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Abstract

Empower Deep Learning for Brain Network Analysis
By Xuan Kan

Recent large-scale brain network datasets, such as the Philadelphia Neurodevelopmen-
tal Cohort (PNC) study and the Adolescent Brain Cognitive Development (ABCD)
study, have laid the foundation for applying deep learning techniques to brain network
analysis. These datasets provide extensive and diverse brain imaging data and rich
phenotypic information, enabling researchers to investigate the complex relationships
between brain networks and behavioral measures in large populations. However, ap-
plying deep learning to brain network analysis poses several challenges, including the
need for better backbone architectures, sample size limitations, and limited supervi-
sion signals. This thesis aims to address these challenges by developing innovative
deep-learning techniques spanning both model architectures and training strategies.

In the first part of the thesis, we focus on designing novel model architectures
tailored for brain network analysis. We propose FBNetGen, an end-to-end differen-
tiable pipeline that generates task-aware functional brain networks from raw fMRI
time series data, achieving good performance and providing explainable insights into
disorder-specific brain regions and connections. We then introduce Brain Network
Transformer (BNT), a transformer-based architecture designed to capture the unique
properties of brain networks, demonstrating superior performance on large-scale fMRI
datasets. Furthermore, we present Dynamic bRAin Transformer (DRAT), an ap-
proach that focuses on modeling dynamic brain networks to capture temporal varia-
tions and improve predictions and interpretability.

The second part of the thesis focuses on advanced training strategies to enhance
the generalization and performance of deep learning models for brain network analysis.
We develop R-mixup, a data augmentation approach operating on the Riemannian
manifold of symmetric positive definite matrices, effectively addressing the limited
sample size challenge in low-resource settings commonly encountered in neuroimag-
ing studies. Additionally, to obtain richer supervision signals, we propose a multi-task
learning framework that jointly predicts various behavioral and clinical measures from
brain networks, enabling knowledge sharing across related tasks and improving indi-
vidual task performance while better utilizing the wide variety of annotated measures
available in existing datasets.

Extensive experiments on multiple datasets and tasks demonstrate the superior
performance and practical value of our methods. This thesis’s contributions facilitate
a better understanding of the complex relationships between brain networks and be-
havioral phenotypes, benefiting neuroimaging research and clinical applications. By
addressing the key challenges of better backbone architectures, sample size limita-
tions, and limited supervision signals, this thesis paves the way for more effective and
explainable deep learning techniques in brain network analysis, ultimately advancing
our understanding of the human brain and its role in cognition and disorders.
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Chapter 1

Introduction

1.1 The Importance of Brain Network Analysis

The human brain is a complex system consisting of billions of neurons that are in-

terconnected to form intricate networks. These networks are responsible for vari-

ous cognitive functions, such as perception, attention, memory, and decision-making.

Understanding how these networks are organized and how they give rise to different

cognitive processes is a fundamental goal of neuroscience research.

Brain network analysis has emerged as a powerful approach to study the struc-

ture and function of the brain. By representing the brain as a graph, with nodes

corresponding to brain regions and edges representing the connections between them,

we can quantify various properties of brain networks, such as their topology, effi-

ciency, and modularity. These properties can provide insights into how information is

processed and integrated across different brain regions, and how these processes are

altered in neurological and psychiatric disorders.

One of the key advantages of brain network analysis is that it allows us to study

the brain at different scales, from individual neurons to entire brain regions. At

the microscopic scale, we can study the connectivity patterns of individual neurons
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and how they give rise to local circuits. At the mesoscopic scale, we can study the

organization of brain regions into functional modules and how these modules interact

with each other. At the macroscopic scale, we can study the global properties of

brain networks and how they relate to cognitive and behavioral outcomes, which this

dissertation focuses on.

Brain network analysis has been applied to a wide range of neuroimaging modali-

ties, including functional magnetic resonance imaging (fMRI), diffusion tensor imag-

ing (DTI), and electroencephalography (EEG). fMRI, in particular, has become one

of the most commonly used modalities for studying brain networks due to its ability

to measure blood oxygenation level-dependent (BOLD) signals, which are thought to

reflect neuronal activity. By measuring BOLD signals across different brain regions

and computing their correlations, we can construct functional brain networks that

reflect the statistical dependencies between different brain regions.

Brain network analysis has led to several important discoveries about the organi-

zation and function of the brain. For example, studies have shown that the brain ex-

hibits a small-world topology, characterized by high clustering and short path lengths

[11]. This topology is thought to be optimal for information processing and integra-

tion, as it allows for efficient communication between different brain regions while

minimizing wiring costs. Other studies have shown that the brain is organized into

functional modules, such as the default mode network and the salience network, which

are involved in different cognitive processes [151].

Brain network analysis has also provided important insights into various neuro-

logical and psychiatric disorders. For example, studies have shown that patients with

Alzheimer’s disease exhibit disruptions in functional brain networks, particularly in

the default mode network [77]. These disruptions are thought to underlie the cog-

nitive deficits associated with the disease, such as memory loss and difficulties with

executive function. Similarly, studies have shown that patients with schizophrenia ex-
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hibit alterations in brain network topology, such as reduced clustering and increased

path lengths [132]. These alterations are thought to reflect the disconnection between

different brain regions that is characteristic of the disorder.

In addition to its clinical applications, brain network analysis has important im-

plications for our understanding of human cognition and behavior. By studying how

different brain regions are connected and how these connections change across differ-

ent cognitive states and tasks, we can gain insights into the neural basis of various

cognitive processes, such as perception, attention, and decision-making. For exam-

ple, studies have shown that the strength of functional connectivity between different

brain regions can predict individual differences in cognitive abilities, such as working

memory capacity and fluid intelligence [65].

Overall, brain network analysis is a powerful approach for studying the structure

and function of the brain, with important applications in both basic and clinical neu-

roscience research. By representing the brain as a complex network and studying its

topological properties, we can gain insights into how the brain processes and integrates

information across different scales and how these processes are altered in various neu-

rological and psychiatric disorders. As neuroimaging technologies continue to advance

and large-scale brain network datasets become increasingly available, brain network

analysis will likely play an even more important role in advancing our understanding

of the brain and developing new diagnostic and therapeutic tools for brain disorders.

1.2 The Rise of Deep Learning in Brain Network

Analysis

Deep learning has emerged as a powerful tool for analyzing complex, high-dimensional

data across various domains, including natural language processing (NLP) and com-

puter vision (CV). In NLP, deep learning models such as BERT [54] and GPT [153]
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have revolutionized the field, achieving state-of-the-art performance on tasks such as

language translation, sentiment analysis, and question answering. These models can

effectively capture the contextual information and semantics of words, enabling them

to understand and generate human-like language.

Similarly, in CV, deep learning architectures like convolutional neural networks

(CNNs) [123] and ResNet [84] have achieved remarkable success in tasks such as image

classification, object detection, and semantic segmentation. These models can auto-

matically learn hierarchical features from raw image data, enabling them to recognize

complex patterns and structures.

Inspired by the success of deep learning in NLP and CV, researchers have begun

to apply these techniques to brain network analysis [111, 126]. Deep learning meth-

ods have the potential to uncover intricate patterns and relationships in complex,

high-dimensional brain networks, enabling the discovery of new insights into brain

function and disorders. By leveraging the ability of deep learning models to learn

hierarchical representations and capture non-linear relationships, we can potentially

predict clinical outcomes or classify individuals based on their brain networks with

high accuracy.

However, applying deep learning to brain network analysis poses unique challenges

compared to NLP and CV. Brain networks are typically represented as graphs, with

nodes corresponding to brain regions and edges representing the connections between

them. These graphs are often high-dimensional, with the number of edges growing

quadratically with the number of nodes. Moreover, brain networks exhibit complex

topological properties, such as modularity and small-worldness, which may not be

easily captured by traditional deep-learning architectures.

Despite these challenges, there is a growing interest in the neuroimaging com-

munity in applying deep learning methods to brain network analysis. Convolutional

neural networks, which have been highly successful in CV, have been adapted to



5

handle graph-structured data, giving rise to graph convolutional networks (GCNs)

[118]. GCNs can learn node embeddings by aggregating information from neighbor-

ing nodes, enabling them to capture the local and global structure of brain networks.

Other deep learning architectures, such as graph attention networks (GATs) [183] and

graph transformers [215], have also been proposed to handle the unique properties of

brain networks.

In addition to architectural innovations, deep learning models for brain network

analysis can benefit from the rich phenotypic information available in large-scale brain

network datasets. By incorporating demographic, cognitive, and clinical measures as

additional inputs or prediction targets, deep learning models can potentially uncover

complex relationships between brain networks and behavior, leading to a more com-

prehensive understanding of brain function and disorders.

The rise of deep learning in brain network analysis presents an exciting opportu-

nity to advance our understanding of the human brain and develop new tools for diag-

nosing and treating neurological and psychiatric disorders. By leveraging the power

of deep learning and the increasing availability of large-scale brain network datasets,

we can potentially uncover new insights into brain organization and function, paving

the way for personalized medicine and improved patient outcomes. However, realizing

the full potential of deep learning in brain network analysis will require addressing

the unique challenges posed by the complexity and high dimensionality of brain net-

works, as well as the limited sample sizes and supervision signals available in current

datasets.

1.3 Large-Scale Brain Network Datasets

Recent large-scale brain network datasets, such as the Philadelphia Neurodevelop-

mental Cohort (PNC) study [159], the Human Connectome Project (HCP) [181], the
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Adolescent Brain Cognitive Development (ABCD) study [22], and the UK Biobank

[137], have laid the foundation for applying deep learning techniques to brain network

analysis. These datasets provide extensive and diverse brain imaging data along with

rich phenotypic information, enabling researchers to investigate the complex relation-

ships between brain networks and behavioral measures in large populations.

1.4 Challenges and Solutions in Applying Deep

Learning to Brain Network Analysis

Despite the availability of large-scale datasets, applying deep learning to brain net-

work analysis poses several challenges, including the need for better backbone archi-

tectures, sample size limitations, and limited supervision signals.

1.4.1 Better Backbone Architectures

One of the main challenges in applying deep learning to brain network analysis is the

need for backbone architectures that can effectively capture the unique properties of

brain networks. Traditional deep learning models, such as convolutional neural net-

works (CNNs) and recurrent neural networks (RNNs), are not specifically designed

to handle the complex, high-dimensional structure of brain networks. To address this

challenge, we propose three novel models: FBNetGen [106], Brain Network Trans-

former (BNT) [107], and Dynamic bRAin Transformer (DRAT) [108].

FBNetGen is an end-to-end differentiable pipeline that generates task-aware func-

tional brain networks from raw fMRI time series data. By jointly optimizing the

feature extractor, graph generator, and graph neural network predictor, FBNetGen

produces brain networks that are denoised, lower-dimensional, and customized for

downstream prediction tasks. This approach achieves good performance and pro-

vides explainable insights into disorder-specific brain regions and connections.



7

BNT is a tailored transformer architecture for modeling the unique properties of

brain networks. It leverages effective initial node features based on connection profiles

and fully learns the pairwise attention weights to capture the predictive brain network

structures. A special readout operator, OCRead, is introduced to fuse node-level

embedding to graph-level representations. BNT demonstrates superior performance

on large-scale fMRI datasets, such as ABIDE and ABCD.

DRAT focuses on modeling dynamic brain networks for improved predictions and

interpretability. It integrates static and dynamic brain networks, being the first at-

tempt to combine multi-view brain networks and fully exploit their complementary

information. DRAT incorporates specific attention mechanisms to provide inter-

pretability and insights into the dynamic changes in brain networks.

1.4.2 Sample Size Limitations

Another significant challenge in applying deep learning to brain network analysis is

the limited sample size of available datasets. Despite the existence of large-scale

brain network datasets, the size of these datasets is still relatively small compared

to the high dimensionality of brain networks. This can lead to overfitting when di-

rectly applying deep neural networks to brain network data. To tackle this challenge,

we develop R-mixup, a data augmentation approach operating on the Riemannian

manifold of symmetric positive definite matrices [109].

R-mixup effectively addresses the limited sample size challenge in low-resource

settings commonly encountered in neuroimaging studies. By augmenting samples

based on Riemannian geodesics, R-mixup preserves the intrinsic geometric structure

of the original data and mitigates the swelling effect and arbitrarily incorrect label

issues present in existing Mixup methods. Extensive experiments on five biological

network datasets spanning both regression and classification tasks demonstrate the

effectiveness of R-mixup, especially under low-resource settings.
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1.4.3 Limited Supervision Signals

A third challenge in applying deep learning to brain network analysis is the limited

supervision signals available in existing datasets. Many brain network datasets only

provide a small number of labeled samples for specific tasks, making it difficult to

train deep learning models effectively. To overcome this issue, we propose a multi-

task learning (MTL) framework that jointly predicts various behavioral and clinical

measures from brain networks.

The MTL framework enables knowledge sharing across related tasks and improves

individual task performance while better utilizing existing datasets. By training on

35 tasks simultaneously with a shared transformer backbone and task-specific fully

connected networks, our approach leverages the diverse range of prediction targets

in brain network datasets and improves individual task performance. Moreover, the

MTL framework allows us to better leverage existing datasets by utilizing the wide

variety of annotated measures available, helping to alleviate the limited sample size

challenge. Visualization techniques based on integrated gradients are developed to

interpret the learned task correlations and identify salient brain regions and connec-

tions, enhancing the interpretability of the predictions.

These innovative solutions to the challenges of better backbone architectures, sam-

ple size limitations, and limited supervision signals demonstrate the potential of deep

learning techniques in advancing brain network analysis. By addressing these chal-

lenges, we can unlock the power of deep learning to uncover complex patterns and

relationships in brain networks, leading to a better understanding of brain function

and disorders.
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Chapter 2

Model Architecture: Task-aware

GNN-based fMRI Analysis via

Functional Brain NETwork

GENeration (FBNetGen)

2.1 Introduction

In recent years, network-oriented analysis has become increasingly important in neu-

roimaging studies in order to understand human brain organizations in healthy as

well as diseased individuals [160, 190, 189, 18, 52]. There are abundant findings in

neuroscience research showing that neural circuits are key to understand the differ-

ences in brain functioning between populations, and the disruptions in neural circuits

largely cause and define brain disorders [99, 192]. Functional magnetic resonance

imaging (fMRI) is one of the most commonly used imaging modalities to investigate

brain function and organization [73, 130, 168]. There is a strong interest in the neu-

roimaging community to predict clinical outcomes or classify individuals based on
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brain networks derived from fMRI images [111, 199].

Current network analyses typically take the following approach [170, 167, 190].

First, functional brain networks are estimated based on individuals’ fMRI data. This

is usually done by selecting a brain atlas or a set of nodes/regions of interests (ROI)

and extracting fMRI blood-oxygen-level-dependent (BOLD) signal series from each

node or brain region. Then, pairwise connectivity is calculated between node pairs

using measures such as Pearson correlation and partial correlation. The calculated

brain connectivity measures between all the node pairs are then used in the subsequent

classification or prediction analyses to classify individuals or predict their clinical

outcomes. However, the original BOLD signal series are often high-dimensional and

noisy, and the brain networks constructed in this way are not customized towards

specific downstream clinical predictions.

There is a growing trend in applying graph neural networks (GNNs) on brain

connectivity matrices from fMRI data [200, 4, 125, 126]. GNNs are state-of-the-art

deep learning models for graph-structured data which can combine graph structures

and node features for various graph-related predictions [118, 195, 184, 218, 201].

However, the mechanism of most GNNs (i.e., message passing) is not compatible

with existing functional brain networks which possess both positive and negative

weighted edges but no proper node features.
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Figure 2.1: Overall framework of our proposed end-to-end task-aware fMRI analysis
via functional brain network generation.

In this work, to unleash the power of GNNs in network-based fMRI analysis while
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providing valuable interpretability regarding brain region connectivity, we propose to

generate functional brain networks that are compatible with GNNs and customized

towards downstream clinical predictions from fMRI data. Specifically, we develop

an end-to-end differentiable pipeline from BOLD signal series to clinical predictions.

Our pipeline includes a feature extractor for denoising and reducing the dimension

of raw time-series data, a graph generator for generating individual brain networks

from the extracted features, and a graph predictor of GNN for clinical predictions

from the generated brain networks (c.f. Figure 2.1).

We conduct extensive experiments using real-world fMRI datasets with the down-

stream task of gender prediction. FBNetGen achieved consistently better gender

prediction accuracy over three types of possible baselines. Furthermore, our in-depth

analysis identify a set of brain regions which are useful for predicting gender, which

aligns well with existing neurobiological findings.

2.2 Background and Related Work

2.2.1 fMRI-based Brain Network Analysis

fMRI has become the most commonly used imaging modality to probe brain func-

tional organizations by identifying brain functional networks that represent a set

of spatially disjoint regions in the brain demonstrating coherent temporal dynamics

in fMRI blood oxygen level dependent (BOLD) signals [70]. Functional connectivity

(FC) has been found to be related to intrinsic neural processing, cognitive, emotional,

visual, and motor functions. Existing studies have shown that FC plays an important

role in understanding neurodevelopment, mental disorders and neurodegenerative dis-

eases [68, 61, 132, 41, 173]. There are also findings that reveal gender differences on

FC between brain regions [160]. To investigate FC alterations in demographic and

clinical subpopulations, the commonly adopted methods include edge-wise tests for
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between group differences [144, 31, 117], tests for detecting coordinated disruptions

across multiple brain subsystems [216, 88], graph theory based methods for com-

paring brain network graph metrics [157, 156, 67] and graphical model approaches

[135, 87, 121] .

2.2.2 Graph Neural Networks

Graph Neural Networks (GNNs) have revolutionized the field for modeling various

important real-world data in the form of graphs or networks [118, 81, 183, 28, 165],

such as social network, knowledge graphs, protein-interaction networks, etc.The ad-

vantage of GNNs is that they can combine node features and graph structures in an

end-to-end fashion towards downstream prediction tasks. Various delicately designed

GNN models have been developed for graph classification. For example, GCN [118]

is one of the basic and most representative GNNs that generalized the shared filter

for graphs from the successful CNNs models in computer vision; Velickovic et al.

[183] integrated the attention mechanism to assign different weights for neighbors in

each graph convolution layers; Xu et al. [195] proposed graph isomorphism network,

which is a simple yet powerful architecture that is proved to have equal discriminative

ability with the 1-WL test.

Yet, until recently, some emerging attention has been devoted to the generalization

of GNN-based models to fMRI-based brain network analysis [125, 126]. However,

GNNs require explicitly given graph structures and node features, which are typically

not available in brain networks and usually constructed manually based on statistical

correlations [170]. In addition, only one recent study has considered the learnable

generation of brain networks but without downstream tasks [224], and no study has

explored the interpretability of the generated brain networks towards downstream

tasks, which is critical in neuroimaging research regarding its practical scope and

promising social impact.
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2.3 FBNetGen

2.3.1 Overview

In this section, we elaborate the design of FBNetGen and its three main components

as shown in Figure 2.1. Specifically, the input X ∈ Rn×v×t denotes the BOLD time-

series for regions of interest (ROIs) as the input, where n is the sample size, v is

the number of ROIs and t is the length of time-series. Each x ∈ Rv×t represents a

sample (individual). The target output is the prediction label Y ∈ Rn×|C|, where C

is the class set of Y and |C| is the number of classes. As an intermediate output of

the end-to-end pipeline, we also generate a functional brain network A ∈ Rv×v (i.e.,

brain connectivity matrix between ROIs) for each sample x ∈ Rv×t through graph

generator, which highlights prediction-specific prominent brain network connections

and provides unique interpretation towards neuroscience research.

2.3.2 Feature Encoder

BOLD signal series is a type of temporal sequence data. The main difference between

BOLD signal series with ordinary time-series data is that BOLD is a group of aligned

sequences instead of independent ones. Traditional BOLD analysis methods like ICA

[180] and PCA [177] ignore the temporal order in BOLD, which means shuffling the

time steps does not change the dimension reduction results. Besides, PCA and ICA

can only capture linear information within or across time-series. Finally, to construct

brain networks from ICA and PCA results, Pearson correlation is often adopted [170],

but the brain networks generated in this way are not aware of the downstream tasks

and not compatible with GNNs (due to containing negative edge weights).

Recently, deep neural network has shown great success in capturing complex non-

linear information on various time-sequence tasks, such as natural language process,

market analysis and traffic control [163, 36, 119]. Therefore, we apply two commonly
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used deep encoding models for time-series data, 1D-CNN and bi-GRU, for feature

extraction from BOLD signals. Specially, we choose bi-GRU rather than LSTM since

bi-GRU can achieve similar performance with less parameters [36]. This is vital for

brain network analysis because the sample size of fMRI dataset is usually pretty small

(e.g., less than 1000), and a lightweight framework is essential to avoid over-fitting.

Specifically, when the feature encoder is set as u-layer 1D-CNN, the process of

generating node features he ∈ Rv×d for v ROIs can be decomposed as

hu = CONVu(h
u−1), (2.1)

he = MLP(MAXPOOL(hu)),he ∈ Rv×d, (2.2)

where h0 = x is the original BOLD signal sequence, d is the embedding size of each

ROI and the kernal size of CONV1 equals the window size τ . Similarly, when the

feature encoder is set as bi-GRU, the process can be decomposed as

hr = biGRU([x(zτ−τ):zτ ]),hr ∈ Rv×2τ , (2.3)

z = 1, · · · , ⌊ t
τ
⌋, (2.4)

where [x(zτ−τ):zτ ] represents splitting the input sequence x into z segments of length

τ . Finally, a MLP layer is applied to generate the final embedding of size d for each

ROI

he = MLP(hr),he ∈ Rv×d. (2.5)

2.3.3 Graph Generator

Between encoder and predictor, a feature-based and task-oriented functional brain

network is generated from he. It is formulated as the connectivity matrix A, which

stores the pair-wise connectivity strengths between ROIs as elements. Unlike the
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commonly used traditional approach for functional brain network construction that

calculates the pairwise Pearson correlations between raw time-series of ROIs [170],

we generate a learnable A based on encoded time-series features as

hA = softmax(he), (2.6)

A = hAh
T
A, (2.7)

which can be regularized by the downstream prediction task through an end-to-end

framework. The softmax operation highlights the strong ROI connections by gener-

ating skewed positive edge weights, which are compatible with GNNs and valuable

for interpretation. In contrast, brain connectivity matrices generated from traditional

(i.e., statistical) methods are not compatible with GCN, since they contain negative

weights (correlation scores can be negative) in edges.

Considering the limited supervision in neuroscience research, sheer supervision is

usually not enough to fit a model very well. For instance, when the windows size τ is

set as 8, the parameters number of 1D-CNN encoder can reach up to 20k, while there

are only 353 samples in PNC training set. It becomes even harder for the model to

generate high-quality graphs when the gradient feedback is too long.

In order to facilitate the learning of brain networks beyond the sheer supervision

of graph-based classification, we consider incorporating exterior regularizations that

are in line with previous scientific studies. It is shown in literature [179, 160] that

there are edge-level difference between genders in both structural and functional brain

connectivity matrices. Based on these observations, we further apply three group-

based and structure-based regularizers during training, named as group intra loss,

group inter loss and sparsity loss, respectively.

