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ABSTRACT 

Differentially private data release and analytics 
By	Haoran	Li	

Nowadays data sharing is important for application domains, such as scientific 
discoveries, business strategies, commercial interests, and social goods, especially when 
there are not enough local samples to test a hypothesis. However, data in its raw format 
are sensitive as they essentially contain individual specific information, and publishing 
such data without proper protection may disclose personal privacy. Netflix canceled their 
recommendation system contest because the released customers data can identify special 
individuals with high probability. In order to promote data sharing, it is important to 
develop privacy-preserving algorithms that respect data confidentiality while present data 
utility. In this dissertation, we address the privacy concerns in publishing high-
dimensional static data and dynamic datasets, and developing mechanisms for 
personalized differential privacy where data subjects can have various privacy 
preferences. Our privacy preserving algorithms satisfy differential privacy, a rigorous and 
de facto standard for privacy protection. Extensive empirical studies demonstrate the 
effectiveness of our solutions and confirm that our methods have great promise for 
privacy-preserving data release and analytical tasks in a wide range of application 
domains.
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CHAPTER 1

Introduction

1.1. Motivation

With the advent of big data era, huge amounts of individual data have been

largely collected and analyzed in various application domains, healthcare research,

public transit agencies, retailing business, and social networking. Utilizing personal

information can undoubtably accelerate scientific discoveries and provide business in-

sights. However, such individual raw data often contains personal identified sensitive

information. The risk of disclosing distinguished individual data may be promoted

by inappropriate data sharing among different parties and continuous collection of

individual data. This can be exemplified by a number of real-life privacy disclosure

incidents listed below.

AOL search queries. In the 2006 AOL data publication, 20 million search queries

from 650,000 users were released. User identity information (e.g., such as name or

SSN) had been anonymized by some pseudonymous user IDs before release [51]. But

three days later, the release has to be removed because the search logs of a specific

user were re-identified by a newspaper journalist.

Netflix prize data. Netflix, the largest on-demand Internet streaming media service

provider, released the anonymized movie ratings of 500,000 subscribers for a contest

with the purpose of improving the accuracy of its recommendation system. However,

Netflix had to cancel the contest because Narayanan and Shmatikov [94] revealed that

when combining with the information in the public Internet Movie Database (IMDb),

users in the released Netflix dataset could be re-identified with high probability.

1



2 1. INTRODUCTION

Genome-wide association study. In genome-wide association studies (GWAS) of

healthcare research, Lin et al. estimated that 75 - 100 single nucleotide polymor-

phisms or fewer than 20 micro-satellite markers can unambiguously identify a single

individual. Most recently, Gymrek et al. identified personal genomes by surname

inference from the “anonymized” 1000 genome data.

These real-world privacy concerns have stimulated strong demands for privacy

protection in data sharing. In recent years, privacy preserving data analysis and

publishing [1] has received considerable attention as a promising approach for shar-

ing information while preserving data privacy. Differential privacy [2] has recently

emerged as one of the strongest privacy guarantees for statistical data release. A

statistical aggregation or computation is DP1 if the outcome is formally indistin-

guishable when run with and without any particular record in the dataset. The level

of indistinguishability is quantified by a privacy budget ε. A common mechanism

to achieve differential privacy is the Laplace mechanism [3] which injects calibrated

noise to a statistical measure determined by the privacy budget ε, and the sensitivity

of the statistical measure influenced by the inclusion and exclusion of a record in the

dataset. A lower privacy parameter requires larger noise to be added and provides a

higher level of privacy.

Many mechanisms (e.g. [2, 7], etc) have been proposed for achieving differential

privacy for a single computation or a given analytical task and programming platforms

have been implemented for supporting interactive differentially private queries or

data analysis [6]. Due to the composition theorem of differential privacy [6], given

an overall privacy budget constraint, it has to be allocated to subroutines in the

computation or each query in a query sequence to ensure the overall privacy. After the

budget is exhausted, the database can not be used for further queries or computations.

This is especially challenging in the scenario where multiple users need to pose a large

number of queries for exploratory analysis. Several works started addressing effective

1we shorten differentially private as DP
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query answering in the interactive setting with differential privacy given a query

workload or batch queries by considering the correlations between queries or query

history.

id Age Hours/
week

Edu …

1 50 13 13 …

2 38 40 9 …

3 53 40 7 …

4 28 40 13 …

… … … … …
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Figure 1.1. Dataset vs. histogram illustration
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Figure 1.2. Synthetic data generation

A growing number of works started addressing non-interactive data release and

aggregate analysis with differential privacy (e.g. [52, 41, 42, 43, 44, 45]). Given

an original dataset, the goal is to publish a DP statistical summary such as marginal

or multi-dimensional histograms that can be used to answer predicate queries or

to generate DP synthetic data that mimic the original data. For example, Figure

1.1 shows an example dataset and a one-dimensional marginal histogram for the

attribute age. The main approaches of existing work can be illustrated by Figure

1.2(a) and classified into two categories: 1) parametric methods that fit the original

data to a multivariate distribution and makes inferences about the parameters of the
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distribution (e.g. [52]). 2) non-parametric methods that learn empirical distributions

from the data through histograms (e.g. [42, 43, 44, 45]). Most of these work well

for single dimensional or low-order data, but become problematic for data with high

dimensions and large attribute domains. This is due to the facts that:

• The underlying distribution of the data may be unknown in many cases or

different from the assumed distribution, especially for data with arbitrary

margins and high dimensions, leading the synthetic data generated by the

parametric methods not useful;

• The high dimensions and large attribute domains result in a large number of

histogram bins that may have skewed distributions or extremely low counts,

leading to significant perturbation or estimation errors in the non-parametric

histogram methods;

• The large domain space
∏m

i=1 |Ai| 2 (i.e. the number of histogram bins) incurs

a high computation complexity both in time and space. For DP histogram

methods that use the original histogram as inputs, it is infeasible to read all

histogram bins into memory simultaneously due to memory constraints, and

external algorithms need to be considered.

To tackle these technical challenges, in this thesis, we propose a novel differentially

private data synthesization method, DPCopula [17], for static high dimensional and

large domain data using copula functions. It reduces large amount of injected noise

for privacy protection by modeling private marginal histogram for each dimension

and joint dependence for all dimensions, separately.

Although a series of algorithms aim to release synthetic data under differential

privacy, most of them focus on “one-time” release of a static dataset and do not

adequately address the increasing need of releasing series of dynamic datasets in

2We define
∏m

i=1 |Ai| as the domain space of all dimensions, where |Ai| is the domain size of the ith
attribute and m is the number of attributes
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real time. Sharing series of private data evolving overtime under differential privacy

enables many important data mining and knowledge discovery applications.

Medical research. A hospital gathers data from individual patients every day.

The dynamic datasets, e.g. the daily datasets of individual patients with fevers,

coughs, and different demographic attributes can be shared with researchers for cohort

discovery, medical research, and seasonal epidemic outbreak monitoring.

Traffic Monitoring. A GPS service provider gathers data from individual users

about their locations, speeds, mobility, etc. The dynamic datasets, e.g., the numbers

of users at different regions during each time period, can be mined for commercial

interest, such as congestion patterns on the roads.

A common scenario of such applications is that a trusted server gathers data from a

large number of individual subscribers. The aggregated data can be then continuously

shared with other untrusted entities for various purposes. The trusted server, i.e.

publisher, therefore must ensure that releasing the data does not compromise the

privacy of any individual who contributed data. A straightforward application of

existing histogram methods on each snapshot of such dynamic datasets will incur high

accumulated error due to the composition theorem [6] and correlations or overlapping

users between the snapshots. In this thesis, we address the problem of releasing series

of dynamic datasets in real time with differential privacy, using a novel adaptive

distance-based sampling approach.

Differential privacy provides only a uniform level of privacy protection for all users

(record owners) in a dataset. It assumes every data subject have the same privacy

preference for their personal data. However, this “one size fits all” privacy setting

ignores the reality that data privacy is a personal and multifaceted concept, and

that different individuals may have very different expectations for the privacy of their

personal data. In practice, when faced with a dataset including multiple users or data

owners with different privacy settings, a data analyst employing differential privacy

has limited options. The privacy setting where record owners in a dataset could
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set their own privacy preferences is considered as “Personalized Differential privacy”,

shortened as PDP.

One possibility for achieving PDP is to uses the minimal privacy budget among

all records, called minimum mechanism. This is likely to introduce an unacceptable

amount of noise into the analysis outputs, resulting in poor utility. Especially when

we have a dataset with skewed privacy preferences where only few data owners set

their privacy preferences to be the minimum, a large amount of privacy budgets would

be wasted while the utility will be significantly reduced. Another possibility is that

we can set a privacy budget threshold and select a subset whose privacy budgets

are no less than the threshold, then apply differentially private applications using

the chosen subset. However, the threshold is difficult to choose because there is a

tradeoff between number of records in the subset and the threshold. Higher privacy

budget threshold means less number of records, and vice versa. In this dissertation,

we develop two novel partitioning mechanisms for achieving personalized differential

privacy (PDP): privacy-aware partitioning and utility-based partitioning. The main

goal is to design mechanisms that can take full advantage of the different privacy

budgets to obtain better utility than could be achieved with the common differential

privacy mechanism.

1.2. Research Contributions

In this dissertation, we address the following research problems:

• How to sample high-dimensional and large data from original data while

guaranteeing high utility under differential privacy?

• How to release series of dynamic datasets in real time under differential

privacy?

• How to handle personalized differential privacy when record owners have

different privacy preferences?
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1.2.1. Privacy-preserving high-dimensional data release (Chapter 3). In

this chapter, we propose DPCopula, a differentially private data synthesization tech-

nique using Copula functions for multi-dimensional data. The core of our method is to

compute a differentially private copula function from which we can sample synthetic

data. Copula functions are used to describe the dependence between multivariate

random vectors and allow us to build the multivariate joint distribution using one-

dimensional marginal distributions. Most of previous methods work well for single

dimensional or low-order data, but become problematic for data with high dimen-

sions and large attribute domains. This is mainly because the high dimensions and

large attribute domains result in a large number of histogram bins that may have

skewed distributions or extremely low counts, leading to significant perturbation or

estimation errors in the non-parametric histogram methods.

Different from previous state-of-the-arts methods, our framework computes a DP

copula function and samples synthetic data from the function that effectively captures

the dependence implicit in the high-dimensional datasets. With the copula functions,

we can separately consider the margins and the joint dependence structure of the orig-

inal data instead of modeling the joint distribution of all dimensions. Furthermore,

DPCopula allows direct sampling for the synthetic data from the margins and the

copula function. For most existing techniques, post-processing is required to enforce

non-negative histogram counts or consistencies between counts which results in either

degraded accuracy or high computation complexity.

We present two methods, DPCopula-MLE (we shorten maximum likelihood esti-

mation as MLE in the paper) and DPCopula-Kendall, for estimating parameters of the

Gaussian copula function, a commonly used elliptical class of copula functions model-

ing the Gaussian dependence. We focus on semi-parametric Gaussian copula as most

real-world high-dimensional data has been shown to follow the Gaussian dependence

structure. It can be used not only to model data with Gaussian joint distributions,

but also data with arbitrary marginal distributions or joint distributions as long as
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they follow Gaussian dependence. DPCopula-MLE computes correlation among di-

mensions using DP MLE while DPCopula-Kendall computes DP correlation among

dimensions using Kendall’s τ correlation which is a general nonlinear rank-based

correlation. Extensive experiments using both real datasets and synthetic datasets

demonstrate that DPCopula generates highly accurate synthetic multi-dimensional

data with significantly better utility than state-of-the-art techniques.

1.2.2. Privacy-preserving dynamic histogram release (Chapter 4). In

this chapter, we investigate the problem of releasing histograms for dynamic datasets

while guaranteeing user-level differential privacy, i.e., protecting the presence of a user

in the entire series of dynamic datasets. In the worst case, a user may be present in

all datasets in the series. A straight-forward application of the standard differential

privacy mechanism or existing histogram method to each snapshot of the dataset will

lead to a very high perturbation error O(N) in the order of the number of datasets or

snapshots N in the series. The goal of this chapter is to releases a differentially private

histogram only when the current snapshot is sufficiently different from the previous

one, thus reducing the amount of injected noise for differential privacy perturbation

when releasing dynamic datasets overtime.

Our first method, DSFT, uses a fixed distance threshold and releases a differen-

tially private histogram only when the current snapshot is sufficiently different from

the previous one, i.e., with a distance greater than a predefined threshold. Our sec-

ond method, DSAT, further improves DSFT and uses a dynamic threshold adaptively

adjusted by a feedback control mechanism to capture the data dynamics. Extensive

experiments on real and synthetic datasets demonstrate that our approach achieves

better utility than baseline methods and existing state-of-the-art methods.

1.2.3. Personalized differential privacy (Chapter 5). This chapter focuses

on personalized privacy setting, in which record owners in a dataset can have different

expectations regarding the acceptable level of privacy for their data. One possibility

for achieving PDP is to uses the minimal privacy budget among all records, but
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this is likely to introduce an unacceptable amount of noise into the analysis outputs,

resulting in poor utility. Another possibility is that we can set a privacy budget

threshold and select a subset whose privacy budgets are no less than the threshold,

then apply differentially private applications using the chosen subset. However, the

threshold is difficult to choose because there is a tradeoff between number of records

in the subset and the threshold. Higher privacy budget threshold means less number

of records, and vice versa. The goal of this chapter is to design mechanisms that can

take full advantage of different privacy budgets to obtain better utility than could be

achieved with the common differential privacy mechanism.

We develop two novel partitioning mechanisms for achieving personalized differ-

ential privacy (PDP): privacy-aware partitioning mechanism and utility-based par-

titioning mechanism. The privacy-aware partitioning mechanism is to consider all

different privacy budgets as a histogram and group histogram bins with similar pri-

vacy budgets, such that the amount of wasted budget is minimized. We use sum

of squared errors between the minimum of each partition and all privacy budgets of

this partition to measure the waste of privacy budgets in the current partition. The

utility-based partitioning mechanism is to partition the privacy budget histogram in

order to maximize the utility. In particular, we find that the utility-based mechanism

has superior performance for many important differentially private applications, such

as count queries, logistic regression and support vector machine. The reason is that it

considers both the minimum privacy budget and the number of records in the current

partition, which are significantly related to the utility of goal differentially private

mechanisms. We conducted extensive experimental studies of our partitioning mech-

anisms and compare our methods with the previous sampling mechanism in [25]. We

first investigated both of our mechanisms for the important count query, then studied

the application of our mechanisms to more complex tasks, like logistic regression and

support vector machine. Our results demonstrate that the general applicability and

superior performance of our methods.





CHAPTER 2

Related Works

This chapter briefly reviews the recent, relevant literatures on differentially private

synthetic data generation, and personalized differential privacy.

2.1. Differentially private synthetic data generation

Various approaches have been proposed recently for publishing differentially pri-

vate histograms (e.g. [40, 49, 42, 43, 44, 45, 46, 47, 48], etc). Among them,

the methods of [42] and [43] are designed for single dimensional histograms. The

technique of [48] is proposed especially for two dimensional data. Here we focus on

discussing the methods for multi-dimensional histograms below.

The method by Dwork et al. [3] publishes a DP histogram by adding independent

Laplace random noise to the count of each histogram bin. The Dwork method is more

favorable for small-domain attributes and can only guarantee reasonable accuracy for

queries about individual entries in the frequency matrix. For queries involving many

entries, the Dwork method fails to provide useful results. While the method works

well for low-dimensional data, it becomes problematic for high dimensional and large

domain data. Barak et al. [40] uses Dwork’s method to obtain a DP frequency matrix,

then transforms it to the Fourier domain and adds Laplace noise in this domain. With

the noisy Fourier coefficients, it employs linear programming to create a non-negative

frequency matrix. The problem is that (i) post-processing is not shown to improve

accuracy and (ii) it requires solving a linear program where the number of variables

equals to the number of entries in the frequency matrix. This can be computationally

challenging for practical data sets with large domain space. For instance, for the

11



12 2. RELATED WORKS

eight-dimensional data sets each with domain size of 1000, the number of variables is∏m
i=1 |Ai|=1024.

Xiao et al. [41] propose a Privelet+ method by applying a wavelet transform on

the original histogram, then adding polylogarithmic noise to the transformed data.

Cormode et al. [45] developed a series of filtering and sampling techniques to obtain

a compact summary of DP histograms. The limitation is that if a large number of

small-count non-zero entries exists in the histogram, it will give zero entries a higher

probability to be in the final summary, leading to less accurate summary results.

In addition, it needs carefully choosing appropriate values for several parameters

including sample size and filter threshold. The paper did not provide a principled

approach to determine them. Both the DPCube [49] and PSD [44] are based on

KD-Tree partitioning. DPCube first uses Dwork’s method to generate a DP cell

histogram and then applies partitioning on the noisy cell histogram to create the

final DP histogram. PSD computes KD-tree partitioning using DP medians at each

step. It has been shown in [44] that these two methods are comparable. However, for

high-dimensional and large attribute domain data, either the level of partitioning will

be high which results in high perturbation error or the distribution of each partition

will be skewed which results in high estimation error. Acs et al. [47] study two

sanitization algorithms for generating DP histograms. The EFPA technique improves

the fourier perturbation scheme through tighter utility analysis while P-HP is based

on a hierarchical partitioning algorithm. But there are limitations for high dimension

data. When the number of bins in original histograms is extremely large, for EFPA,

the parameter representing the histogram shape would be selected with high error;

for P-HP, the accuracy of each partitioning step would have large perturbation error

and the computation complexity would be proportional to the quadratic number of

bins in the worst case.
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The DiffGen method [46] releases differentially private generalized data especially

for classification by adding uncertainty in the generalization procedure. Only pre-

dictor attributes are generalized for maximizing the class homogeneity within each

partition. It classifies the attributes into class attributes and predictor attributes.

