾

2
) 

5.) Update ρ1: 

a.) Propose ρ1*| ρ1 where ρ1*~ log-Normal(log(ρ1), ρ1tune) 

b.) Calculate R*= ɵ ∗ exp (
−𝑑1𝑖𝑗

𝜌1∗
) + (1 − ɵ) ∗ exp (

−𝑑2𝑖𝑗

𝜌2
) 

c.) Decide whether to accept proposed value ρ1* as ρ1
(k) with probability α. 
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𝛼 =  
𝐿(𝑾| 𝜌1

∗, 𝑹∗, 𝜃, 𝑾, 𝜏2, 𝜌2) ∗ 𝜋(𝜌1| 𝜌1
∗, 𝜃, 𝑾, 𝜏2, 𝜌2)

𝐿(𝑾| 𝜌1, 𝑹, 𝜃, 𝑾, 𝜏2, 𝜌2) ∗ 𝜋(𝜌1
∗|𝜌1 , 𝜃, 𝑾, 𝜏2, 𝜌2)

 

6.) Update ρ2: 

a.) Propose ρ2*| ρ2 where ρ2*~ log-Normal(log(ρ2), ρ2tune) 

b.) Calculate R*= ɵ ∗ exp (
−𝑑1𝑖𝑗

𝜌1
) + (1 − ɵ) ∗ exp (

−𝑑2𝑖𝑗

𝜌2
∗ ) 

c.) Decide whether to accept proposed value ρ2* as ρ2
(k) with probability α. 

𝛼 =  
 𝐿(𝑾| 𝜌2

∗, 𝜃, 𝑹∗, 𝑾, 𝜏2, 𝜌1) ∗ 𝜋(𝜌2| 𝜌2
∗, 𝜃, 𝑾, 𝜏2, 𝜌1)

𝐿(𝑾| 𝜌2, 𝜃, 𝑹 𝑾, 𝜏2, 𝜌1) ∗ 𝜋(𝜌2
∗|𝜌2 , 𝜃, 𝑾, 𝜏2, 𝜌1)

 

7.) Update θ by reparametrizing it as γ = logit (𝜃):  

a.) Propose γ*| γ where γ *~ N (γ, γ tune) and 𝛾∗ = logit (𝜃) =  log (
𝜃

1−𝜃
) 

b.) Back-transform ɵ∗  =  
exp (γ∗)

1+ exp (γ∗)
 

c.) Calculate R*= ɵ∗ ∗ exp (
−𝑑1𝑖𝑗

𝜌1
) + (1 − ɵ∗) ∗ exp (

−𝑑2𝑖𝑗

𝜌2
) 

d.) Decide whether to accept proposed value ɵ* as ɵ(k) with probability α. 

𝛼 =  
𝐿(𝑾| γ∗, 𝜃∗, 𝑹∗, 𝜏2, 𝜌1, 𝜌2) ∗ 𝜋(γ| γ∗, 𝜃∗, 𝑾, 𝜏2, 𝜌1, 𝜌2)

𝐿(𝑾| γ, 𝜃, 𝑹, 𝜏2, 𝜌1, 𝜌2) ∗ 𝜋(γ∗|γ , 𝜃, 𝑾, 𝜏2, 𝜌1, 𝜌2)
 

Model Comparison 

To evaluate the use of different distance metrics in the covariance function, we use three model 

fit measures for Bayesian models: DIC, wAIC, and PPL. All three metrics can be thought of as 

the sum of a goodness of fit term and a penalty term.  

Deviance Information Criterion (DIC) (Spiegelhalter et al. 2002) is essentially a Bayesian 

version of Akaike Information Criterion (AIC) with two slight, but important modifications: first, 
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the maximum likelihood estimate is replaced with the posterior mean θ̂Bayes and k, the effective 

number of parameters, is replaced with a bias correction based on the data: 

𝐷𝐼𝐶 = −2 ∗ log [𝑃(𝑦|𝜃𝐵𝑎𝑦𝑒𝑠)] + 2 ∗ 𝑝𝐷𝐼𝐶 

𝑝𝐷𝐼𝐶 = 2 ∗ {log (𝑃(𝑦|𝜃𝐵𝑎𝑦𝑒𝑠) −
1

𝑆
∑ log (𝑃(𝑦𝑖|𝜃𝑠) )}

𝑆

𝑠=1

 

The Watanabe-Akaike information criterion (wAIC) (Watanabe 2010) is considered a more 

Bayesian approach. It consists of the difference between the log pointwise predictive density and 

the posterior variance of the log predictive density for each data point yi. 