Group Intra Loss. Previous clinical findings [172] show that there are consistent

patterns among individuals in resting-state functional connectivity. In order to utilize
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the latent consistent patterns as a regularization for our model training, we design

a group intra loss, which aims to minimize the difference of connectivity matrices

within a class.

Given a class c ∈ C, Sc = {i | Yi,c = 1} is the set containing all samples’ index

whose label is c. With the mean µc and variance σ2
c of all samples’ A with label c

within a batch computed as

µc =
∑
k∈Sc

Ak

|Sc|
, σ2

c =
∑
k∈Sc

∥∥Ak − µc

∥∥2
2

|Sc|
, (2.8)

the group intra loss can be effectively calculated in O(n) time as

Lintra =
∑
c∈C

∑
i∈Sc

∥Ai − µc∥
2
2

|Sc|
=
∑
c∈C

σ2
c . (2.9)

Group Inter Loss. Cognition science findings in [160] substantiate that there are

significant difference among the functional brain networks of different genders, such

as brain volume. Hence, we incorporate a group inter loss that aims to maximize the

difference of connectivity matrices across different classes, while keeping those within

the same class similar. With proper derivation, this loss can also be calculated in

O(n) time as

Linter =
∑
a,b∈C

(σ2
a + σ2

b −
∑

i∈Sa

∑
j∈Sb ∥Ai −Aj∥22
|Sa||Sb|

)

= −
∑
a,b∈C

∥µa − µb∥22 .

Sparsity Loss. The model with only group loss may overemphasize the graph differ-

ence between genders, which could harm the model’s performance and stabilization.

To mitigate the degree of deviation caused by large values in the generated graph and

highlight the most contributory task-specific ROI connections, we further enforce the
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sparsity of generated brain networks, where a sparsity loss is formulated as

Lsparsity =
1

nvv

n∑
i=1

∥∥vec(Ai)
∥∥
1
. (2.10)

2.3.4 Graph Predictor

We apply GNN on the constructed graphs for prediction. GNN is a powerful tool

that can learn node representations by transforming, propagating and aggregating

node features and graph structure information.

In practice, we initialized node feature Fp for the node p as a vector of Pearson

correlation scores between its time-series data with those of all nodes contained in the

graph. With the initial node features F ∈ Rv×f of ROIs and the learnable connectivity

matrix A from graph generator, we can apply a k-layer graph convolutional network

[118] to update the node embeddings through

hk = ReLU
(
Ahk−1W k

)
, (2.11)

where W k represents learnable parameters in convolutional layers and h0 = F . The

graph-level embedding is obtained by summing up all the node embeddings after the

final convolutional layer. A BatchNorm1D is then applied to avoid extreme large

values. Finally, another MLP function is employed for classification prediction,

ŷ = MLP

(
BatchNorm1D

(
v∑

p=1

hk
p

))
. (2.12)

2.3.5 End-to-end Training

We combine the aforementioned three components into end-to-end training, where

the label information y and the task-oriented graphs are leveraged at the same time.

Another advantage of end-to-end training is that the feature encoder provides a larger
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parameter search space than a pure GNN prediction model, leading to potential per-

formance improvements. Furthermore, the intermediate graphs guided by prediction

tasks are generated as a by-product, providing explicit task-oriented explanation for

deep model’s prediction. Overall, our final training objective is composed of four

terms:

L = Lce + αLintra + βLinter + γLsparsity, (2.13)

where Lce is the supervised cross-entropy loss for prediction, and α, β, γ are tunable

hyper-parameters representing the weights of three regularizers.

2.4 Experiments

In this section, we evaluate the effectiveness and interpretability of FBNetGen with

extensive experiments. For effectiveness, we aim to answer the following research

questions.

• RQ1. How does FBNetGen perform compared with possible baselines? Specif-

ically, we compare with models of three types including (a) directly using time-

series features without graph construction; (b) using traditional (statistical)

methods to construct graphs instead of learnable generation; (c) using other

learnable graph generators.

• RQ2. How do different components in our graph generator affect the perfor-

mance of FBNetGen?

• RQ3. How do the hyper-parameters influence FBNetGen and the compared

models’ performance?

For interpretability, we aim to investigate the advantages of FBNetGen regard-

ing the consistency between its learned important brain network connectivity patterns

and existing neuroscience discoveries.
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Table 2.1: Performance comparison with three types of baselines.

Type Method
Dataset: PNC Dataset: ABCD

AUROC Accuracy AUROC Accuracy

Time-series
1D-CNN 63.7 ± 3.8 54.7 ± 1.2 68.1 ± 3.1 63.2 ± 2.6
bi-GRU 65.1 ± 3.5 58.1 ± 2.4 51.2 ± 1.0 49.9 ± 0.8

Traditional Graph
GNN-Uniform 70.6 ± 4.8 66.2 ± 3.9 88.8 ± 0.7 80.5 ± 0.7
GNN-Pearson 69.6 ± 4.5 65.6 ± 3.3 88.8 ± 0.3 80.7 ± 0.6

Learnable Graph
LDS-GRU 75.4 ± 3.2 69.2 ± 5.8 89.6 ± 0.5 80.4 ± 1.6
LDS-CNN 75.7 ± 3.8 69.8 ± 6.2 90.0 ± 0.3 82.5 ± 0.9

GTS 68.2 ± 1.9 63.7 ± 2.4 87.8 ± 1.1 76.7 ± 2.0

Ours
FBNETGNN-CNN 79.4 ± 2.8 70.4 ± 2.3 91.5 ± 0.5 82.5 ± 0.7
FBNETGNN-GRU 82.7 ± 4.7 77.7 ± 3.9 91.6 ± 0.4 81.6 ± 1.7

2.4.1 Experimental Settings

Dataset. We conduct experiments demonstrating the utility of FBNetGen using

two real-world fMRI datasets.

The first dataset is from the Philadelphia Neuroimaging Cohort (PNC), a collabo-

rative project from the Brain Behavior Laboratory at the University of Pennsylvania

and the Children’s Hospital of Philadelphia. It includes a population-based sample

of individuals aged 8–21 years [159]. After excluding subjects with excessive motion

[160, 190], 503 subjects’ rs-fMRI data were included in our analysis. Among these

subjects, 289 (57.46%) are female, which indicates that our dataset is balanced across

genders. In our paper, we adapt the 264-node atlas defined by [152] for connectivity

analysis. The nodes are grouped into 10 functional modules that correspond to major

resting state networks [169]. Standard pre-processing procedures are applied to the

rs-fMRI data. For rs-fMRI, the pre-processing include despiking, slice timing cor-

rection, motion correction, registration to MNI 2mm standard space, normalization

to percent signal change, removal of linear trend, regressing out CSF, WM, and 6

movement parameters, bandpass filtering (0.009–0.08), and spatial smoothing with a

6mm FWHM Gaussian kernel. In the resulting data, each sample contains 264 nodes

with time series data collected through 120 time steps. For connectivity analysis, we
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focus on the 232 nodes in the Power’s atlas that are associated with major resting

state functional modules [169].

The second dataset from Adolescent Brain Cognitive Development Study (ABCD)

[22], is one of the largest publicly available fMRI datasets. This study is recruiting

children aged 9–10 years across 21 sites in the U.S. Each child is followed into early

adulthood, with repeated imaging scans as well as extensive psychological and cog-

nitive testing. This study started in 2016 and releases data in regular intervals. We

use rs-fMRI scans for the baseline visit processed with the standard and open-source

ABCD-HCP BIDS fMRI Pipeline 1. The HCP 360 ROI atlas template is used for

each subject’s data [74]. After processing, each sample contains a connectivity matrix

whose size is 360× 360 and BOLD time-series for each node. Since different sample’s

BOLD time-series have different lengths, only samples with at least 512 time points

are selected, and only the first 512 time points for each sample are included in the

subsequent analysis. After this selection, 7901 children were included in the analysis.

Among them, 3961 (50.1%) are female and 3940 (49.9%) are male. For interpretabil-

ity analysis, we organize nodes into communities using the AAc-6 parcellation scheme

provided by [3], which divides the 360 ROIs into 6 functional modules.

Metrics. We choose gender prediction as the evaluation task, with available labels

from both PNC and ABCD datasets. Since gender prediction is a binary classification

problem and both PNC and ABCD datasets are balanced across classes, AUROC is

the most comprehensive performance metric and is adopted here for fair performance

comparison. Besides, we also include accuracy as a metric to reflect the practical

prediction performance of FBNetGen.

Implementation details. For experiments on the two different feature encoders, we

restrict the number of 1D-CNN layer u as 3 since the dataset is relatively small. The

detailed design of the 1D-CNN encoder can be found in Appendix A.1. Regarding

1https://github.com/DCAN-Labs/abcd-hcp-pipeline
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GRU feature encoder, we set the number of layers to 4. For both feature encoders,

the embedding size d of he is searched from {4, 8, 12}, and the window size τ is

a tuned from different ranges based on the sequence length of each dataset, with

{4, 6, 8} for PNC, and {8, 16, 32} for ABCD. For the graph generator, the weights

of each loss component α, β, γ are set as 10−3, 10−3 and 10−4, respectively. As for

the graph predictor, the number of GCN layers is set as 3 following the common

practice. We randomly split 70% of the datasets for training, 10% for validation, and

the remained are utilized as the test set. In the training process of FBNetGen,

we use the Adam optimizer with an initial learning rate of 10−4 and a weight decay

of 10−4. The batch size is set as 16. All the models are trained for 500 epoches

and that achieves the highest AUROC performance on the validation set is tested for

performance comparison. All the reported performances are the average results of 5

runs. Please refer to the supplementary material for all code of the implementation

of FBNetGen.

Computation complexity. In FBNetGen, the computation complexity of feature

encoder, graph generator and graph predictor are O(µvt), O(v2) and O(kv2) respec-

tively, where µ is the layer number of feature encoder, v is the number of ROIs, t is

the length of time-series, and k is the layer number of graph predictor. The overall

computation complexity of FBNetGen is thus O(v(v + t)).

Table 2.2: AUROC performance with different regularizers
Dataset PNC ABCD

Regularizers All CE CE+GL CE+SL All CE CE+GL CE+SL

FBNETGNN-CNN 79.4 ± 2.8 75.4 ± 2.7 76.4 ± 3.5 77.0 ± 1.8 91.5 ± 0.5 91.0 ± 0.8 91.5 ± 0.4 91.3 ± 0.9
FBNETGNN-GRU 82.7 ± 4.7 75.6 ± 1.4 76.2 ± 3.8 78.8 ± 1.7 91.6 ± 0.4 91.3 ± 0.5 91.3 ± 0.4 91.5 ± 0.7

2.4.2 RQ1: Performance Comparison

We compare FBNetGen with baselines of three types.
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(a) FBNetGen vs. models directly using time-series features.

We compare our graph-based model with two baselines that directly model time-series

data without graph construction. Two commonly used models for temporal sequence,

1D-CNN and bi-GRU, are applied to encode BOLD time-series, which are the same

architectures as the feature encoder of FBNetGen. In both time-series baselines, the

feature encoder is directly followed by a multilayer perceptron that makes predictions

based on the encoded features without building brain networks. The performance of

these two baselines is presented in the ‘Time-series’ columns in Table 2.1. To ensure

fairness, all hyper-parameters are shared across time-series baselines and the feature

encoder of our model. It can be seen that our FBNetGen with the same feature

encoders outperform their corresponding time-series baselines by significant margins

(up to 20% absolute improvements). This suggests the necessity of intermediate brain

network generation for effective brain network analysis, which is consistent with recent

understanding in neural science [99, 192].

(b) FBNetGen vs. models using traditional methods to construct graphs.

To investigate the advantage of our task-oriented learnable graph generator over tra-

ditional statistics-based methods, we compare our task-oriented learnable graphs A

calculated from Eq. (2.7) with two widely practiced traditional ways to construct

brain networks. One of the most popular methods to construct brain networks is the

Pearson graphs [170]. Specifically, in the constructed brain network AP of Pearson

graphs, each entry is calculated as the absolute value of Pearson correlation coefficient

between two raw time-series

AP
p,q = |cov(xp,xq)|, (2.14)
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where cov represents the co-variance function. To isolate the influence of node fea-

tures, we also use the uniform graphs AU as a control group, which corresponds to

setting the adjacency matrixes with all 1’s

AU = {1}v×v. (2.15)

All these two types of graphs are paired with the same node features F and then pro-

cessed by the same GNN graph predictor as FBNetGen for downstream prediction.

As shown in the ‘Tradition Graph’ columns in Table 2.1, GNN with our learnable

graph gains prominent improvements (up to 13% absolute improvements) compared

with the traditional graphs, indicating that our task-oriented learnable graphs are

more informative and compatible with GNNs.

(c) FBNetGen vs. models using other learnable graph generators.

We further introduce another three baselines based on learnable graph generators,

namely LDS-GRU, LDS-CNN and GTS. LDS [69] is a framework which joint learns

graph structures and model parameters through bilevel optimization when graph

structures are not available. However, the graph generator setting of LDS is different

from our framework. Specifically, LDS targets at learning a discrete population graph

which contains all samples as nodes, whereas in our setting, we learn a weighted graph

as the brain network for each individual sample. To ensure a fair comparison, we adapt

our two feature encoders, 1D-CNN and GRU, to the bilevel optimization framework

of LDS, and call them LDS-GRU and LDS-CNN, respectively. All hyper-parameters

of LDS-GRU and LDS-CNN are set to the same as their corresponding feature en-

coders in FBNetGen. Another existing method that can learn graph structure from

a group of time-series data is GTS [163], which combines time-series data and graph

structure to make sequence-to-sequence prediction. Here GTS is revised to generate
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classification result for each sample to suit our gender prediction task. As we can

observe from the ‘Learnable Graph’ type in Table 2.1, our task-oriented graph gen-

erator FBNetGen-GRU and FBNetGen-CNN consistently overperform all three

baselines using other graph generators, which demonstrate the superior advantage of

our proposed end-to-end framework tailored for fMRI analysis.

2.4.3 RQ2: Ablation Studies

We further examine the major designs in in our graph generator (Section 2.3.3):

the Group Loss (GL), including both group inner loss and group intra loss, and

the Sparsity Loss (SL). We vary the original model with the Cross Entropy Loss

(CE), GL and SL by removing each component once at a time, and observe the

performance of each ablated model variant. The results are shown in Table 2.2.

For training curves, please refer to Figure A.1 in Appendix A.2. From the training

curves and the final performance, we see that on PNC dataset, the original model

with all designed components improves more stably than its three ablated versions

and finally achieves the highest performance. Specifically, CE+SL achieves close-

to-optimal performance, demonstrating the effectiveness of sparsity regularizers in

generating informative brain networks. On the ABCD dataset, we observe similar

trends among the model variants but slightly smaller gains brought by the GL and

SL regularizers, because their effectiveness is more significant when the training data

are limited (such as in PNC).
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Figure 2.2: Influence of two hyper-parameters in the feature encoder of FBNetGen
and LDS based baselines.
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2.4.4 RQ3: Influence of Hyper-parameters

We investigate two hyper-parameters that are most influential to the performance

of the compared models, namely window size τ and embedding size d in the feature

encoders of 1D-CNN and GRU. To reflect the influence comprehensively, we also in-

clude the LDS baselines that also use these feature encoders. The results of adjusting

hyper-parameters on PNC and ABCD datasets are shown in Figure 2.2. As we can

observe from Figure 2.2 (a), window size should not be overly large since the BOLD

sequence of PNC dataset is relatively short. Also, increasing the embedding size does

not necessarily improve the overall performance of FBNetGen. Shifting perspective

to the larger dataset ABCD, we find that the values of both hyper-parameters do not

influence much on it than on the smaller dataset of PNC, demonstrating the stable

performance of FBNetGen when training data are more sufficient. It is impressive

that our FBNetGen consistently achieves better performance compared with the

baselines of LDS-CNN and LDS-GRU, in the large ranges of hyper-parameters. This

highlights the reliable supremacy of FBNetGen over other graph generators.

(a) FBNETGEN on ABCD (b) Pearson on ABCD(a) FBNETGEN on PNC (b) Pearson on PNC

Figure 2.3: Visualizations of learnable graph vs. Pearson graph. Warmer colors in-
dicate higher values. Abbreviations of neural systems: On PNC, SH (Somatomotor
Hand), SM (Somatomotor Mouth), Sub (Subcortical), Vis (Visual), Aud (Auditory),
CO (Cingulo-opercular), Sal (Salience), DMN (Default mode), FP (Fronto-parietal),
VA (Ventral attention), DA (Dorsal attention), MR (Memory retrieval), On ABCD,
SM(Somatomotor), DMN (Default mode), VS (Ventral salience), CE (Central exec-
utive), DS (Dorsal salience), Vis (Visual).
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2.4.5 Interpretability Analysis

In this section, we visualize and compare our learnable graphs with the most com-

monly used existing functional brain networks, which are functional connectivity

based on Pearson correlation [170]. Our results indicate that our learnable graph ap-

proach is more task-oriented and advantageous in capturing differences among classes.

We use the average graph across all samples to demonstrate the predominant neu-

ral systems across subjects. The mean heatmap visualizations of our learnable brain

graphs and the Pearson brain graphs are shown in Figure 2.3. As is shown by the heat

values, our graph distinctively and consistently highlights the default mode network

(DMN) for both the PNC and ABCD datasets. This aligns with previous neurobi-

ological findings using the PNC data [160], which identify regions with significant

differences between genders within the DMN. This consistency remains across both

datasets and both brain atlases, validating that our method yields reliable results

reproducible across studies. Furthermore, the interpretation of task-specific brain re-

gions and connections are potentially useful for the analysis of other clinical prediction

tasks where disease-region relevance is unclear. In contrast, in the Pearson graph the

most significant positive components are the connections within functional modules.

These within-module connections reflect intrinsic brain functional organizations but

are not necessarily informative for predicting gender.

To demonstrate that our learnable graphs possess discrimination ability among

classes, we divide these learnable graphs based on genders, and apply t-tests to iden-

tify edges Ed with significantly different strengths (p < 0.05) between genders. A

difference score T is designed to reflect the discrimination ability. The difference

score Tu of each predefined functional module u is calculated as

Tu =
∑

(p,q)∈Ed

1(p ∈Mu) + 1(q ∈Mu)

2v|Mu|
, (2.16)
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where v is the number of ROIs and Mu is a set containing all indexes of nodes

belonging to the module u. Higher scores indicate larger differences between genders.

For the PNC data, the top 3 functional modules are memory retrieval network, default

mode network and ventral attention network. For the ABCD data, the top 2 modules

are default mode network and ventral salience network (including ventral attention

network). Literature [160] indicates that ROIs with significant sex differences are

located within the default mode network, the ventral attention network, the auditory

network, and the memory retrieval network, which aligns well with our top ranked

modules; whereas Pearson graphs cannot match the literature as well as our learnable

graphs. For more details, please refer to Appendix A.3. This observation further

validates that our learnable graphs can effectively capture group differences in brain

network and facilitate fMRI-based brain network classification.

2.5 Conclusion

In this paper, we present FBNetGen, a task-aware GNN-based framework for fMRI

analysis via functional brain network generation, which generates the brain connectiv-

ity matrices and predicts clinical outcomes simultaneously from fMRI BOLD signal

series. Extensive experiments demonstrate that FBNetGen consistently outper-

forms three types of possible baselines including directly using time-series features

without graph construction; using traditional methods to construct graphs; and using

other learnable graph generators. Besides, the interpretation analysis of our learn-

able brain networks shows the generated networks are task-oriented and possess the

discrimination ability among classes, providing aligned interpretation towards neu-

robiological findings. Our framework is immediately usable in practice for exploring

more real-world prediction tasks such as mental disease diagnosis and mental disorder

analysis. In the future, we plan to test our techniques on more datasets and tasks,
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improve the graph generator beyond direct link prediction, as well as apply pretrain-

ing and transfer learning techniques to learn commonly important brain connectivity

structures across multiple datasets and tasks.
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Chapter 3

Model Architecture: Brain

Network Transformer

3.1 Introduction

Brain network analysis has been an intriguing pursuit for neuroscientists to under-

stand human brain organizations and predict clinical outcomes [160, 190, 189, 18, 52,

80, 166, 87, 189, 88, 122, 135, 90]. Among various neuroimaging modalities, functional

Magnetic Resonance Imaging (fMRI) is one of the most commonly used for brain net-

work construction, where the nodes are defined as Regions of Interest (ROIs) given an

atlas, and the edges are calculated as pairwise correlations between the blood-oxygen-

level-dependent (BOLD) signal series extracted from each region [170, 167, 190, 49].

Researchers observe that some regions can co-activate or co-deactivate simultaneously

when performing cognitive-related tasks such as action, language, and vision. Based

on this pattern, brain regions can be classified into diverse functional modules to

analyze diseases towards their diagnosis, progress understanding and treatment.

Nowadays Transformer-based models have led a tremendous success in various

downstream tasks across fields including natural language processing [182, 51] and
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computer vision [56, 35, 178]. Recent efforts have also emerged to apply Transformer-

based designs to graph representation learning. GAT [183] firstly adapts the attention

mechanism to graph neural networks (GNNs) but only considers the local structures of

neighboring nodes. Graph Transformer [59] injects edge information into the attention

mechanism and leverages the eigenvectors of each node as positional embeddings.

SAN [120] further enhances the positional embeddings by considering both eigenvalues

and eigenvectors and improves the attention mechanism by extending the attention

from local to global structures. Graphomer [207], which achieves the first place on

the quantum prediction track of OGB Large-Scale Challenge [89], designs unique

mechanisms for molecule graphs such as centrality encoding to enhance node features

and spatial/edge encoding to adapt attention scores.

However, brain networks have several unique traits that make directly applying

existing graph Transformer models impractical. First, one of the simplest and most

frequently used methods to construct a brain network in the neuroimaging commu-

nity is via pairwise correlations between BOLD time courses from two ROIs [126,

106, 46, 202, 226]. This impedes the designs like centrality, spatial, and edge encod-

ing because each node in the brain network has the same degree and connects to every

other node by a single hop. Second, in previous graph transformer models, eigenval-

ues and eigenvectors are commonly used as positional embeddings because they can

provide identity and positional information for each node [45, 78]. Nevertheless, in

brain networks, the connection profile, which is defined as each node’s corresponding

row in the brain network adjacency matrix, is recognized as the most effective node

feature [46]. This node feature naturally encodes both structural and positional infor-

mation, making the aforementioned positional embedding design based on eigenvalues

and eigenvectors redundant. The third challenge is scalability. Typically, the num-

bers of nodes and edges in molecule graphs are less than 50 and 2500, respectively.

However, for brain networks, the node number is generally around 100 to 400, while



31

the edge number can be up to 160,000. Therefore, operations like the generation of

all edge features in existing graph transformer models can be time-consuming, if not

infeasible.

Orthonormal Bases Non-orthonormal Bases

(a) Node features projected to a 3D space 
with PCA. Colors indicate functional modules.

(b) Orthonormal bases can make indistinguishable nodes in non-
orthonormal bases easily distinguishable.

Figure 3.1: Illustration of the motivations behind Orthonormal Clustering
Readout.