The limitation is that it is mainly designed for classification with only the predictor

attributes being generalized due to the class attribute. For high-dimensional and

large-domain data, the method has similar issues as the KD-partitioning methods.

What’s more, the number of specializations need to be predefined heuristically.

2.2. Differentially private dynamic data generation

Differentially private stream data release. Several mechanisms (e.g. [4, 34],

etc) focus on event-level privacy in releasing counters, i.e. in publishing the number

of event occurrences at every time point since the commencement of the system.

These mechanisms consider the data stream as a bit string and at each time point

they release the number of 1’s seen so far. A set of related works have studied the

problem of releasing aggregate time series and stream statistics. The works in [4, 34]

proposed differentially private continual counters over a binary stream. However,

both works adopt an event-level differential privacy, which protects the presence of

an individual event, i.e. a user’s contribution to the data stream at a single time

point, rather than her presence or contribution to the entire series. The works in

[35, 36, 37] studied the problem of releasing aggregate time-series with user-level

differential privacy. Both works consider temporal correlations of the time-series.

The paper [35] uses a Discrete Fourier Transform approach and is not applicable to

real-time applications when data needs to be released at each time point. Other works

[36, 37] take a model based approach which assumes original data is generated by an

underlying process and uses the model based prediction to improve the accuracy of

the released data. The limitation is that the model needs to be assumed or learned

from public data with similar patterns and the method may not be effective when
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the real data deviates from the model. [38] releases dynamic transaction data under

user-level privacy, and set an upper bound to limit the maximum number of updates

to handle infinite updates. But it can only handle insertions updates.

Differentially private dynamic dataset release. The most recent work that is

closely related to our work is Kellaris et al. [39] which deals with differentially private

release of events or histograms for infinite stream. It proposes a w-event privacy

framework by combining user-level and event-level privacy, which protects any event

sequence occurring within any window of w timestamps. It is event-privacy with w

= 1 and converges to user- level privacy with w = infinity. They also proposed two

mechanisms, Budget Distribution (BD) and Budget Absorption (BA), to allocate the

budget within one w-timestamp window. The key difference between our work and

[39] is that our methods detect the data dynamics and adaptively adjust the distance

threshold for sampling such that the privacy budget is not depleted prematurely due

to high update and sampling rates or insufficiently utilized due to low update and

sampling rates. In [39], privacy budgets may be depleted prematurely, especially

when w is very large, or not fully utilized during the w timestamps. In addition, our

method is independent of the histogram method used for each time point and can

utilize any state-of-the-art histogram methods designed for static data release as a

blackbox. In our experiments, we compare our methods with BD and BA in [39],

since they represent the state-of-the-art and have been shown to perform better than

other existing work.

2.3. Personalized differential privacy

Personalized privacy. Tao and Xiao [16] introduced personalized privacy for k-

anonymity, which requires every record in a dataset to be indistinguishable from at

least k − 1 records, based on the identifier attributes. The k-anonymity for person-

alized privacy in [16] allows each data record owner to specify the minimum k they

prefer. A series of related literatures (e.g., [21, 20, 29]) explore advanced methods to
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guarantee k-anonymity and related privacy notations. However, these privacy frame-

works cannot protect sensitive attributes information when attackers have sufficient

background knowledge ([15, 27, 28]). A more robust privacy definition, differential

privacy [2], has recently emerged and are now preferred as one of the strongest privacy

guarantees for statistical data release.

Personalized differential privacy. Alaggan et al. [22] developed a privacy defi-

nition, called heterogeneous differential privacy, which to our knowledge is the first

work to consider various privacy preferences of data record owners under non-uniform

differential privacy. Their work proposed a “stretching” mechanism, which is based

on Laplace mechanism by rescaling the input values due to corresponding privacy

parameters. The weakness is that it cannot be applied to many commonly used

functions, such as median, min/max, and counting queries which count the number

of non-zero values in a dataset. Ebadi et al. [23] developed a query system called

ProPer based on McSherry’s PINQ system [6] to maintain a privacy budget for each

individual. It allows better utility than models purely based on the global sensitivity.

This method is an interactive model, which spends privacy budgets on the fly (i.e.,

protecting information through a controlled interface handled by the data owner) and

is different from our method that publishes data in an non-interactive manner (i.e.,

releasing once for all data which we think is of interest to most analysis while still

preserving privacy [24]).

Jorgensen et al. [25] proposed two mechanisms for achieving personalized differ-

ential privacy (PDP). The first mechanism is a two-step sampling based method that

involves a non-uniform sampling step at the individual record level, followed by the

invocation of an appropriate differentially private mechanism on the sampled dataset.

In the sampling step, the inclusion probabilities for each record are computed due

to the individual privacy budget of the corresponding user and the privacy budget

threshold. The sampling mechanism is general and can be used to easily convert
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any existing differentially private algorithm into a PDP algorithm, but an appropri-

ate sampling threshold needs to be selected and predefined. The second mechanism

is developed based on the exponential mechanism, where the utility function is de-

signed to satisfy PDP particularly. The mechanism is applicable to only common

aggregates such as counts, medians, because the utility function is difficult to develop

for complicated applications, like linear regression, support vector machine.

Personalized local privacy. Chen et al. [64] proposed a personalized local differen-

tial privacy (PLDP) model and developed an efficient personalized count estimation

protocol as a building block for achieving PLDP. In PLDP, each user’s data needs to

be perturbed before leaving his or her own devices, which means no one is trusted

except users themselves. Authors in [64] also designed a framework under PLDP

that allows an untrusted server to accurately learn the user distribution over a spa-

tial domain while each user can specify his or her own privacy preference. Wang et

al. [26] designed another aggregation scheme that combines locally published data at

different differential-privacy levels, which can be kept as a secret to the data owners.

Different from personalized differential privacy, these methods [64, 26] are developed

under local differential privacy, so we will not make direct comparison with them in

this article.



CHAPTER 3

Differentially private synthesization of multi-dimensional

data using copula functions

In this chapter, we investigate the problem of high-dimensional synthetic data

publication with differential privacy and propose DPCopula, a privacy preserving

synthetic data generation technique using Copula functions to release differentially

private multi-dimensional data.

3.1. Preliminaries

Consider an original dataset D that contains a data vector (X1, X2, . . . , Xm) with

m attributes. Our goal is to release differentially private synthetic data of D. For

ease of reference, we summarize all frequently used notations in Table 3.1. Their

definitions will be introduced as appropriate in the following (sub)sections.

Table 3.1. Frequently used notations

Notation Discription

D original dataset

D̃ DP synthetic data

n number of tuples in D

m number of dimensions in D

(X1, . . . , Xm) m-dimensional vector of D

H(x1, . . . , xm) m-dimensional joint distribution

F̂j(xj) empirical distribution of jth margin

F̃j(xj) DP empirical distribution of jth margin

ρτ (Xj , Xk) Kendall’s τ coefficient

ρ̂τ (Xj , Xk) sample estimate of Kendall’s τ

ρ̃τ (Xj , Xk) private estimate of Kendall’s τ

ρ(Xj , Xk) the general correlation

ε1 privacy budget for margins

ε2 privacy budget for all correlations

∆ sensitivity of Kendall’s τ

k the ratio of ε1 and ε2

P̃ DP correlation matrix

(Ũ1, . . . , Ũm) DP pseudo-copula data vector

17
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3.1.1. Differential Privacy. Differential privacy has emerged as one of the

strongest privacy definitions for statistical data release. It guarantees that if an

adversary knows complete information of all the tuples in D except one, the output

of a differentially private randomized algorithm should not give the adversary too

much additional information about the remaining tuples. We say datasets D and D′

differing in only one tuple if we can obtain D′ by removing or adding only one tuple

from D. A formal definition of differential privacy is given as follows:

Definition 3.1.1 (ε-differential privacy [3]). Let A be a randomized algorithm over

two datasets D and D′ differing in only one tuple, and let O be any arbitrary set of

possible outputs of A. Algorithm A satisfies ε-differential privacy if and only if the

following holds:

Pr[A(D) ∈ O] ≤ eεPr[A(D′) ∈ O]

Intuitively, differential privacy ensures that the released output distribution of A

remains nearly the same whether or not an individual tuple is in the dataset.

The most common mechanism to achieve differential privacy is the Laplace mech-

anism [3] that adds a small amount of independent noise to the output of a numeric

function f to fulfill ε-differential privacy of releasing f , where the noise is drawn

from Laplace distribution with a probability density function Pr[η = x] = 1
2b
e−
|x|
b . A

Laplace noise has a variance 2b2 with a magnitude of b. The magnitude b of the noise

depends on the concept of sensitivity which is defined as follows.

Definition 3.1.2 (Sensitivity [3]). Let f denote a numeric function and the sensi-

tivity of f is defined as the maximal L1-norm distance between the outputs of f over

the two datasets D and D′ which differs in only one tuple. Formally,

∆f = maxD,D′||f(D)− f(D′)||1.



3.1. PRELIMINARIES 19

With the concept of sensitivity, the noise follows a zero-mean Laplace distribution

with the magnitude b =
∆f

ε
. To fulfill ε-differential privacy for a numeric function f

over D, it is sufficient to publish f(D) +X, where X is drawn from Lap(
∆f

ε
).

For a sequence of differentially private mechanisms, the composability theorems

guarantee the overall privacy.

Theorem 3.1.1 (Sequential Composition [6]). For a sequence of n mechanisms

M1, . . . ,Mn and each Mi provides εi-differential privacy, the sequence of Mi provides

(
∑n

i=1 εi)-differential privacy.

Theorem 3.1.2 (Parallel Composition [6]). If Di are disjoint subsets of the orig-

inal database and Mi provides α-differential privacy for each Di, then the sequence

of Mi provides α-differential privacy.

3.1.2. Synthetic data generation under differential privacy. Given an

original dataset, the goal is to publish a DP statistical summary such as marginal

or multi-dimensional histograms that can be used to answer predicate queries or to

generate DP synthetic data that mimic the original data. For example, Figure 1.1

shows an example dataset and a one-dimensional marginal histogram for the attribute

age. The main approaches of existing works can be illustrated by Figure 1.2(a) and

classified into two categories

• Parametric methods that fit the original data to a multivariate distribution

and makes inferences about the parameters of the distribution (e.g. [52])

• Non-parametric methods that learn empirical distributions from the data

through histograms (e.g. [42, 43, 44, 45]).

Most of these work well for single dimensional or low-order data, but become prob-

lematic for data with high dimensions and large attribute domains. This is due to

the facts that:

• The underlying distribution of the data may be unknown in many cases or

different from the assumed distribution, especially for data with arbitrary
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margins and high dimensions, leading the synthetic data generated by the

parametric methods not useful;

• The high dimensions and large attribute domains result in a large number of

histogram bins that may have skewed distributions or extremely low counts,

leading to significant perturbation or estimation errors in the non-parametric

histogram methods;

• The large domain space
∏m

i=1 |Ai| 1 (i.e. the number of histogram bins) incurs

a high computation complexity both in time and space. For DP histogram

methods that use the original histogram as inputs, it is infeasible to read all

histogram bins into memory simultaneously due to memory constraints, and

external algorithms need to be considered.

3.1.3. The Copula function. Consider a random vector (X1, . . . , Xm) with the

continuous marginal cumulative distribution function (CDF) of each component being

Fi(x) = P (Xi ≤ x), the random vector (U1, . . . , Um) = (F1(X1), . . . , Fm(Xm)) has

uniform margins after applying the probability integral transform to each component.

Then the copula function can be defined below:

Definition 3.1.3 (Copula and Sklar’s theorem [9]). The m-dimensional copula C :

[0, 1]m → [0, 1] of a random vector (X1, . . . , Xm) is defined as the joint cumulative

distribution function (CDF) of (U1, . . . , Um) on the unit cube [0, 1]m with uniform

margins:

C(u1, . . . , um) = P (U1 ≤ u1, . . . , Um ≤ um)

where each Ui = Fi(Xi). Sklar’s theorem states that there exists an m-dimensional

copula C on [0, 1]m with F (x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)) for all x in R̄m. If

F1, . . . , Fm are all continuous, then C is unique. Conversely, if C is an m-dimensional

1We define
∏m

i=1 |Ai| as the domain space of all dimensions, where |Ai| is the domain size of the ith
attribute and m is the number of attributes



3.1. PRELIMINARIES 21

copula and F1, . . . , Fm are distribution functions, then C(u1, . . . , um) = F (F−1
1 (u1), . . . , F−1

m (um)),

where F−1
i is the inverse of marginal CDF Fi.

From definition 3.1.3, copula refers to co-behaviors of uniform random variables

only; since any continuous distribution can be transformed to the uniform case via

its CDF, this is the appeal of the copula functions: they describe the dependence

without any concern of the marginal distributions. Here, dependence is a general

term for any change in the distribution of one variable conditional on another while

correlation is a specific measure of linear dependence [10] (e.g. Pearson correlation).

Two distributions with the same correlations may have different dependencies. We use

the rank correlation in our method and will discuss it later in this section. Although

the data should be continuous to guarantee the continuity of margins, discrete data in

a large domain can still be considered as approximately continuous as their cumulative

density functions do not have jumps, which ensures the continuity of margins. We

will discuss later how to handle small-domain attributes.

To study the accuracy of the copula-derived synthetic data, we introduce a conver-

gence analysis on copulas, showing that the copula-derived synthetic data is arbitrar-

ily close to the original data when the data cardinality is sufficiently large. Assume we

have an original data D0 with n records, {F10, . . . , Fm0} being the original marginal

distributions, C0 be the original copula function (i.e. the original dependence), H0

be the original joint distribution of the D0. We also have t synthetic data D1, . . . , Dt

with {F1t}, . . . , {Fmt} be a sequence of m one-dimensional marginal distributions and

{Ct} be a sequence of copulas. Each {F1i}, . . . , {Fmi} and Ci correspond to Di,

i ∈ {1, . . . , t} and are parameterized by the number of records of Di. We have the

following theorem:

Theorem 3.1.3 (Convergence of Copulas). For every t in N+, a m-dimensional

joint distribution functionHt is defined asHt(x1, . . . , xm) := Ct(F1t(x1), . . . , Fmt(xm)).

Then the sequence {Ht} converges toH0 in distribution, if and only if {F1t}, . . . , {Fmt}
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converge to F10, . . . , Fm0 respectively in distribution, and if the sequence of copulas

{Ct} converges to C0 pointwise in [0, 1]m.

The Gaussian copula and Gaussian dependence. Although copula has several

families, the elliptical class is the most commonly used, including Gaussian copula

and t copula. In this paper, we focus on the semi-parametric Gaussian copula as it has

better convergence properties for multi-dimensional data and most real-world high-

dimensional data follow the Gaussian dependence structure [9] that can be modeled

by the Gaussian copula. We note that Gaussian copula is not to be confused with

Gaussian distributions. The Gaussian copula can be used not only to model data

with Gaussian joint distributions, but also data with arbitrary marginal distributions

or joint distributions as long as they follow Gaussian dependence. For other types

of data with special dependence structures, such as tail dependence, we can apply

the t copula, the empirical copula and other copulas. Actually we can use many

approaches to test the goodness-of-fit, such as Akaike’s Information Criterion (AIC)

to identify the best copula. We leave designing DP t copula and other copulas and

testing the goodness-of-fit for the best copula as our future work. Formally, we give

the Gaussian copula and Gaussian dependence definitions as follows:

Definition 3.1.4 (The Gaussian Copula [9]). Deducing via Sklar’s theorem, a mul-

tivariate Gaussian density can be written as the product of two components: the

Gaussian dependence and margins, denoted as

ΦP(x) = 1

|P| 12
exp

{
−1

2
φ−1(u)T (P−1 − I)φ−1(u)

}
︸ ︷︷ ︸

Gaussian dependence

m∏
i=1

ϕ(φ−1(ui))

σi︸ ︷︷ ︸
Margins

where P is a correlation matrix2, I is the identity matrix, φ−1 is the inverse CDF

of a univariate standard Gaussian distribution, φ−1(u) = (φ−1(u1), . . . , φ−1(um)),

ui = Fi(xi), Fi(xi) is Gaussian CDF with the standard deviation σi and ϕ is the

standard Gaussian density, ΦP denotes the multivariate Gaussian density. If we allow

2Here P must be a semi-positive definite matrix to ensure that P−1 exists
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Fi(xi) to be an arbitrary distribution function, we can obtain the density of Gaussian

copula which is the Gaussian dependence part, denoted as cGaP , with the form

(3.1.5) cGaP = |P|−
1
2 exp

{
−1

2
φ−1(u)T (P−1 − I)φ−1(u)

}

From definition 3.1.4, the density function of Gaussian copula in equation (3.1.5)

has no 1/
√

(2π)m compared to that of Gaussian distribution because Gaussian copula

allows arbitrary margins. The Gaussian copula does not necessarily have anything

to do with Gaussian distributions that require all the margins to be Gaussian distri-

butions. Rather, it represents the Gaussian dependence that arises from a random

vector (U1, . . . , Um) with uniform margins. Each component of (U1, . . . , Um) may cor-

respond to an arbitrary distribution Fi(Xi) before the probability integral transform

is applied.
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Figure 3.1 illustrates two bivariate Gaussian copula examples (i.e. two uniform

random variables on [0, 1] with a Gaussian dependence structure) with the same cor-

relation but different margins and the corresponding joint distribution. The same

principle can be extended to more than two random variables. Figure 3.1(a) and

(b) illustrates a scatter plot of a bivariate Gaussian copula with the exponential and

gamma margins and a corresponding bivariate joint distribution with the attributes

on the original domains. The scatter plots in Figure 3.1(c) and (d) is a bivariate

Gaussian copula with uniform and t margins and its corresponding joint distribution.