𝑤𝐴𝐼𝐶 = ∑ log (
1

𝑆
∑ 𝑃(𝑦𝑖|𝜃𝑠) )

𝑆

𝑠=1

𝑛

𝑖=1

− 𝑝𝑤𝐴𝐼𝐶 

𝑝𝑤𝐴𝐼𝐶 = 2 ∗ ∑ 𝑉𝑎𝑟𝑝𝑜𝑠𝑡{log(𝑃(𝑦𝑖|𝜃)}

𝑛

𝑖=1

 

Finally, we compute the Posterior Predictive Loss (PPL) (Gelfand et al. 1998), which is 

calculated by first minimizing the posterior loss for a given model, and then, for models being 

considered, choosing the one that minimizes this criterion. Below it is expressed as the sum of its 

goodness of fit term G and its penalty term P: 

𝑃𝑃𝐿 = 𝐺 + 𝑃 

𝐺 = ||(𝑦 − 𝐸[𝑌𝑟𝑒𝑝|𝑦])||
2

 

𝑃 = 𝑡𝑟(𝑉𝑎𝑟(𝑌𝑟𝑒𝑝\𝑦)) 
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SIMULATION 

Formulation 

Simulated Euclidean and river distance matrices were created to test our method. Given that the 

actual distances from the Esmeraldes data ranged from 0 to 90 km for river distances, and 0 to 47 

km for Euclidean distances, simulated distance matrices were created from a uniform distribution 

to somewhat closely mimic these values, with a range 0 to 100 km. To account for the windiness 

and turns of river/road distances compared to Euclidean distances, non-Euclidean distances were 

given some additional noise. This was performed using a log normal distribution to reduce 

correlation between the two distance matrices. Actual data for the Esmeraldes analysis consisted 

of 18 spatial points s (villages) and 177 time points t (weeks). In order to examine the 

performance of our method with varying availability of spatial and temporal data, we tested a 

range of possible combinations varying s from 18 to 500 and t from 1 to 200. Because the actual 

data are more temporal than spatial, here we focus on results that more closely resemble small s 

and high t. Furthermore, we tested non-Euclidean distance matrices with a varying percentage of 

connected points to observe how the methods would perform when not all points were located on 

a river or road. We do not present much results of these explorations, however, as they are 

beyond the scope of these analyses. It should be noted, nonetheless, that as expected, 

convergence was better with increased spatial data and a higher percentage of points located on 

river.  

Simulated Distance Matrices: Results 

Parameters were estimated using MCMC with three covariance functions described below. S1 is 

the “correct” combined covariance function which consists of a weighted combination of river 
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distance and Euclidean distance, and which was used to simulate the outcome. S2 represents the 

incorrect or incomplete covariance function as it only considers Euclidean distance and S3 is 

similar with river distance only instead.  

𝑺𝟏 = 𝐶𝑜𝑣[𝑑1𝑖𝑗, 𝑑2𝑖𝑗] = 𝜏2[ɵ ∗ exp (
−𝑑1𝑖𝑗

𝜌1
) + (1 − ɵ) ∗ exp (

−𝑑2𝑖𝑗

𝜌2
)]. 

𝑺𝟐 = 𝐶𝑜𝑣[𝑑1𝑖𝑗, 𝑑2𝑖𝑗] = 𝜏2[exp (
−𝑑1𝑖𝑗

𝜌1
)]. 

𝑺𝟑 = 𝐶𝑜𝑣[𝑑1𝑖𝑗, 𝑑2𝑖𝑗] = 𝜏2[exp (
−𝑑2𝑖𝑗

𝜌2
)]. 

Because the data were simulated with S1, the model fit with this covariance function should be 

the best model, and thus minimize all three Bayesian model fit measures: DIC, wAIC, and PPL 

and should converge slightly better than the other two. In Table 1, we notice that for the two 

selected combinations of spatial and temporal points (s=20, t=75 and s=200, t=10), the combined 

model performs best for all three fit measures in the both scenarios suggesting that model 

performance is as expected for data that are both more temporal than spatial and vice versa.  