In this work, we propose to developBrain Network Transformer (BrainNetTF),

which leverages the unique properties of brain network data to fully unleash the power

of Transformer-based models for brain network analysis. Specifically, motivated by

previous findings on effective GNN designs for brain networks [46], we propose to use

the effective initial node features of connection profiles. Empirical analysis shows that

connection profiles naturally provide positional features for Transformer-based mod-

els and avoid the costly computations of eigenvalues or eigenvectors. Moreover, recent

work demonstrates that GNNs trained on learnable graph structures can achieve su-

perior effectiveness and explainability [106]. Inspired by this insight, we propose to

learn fully pairwise attention weights with Transformer-based models, which resem-

bles the process of learning predictive brain network structures towards downstream

tasks.

One step further, when GNNs are used for brain network analysis, a graph-level

embedding needs to be generated through a readout function based on the learned

node embeddings [111, 126, 46]. As is shown in Figure 3.1(a), a property of brain

networks is that brain regions (nodes) belonging to the same functional modules
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often share similar behaviors regarding activations and deactivations in response to

various stimulations [20]. Unfortunately, the current labeling of functional modules

is rather empirical and far from accurate. For example, [3] provides more than 100

different functional module organizations based on hierarchical clustering. In order

to leverage the natural functions of brain regions without the limitation of inaccurate

functional module labels, we design a new global pooling operator, Orthonormal

Clustering Readout, where the graph-level embeddings are pooled from clusters

of functionally similar nodes through soft clustering with orthonormal projection.

Specifically, we first devise a self-supervised mechanism based on [194] to jointly

assign soft clusters to brain regions while learning their individual embeddings. To

further facilitate the learning of clusters and embeddings, we design an orthonormal

projection and theoretically prove its effectiveness in distinguishing embeddings across

clusters, thus obtaining expressive graph-level embeddings after the global pooling,

as illustrated in Figure 3.1(b).

Finally, the lack of open-access datasets has been a non-negligible challenge for

brain network analysis. The strict access restrictions and complicated extraction/pre-

processing of brain networks from fMRI data limit the development of machine learn-

ing models for brain network analysis. Specifically, among all the large-scale publicly

available fMRI datasets in literature, ABIDE [19] is the only one provided with ex-

tracted brain networks fully accessible without permission requirements. However,

ABIDE is aggregated from 17 international sites with different scanners and acquisi-

tion parameters. This inter-site variability conceals inter-group differences that are

really meaningful, which is reflected in the unstable training performance and the sig-

nificant gap between validation and testing performance in practice. To address these

limitations, we propose to apply a stratified sampling method in the dataset splitting

process and standardize a fair evaluation pipeline for meaningful model comparison

on the ABIDE dataset. Our extensive experiments on this public ABIDE dataset
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and a restricted ABCD dataset [22] show significant improvements brought by our

proposed Brain Network Transformer.

3.2 Background and Related Work

3.2.1 GNNs for Brain Network Analysis

Recently, emerging attention has been devoted to the generalization of GNN-based

models to brain network analysis [125, 2]. GroupINN [200] utilizes a grouping-based

layer to provide explainability and reduce the model size. BrainGNN [126] designs the

ROI-aware GNNs to leverage the functional information in brain networks and uses

a special pooling operator to select these crucial nodes. IBGNN [44] proposes an in-

terpretable framework to analyze disorder-specific ROIs and prominent connections.

In addition, FBNetGen [106] considers the learnable generation of brain networks

and explores the explainability of the generated brain networks towards downstream

tasks. Another benchmark paper [46] systematically studies the effectiveness of var-

ious GNN designs over brain network data. Different from other work focusing on

static brain networks, STAGIN [114] utilizes GNNs with spatio-temporal attention

to model dynamic brain networks extracted from fMRI data.

3.2.2 Graph Transformer

Graph Transformer raises many researchers’ interest currently due to its outstanding

performance in graph representation learning. Graph Transformer [59] firstly injects

edge information into the attention mechanism and leverages the eigenvectors as posi-

tional embeddings. SAN [120] enhances the positional embeddings and improves the

attention mechanism by emphasizing neighbor nodes while incorporating the global

information. Graphomer [207] designs unique mechanisms for molecule graphs and

achieves the SOTA performance. Besides, a fine-grained attention mechanism is de-
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veloped for node classification [225]. Also, the Transformer is extended to larger-scale

heterogeneous graphs with a particular sampling algorithm in HGT [91]. EGT [96]

further employs edge augmentation to assist global self-attention. In addition, LSPE

[60] leverages the learnable structural and positional encoding to improve GNNs’ rep-

resentation power, and GRPE [148] enhances the design of encoding node relative

position information in Transformer.

3.3 Brain Network Transformer
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Figure 3.2: The overall framework of our proposed Brain Network Trans-
former.

3.3.1 Problem Definition

In brain network analysis, given a brain networkX ∈ RV×V , where V is the number of

nodes (ROIs), the model aims to make a prediction indicating biological sex, presence

of a disease or other properties of the brain subject. The overall framework of our

proposed Brain Network Transformer is shown in Figure 3.2, which is mainly

composed of two components, an L-layer attention module MHSA and a graph pooling
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operator OCRead. Specifically, in the first component of MHSA, the model learns

attention-enhanced node features ZL through a non-linear mapping X → ZL ∈

RV×V . Then the second component of OCRead compresses the enhanced node

embeddings ZL to graph-level embeddings ZG ∈ RK×V , whereK is a hyperparameter

representing the number of clusters. ZG is then flattened and passed to a multi-layer

perceptron for graph-level predictions. The whole training process is supervised with

the cross-entropy loss.

3.3.2 Multi-Head Self-Attention Module (MHSA)

To develop a powerful Transformer-based model suitable for brain networks, two fun-

damental designs, the positional embedding and attention mechanism, need to be

reconsidered to fit the natural properties of brain network data. In existing graph

transformer models, the positional information is usually encoded via eigendecom-

position, while the attention mechanism often combines node positions with existing

edges to calculate the attention scores. However, for the dense (often fully connected)

graphs of brain networks, eigendecomposition is rather costly, and the existence of

edges is hardly informative.

ROI node features on brain networks naturally contain sufficient positional infor-

mation, making the positional embeddings based on eigendecomposition redundant.

Previous work on brain network analysis has shown that the connection profile Xi·

for node i, defined as the corresponding row for each node in the edge weight matrix

X, always achieves superior performance over others such as node identities, degrees

or eigenvector-based embeddings [126, 106, 46]. With this node feature initialization,

the self-connection weight xii on the diagonal is always equal to one, which encodes

sufficient information to determine the position of each node in a fully connected

graph based on the given brain atlas. To verify this insight, we also empirically com-

pare the performance of the original connection profile with two variants concatenated
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with additional positional information, i.e., connection profile w/ identity feature and

connection profile w/ eigen feature. The results indeed show no benefit brought by

the additional computations (c.f. Appendix B.2). As for the attention mechanism,

previous work [46] has empirically demonstrated that integrating edge weights into

the attention score calculation can significantly degrade the effectiveness of attention

on complete graphs, while the generation of edge-wise embedding can be unaffordable

given a large number of edges in brain networks. On the other hand, the existence of

edges provides no useful information for the computation of attention scores as well

because all edges simply exist in complete graphs.

Based on the observations above, we design the basic Brain Network Trans-

former by (1) adopting the connection profile as initial node features and eliminat-

ing any extra positional embeddings and (2) adopting the vanilla pair-wise attention

mechanism without using edge weights or relative position information to learn a

singular attention score for each edge in the complete graph.

Formally, we leverage a L-layer non-linear mapping module, namely Multi-Head

Self-Attention (MHSA), to generate more expressive node featuresZL = MHSA(X) ∈

RV×V . For each layer l, the output Z l is obtained by

Z l = (∥Mm=1h
l,m)W l

O,h
l,m = Softmax

W l,m
Q Z l−1(W l,m

K Z l−1)⊤√
dl,mK

W l,m
V Z l−1, (3.1)

where Z0 = X, ∥ is the concatenation operator, M is the number of heads, l is the

layer index, W l
O,W

l,m
Q ,W l,m

K , W l,m
V are learnable model parameters, and dl,mK is the

first dimension of W l,m
K .

3.3.3 Orthonormal Clustering Readout (OCRead)

The readout function is an essential component to learn the graph-level represen-

tations for brain network analysis (e.g., classification), which maps a set of learned
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node-level embeddings to a graph-level embedding. Mean(·), Sum(·) and Max(·) are

the most commonly used readout functions for GNNs. Xu et al. [195] show that GNNs

equipped with Sum(·) readout have the same discriminative power as the Weisfeiler-

Lehman Test. Zhang et al. [220] propose a sort pooling to generate the graph-level

representation by sorting the final node representations. Ju et al. [104] present a

layer-wise readout by extending the node information aggregated from the last layer

of GNNs to all layers. However, none of the existing readout functions leverages

the properties of brain networks that nodes in the same functional modules tend to

have similar behaviors and clustered representations, as shown in Figure 3.1(a). To

address this deficiency, we design a novel readout function to take advantage of the

modular-level similarities between ROIs in brain networks, where nodes are assigned

softly to well-chosen clusters with an unsupervised process.

Formally, given K cluster centers, each center has V dimensions, E ∈ RK×V , a

Softmax projection operator is used as the function to calculate the probability Pik

of assigning node i to cluster k,

Pik =
e⟨Z

L
i· ,Ek·⟩∑K

k′ e
⟨ZL

i· ,Ek′·⟩
, (3.2)

where ⟨·, ·⟩ denotes the inner product and ZL is the learned set of node embeddings

from the last layer of MHSA module. With this computed soft assignment P ∈ RV×K ,

the original learned node representation ZL can be aggregated under the guidance

of the soft cluster information, where the graph-level embedding ZG is obtained by

ZG = P⊤ZL.

However, jointly learning node embeddings and clusters without ground-truth

cluster labels is difficult. To obtain representative soft assignment P , the initialization

of K cluster centers E is critical and should be designed delicately. To this end, we

leverage the observation illustrated in Figure 3.1(b), where orthonormal embeddings
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can improve the clustering of nodes in brain networks w.r.t. the functional modules

underlying brain regions.

Orthonormal Initialization. To initialize a group of orthonormal bases as cluster

centers, we first adopt the Xavier uniform initialization [75] to initialize K random

centers and each center contains V dimensions C ∈ RK×V . Then, we apply the

Gram-Schmidt process to obtain the orthonormal bases E, where

uk = Ck· −
k−1∑
j=1

⟨uj,Ck·⟩
⟨uj,uj⟩

uj, Ek· =
uk

∥uk∥
. (3.3)

In the next section, we theoretically prove the advantage of this orthonormal

initialization.

Theoretical Justifications

In OCRead, proper cluster centers can generate higher-quality soft assignments and

enlarge the difference between P from different classes. [161, 138] showed the advan-

tages of orthogonal initialization in DNN model parameters. However, none of them

proves whether it is an ideal strategy to obtain the cluster centers. We propose two

methods from the perspective of statistics as follows.

Firstly, to discern features of different nodes, we would expect a larger discrepancy

among their similarity probabilities indicated from the readout. One way to measure

the discrepancy is using the variance of P for each feature. Let P̄ ≡ 1/K denote

the mean of any discrete probabilities with K values. Variance of P measures the

difference between P and P̄ . We average over the feature vector space: if the result

is small, then there is a large tendency that different P approaches P̄ and hence

cannot be discerned easily. Specifically, the following theorem holds for our function

Eq. (3.2):

Theorem 3.3.1. For arbitrary r > 0, let Br = {Z ∈ RV ; ∥Z∥≤ r} denote the round
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ball centered at origin of radius r with Z being feature vectors. Let Vr be the volume

of Br. The variance of Softmax projection averaged over Br

1

Vr

∫
Br

K∑
k

( e⟨Z,Ek·⟩∑K
k′ e

⟨Z,Ek′·⟩
− 1

K

)2
dZ, (3.4)

attains maximum when E is orthonormal.

Despite the concise form, it is unclear whether the above integral has an elemen-

tary antiderivative. Even though, we can circumvent this problem and a rigorous

proof is given in Appendix B.3.

The second statistical method shows that for general readout functions without

a known analytical form, initializing with orthonormal cluster centers has a larger

probability of gaining better performance. To set up the proper statistical scenario,

we assume that the unknown readout is obtained by a regression of some samples

(Ẑ(s), Ê(t), P̂ (st)). This formally converts the exact functional relationship between

Zi·,Ek· and Pik to a statistical relationship:

PT (Zi·,Ek·) = P (Zi·,Ek·) + ϵi, ϵi ∼ N(0, σ2), E(ϵi) = 0, D(ϵi) = σ2, (3.5)

with PT being the probability truly reflecting similarities between nodes and clus-

ters and ϵi denoting the stochastic error. It is almost impossible to find PT , but by

computing the so-called variation inflation factor [139], we show that regression in or-

thonormal case has a higher accuracy than that in non-orthonormal case. Combining

with a hypothesis testing, we obtain the following

Theorem 3.3.2. The significance level αEk· which reveals the probability of rejecting

a well-estimated pooling is lower when sampling from orthonormal centers than that

from non-orthonormal centers.

More details can be seen in Appendix B.3.
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3.3.4 Generalizing OCRead to Other Graph Tasks and Do-

mains

In this work, we tested the proposed OCRead on functional connectivity (FC) based

brain networks. Other popular modalities of brain networks include structural connec-

tivities (SC), which describe the anatomical organization of the brain by measuring

the fiber tracts between brain regions [7]. In SC-based brain networks, ROIs that

are positionally close to each other on the structural connectivity networks tend to

share similar connection profiles. This means the idea of OCRead is also naturally

applicable to SC networks, where the orthonormal clustering is based on the physical

distances instead of the functional modules on FC.

At a higher level, the idea of our proposed OCRead is not confined to graph-

level prediction tasks on brain networks but can also be generalized to other graph

learning tasks and domains. Precisely, there is a growing tendency in node/edge

level prediction tasks to enhance the node/edge representation learning by utilizing

the subgraph embeddings around each target node/edge [219, 218]. In this process,

substructure learning needs to be performed on the subgraphs, where our proposed

OCRead can be adapted for compressing a set of node embeddings to subgraph

embeddings. Besides, OCRead is also potentially useful for other types of graphs

in the biomedical domains. For example, for protein-protein interaction networks,

proteins can be implicitly grouped by families that share common evolutionary origins

[142], whereas for gene expression networks, genes can be grouped based on the

latent pathway information [110]. Both of them are potential directions for the future

application of OCRead, among many others driven by biological or other types of

prior knowledge regarding underlying node/edge groups.
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3.4 Experiments

This section evaluates the effectiveness of our proposed Brain Network Trans-

former (BrainNetTF) with extensive experiments. We aim to address the follow-

ing research questions:

RQ1. How does BrainNetTF perform compared with state-of-the-art models

of various types?

RQ2. How does our proposed OCRead module perform with different model

choices?

RQ3. Does the learned model of BrainNetTF exhibit consistency with existing

neuroscience knowledge and suggest reasonable explainability?

3.4.1 Experimental Settings

Datasets. We conduct experiments on two real-world fMRI datasets. (a) Autism

Brain Imaging Data Exchange (ABIDE): This dataset collects resting-state func-

tional magnetic resonance imaging (rs-fMRI) data from 17 international sites, and

all data are anonymous [19]. The used dataset contains brain networks from 1009

subjects, with 516 (51.14%) being Autism spectrum disorder (ASD) patients (pos-

itives). The region definition is based on Craddock 200 atlas [42]. As the most

convenient open-source large-scale dataset, it provides generated brain networks and

can be downloaded directly without permission request. Despite the ease of acquisi-

tion, the heterogeneity of the data collection process hinders its use. Since multi-site

data are collected from different scanners with different acquisition parameters, non-

neural inter-site variability may mask inter-group differences. In practice, we find the

training unstable, and there is a significant gap between validation and testing per-

formances. However, we discover that most models can achieve a stable performance

if we follow an appropriate stratified sampling strategy by considering collection sites



42

during the training-validation-testing splitting process for ABIDE. Training curves in

Appendix B.1 also show how different models achieve a stabler performance on our

designed new splitting settings than the random splitting. Therefore, we use ABIDE

as one of the benchmark datasets in this work, and we share our re-standardized data

splitting to provide a fair evaluation pipeline for various future methods. (b) Adoles-

cent Brain Cognitive Development Study (ABCD): This is one of the largest publicly

available fMRI datasets with restricted access (a strict data requesting process needs

to be followed to obtain the data) [22]. The data we use in the experiments are fully

anonymized brain networks with only biological sex labels. After the quality control

process, 7901 subjects are included in the analysis, with 3961 (50.1%) among them

being female. The region definition is based on the HCP 360 ROI atlas [74].

Metrics. The diagnosis of ASD is the prediction target on ABIDE, while biolog-

ical sex prediction is used as the evaluation task for ABCD. Both prediction tasks

are binary classification problems, and both datasets are balanced between classes.

Hence, AUROC is a proper performance metric adopted for fair comparison at various

threshold settings, and accuracy is applied to reflect the prediction performance when

the threshold is 0.5. Besides, since the model is mainly for medical applications, we

add two critical metrics for diagnostic tests, Sensitivity and Specificity, which respec-

tively refer to true positive rate and true negative rate. All reported performances

are the average of 5 random runs on the test set with the standard deviation.

Implementation details. For experiments, we use a two-layer Multi-Head Self-

Attention Module and set the number of heads M to 4 for each layer. We randomly

split 70% of the datasets for training, 10% for validation, and the remaining are

utilized as the test set. In the training process of BrainNetTF, we use an Adam

optimizer with an initial learning rate of 10−4 and a weight decay of 10−4. The batch

size is set as 64. All models are trained for 200 epochs, and the epoch with the highest

AUROC performance on the validation set is used for performance comparison on the
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test set. The model is trained on an NVIDIA Quadro RTX 8000. Please refer to the

repository and Appendix B.9 for the full implementation of BrainNetTF.

Computation complexity. InBrainNetTF, the computation complexity of Multi-

Head Self-Attention Module and OCRead are O(LMV 2) and O(KV ) respectively,

where L is the layer number of Multi-Head Self-Attention Module, V is the number

of nodes, M is the number of heads, and K is the number of clusters in OCRead.

The overall computation complexity of BrainNetTF is thus O(V 2), which is on

the same scale as common GNNs on brain networks such as BrainGNN [126] and

BrainGB [46].

3.4.2 RQ1: Performance Analysis

We compare BrainNetTF with baselines of three types. The details about how to

tune hyperparameters of various baselines can be found in Appendix B.8. Besides,

Appendix B.7 shows the comparison of the number of parameters between our model

and other baseline models, which shows that the parameter size of BrainNetTF

is larger than GNN and CNN models but smaller than other transformer models.

(a) BrainNetTF vs. other graph transformers. We compare BrainNetTF

with two popular graph Transformers, SAN [120] and Graphormer [207]. In addition,

we also include a basic version of BrainNetTF without OCRead, composed of a

Transformer with a 2-layer Multi-Head Self-Attention and a CONCAT-based readout

named VanillaTF. Our BrainNetTF outperforms SAN and Graphormer by signifi-

cant margins, with up to 6% absolute improvements on both datasets. VanillaTF also

surpasses SAN and Graphormer. We believe this downgraded performance of existing

graph transformers results from their design flaws facing the natures of brain networks.

Specifically, both the preprocessing and the training stages of the Graphormer model

accepts only discrete, categorical data. A bin operator has to be applied on the adja-

cency matrix, coarsening the node feature from connection profiles and dramatically

https://github.com/Wayfear/BrainNetworkTransformer
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hurting the performance. Furthermore, since brain networks are complete graphs,

key designs like centrality encoding and spatial encoding of Graphormer cannot be

appropriately applied. Similarly, for SAN, experiments in Appendix B.2 show that

adding eigen node features to connection profiles cannot improve the model’s perfor-

mance. Besides, the benchmark paper [46] reveals that injecting edge weights into

the attention mechanism can significantly reduce the prediction power. Furthermore,

Appendix B.6 shows our BrainNetTF is much faster than other graph transformers

due to special optimizations towards brain networks. (b) BrainNetTF vs. neural

network models on fixed brain networks. We further introduce another three

neural network baselines on fixed brain networks. BrainGNN [126] designs ROI-

aware GNNs for brain network analysis. BrainGB [46] is a systematic study of how

to design effective GNNs for brain network analysis. We adopt their best design as

the BrainGB baseline. BrainnetCNN [111] represents state-of-the-art of specialized

GNNs for brain network analysis, which models the adjacency matrix of a brain net-

work similarly as a 2D image. As is shown in Table 3.1, BrainNetTF consistently

outperforms BrainGNN, BrainGB and BrainnetCNN. (c) BrainNetTF vs. neural

network models on learnable brain networks. Unlike classical GNNs, FBNET-

GEN [106], DGM [112] and BrainNetGNN [136] hold a similar idea, which is to apply

GNNs based on a learnable graph. FBNETGEN achieves SOTA performance on the

ABCD dataset for biological sex prediction, and the learnable graphs can be seen as

a type of attention score. Experiment results show that our proposed BrainNetTF

beats all three of them on both datasets.

3.4.3 RQ2: Ablation Studies on the OCRead Module

OCRead with varying readout functions

We vary the readout function for various Transformer architectures, including SAN,

Graphormer and VanillaTF, to observe the performance of each ablated model vari-
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Table 3.1: Performance comparison with different baselines (%). The performance
gains of BrainNetTF over the baselines have passed the t-test with p-value<0.03.

Type Method
Dataset: ABIDE Dataset: ABCD

AUROC Accuracy Sensitivity Specificity AUROC Accuracy Sensitivity Specificity

Graph
Transformer

SAN 71.3±2.1 65.3±2.9 55.4±9.2 68.3±7.5 90.1±1.2 81.0±1.3 84.9±3.5 77.5±4.1
Graphormer 63.5±3.7 60.8±2.7 78.7±22.3 36.7±23.5 89.0±1.4 80.2±1.3 81.8±11.6 82.4±7.4
VanillaTF 76.4±1.2 65.2±1.2 66.4±11.4 71.1±12.0 94.3±0.7 85.9±1.4 87.7±2.4 82.6±3.9

Fixed
Network

BrainGNN 62.4±3.5 59.4±2.3 36.7±24.0 70.7±19.3 OOM OOM OOM OOM
BrainGB 69.7±3.3 63.6±1.9 63.7±8.3 60.4±10.1 91.9±0.3 83.1±0.5 84.6±4.3 81.5±3.9

BrainNetCNN 74.9±2.4 67.8±2.7 63.8±9.7 71.0±10.2 93.5±0.3 85.7±0.8 87.9±3.4 83.0±4.4

Learnable
Network

FBNETGNN 75.6±1.2 68.0±1.4 64.7±8.7 62.4±9.2 94.5±0.7 87.2±1.2 87.0±2.5 86.7±2.8
BrainNetGNN 55.3±1.9 51.2±5.4 67.7±37.5 33.9±34.2 75.3±5.2 67.5±4.7 67.7±5.7 68.0±6.5

DGM 52.7±3.8 60.7±12.6 53.8±41.2 51.1±40.9 76.8±19.0 68.6±8.1 40.5±29.7 95.6±4.2

Ours BrainNetTF 80.2±1.0 71.0±1.2 72.5±5.2 69.3±6.5 96.2±0.3 88.4±0.4 89.4±2.6 88.4±1.5

ant. The results shown in Table 3.2 demonstrate that our OCRead is the most ef-

fective readout function for brain networks and improves the prediction power across

various Transformer architectures.