We can see that the joint distributions may be different due to different margins but

the Gaussian copula scatter plots (i.e. Gaussian dependence) are the same with the

same correlation. In other words, the dependence of data can be modeled indepen-

dently from the margins. While real-world high dimensional data may have different

marginal or joint distributions, most data follow the Gaussian dependence which can

be modeled by Gaussian copula with different correlations.

Estimation of the Gaussian copula. Since there are unknown parameters which

are margins and P in the copula function, they can be estimated based on input data.

The steps of estimation are as follows. First, the data is transformed to pseudo-copula

data on [0, 1]m by the non-parametric estimation method to estimate the marginal

CDF. Assume Xj = (X1,j, . . . , Xn,j)
T is the jth data vector of (X1, . . . ,Xm), the

empirical marginal CDF Fj on the jth dimension can be estimated by

(3.1.6) F̂j =
1

n+ 1

n∑
i=1

1{
Xi,j≥x

}
where F̂j is the empirical distribution function of Xj. Here n+ 1 is used for division

to keep F̂j lower than 1. Then, we can generate the jth-dimension pseudo-copula

data by

(3.1.7) Ûj = (F̂j(X1,j), . . . , F̂j(Xn,j))
T
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Once we get the pseudo-copula data, there are two methods to estimate the cor-

relation matrix P. The first method is directly using maximum likelihood estimation

with the pseudo-copula data as input [11], named as MLE in our paper. However,

maximizing the log likelihood function is specially difficult in multi-dimensions. For

this reason, estimation based on dependence measure is of practical interest.

The second method is to estimate the correlation matrix P based on Kendall’s

τ correlation coefficients between dimensions. From the original data vectors, we

can estimate ρτ (Xj,Xk) by calculating the standard sample Kendall’s τ coefficient

ρ̂τ (Xj,Xk) (see Section 3.2.3). Due to [11], the estimator of the general correlation

coefficient, ρ(Xj,Xk), is given by

(3.1.8) ρ(Xj,Xk) = sin(
π

2
ρ̂τ (Xj,Xk))

In order to estimate the entire correlation matrix P, we need to obtain all pairwise

estimates in an empirical Kendall’ τ matrix Rτ (R
τ
jk = ρ̂τ (Xj,Xk)), then build the

estimator P̂ = sin(π
2
Rτ ) with all diagonal entries being 1.

Kendall’s τ rank correlation. Kendall’s τ rank correlation is a well-accepted rank

correlation measure of concordance for bivariate random vectors. The definition of

Kendall’s τ is given as follows:

Definition 3.1.9 (Kendall’s τ rank correlation [12]). The population version of

Kendall’s τ rank correlation has the form:

ρτ (Xj,Xk) = E(sign(xi1,j − xi2,j)(xi1,k − xi2,k))

where (xi1,j, xi1,k) and (xi2,j, xi2,k) are two different independent pairs with the same

distribution. In practice, we can estimate ρτ (Xj,Xk) using ρ̂τ (Xj,Xk) with the form(
n
2

)−1∑
1≤i1<i2≤n sign(xi1,j, xi2,j)(xi1,k, xi2,k).

We shorten Kendall’s τ rank correlation as Kendall’s τ . We choose to use Kendall’s

τ instead of other correlation metrics such as Pearson or Spearman because it can
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better describe more general correlations while Pearson can only describe the linear

correlation and has better statistical properties than Spearman.

3.2. DPCopula

Under differential privacy, we propose two DPCopula algorithms [17, 18] for

estimating Gaussian copula functions based on multi-dimensional data, namely DP-

Copula using MLE (DPCopula-MLE) and DPCopula using Kendall’s τ (DPCopula-

Kendall). The general idea is to estimate marginal distributions and the gaussian

copula function based on the original multivariate data, then sample synthetic data

from this joint distribution while preserving ε-differential privacy. In this section, we

first present the methods of DPCopula-MLE and DPCopula-Kendall with privacy

proofs and complexity analysis, then analyze their convergence properties. Finally,

we present a DPCopula hybrid method to handle small-domain attributes.

Computing 
DP marginal 
histograms

DP MLE

Sampling DP 
synthetic 

data

Original 
Data D

DP 
synthetic 
Data 

DP correlation matrix

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

(a) DPCopula-MLE

Computing 
DP marginal 
histograms

Computing 
DP Kendall’s 
tau matrix

Sampling DP 
synthetic 

data

Original 
Data D

DP 
synthetic 
Data 

DP correlation matrix

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

(b) DPCopula-Kendall

Figure 3.2. DPCopula Overview

3.2.1. DPCopula-MLE. One basic method of DPCopula is to first compute DP

marginal histograms, then estimate DP correlation matrix using the DP MLE method

proposed by Dwork [5], then sample DP synthetic data. We illustrate this algorithm
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schematically in Figure 3.2(a). Algorithm 1 presents the steps of DPCopula-MLE.

We present the details of each step below.

Algorithm 1 DPCopula-MLE algorithm

Input: Original data vector D = (X1, . . . ,Xm), and privacy budget ε.
Output: Differentially private synthetic data D̃

1. Create a differentially private marginal histogram with privacy budget ε1
m

for
each dimension Xj, j = 1, . . . ,m, in the original data vector to obtain DP empirical

marginal distribution (Ũ1, . . . , Ũm) by equation (3.1.6);

2. Use DP MLE to estimate the DP correlation matrix P̃ with privacy budget ε2

(m2 )
for each correlation coefficient and ε2 = ε− ε1;
3. Sample DP synthetic dataset D̃ by algorithm 3.

Computing DP marginal histograms. As a first step, we compute DP marginal

histograms for each attribute. There are several state-of-the-art techniques for obtain-

ing one-dimensional DP histograms effectively and efficiently, such as PSD, Privelet

[41], NoiseFirst and StructureFirst [43], EFPA [47]. Here we use EFPA to generate

DP marginal histograms which is superior to other methods. We note that an im-

portant feature of DPCopula is that it can take advantage of any existing methods

to compute DP marginal histograms for each dimension, which can be then used to

obtain DP empirical marginal distributions.

DP MLE. In step 2, we fit a Gaussian copula to the pseudo copula data generated

from original data using equation 3.1.6 and 3.1.7, then use the DP MLE method

to compute DP correlation matrix P̃. Our DP MLE method uses the similar idea

with [5]. Algorithm 2 presents the general idea of DP MLE. It first divides the D

horizontally into l disjoint partitions of n
l

records each, computes the MLE coefficient

estimator on each partition, and then releases the average of these estimates plus some

small additive noise. Here the sensitivity of each coefficient is 2
l
, for the diameter of

each coefficient is 2. The value of l should be larger than
(
m
2

)
/0.025ε2 which requires

a large data cardinality for high dimensions. Algorithm 2 guarantees ε2 differential

privacy due to theorem 3.1.2 because each partition that is disjoint with each other

preserves ε2 differential privacy.
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Algorithm 2 DP MLE

Input: Original data vector D = (X1, . . . ,Xm), privacy budget ε2, and k ∈ N+.

Output: Differentially private correlation matrix estimator P̃
1. Divide D horizontally into l disjoint partitions D1, . . . , Dl with each partition
having b = n

l
tuples;

2. For each partition Dt, t ∈ 1, . . . , l:

P̃t = arg max
Pij∈Θ

rb∑
r=(i−1)b+1

logCGa
P (xr1, . . . , x

r
m)

where CGa
P represents the density of Gaussian copula.

3. For each Pij ∈ [−1, 1], i, j ∈ 1, . . . ,m

Compute the average value through P̄ij = 1
l

∑t=1
l P t

ij,

Then inject Laplace noise to P̄ij and obtain DP P̃ij as

P̃ij = P̄ij + Lap[

(
m
2

)
Λ

lε2
]

where Λ is the diameter of each correlation coefficient space Θ with a value of
2;
4. Collect all P̃ij to constitute the DP correlation matrix estimator P̃

Sampling DP synthetic data. In step 3, we build a joint distribution based on

definition 3.1.4 using the DP marginal histograms from step 1, and DP correlation

matrix estimator P̃ from step 2, then sample data points from the joint distribution.

The procedure of sampling DP synthetic data is given in Algorithm 3.

Algorithm 3 Sampling DP synthetic data

Input: DP marginal histograms and DP correlation matrix P̃
Output: DP synthetic data D̂

1. Generate DP pseudo-copula synthetic data (T̃1, . . . , T̃m):

a. Generate a multivariate random number vector (X̃1, . . . , X̃m) in an arbitrary

domain following the gaussian joint distribution Φ(0, P̃), where P̃ is returned by
step 2 of Algorithm 1;

b. Transform (X̃1, . . . , X̃m) to (T̃1, . . . , T̃m) ∈ [0, 1]n×m, where T̃j = φ(X̃j),j =

1, . . . ,m and φ(X̃j) is the standard gaussian distribution;

2. Compute DP synthetic data D̃ as follows:

D̃ = (F̃−1
1 (T̃1), . . . , F̃−1

m (T̃m))

where F̃−1
j is the inverse of DP empirical marginal distribution function generated

from the jth DP marginal histogram, and in the domain of the original dataset.



3.2. DPCOPULA 29

Privacy Properties. We present the following theorem showing the privacy prop-

erty of the DPCopula-MLE algorithm.

Theorem 3.2.1. Algorithm 1 guarantees ε - differential privacy.

Proof. Step 1 guarantees ε1 differential privacy due to theorem 3.1.1. Step 2

guarantees ε2 differential privacy due to [5]. Algorithm 1 guarantees ε1 + ε2 = ε

differential privacy due to theorem 3.1.1. �

Computation complexity. For the space complexity, the DPCopula-MLE algo-

rithm takes O(mn) (i.e. the size of the original dataset), where m is the number

of dimensions, n is the number of records in the original dataset. For the time

complexity, computing all DP marginal histograms take O(
∑m

i=1(AilogAi + n)) =

O(mAlogA + mn) due to [47], where A = max{A1, . . . , Am}. DP MLE takes

O(l × m2n2

l2
) = O(m

2n2

l
). DPCopula-MLE takes O(mAlogA+m2n2/l).

3.2.2. DPCopula-Kendall. In this section, we first present the key steps of

DPCopula-Kendall and then provide formal proof for the privacy guarantee. Figure

3.2(b) illustrates the process of DPCopula-Kendall. Algorithm 4 presents the detailed

steps of DPCopula-Kendall. From the key steps of algorithm 4, we can see that the

differential privacy guarantee relies on step 1 and step 2, which share the privacy

budget. As step 1 and step 3 of algorithm 4 are the same with algorithm 1, we only

present the details of step 2 below.

Algorithm 4 DPCopula-Kendall’s τ algorithm

Input: Original data vector (X1, . . . ,Xm) containing m attributes, privacy budget ε
Output: Differentially private synthetic data D̃

1. Compute a differentially private marginal histogram with the privacy budget ε1
m

for each Xi in D ;

2. Compute the DP correlation matrix P̃ using algorithm 5 with privacy budget
ε2

(m2 )
for each correlation coefficient, and ε2 = ε− ε1;

3. Sample DP synthetic data D̃ by algorithm 3.
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Computing differentially private correlation matrix. The differentially pri-

vate estimator P̃ of the general correlation matrix is estimated by calculating noisy

pairwise Kendall’ τ correlation coefficients matrix. From the original data vector

(X1, . . . ,Xm), we can compute a noisy Kendall’s τ coefficient of any arbitrary two

attributes Xj and Xk by the standard sample Kendall’s τ coefficient ρ̃τ (Xj,Xk) using

Laplace mechanism that guarantees ε2-differential privacy. We then construct a noisy

Kendall’ τ matrix ρ̃τ with each element defined by ρ̃τjk = ρ̃τ (Xj,Xk). Finally, we con-

struct the noisy correlation matrix estimator as P̃ = sin(π
2
ρ̃τ ) with all diagonal entries

being 1. We note that P̃ may not be a positive definite matrix (although in most

cases, it is positive definite in our experience when ε2 is not too small, ε2 ≥ 0.001).

In this case, P̃ can be transformed to be positive definite using postprocessing meth-

ods like the eigenvalue procedure proposed by Rousseeuw et al. [14]. Algorithm 5

presents detailed steps of DP correlation coefficient matrix computation.

Algorithm 5 Computing differentially private correlation coefficient matrix

Input: Original data vector (X1, . . . ,Xm) containing m attributes, and privacy bud-
get ε2

Output: Differentially private correlation matrix estimator P̃
1. Compute DP pairwise noisy Kendall’ τ correlation coefficient ρ̂τ (Xj,Xk) as
follows:

ρ̃τ (Xj,Xk) =
(
n
2

)−1∑
1≤i1<i2≤n sign(Xi1j, Xi2j)(Xi1k, Xi2k) + Lap

[(m2 )∆

ε2

]
, where ∆

is the sensitivity of each pairwise Kendall’s τ coefficient with a value of 4
n+1

;

2. Compute noisy correlation coefficient matrix P̃1 using P̃1 = sin(π
2
ρ̃τ ), each

element of ρ̃τ is defined by (ρ̃τjk = ρ̃τ (Xj,Xk)
′). If P̃1 is NOT positive definite,

then go to step 3; else set P̃ = P̃1;
3. Use the eigenvalue method to transform P̃1 to be positive definite matrix P̃2:

a. Compute the eigenvalue decomposition form of P̃1 as P̃1 = RDRT , where D
is a diagonal matrix containing all eigenvalues of P̃1 and R is an orthogonal matrix
containing the eigenvectors

b. Compute D̃ by replacing all negative eigenvalues in D by a small value or
their absolute values

c. Compute P̃2 = RD̃RT while normalizing P̃2 to be the correlation matrix
form with diagonal elements to be 1, then set P̃ = P̃2.
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Privacy Properties. We first present a lemma analyzing the sensitivity of the

Kendall’s τ coefficient followed by a theorem showing that DPCopula-Kendall satisfies

ε-differential privacy.

Lemma 3.2.1. The sensitivity of a pairwise Kendall’s τ coefficient is ∆ = 4
n+1

.

Proof. Assume we have two dataset D and D′ differing in only one tuple, and let

ρ̂τ (Xi,Xj) and ρ̂τ (X
′
i,X

′
j) be two Kendall’s τ coefficients which, respectively comes

from D and D′, then the sensitivity of a pairwise Kendall’s τ coefficient is defined by

the domain of |ρ̂τ (Xi,Xj)− ρ̂τ (X′i,X′j)|.

Let A = |ρ̂τ (Xi,Xj)− ρ̂τ (X′i,X′j)|. From Definition 3.6 of Kendall’s τ coefficient, we

can deduce that

A =
(n2 + n)(nc − nd)− (n2 − n)(n′c − n′d)

1
2
n2(n+ 1)(n− 1)

where nc is the number of concordant pairs of (Xi,Xj), nd is the number of discon-

cordant pairs of (Xi,Xj), n
′
c is the number of concordant pairs of (X′i,X

′
j), and n′d is

the number of disconcordant pairs of (X′i,X
′
j). In general, nc − nd = k − [

(
n
2

)
− k],

and n′c − n′d = k + r − [
(
n
2

)
+ n − (k + r)], where k is the number of concordance,

k = 0, 1, . . . ,
(
n
2

)
, r is additive number of concordance after adding one tuple, r =

0, 1, . . . , n. We have (n2+n)(nc−nd)−(n2−n)(n′c−n′d) = 2n[2k−
(
n
2

)
]+n(n−1)(n−2r),

where 0 ≤ k ≤
(
n
2

)
, 0 ≤ r ≤ n. According to the property of inequality, we have

−2n
(
n
2

)
− n2(n − 1) ≤ (n2 + n)(nc − nd) − (n2 − n)(n′c − n′d) ≤ 2n

(
n
2

)
+ n2(n − 1),

followed by |(n2 + n)(nc− nd)− (n2− n)(n′c− n′d)| ≤ 2n
(
n
2

)
+ n2(n− 1) = 2n2(n− 1).

Thus

A =
|(n2+n)(nc−nd)−(n2−n)(n′c−n′d)|

1
2
n2(n+1)(n−1)

≤ 4
n+1

, i.e., the sensitivity of a pairwise Kendall’s τ

coefficient is 4
n+1

, which completes the proof. �

Theorem 3.2.2. Algorithm 4 guarantees ε - differential privacy and ε = mε1 +(
m
2

)
ε2.

Proof. In step 1, each margin guarantees ε1
m

-differential privacy and there are m

margins. Due to theorem 3.1.1, step 1 satisfies ε1-differential privacy. In step 2, each
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pairwise coefficient guarantees ε2/
(
m
2

)
-differential privacy due to the above Lemma

and the Laplace mechanism; and there are
(
m
2

)
pairs. Due to theorem 3.1.1, step

2 satisfies ε2-differential privacy. Due to theorem 3.1.1 again, Algorithm 4 satisfies

ε1 + ε2 = ε-differential privacy. �

Computation complexity. For the space complexity, DPCopula-Kendall is the

same with DPCopula-MLE. For the time complexity, the complexity of each Kendall’s

τ takes O(nlogn) using a fast Kendall’s τ computation method. The total time

complexity isO(mAlogA+m2nlogn). When the number of records is large, computing

Kendall’s τ is very time consuming. A natural technique is to compute Kendall’s τ

only on n̂ sample records of the full data to reduce the computation complexity which

requires O( 4
n̂+1

) Laplace noise on each coefficient. This sampling method guarantees

differential privacy by enlarging the Laplace noise from O( 4
n+1

) to O( 4
n̂+1

). Here the

selection of n̂ should guarantee that the Laplace noise O( 4
n̂+1

) be sufficiently small

compared to the scale of original correlation coefficients that is [−1, 1]. In practice,

setting n̂ ≥ (50m(m − 1)/ε2) − 1 is adequate. Thus, no matter how large n is, the

time complexity will be fixed to O(mAlogA+m2).