In the corresponding figures (Figures 2a & 2b), we notice that parameters θ, ρ1, ρ2, and τ2 

converge fairly well to the pre-specified true value for the “correct” additive covariance function 

(S1).  Though the residual variance (independent of space) σ2 has more difficulty converging, we 

note that the total variability (τ2 + σ2) is estimated well. As expected, for the Euclidean only 

covariance function (Figure 2c), τ2, ρ1, and σ2 more or less converge to the pre-specified true 

value but have more difficulty than in the additive model. We observe similar results for the river 

distance only model (Figure 2d). 
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Esmeraldes Data Distance Matrices: Results 

After performing MCMC using the above covariance matrices with simulated distance matrices 

and a simulated outcome Y, the same procedure was performed using a simulated outcome and 

the observed river distance and Euclidean distance matrices. These analyses are concerned with 

the 18 villages located along one of the three rivers, and thus without any missing pairwise river 

distance data (Figure 1b). When using the Esmeraldes data distance matrices (Table 1), we notice 

that the river only S3 is the best-performing model when the three covariance functions are 

compared for model fit, even though the S1 matrix was used to generate the outcome. In the 

combined model (Figures 3a & 3b), the posterior distributions for all parameters converge well 

to the pre-specified true mean with the exception of θ, which is overestimated.  

ANALYSIS  

Pre-processing 

For the 18 villages over 176 weeks, 161 incidence rates were missing (5% of total data), after 

excluding one week without collected data which was removed. The remaining missing values 

were imputed in the following way. If an incidence rate was missing for week t, but weeks t-1 

and t+1 were not missing, the incidence rate for week t was set to the mean of the incidence rates 

for weeks t-1 and t+1. If an incidence rate was missing for week t and week t+1…t+n, the 

incidence rate for week t-1 was iteratively set to the incidence rate to incidence rate t until the 

first scenario was achieved and the mean was imputed for the last value. The first and last weeks 

did not contain any missing values. By imputing the missing weeks chronologically based on 

information from prior weeks, or averaged information from prior and subsequent weeks, this 
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method provides a simple way of reasonably estimating incidence rates for weeks with missing 

cases or population denominators.   

Data Description 

Incidence rates of diarrheal disease were calculated as follows: 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑅𝑎𝑡𝑒 =  1000 ∗
# 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠

# 𝑠𝑢𝑟𝑣𝑒𝑦𝑒𝑑
 

Thus, denominators could not be missing, and when denominators were small or relatively close 

to the number of cases, the incidence rate became extremely large. These outliers are noteworthy 

in Figure 5, which displays the mean number of incident cases for each week during the study 

period. One can see that weeks 77, 78, and 79 have extraordinarily high mean weekly incidence 

rates. This actually does not reflect a large increase in the number of cases per week but merely 

the number surveyed on a given week, as there was a great deal of variation between number of 

persons surveyed per week in a particular village. The standard deviation of the denominator 

ranged from 6.5 to 111.8 across the 18 villages (median=28.0) whereas the standard deviation of 

the numerator ranged from 0.36 to 1.86 across the 18 villages (median=0.90).  

Results 

When fitting the models to the real data, a range of starting values first had to be used in order to 

achieve convergence. In figures 4a-4d, we observe estimates for the posterior means. We notice 

that τ2, the temporal variance, is about 22 and σ2 is about 25, providing evidence to suggest that 

the incidence of diarrheal disease in Esmeraldes may vary slightly more spatially than 

temporally. Model performance was best for lower t and became unstable for a large number (t > 

40) of weeks at a time, thus results are displayed for 30 weeks at a time. As Table 1 shows, there 
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is no clear pattern as to which of the three covariance functions performs best for the estimation 

of the incidence rate of diarrheal disease using the inter-village data in the Esmeraldes region of 

Ecuador.  

 

DISCUSSION 

This paper develops a framework for a valid covariance function that incorporates multiple 

distance metrics to estimate spatiotemporal dependence of a Gaussian outcome. This work lays 

the foundation for a variety of useful extensions that may be applied to statistical research in 

ecology, infectious diseases, and other applications.  