Table 3.2: Performance comparison AUROC (%) with different readout functions.

Readout
Dataset: ABIDE Dataset: ABCD

SAN Graphormer VanillaTF SAN Graphormer VanillaTF

MEAN 63.7±2.4 50.1±1.1 73.4±1.4 88.5±0.9 87.6±1.3 91.3±0.7
MAX 61.9±2.5 54.5±3.6 75.6±1.4 87.4±1.1 81.6±0.8 94.4±0.6
SUM 62.0±2.3 54.1±1.3 70.3±1.6 84.2±0.8 71.5±0.9 91.6±0.6

SortPooling 68.7±2.3 51.3±2.2 72.4±1.3 84.6±1.1 86.7±1.0 89.9±0.6
DiffPool 57.4±5.2 50.5±4.7 62.9±7.3 78.1±1.5 70.0±1.9 83.9±1.3
CONCAT 71.3±2.1 63.5±3.7 76.4±1.2 90.1±1.2 89.0±1.4 94.3±0.7

OCRead 70.6±2.4 64.9±2.7 80.2±1.0 91.2±0.7 90.2±0.7 96.2±0.4

OCRead with varying cluster initializations

To further demonstrate how the design of OCRead influences the performance of

BrainNetTF, we investigate two key model selections, the initialization method

for cluster centers and the cluster number K. For the initialization, three different

kinds of initialization procedures are compared, namely (a) Random: the Xavier

uniform [75] is leveraged to randomly generate a group of centers, which are then

normalized into unit vectors; (b) Learnable: the same initial process as Random, but

the generated centers are further updated with gradient descent; (c) Orthonormal:
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our proposed process as described in Eq. (3.3).

Specifically, we test each initialization method with the cluster number K equals

to 2, 3, 4, 5, 10, 50, 100. The results of adjusting these two hyper-parameters on

ABIDE and ABCD datasets are shown in Figure 3.3(a). We observe that: (1) When

cluster centers are orthonormal, the model’s performance increases with the number

of clusters ranging from 2 to 10, and then drops with the cluster number rising from

10 to 100, suggesting the optimal cluster number to be relatively small, which leads to

less computation and is consistent with the fact that the typical number of functional

modules are smaller than 25; (2) With a sufficiently large cluster number, all three

initialization methods, Random, Learnable and Orthonormal, tend to reach similar

performance, but orthonormal performs stably better when the number of clusters

is smaller; (3) It is also notable that our OCRead consistently achieves the best

performance over other initialization methods regarding smaller standard deviations.

(a) Influence of two key  hyper-parameters for model performance. (b) Attention heatmap on ABCD.

Figure 3.3: The hyper-parameter influence and the heatmap from self-attention.

3.4.4 RQ3: In-depth Analysis of Attention Scores and Clus-

ter Assignments

Figure 3.3(b) displays the self-attention score from the first layer of Multi-Head Self-

Attention. The attention scores are the average across all subjects in the ABCD

test set. This figure shows that the learned attention scores well match the divisions
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of functional modules based on available labels, demonstrating the effectiveness and

explainability of our Transformer model. Note that since there exists no available

functional module labels for the atlas of the ABIDE dataset, we cannot visualize the

correlations between attention scores and functional modules.

Figure 3.4 shows the cluster soft assignment results P on nodes in OCRead

with two initialization methods. The cluster number K is set to 4. The visual-

ized numerical values are the average P of all subjects in each dataset’s test set.

From the visualization, we observe that (a) Base on Appendix B.10, orthonormal

initialization produces more discriminative P between classes than random initial-

ization; (b) Within each class, orthonormal initialization encourages the nodes to

form groups. These observations demonstrate that our OCRead with orthonormal

initialization can leverage potential clusters underlying node embeddings, thus auto-

matically grouping brain regions into potential functional modules.

ABCDABIDE

Orthonormal

Random

Figure 3.4: Visualization of cluster (module-level) embeddings learned with Orthonor-
mal vs. Random cluster center initializations on two datasets. Each group in the
dotted box contains two heatmaps (one for each prediction class) with the same node
ordering on the x-axis.

3.5 Discussion and Conclusion

Neuroimaging technologies, including functional magnetic resonance imaging (fMRI)

are powerful noninvasive tools for examining the brain functioning. There is an
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emerging nation-wide interest in conducting neuroimaging studies for investigating

the connection between the biology of the brain, and demographic variables and

clinical outcomes such as mental disorders. Such studies provide an unprecedented

opportunity for cross-cutting investigations that may offer new insights to the differ-

ences in brain function and organization across subpopulations in the society (such as

biological sex and age groups) as well as reveal neurophysiological mechanisms under-

lying brain disorders (such as psychiatric illnesses and neurodegenerative diseases).

These studies have a tremendous impact in social studies and biomedical sciences.

For example, mental disorders are the leading cause of disability in the USA and

roughly 1 in 17 have a seriously debilitating mental illness. To address this burden,

national institutions such as NIH have included brain-behavior research as one of their

strategic objectives and stated that sound efforts must be made to redefine mental

disorders into dimensions or components of observable behaviors that are more closely

aligned with the biology of the brain. Using brain imaging data to predict diagnosis

has great potential to result in mechanisms that target for more effective preemption

and treatment.

In this paper, we present Brain Network Transformer, a specialized graph

Transformer model with Orthonormal Clustering Readout for brain network

analysis. Extensive experiments on two large-scale brain network datasets demon-

strate that our BrainNetTF achieves superior performance over SOTA baselines

of various types. Specifically, to model the potential node feature similarity in brain

networks, we design OCRead and prove its effectiveness both theoretically and em-

pirically. Lastly, the re-standardized dataset split for ABIDE can provide a fair

evaluation for new methods in the community. For future work, BrainNetTF can

be improved with explicit explanation modules and used as the backbone for further

brain network analysis, such as digging essential neural circuits for mental disorders

and understanding cognitive development in adolescents.
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Chapter 4

Model Architecture: DynAmic

bRain Transformer (DART) with

Multi-level Attention for

Functional Brain Network Analysis

4.1 Introduction

Network-centric analysis on brain imaging has gained substantial attention in neu-

roimaging studies recently, contributing profoundly to our understanding of brain

organization in healthy individuals and those with brain disorders [18]. Neuroscience

research has consistently demonstrated that insights into neural circuits are piv-

otal for distinguishing brain function across diverse populations, with disruptions in

these circuits often instigating and delineating brain disorders [99]. Functional mag-

netic resonance imaging (fMRI) has emerged as a widely employed imaging modality

for exploring brain function and organization [168]. Predicting clinical outcomes or

categorizing individuals based on brain networks extracted from fMRI images with
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Figure 4.1: Four distinct schemas when employing Deep Learning for brain network
analysis. From fMRI imaging, three types of input data can be acquired: (1) raw time-
series data (BOLD signals), (2) static functional connectivity (FC), and (3) dynamic
FCs, which capture temporal changes. Both kinds of FC are derived from the BOLD
signal. Our method is the first attempt to combine Static FCs and dynamic FCs.

deep neural networks is a topic of significant interest in the neuroimaging commu-

nity [111, 107, 44, 226].

Figure 4.1 succinctly summarizes various schemas used for analyzing brain net-

works with neural networks. The classic approach to network analyses primarily

relies on using individual fMRI data to construct functional brain networks [170].

This established process involves selecting a brain atlas or regions of interest (ROI),

extracting fMRI blood-oxygen-level-dependent (BOLD) signal series from each node

or region, and computing pairwise connectivity measures. Once static brain networks

are obtained, various neural network models can be applied for downstream analy-

ses, as demonstrated in Figure 4.1 (a). There have been attempts to model BOLD

signals directly using deep neural networks (DNNs), as seen in Figure 4.1 (b), but

these have generally yielded unsatisfactory results due to the low signal-to-noise ratio

of BOLD signals [106, 213]. However, recent works have attempted to use dynamic

brain networks to replace static ones for downstream analyses [131, 114]. These dy-
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Figure 4.2: Diagram illustrating the comprehensive workflow of the proposed method-
ology, DART.

namic networks are created by segmenting BOLD signals into several overlapping or

non-overlapping windows, each contributing to a unique connectivity matrix. This

strategy shown in Figure 4.1 (c) allows for exploring temporal variations and state

transitions in functional connectivity over time, providing crucial insights into brain

function. However, there is significant space for improvement due to the high dimen-

sionality and complexity of dynamic brain networks. In response to these challenges,

this paper proposes a novel methodology, DynAmic bRain Transformer (DART),

depicted in Figure 4.1 (d). DART exploits static brain networks as a foundation

measurement to integrate dynamic brain networks, thereby improving performance

against benchmark methods. Additionally, we incorporate specific attention mech-

anisms to enhance model explainability, aiming to capitalize on dynamic brain net-

works’ switching in neuroimaging studies.
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Table 4.1: Performance comparison with baselines. The ↑ indicates a higher metric
value is better, while ↓ is opposite.

Type Method
PNC ABCD

AUROC↑ Accuracy↑ MSE↓

Dynamic
STAGIN 63.5±4.0 54.2±1.4 102.4±6.1
ST-GCN 64.7±3.5 57.3±3.2 89.2±11.2

Static

BrainGNN 62.4±3.5 59.4±2.3 80.8±4.7
BrainGB 69.7±3.3 63.6±1.9 78.1±4.3

BrainNetCNN 74.9±2.4 67.8±2.7 77.1±4.5
BNT 78.2±1.9 70.6±2.1 60.2±1.5

Dynamic & Static DART 80.7±3.1 72.5±2.3 58.3±3.5

4.2 Method

In this section, we elaborate on the design of DART and its four main components

as shown in Figure 4.2. Specifically, the input X ∈ Rv×T denotes the BOLD time-

series for regions of interest (ROIs) represents a sample (individual), v is the number

of ROIs, and T is the length of time-series. We set L as the window size, S as

the stride size. Given a sample X, we can obtain k dynamic brain networks, where

k = ⌊T−L+S
S
⌋. For the classification task, the target output is the prediction label

Y ∈ R|C|, where C is the class set of Y and |C| is the number of classes. For the

regression task,the target output is the prediction label Y ∈ R.

Static FC Generation. We begin by generating a static functional connectivity

(FC) matrix, which provides a summary of the overall functional connections in the

brain during the entire scan period. This static FC, A ∈ Rv×v, represents the connec-

tivity matrix between all pairs of ROIs for each individual. Specifically, we use the

Pearson Correlation as a measure of statistical dependence between the time series

of different ROIs. Each element of the static FC, Aij, is computed as Corr(Xi,Xj),

which denotes the correlation between the time-series of ROI i and ROI j. This ma-

trix captures the overall brain functional organization and serves as an anchor for the

subsequent steps.
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Dynamic FC Generation. To generate dynamic brain networks, we partition

the BOLD signal into a series of overlapping or non-overlapping windows of length

T , with a stride of size S. We calculate a dynamic functional connectivity matrix

for the time window t, Dt ∈ Rv×v. Finally, we can obtain k dynamic functional

connectivity matrix, where k is the total number of dynamic networks given by k =

⌊T−L+S
S
⌋. Each of these matrices represents a snapshot of brain connectivity at a

specific time point. Similar to the static FC generation, we use Pearson Correlation

for this computation. Each element in the dynamic connectivity matrix, Dt
ij, is then

calculated as Corr(X t
i ,X

t
j), where X t

i and X t
j are the BOLD signals for ROIs i and

j at the time window t.

Edge-level Attention and Transformer Projection. After generating both

static and dynamic FCs, we utilize the graph transformer proposed by [107] for

processing these matrices. This transformer comprises a Multi-Head Self-Attention

Module, which is adept at capturing complex dependencies between different nodes

in the network, thus enabling a rich representation of the FCs. A learnable cluster-

ing readout function is applied to compress the matrix into a graph-level embedding.

In the case of the static brain network, the hidden representation, hA = fTF(A), is

obtained. In contrast, for each dynamic brain network, the hidden representation is

equipped with an attention layer α and added by a positional embedding as delin-

eated in [182], resulting in ht
D = fTF(α ◦Dt) + P t. Here, ◦ denotes the Hadamard

product, α ∈ Rv×v represents a learnable attention matrix (initialized at 1) shared

across all dynamic networks, and P t refers to the positional embedding at time win-

dow t. The attention mechanism based on α allows the model to focus on the most

informative connections in the brain networks.

Temporal-level Attention and Fusion. Given the hidden embedding of static

FC hA and the sequence of dynamic FCs’ hidden embedding ht
D, we utilize an at-

tention mechanism to fuse these networks. The attention scores are computed based



54

on the similarity between hA and each ht
D. Specifically, the attention score βt for

each dynamic FC ht
D is calculated as βt = softmax(sim(hA,h

t
D)), where sim(.) is

a similarity function, such as dot product. Then, the fused FC F is generated as a

weighted sum of dynamic FCs, i.e., F =
∑k

t=1 β
t ·ht

D. The final FC F is then fed into

the multi-layer perception module for final prediction. The fusion mechanism thus

enables the model to direct its focus towards dynamic FCs bearing higher similarity

to the static FC, effectively leveraging the static FC’s stable functional information

to guide the dynamic FC fusion.

4.3 Experiments

4.3.1 Experimental Settings

Dataset. This study utilizes two public neuroimaging datasets. The first is the

Adolescent Brain Cognitive Development Study (ABCD), one of the largest pub-

licly available fMRI datasets with stringent access control [22]. We employ fully

anonymized brain networks based on the HCP 360 ROI atlas [74] and define a task,

the Cognition Summary Score Prediction, a regression problem focused on five cogni-

tive sub-domains. Considering the variability in sequence lengths within the ABCD

dataset, we included only those samples with a sequence length exceeding 1024, trun-

cating them to form a unified length dataset, yielding 4613 samples for regression

analysis. The second dataset is the Philadelphia Neuroimaging Cohort (PNC), whose

individuals aged 8–21 years provided by the Children’s Hospital of Philadelphia [159].

After quality control, the dataset includes 503 subjects, each providing 120 timesteps

of data from 264 nodes [152].

Metric. To evaluate performance in binary classification tasks, we employ two widely

accepted metrics: Area Under the Receiver Operating Characteristic (AUROC) and

accuracy. We set the classification threshold at 0.5 to determine the final class labels.
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In the case of regression tasks, we utilize the Mean Square Error (MSE) as a compre-

hensive measure of model performance. Please note, all the results presented in this

study are the mean values derived from five independent runs, each initiated with a

different random seed, to ensure the robustness and reproducibility of our findings.

Implementation.We configure the window size L and stride size as 24 to ensure each

window encapsulates a one-minute BOLD signal. The architecture of our Transformer

is built according to the design described in [107], setting the number of transformer

layers to 2, matching the hidden dimension for each transformer layer with the number

of nodes v, and employing 4 heads. We divide our datasets such that 70% is utilized

for training, 10% for validation, and the remainder for testing. We leverage the Adam

optimizer throughout the training process with a learning rate and weight decay set

at 10−4. Our batch size is 16, and all models undergo 200 training epochs. The epoch

displaying optimal performance on the validation set is chosen for the final report.

4.3.2 Performance and Analysis

Our model’s performance is benchmarked against several state-of-the-art methodolo-

gies in brain network analysis, and the result can be found in Table 4.1. We consider

methods that leverage both static and dynamic brain networks for comparison. The

baseline models include STAGIN [114], which constructs dynamic brain networks and

fuses them using an attention mechanism without considering static brain networks;

ST-GCN [71], an improved version of GCN that takes into account not only the cur-

rent graph but also the adjacency of prior and future graphs; BrainGNN [126] and

BrainGB [46], two Graph Neural Networks designed explicitly for static brain net-

works; BrainNetCNN [111], a convolutional neural network model designed for static

brain networks; and finally BNT [107], a graph transformer model also designed for

static brain networks, which is the same transformer that we employ in our model to

project brain networks into an embedding.
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The comparative analysis with these methods demonstrates several vital insights.

Models that rely exclusively on dynamic brain networks perform the poorest, under-

lining the critical role of global information provided by static brain networks in pre-

dictions. Static brain networks were found to encompass the most significant predic-

tive signals, which illustrates our strategy of using the hidden representations of these

static networks as anchor points (or query embeddings) to fuse dynamic brain repre-

sentations. Furthermore, integrating dynamic brain networks is observed to enhance

model performance because it exploits the fine-grained variations in brain states. As

a result, our proposed methodology, denoted as DART, consistently outperforms all

baseline methods, exhibiting the highest performance across various metrics on two

datasets with both regression and classification tasks.

4.3.3 Attention Visualization and Analysis

Due to the special attention design in DART, the proposed method enables two-level

attention-driven interpretability - edge-level attention (α), representing the signifi-

cance of each edge, and temporal-level attention (β), indicating the importance of

each dynamic brain network. As evidenced in Figure 4.3, during the first 100 epochs,

attention weights progressively evolve, stabilizing over the subsequent 100 epochs.

The edge-level attention, initially uniform, progressively concentrates on the Visual

and Default Mode sub-networks, aligning with the scores evaluated from heavy visual

tasks like the Picture Vocabulary and Picture Sequence Memory Tests. Meanwhile,

the temporal-level attention highlights dynamic brain networks recorded during the

middle collection. Given the fact that the ABCD dataset is collected from children, it

is plausible that resting-state brain activity is most prominent for children during the

middle of the data collection process, corroborating our temporal attention insights.
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Figure 4.3: Evolution of two-level attention during the training on the ABCD dataset.
The first row displays the progression of edge-level attention (α) across epochs, while
the second row shows the changes in temporal-level attention (β) across epochs.

4.4 Conclusion

Our proposed method, DART, addresses the challenges presented by dynamic brain

networks’ complexity and high dimensionality, thereby advancing brain network anal-

ysis in neuroimaging. By leveraging static brain networks as a foundational measure-

ment, we successfully integrate dynamic brain networks and improve performance

compared to standard methods. The specific attention mechanisms incorporated

within DART further enhance model explainability.
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Chapter 5

Data Augmentation: Riemannian

Mixup for Improved Generalization

5.1 Introduction

As a ubiquitous type of data in biomedical studies, biological networks are used to

depict a complex system with a set of interactions between various biological entities.

For example, in a brain network, the correlations extracted from functional Magnetic

Resonance Imaging (fMRI) are modeled as interactions among human-divided brain

regions [170, 167, 190, 129, 29, 106, 93, 94]. Meanwhile, in a co-expression gene-protein

network, interactions are built to discover disease genes and potential modules for

clinical intervention [146]. There are diverse ways to define the connections among

entities in biological networks, such as interactions [210, 127], reactions [40], and

relations [105, 47, 196, 46, 44]. One of the most widespread practices is calculating the

covariance and correlation among entities to summarize and quantify interactions [15,

167, 209, 58, 188, 187]. Therefore, developing powerful computational methods to

predict disease outcomes based on profiling datasets from such correlation matrices

has attracted great interest from biologists [126, 200, 4, 211, 125, 128, 204, 103].
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(a) (b) (c)

Figure 5.1: Train/Test performance of a Transformer on the biological network
dataset PNC with 503 samples. Each sample is represented as a 120 × 120 adja-
cency matrix. V-Mixup is the vanilla Mixup and R-Mixup is our proposed method.

Deep learning methods have achieved state-of-the-art performance in various down-

stream applications [35, 111], especially when the training sample size is large enough.

However, biological network datasets often suffer from limited samples due to the com-

plicated and expensive collection and annotation processes of scientific data [22, 222,

198]. Another key property of biological networks is that the dimension of such net-

works is typically very high, i.e., O(n2) correlation edges among n entities. Therefore,

directly applying Deep Neural Networks (DNNs) to such biological network datasets

can easily cause severe overfitting [5, 197, 212, 50, 203].

Mixup is a widely used data augmentation technique that can improve the model

performance by linearly interpolating new samples from pairs of existing instances [217].

In the scenario of biological network analysis, since the node identities and their corre-

sponding order are usually fixed across network samples within the same dataset [107],

the Mixup technique can be easily applied via linear interpolation. Empirically, Fig-

ure 5.1 (a) and (b) compare the processes of training a transformer model [107]

without Mixup and with the vanilla Mixup (V-Mixup) [217] technique on the brain

network dataset from the PNC studies [159] to perform binary classification. In Fig-

ure 5.1 (a), the training loss without the Mixup technique diminishes quickly while
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the test loss continues to increase, which apparently indicates a severe overfitting

problem. In contrast, in Figure 5.1 (b) with V-Mixup, the training process becomes

more stable, and the model achieves higher performance with a lower test loss, even

though the training loss is relatively high.

Although the vanilla Mixup can mitigate the overfitting issue for biological net-

works, there are two critical limitations in existing Mixup methods. The first no-

ticeable issue is that the linear Mixup of correlation matrices in the Euclidean space

would cause a swelling effect, where the determinant of the interpolated matrix is

larger than any of the original ones. The inflated determinant, which equals the

product of eigenvalues, also indicates an increase in eigenvalues. This can be inter-

preted as exaggerated variances of the data points in the principal eigen-directions.

As a result, an unphysical augmentation from original data is generated, which may

change the characteristics, e.g., the correlations of different brain functional areas,

of the original dataset and violate the intuition of linear interpolations that the de-

terminant from a mixed sample should be intuitively between the original pair of

samples [24, 62, 150, 57]. On the other hand, the vanilla Mixup cannot properly han-

dle regression tasks due to arbitrarily incorrect label [205], which means that linearly

interpolating a pair of examples and their corresponding labels cannot ensure that

the synthetic sample is paired with the correct label. Although several existing works

like RegMix [98] and C-Mixup [205] have attempted to avoid this issue by restricting

the mixing process only to samples with a similar label, their practice leads to less

various sample generation and weakens the ability of Mixup towards improving the

robustness and generalization of deep neural network models.

Recently, investigating covariance and correlation matrices in the view of sym-

metric positive definite matrices (SPD) with Riemannian manifold has demonstrated

impressive advantages in biological domains [9, 208, 147], which helps to improve the

model performance and capture informative sample features. Inspired by these stud-



61

Figure 5.2: The swelling effect of Mixing up with different metrics. S̃ is the augmented
sample mixed by samples Si and Sj, where detSi = 5.40 and detSj = 6.46. Ideally,
the determinant of the mixed sample S̃ should be between detSi and detSj. The
results indicate that mixing samples with Euclidean (widely used in existing Mixup
methods), Cholesky, and Bures-Wasserstein metrics leads to unphysical inflations.
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ies, we pinpoint a promising direction to mitigate these two identified issues when

adapting the Mixup technique for biological networks from the perspective of SPD

analysis. However, existing works that leverage the Riemannian manifold for SPD

analysis of biological networks often directly treat covariance and correlation matri-

ces as SPD matrices without rigorous verification. We clarify that covariance and

correlation matrices are not equal to SPD matrices: a necessary condition for the

covariance and correlation matrices generated from a sample X ∈ Rn×t to be positive

definite is that the sequence length t is no less than the sample variable number n. We

provide theoretical proof for this condition in Appendix C.1. The collection of pos-

itive definite matrices mathematically forms a unique geometric structure called the

Riemannian manifold, which generalizes curves and surfaces to higher dimensional

objects [124, 72, 158]. From a mathematical perspective, augmenting samples along

geodesics on the manifold of SPDs with the log-Euclidean metric effectively (a) pre-

serves the intrinsic geometric structure of the original data and eases the arbitrarily

incorrect label and (b) eliminates the swelling effect as is shown in Figure 5.2. The

advantages are further proved theoretically in Section 5.3.