3.2.3. Convergence properties of DPCopula. In this subsection, assuming

that the original data follows the Gaussian dependence structure, we provide a con-

vergence analysis on DPCopula-Kendall, and show that the distribution of the private

synthetic dataset generated by DPCopula-Kendall copula has the same joint distri-

bution as the original dataset when the database cardinality n is sufficiently large.

We leave the convergence analysis of DPCopula-MLE as our future work. We first

present a few lemmas on the convergence properties of noisy empirical margin and

noisy Kendall’s τ coefficient, then present the main result in Theorem 3.2.3.

Lemma 3.2.1. (Convergence of private empirical marginal distribution). limn→∞ F̃n(t) =

limn→∞ F̂n(t) = F (t) almost surely, where F̃n(t) is the empirical CDF based on the
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private histogram, F̂n(t) is the empirical CDF based on the original histogram, and

F (t) is the population CDF when n tends to be infinity.

Proof. Due to the analysis in [13], we can deduce that the discrimination of F̂n(t)

and F̃n(t) is bounded by O( logm
n

). Hence, we can achieve that limn→∞ |F̃n(t)−F̂n(t)| =

0 leading to limn→∞ F̃n(t) = limn→∞ F̂n(t) and the conclusion can be proved by the

strong law of large numbers. �

Lemma 3.2.2. (Convergence of private Kendall’s tau coefficient). Assume ρ̃τ and ρτ

are noisy and original Kendall’s tau coefficient respectively, then limn→∞ |ρ̃τ−ρτ | = 0.

Proof. Since ρ̃τ = ρτ + Lap( 4
(n+1)ε2

), then

lim
n→∞

|ρ̃τ − ρτ | = lim
n→∞

|Lap( 4

(n+ 1)ε2
)|

When ε2 is a finite real number, it follows that

limn→∞ |Lap( 4
(n+1)ε2

)| = 0,

leading to limn→∞ |ρ̃τ − ρτ | = 0. �

Theorem 3.2.3. (Convergence of DPCopula) Let {F̃1t}, . . . , {F̃mt} be m sequences

of noisy univariate marginal distribution and let {C̃t} be a sequence of noisy copu-

las; then, for every t in N+, an m-dimensional noisy joint distribution function Ht is

defined as:

H̃t(x1, . . . , xm) := C̃t(F̃1t(x1), . . . , F̃mt(xm))

Then the sequence H̃t converges to the joint distribution H0 of original data in dis-

tribution, if and only if {F̃1t}, . . . , {F̃mt} converge to {F10}, . . . , {Fm0} respectively

in distribution, and if the sequence of copulas {C̃t} converges to {C̃0} pointwise in

[0, 1]2.

Proof. Since the copula remains invariant under any series of strictly increasing

transformation of the random vector X, which can be considered as empirical CDF,
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then the Gaussian copula of Gaussian distribution Gm(µ,
∑

) is identical to that of

Gm(0, P ) where P is the correlation matrix implied by the dispersion matrix
∑

and

this Gaussian copula is unique. Due to Lemma 3.2.2, we can deduce that

limn→∞ ρ̃τ = limn→∞ ρτ = E(sign(xj − x′j)(xk − x′k))

in probability, where (xj, xk) and (x′j, x
′
k) are two distinct independent pair with the

same distribution. Then, as the noisy sample correlation matrix converges in proba-

bility to the common true correlation matrix of the original data when n tends to be

infinity, the noisy gaussian distribution G̃mt(0, Pt) which is determined only by noisy

correlation matrix converges in probability to Gm(0, P ) due to the continuous map-

ping theorem. Therefore, from Theorem 3.1.3 we can imply that the noisy gaussian

copula CGa
t,P of Gmt(0, Pt) converges pointwise to the gaussian copula CGa

P of Gd(0, P )

as the data cardinality n tends to be infinity.

Then for the noisy joint distribution with noisy Gaussian copula Ct,P , since the

noisy margins converge to the original margins almost surely as n tends to be infinity

implied by Lemma 3.2.1, then we can deduce that they converge to the original mar-

gins in distribution. Therefore, the noisy joint distribution converges in distribution

to the joint distribution of the original data according to Theorem 3.1.3. �

3.2.4. DPCopula Hybrid. Although DPCopula can model continuous attributes

and discrete attributes with a large domain (i.e. attributes with the number of values

no less than 10), it cannot handle attributes with small domains (i.e. attributes with

the number of values less than 10) in the dataset. However, we can first partition the

original dataset and compute DP counts for those partitions based on small-domain

attributes using other methods, such as Dwork’s method, DPCube, PSD and EFPA,

then use DPCopula to handle remaining large domain attributes in each partition.

We demonstrate the hybrid solution in Algorithm 6. The privacy guarantee is proved

in theorem 3.2.4.

Theorem 3.2.4. Algorithm 6 guarantees ε-differential privacy.
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Algorithm 6 DPCopula hybrid

Input: Original data vector (X1, . . . ,Xm) containing m1 small-domain attributes
and m2 continuous or large-domain discrete attributes, and privacy budget ε

Output: Differentially private synthetic data D̃
1. Partition the original dataset based on small-domain attributes A1, . . ., Am1

with domain sizes |A1|, . . ., |Am1|, and the overall number of partitions will be∏
|Ai| = |A1| × . . .× |Am1|;

2. Compute the noisy number of tuples ñi of the ith partition, i ∈ {1, . . . ,
∏
|Ai|}

by ni +X, where X is drawn from Lap( 1
ε1

) and ni is the original number of tuples,
with ε1;
3. For each partition, generate DP synthetic data using DPCopula and noisy
number of tuples with ε− ε1, then combine all DP synthetic data in all partitions
to compose the final DP synthetic data D̃.

Proof. In step 1 and 2, each partition guarantees ε1-differential privacy. Since

the partitions are disjoint, they preserve ε1-differential privacy overall due to theorem

3.1.2. Likewise, step 3 guarantees (ε−ε1)-differential privacy. Algorithm 6 guarantees

ε-differential privacy due to theorem 3.1.1. �

3.3. Experiment

In this section, we experimentally evaluate DPCopula and compare it with four

state-of-the-art methods. DPCopula methods are implemented in MATLAB R2010b

and python, and all experiments were performed on a PC with 2.8GHz CPU and 8G

RAM.

3.3.1. Experiment Setup. Datasets. We use two real datasets in our experi-

ments: Brazil Census dataset (https://international.ipums.org) and US census

dataset (http://www.ipums.org). The Brazil census dataset has 188,846 records

after filtering out records with missing values and eight attributes are used for the

experiments: age, gender, disability, nativity, working hours per week, education,

number of years residing in the current location, and annual income. We generalized

the domain of income to 586. The US Census dataset has a randomly selected 100,000

records from the original 10 million records and all four attributes are used: age, oc-

cupation, income and gender. Table 3.3 shows the domain sizes of the datasets. For

https://international.ipums.org
http://www.ipums.org
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nominal attributes, we convert them to numeric attributes by imposing a total order

on the domain of the attribute as in [41].

Figure 3.3. Domain sizes of the real datasets

In order to study the impact of distribution, dimensionality and scalability, we

also generated synthetic datasets with 50000 records. The default attribute domain

size is 1000 and each margin follows the Gaussian distribution by default.

Comparison. We evaluate the utility of the synthetic data generated by DPCopula

for answering random range-count queries and compare it with the state-of-the-art

differentially private histogram methods. We included four methods for comparison

(based on our discussions in Section 2): Privelet+ [41], PSD (Private Spatial Decom-

position) KD-hybrid methods [44], Filter Priority (FP) with consistency checks [45],

and P-HP [47]. Among these methods, we observed that PSD and P-HP consistently

outperform others in most settings. Hence, after presenting a complete comparison

on US dataset, we only show PSD and P-HP for better readability of the graphs.

For datasets with number of dimensions higher than 2 and domain size of each

dimension being 1000 (ie. the number of histogram bin is larger than 106), we only

show PSD because PSD uses the original dataset as input and hence have a space

complexity of O(mn)) which is not affected by the domain size. In contrast, P-HP uses

the histogram generated from the original data as input and hence have a time and

space complexity of O((
∏m

i=1 |Ai|)2) in the worst case and O(
∏m

i=1 |Ai|) respectively.

Thus, the computation complexity can be extremely high because the number of bins

in the histogram (i.e.
∏m

i=1 |Ai|) is 1012, 1018 and 1024 respectively in our 4D, 6D and
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8D datasets. In fact, for all methods with histograms as inputs, we cannot run their

implementations directly due to the extremely high space complexity and memory

constraints.

For each method, implementations provided by their respective authors are used

and all parameters in the algorithms are set to the optimal values in each experiment.

For comparison, we only show the results of DPCopula-Kendall, as the results of

DPCopula-MLE are similar to that of DPCopula-Kendall.

Metrics. We generated random range-count queries with random query predicates

covering all attributes defined in the following:

Select COUNT(*) from D

Where A1 ∈ I1 and A2 ∈ I2 and. . .and Am ∈ Im

For each attribute Ai, Ii is a random interval generated from the domain of Ai.

The query accuracy is primarily measured by the relative error defined as follows:

For a query q, Aact(q) is the true answer to q on the original data. Anoisy(q) denotes

the answer to q when using DP synthetic data generated from DPCopula or the DP

histogram constructed by other methods. Then the relative error is defined as:

RE(q) =
|Anoisy(q)− Aact(q)|
max{Aact(q), s}

where s is a sanity bound to mitigate the effects of queries with extremely small query

answers (a commonly used evaluation method from existing literatures, e.g. [41]).

For most datasets, s is set to 1 by default to avoid division by 0 when Aact(q) = 0.

For the US dataset, s is set to 0.05% of the data cardinality, nearly consistent with

[41]. For the brazil dataset, s is set to 10.

While we primarily use relative error, we also use absolute error when it is more

appropriate and clear to show the results for extremely sparse data, in which case,

the true answers are extremely small. The absolute error is defined as ABS(q) =

|Anoisy(q)− Aact(q)|.
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Table 3.2. Experiment Parameters

Parameter Description Default value

n number of tuples in D 50000

ε Privacy budget 1.0

m number of dimensions 8

s Sanity bound 1

k ratio of ε1 and ε2 8

Ai domain size of ith dimension 1000

In each experiment run, 1000 random queries are generated and the average rel-

ative error is computed. The final reported error is averaged over 5 runs. Table 3.2

summarizes the parameters in the experiments.

3.3.2. DPCopula Methods. We first evaluate the impact of the parameter k in

the DPCopula method and compare the two DPCopula methods: DPCopula-Kendall

and DPCopula-MLE.
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Figure 3.5. DPCopula-Kendall vs. DPCopula-MLE
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Impact of Parameter k on DPCopula. Since k is the only algorithmic parameter

in the DPCopula method, we first evaluate its impact on the effectiveness of the

method. Figure 3.4 shows the relative error of DPCopula-Kendall method for random

count queries with respect to varying k for 2D synthetic data. DPCopula-MLE has

similar trends and we omit it for the clarity of the graph. We observe that when k is

less than 1, the relative error clearly degrades as k increases. When k is greater than

1, the relative error does not change significantly. This shows that having a higher

budget allocated for computing differentially private margins than the coefficients

ensures better query accuracy. In addition, the method is quite robust and insensitive

to the value of k as long as it is greater than 1, which alleviates the burden of

parameter selection on the users. For the remaining experiments, we set the value of

k to 8.

DPCopula-MLE vs. DPCopula-Kendall. Figure 3.5 investigates the trade-

off between two DPCopula methods. Figure 3.5(a) compares the relative error for

random queries of the two methods on synthetic data with varying number of dimen-

sions and n = 106 considering the sensitivity of DPCopula-MLE. We observe that

DPCopula-Kendall performs better than DPCopula-MLE. This is because the sensi-

tivity of the general coefficient in DPCopula-MLE is higher than DPCopula-Kendall.

As a consequence, the correlation matrix estimated by DPCopula-Kendall is more

accurate than DPCopula-MLE. Figure 3.5(b) shows the runtime of the two meth-

ods. We can see that with higher dimensions, the time to compute the coefficients

becomes longer because the time complexity of DPCopula is quadratic with the num-

ber of dimensions. We use the sampling method in all experiments to reduce the

computation time. DPCopula-Kendall has a slightly higher computation overhead

than DPCopula-MLE while the total computation time for both methods are quite

efficient. We show that the computation time of DPCopula is acceptable for various

data cardinalities and dimensions in later experiments. In the remaining experiments,

we only use DPCopula-Kendall to compare with other methods.
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Figure 3.6. Relative error vs. differential privacy budget

3.3.3. Comparison on real datasets. Query accuracy vs. differential

privacy budget. Figure 3.6 compares DPCopula with other methods with respect

to varying differential privacy budget. Figure 3.6(a)-(b) shows the relative error for

random range count queries on the US census dataset and Brazil dataset, respectively.

Note that we use DPCopula-hybrid on top of DPCopula-Kendall for both datasets

since they contain binary attributes. From both figures, we observe that DPCopula

outperforms all the other methods and their performance gap expands as the privacy

budget decreases. The noise incurred by partitioning small domain attributes imposes

little impact on the performance of DPCopula. In addition, the accuracy of DPCopula

is robust against various epsilon values. This overall good performance is due to the

fact that DPCopula method only computes DP margins and DP correlation matrix

whose influence on the accuracy is much smaller than the margins. Meanwhile, the
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other methods require noise being added to histogram cells or partitions and introduce

either large perturbation errors or estimation errors.

3.3.4. Comparison on synthetic datasets. We use synthetic datasets to eval-

uate the impact of query range size, distributions of each dimension, and dimension-

ality on the error, since we can vary these parameters easily in synthetic data.
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Figure 3.7. Query accuracy vs. query range size

Query accuracy vs. query range size. We study the impact of query range size

on the query accuracy for different methods. For each query range size, we randomly

generated queries such that the product of the query ranges on each dimension is the

same. We use 2D synthetic data in order to include P-HP. We set the privacy budget

ε to be 0.1 to better present the performance difference of three methods. The trend

is similar for PSD and DPCopula in higher dimension data. Figure 3.7 presents the

impact of various query range sizes on the query accuracy in terms of relative error

and absolute error. DPCopula outperforms PSD and P-HP. For all methods, the

relative error gradually degrades as the query range size increases while the absolute

error has the contrary trend. The reason is that when the query size is small, the true

answer Aact(q) is also small which may incur a small absolute error but large relative

error. For the cell-based query (i.e. query range size is 1), the average relative error

is small because the relative errors of most cell-based queries are zeros, which greatly

reduces the average value.
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Figure 3.8. Relative error vs. distribution

Relative error vs. distribution. Figure 3.8 presents the relative error for 8D data

with Gaussian dependence and all margins respectively generated from the Gauss-

ian distribution, uniform distribution and zipf distribution, under various ε values.

Akin to the results in Figure 3.6, DPCopula performs best in all distributions, and

significantly outperforms PSD especially when the margin is skewed. Meanwhile,

this verifies that DPCopula using Gaussian copula performs well not only for data

with Gaussian distributions but also for data with different marginal distributions

as long as they follow the Gaussian dependence. An interesting phenomenon is that

DPCopula performs better on the uniform and zipf data than Gaussian distribution

data. This is because the method used for generating marginal DP histograms in

DPCopula, EFPA, performs better on uniform-distributed data than skewed data.

Query accuracy vs. dimensionality. We study the effect of the dataset dimen-

sionality as shown in Figure 3.9. All marginal distributions of synthetic datasets in
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Figure 3.9. Query accuracy vs. dimensionality

various dimensions are Gaussian distribution with domain size of 1000. We set the

dimensionality ranging from 2D to 8D which corresponds to domain space of 106 to

1024. So the dataset is highly sparse with only 50000 records. For all dimensions from

2D to 8D, DPCopula again outperforms PSD. The 2D data has the lowest relative

error and absolute error for both methods. The query accuracy of all methods from

4D to 8D gradually drops with the performance gap gradually expanding as the num-

ber of dimensions increases. For DPCopula, this is due to the fact that for a fixed

overall privacy budget ε, higher dimensionality means less privacy budget is allocated

to each margin and correlation coefficient incurring larger amount of noise. For PSD,

consistent with the analysis in [44], higher dimensionality will increase the size of the

domain space
∏m

i=1 |Ai|, resulting in larger relative error. We can also observe that

the increasing relative errors for DPCopula are incurred by the small true answers

with higher dimensions.

Scalability. Figure 3.10(a) illustrates the computation time with various data car-

dinality n using the 4D US census dataset. Observe that all three techniques run

linear time with respect to n. Computing the correlation matrix is not a bottleneck

for DPCopula as we use the sampling technique. PSD incurs a higher computation

overhead than DPCopula and Privelet+ since its time complexity O(mn̂logn̂) is lin-

earithmic with n̂, where n̂ = 0.01×n. Figure 3.10(b) illustrates the computation time
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Figure 3.10. Time efficiency

with various dimensions and data cardinality fixed to 50000. DPCopula has a higher

computation overhead than PSD because the time complexity is quadratic with the

number of dimensions but the time for 8D is still quite acceptable. In contrast, all

the other methods including EPFA that use histograms as input are not shown here

due to their high time and space complexity due to the large domain sizes.



CHAPTER 4

Privacy-preserving dynamic histogram release with

distance-based sampling

In this chapter, we address the problem of releasing series of dynamic datasets

in real time with differential privacy, using a novel adaptive distance-based sampling

approach. Our first method, DSFT, uses a fixed distance threshold and releases a

differentially private histogram only when the current snapshot is sufficiently differ-

ent from the previous one, i.e., with a distance greater than a predefined threshold.

Our second method, DSAT, further improves DSFT and uses a dynamic threshold

adaptively adjusted by a feedback control mechanism to capture the data dynamics.

Extensive experiments on real and synthetic datasets demonstrate that our approach

achieves better utility than baseline methods and existing state-of-the-art methods.