In these analyses, we observed that the additive covariance function incorporating both 

Euclidean and river or road distance was the best performing model in terms of all three 

Bayesian model fit criteria only when the simulated Gaussian covariance was generated using 

both those simulated distance matrices (Table 1). Nonetheless, we believe it remains likely that 

using river distance or Euclidean distance alone is insufficient to estimate spatiotemporal 

covariance for data located along river networks. There are a variety of additional strategies to 

build different valid covariance functions that are motivated by this same interplay between 

estimating Euclidean-driven correlation, and another distance metric. The first may be to 

consider the model presented here with different prior distributions or hyper-parameter 

specifications. One may also consider different covariance functions, such as a model that 

estimates two different τ2 parameters instead of the weight parameter θ (see S1a), a multiplicative 

model instead of an additive model (S1b), a common ρ (S1c) or other variations (S1d & S1d). 



17 
 

𝑺𝟏𝒂 = 𝐶𝑜𝑣[𝑑1𝑖𝑗, 𝑑2𝑖𝑗] = 𝜏1
2 ∗ exp (

−𝑑1𝑖𝑗

𝜌1
) + 𝜏1

2 ∗ exp (
−𝑑2𝑖𝑗

𝜌2
) 

𝑺𝟏𝒃 = 𝐶𝑜𝑣[𝑑1𝑖𝑗, 𝑑2𝑖𝑗] = 𝜏2[exp (
−𝑑1𝑖𝑗

𝜌1
+

−𝑑2𝑖𝑗

𝜌2
)] 

𝑺𝟏𝒄 = 𝐶𝑜𝑣[𝑑1𝑖𝑗, 𝑑2𝑖𝑗] = 𝜏2[ɵ ∗ exp (
−𝑑1𝑖𝑗

𝜌
) + (1 − ɵ) ∗ exp (

−𝑑2𝑖𝑗

𝜌
)] 

𝑺𝟏𝒅 = 𝐶𝑜𝑣[𝑑1𝑖𝑗, 𝑑2𝑖𝑗] = 𝜏2 ∗ exp (
−𝑑1𝑖𝑗

𝜌1
) [1 − exp (

−𝑑2𝑖𝑗

𝜌2
)] 

𝑺𝟏𝒆 = 𝐶𝑜𝑣[𝑑1𝑖𝑗, 𝑑2𝑖𝑗] = 𝜏2[exp (
−𝑑1𝑖𝑗

𝜌1
) + exp (

−𝑑2𝑖𝑗

𝜌2
)] 

 Simulated outcome and distance data were chosen to fairly closely resemble the 

Esmeraldes diarrhea data. However, differences between the distribution of simulated versus real 

data remain the most likely reason for the differences witnessed in model performance. For 

example, one might reconsider the log-Gaussian assumption on the outcome. Given that the 

incidence rate could be considered count data with a significant number of zeros, possible 

alternatives might be a Zero-Inflated Poisson model or another mixture model. 

 These analyses focused on estimating spatiotemporal dependence at locations that are 

connected for all distance metrics being examined. It is more practical, however, to build a 

weighted multi-distance covariance function that allows for locations that are not connected by 

road or river. We have seen that valid covariance functions without this assumption have similar 

convergence issues (Appendix Figures 1a-2b), but recognize that there a variety of options for 

developing similar models capable of handling this nuance. This would allow the incorporation 
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of road distance matrices, and consequently weighted combinations of the three matrices 

together. 

Furthermore, for simplicity, missing incidence values were imputed based solely on using 

observed information close in time. However, it may be useful to consider a more sophisticated 

approach that imputes missing data using both observed information close in time and space, 

using a classification method such as k-nearest-neighbor for nearby spatial points (Cover 1967). 

 Another important extension of this paper would be the inclusion of community-level 

covariates. For estimating diarrheal disease incidence between different villages, for example, it 

would be useful to consider village-level factors such as remoteness, social cohesion, and travel 

patterns. It would also be useful to average over selected individual-level factors associated with 

diarrheal disease such as the proportion of the population with more than six years of education 

and the percentage of the population less than five years of age. With regard to temporal 

estimation, precipitation data would be an important determinant of village-level diarrheal 

disease that could be incorporated into the model.  