Based on this insight, we propose R-Mixup, a Mixup-based data augmentation

approach for SPD matrices of biological networks, which augments samples based on

Riemannian geodesics (i.e., Eq.(5.2)) instead of straight lines ( i.e., Eq.(5.1)). We

theoretically analyze the advantages of R-Mixup by incorporating tools from differ-

ential geometry, probability and information theory. Besides, a simple and efficient

preprocess optimization is proposed to reduce the actual training time of R-Mixup

considering the costly eigenvalue decomposition operation. Sufficient experiments

on five datasets spanning both regression and classification tasks demonstrate the

superior performance and generalization ability of R-Mixup. For regression tasks,

R-Mixup can achieve the best performance based on the same random sampling

strategy as vanilla Mixup, demonstrating its ability to overcome the arbitrarily in-
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correct label issue by adequately leveraging the intrinsic geometric structure of SPD.

This advantage is also proved by a case study in Appendix C.7. Furthermore, we

observe that the performance gain of R-Mixup over existing methods is especially

prominent when the annotated samples are extremely scarce, verifying its practical

advantage under the low-resource settings.

We summarize the contributions of this work as three folds:

• We propose R-Mixup, a data augmentation method for SPD matrices in biological

networks, which leverages the intrinsic geometric structure of the dataset and re-

solves the swelling effect and arbitrarily incorrect label issues. Different Riemannian

metrics on manifold are compared, and the effectiveness of R-Mixup is theoreti-

cally proved from the perspective of statistics. We also proposed a pre-computing

optimization step to reduce the burden from eigenvalue decomposition.

• Thorough empirical studies are conducted on five real-world biological network

datasets, demonstrating the superior performance of R-Mixup on both regression

and classification tasks. Experiments on low-resource settings further stress its

practical benefits for biological applications often with limited annotation.

• We emphasize a commonly ignored necessary condition for viewing covariance and

correlation matrices as SPD matrices. We believe the clarification of this pre-

requirement for applying SPD analysis can enhance the rigor of future studies.

5.2 Related Work

5.2.1 Mixup for Data Augmentation

Mixup is a simple but effective principle to construct new training samples for image

data by linear interpolating input pairs and forcing the DNNs to behave linearly in-

between training examples [217]. Many follow-up works extend Mixup from different

perspectives. For example, [186, 185] interpolate training data in the feature space,
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[79, 34] learn the mixing ratio for Mixup to alleviate the under-confidence issue for

predictions. Besides, [48, 97, 223, 205] strategically select the sample pairs for Mixup

to prevent low-quality mixing examples and produce more reasonable augmented

data. To further improve the quality of the augmented data, [214, 116, 86] create

mixed examples by only interpolating a specific region (often most salient ones) of

examples. Mixup has also been extended to other data modalities such as text [26,

221] and audio [140]. There are several attempts to study Mixup on non-Euclidean

data, graphs, like NodeMixup [191], GraphMixup [193] and G-Mixup [82]. However,

less attention has been paid to adapting Mixup for graphs from a manifold perspective,

which is the focus of this study.

5.2.2 Geometric Deep Learning

Geometric deep learning aims to adapt commonly used deep network architectures

from euclidean data to non-euclidean data, such as graphs and manifolds, with a

broad spectrum of applications from the domains of radar data processing [17], graph

analysis [143, 6], image and video processing [95, 23, 143, 85], and Brain-Computer

Interfaces [174, 147]. For example, SPDNet [95] builds a Riemannian neural network

architecture with special convolution-like layers, rectified linear units (ReLU)-like

layers, and modified backpropagation operations for the non-linear learning of SPD

matrices. ManifoldNet [23] defines the analog of convolution operations for manifold-

valued data. MoNet [143] generalizes CNN architectures to the non-Euclidean domain

with pseudo-coordinates and weight functions. [17] designs a Riemannian batch nor-

malization for SPD matrices by leveraging geometric operations on the Riemannian

manifold. MAtt [147] proposes the manifold attention mechanism to represent spa-

tiotemporal representations of EEG data. Though widely recognized as being effective

for images, tabular and graph data, to the best of our knowledge, data augmentation

methods in geometric deep learning have rarely been explored.
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5.3 R-Mixup

In this section, we first provide some preliminary facts, including a necessary condition

for treating covariance and correlation matrices as SPD matrices. Next, we elaborate

on the detailed process of applying R-Mixup for data augmentation, compare possi-

ble mathematical metrics designs, and finally provide the theoretical analysis of the

advantages of using R-Mixup.

5.3.1 Notations and Preliminary Results

Given n variables of biological entities, we extract a t length sequence for each variable

and compose the input sequences X ∈ Rn×t. The correlation matrix or biological

network S = Cor(X) ∈ Rn×n is obtained by taking the pairwise correlation among

each pair of the biological variables. The value y is the network-level prediction label

for the prediction task.

Definition 5.3.1. A symmetric n × n matrix S is positive semi-definite if for any

vector u ∈ Rn, uTSu ≥ 0. Equivalently, this means that the eigenvalues of S are

all nonnegative. If the inequality holds strictly, S is said to be positive definite, or

symmetric positive definite, or SPD for short.

Let Sym(n) be the collection of all positive semi-definite matrices, and Sym+(n)

denotes the collection of all SPDs. The collection Sym(n) can be seen as an 1
2
n(n−1)-

dimensional Euclidean space, but Sym+(n) ⊂ Rn×n admits a more general structure

call manifold in differential geometry which resembles the Euclidean space in its

local regions. To set up the modeling on the manifold Sym+(n), the covariance

matrix Cor(X) for the input X should be positive definite. However, it is worth

mentioning that previous studies that use the Riemannian manifold for analyzing

biological networks often treat covariance and correlation matrices as SPD without

proper validation. Towards this common negligence, we bring out the following basic



66

fact:

Proposition 5.3.2. Covariance and correlation matrices are positive semi-definite.

A necessary condition for them to be positive definite is that the sample length is no

less than the variable number, i.e., t ≥ n.

This proposition indicates that covariance and correlation matrices only have the

opportunity to be positive definite when t ≥ n. The detailed proof can be found

in Appendix C.1. This is the case for the datasets involved in this study, where

most of the correlation matrices are SPD. The few exceptions would have very few

zero eigenvalues, which we manually set as 10−6 to eliminate their influence. More

discussions on adjusting correlation matrices to be SPDs can be found in [39, 92].

5.3.2 R-Mixup Deduction

In this section, we explain on the detailed process of R-Mixup for SPD matrice

augmentation. Let Si, Sj represent two different correlation matrices constructed

based on Xi, Xj. In the vanilla Mixup [217], the augmented samples (S̃, ỹ) are created

through the straight line connecting Si, Sj and yi, yj,

S̃ = (1− λ)Si + λSj,

ỹ = (1− λ)yi + λyj,

(5.1)

where λ ∼ Beta(α, α), Beta is the Beta distribution, given α ∈ (0,∞).

To facilitate the illustration of R-Mixup in geometry notions, we briefly introduce

the main concepts here while more detailed explanations can be found in [124, 72]. To

define R-Mixup, we replace Eq.(5.1) by a certain Riemannian geodesics. Geodesics

are the generalization of straight lines in the Euclidean space, which is intuitively the

shortest path between two given points on Riemannian manifolds. Riemannian man-

ifolds (M, g) are manifolds M equipped with Riemannian metrics g which measure
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distances between points in the manifold and induces geodesic equations [124, 72]. It

is generally hard to solve geodesics equations in the simple analytical form as straight

lines, however, for Sym+(n), there are lots of well-defined choices of Riemannian met-

rics with known geodesics [150, 100, 57, 72], and we employ the log-Euclidean metric

with the following geodesic:

S̃ = exp ((1− λ) logSi + λ logSj) , (5.2)

where exp, log are matrix exponential and logarithm. Figure 5.3 sketches the geodesic

as the purple dotted curve and a rigorous deduction of Eq.(5.2) can be found in [72].

Implementation of the matrix exponential for positive definite matrix S is straight-

forward: by basic linear algebra,

S = Odiag(µ1, ..., µn)O
T , (5.3)

where O is an orthogonal matrix with µi being eigenvalues of S. Then by definition,

expS = Odiag(expµ1, ..., expµn)O
T ,

logS = Odiag(log µ1, ..., log µn)O
T .

(5.4)

5.3.3 Comparison with Other Metrics

There are various choices of Riemannian metrics and hence different geodesics on

Sym+(n) [150, 57, 100, 14, 72], such as the Cholesky metric defined by Cholesky

decompositions Li of positive definite matrices Si, the well-known Affine-invariant

metrics on Sym+(n) [176], and the Bures-Wasserstein studied in statistics and in-

formation theory [14, 13]. We compare the most popular ones with the proposed

log-Euclidean for mixing up biological networks on prediction tasks. The compar-
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Figure 5.3: The process of R-Mixup generating sample S̃, where the blue surface M
represents the Riemannian manifold and the yellow plane is the tangent plane of M
at the origin I. Si, Sj are the original samples in M , and logSi, logSj are tangent
vectors. R-Mixup creates the augmented sample S̃ by combining the initial tangent
vectors of both trajectories connecting I with Si, Sj, i.e., (1−λ) logSi+λ logSj, and
push it back to the Riemannian manifold M via exponential map.

isons are summarized in Table 5.1. To be specific, different geodesics are analyzed

from two perspectives: (a) whether it causes the swelling effect, (b) whether it is

numerically stable on our dataset.

Swelling Effect. The detailed definition and rigorous proof of the swelling effect

can be found in Section 5.3.4 and Appendix C.2. As exemplified by the motivation in

Figure 5.2, Euclidean, Cholesky, and Bures-Wasserstein metrics evidently suffer from

the swelling effect.

Numerical Stability. Augmenting matrices from the geodesic with the Affine-

invariant metric requires the computation of S
−1/2
i and hence the calculation of the

inverse square root of its eigenvalues as we define matrix exponential and logarithm

in Eq.(5.4). For SPDs with small eigenvalues µ, such computations may not be

numerically stable since µ−1/2 → ∞. Furthermore, with awareness to the following
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limit relation:

lim
µ→0

log µ

µ−1/2
= 0, (5.5)

which indicates that log µ ≪ µ−1/2 for small µ, we know that computing matrix

logarithm when using log-Euclidean metric should be more stable. Similarly, for

Bures-Wasserstein geodesics, to compute (SiSj)
1/2, we notice the following fact:

SiSj = S
1/2
i

(
S
−1/2
i (SiSj)S

1/2
i

)
S
−1/2
i = S

1/2
i

(
S
1/2
i SjS

1/2
i

)
S
−1/2
i . (5.6)

Thus,

(SiSj)
1/2 = S

1/2
i

(
S
1/2
i SjS

1/2
i

)1/2
S
−1/2
i , (5.7)

where the undesirable µ−1/2 appears again in the calculation.

Considering these two points, we stick with log-Euclidean metric. Experimental

results in Section 5.4.2 further showcase the effectiveness of this choice.

Table 5.1: Comparison of Different Metrics Choices
Metric Geodesics Swelling Effect Numerical Stability

Euclidean (1− λ)Si + λSj Yes Stable
Cholesky ((1− λ)Li + λLj)((1− λ)Li + λLj)

T Yes Stable

Bures-Wasserstein (1− λ)2Si + λ2Sj + λ(1− λ)((SiSj)
1/2 + (SjSi)

1/2) Yes Unstable

Affine-invariant S
1/2
i (S

−1/2
i SjS

−1/2
i )λS

1/2
i No Unstable

Log-Euclidean exp((1− λ) logSi + λ logSj) No Stable

5.3.4 R-Mixup Theoretical Justification

Using geodesics when conducting data augmentation demonstrates unique advantages

over straight lines. The first advantage is that R-Mixup will not cause the swelling

effect which exaggerates the determinant and certain eigenvectors of the samples as

discussed in Section 5.1 and 5.3.3. Mathematically, suppose detSi ≤ detSj, then the
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determinant of S̃ defined by Eq.(5.2) satisfies:

detSi ≤ det S̃ ≤ detSj. (5.8)

Detailed proof can be found in Appendix C.2.

The second advantage is that, by leveraging the manifold structure, we can fit

better estimators compared with linear interpolation in the Euclidean space. To

be precise, as illustrated after Proposition 5.3.2, our samples are distributed over

Sym+(n) rather than the whole ambient Euclidean space Rn×n, which is accepted

as a prior knowledge in the sense of Bayesian modeling fitting. Then the purpose

of implementing R-Mixup becomes clear: we augment the nontrivial geometric in-

formation for the learning architectures later used in our experiments as an analogy

to transforming images to enhance the translation and rotational invariance before

a training of image identification [32]. We theoretically justify this point from the

perspective of both statistics on Riemannian manifolds [16, 115, 100, 101, 55] and

information theory [21, 145, 154].

Specifically, we treat the data augmentation process as a regression conducted

on the manifold Sym+(n) which is explicitly constrained by its geometric structure

and based on the distribution of the dataset as the prior knowledge. Given any S̃,

let m̃(S̃) denote the estimator/prediction function of the regression whose analytical

form depends on the concrete regression methods. We take geodesic regression and

kernel regression [16, 66, 164] on Sym+(n) to address the problem. Roughly speaking,

geodesic regression generalizes multi-linear regression on Euclidean space to manifold

with the Euclidean distance being replaced by Riemannian metric. Kernel regression

embeds data into higher dimensional feature space with kernel functions K to grasp

more non-linear relationship of the dataset. Since the exact distribution of augmented
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data is unknown, we follow the common practice [83, 33, 164] and apply Gauss kernel

KE(Si, S̃) =
1

(2πσ2)
n
2

exp

(
− 1

2σ2
∥Si − Ŝ∥2

)
, (5.9)

which possess the universal property to approximate any continuous bounded function

in principle. However, the Gauss kernel KE is defined on the Euclidean space which

unreasonably implies non-zero density of samples outside Sym+(n) contradicting the

prior knowledge. To remedy the problem, we introduce a method from the heat kernel

theory in differential geometry [12, 72] to generalize KE to

KR(Si, Ŝ) =
1

(2πσ2)
n(n−1)

4

exp

(
− 1

2σ2
d(Si, Ŝ)

2

)
, (5.10)

with

d(Si, Sj) = ∥logSi − logSj∥ (5.11)

being the Riemannian distances function on Sym+(n). Then we prove in details in

the Appendix C.3.

Theorem 5.3.3. For Sym+(n) with log-Euclidean metric, comparing R-Mixup with

estimators m̃ obtained by regressions with respect to the manifold structure, the square

loss for augmented data S̃ from Riemannian geodesics Eq.(5.2) is no more than those

S̃ ′ from straight lines Eq.(5.1):

∑
(m̃(S̃)− ỹ)2 ≤ (m̃(S̃ ′)− ỹ)2. (5.12)

A less empirical loss from regression on manifold is recognized as an evidence

that R-Mixup captures some geometric features of Sym+(n), thereby providing the

learning algorithm an opportunity to learn this feature. Finally, the proposed R-
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Mixup is formally defined as

S̃ = exp ((1− λ) logSi + λ logSj) ,

ỹ = (1− λ)yi + λyj,

(5.13)

where λ ∼ Beta(α, α), for α ∈ (0,∞).

5.3.5 Time Complexity and Optimization

One potential concern of the proposed R-Mixup lies in its time-consuming operations

of the eigenvalue decomposition and matrix multiplication (with the time complexity

of O(n3)), which dominate the overall running time of R-Mixup. In practice, we find

that most common modern deep learning frameworks such as PyTorch [149] have

been optimized for accelerating matrix multiplication. Thus, the main extra time

consumption of the R-Mixup is the exp and log operations of the three eigenvalue

decompositions. We propose a sample strategy to optimize the running time of R-

Mixup by precomputing the eigenvalue decomposition and saving the orthogonal

matrix O and eigenvalues {µ1, ..., µn} of each sample. This precomputing process can

reduce the three computations of eigenvalue decomposition to once for each sample.

Formally,

S̃ = exp
(
(1− λ)Oidiag(log µ1, ..., log µn)O

T
i

+λOjdiag(log ν1, ..., log νn)O
T
j

)
,

(5.14)

where Oidiag(µ1, ..., µn)O
T
i and Sj = Ojdiag(ν1, ..., νn)O

T
j are the eigenvalue decom-

positions of Si and Sj, respectively. The efficiency of this optimization is further

discussed in Section 5.4.4.
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5.4 Experiments

We evaluate the performance of R-Mixup comprehensively on real-world biological

network datasets with five tasks spanning classification and regression. The dataset

statistics are summarized in Table 5.2. The empirical studies aim to answer the

following three research questions:

• RQ1: How does R-Mixup perform compared with existing data augmentation

strategies on biological networks with various sample sizes on different downstream

tasks?

• RQ2: How does the sequence length of each sample affect the characteristics of

correlation matrices and consequently the choice of augmentation strategies?

• RQ3: Is R-Mixup efficient in the training process and robust to hyperparameter

changes?

Table 5.2: Dataset Summary.
Dataset Sample Size Variance Number (n) Sequence Length (t) Task Class Number

ABCD-BioGender 7901 360 Variable Length Classification 2
ABCD-Cog 7749 360 Variable Length Regression -

PNC 503 120 120 Classification 2
ABIDE 1009 100 100 Classification 2

TCGA-Cancer 240 50 50 Classification 24

5.4.1 Experimental Setup

Datasets and Tasks

Adolescent Brain Cognitive Development Study (ABCD). The dataset used

in this study is one of the largest publicly available fMRI datasets, with access re-

stricted by a strict data requesting process [22]. From this dataset, we define two

tasks: BioGender Prediction and Cognition Summary Score Prediction. The data

used in the experiments are fully anonymized brain networks based on the HCP 360

ROI atlas [74] with only biological sex labels or cognition summary scores. BioGender
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Prediction is a binary classification problem, which includes 7901 subjects after the

quality control process, with 3961 (50.1%) females among them. Cognition Summary

Score Prediction is a regression task whose label is Cognition Total Composite Score

containing seven computer-based instruments assessing five cognitive sub-domains:

Language, Executive Function, Episodic Memory, Processing Speed, and Working

Memory, ranging from 44.0 to 117.0.

Autism Brain Imaging Data Exchange (ABIDE). The dataset includes anony-

mous resting-state functional magnetic resonance imaging (rs-fMRI) data from 17

international sites [19]. It includes brain networks from 1009 subjects, with a major-

ity of 516 (51.14%) being patients diagnosed with Autism Spectrum Disorder (ASD).

The task is to perform the binary classification for ASD diagnosis. The region defi-

nition is based on Craddock 200 atlas [42]. Given the blood-oxygen-level-dependent

(BOLD) signal length of the samples in this dataset is 100, which reflects whether

neurons are active or reactive, we randomly select 100 nodes to satisfy the necessary

condition discussed in Proposition 5.3.2 for SPD matrices.

Philadelphia Neuroimaging Cohort (PNC). The dataset is a collaborative project

from the Brain Behavior Laboratory at the University of Pennsylvania and the Chil-

dren’s Hospital of Philadelphia. It includes a population-based sample of individuals

aged 8–21 years [159]. After the quality control, 503 subjects were included in our

analysis. Among these subjects, 289 (57.46%) are female. In the resulting data, each

sample contains 264 nodes with time series data collected through 120 timesteps.

Hence, we randomly select 120 nodes to satisfy the necessary condition mentioned

in Proposition 5.3.2 for treating generated correlation matrices as SPD. BioGender

Prediction is used as the downstream task.

TCGA-Cancer Transcriptome. The Cancer Genome Atlas (TCGA) dataset is

a large-scale collection of multi-omics data from over 20,000 primary cancer and

matched normal bio-samples spanning 33 cancer types. In this study, we select non-
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redundant cancer subjects with gene expression data and valid clinical information.

The gene expression data is normalized, and the top 50 highly variable genes (HVG)

are selected as the nodes for network construction. The subjects are then assigned

to different samples based on their cancer subtype. The final dataset consists of

459 subjects from 66 cancer subtypes. We extract 240 correlation matrices from

these subjects with 24 cancer types, each type includes ten samples, and each sample

contains 50 nodes. The downstream task of this study is to predict cancer subtypes

based on the HVG expression network.

Metrics

For binary classification tasks on datasets ABCD-BioGender, PNC, and ABIDE, we

adopt AUROC and accuracy for a fair performance comparison. The classification

threshold is set as 0.5. For the regression task on ABCD-Cog, the mean square error

(MSE) is used to reflect model performance. For the multiple class classification task

on TCGA-Cancer, since it contains 24 classes and each class has a balanced sample

size, we take the macro Precision and macro Recall so that all classes are treated

equally to reflect the overall performance. All the reported results are based on the

average of five runs using different random seeds.

Table 5.3: Overall performance comparison based on the Transformer backbone. The
best results are in bold, and the second best results are underlined. The ↑ indicates
a higher metric value is better and ↓ indicates a lower one is better.

Method
ABCD-BioGender ABCD-Cog PNC ABIDE TCGA-Cancer

AUROC↑ Accuracy↑ MSE↓ AUROC↑ Accuracy↑ AUROC↑ Accuracy↑ Precision↑ Recall↑

w/o Mixup 95.28±0.32 87.68±1.31 60.21±1.53 74.85±4.93 66.57±6.29 73.32±4.11 66.00±3.66 35.33±11.52 45.00±10.79

V-Mixup 95.85±0.63 87.86±1.45 60.43±2.67 76.02±2.54 65.88±7.89 75.03±5.04 66.80±5.40 69.58±9.39 77.50±6.97
D-Mixup 94.55±2.84 87.17±3.45 60.96±1.82 76.15±4.58 68.82±6.29 72.92±4.93 67.40±5.64 70.28±12.30 75.83±12.98
DropNode 95.65±0.35 88.07±0.76 65.35±2.97 75.47±4.27 67.45±4.35 73.49±4.09 66.00±3.16 53.96±11.34 61.67±10.79
DropEdge 95.28±0.39 87.54±0.60 76.44±1.82 72.89±5.70 66.27±5.31 70.68±6.14 64.20±5.12 67.57±5.14 75.00±5.10
G-Mixup 95.24±0.92 88.16±0.63 62.16±2.04 76.01±3.04 69.41±3.21 73.68±5.67 65.60±4.56 59.72±7.77 69.44±6.27
C-Mixup 96.01±0.48 88.40±1.44 59.68±1.15 75.29±2.52 69.02±5.48 74.69±4.40 66.40±3.36 67.50±6.90 76.67±6.32

R-Mixup 96.20±0.33 89.44±1.06 56.89±1.66 77.01±2.59 69.80±3.63 74.79±4.90 68.20±4.19 71.39±9.59 78.33±9.03
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Implementation Details

We equip the proposed R-Mixup with two most popular deep backbone models for

biological networks, Transformer [107] and GIN [195], to verify its universal effec-

tiveness with different models. For the architecture of Transformer, the number of

transformer layers is set to 2, followed by an MLP function to make the prediction.