4.1. Preliminaries

In this section, we formally define the problem of releasing series of real-time

dynamic histograms or datasets and introduce definitions on user-level differential

privacy and w-event privacy. We summarize all frequently used notations in Table

4.1.

4.1.1. Problem definition. Let N denote the total number of time points. Let

D denote a series of original dynamic datasets and Di be a dataset snapshot at time

stamp ti. We assume all snapshots have the same domain universe U , the product of

domains of all attributes. For every ti, we are to release a private dataset D̃i. Over

the N time stamps, the series of privately released dynamic datasets D̃ = {D̃i : 1 ≤

i ≤ N} should guarantee user-level ε-differential privacy.

45
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Table 4.1. Frequently used notations

Notation Discription

D A series of original dynamic datasets

D̃ A set of released DP datasets for D

Di or D̃i Snapshot of D or D̃ at time point ti
H A series of original dynamic histograms

H̃ A set of released DP histograms for H

Hi or H̃i Snapshot of H or H̃ at time point ti
N Number of time points

C Cutoff point (i.e. the upper bound of the
number of released DP datasets)

U Domain universe or number of histogram bins

ε Overall privacy budget

ε1 Privacy budget for the decision step

ε2 Privacy budget for the sampling step

d(Di, D̃j) The distance between Di and D̃j
∆ The sensitivity of L1 distance

In this chapter, we call H as a series of original dynamic histograms (corresponding

to D) with Hi as a snapshot at ti, and H̃ as a series of released private dynamic

histograms with H̃i as a private snapshot at ti. Since a dataset can be transformed

to a histogram, and a synthetic dataset can be constructed from a histogram, D and

H are interchangeable in this paper.

4.1.2. Differential Privacy. Intuitively, a randomized mechanism A is differ-

entially private if its outcome is not significantly affected by the removal or addi-

tion of any record. ε-differential privacy is formally defined as Pr[A(D) ∈ O] ≤

eεPr[A(D′) ∈ O], where O is any arbitrary set of possible outputs of A, D and D′

are two neighbouring datasets differing in at most one record (i.e. D can be obtained

from D′ by adding or removing at most one record). In our problem definition, an

adversary should learn approximately the same information about any individual user

given D̃, irrespective of its presence or absence in D, and one individual can be present

in up to N snapshots in D. Two series of dynamic datasets D and D̂ are user-level

neighbors if one can be obtained by adding or removing one individual (including all

its occurrences in the snapshots) from the other. Then user-level ε-differential privacy

is defined as below.
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Definition 4.1.1 (user-level ε-differential privacy). Let A be a randomized mecha-

nism over two user-level neighbors D, and D̂ which differ in one user’s presence in

the entire series, and let O be any arbitrary set of possible outputs of A. Algorithm

A satisfies ε-differential privacy iff the following holds

Pr[A(D) ∈ O] ≤ eεPr[A(D̂) ∈ O]

Laplace Mechanism. Dwork et al. [3] show that ε-differential privacy can be

achieved by adding i.i.d. Laplace noise to query result q(D), where D is a dataset.

Formally, q̃(D) = q(D) + (ν1, . . . , νM)′, where νi ∼ Lap(0, GS(q)
ε

), for i = 1, . . . ,M ,

and M is the dimension of q(D). νi follows a Laplace distribution with mean zero

and scale GS(q)
ε

, where GS(q) denotes the global sensitivity [3] of the query q. The

global sensitivity is the maximum L1 distance between the results of q from any

two neighbouring datasets D and D′, formally defined as GS(q) = maxD,D′ ||q(D)−

q(D′)||1. In our problem setting, the global sensitivity of any two user-level neighbors

D and D̂ is formally defined as

GS(q) = maxD,D̂||q(D)− q(D̂)||N .

For a sequence of DP mechanisms, the sequential composition theorem [6] guar-

antees its overall privacy as follows:

Theorem 4.1.1 (Sequential Composition [6]). For a sequence of n mechanisms

M1, . . . ,Mn and each Mi provides εi-differential privacy, the sequence of Mi will pro-

vide (
∑n

i=1 εi) differential privacy.

Hence, one way to achieve epsilon-differential privacy for the entire series of D

is to apply Laplace mechanism for each Di with noise Lap(N
ε

), which leads to O(N)

noise.

(α, σ)-usefulness. We use a formal utility metric (α, σ)-usefulness [32] to analyze

the utility of each snapshot D̃i in D̃.
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Definition 4.1.2 ((α, σ)-usefulness). A randomized mechanism A is (α, σ)-useful for

queries in class C if with probability 1 − σ, for every query Q ∈ C and a dataset D,

A(D) = D̃, |Q(D)−Q(D̃)| ≤ α.

4.1.3. W-event privacy. W-event privacy [39] is proposed as an extension of

differential privacy to address release of infinite streams. It guarantees user-level

ε-differential privacy for every sub sequence of length w (or over w timestamps)

anywhere (i.e. it can start from any timestamp) in the original series of dynamic

datasets. w-neighboring series of dynamic datasets, Dw, and D̂w, can be defined

as the user-level neighbors under any sub sequence of length w anywhere. w-event

privacy can be formally given as below:

Definition 4.1.3 (w-event ε-differential privacy). Let A be a randomized mechanism

over two w-neighboring series of dynamic datasets Dw, and D̂w, and let O be any

arbitrary set of possible outputs of A. Algorithm A satisfies w-event ε-differential

privacy (or, w-event privacy) iff the following holds

Pr[A(Dw) ∈ O] ≤ eεPr[A(D̃w) ∈ O]

4.1.4. Baseline and existing state-of-the-art solutions. Given our problem

of releasing dynamic datasets under user-level privacy, we review some baseline and

existing state-of-the-art methods which will motivate our approach. We will also

compare our approach with these methods in the experiment section.

Baseline method. A baseline method is to apply existing “one time” DP his-

togram release methods to the dataset at every time point. If each released DP

histogram preserves ε
N

-differential privacy, the series of N dynamic datasets guaran-

tee ε-differential privacy by sequential composition theorem. This results in an overall

noise of O(N) which can be extremely large for large N . In an unbounded setting

with N being infinite, this method will not be useful.



4.2. ADAPTIVE SAMPLING APPROACH 49

Fixed-sampling method. Another potential solution is to release N
I

DP his-

tograms periodically given a sampling interval I. Privacy budget ε/N
I

is allocated to

each dataset at the sampling time point, and the entire private dataset series preserve

ε-differential privacy. Unfortunately, the pre-defined sampling interval may not accu-

rately capture the update pattern in the original series of dynamic datasets, leading

to either high perturbation errors if sampling too frequently or large update errors if

sampling not frequently enough or at wrong time points.

Approaches in w-event privacy. [39] proposes a sampling approach which

computes the noisy distance between the dataset at the current time point and the

original dataset at the latest sampling point, and then compares the noisy distance

with the perturbation noise to be added if current dataset is to be released. If the

distance is greater than the perturbation noise, a noisy dataset is released at current

time stamp. The perturbation noise is determined by their privacy budget allocation

schemes, Budget Distribution (BD) and Budget Absorption (BA), that allocate the

budget to different timestamps in the w-event window. BD allocates the privacy

budget in an exponentially decreasing fashion, in which earlier timestamps obtain

exponentially more budget than later ones. BA starts by uniformly distributing the

budget to all w timestamps, and accumulates the budget of non-sampling timestamps,

which can be allocated later to the sampling timestamps. A main drawback of their

approach is that the privacy budget may be exhausted prematurely (sampling too

frequently in the beginning) or not fully utilized during all w timestamps (sampling

not frequent enough), leading to suboptimal utility of the released data.

4.2. Adaptive Sampling Approach

We propose an adaptive distance-based sampling approach to address the dynam-

ics of evolving datasets under user-level differential privacy. Instead of generating a

differentially private histogram at each time stamp, we only compute new histograms

when the update is significant, i.e., the distance between the current dataset and
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the latest released dataset is higher than a threshold. The key observation is that

datasets may be subject to small updates at times. Distance-based sampling allows

us to release a new histogram only when the datasets have significant updates, hence

saving the privacy budget and reducing the overall error of released histograms. In

contrast to [39], we use an explicit threshold for distance comparison to determine

the sampling points, which provides two advantages: 1) we can predefine a threshold

based on the expected update rate of the data if there is prior domain knowledge, 2)

we can dynamically adjust the threshold in a principled way based on data dynamics.

In this section, we first present the basic method, DSFT, which uses a predefined

fixed threshold. This will allow us to analyze its privacy property which also applies

to our adaptive method and facilitate our description of the adaptive method. We

then introduce our adaptive method, DSAT, which dynamically adjusts the threshold

in a principled way to adapt to the data dynamics.

4.2.1. DSFT. DSFT (Distance-based Sampling with Fixed Threshold) uses a

fixed threshold and is divided into two steps at each time point ti: decision and

sampling. The decision step computes a noisy distance between the original dataset

Hi at current time stamp and the latest released histogram H̃j and determines if

it is larger than a noisy threshold T̃ . If yes, the sampling step generates a new

DP histogram H̃i, otherwise it outputs the previous H̃j. The overall privacy budget

is divided between the decision (ε1) and sampling (ε2) steps which are designed to

guarantee differential privacy as we will analyze later.

Algorithm 1 presents DSFT. Line 1-4 initializes the privacy budget for the two

steps, computes the noisy threshold, and releases a DP histogram at the first time

stamp. Line 5-11 carry out the decision (line 7-8) and sampling (line 8-9) steps for

each time point ti if the number of released histograms is below the cutoff point C,

and releases the last histogram with all remaining budget. For the distance d(Hi, H̃j),

we use the L1 distance in our implementation and other distance metrics (e.g. KL

divergence) can be also used.
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Algorithm 7 Distance-based Sampling with Fixed Threshold Algorithm (DSFT)

Input: D = {Di|1 ≤ i ≤ N, i ∈ Z}, T , C and ε.

Output: D̃ = {D̃i|1 ≤ i ≤ N, i ∈ Z}
1: Set ε1 = kε, ε2 = ε− ε1, k is computed due to theorem 4.3.4;
2: Set T̃ = T + Lap(2∆

ε1
), ∆ is computed due to lemma 4.2.1;

3: For D1, release a DP dataset D̃1 with ε2
C

privacy budget;
4: Set count = 1, and j = 1;
5: for each time point ti with i ≥ 2 do
6: if count ≥ C, then set D̃i = D̃j continue;

7: Set d̃(Di, D̃j) = d(Di, D̃j) + Lap(2C∆
ε1

)

8: if d̃(Di, D̃j) ≥ T̃ , then release D̃i at ti with ε2
C

budget, and set count =
count+ 1, and j = i;

9: else use D̃j as the release of Di;

10: if i == N and count < C, then release D̃N with all remaining privacy budget;
11: end for

4.2.2. DSAT. In DSFT, a prior knowledge on D is needed for the user to de-

termine an appropriate value T . Suppose there exists an optimal value of T which

can enable the algorithm to exactly generate C DP histograms. If the threshold T is

higher than the optimal value, there will be remaining privacy budgets that are not

utilized. On the contrary, if T is smaller than the optimal value, the privacy budget

will be exhausted prematurely, resulting in update errors for remaining time points.

In this section, we present DSAT, Distance-based Sampling with Adaptive Thresh-

old, that releases a series of DP dynamic histograms while adaptively adjusting the

threshold Ti for each time point, based on data dynamics. With DSAT, we do not

have to find an optimal value of T, which may be difficult in practice.
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Figure 4.1. DSAT Framework

Figure 4.1 illustrates the framework of DSAT. Intuitively, we wish to have C

sampling points over N time points, hence our target sampling rate is C
N

. Suppose
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we have released Ci histograms at ti. If Ci
i
< C

N
, we need to decrease the threshold to

allow more sampling time points, and vice versa. For each ti, we adjust the threshold

based on the feedback error between the update ratio Ci
i

at ti and the target ratio C
N

,

which is formally defined below.

Definition 4.2.1 (Feedback Error). We define the feedback error Ei at ti as follows:

(4.2.2) Ei = |Ci
i
− C

N
|

where Ci means the number of sampling time points till ti, C is the cutoff point, and

N is the total number of time points.

DSAT adopts a PID (Proportional-Integral-Derivative) [31], a generic control loop

feedback mechanism, to dynamically adjust the threshold T over time. Under our

problem setting, we redefine the three correcting terms, Proportional, Integral, and

Derivative, with the feedback error defined in Equation (4.2.2). These three terms are

summed to compute the output ui of PID controller at ti. The final PID algorithm

is defined as:

(4.2.3) ui = θP × ei︸ ︷︷ ︸
proportional term

+ θI ×
ti∑

τ=ti−w+1

eτ︸ ︷︷ ︸
integral term

+ θD ×
ei − ej
ti − tj︸ ︷︷ ︸

derivative term

where θP , θI , θD are respectively the proportional gain, the integral gain, and the

derivative gain, eτ is the error at tτ , ti is the current time point, tj is the latest

sampling time point.

Proportional term: The first proportional term produces an output value that

is proportional to the current error ei. The proportional term can be amplified by

the proportional gain θP . In our context, the error ei at the current time point ti is

calculated by

(4.2.4) ei =
|Ei − δ|

δ
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where Ei is the feedback error defined in equation (4.2.2), parameter δ is the set

point for Ei. We assume δ is 5% in our empirical studies, i.e. the maximum tolerance

for the feedback error is 5%. It can be determined by users according to specific

applications. The proportional term is defined as θP × ei.

Integral term: The integral term is to eliminate the cumulated offset through

multiplying the sum of the instantaneous error over time by the integral gain. We

define the integral term as θI ×
∑ti

τ=ti−w+1 eτ , where θI is the integral gain and w

represents the integral time window denoting how many recent errors are taken.

Derivative term: The derivative term determines the slope of error over time

and changes the PID output in proportion to this rate of change via the derivative

gain θD. It is defined as θD × ei−ej
ti−tj . Given the PID error ui, a new threshold Ti

produced at the current time point ti can be determined as follows:

(4.2.5) Ti = Ti−1 + sign(
Ci
i
− C

N
)× θ × ui

Ti−1 is the threshold produced at the previous time point ti−1. Parameter θ determines

the magnitude of impact of PID error on the Ti. sign(.) is a sign function, indicating

that if the update ratio Ci
i

is larger than the target ratio C
N

, we need to increase Tj

to generate less DP histograms and reduce the update ratio, and vice versa. Our

DSAT uses only the proportional term in equation 4.2.3 in our experiment setting,

for simplicity. That means, we set θP = 1, θI = 0, θD = 0, and ui is the same with ei

as defined in equation (4.2.4).

Algorithm 8 presents DSAT. We use Ti to denote the produced threshold at ti and

other notations are the same as Algorithm 7. In Line 1, T1 is set to be T + Lap( ∆
ε̂1

).

Different from Algorithm 7, ε̂1 is a tiny privacy budget because the initial value T1

is not significant in DSAT. We only need to bound it between 0 and 2, which is the

domain of the L1 distance. Line 2 uses D̃1 for the first M time points where M

is a small integer number to allow a burn-in period and enough discrepancy to be

accumulated, avoiding frequent updating of Ti during the beginning time periods. M
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Algorithm 8 Distance-based Sampling with Adaptive Threshold Algorithm (DSAT)

Input: D = {Di|1 ≤ i ≤ N, i ∈ Z}, T , C and ε.

Output: D̃ = {D̃i|1 ≤ i ≤ N, i ∈ Z}
1: Run step 1,2,3,4 in Algorithm 7;
2: Skip the first M timestamps;
3: for each time point ti with i > M do
4: if count ≥ C, then set D̃i = D̃j

5: Set d̃(Di, D̃j) = d(Di, D̃j) + Lap(2C∆
ε1

)

6: Set Ei = | count
i
− C

N
|, ei = |Ei−δ|

δ
, and ui = θei;

7: if count
t
− C

N
≤ 0, then set T̃i = max{0, T̃i−1 − ui}

8: else set T̃i = min{2, T̃i−1 + ui};
9: if d̃(Di, D̃j) ≥ T̃i then

10: release a DP dataset D̃i at ti with ε2
C

budget, and set count = count + 1,
j = i;

11: else
12: release D̃j;
13: end if
14: if i == N and count < C then
15: release D̃N with all remaining privacy budget;
16: end if
17: end for

can be user-specified and is not a sensitive parameter besides that it is much smaller

than N . The algorithm from Line 3 to Line 12 is similar to Algorithm 7 except Line 6

to Line 8 which use the PID control to adaptively adjust and generate a new threshold

Ti.

4.2.3. Privacy Analysis. Sensitivity analysis of L1 Distance. In the sen-

sitivity analysis, we use np (nq) to denote the sum of all histogram bin counts of

the histograms Hp (Hq). U is the number of histogram bins. Since the L1 distance

of Algorithm 1 and Algorithm 2 is computed using one private histogram and one

original histogram, we only need to protect privacy for the original histogram.

Lemma 4.2.1. The sensitivity of L1 distance d(H̃p, Hq) is ∆ = 2
nq−1

, where H̃p

(Hq) is a DP histogram with the sum of all histogram bin counts as np (nq). (Proof

omitted due to space limitation)
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Privacy guarantee. Inspired by Hardt et al. [33], we formally provide the proof of

privacy guarantee for the decision stage below. The intuition behind theorem 4.2.1 is

that, the noises on both sides of d(Di, D̃j) + Lap(2C∆
ε1

) ≥ T + Lap(2∆
ε1

) are necessary

for the decision stage to be differentially private, even though T is publicly known.

Theorem 4.2.1. In algorithm 7, the decision stage guarantees ε1-differential pri-

vacy.

Proof. D is a series of dynamic datasets with D = (D1, . . . , DN) over N time

points. D̂ is the user-level neighbor of D, which is D̂ = (D̂1, . . . , D̂N). We say D̂

is the user-level neighbour of D if we can obtain D̂ by removing or adding only one

individual user from D by the definition in section 3.2.