 Finally, rivers and roads not only consist of different paths that individuals, pathogens, or 

goods may take, but they are also governed by important characteristics such as direction and 

flow. As mentioned previously, Ver Hoef et al. (2006) have developed a moving average 

approach to this estimation that provides a useful framework for incorporating these factors into 

a covariance function. This discussion mentions a few of the many important extensions that this 

paper may motivate, with wide applications in infectious disease research, ecology, and a variety 

of other fields.  
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TABLES & FIGURES  

Table 1. Model comparison results with the analysis of simulated and observed data: deviance 

information criterion (DIC), Watanabe-Akaike information criterion (wAIC), and posterior 

predictive loss (PPL) 

Outcome1 Distance Matrix s1 t2 DIC wAIC PPL Trace Plots 

Simulated Combined  Simulated 18 75 -2334 2890 464 2a & 2b 

Simulated 
Euclidean 

Only 
Simulated 18 75 

2184 3765 846 
2c 

Simulated River Only Simulated 18 75 4408 5554 3298 2d 

Simulated Combined  Simulated 200 10 -14 240 31 Appendix 3a & 3b   

Simulated 
Euclidean 

Only 
Simulated 200 10 

-231 415 48 
Appendix 3c 

Simulated River Only Simulated 200 10 24 567 94 Appendix 3d 

Simulated Combined 
Esmeraldes 

Data 
18 75 

5229 5404 3302 
3a & 3b 

Simulated 
Euclidean 

Only 

Esmeraldes 

Data 
18 75 

4875 5436 3363 
3c 

Simulated River Only 
Esmeraldes 

Data 
18 75 

3051 4417 1422 
3d 

Incidence 

Rate 
Combined 

Esmeraldes 

Data 
18 30 3448 3551 27305 4a & 4b 

Incidence 

Rate 

Euclidean 

Only 

Esmeraldes 

Data 
18 30 3452 3531 31490 4c 

Incidence 

Rate 
River Only 

Esmeraldes 

Data 
18 30 3437 3546 27238 4d 

1For simulated outcomes, the outcome was generated based on the model with the combined distance matrix.  
2Number of villages  
3Number of weeks  
4Note: Negative DIC values are, in fact, possible as DIC is defined as the sum of a negative goodness of fit 

term and a positive penalty term 
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Table 2. Parameter estimates and (95%) posterior intervals using either simulated or observed 

distance matrices with simulated Gaussian outcomes. All outcomes were simulated assuming a 

combined covariance distance matrix of both river and Euclidean distance.  

    Simulated Distance Matrices Observed Distance Matrices  

Model Parameter 
True 

Value 
Estimate 95% PI  

True 

Value 
Estimate 95% PI 

Combined τ2 10 10.1 (9.1, 11.1) 10 8.6 (6.6, 10) 

Combined θ 0.7 0.7 (0.5, 0.9) 0.6 0.8 (0.4, 1) 

Combined ρ1 (Euclidean) 10 9.9 (6.9, 12.9) 8 10.4 (7.9, 15.1) 

Combined ρ2 (River) 10 9.3 (6.4, 13.5) 10 7.9 (6.3, 10.4) 

Combined σ2 0.5 0 (0, 0.2) 1 1.2 (0.7, 2.1) 

Euc. Only τ2 10 9.9 (9.1, 10.8) 10 8.8 (7.4, 10.1) 

Euc. Only ρ1 (Euclidean) 10 10.6 (8.5, 12.9) 10 10 (8.2, 12.9) 

Euc. Only σ2 0.5 0.2 (0, 0.5) 1 1.3 (0.5, 2.2) 

River Only τ2 10 9.1 (7.1, 10.6) 10 9.6 (8.1, 10.8) 

River Only ρ2 (River) 10 7.5 (5.8, 9.7) 8 7.4 (6.3, 8.8) 

River Only σ2 0.5 1.1 (0.1, 2.9) 1 0.3 (0, 1.4) 
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Table 3.  Parameter estimates and 95% posterior intervals for the analysis diarrheal incidence 

among 18 villages in Ecuador.  

Model Parameter Estimate 95% PI 

Combined τ2 22.1 (16.4, 29.8) 

Combined θ 0.1 (0, 0.2) 

Combined ρ1 (Euclidean) 36 (16.6, 83.4) 

Combined ρ2 (River) 25.2 (24, 26.4) 

Combined σ2 25.5 (21.6, 30.1) 

Euc. Only τ2 19.4 (13.3, 28.6) 

Euc. Only ρ1 (Euclidean) 109.9 (58.8, 150.8) 

Euc. Only σ2 29.6 (25.6, 33.9) 

River Only τ2 22.2 (16.3, 30.2) 

River Only ρ2 (River) 25.2 (24, 26.5) 