For each transformer layer, the hidden dimension is set to be the same as the number

of nodes n, and the number of heads is set to 4. Regarding the GCN backbone,

we set the number of GCN layers as 3. The graph representation is obtained with

a sum readout function to make the final prediction. We randomly select 70% of

the datasets for training, 10% for validation, and the remaining for testing. In the

training process, we use the Adam optimizer with an initial learning rate of 10−4 and

a weight decay of 10−4. The batch size is set as 16. All the models are trained for 200

epochs, and the epoch with the best performance on the validation set is selected for

the final report.

Baselines

We include a variety of Mixup approaches as baselines. Given Λ ∈ [0, 1]v×v, α ∈

(0,∞), π ∈ (0, 1), · is the dot product.

V-Mixup [217] is the vanilla Mixup by the linear combination of two random samples,

S̃ = (1− λ)Si + λSj, ỹ = (1− λ)yi + λyj,

λ ∼ Beta(α, α).

(5.15)

D-Mixup is the discrete Mixup, a naive baseline designed by ourselves. Given two

randomly selected samples, a synthetic sample is generated by obtaining parts of the
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edges from one sample and the rest from the other,

S̃ = (1− Λ) · Si + Λ · Sj, ỹ = (1− λ)yi + λyj,

Λi,j ∼ B(λ), λ ∼ Beta(α, α).

(5.16)

DropNode [81] randomly selects nodes given a sample and sets all edge weights

related to these selected nodes as zero,

S̃ = Λ · S,Λp,: = Λ:,p = z, z ∼ Bernoulli(π). (5.17)

DropEdge [155] randomly selects edges given a sample and assigns their weights as

zero,

S̃ = Λ · S,Λp,q ∼ Bernoulli(π). (5.18)

G-Mixup [82] is originally proposed for classification tasks, which augments graphs

by interpolating the generator of different classes of graphs. Since each cell in a co-

variance and correlation matrix represents a specific edge in a graph, we can convert

a graph generator into a group of generator for each edge. We model each edge gener-

ator as a conditional multivariate normal distribution P (Sp,q | y). The augmentation

process can be formulated as,

S̃p,q ∼ (1− λ)P (Sp,q | yi) + λP (Sp,q | yj), ỹ = (1− λ)yi + λyj,

λ ∼ Beta(α, α).

(5.19)

For the setting of classification,

P (Sp,q | y = c) ∼ N
(
µp,q
c , (σp,q

c )2
)
, (5.20)
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(a) (b)

Figure 5.4: (a) The influence of time-series sequence length t on the percentage of
the positive eigenvalues (%). (b) The influence of the sequence length t or SPD-ness
(%) on the prediction performance of classification and regression tasks.

To extend G-Mixup for regression, we slightly modify the augmentation process to

adapt it for regression tasks as

(5.21)P (Sp,q | y) ∼ N
(
µp,q +

σp,q

σy

ρp,q (y − µy) ,
(
1− (ρp,q)2

)
(σp,q)2

)
,

where µ and σ are the mean and standard deviation of the weight for each edge, ρ is

the correlation coefficient between Sp,q and y.

C-Mixup [205] shares the same process with the V-Mixup. Instead of randomly

selecting two samples, C-Mixup picks samples based on label distance to ensure the

mixed pairs are more likely to share similar labels (Sj, yj) ∼ P (· | (Si, yi)), where P is

a sampling function which can sample closer pairs of examples with higher probability.

For classification tasks, it degenerates into the intra-class V-Mixup.

Table 5.4: Detailed performance comparison of different sample sizes with Trans-
former as the backbone.

Percentage (in %)
Dataset: ABCD-BioGender (AUROC↑) Dataset: ABCD-Cog (MSE↓)

w/o Mixup V-Mixup C-Mixup R-Mixup w/o Mixup V-Mixup C-Mixup R-Mixup

10 87.14±1.15 88.99±0.75 88.72±1.13 90.21±0.64 73.07±2.75 77.00±4.58 71.22±1.68 70.69±1.06
20 90.60±0.91 91.11±0.54 91.49±0.89 92.72±0.64 69.70±2.75 69.80±2.42 69.30±3.21 66.50±2.50
30 92.60±0.51 93.45±0.35 93.33±0.78 93.93±0.55 65.97±2.48 65.84±1.11 64.31±0.57 63.50±1.61
40 92.84±0.40 94.06±0.48 93.95±0.53 94.12±0.21 63.91±4.07 63.14±1.08 61.88±2.93 61.15±1.80
50 94.18±0.51 95.20±0.39 95.03±0.57 94.78±0.98 61.89±3.85 63.45±1.65 61.26±1.31 60.82±2.71
60 94.22±0.44 95.19±0.54 95.17±0.32 95.65±0.37 59.47±1.59 60.32±0.94 60.20±1.58 58.75±1.65
70 94.18±0.40 95.51±0.18 95.49±0.28 95.07±0.18 62.35±2.28 61.15±1.51 60.54±3.57 60.17±0.50
80 95.18±0.31 95.60±0.42 95.73±0.51 95.94±0.31 59.85±1.47 60.31±1.07 60.85±3.84 56.78±2.05
90 95.55±0.86 95.92±0.34 95.49±0.73 95.24±0.65 61.17±3.36 61.51±0.78 60.35±0.93 57.45±3.39
100 95.28±0.32 95.85±0.63 96.01±0.48 96.20±0.33 60.21±1.53 60.43±2.67 59.68±1.15 56.89±1.66
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5.4.2 RQ1: Performance Comparison

Overall Performance. The overall comparison based on the Transformer and

GCN backbone are presented in Table 5.3 and Table C.1 respectively, where ABCD-

BioGender, PNC, ABIDE, and TCGA-Cancer focus on classification tasks, while

ABCD-Cog is a regression task. Since the performance of the two backbones demon-

strates similar patterns, we focus on the result discussion of the Transformer due to the

space limit. Specifically, for classification tasks, incorporating the Mixup technique

can constantly improve the performance, especially on the TCGA-Cancer dataset,

which features a small sample size with high dimensional matrices. Among the var-

ious Mixup techniques, our proposed R-Mixup performs the best across datasets

and tasks, indicating the further advantage of using log-Euclidean metrics instead of

Euclidean metrics for SPD matrices mixture. Besides, for datasets with a relatively

smaller sample size, such as PNC, ABIDE, and TCGA-Cancer, R-Mixup can further

reduce training variance and stabilize the final performance compared with other data

augmentation methods.

Compared with the improvements on classification tasks, R-Mixup demonstrates

a more significant advantage on the regression task. It is shown that R-Mixup can

significantly reduce the MSE compared with the baseline without Mixup (5.5% with

the transformer backbone) and archive a large advantage over the second runner

(4.8% with the transformer backbone). It is also noted that other Mixup approaches

sometimes hurt the model performance, indicating the Euclidean space cannot mea-

sure the distance between SPD matrices very well, and the mixed samples may not

be paired with the correct labels. In contrast, our proposed log-Euclidean metric

can correctly represent the distance among SPD matrices and therefore address the

problem of arbitrarily incorrect label.

Performance with Different Sample Sizes. As collecting labeled data can be

extremely expensive for biological networks in practice, we adopt R-Mixup for the
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challenging low-resource setting to justify its efficacy with limited labeled data only.

For this set of experiments, we vary the training sample size from 10% to 100% of

the full datasets to show the performance of R-Mixup based on transformers with

different sample sizes. Specifically, the ABCD dataset is adopted in this detailed

analysis due to its relatively large sample size and supports for both classification

and regression tasks. The selected comparing methods are the strongest baselines,

namely V-Mixup and C-Mixup, from the overall performance in Table 5.3. Results

are presented in Table 5.4.

On the classification task of BioGender prediction, impressively, the proposed

R-Mixup can already achieve a decent performance with only 10% percent of full

datasets and demonstrates a large margin over other compared methods. As the

sample size becomes larger, the performance of different data augmentation methods

tends to be close, while the proposed R-Mixup reaches the best performance for

most of the cases (7 out of 10 setups). On the more challenging regression task of

Cognition Summary Score prediction, R-Mixup consistently outperforms the other

two baselines under different portions of the training data, which stresses the absolute

advantages of our proposed R-Mixup in its flexible and effective adaption for the

regression settings. Note that when equipped with an inappropriate augmentation

method (i.e., V-Mixup), the regression performance can always deteriorate under

different volumes of training data. This implies the necessity of proposing appropriate

Mixup techniques tailored for biological networks to address specific challenges for

regression tasks. Furthermore, we propose a case study in Appendix C.7 to show why

R-Mixup can achieve the best performance for the Regression task in the ABCD-Cog

dataset.



81

5.4.3 RQ2: The Relations of Sequence Length, SPD-ness and

Model Performance

To quantitatively verify the necessary conditions of SPD matrices in Proposition 5.3.2,

we vary the length of sequences whose pairwise correlations compose the network

matrices and observe its influence on the percentage of positive eigenvalues and the

final prediction performance. For better illustration, we define a new terminology

SPD-ness to reflect the percentage of positive values among all eigenvalues. The

higher the percentage of positive eigenvalues, the higher SPD-ness, and a full SPD

matrice requires all the eigenvalues to be positive. Specifically, we choose the dataset

with the longest time sequence, namely ABCD, to facilitate this study. Since samples

in the ABCD dataset are of different sequence lengths, we simply select those with

sequence length longer than 1024 and truncate them to 1024 to form a length-unified

dataset ABCD-1024, leading to 4613 samples for the ABCD-BioGender classification

task and 4533 samples for the ABCD-Cog regression task.

First, we investigate the relationship between the length of biological sequences

t and the SPD-ness of the corresponding network matrix. The results are shown in

Figure 5.4(a), where the value of sequence length t is varied from 90 to 900 with a step

size of 90. For each given t, we construct the correlation matrices based on each pair

of the truncated sequences with only the first t elements from the original sequences.

Then the eigenvalue decomposition is applied to each obtained correlation matrix, and

the percentage of positive (> 10−6) eigenvalues are calculated. The reported results

are the average over all the correlation matrices. From this curve, we observe that the

percentage of positive eigenvalues grows gradually as the time-series length increases.

The growth trend gradually slows down, reaching a percentage point saturation at

about the length of 540, where the full percentage indicates full SPD-ness. Note

that the number of variables n for the ABCD dataset is 360. This aligns with our

conclusion in Proposition 5.3.2 that a necessary condition for correlation matrices
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satisfying SPD matrices is t ≥ n.

Second, with the verified relation between the sequence length t and SPD-ness, we

study the influence of sequence length t or SPD-ness on the prediction performance.

We observe that directly truncating the time series to length t will lose a huge amount

of task-relevant signals, resulting in a significant prediction performance drop. As an

alternative, we reduce the original sequence to length t by taking the average of each

1024/t consecutive sequence unit. Results on the classification task ABCD-BioGender

and the regression task ABCD-Cognition with the input of different time-series length

t are demonstrated in Figure 5.4(b). It shows that for the classification task, although

V-Mixup and C-Mixup demonstrate an advantage when the percentage of positive

eigenvalues is low, the performance of the proposed R-Mixup continuously improves

as the sequence length t increases and finally beats the other baselines. For the

regression task, our proposed R-Mixup consistently performs the best regardless

of the SPD-ness of the correlation matrices. The gain is more observed when the

dataset matrices are full SPD. Combining these observations from both classification

and regression tasks, we prove that the proposed R-Mixup demonstrates superior

advantages for mixing up SPD matrices and facilitating biological network analysis

that satisfies full SPD-ness.

5.4.4 RQ3: Hyperparameter and Efficiency Study

The Influence of Key Hyperparameter α. We study the influence of the key

hyperparameter α in R-Mixup, which correspondingly changes the Beta distribution

of λ in Equation (5.13). Specifically, the value of α is adjusted from 0.1 to 1.0, and

the corresponding prediction performance under the specific values is demonstrated

in Figure 5.5. We observe that the prediction performance of both classification and

regression tasks are relatively stable as the value of α varies, indicating that the

proposed R-Mixup is not sensitive to the key hyperparameter α.
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Figure 5.5: The influence of the key hyperparameter (α) value on the performance of
classification and regression tasks.

Figure 5.6: Training Time of different Mixup methods on the large ABCD dataset.
R-Mixup is the original model while R-Mix(Opt) is time-optimized as discussed in
Section 5.3.5.
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Efficiency Study. To further investigate the efficiency of different Mixup methods,

we compare the training time of different data augmentation methods on the large-

scale dataset, ABCD, to highlight the difference. The results are shown in Figure

5.6. Besides, the running time comparison on three smaller datasets, ABIDE, PNC,

and TCGA-Cancer are also included in appendix C.4 for reference. All the compared

methods are trained with the same backbone model [107]. It is observed that with

the precomputed eigenvalue decomposition, the training speed of the optimized R-

Mixup on the large ABCD dataset can be 2.5 times faster than the original model

without optimization. Besides, on the smaller datasets such as PNC, ABIDE, and

TCGA-Cancer, there is no significant difference in elapsed time between different

methods.

5.5 Conclusion

In this paper, we present R-Mixup, an effective data augmentation method tai-

lored for biological networks that leverage the log-Euclidean distance metrics from

the Riemannian manifold. We further propose an optimized strategy to improve

the training efficiency of R-Mixup. Empirical results on five real-world biological

network datasets spanning both classification and regression tasks demonstrate the

superior performance of R-Mixup over existing commonly used data augmentation

methods under various data scales and downstream applications. Besides, we theo-

retically verify a necessary condition overlooked by prior works to determine whether

a correlation matrix is SPD and empirically demonstrate how it affects the prediction

performance, which we expect to guide future applications spreading the biological

networks.
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Chapter 6

Multi-Task Learning Framework:

Leveraging Diverse Prediction

Targets for Enhanced Individual

Task Performance and Dataset

Utilization

6.1 Introduction

Adolescent Brain Cognitive Development (ABCD) study [22] is the largest and most

long-term study of brain development and child health in the US. It provides a vast

brain development dataset in a diverse population, including functional magnetic

resonance imaging data (fMRI) and abundant biological and behavioral survey results.

This dataset offers an opportunity to explore the relationship between intricate brain

connections and various behavioral data [113, 30, 76].

Leveraging the potential of neuroimaging data, recent studies have shown a grow-
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ing trend of using brain networks derived from fMRI to predict various clinical out-

comes and individual behaviors with different models [114, 111, 126, 44, 46]. Re-

searchers have also developed innovative approaches to analyze these models and

uncover potential correlations between functional brain networks and predicted out-

comes. For example, Kawahara et al.[111] introduced BrainNetCNN, a convolu-

tional neural network designed to predict cognitive and motor developmental outcome

scores from brain networks. Similarly, Li et al.[126] proposed a graph neural network

model to predict clinical targets and discovered task-specific neurological biomarkers,

demonstrating the effectiveness of graph-based approaches in capturing meaningful

patterns in brain networks. Chen et al. [27] further extended this line of research by

training kernel regression models for 36 tasks and analyzing task relationships based

on the learned model. These studies highlight the potential of leveraging brain net-

works to gain insights into the underlying neural mechanisms associated with various

clinical outcomes and individual behaviors.

Multi-task learning (MTL)[43, 162, 141, 8] has emerged as a promising approach

for improving the generalization abilities of predictive models by enabling multiple

learning tasks to share their knowledge. In the context of brain network analysis

in ABCD, where there is a diverse range of prediction targets, MTL can be partic-

ularly beneficial. By training several tasks simultaneously, MTL allows for a more

native capture of task correlations, potentially leading to improved individual task

performance. This contrasts with the approach taken by Chen et al.[27], which builds

individual models for each behavior task. By leveraging the shared representations

learned across tasks, MTL can enhance the model’s ability to uncover the underlying

relationships between brain networks and various behavioral measures, resulting in

more accurate and generalizable predictions.

In this work, we propose a novel MTL framework that jointly trains 35 tasks using

multi-view functional brain networks from 6,682 samples in the ABCD study. We
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employ the Brain Network Transformer [107] as the backbone model, which converts

a brain network into a graph-level embedding. This embedding is then fed into task-

specific fully connected networks (FCNs) for each prediction target. By learning

shared representations across tasks while still allowing for task-specific predictions,

our approach aims to leverage the commonalities between tasks and improve overall

prediction performance. Our main contributions are summarized as follows:

• We propose a novel MTL framework for predicting various measures from multi-

view brain network data using a graph transformer architecture. Our approach

learns shared representations across tasks while allowing for task-specific predic-

tions, improving performance compared to single-task learning. Besides, the abla-

tion study shows the effectiveness of two key training strategies during Multi-Task

training.

• We conduct extensive experiments on the ABCD dataset, including 35 tasks catego-

rized into three domains: cognition, personality, andmental health. We demonstrate

the impact of MTL on different types of tasks.

• We develop innovative visualization techniques based on integrated gradients to

interpret the learned task correlations and identify influential brain network edges,

contributing to a better understanding of the complex relationships between brain

structure and behavioral outcomes.

6.2 Method

6.2.1 Problem Definition

Let D = {(X(i),Y(i))}ni=1 be a dataset consisting of n samples. For each sam-

ple i, the input X(i) = {X(i)
1 , X

(i)
2 , . . . , X

(i)
v } represents a collection of v brain net-

works, each derived from a distinct fMRI task (e.g., resting-state, stop-signal task,

and N-Back). These brain networks, denoted by X
(i)
j ∈ RM×M , capture the func-
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Figure 6.1: Overview of our multi-task learning framework for predicting vari-
ous measures from multi-view brain networks. Given a set of brain networks
{X(i)

1 , X
(i)
2 , . . . , X

(i)
v } derived from different views for the i-th subject, the Brain Net-

work Transformer generates a unified brain network embedding H(i). This embed-
ding is then fed into task-specific FCN to predict the corresponding target scores
{ŷ(i)1 , ŷ

(i)
2 , . . . , ŷ

(i)
t } for various measures. The entire framework is trained end-to-end

using multi-task learning, allowing for the sharing of knowledge across tasks while
still enabling task-specific predictions.

tional connectivity between M brain regions. The corresponding prediction target

Y(i) = {y(i)1 , y
(i)
2 , . . . , y

(i)
t } is a set of t behavioral measures, such as cognitive scores,

personality traits, or mental health indicators, associated with the i-th subject. In

short, given this multi-view, multi-task dataset, our goal is to develop a predictive

model that leverages the complementary information from the v brain networks to

simultaneously predict the t behavioral outcomes.

6.2.2 Model Architecture

Fig. 6.1 shows the proposed multi-task learning framework for predicting behavioral

outcomes from multi-view brain networks.

Shared Representation Learning. The footstone of our framework is Brain Net-

work Transformer (BNT) [107], which serves as the shared backbone model. BNT

is designed to process individual views of brain networks, denoted as X
(i)
j , where

j ∈ {1, . . . , v} indexes the view and i ∈ {1, . . . , n} indexes the sample. For each

view j, BNT learns a hidden representation embedding h
(i)
j = BNT(X

(i)
j ). These

view-specific embeddings capture the patterns present in the corresponding brain
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networks derived from distinct fMRI tasks. To obtain a comprehensive represen-

tation of each sample, we concatenate the view-specific embeddings h
(i)
j from all v

views, resulting in a sample-level embedding H(i) =
⊕v

j=1 h
(i)
j , where

⊕
denotes the

concatenation operation. This sample-level embedding integrates the multifaceted

information captured across different fMRI views, providing a holistic representation

of each individual’s brain connectivity patterns.

Task-specific Prediction. To achieve multi-task learning, we employ a separate

Multi-Layer Perceptron (MLP) for each task k ∈ {1, . . . , t}. These task-specific

MLPs take the sample-level embedding H(i) as input and predict the corresponding

behavioral outcome ŷ
(i)
k = MLPk(H

(i)). By leveraging dedicated MLPs for each task,

our framework allows for task-specific adaptations while benefiting from the shared

representation learned by the BNT.

6.2.3 Multi-task Training Strategies

The entire framework is trained end-to-end using a multi-task learning approach.

However, training a model to simultaneously predict multiple behavioral outcomes

presents several challenges due to the diverse characteristics and varying scales of the

prediction targets. We introduce two key strategies to address these challenges and

ensure effective training: Batch-Wise Loss Balancing and Target Standardization.

Our ablation study results in Section 6.3 show the necessity of incorporating them

during training.

Batch-Wise Loss Balancing. In multi-task learning, tasks with larger loss values

can potentially dominate the training process, hindering the model’s ability to learn

from all tasks equally. To mitigate this issue, we employ a batch-wise loss balancing

technique that adaptively adjusts the weight of each task’s loss within a training

batch. Let Lk denote the loss associated with task k, where k ∈ {1, . . . , t}. We

compute the balanced loss L̂k for each task as follows: L̂k = Lk

L̄k
, where L̄k is the
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average loss value for task k over the current batch of samples. By normalizing each

task’s loss to have an average value of 1, we ensure that all tasks contribute equally

to the overall optimization process. The total balanced loss Ltotal is then calculated

as the sum of all individual balanced task losses: Ltotal =
∑t

k=1 L̂k.

Target Standardization. Another challenge in multi-task learning is the varying

scales of the target variables across different tasks. To address this issue, we employ

a target standardization preprocessing step. For a regression task k, where k ∈

{1, . . . , t}, we standardize the training labels y(i)k to have zero mean and unit variance:

y
(i)
k =

y
(i)
k −µk

σk
, where µk and σk denote the mean and standard deviation of the training

labels for task k, respectively. This normalization brings all tasks to a similar scale,

facilitating the model’s ability to learn from them concurrently. During the validation

and testing phase, we apply the inverse of this normalization process to transform

the predicted labels ŷ
(i)
k back to their original scale. Using the mean µk and standard

deviation σk computed from the training set, we perform the following operation:

ŷ
(i)
k = ŷ

(i)
k · σk + µk. By standardizing the targets during training and reversing the

normalization during inference, we ensure that the model can effectively learn from

tasks with different scales while producing predictions in the original target domain.

6.3 Experiments

Dataset. We use the Adolescent Brain Cognitive Development (ABCD) dataset [22],

which includes fMRI and behavioral data from a large cohort of children. We utilize

resting-state and task-based fMRIs (stop-signal task [133] and N-Back task [37]) for

brain network construction based on the HCP 360 ROI atlas [74]. In this study, we

aim to predict 35 distinct labels, which span across 15 neurocognitive ability [134], 9

impulsivity-related personality and 11 mental health assessments [10], as detailed in

Supplementary D.1. The experimental dataset includes 6,682 samples with quality
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control procedures and filtering these samples with incomplete fMRI and behavioral

data.

Setting. We employ a Brain Network Transformer as the shared model backbone,

which consists of 3 transformer layers with 4 attention heads and an output dimension

matching the number of nodes (360) in the brain network. The transformer layers

are followed by task-specific 3-layer MLP branches with activation functions, each

responsible for making predictions for one of the tasks. Since all tasks are regression

tasks, we use Mean Squared Error (MSE) Loss as the loss function for all tasks.