Let di denote d(Di, D̃j) for every i, j ∈ [N ]([N ] = {1, . . . , N}) beginning with

i = 2, which is the true distance between Di ad D̃j, where D̃j is the private dataset

released in the latest sampling time point tj. Let d̃i denote d̃(Di, D̃j), which is the

DP L1 distance.

For all pairs of user-level neighbours D and D̂, and the corresponding L1 distance

vectors d = (d1, . . . , dN), we need to prove:

log(
PrD[d = d̃]

PrD̃[d = d̃]
) =

N∑
i=1

log(
PrD[di = d̃i|d̃i−1]

PrD̃[di = d̃i|d̃i−1]
) ≤ ε1.

Because di is affected only by di−1 at the previous time point, we have PrD[di =

d̃i|d̃i−1] = PrD̃[di = d̃i|d̃i−1, . . . , d̃1]. Let S = {i : d̃i ≥ T̃} be the set of indices of d̃i

at all sampling time points, and SC = {i : d̃i ≤ T̃} be the set of indices of d̃i at all

non-sampling time points, we have log(PrD[d=d̃]

PrD̃[d=d̃]
) =∑

i∈S log(PrD[di=d̃i|d̃i−1]

PrD̃[di=d̃i|d̃i−1]
) +

∑
i∈SC log(PrD[di=∅|d̃i−1]

PrD̃[di=∅|d̃i−1]
).

Now we need to bound the two sums respectively. For the first sum, we can see

that (1) independent Laplace noise with Lap(2C∆
ε1

) is added to each distance with

ε1
2C

differential privacy, (2) the computation of each L1 distance needs to access the

original histogram once, and (3) |S| ≤ C due to the algorithm, so we can obtain the
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following equation due to sequential composition theorem:

∑
i∈S

log(
PrD[di = d̃i|d̃i−1]

PrD̂[di = d̃i|d̃i−1]
) =

∑
i∈S

log(
PrD[νi = d̃i − di]
PrD̂[νi = d̃i − di]

) ≤ ε1
2

For the second sum, let AZ(D) be the set of all values of the noise variables

(ν1, . . . , νN−1) that cause d̃i ≤ T̃ for all i ∈ SC , when the mechanism runs on D,

conditioning on T̃ = Z and di = d̃i for all i ∈ S. Since from D to D̂, all distances

may be increased by at most ∆ (i.e. ∆ = 2
n−1

for the L1 distance due to lemma

4.2.1), which will cause each distance to remain less than T̃ if we increase T̃ by ∆.

But the distances larger than T̃ may become less than T̃+∆, so AT̃+∆(D̂) ⊆ AT̃ (D) ⊆

AT̃+∆(D̂). Thus, we have: PrD{T̃=T+ν1}
PrD̂{T̃=T+∆+ν2}

≤ exp( ε1
2

). Therefore, let Z1 = T + ν1 and

Z2 = T + ∆ + ν2, we have:

∏
i∈NC

Pr
D

(di = ∅|d̃i−1)

=

∫ ∞
−∞

Pr(d̂ = Z1) Pr((ν1, . . . , νk) ∈ AZ(D))dZ

≤ exp(
ε1
2

)

∫ ∞
−∞

Pr(T̂ = Z1) Pr((ν1, . . . , νk) ∈ AZ1(D))dZ

≤ exp(
ε1
2

)

∫ ∞
−∞

Pr(T̂ = Z2) Pr((ν1, . . . , νk) ∈ AZ2(D′))dZ

= exp(
ε1
2

)

∫ ∞
−∞

Pr(T̂ = Z1)Pr((ν1, . . . , νk) ∈ AZ1(D′))dZ

= exp(
ε1
2

)
∏
i∈NC

Pr
D̂

(di = ∅|d̃i−1)

Therefore, we have
∏
i∈NC PrD(di=∅|d̃i−1)∏
i∈NC PrD̂(di=∅|d̃i−1)

≤ ε1
2

�

Theorem 4.2.2. Algorithm 7 and 8 preserve ε-differential privacy.

Proof. For Algorithm 7, the decision stage preserves ε1-differential privacy due

to theorem 4.2.1. Since releasing at most C DP histograms guarantees ε2-differential

privacy, algorithm 7 preserves ε1 + ε2 = ε-differential privacy due to theorem 4.1.1.

For Algorithm 8, since adaptively adjusting threshold (Line 6 to Line 8) uses no raw
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data, it does not influence differential privacy guarantee, thus Algorithm 8 guarantees

ε-differential privacy. �

4.3. Utility Analysis

We analyze the utility of DSFT and DSAT using (α, σ)-usefulness in definition

4.1.2 and show the conclusions in theorem 4.3.1 and 4.3.2. Since we assume LPA

as the DP histogram release method, the conclusions can be heuristically used as

the upper bound when new methods better than LPA are employed. Here d(Hi, Hj)

denotes L1 distance between Hi and Hj.

Error quantification of DSFT. The utility of released datasets at sampling time

points are analyzed based on lemma 4.3.1. The error of datasets at non-sampling

time points are obtained via the error bound of the decision stage in lemma 4.3.2.

Lemma 4.3.1. (Sum of Independent Laplace variables [34]) Suppose thatX1, . . . , Xn

are independent Laplace random variables, with each Xi following a Lap(bi) distri-

bution. Denote Z =
∑n

i=1 Xi and bM = maxibi. Then for all γ ≥
√∑n

i=1 b
2
i and

0 < λ < 2
√

2γ2

bM
, we have Pr[Z > λ] ≤ exp(− λ2

8γ2
).

Lemma 4.3.2. In Algorithm 7, for any 0 < σ < 1, we can obtain

(4.3.1) Pr{d(Hi, H̃j) ≤ T +
4
√

2∆(1− logσ)

ε1
} ≥ 1− σ

This means, with probability greater than 1− σ, we can set ti as non-sampling time

points. (Proof omitted due to space limitation.)

Theorem 4.3.1. For a range count query covering m histogram bins on H̃k, and

0 < σ < 1, if k is a sampling time point, we have that Pr{|Ak−Ãk| ≤ −
2
√

2Clog(σ
2

)

nε2
} ≥

1 − σ, and if k is a non-sampling time point, we have that Pr{|Ak − Ãk| ≤ T +

4
√

2∆[1−log(1−σ)]
ε1

− 2
√

2Clog(σ
2

)

ε2
} ≥ (1 − σ)2, where Ak and Ãk are the query answers

on the original histogram Hk and the DP histogram H̃k. Therefore, each released

histogram H̃k of our algorithms maintains (α, σ)-usefulness for range count queries.
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Error quantification of DSAT. We analyze the utility of DSAT based on theorem

4.3.2, and give the conclusion as below.

Theorem 4.3.2. For a range count query covering m histogram bins on H̃k, and

0 < σ < 1, if k is a sampling time point, the conclusion is the same as theorem 4.3.1

and if k is a non-sampling time point, we have Pr{|Ak − Ãk| ≤ Tk +
∑k

i=1 Iiui −
2
√

2Clog(σ
2

)

nε2
} ≥ (1− σ)2, where Ii is a value being 1 or -1, and dependent on the data,

and ui is defined in equation (4.2.3). Therefore, each released histogram H̃k of our

algorithms maintains (α, σ)-usefulness for range count queries. (The conclusion can

be obtained via equation (5) and we omitted the full proof.)

Lower bound of the data cardinality. Since the injected noise in the decision

stage is related with data cardinality, we analyze the lower bound of data cardinality

to guarantee a relatively small injected noise compared to the true L1 distance. This

lower bound can be used to maintain a high accuracy at the decision stage.

Theorem 4.3.3. In DSFT, in order to satisfy (α, σ)-usefulness and guarantee the

utility of the decision stage, it requires that n ≥ 16
√

2α(1−log(1−σ))
Tε1

, where σ is defined

in lemma 4.3.2. (Proof can be deducted from lemma 4.3.2)

Select the value of k in DSFT. Our algorithm requires ε to be divided between

ε1 and ε2 with ε1 = kε. We now analyze how to select k. Assume H = (H1, . . . , HN)

corresponds to D. For each i, we analyze the incurred noise variance of L1 distance

between Hi and H̃i when i is (1) a sampling time point and (2) a non-sampling time

point.

Lemma 4.3.3. The noise variance of the L1 distance between Hj and H̃j, is σ̂1 =

O(UC
2

n2ε22
) for a sampling time point, and σ̂2 = O(8∆2

ε21
+ 32C2∆2

ε21
+ UC2

n2ε22
) for a non-sampling

time point.

Proof. We skip this proof due to space limitation. �
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Theorem 4.3.4. If we use L1 distance and LPA, the k value can be obtained as

k = min{ 3

√
n2(8∆2+32C2∆2)

UC2 , 1− C
N
}

Proof. Since k is only used when analyzing the distance at non-sampling time

points, we can obtain the upper bound of noise variance at a non-sampling time

point due to lemma 4.3.3 with ε1 = kε
k+1

and ε2 = ε
k+1

by σ̂2 = 8∆2+32C2∆2

ε2
(k+1)2

k2
+

UC2

n2ε2
(k + 1)2. Let f(k) = σ̂2, then the first-order derivative of f(k) is as follows:

∇kf(k) = −2(k+1)
k3

8∆2+32C2∆2

ε2
+ 2(k + 1)UC

2

n2ε2
. By setting ∇kf(k) = 0, we can obtain

the value of k as: k = 3

√
(8∆2++32C2∆2)n2

UC2 . Since the second-order derivative of f(k)

with respect to k is no less than 0, k = 3

√
(8∆2++32C2∆2)n2

UC2 is the value of k when

f(k) arrives at the minimum. Simultaneously, we must require the privacy budget of

each sampling time point to be no less than that of each time point in the baseline

method, which leads to ε2
C
≥ ε

N
, and k ≤ 1 − C

N
. Therefore, we can obtain that

k = min{ 3

√
n2(8∆2+32C2∆2)

UC2 , 1− C
N
}. �

]

4.4. Extensions to infinite streams

In this section, we present extensions of DSAT under w-event privacy DSAT

under w-event privacy. Algorithm 9 presents DSAT under w-event privacy. For

the first w time points, we run DSAT normally and record the privacy budget ε2,i for

every time point i, i.e. ε2,i = ε2
C

if i is a sampling point and ε2,i = 0 otherwise. For

time points w+1 to N , if the remaining privacy budget εrm for the current w-window

is larger than zero, we compare the distance between Hi and H̃j, modify the threshold

and release a private histogram when the private distance is larger than the threshold;

if no privacy budget is left, we skip the current time point and go to the next one.

Privacy guarantee. The first w time points guarantees ε-differential privacy. The

condition in Line 4 of Algorithm 9 guarantees that if there is no remaining privacy

budget ( i.e. εrm ≤ 0) for the current w window from time point ti−1 to ti−w+1, no new
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Algorithm 9 DSAT under w-event privacy
Input:

D = {Di|1 ≤ i ≤ N, i ∈ Z}, T , C and ε.
Output:

D̃ = {D̃i|1 ≤ i ≤ N, i ∈ Z}
1: Run DSAT for the first w time points;
2: for i = (w + 1) to N do

3: εrm = ε2 −
∑m=i−1

m=i−w+1 ε2,m
4: if εrm ≤ 0 then
5: Set D̃i := Dj, where j is the time point of last release;
6: else

7: Set count =
∑m=i−1
m=i−w+1 ε2,m

ε2/C

8: Compute d̃(Di, D̃j) = d(Di, D̃j) + Lap(2C∆
ε1

);

9: Compute Ei = | count
i
− C

w
|, ei = |Ei−δ|

δ
, and ui = θ × ei;

10: if count
i
− C

w
≤ 0, then T̃i = max{0, Ti−1 − ui};

11: else set T̃i = min{2, Ti−1 + ui};
12: if d̃(Di, D̃j) ≥ T̃i, then set ε2,i = ε2/C, D̃i := Di+ < Lap(1/ε2,i) >

U , and
j = i;

13: else set D̃i := Dj;
14: end if
15: end for

private datasets will be released. Therefore, for any w-length window beginning with

any time point, at most ε privacy budget will be used. This leads to the conclusion

that Algorithm 9 satisfies w-event privacy.

4.5. Experiment

We implemented our methods on top of two static histogram methods, LPA in

Matlab and PSD [44] in Python. All the experiments are performed on a PC with

a 2.9GHz CPU and a 8GB memory. Table 4.2 summarizes the parameters and their

default values in the experiments.

4.5.1. Experiment Setup.

Datasets. We conducted our experiments with three datasets: the US census (http:

//ipums.org), the Taxi-Drive trajectory data (http://research.microsoft.com/

apps/) and the Oldenburg traffic data [30].

http://ipums.org
http://ipums.org
http://research.microsoft.com/apps/
http://research.microsoft.com/apps/
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Table 4.2. Experiment Parameters

Parameter Description Default value

N Number of time points 500

d Number of data dimensions 6

n Number of tuples in Di 500K

ε Privacy budget 1.0

C Cutoff point 0.01×N
r Update rate 0.5

δ Deviation tolerance 0.05

θ Proportional gain 0.5

The US census dataset contains six attributes, Age, Gender, Education, Health

insurance, Marital status and Income with 3M tuples and domain sizes of 96, 2, 12,

2, 2, 3. Each tuple represents an individual user. In order to avoid the sparsity of

histograms, we convert Income into a categorical attribute: values smaller than 0

(mapped to 1), values between 0 and 28K (mapped to 2), and values larger than 28K

(mapped to 3). 28K is a median value. Values smaller than 0 means the tuples have

ages smaller than 20. The number of histogram bins are the product of the domain

sizes of all attributes.

We generate a series of dynamic datasets as follows. Di is the original dataset

at ti. D1 has 500K tuples randomly sampled from the original 3M tuples. A public

pool is initiated using the remaining tuples. Di (i ≥ 2) is obtained by deleting m

tuples from Di−1 while inserting m tuples randomly selected from the public pool to

simulate the user updates. m is sampled from N(µ, σ2), where µ is r×|Di−1|
2

, and σ2 is

set to 100K. Here, r is the update rate, |Di| is the data cardinality of Di and datasets

at all time points have the same data cardinality. The time points are partitioned

into 10 periods with different values of m to simulate varying update patterns. All

experiments use US census data by default since we can generate various datasets

under different parameter settings.

The Taxi trajectory dataset has a one week trajectories of 10, 357 taxis during

the period of Feb. 2 to Feb. 8, 2008 within Beijing. We transfer the time dimension

to 168 time points with 24 × 7. The total number of points in this dataset is about

15 million and the total distance of the trajectories reaches 9 million kilometers. We



624. PRIVACY-PRESERVING DYNAMIC HISTOGRAM RELEASE WITH DISTANCE-BASED SAMPLING

partition the longitude and latitude into 10 × 10 grids. We amplify the number of

taxis to 110, 357 by sampling dummy points on extremely sparse time points and

geographical areas while still keeping the patterns of original data.

We generated Oldenburg traffic data with the Brinkhoff generator [30]. The

input of the generator is the road map of Oldenburg in Germany, and the output is a

set of moving objects on the road network. We created the data set with 1000 discrete

timestamps, with 500,000 objects at the beginning. A 2D grid with 1024× 1024 cells

is used to record the locations of the moving objects.

Comparison. We evaluate the utility of the private DP histograms of dynamic

datasets by answering random range count queries. The query accuracy of DSAT is

compared with three solutions described in Section 3: the baseline Laplace mecha-

nism, the fixed-sampling method, and the state-of-the-art w-event privacy methods.

LPA and PSD [44] are used to generate DP histograms at sampling time points.

We note that our proposed sampling framework can utilize any state-of-the-art static

histogram method at each sampling point. Here we just use, as an example, the

standard LPA method as well as the PSD method [44] which is a state-of-the-art

static histogram method that uses spatial partitioning. The goal is to compare our

proposed methods and the three solutions. We also include the non-private methods

to compare the update errors of DSAT and fixed-sampling.

Metrics. For the US census dataset, we generated random range-count queries with

random query predicates on each attribute defined in the SQL format as “Select

COUNT(*) from D, Where A1 ∈ I1 and A2 ∈ I2 and. . .and Am ∈ Im”. Ii is a

random interval generated from the domain of attribute Ai. For the traffic data, query

rectangles with various sizes are randomly generated. In each experiment run, 5000

random queries are generated and the average absolute error over 10 runs is reported,

which is defined as Ea = 1
M×N

∑M
k=1

∑N
i=1 |Ãki − Aki |, Aki is the true answer and Ãki

is the noisy answer. Here we use the range-count query to measure the utility since
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it composes data histograms, and the range counts can be used for many significant

mining tasks, e.g. dynamic stream clustering, outlier detection of time-series data,

etc.

4.5.2. Results on user level privacy. In all experiments, we compare our

methods with the baseline and fixed-sampling methods, which are denoted by “base-

line” and “fixed” in figures. Unless specified, we use LPA by default as the underlying

histogram method for the sampling point. We also use “DSAT-true” and “fixed-true”

to denote the non-private versions of DSAT and fixed-sampling.