River Only σ2 25.3 (21.2, 29.7) 
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Figure 1a. Map of the Esmeraldes province in Ecuador showing the three major rivers in blue 

(figure from Ahn et al., 2014) 
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Figure 1b. Map of the 21 villages of Esmeraldes chosen by random-block design (in red), the 

road network (in black) and the river network (in blue) 
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Figure 2a. Trace plots and histograms of the posterior distributions of the posterior distributions 

of τ2, and σ2 for combined covariance function (S1) for simulated outcome and simulated 

distance matrices
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Figure 2b. Trace plots and histograms of the posterior distributions of θ, ρ1, and ρ2 for combined 

covariance function (S1) for simulated outcome and simulated distance matrices 
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Figure 2c. Trace plots and histograms of the posterior distributions of τ2, ρ1, and σ2 for 

Euclidean Only covariance function (S2) for simulated outcome and simulated distance matrices 
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Figure 2d. Trace plots and histograms of the posterior distributions of τ2, ρ2, and σ2 for River 

Only covariance function (S3) for simulated outcome and simulated distance matrices 
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Figures 3a. Trace plots and histograms of the posterior distributions of τ2, and σ2 for combined 

covariance function (S1) for simulated outcome and actual distance matrices  
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Figure 3b. Trace plots and histograms of the posterior distributions of θ, ρ1, and ρ2 for combined 

covariance function (S1) for simulated outcome and actual distance matrices 
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Figure 3c. Trace plots and histograms of the posterior distributions of τ2, ρ1, and σ2 for 

Euclidean Only covariance function (S2) for simulated outcome and actual distance matrices 
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Figure 3d. Trace plots and histograms of the posterior distributions of τ2, ρ2, and σ2 for River 

Only covariance function (S3) for simulated outcome and actual distance matrices 
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Figure 4a. Trace plots and histograms of the posterior distributions of τ2, and σ2 for combined 

covariance function (S1) for actual outcome and actual distance matrices 
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Figure 4b. Trace plots and histograms of the posterior distributions of θ, ρ1, and ρ2 for combined 

covariance function (S1) for actual outcome and actual distance matrices 
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Figure 4c. Trace plots and histograms of the posterior distributions of τ2, ρ1, and σ2 for 

Euclidean Only covariance function (S2) for actual outcome and actual distance matrices 
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Figure 4d. Trace plots and histograms of the posterior distributions of τ2, ρ2, and σ2 for River 

Only covariance function (S3) for actual outcome and actual distance matrices 
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Figure 5. Weekly Average Incidence Rates of Diarrheal Disease 
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Figure 6. Weekly Average Incidence Rates of Diarrheal Disease 
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APPENDIX 

Appendix Figure 1a. Trace plots and histograms of the posterior distributions of the posterior 

distributions of τ2, and σ2 for combined covariance function (S1) for simulated outcome and 

simulated distance matrices with 90% of the points connected by river 
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Appendix Figure 1b. Trace plots and histograms of the posterior distributions of θ, ρ1, and ρ2 

for combined covariance function (S1) for simulated outcome and simulated distance matrices 

with 90% of the points connected by river 
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Appendix Figure 2a. Trace plots and histograms of the posterior distributions of the posterior 

distributions of τ2, and σ2 for combined covariance function (S1) for simulated outcome and 

simulated distance matrices with 75% of the points connected by river 
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Appendix Figure 2b. Trace plots and histograms of the posterior distributions of θ, ρ1, and ρ2 

for combined covariance function (S1) for simulated outcome and simulated distance matrices 

with 75% of the points connected by river 
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Appendix Figure 3a. Trace plots and histograms of the posterior distributions of θ, ρ1, and ρ2 for 

combined covariance function (S1) for simulated outcome and simulated distance matrices for 

s=200, t=10 
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Appendix Figure 3b. Trace plots and histograms of the posterior distributions of θ, ρ1, and ρ2 

for combined covariance function (S1) for simulated outcome and simulated distance matrices for 

s=200, t=10 
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Appendix Figure 3c. Trace plots and histograms of the posterior distributions of τ2, ρ1, and σ2 

for Euclidean Only covariance function (S2) for simulated outcome and simulated distance 

matrices 
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Appendix Figure 3d. Trace plots and histograms of the posterior distributions of τ2, ρ2, and σ2 

for River Only covariance function (S3) for simulated outcome and simulated distance matrices 

for s=200, t=10 
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