The model, which can predict 35 tasks simultaneously, has a total of 22.52 million

parameters. We randomly split the ABCD dataset into training (70%), validation

(10%), and testing (20%) subsets. During training, we use the Adam optimizer with

a weight decay of 10−4, a cosine learning rate scheduler (initial: 10−4, final: 10−5),

and a batch size of 16. The model is trained for 100 epochs, and the model whose

epoch shows the best total loss on the validation set is selected as the final model to

report performance.

Metrics. To evaluate our multi-task learning model’s performance on the 35 regres-

sion tasks from the ABCD dataset, we use two metrics: Mean Squared Error (MSE)

and R-squared (R2). MSE measures the average squared difference between predicted

and actual values, with lower values indicating better performance. R2, on the other

hand, is used to compare performance across tasks with varying label scales. R2

values range from −∞ to 1, where negative values indicate worse performance than

using the target variable’s mean, zero indicates equivalence to using the mean, and

positive values suggest the model captures useful information from brain networks

and the prediction beats the mean of the target. Thus, R2 can be used to evaluate

a task’s predictability. All reported results are averaged over 5 runs with different

random seeds.

Performance Evaluation. The overall results of our multi-task learning model on
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Table 6.1: Performance comparison of single-task, multi-task, and multi-task (Cog-
nition tasks only) models on the ABCD dataset. Tasks within each type (e.g., Cog-
nition, Personality) are sorted in descending order based on the R2 value under the
Single-Task column. Tasks highlighted in purple have an R2 value greater than or
equal to 0.03, indicating that they are predictable. Bold values indicate the best
result for these predictable tasks across the three model settings. The ↑ indicates a
higher metric value is better, and ↓ indicates a lower one is better.

Type Task
Single-Task Multi-Task Multi-CogTask

MSE ↓ R2 ↑ MSE ↓ R2 ↑ MSE ↓ R2 ↑

C
o
g
n
it
io
n

OverallCognition 54.34±2.35 0.26±0.02 53.79±2.27 0.24±0.04 58.30±3.15 0.20±0.03
CrystallizedCognition 32.54±2.11 0.25±0.03 33.01±0.99 0.24±0.02 35.13±2.62 0.19±0.05

Vocabulary 47.39±2.89 0.20±0.03 47.15±2.87 0.21±0.04 49.04±2.94 0.16±0.05
Reading 35.57±1.79 0.15±0.03 34.17±0.83 0.15±0.03 36.85±2.61 0.14±0.03

FluidCognition 89.97±2.24 0.14±0.03 87.87±4.55 0.12±0.05 92.50±3.95 0.11±0.02
FluidIntelligence 12.56±0.32 0.12±0.01 12.28±0.25 0.12±0.03 12.03±0.60 0.13±0.02
WorkingMemory 121.76±5.44 0.07±0.03 116.12±2.65 0.09±0.03 120.12±3.06 0.09±0.03
ExecutiveFunction 72.55±3.74 0.07±0.01 70.33±2.33 0.07±0.02 73.09±3.98 0.07±0.02
ShortDelayRecall 8.43±0.18 0.06±0.03 7.87±0.32 0.08±0.02 8.16±0.32 0.06±0.02
LongDelayRecall 9.07±0.33 0.05±0.02 8.62±0.24 0.07±0.03 9.14±0.22 0.04±0.02

VisuospatialAccuracy 0.03±0.00 0.05±0.04 0.03±0.00 0.09±0.02 0.03±0.00 0.08±0.01
Attention 72.84±4.41 0.04±0.01 71.99±3.30 0.04±0.04 70.20±2.74 0.05±0.02

EpisodicMemory 136.82±4.87 0.04±0.02 136.50±5.84 0.04±0.02 138.15±3.91 0.04±0.03
ProcessingSpeed 198.17±5.99 0.03±0.01 200.26±8.89 0.02±0.02 203.91±8.01 0.00±0.03

VisuospatialReactionTime 208k±7k 0.00±0.00 212k±9k 0.00±0.00 210k±4k 0.01±0.01

P
e
rs
o
n
a
li
ty

RewardResponsiveness 8.44±0.37 0.01±0.00 8.33±0.51 -0.02±0.05 - -
Drive 8.61±0.20 0.01±0.01 8.66±0.47 0.01±0.04 - -

PositiveUrgency 8.02±0.22 0.01±0.01 8.17±0.27 -0.00±0.06 - -
LackOfPlanning 5.09±0.16 0.00±0.01 5.32±0.22 -0.01±0.01 - -
LackPerseverance 4.86±0.11 0.00±0.01 4.54±0.19 -0.01±0.01 - -

FunSeeking 6.62±0.16 0.00±0.00 6.72±0.22 -0.01±0.04 - -
SensationSeeking 7.14±0.15 -0.00±0.00 7.10±0.19 -0.01±0.02 - -

BehavioralInhibition 13.48±0.10 -0.01±0.01 13.50±0.71 -0.02±0.03 - -
NegativeUrgency 6.90±0.18 -0.01±0.03 6.85±0.39 -0.02±0.07 - -

M
e
n
ta

l
H
e
a
lt
h

TotalPsychosisSymptoms 11.21±0.69 0.01±0.01 10.76±0.90 -0.01±0.04 - -
AttentionProblems 10.54±0.55 0.00±0.02 10.80±0.82 -0.00±0.04 - -
AnxiousDepressed 8.68±0.59 -0.00±0.00 8.67±0.84 -0.04±0.06 - -
AggressiveBehavior 16.93±1.66 -0.00±0.01 16.45±1.46 -0.02±0.06 - -
WithdrawnDepressed 2.85±0.13 -0.00±0.01 2.57±0.18 -0.03±0.05 - -
SomaticComplaints 3.80±0.19 -0.00±0.01 3.67±0.33 -0.02±0.04 - -
ThoughtProblems 4.53±0.19 -0.00±0.00 4.31±0.39 -0.03±0.05 - -
SocialProblems 4.66±0.24 -0.01±0.01 4.36±0.47 -0.01±0.07 - -
PsychosisSeverity 87.75±7.75 -0.01±0.04 89.23±8.65 -0.00±0.04 - -

Mania 6.50±0.51 -0.01±0.01 6.49±0.93 -0.01±0.05 - -
RuleBreakingBehavior 3.01±0.26 -0.02±0.03 2.75±0.15 0.01±0.04 - -

the ABCD dataset are shown in Table 6.1. From the table, we can obtain 3 key

insights: (1) Single-task performance: The Single-Task column reveals that for all

Personality and Mental Health tasks, these models’ R2 is below 0.03, indicating that

there is limited predictive power when using brain networks to predict these labels.

In contrast, for the Cognition tasks, except for the Visuospatial Reaction Time task,

all other 14 tasks have an R2 greater than or equal to 0.03. This suggests that the

model can capture useful information from the brain networks and outperform pre-
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dictions based solely on the mean of the target variable for these Cognition tasks;

(2) Multi-task learning benefits: By comparing the Single-Task performance column

with the Multi-Task performance column, we observe that multi-task training im-

proves the performance of almost all tasks that already exhibit predictive power in the

single-task setting. However, the Personality and Mental Health tasks that were un-

predictable in the single-task setting remain unpredictable in the multi-task setting,

indicating that these tasks cannot effectively leverage useful information from other

tasks during joint training; (3) Impact of removing unpredictable tasks: To further

investigate the influence of the unpredictable Personality and Mental Health tasks

on the overall model performance, we conducted an additional experiment where we

removed these tasks during multi-task training. The results of this experiment are

shown in the Multi-CogTask column. Interestingly, we observe that by excluding

these unpredictable tasks, the performance of the remaining tasks drops compared

to the multi-task setting that includes all tasks. This finding suggests that labeling

information from Personality and Mental Health tasks is still helpful for other tasks,

even though these tasks themselves remain unpredictable.

Ablation Study. We investigate the effectiveness of our two key training strategies

in our multi-task learning model: Batch-Wise Loss Balancing and Target Standard-

ization. We compare the performance of our full model with three ablated versions:

(1) without Batch-Wise Loss Balancing, (2) without Target Standardization, and

(3) without both strategies. The results in Fig. 6.2 show that removing Batch-Wise

Loss Balancing leads to a slight decrease in performance across all 14 predictable

tasks, while removing Target Standardization causes a significant drop. When both

strategies are removed, the model fails to learn any meaningful information, result-

ing in negative R² values for all tasks. This study demonstrates the importance of

these training strategies in enabling successful multi-task learning for brain network

analysis.
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Figure 6.2: Ablation study results comparing the performance of our full multi-task
learning model with three ablated versions. The bars represent the difference in R2

values between each ablated version and the full model for the 14 predictable tasks.

6.4 Task Correlation Analysis

Task Correlation based on Integrated Gradient Task Correlation Based on Label of Each Task

Pr
ed

ic
ta

bl
e 

Ta
sk

U
np

re
di

ct
ab

le
Ta

sk

Figure 6.3: Task correlation matrices based on integrated gradients (left) and task
labels (right). The integrated gradients matrix reveals the correlation among tasks
regarding their importance to the model’s predictions, while the label correlation
matrix shows the inherent relationships among task labels. The task names are
color-coded based on their type: green for cognition, blue for personality, and red
for mental health. The comparison of these two matrices provides insights into the
model’s ability to capture meaningful task relationships from data.

In this section, we visualize the task correlation matrix learned by our multi-task
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Figure 6.4: Visualization of the top 0.05% brain network edges for 6 tasks, determined
by integrated gradients Gk. Node color indicates functional module, while edge color
(blue for negative, red for positive) and thickness represent integrated gradient mag-
nitude. This figure reveals key brain edges the model relies on for predictions in each
task.

learning model (Fig. 6.3 Left) and compare it with the inherent correlations among

task labels (Fig. 6.3 Right). To achieve this, we employ the integrated gradients

method [175], which allows us to track the importance of each edge in brain net-

works contributing to the model’s prediction. The process to obtain the task-level

correlation matrix C and edge importance Gk for each task k is described in Sup-

plementary D.2. Fig. 6.3 Left reveals two task groups: a. the 14 most predictable

tasks and b. all personality and mental health tasks, with strong positive correla-

tions within each group. Besides, the first group can also be found in the task label

correlation (Fig. 6.3 Right), which shows our model can capture meaningful task

relationships from data. Fig. 6.4 visualizes the top 0.05% edges with the highest

absolute importance values from Gk for each task k, demonstrating similar patterns

of important edges within the same task group.

6.5 Conclusion

We proposed a novel multiple-task learning framework for predicting cognitive, per-

sonality, and mental health measures from brain networks using the ABCD dataset.

Our approach effectively captures meaningful relationships across tasks and improves

prediction performance compared to single-task learning. Through experiments, we
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demonstrated the importance of two training strategies and provided deep task cor-

relation analysis by the integrated gradient method.
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Chapter 7

Conclusion

7.1 Summary of Achievements

In this dissertation, we have made significant contributions to the field of deep learn-

ing for brain network analysis by developing innovative techniques that address the

key challenges of limited sample sizes, high-dimensional data, and the need for in-

terpretable predictions. Our proposed methods span both model architectures and

training strategies, pushing the boundaries of what is possible in neuroimaging re-

search.

We introduced three novel model architectures specifically designed for brain net-

work analysis, including FbNetGen, which generates task-aware functional brain net-

works from raw fMRI data; Brain Network Transformer (BNT), which captures the

unique properties of brain networks using a transformer-based architecture; and Dy-

namic bRAin Transformer (DRAT), which models the temporal dynamics of brain

networks for improved predictions and interpretability. These architectures have

demonstrated superior performance on large-scale fMRI datasets and provided valu-

able insights into the complex relationships between brain networks and various cog-

nitive functions and disorders.
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Furthermore, we developed advanced training strategies to enhance the general-

ization and performance of deep learning models for brain network analysis. R-mixup,

our proposed data augmentation approach, effectively addresses the limited sample

size challenge by operating on the Riemannian manifold of symmetric positive definite

matrices. Additionally, our multi-task learning framework enables knowledge sharing

across related tasks and improves individual task performance by jointly predicting

various behavioral and clinical measures from brain networks.

The extensive experiments conducted on multiple datasets and tasks showcase the

practical value and superior performance of our proposed methods. By addressing the

key challenges in deep learning for brain network analysis, this dissertation contributes

to a better understanding of the human brain and its role in cognition and disorders,

with potential applications in neuroimaging research and clinical settings.

7.2 Future Directions

The work presented in this dissertation opens up several exciting avenues for future

research in deep learning for brain network analysis. We highlight two particularly

promising directions:

7.2.1 Causality and Effective Connectome for Brain Network

Analysis

One of the major challenges in brain network analysis is to further explore the integra-

tion of causality and effective connectome analysis in brain network studies. Causality

refers to the study of cause-and-effect relationships among variables, which is crucial

for understanding the underlying mechanisms of brain function and dysfunction. Ef-

fective connectome, on the other hand, represents the causal influences among brain

regions, providing a more meaningful characterization of brain organization compared
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to traditional functional connectivity based on statistical associations [102]. While we

have proposed the DABNet framework to demonstrate the efficacy of modeling causal

relationships among ROIs using DAG learning techniques [213], there is still room for

improvement. Investigating more advanced causal discovery methods, such as those

that can handle potential confounding factors and temporal dependencies, could lead

to more accurate and robust estimation of effective brain connectivity. Moreover,

extending the framework to incorporate dynamic causal modeling and time-varying

effective connectome analysis could provide valuable insights into the temporal evo-

lution of brain networks and their relationship to cognitive processes and clinical

outcomes. By leveraging the power of causality and effective connectome analysis,

future studies can deepen our understanding of brain organization, identify more re-

liable biomarkers for neurological and psychiatric disorders, and ultimately advance

the field of precision psychiatry.

7.2.2 Few-shot Learning for Extremely Unbalanced Tasks

Another promising direction is to leverage the multi-task learning (MTL) framework

proposed in this dissertation for few-shot learning on extremely unbalanced tasks,

such as drug abuse prediction. In many real-world scenarios, the number of labeled

examples for certain tasks, like drug or alcohol abuse, is often very small compared

to the negative examples, making it challenging to train accurate prediction models.

To address this issue, we propose using the MTL framework to learn a shared

representation of brain networks across multiple related tasks, capturing important

features and patterns. These learned embeddings can then serve as a powerful rep-

resentation for few-shot learning, where a support set of a few labeled examples is

used to train a model to predict on a query set of new, unseen examples. By leverag-

ing the knowledge learned from related tasks through the MTL framework, few-shot

learning could potentially improve the performance on these challenging, unbalanced
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prediction tasks.

To further enhance the few-shot learning performance, advanced techniques such

as meta-learning and prototype-based methods could be explored. Meta-learning al-

gorithms, like Model-Agnostic Meta-Learning (MAML) [64], could be employed to

learn an initialization of model parameters that can quickly adapt to new tasks with

limited examples. Prototype-based methods, such as Prototypical Networks [171],

could be used to learn a metric space where examples from the same class cluster

together, enabling effective classification with few examples. Combining these tech-

niques with the MTL framework could lead to powerful few-shot learning models for

brain network analysis, opening up new possibilities for studying rare disorders or

conditions with limited available data.

7.2.3 Comprehensive and Clinical Evaluation

The last crucial future direction that I want to discuss is to conduct comprehen-

sive evaluations across multiple datasets and tasks while also validating the clinical

utility of the proposed methods. This dissertation has demonstrated the superior

performance of the developed techniques on several large-scale fMRI datasets, such

as PNC [159], ABCD [22], and ABIDE [19], and has provided valuable insights into

the complex relationships between brain networks and various cognitive functions

and disorders. However, to establish the generalizability and practical value of these

methods, it is essential to extend the evaluations to a wider range of neuroimaging

datasets, including those from different age groups and clinical populations.

Furthermore, to bridge the gap between research and clinical practice, it is cru-

cial to validate the clinical utility of the proposed deep learning techniques and work

towards their deployment in real-world clinical settings. There are three important

perspectives to consider in this regard. Firstly, designing more interpretable mod-

els is essential to enable clinicians to understand the reasoning behind the model’s
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predictions and trust its outputs. Secondly, careful verification of the findings from

our models with clinicians, neuroscientists, and other domain experts is necessary to

ensure the validity and relevance of the insights gained. Thirdly, to facilitate clinical

adoption, user-friendly interfaces and visualization tools should be developed to allow

clinicians to easily interpret the model predictions and the underlying brain network

patterns. By addressing these three key aspects – interpretability, expert validation,

and user-friendly tools – we can effectively translate the research findings into clinical

practice and ultimately contribute to advancing precision medicine and improving

patient care in the field of neuroimaging and brain disorders.
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Appendix A

Additional Information for

FBNetGen

A.1 1D-CNN Encoder Architecture

We summarize the architecture of 1D-CNN in Table A.1.

Table A.1: 1D-CNN encoder design.
Layers Kernal Size Other Parameters

Conv 1 1 × τ × 32 stride=2
Conv 2 32 × 8 × 32 stride=1
Conv 3 32 × 8 × 16 stride=1

Max Pool 16 N.A.
Flatten N.A. N.A.

Fully Connected 1 N.A. output=32
ReLU N.A. N.A.

Fully Connected 2 N.A. output=8

A.2 Training Curves of FBNetGen Variants

In Figure A.1, we demonstrate the training curves of different FBNetGen variants.

The curves of different variants display similar patterns across datasets. Specifically,

it is shown that Group Loss (GL) can achieve pronounced improvement for model’s

performance, which proves the effectiveness of our loss design in Section 2.3.3. Also,
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applying both exterior regularizers (Group Loss and Sparsity Loss) together with the

supervised Cross Entropy loss (CE) can consistently achieve the best performance

compared with other settings, representing the importance of the mutually restrictive

relationships between different regularizers.

(a) Dataset: PNC (b) Dataset: ABCD

Figure A.1: Training curves of FBNetGen variants on two datasets.

A.3 Difference Score T of Functional Modules on

Learnable Graph and Pearson Graph

The ranked difference score T , as defined in Eq. (2.16), of functional modules on two

kinds of graph, learnable and Pearson, on two datasets are shown in Table A.2 and

Table A.3, respectively. Note that the words in bold represent modules that contains

more ROIs with significant gender differences according to existing neurobiological

findings[160]. The ideal case achieves when the modules with higher difference scores

are matched with those known important ones from neuroscience study.

On the PNC dataset, our task-aware learnable graph can obviously highlight the

modules with ROIs that are significant different between genders better compared

with Pearson graphs. Regarding the ABCD dataset, due to fewer functional mod-

ules it contains compared with PNC’s, the results of two kinds of graphs are sim-

ilar. However, our learnable graphs put more emphasize on the functional module
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”Somatomotor”, which contains ROIs related to auditory functions that are highly

differentiated between genders [3].

Overall, the difference score comparison of our learnable graphs and Pearson

graphs validates that graphs produced by FBNetGen are task-oriented and can

capture more authentic difference between genders than existing famous methods.

Table A.2: Modules’ difference score T of our learnable and Pearson graphs on the
PNC dataset.

Learnable Graph Pearson Graph
Module Difference Score Module Difference Score

Memory retrieval 0.083 Memory retrieval 0.297
Default mode 0.067 Cingulo-opercular 0.245

Ventral attention 0.064 Subcortical 0.232
Visual 0.054 Default mode 0.231

Cingulo-opercular 0.050 Auditory 0.206
Fronto-parietal 0.049 Somatomotor Hand 0.181
Subcortical 0.046 Fronto-parietal 0.176

Somatomotor Hand 0.044 Salience 0.164
Cerebellar 0.039 Ventral attention 0.155

Somatomotor Mouth 0.036 Visual 0.146
Auditory 0.034 Dorsal attention 0.141

Dorsal attention 0.031 Cerebellar 0.127
Salience 0.030 Somatomotor Mouth 0.114

Table A.3: Modules’ difference score T of our learnable and Pearson graphs on the
ABCD dataset.

Learnable Graph Pearson Graph
Module Difference Score Module Difference Score

Default mode 0.301 Default mode 0.412
VentralSalience 0.288 VentralSalience 0.404
CentralExecutive 0.275 DorsalSalience 0.368
DorsalSalience 0.221 CentralExecutive 0.347
Somatomotor 0.217 Visual 0.322

Visual 0.165 Somatomotor 0.301
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Appendix B

Additional Information for Brain

Network Transformer

B.1 Training Curves of Different Models with or

without StratifiedSampling

In Figure B.1, we demonstrate the training curves of different models with or without

stratified sampling based on site information from ABIDE. The curves of different

variants display similar patterns across three model architectures in a single run. We

remove Graphormer since its performance is much worse than others. Specifically, it is

shown that (a) with stratified sampling, the performance gap between validation and

test on ABIDE is much smaller than the one without stratified sampling; (b) stratified

sampling can stabilize the training process on ABIDE, especially for VanillaTF and

BrainNetTF.
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Figure B.1: Training Curves of Different Models with or without StratifiedSampling.

B.2 Transformer Performance with Different Node

Features

We compare the performance of Transformer model equipped with different node

features. The results are shown in Table B.1, where connection profile represents the

corresponding row for each node in the adjacency matrix, identity feature initializes

a unique one-hot vector for each node, and eigen feature generates a k-dimensional

feature vector for each node from the k eigenvectors based on the eigendecomposition

on the adjacency matrix. Empirical observations demonstrate that adding identity or

eigen node features to connection profiles cannot improve the model’s performance.

Model Node Feature
Dataset

ABIDE ABCD

VanillaTF
Connection Profile 76.4±1.2 94.3±0.7

Connection Profile w/ Identity Feature 75.4±1.9 94.5±0.6
Connection Profile w/ Eigen Feature 75.9±2.1 94.0±0.8

Table B.1: The Performance (AUROC%) of Transformer with Different Node Fea-
tures.
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B.3 Statistical Proof of the Goodness with Or-

thonormal Cluster Centers

We propose two statistical methods to prove the goodness in orthonormal case since

it is impractical to directly compare the performance of the orthonormal and non-

orthonormal initializations.

B.4 Proof of Theorem 3.3.1

We state Theorem 3.3.1 here and show the proof details.

Theorem B.4.1. For arbitrary r > 0, let Br = {Z ∈ RV ; ∥Z∥≤ r} denote the round

ball centered at origin of radius r with Z being fracture vectors. Let Vr be the volume

of Br. The variance of Softmax projection averaged over Br

1

Vr

∫
Br

K∑
k

( e⟨Z,Ek·⟩∑K
k′ e

⟨Z,Ek′·⟩
− 1

K

)2
dZ, (B.1)

attains maximum when E is orthonormal.

Proof. For simplicity, we first consider the two-dimensional case with two cluster

centers E1,E2. Since we integrate over the round ball Br, spherical symmetry allows

us to set E1 = (1, 0) and E1 = (cos(ϕ), sin(ϕ)) with ϕ ∈ [0, π
21
] being the angle

between E1 and E2 under polar coordinates. Then the Softmax readout Eq. (3.2)

can be rewritten as:

P1 =
eρ cos(θ)

eρ cos(θ) + eρ cos(θ−ϕ)
, P2 =

eρ cos(θ−ϕ)

eρ cos(θ) + eρ cos(θ−ϕ)
, (B.2)

where θ is the angle between Z and E1 and ρ is the norm of Z. Hence, the integral
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is

F (ϕ) :=
1

Vr

∫
Br

2∑
k=1

(Pk −
1

2
)2dZ =

1

πr2

∫ r

0

∫ 2π

0

( e2ρ cos(θ) + e2ρ cos(θ−ϕ)

(eρ cos(θ) + eρ cos(θ−ϕ))2
+

1

2

)
dθdρ.