Absolute error vs. k. Figure 4.2 investigates how utility changes with various k

values, which specify the budget allocation ratio between ε1 and ε2 for the decision

and sampling stages respectively. With the value of C being 10, we compute k to

be 0.0532 due to theorem 4.3.4. From Figure 4.2, we can observe that the empirical

result matches the theoretical result well and the utility reaches the optimal value

with k between 0.01 and 0.1. The error increases as k becomes larger or smaller than

0.1 or or 0.01, respectively. This is reasonable because larger k may lead to more

perturbation error while smaller k values result in more update error.
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Figure 4.2. Absolute error vs. k

DSFT and DSAT. In this experiment, we compare our proposed two methods DSFT

and DSAT. From figure 4.3, we can observe that the error of DSFT is very sensitive

to the threshold value T. As T initially increases, the error decreases thanks to the

decreased perturbation error. As T further increases, the error increases back up due

to the increased sampling error which becomes the dominant error. Without prior
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knowledge, it is difficult to determine the optimal T. However, the average absolute

error of DSAT is close to the lowest error of DSFT with the optimal threshold T

value being around 0.025. Here the initial value of T for DSAT can be arbitrarily

selected. Thus, the DSAT method with the PID control can effectively adjust T to

an optimal one. In the remaining experiments, we only use DSAT to compare with

other methods.
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Figure 4.3. Absolute error vs. threshold value T

Absolute error vs. differential privacy. Figure 4.4 compares DSAT with other

methods under various privacy budgets. The larger the privacy budget is, the closer

the query accuracy is to non-private versions. Since the baseline performs one order

of magnitude worse than other methods in most experiments, we do not include them

for better readability of the graphs. The perturbation errors for fixed-sampling and

DSAT are almost similar as the number of released DP histograms are the same.

DSAT outperforms fixed-sampling because DSAT has much less update error, which

can be seen from the comparison of non-private versions. Figure 4.4(b) uses the taxi

trajectory dataset and Figure 4.4(c) uses PSD to release DP histograms with 3D US

data. We can see that by using PSD, errors are generally improved compared to the

ones using LPA. This further confirms that our methods can take advantage of any

state-of-the-art static histogram methods for each sampling point.

Absolute error vs. update rate. We study the impact of the update rate r

(defined in section 4.5.1) on the query accuracy for different methods, as shown in

Figure 4.5. All methods remain stable for various update rates. The DSAT performs

better than both non-private and private fixed-sampling methods. This is because
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(b) Taxi-drive data
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Figure 4.4. Accuracy vs. differential privacy budget

the update error of non-private DSAT is much less than non-private fixed-sampling.

This further verifies that our DSAT with PID controller succeeds in adaptively ad-

justing the threshold and the location of the sampling time point, leading to better

performance.
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Figure 4.5. Absolute error vs. update rate

Absolute error vs. dimensionality. Figure 4.6 examines the absolute error with

various numbers of dimensions in the US dataset. DSAT again outperforms both

non-private and private fixed-sampling methods with the dimensionality from 3 to

6. One interesting phenomena we observe is that the performances of non-private
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and private fixed-sampling methods improve sharply after five dimensions. This can

be explained by the fact that a higher dimensionality results in a larger number of

histogram bins. Given a threshold T , if the L1 distance between two datasets Di

and Di−1 is below T, the previously released histogram will be used which incurs an

update error. Given the same L1 distance between two histograms, a larger number

of bins would result in a smaller measured update error since the average difference

for each histogram bin is smaller. Hence the fixed sampling methods show a dramatic

drop in the error which is dominated by the update error. The DSAT methods are

less sensitive to the number of dimensions because they already mitigate the update

error by tuning the threshold adaptively. Hence the non-private DSAT shows a slight

drop in the update error while the private DSAT shows a slight increase due to the

dominating perturbation error.
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Figure 4.6. Absolute error vs. # of dimensions

Query accuracy vs. query range size. We study the impact of the query range

size on the query accuracy for different methods. For each query range size, we ran-

domly generated queries such that the product of the query ranges on each dimension

equals the given size. Figure 4.7 presents the impact of various query range sizes on

query accuracy in terms of relative error and absolute error. The relative error is

defined as Er = 1
M×N

∑M
k=1

∑N
i=1

|Ãki−Aki |
max(s,Aki )

, where s is the sanity bound to mitigate

the effect for Aki = 0. DSAT outperforms the private fixed-sampling method. The
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difference of relative errors between all methods is not obvious because of the large

data cardinality in the US data. For all methods, the relative error gradually degrades

as the query range size increases while the absolute error has the opposite trend. The

reason is that when the query size is small, the true answer Aki is also small which

may incur a small absolute error but large relative error. In this experiment, the

sanity bound s is set to 1.
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Figure 4.7. Query accuracy vs. query range size

4.5.3. Results on w-event privacy. Query accuracy vs. parameter w.

We use the Oldenburg traffic data in this experiment, since it contains 1000 times-

tamps that is sufficient to investigate the impact of w. We compare DSAT with BD

and BA in [39] under w-event privacy framework while varying w values. BD and

BA are implemented by using column partitioning technique and setting ε1 = ε
U

as

recommended in [39]. From figure 4.8, we can see that the gap between DSAT and

BD or BA expands greatly as w increases. This is because our technique adaptively

adjusts the threshold and allocates the privacy budget more appropriately. In con-

trast, BA and BD may not fully utilize or in advance exhaust most budget during w

timestamps.

Query accuracy vs. differential privacy. In this experiment, we set w to be

800 using Oldenburg traffic data with 1000 timestamps. Figure 4.9 compares DSAT

with BA and BD under various privacy budgets. We can see that BA degrades
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Figure 4.8. Query accuracy vs. w

dramatically and the gap between BA and DSAT greatly expands as we reduce the

privacy budget ε. This is because BA starts by uniformly distributing the budget to

all w timestamps, and more perturbation error will be incurred when ε is small and

w is large. Our DSAT performs well since the perturbation error of released datasets

depends only on C.
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Figure 4.9. Query accuracy vs. differential privacy

4.6. Conclusions

In this chapter, we have proposed an adaptive distance-based sampling approach

to address the challenges of releasing a series of differentially private dynamic datasets

in real time. With an upper bound to limit the number of DP data releases, our

methods incur much smaller errors. We apply an adaptive control mechanism to

dynamically adjust the threshold value. We also provide privacy and utility analysis

for our method. Experiments on real and synthetic datasets show that our algorithm
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outperforms the baseline and existing state-of-the-art techniques. As future work, we

would like to study update models and incorporate them into our sampling framework.

We are also interested in applying the adaptive sampling framework for releasing other

types of dynamic data with differential privacy, e.g. frequent patterns for dynamically

changing transactional data and dynamic graph patterns in social networks.





CHAPTER 5

Personalized differential privacy

Previous chapters assume that all records of a dataset have the same privacy

preference under differential privacy. A limitation of the privacy model is that the

same level of privacy protection is assigned for all individuals. However, it is com-

mon that data subjects have different expectations regarding the acceptable level

of privacy for their data. Consequently, differential privacy may lead to insufficient

privacy protection for some users, while over-protecting others. In this chapter, we

propose two partitioning-based mechanisms, privacy-aware partitioning and utility-

based partitioning, for personalized differential privacy [60]. The first privacy-aware

partitioning mechanism aims to minimize the waste of privacy budgets independent

of applications, while utility-based partitioning is to maximize the utility for a given

application. Extensive experiments using real datasets demonstrate that our parti-

tioning mechanisms have advantages over existing methods.

5.1. Preliminaries

Personalized differential privacy. Personalized differential privacy is a setting

where the privacy budget values over all data records are not uniform. That means,

data owners may independently customize privacy budgets of their records and set

them based on their subjective judgements. Thus, we assign a privacy budget to each

record independently from other records and any of its sensitive attribute values.

Notice that the value of the privacy budget should not be correlated with any sensi-

tive information, which would make it also sensitive. In our example (Figure 5.1), a

sensitive attribute Salary is not correlated with the privacy budget. One naive base-

line mechanism is the Minimum mechanism, which uses the minimal budget among

71
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Figure 5.1. Personalized privacy dataset

records, e.g., 0.01 for Figure 5.1. Although Minimum mechanism preserves PDP,

it cannot take advantage of personalized privacy preferences. If we have a dataset

where there are relatively few data owners who set their privacy requirements to be

the minimum, a large amount of privacy budgets would be wasted while the utility

will be significantly reduced.

Baseline mechanisms. The first baseline mechanism Minimum is simply using

the smallest privacy budget εmin in a given privacy vector V = (ε1, . . . , εn), and then

invoke a differentially private algorithm using εmin as the global privacy parameter and

all data records. Although Minimum satisfies personalized differential privacy, it gains

no benefit from various privacy budget values, and most record owners will receive

a much stronger level of privacy guarantee than they prefer. The second baseline

mechanism Threshold is that we select a privacy threshold due to the distribution of

number of users with different privacy levels. However, an optimal threshold would

be difficult to choose if we want to make best of all privacy budget while remain a

high utility.

Sampling mechanism. Jorgensen et al. [25] considered the personalized differential

privacy (PDP) setting in which each user can independently specifies their own privacy

budget value for their data record. They proposed two mechanisms for achieving PDP:

the sampling mechanism and the personalized exponential mechanism. The main goal

is to develop mechanisms that can take advantage of various privacy budgets to attain
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better utility than could be achieved with basic differential privacy mechanisms. The

sampling mechanism is a two-step sampling based method defined in Definition 5.1.1.

Definition 5.1.1 (The Sampling Mechanism [25] ).

Consider a function f : D → R, a dataset D containing n records correspond-

ing to n individual data owners, and a privacy preference vector φ = (ε1, . . . , εn).

Let RS(D,φ, εT ) denote a procedure that independently and randomly samples each

record xj ∈ D (1 ≤ j ≤ n) with probability

pj =


eεj − 1

eεT − 1
if εj < εT

1 otherwise

where εmin ≤ εT ≤ εmax is a predefined threshold. The sampling mechanism is defined

as

S(D,φ, εT ) = DP f
εT

(RS(D,φ, εT ))

where DP f
εT

is any εT -differentially private mechanism for the function f .

It involves a non-uniform sampling step at the individual record level, followed

by the invocation of an appropriate differentially private mechanism on the sampled

dataset. In the sampling step, the inclusion probabilities for each record are computed

due to the individual privacy budget of the corresponding user and the privacy budget

threshold. The sampling mechanism is general and can be used to easily convert any

existing differentially private algorithm into a PDP algorithm, but an appropriate

sampling threshold needs to be selected and predefined, which may be difficult in

practice. For different number of data records and learning problems, the rule of

choosing an optimal threshold value may not be the same. For example, as shown in

our experiments, choosing the mean of privacy budgets as the threshold performs the

best for count queries. However, for logistic regression, using the maximum privacy

budget leads to the best utility. In support vector machine, there is no obvious rule

on how to chose an optimal threshold.



74 5. PERSONALIZED DIFFERENTIAL PRIVACY

Personalized exponential mechanism. The second mechanism in [25] is a per-

sonalized exponential mechanism, developed based on the exponential mechanism,

where the utility function is designed to satisfy PDP particularly. The mechanism

is applicable to only simple aggregates such as counts, medians, because the utility

function is difficult to design and develop for complicated applications, like logistic

regression and support vector machine.

5.2. Partitioning mechanisms

In this section, we propose two partitioning mechanisms to fully utilize the privacy

budget of individuals and maximizing the utility of target DP computations. The

general partitioning mechanism includes: (1) partition records of D horizontally into

k groups (D1, . . . , Dk) due to various privacy budgets; (2) compute noisy output qi

of target aggregate mechtianism M for each Di with εi-differential privacy, and (3)

ensemble (q1, . . . , qk) to compute q. We define the general partitioning mechanism as

below:

Definition 5.2.1 (The General Partitioning Mechanism). For an aggregate function f :

D → R, a dataset D with n records of n individual users, and a privacy preference φ =

(ε1, . . . , εn) (ε1 ≤ . . . ≤ εn). Let Partition(D,φ, k) be a procedure that partitions the

original dataset D into k partitions (D1, . . . , Dk). The partitioning mechanism is defined

as PM = B(DP fε1(D1), . . . , DP fεk(Dk)) where DP fεi is any target εi-differentially private

aggregate mechanism for f , B is an ensemble algorithm.

The partitioning mechanisms have no privacy risk because it is computed directly

from public information, privacy budget of each record. The target aggregate mecha-

nism guarantees εi-DP for each partition, with εi as the minimum privacy parameter

value of the records in that partition.

5.2.1. Privacy-aware partitioning mechanism. We develop privacy-aware

partitioning mechanism with the goal of grouping records with similar privacy bud-

gets, such that the amount of wasted budget is minimized. Formally, we formulate

the privacy budget waste of a partition Di as Wi = W (εi,1, . . . , εi,ni) =
∑ni

j=1(εi,j −
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min(εi,j))
2, where ni is number of records in Di, εi,j is the privacy budget of jth-record

of Di, and min(εi,j) ensures εi-DP for Di. We define privacy-aware partitioning algo-

rithm as follows:

Definition 5.2.2 (Privacy-aware partitioning). In a sorted privacy budget vector φ =

(ε1, . . . , εn), where ε1 ≤ ε2 ≤ . . . ≤ εn, we want to split φ into k partitions such that

W (φ) =
∑k

i=1Wi is minimized, where Wi =
∑ni

j=1(εi,j −min(εi,j))
2.

With a predefined k, we find the optimal k-partitioning using dynamic program-

ming and present the privacy-aware partitioning algorithm in Algorithm 10.

Algorithm 10 Privacy-aware partitioning mechanism W∗ of finding the optimal
k-partition of (ε1, . . . , εn) for a given definition of the function W

Input: Sorted φ = (ε1, . . . , εn) and k
Output: k partitions of original dataset

1. if k = 0 then return 0
2. minW = inf
3. foreach j ∈ {k − 1, . . . , n} do

currentW = W ∗((ε1, . . . , εj), k − 1) +W (εj+1, . . . , εn)
if currentW < minW then

minW = currentW
partitions[k − 1] = (εj+1, . . . , εn)

4. return minW and indexes of k partitions

Before running Algorithm 10, we first sort all privacy budgets in ascending order.

Sorting records in the descending order of privacy budgets generates the same par-

tition. When we sort privacy budgets, the sequence of corresponding data records

follows the order of privacy budgets. Therefore, we know which records are included

in which partition. To simplify the algorithm, we do not include representation of

data records. In step 3, we use dynamic programming to find the optimal partition

for a given definition of the function W . The goal is to minimize the waste of pri-

vacy budgets in each partition by computing the distance between individual budget

and the minimum budget of the current partition. Note that we represent Algorithm

10 as W ∗, and currentW = W ∗((ε1, . . . , εj), k − 1) + W (εj+1, . . . , εn) means that we

recursively use Algorithm 10 to compute k − 1 partitions.
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Optimal number of partitions. Algorithm 10 finds an optimal k-partitioning

given a predefined k. To choose an optimal k, let us consider two extreme cases: (i)

we can have n partitions where each record is its own partition and no privacy budget

is wasted, or (ii) all data records can be grouped as one partition to maximize the

number of records in the partition. The amount of generated noise could be significant

in the previous case, while large amount of privacy budget waste may be incurred in

the latter case. We need to consider the tradeoff between n and ε to find the optimal

k by building the following objective function:

(5.2.3) min
k

k∑
i=1

[
1

ni

ni∑
j=1

(εi,j −min(εi,j))
2]

Equation (5.2.3) implies a tradeoff between the partition size and privacy budget

waste. Due to equation (5.2.3), neither extreme case (i) nor (ii) can lead to optimal

value of equation (5.2.3). If we set a minimum threshold T of partition size ni for the

target differentially private mechanism, we can search different number of partitions

from 1 to n
T

, and find the optimal partition number. The minimum number of records

ni required in one partition is reasonable because many aggregate mechanisms (e.g.

logistic regression, support vector machine) require a minimum training data size to

ensure acceptable performance, due to machine learning theory. For example, Shalev-

Shwartz et al. [53] show that for a given classifier with expected loss defined on a

differentiable loss function, the excess loss of the classifier will be upper bounded if

training data size is larger than a threshold.

Complexity. Sorting all privacy budgets takes O(n log n). Computing optimal k

takes O(n), since we need to scan privacy vector at most m = n
T

times ( n
T

is con-

stant here since we control T to make n
T

constant for complexity reduction). The

privacy-aware partitioning takes O(mnlogn) complexity using dynamic programming

with intermediate results saved and optimization tricks. The overall complexity is

O(mnlogn).



5.2. PARTITIONING MECHANISMS 77

5.2.2. Utility-based partitioning mechanism. The privacy-aware partition-

ing mechanism aims to fully utilize the privacy budget of individual users which

will indirectly optimize the utility of the target DP computation. In this section,

we present a utility-based partitioning mechanism explicitly optimized for target DP

computations. The utility-based partitioning is inspired by an observation that many

DP machine learning algorithms (e.g. [3, 54, 63, 61, 55], etc.) have their perfor-

mance related with n, ε for a dataset of n records with ε-DP. We give definition of

utility-based partitioning below.

Definition 5.2.4 (Utility-based partitioning). In a sorted privacy budget vector φ =

(ε1, . . . , εn), where ε1 ≤ ε2 ≤ . . . ≤ εn, and let ni denote the number of records in Di, we

want to split φ into k partitions to maximize
∑ni

j=1 U(ni,min(εi,j)), where U(ni,min(εi,j))

is a utility function of target DP computation, which is related with ni and min(εi,j).

Algorithm 11 Utility-based partitioning mechanism U∗ of finding the optimal k-
partition of (ε1, . . . , εn) for a given definition of utility function U

Input: (ε1, . . . , εn) and k
Output: k partitions of original data records

1. if k = 0 then return U(n, εmin)
2. maxUtility = 0
3. foreach j ∈ {k − 1, . . . , n} do

currentUtility = U∗((ε1, . . . , εj), k − 1) + U(min(εj+1, . . . , εn), n− j)
if currentUtlity > maxUtility then

maxUtility = currentUtility, partitions[k − 1] = (εj+1, . . . , εn)
4. return maxUtility

Algorithm 11 presents the utility-based partitioning. We observe that U(n, ε)

can be considered as a general utility form in a series of existing state-of-the-art DP

algorithms (e.g. [58, 50, 56, 57, 8, 17, 65, 64, 62, 66], etc.). (i) Count query

In the Laplace mechanism, the noisy result of a function f can be represented as

f(D) + ν, where ν follows Lap(
∆f

ε
), and ∆f is the sensitivity related to number of

records n. If we normalize f(D) by n, ∆f would become
∆f

n
. Thus, the variance

of Laplace distribution can be considered as the utility function U(n, ε) = 2(
∆f

nε
)2.

Maximizing nε will lead to best utility with a high probability. (ii) Empirical risk

minimization. We take for example the DP empirical risk minimization mechanism
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(DPERM) proposed by Chaudhuri et al. [58]. The reason is that DPERM can be

easily generalized to important machine learning tasks, such as logistic regression

and support vector machine, which have a convex loss function as the optimization

objective. Our utility function form can be extended to a class of DP machine learning

mechanisms.

Assume that n records in a dataset D are drawn i.i.d. from a fixed distribution

F (X, y). Given F , the performance of privacy preserving empirical risk minimization

algorithms in [58] can be measured by the expected loss L(f) for a classifier f ,

defined as L(f) = E(X,y) F [l(fTx, y)], where the loss function l is differentiable and

continuous, the derivative l′ is c-Lipschitz. By [58], the expected loss of the private

classifier fp can be bounded as below

(5.2.5) L(fp) ≤ L(f0) +
16||f0||4d2 log2(d/σ)(c+ eg/||f0||2)

n2e2gε2
+O(||f0||2

log(1/σ)

neg
) +

eg
2

where L(f0) is the expected loss of the true classifier f0, ε is the privacy budget,

eg is the generalization error, and d is the number of dimensions of input data. If

we consider the second part of equation (5.2.5), we can build a utility function as

U(n, ε) = 16||f0||4d2 log2(d/σ)(c+eg/||f0||2)

n2e2gε
2 + ||f0||2 log(1/σ)

neg
+ eg

2
, where only n and ε are vari-

ables.

Optimal number of partitions. Akin to privacy-aware partitioning mechanism,

we need to select an optimal value for k, in order to maximize the sum of utility

function value over all partitions.

(5.2.6) max
k

k∑
i=1

U(ni, min
1≤j≤ni

(εi,j))

Here, a minimum threshold T of each partition size is also required for a differentially

private task. Theoretically, we can search different number of partitions from 1 to n
T

to find the optimal number of partitions with the maximum value of objective func-

tion (5.2.6).

Complexity. Sorting all privacy budgets is O(n log n). Finding the optimal parti-
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tioning takes O(n), due to complexity of Algorithm 10. The utility-based partitioning

takes O(n). The overall complexity of Algorithm 11 is O(n log n).

5.2.3. T -round partitioning. After the first round of partitioning, we may still

have records with remaining budgets. Extra rounds of partitioning can be applied

iteratively on the remaining records with leftover privacy budgets. In this part,

we prove by iteratively apply our algorithm to the leftover budget from previous

iterations, the leftover budget will decrease exponentially, which means all input

budgets will be used up soon.

Here we define a T -round partitioning as iteratively grouping n records into k par-

titions according to the objective function in Definition 3, then consume the smallest

budget in each group and update the leftover budget. The leftover budget for the

l-th record in the t-th round is denoted as εtl .

Theorem:
∑n

l=1(εTl )2 ≤
(

n
n−1+k2

)T∑n
l=1(εl)

2, which means the leftover privacy

budget converges to 0 exponentially.

Proof. Without loss of generality, we assume εn is the largest among all input

privacy budgets, and select the partition that partitions the interval [0, εn] into k

intervals with equal length εn/k. In this case, for the leftover budget ε1∗l we have

ε1∗l ≤ εn/k, ε
1∗
n = εn/k for all 1 ≤ l ≤ n. Thus

∑n
l=1(ε1∗l )2 ≤

∑n
l=1(εn/k)2 = n(εn/k)2.

Furthermore, since we have εl ≥ ε1∗l , there is
∑n

l=1(εl)
2 −

∑n
l=1(ε1∗l )2 ≥

∑n
l=1[(εl)

2 −

(ε1∗l )2] ≥ (εn)2 − (ε1∗n )2 = (εn)2
(
1− 1

k2

)
. Combining them together, we conclude∑n

l=1(εl)
2∑n

l=1(ε1∗l )2
=

∑n
l=1(εl)

2−
∑n
l=1(ε1∗l )2∑n

l=1(ε1∗l )2
+ 1 ≥ (εn)2(1− 1

k2
)

n(εn/k)2
+ 1 = k2−1

n
+ 1

∑n
l=1(ε1∗l )2∑n
l=1(εl)2

≤ n
k2−1+n

.

Since the optimal partition must have smaller
∑n

l=1(ε1l )
2 than this very naive partition,

there must be
∑n
l=1(ε1l )

2∑n
l=1(εl)2

≤ n
k2−1+n

. Similarly, if we take ε1l as input to the next round,

we can get
∑n
l=1(ε2l )

2∑n
l=1(ε1l )

2 ≤ n
k2−1+n

, etc. When we multiply these inequalities together, we

conclude
∑n

l=1(εTl )2 ≤
(

n
n−1+k2

)T∑n
l=1(εl)

2. �

5.2.4. Ensemble. Once we have partitions, we run DP mechanism on each par-

tition, and then use ensemble methods to aggregate the result from each partition.
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Due to conclusions of [59], our ensemble rule is that the private output of partition

with equal number of records but smaller privacy budgets than other partitions would

be dropped out. We also consider types of learning problems. For numerical situa-

tion, like bagging multiple linear regression or count queries, we aggregate all private

predicted values from all partitions. The weights will depend on O(ni, εi). Assume

the numerical task is P , the aggregated result would be Ỹ =
∑k

i=1wiP (Di). For

classification tasks, we use majority voting.

5.3. Experiment

In this section, we experimentally evaluate partitioning-based mechanisms and

compare it with the sampling mechanism in [25]. Partitioning-based mechanisms are

implemented in MATLAB R2010b and Java, and all experiments were performed on

a PC with 2.8GHz CPU and 8G RAM.

5.3.1. Experiment Setup. Datasets. We use two datasets from the Integrated

Public Use Microdata Series1, US and Brazil, which contain 370, 000 and 190,000 cen-

sus records collected in the US and Brazil, respectively. There are 13 attributes in

each datasets, namely, Age, Gender, Martial Status, Education, Disability, Nativ-

ity, Working Hours per Week, Number of Years Residing in the Current Location,

Ownership of Dwelling, Family Size, Number of Children, Number of Automobiles,

and Annual Income. Among these attributes, Marital status is the only categorical

attribute whose domain contains more than 2 values, i.e., Single, Married, and Di-

vorced/Widowed. Following common practice in regression analysis, we transform

Marital Status into two binary attributes, Is Single and Is Married (an individual

divorced or widowed would have false on both of these attributes). With this trans-

formation, both of our datasets become 14 dimensional.

1Minnesota Population Center. Integrated public use microdata series-international: Version 5.0.
2009. https://international.ipums.org.
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We perform 10-fold cross-validation for logistic regression and support vector ma-

chine with 50 times, and report the average results. We select two subsets of the

attributes in each dataset for count and support vector machine classification. The

first subset contains 4 attributes: Age, Gender, Education, and Annual Income, and

100000 census records. The second subset consists of 8 attributes: the aforementioned

five attributes, as well as Nativity, Ownership of Dwelling, and Number of Automo-

biles, and 30000 census records. For logistic regression, we select all attributes and

50000 census records.

Privacy specification. For personalized differential privacy, we generate the privacy

budgets for all records randomly from uniform distribution and normal distribution.

We set the range of privacy budget value ε from 0.01 to 1.0. ε = 0.01 means the most

conservative, representing users with high privacy concern while ε = 1.0 means liberal,

representing users with low privacy concern. We sample uniformly random privacy

budgets directly from U(0.01, 0.1), where U is the uniform distribution. We generate

normal privacy budgets from N(0.1, 1), where N denotes normal distribution.

Comparison. We evaluate the utility of the partition-based mechanisms for answer-

ing random range-count queries, differentially private support vector machine, and

logistic regression, and compare it with the sampling mechanism [25] and baseline

method Minimum which uses the minimum privacy budget and all records. For the

other baseline method threshold, it is difficult to set optimal threshold values for

different differentially private application, so we do not include it in our experiments.

Metrics. For count query evaluation, we generated random range-count queries with

random query predicates covering all attributes defined in the following:

Select COUNT(*) from D

Where A1 ∈ I1 and A2 ∈ I2 and . . . and Am ∈ Im

For each attribute Ai, Ii is a random interval generated from the domain of Ai.
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We measure the count query accuracy by the relative frequency error defined as

follows: for a query q, Aact(q) is the true answer to q on the original data. Anoisy(q)

denotes the answer to q when using data generated from partitioning-based mecha-

nisms or the sampling mechanism. Then the relative frequency error is defined as:

RFE(q) =
Aact(q)− Anoisy(q)

n

where n is the total number of records in the original dataset. The reason we use

relative frequency error is that the sampling mechanism generates a partial number

of records from original datasets, and we need the query answers to be measured on

the same base of record number.

For the support vector machine, we use the area under the curve (AUC), and

higher AUC value means better discrimination. For logistic regression, we convert

Annual Income into a binary attribute: values higher than a predefined threshold

are mapped to 1, and 0 otherwise. Accordingly, when we use a logistic model to

classify a tuple t, we predict the Annual Income of t to be 1 if
exp(xTi w)

1+exp(xTi w)
> 0.5,

where w is the model parameter, and x is a vector that contains the values of t on all

attributes except Annual Income. We measure the accuracy of a logistic model by its

misclassification rate, i.e., the fraction of tuples that are incorrectly classified.

5.3.2. Experimental results.

5.3.2.1. Partitioning-based mechanisms for count query. Figure 5.2 to Figure 5.5

investigate the relative frequency error between our two partitioning mechanisms and

the sampling mechanism under normal and uniform distribution of privacy prefer-

ences. We vary the privacy budget threshold of the sampling mechanism. The errors

of the partitioning mechanisms remain at a horizontal line since it does not need to

set privacy budget threshold. The accuracy of sampling mechanism reaches optimal

when the budget threshold attains the mean of all privacy budget values, which is

consistent with the experimental conclusion in [25]. From the results, we can observe

that the accuracy of sampling mechanism deteriorates sharply when threshold value
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is smaller than the mean privacy budget. This is because when the number of records

is sufficiently large, the privacy budget dominates the performance. Compared to

sampling mechanism, our utility-based mechanism remain stable and perform almost

the same with the optimal performance of sampling mechanism. The baseline method

Minimum performs similarly with the privacy budget threshold being the smallest.

This is due to the fact that when the threshold get the smallest value, sampling

mechanism is equal to Minimum. This conclusion remains the same for the following

experiments.

Figure 5.2. US: (Count) relative frequency error for the count task
under normal privacy preferences, as privacy budget threshold are var-
ied.

5.3.2.2. Partitioning-based mechanisms for support vector machine. Figure 5.6 to

Figure 5.9 illustrate the performances of partitioning mechanisms, sampling mecha-

nism and baseline Minimum for support vector machine classification task. We can

observe that there is no obvious pattern for sampling mechanism on which privacy

budget threshold has the optimal utility. This means in practice it is very difficult

for a data publisher to choose the threshold for an optimal utility. However, our

partitioning mechanisms have superior performance than sampling mechanism. The

performance of sampling mechanism under uniform privacy budgets fluctuates, be-

cause the number of records in the experiment is small for SVM, and as a result, it
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Figure 5.3. US: (Count) relative frequency error for the count task
under uniform privacy preferences, as privacy budget threshold are var-
ied.

Figure 5.4. Brazil: (Count) relative frequency error for the count
task under normal privacy preferences, as privacy budget threshold are
varied.

it difficult to select an optimal threshold before running private SVM. The perfor-

mance of sampling mechanism under normal privacy budgets arrives the best when

the threshold value is around 0.5, which is approximate to the average of all privacy

budgets.

5.3.2.3. Partitioning-based mechanisms for logistic regression. Figure 5.10 and

Figure 5.11 study the performances of partitioning mechanisms and sampling mecha-

nism for logistic regression classification task. For sampling mechanism, the optimal
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Figure 5.5. Brazil: (Count) relative frequency error for the count
task under uniform privacy preferences, as privacy budget threshold
are varied.

Figure 5.6. (SVM) AUC for support vector machine classification un-
der normal privacy preferences, as privacy budget threshold are varied.

utility is obtained when the privacy budget threshold is set to be the maximum bud-

get value. This is because we use training dataset with a sufficiently large data size

for this task, and the dataset still contains sufficient information for learning, even

if the privacy threshold is maximum corresponding to lowest sampling rate. In this

situation, the only factor having impact on the utility is privacy budget, so the maxi-

mum threshold leads to the best performance. The partitioning mechanisms achieves

comparable performance with the optimal error classification rate of sampling mech-

anism.
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Figure 5.7. US: (SVM) AUC for support vector machine classifica-
tion under uniform privacy preferences, as privacy budget threshold are
varied.

Figure 5.8. Brazil: (SVM) AUC for support vector machine classifi-
cation under normal privacy preferences, as privacy budget threshold
are varied.
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Figure 5.9. Brazil: (SVM) AUC for support vector machine classifi-
cation under uniform privacy preferences, as privacy budget threshold
are varied.

Figure 5.10. (Logistic regression) misclassification rate for logistic re-
gression under normal privacy preferences, as privacy budget threshold
are varied.
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Figure 5.11. (Logistic regression) misclassification rate for logistic re-
gression under uniform privacy preferences, as privacy budget threshold
are varied.



CHAPTER 6

Conclusions

6.1. Summary of Dissertation

With the general trend of digitalization, information sharing has become part of

the routine activity of many individuals, companies, institutes, and government agen-

cies. Privacy-preserving data publishing techniques have been playing an increasingly

important role in privacy protection in information sharing. Earlier research of PPDP

focuses on protecting private and sensitive information in low-dimensional and static

data release under uniform-level differential privacy. However, with the deployment of

differential privacy in broader application domains, new privacy concerns have been

substantially raised, including sharing high-dimensional and large domain data, series

of dynamic datasets evolving in real time under uniform-level differential privacy, and

personalized differential privacy which protects different privacy preferences of indi-

viduals. In this thesis, we response to these privacy concerns by developing efficient

and effective non-interactive data publishing solutions for various utility requirements.

We recap the major contributions of this thesis as follows:

• In Chapter 3, we presented DPCopula using copula functions for differen-

tially private multi-dimensional data publication. Different from existing

methods, DPCopula captures marginal distribution of each dimension and

dependence between separate dimensions via copula functions. Our experi-

mental studies on various types of datasets validated our theoretical results

and demonstrated the efficiency and effectiveness of our algorithm, particu-

larly on high-dimensional and large domain datasets. In the future, we are

interested in employing other copula families and investigate how to select

89
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optimal copula functions for a given dataset. Second, we are interested in de-

veloping data synthesization mechanisms for dynamically evolving datasets.

• In Chapter 4, we have proposed an adaptive distance-based sampling ap-

proach to address the challenges of releasing a series of differentially private

dynamic datasets in real time. With an upper bound to limit the number

of DP data releases, our methods incur much smaller errors. We apply an

adaptive control mechanism to dynamically adjust the threshold value. We

also provide privacy and utility analysis for our method. Experiments on real

and synthetic datasets show that our algorithm outperforms the baseline and

existing state-of-the-art techniques. As future work, we would like to study

update models and incorporate them into our sampling framework. We are

also interested in applying the adaptive sampling framework for releasing

other types of dynamic data with differential privacy, e.g. frequent patterns

for dynamically changing transactional data and dynamic graph patterns in

social networks.

• In Chapter 5, we developed two partitioning-based mechanisms for personal-

ized differential privacy framework, which combines the strength of differen-

tial privacy with the flexibility of user-specific privacy preferences and guar-

antees. The first privacy-aware partitioning mechanism partitions original

dataset in order to minimize the waste of privacy budgets, while optimizing

number of partitions to guarantee an optimal number of records in each par-

tition. The utility-based partitioning groups records into partitions to maxi-

mize a utility function, defined for different differentially private algorithms.

We also find a common utility function form for a series of state-of-the-arts

privacy preserving mechanisms. In addition, the number of partitions of

both partitioning-based mechanism can be computed through optimization

functions.
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In conclusion, as a preliminary effort toward privacy in high-dimensional data pub-

lishing, dynamic data release and personalized differential privacy, this thesis has

reported encouraging results, which demonstrate great promise for releasing useful

high-dimensional or dynamic data while preserving individual privacy, and personal-

ized differential privacy mechanisms.

6.2. Recommendations for Future Work

Although experimental results in this dissertation demonstrated effectiveness of

the proposed methods for a variety of data release and learning tasks, they can be

extended in the following future directions:

Differentially private synthesization of multi-dimensional data. First, we are

interested in employing other copula families, like t-copula to model more types of

joint dependence and investigate how to select optimal copula functions for a given

dataset. Second, we are interested in developing group-copula functions to build

copula function on subsets of attributes correlated within each other. Finally, we

can consider to develop data release methods under other privacy frameworks, for

example, Pufferfish privacy which is a recent generalization of differential privacy.

Privacy-preserving dynamic histogram release. One potential direction would

be to study update models and incorporate them into our sampling framework. We

are also interested in applying the adaptive sampling framework for releasing other

types of dynamic data with differential privacy, e.g. frequent patterns for dynam-

ically changing transactional data and dynamic graph patterns in social networks.

Another future work would focus on releasing correlated data histograms or data

series. Exponential mechanism may also be considered to release dynamic data.

Personalized differential privacy. An important future research would be person-

alized local differential privacy. With the application of cloud computing and mobile

devices, these personalized privacy problems will become increasingly significant. A
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combination of encryption and privacy protection may also need to be investigated. It

will also be of interest to extend personalized privacy to social networks, for example,

facebook, where individuals are nodes and friendship connections are edges.
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