(B.3)

Our aim is to show that the integral F (ϕ) attains its maximum when E1,E2 are

orthogonal. It is unclear whether the above integral has an elementary antideriva-

tive. Thus, instead of evaluating the integral directly, we firstly prove two sym-

metric properties of the integrand f(ρ, θ, ϕ): (a) It is straightforward to show that

f(ρ, θ+kπ, ϕ) = f(ρ, θ, ϕ) for k ∈ N. That is, f is periodic for π on the first argument

θ. (b) We have

f(
ϕ

2
+

π

2
− θ) =

e2ρ sin(
ϕ
2
+θ) + e−2ρ sin(ϕ

2
−θ)

(eρ sin(
ϕ
2
+θ) + e−ρ sin(ϕ

2
−θ))2

=
e2ρ sin(

ϕ
2
+θ) + e−2ρ sin(ϕ

2
−θ)

e2ρ sin(
ϕ
2
+θ) + e−2ρ sin(ϕ

2
−θ) + 2eρ sin(

ϕ
2
+θ)−ρ sin(ϕ

2
−θ)

=
e2ρ sin(

ϕ
2
−θ) + e−2ρ sin(ϕ

2
+θ)

(eρ sin(
ϕ
2
−θ) + e−ρ sin(ϕ

2
+θ))2

= f(
ϕ

2
+

π

2
+ θ),

(B.4)

which means f is symmetric with respect to θ = ϕ
2
+ π

2
+ kπ. As the integrand

f(ρ, θ, ϕ) is periodic, we are allowed to compare F (ϕ1), F (ϕ2) via

∫ ϕ1
2
+2π

ϕ1
2

f(ρ, θ, ϕ1)dθ =

∫ 2π

0

f(ρ, θ, ϕ1)dθ,∫ ϕ2
2
+2π

ϕ1
2

f(ρ, θ, ϕ2)dθ =

∫ 2π

0

f(ρ, θ, ϕ2)dθ.

(B.5)

The integral domain [ϕ
2
, ϕ
2
+ 2π] is taken according to the second symmetry property

of f and can be significant for the following trick: we take the directional derivative
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of f along v = (1, 2) tangent to the straight line θ = ϕ
2
:

Df(v) =
∂f

∂θ
+ 2

∂f

∂ϕ

=
2ρeρ cos(θ−ϕ)+ρ cos(θ)(eρ cos(θ−ϕ) − eρ cos(θ))(sin(θ) + sin(θ − ϕ))

(eρ cos(θ−ϕ) + eρ cos(ϕ))3
.

(B.6)

It is easy to check that in the above integral domain and for any ρ > 0, Df(v) is

always non-negative. Hence,

f(ρ, θ − ϕ1

2
, ϕ1) ≤ f(ρ, θ − ϕ2

2
, ϕ2) (B.7)

when ϕ1 ≤ ϕ2. After taking integral, F (ϕ1) ≤ F (ϕ2) and thus it attains maximum in

the orthonormal case (ϕ = π
2
). Comparing F (ϕ1), F (ϕ2) without adjusting the integral

domain as above cannot give a clear result because the simple partial derivative

∂f/∂ϕ oscillates around zero. Higher dimensional cases follow similarly by employing

spherical and hyperspherical coordinates.

B.5 Proof of Theorem 3.3.2

Theorem 3.3.2 deals with a more general case: comparing the performance of an arbi-

trary readout P defined by orthonormal cluster centers with non-orthonormal ones.

We regard P as an estimated similarity probability between nodes and clusters and

solve this problem from the perspective of statistics. The estimation is considered

as a regression of samples (Ẑ(s), Ê(t), P̂ (st)) from node features, cluster centers and

similarity probabilities. We then judge the estimation relative to true similarity prob-

ability PT . Although it is almost impossible to find an analytic formula for PT , we

can indirectly judge the quality of estimation. To clarify the idea, we introduce some

basic concepts from statistics and prove our results on a statistical basis.
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Background Knowledge of Regression Analysis

We first consider process samples by logistic regression with cluster centers as categor-

ical variables. Intuitively, non-orthonormal centers correlate with each other, which

means there is an overlap among categorical variables and makes it hard to identify

the decision boundary that leads to a failed classification. However, as far as we know,

it is unclear how to compare overlaps between orthonormal and non-orthonormal vari-

ables rigorously. Thus, we simply process samples by a general nonlinear regression.

The regression process is linearized by the Gauss-Newton algorithm to facilitate the

analysis. We judge the goodness-of-fit describing the degree to which the regression

function fits its observed value, and then conduct a hypothesis test. The goodness-

of-fit is measured by coefficient of determinate R2 [139]:

Definition B.5.1. We consider a regression with r independent main variables:

Y = β0 + β1X1 + β2X2 + · · ·+ βrXr + ϵ. (B.8)

Let x̂p = (x̂p1, ..., x̂ps)
⊤ and ŷ = (ŷ1, ..., ŷs)

⊤ be data sets (samples) associated with

fitted values y̌ = (y̌1, ..., y̌s). Each difference eq = ŷq − y̌q is called a residue. We

denote the mean of x̂p and ŷ by x̄p, ȳ. The variability of data set can be measured

by the total sum of squares (SST), the sum of squares of residuals (SSR) and the

explained sum of squares (SSE) defined as (where p = 1, 2, ..., r q = 1, 2, ..., s):

SST =
∑
q

(ŷq − ȳ)2, SSR =
∑
q

e2q =
∑
q

(ŷq − y̌q)
2, SSE =

∑
q,p

(x̂qp − x̄p)
2.

(B.9)

In linear regression, SSR + SSE = SST and the coefficient of determination R2 is
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defined as:

R2 =
SSE

SST
= 1− SSR

SST
. (B.10)

Conceptually, SSE is the error cost by regression of main variables. Thus by

definition, R2 reveals the percentage of errors that main variables can explain in the

total error SST. The value of R2 is bounded by 1. A large value of R2 indicates a

better fitting. However, it should be noted that an extremely-large R2 could indicate

overfitting.

In our problem, since our regression is nonlinear, the sum of SSR and SSE is less

than SST [1]. Therefore, measuring goodness-of-fit by R2 in nonlinear regression is

inaccurate. A common strategy to remedy this problem is approximating nonlinear

functions by polynomials via Gauss-Newton algorithm. We provide a brief intro-

duction here, and more details can be found in [1]: for a nonlinear model fk with

parameter δ, in a small neighborhood of δT -the true value of δ, we have the linear

expansion:

fk(δ) ≈ fk(δT ) +
M∑

m=1

∂fk
∂δm

∣∣∣
δT
(δm − δTm). (B.11)

Or briefly, we write it by vector notation:

f(δ) ≈ f(δT ) + F (δ − δT ), (B.12)

where F (δ−δT ) stands for the dot product of derivatives and differences of parameters

from Eq. (B.11). Suppose δ(γ) is an approximation to the least-squares estimation δ

of our model, for δ close to δ(γ), we rewrite the expansion as:

P̌ = f(δ) ≈ f(δ(γ)) + F (γ)(δ − δ(γ)), (B.13)
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where P̌ denotes a fitted value of P and F (γ)(δ − δ(γ)) again means a dot product.

Applying this to the residual vector e(δ), we have:

e(δ) = P − f(δ) ≈ e(δ(γ))− F (γ)(δ − δ(γ)). (B.14)

Thus, the norm

S(δ) := ∥P − f(δ)∥2= e⊤(δ)e(δ)

≈ e⊤(δ(γ))e(δ(γ))− 2e⊤(δ(γ))F (γ)(δ − δ(γ)) + (δ − δ(γ))⊤F (γ)⊤F (γ)(δ − δ(γ)).

(B.15)

The right-hand side is minimized with respect to δ when

δ − δ(γ) = (F (γ)⊤F (γ))−1F (γ)⊤e(δ(γ)) = ζ(γ). (B.16)

This suggests that given a current approximation δ(γ), the next approximation should

be:

δ(γ+1) = δ(γ) + ζ(γ). (B.17)

Expanding the nonlinear function f as polynomials and modifying the parameter δ

as above, we can use R2 to measure the goodness-of-fit. To acquire higher accuracy

in a general nonlinear regression, one can make a elaborated goodness-of-fit test for

specific fitting functions e.g., [25, 38]. We do not discuss this sophisticated method

as it is out of the scope of this paper.

Comparing R2 by Variance Inflation Factor

The proof of Theorem 3.3.2 consists of two steps: (a) we first prove that the regression

accuracy, the accuracy when regressing P is higher when sampling from orthonormal
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cluster centers (Theorem B.5.4), and consequently (b) higher regression accuracy

increases appraisal accuracy, the accuracy when appraising an estimated value in

hypothesis testing (Theorem B.5.7).

In this subsection, we compare regression accuracy. we fix Zi when regressing

P via the fitted value P̌ (Ek). Statistically, the expectation E(P ) of all readouts is

identified as the true similarly probability PT . In regression analysis, the Ordinary

Least Squares (OLS) guarantees asymptotically unbiased estimations. That is, when

the sample size s is large enough, it can be regarded as an unbiased estimation [139]:

E(P̌ ) = PT = E(P ). (B.18)

Therefore, the better the goodness-of-fit reflected by R2, the smaller the variance of

estimation. To compare this, we use the concept of variance inflation factor which

reflects the inflation of weights of variables in regression:

Definition B.5.2. The variance inflation factor (VIF)p is defined as:

(VIF)p =
1

(1−R2
p)
, (B.19)

where R2
p is the coefficient of multiple determination when Xp is regressed by the r-1

other variables in the model from Eq. (B.8).

Remark B.5.3. We discuss more details about VIF in the following context [139]. For

simplicity, we denote the following collection of samples and regression coefficients:

X̂ = (x̂1, ..., x̂r) = (x̂qp), ŷ = (ŷ1, ..., ŷs)
⊤, β = (β1, ..., βr).

In the regression model Eq. (B.8), the estimation β̌p of regression coefficients βp are
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obtained by Ordinary Least Squares (OLS):

β̌ = (X̂⊤X̂)−1X̂⊤ŷ. (B.20)

We standardize the regression equation by covariance matrices σy of y̌ and the variance

σq of x̂p as

y̌∗q =
y̌q − ȳ

σy

, x̂∗
qp = σ−1

q (x̂pq − x̄p), (B.21)

and

β̌∗
q = β̌q

σq

σy

, y̌∗ = β̌∗
0 + β̌∗

1X
∗
1 + β̌∗

2X
∗
2 + · · ·+ β̌∗

rX
∗
r . (B.22)

Similarly to Eq. (B.20), standardized estimation of regression coefficients are equal

to

β̌∗ = (X̌∗⊤X̌∗)−1X̌∗⊤y̌∗. (B.23)

On the other hand, the covariance matrix of the estimated regression coefficients

is

σ2
β̌
= σ2(X⊤X)−1, σ2 =

s∑
q=1

(y̌q − ȳ)2, (B.24)

where σ2 is the error term variance for X (cf. Definition B.5.1). After standardiza-

tion, it is noted that X∗⊤X∗ is just the correlation matrix rXX of X∗. Hence, by

Eq. (B.24) we obtain:

σ2
β̌∗ = (σ∗)2r−1

XX . (B.25)
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Let (VIF)p be the p-th diagonal element of the matrix r−1
XX . The variance of β∗

p is

equal to:

σ2
β̌∗
p
= (σ∗)2(VIF)p. (B.26)

The diagonal element (VIF)p is just the variance inflation factor for β̌∗
p . The variance

of β∗
p can also be written as [139]

σ2
β̌∗
p
=

1

1−R2
p

[ σ2∑
q(xqp − x̄p)2

]
. (B.27)

With the previous discussion, we conclude that

(VIF)p =
1

(1−R2
p)
, (B.28)

where R2
p is defined in B.5.2.

Theorem B.5.4. Let

VIF =

∑r
p=1(VIF)p

r − 1
, (B.29)

where r denotes the number of variables in Eq. (B.8). Then VIF ≥ 1 with equality

holds if and only if the variables are orthogonal.

Proof. To prove this, we need to generalize the definition of R2. By definition,

R2 =
SSE

SST
=

∑s
q=1(y̌q − ȳ)2∑s
q=1(yq − ȳ)2

=
s∑

q=1

(y̌∗q )
2. (B.30)

Substituting Eq. (B.22) into the above identity, we have

s∑
q=1

(y̌∗q )
2 =

s∑
q=1

(X̌∗
q β̌

∗)2 = (X∗
q β̌

∗)⊤X∗
q β̌

∗, (B.31)
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and by Eq. (B.23), we conclude that

R2 = (rXY )
⊤(rXX)

−1rXY . (B.32)

As the finial step, we compute R2
p from Definition B.5.2 by Eq. (B.32). It should

be noted that according to Definition B.5.2, R2
p is the goodness-of-fit when Xp is

regressed by the r-1 other variables. These variables are uncorrelated in orthonormal

case. Hence rXY = 0, R2
p = 0 and VIF = 1.

Remark B.5.5. In statistics, when a variable’s VIF is greater than 1, or equivalently

R2
p ̸= 0, the influence of this variable on the whole estimation is inflated. It breaks the

so-called absence of multicollinearity, a fundamental principle in multiple regression

analysis, and hence causes more error. Since SSE is a constant value, the error

generated by the inflation would be counted into SSR, which leads to a decrease in

R2 by Definition B.5.1 (see [139, 1] for more details).

Statistical Hypothesis Testing

The previous discussion verifies that regressing with orthonormal samples attains

a higher goodness-of-fit. In other words, it achieves a higher regression accuracy.

Tools from hypothesis testing are borrowed here to determine the appraisal accuracy

mentioned at the beginning of Section B.5. We first introduce mean squared error

(MSE) commonly used in statistics [53]:

Definition B.5.6. Recall that the residue eq = (ŷq− y̌q) from Definition B.5.1. Then,

MSE =
1

s

s∑
q=1

(ŷq − y̌q)
2 =

1

s

s∑
q=1

(eq)
2 =

1

s
e⊤e. (B.33)

As mentioned in B.5, a small coefficient of determination R2 indicates a large SSR

and hence leads to a large MSE. As a result of Theorem B.5.4, MSE is minimized in
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the orthonormal case.

We now assume a domain centered at the true value PT of radius d, and treat

the outside space W as the rejection region. Statistically, if the distance between P̌

and PT is less than a small enough d, we can regard them as the same. Intuitively,

if fitted values P̌ are largely scattered from the true value PT , that is, when MSE

is large, it can interfere with our judgment of whether P can be identified with PT .

Rigorously, we make a hypothesis testing and analyze the probability of rejecting a

well-estimated readout function. We prove in the following that when sampling from

orthonormal cluster centers, a higher regression accuracy (Theorem B.5.4) guarantees

a lower MSE and therefore increases the appraisal accuracy.

Theorem B.5.7. The significance level αEk· reveals that the probability of reject-

ing a well-estimated readout is lower when sampling from orthonormal centers than

sampling from non-orthonormal centers.

Proof. Let P be a readout function such that ∥PT − P ∥≤ d for small enough d.

Statistically, we can treat them as the same and simply write P̌ = PT . In hypothesis

testing, we define null hypothesis H0 and alternative hypothesis H1 by

H0 : P̌ = PT , H1 : P̌ ̸= PT , (B.34)

in which H1 means that we reject a well-estimated readout with H0 having the oppo-

site meaning. The rejection region for this test is thus given as W = {P̌ ̸= PT}. As a

conventional procedure in hypothesis testing, we take a suitable test statistic TEk
(Zi)

whose distribution f is known [53]. It is used to compute the probability that P̌ is

in the rejection region. The corresponding probability distribution is called potential

function g(θ) for W in this setting:

g(θ) = Pθ(P̌ ∈ W ) =

∫
W

f(TEk
(Zi))dZi ≤ αEk

, θ = H0 ∪H1, (B.35)
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where the significance level αEk
is the upper bound of the probability of making

mistakes (formally called type I error) [53].

By Theorem B.5.4 and Remark B.5.6, MSE is minimized in the orthonormal case.

It can be treated as a variance of distribution f . Then by Vysochanskij–Petunin in-

equality, a refinement of Chebyshev inequality, the integration over W with orthonor-

mal cluster centers Ek is smaller than that with non-orthonormal cluster centers E′
k:

∫
W

f(TEk
(Zi))dZi ≤

∫
W

f(TE′
k
(Zi))dZi. (B.36)

As the result holds true for any well-chosen TEk
(Zi), αEk

≤ αE′
K
, this finishes the

proof.

B.6 Running Time

Table B.2 shows that state-of-the-art models of Graphormer and SAN are much slower

than our BrainNetTF and VanillaTF, mainly because their implementations are

not optimized toward the unique properties of brain networks. Specifically, let e be

the number of edges and v be the number of nodes. The calculation of Graphormer

and SAN optimizes the case where e ≪ v2. However, brain networks usually have a

small number of nodes but dense connections, i.e., e ≃ v2. Therefore the optimized

sparse graph operations in PyTorch Geometric [63] do not work properly. On the

other hand, since the number of nodes in brain networks is usually relatively small

(less than 500), we can directly speed up the calculation using matrix multiplication,

which is what we did in BrainNetTF and VanillaTF. Besides, the edge feature

generation operator in Graphormer further increases the burden on its computing

time.
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Table B.2: Running time with different graph transformer methods.

Method Running Time on ABIDE (min) Running Time on ABCD (min)

SAN 93.01±0.96 908.05±3.6
Graphormer 133.52±0.54 4089.86±5.7
VanillaTF 2.32±0.10 36.26±2.12

BrainNetTF 1.98±0.04 30.31±1.16

B.7 Number of Parameters

Table B.3: The number of parameters in different models.
Method #Para on ABIDE #Para on ABCD

BrainNetCNN 0.93M 0.93M
BrainGB 1.08M 1.49M
FBNetGen 0.55M 1.18M

SAN 57.76M 186.7M
Graphormer 1.23M 1.66M
VanillaTF 15.6M 32.7M

BrainNetTF 4.0M 11.2M

B.8 Parameter Tuning

For BrainGB, BrainGNN, FBNetGen, we use the authors’ open-source codes. For

SAN and Graphormer, we folk their repositories and modified them for the brain

network dataset. For BrainNetCNN and VanillaTF, we implement them by our-

selves. We use the grid search for some important hyper-parameters for these base-

lines based on the provided best setting. To be specific, for BrainGB, we search

different readout functions {mean, max, concat} with different message-passing func-

tions {Edge weighted, Node edge concat, Node concat}. For BrainGNN, we search

different learning rates {0.01, 0.005, 0.001} with different feature dimensions {100,

200}. For FBNetGen, we search different encoders {1D-CNN, GRU} with different

hidden dimensions {8, 12, 16}. For BrainNetCNN, we search different dropout rates

{0.3, 0.5, 0.7}. For VanillaTF, we search the number of transformer layers {1, 2,

3} with the number of headers {2, 4, 6}. For SAN, we test LPE hidden dimensions

{4, 8, 16}, the number of LPE and GT transformer layers {1, 2} and the number

https://github.com/HennyJie/BrainGB
https://github.com/xxlya/BrainGNN_Pytorch
https://github.com/Wayfear/FBNETGEN
https://github.com/DevinKreuzer/SAN
https://github.com/microsoft/Graphormer
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Table B.4: The dependency of BrainNetTF.

Dependency Version

python 3.9
cudatoolkit 11.3
torchvision 0.13.1
pytorch 1.12.1

torchaudio 0.12.1
wandb 0.13.1

scikit-learn 1.1.1
pandas 1.4.3

hydra-core 1.2.0

of headers {2, 4} with 50 epochs training. For Graphormer, we test encoder layers

{1, 2} and embed dimensions {256, 512}. Furthermore, since the rebuttal time is

pretty short, we do not have enough time to dig two new baselines, BrainnetGNN

and DGM, which may be why their performance is worse than others.

B.9 Software Version

B.10 The Difference between Various Initializa-

tion Methods

To show orthonormal initialization can produce more discriminative P between classes

than random initialization, we calculate the difference score d based on the formula

d =
K∑
i

V∑
j

|P female
ij − Pmale

ij |
KV

, (B.37)

where V is the number of nodes and K is the number of clusters. After running the

t-test, we found the margins between random and orthonormal on both ABIDE and

ABCD are significant, which is consistent with our conclusion.



121

Table B.5: The difference score between different initialization methods.
Method Difference score on ABIDE Difference score on ABCD

Random 0.067±0.016 0.125±0.010
Orthonormal 0.085±0.015 0.142±0.014
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Appendix C

Additional Information for

R-Mixup

C.1 Covariance, Correlation and Positive Definite

Matrices

We provide detailed definitions on covariance, correlation and positive definite matri-

ces with necessary properties here.

Definition C.1.1. Let X = (Xi) = (xik) with i = 1, ..., n and k = 1, ..., t be t-

dimensional vectors of n variables. The corresponding covariance matrix Cov(X) is

defined as

Cov(X)ij =
1

t

(∑
k

(xik − E(Xi))(xjk − E(Xj))
)

=E(XiXj)− E(Xi)E(Xj).

(C.1)
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The correlation matrix is normalized as:

Cor(X) =diag(
1√

Cov(X)11
, ...,

1√
Cov(X)vv

)·

Cov(X) · diag( 1√
Cov(X)11

, ...,
1√

Cov(X)vv
).

(C.2)

Expressed by matrix entries, we restore the familiar Pearson correlation coefficients :

Cor(X)ij =
Cov(X)ij√

Cov(X)ii
√
Cov(X)jj

. (C.3)

Remark C.1.2. It should be noted that to make the definition of Cor(X) valid,

Cov(X)ii ̸= 0 for all i. Since

Cov(X)ii = E(XiXi)− E(Xi)E(Xi) =
1

t

∑
k

x2
ik −

(1
t

∑
k

xik

)2
, (C.4)

the geometric mean inequality says that Cov(X)ii vanishes only when xik are identical,

which does not happen in our case.

Definition C.1.3. A symmetric n × n matrix S is positive semi-definite if for any

vector u ∈ Rn, uTSu ≥ 0. Equivalently, this means that the eigenvalues of S are

all nonnegative. If the inequality holds strictly, S is said to be positive definite, or

symmetric positive definite, or SPD for short.

Proposition C.1.4. Covariance and correlation matrices are positive semi-definite.

A necessary condition for them to be positive definite is that the length of each sample

is no less than the number of variables, i.e., t ≥ n.

Proof. Recall Eq.(C.1) from Definition C.1.1, let us consider column vectors Yk =

(xik − E(Xi)). Then Cov(X) = 1
t

∑
k YkY

T
k . Given any vector u ∈ Rn,

uTCov(X)u =
1

t

∑
i

uTYkY
T
k u =

1

t

∑
i

(Y T
k u)2 ≥ 0. (C.5)



124

On the other hand, by Eq.(C.2)

uTCor(X)u = uTdiag(
1√

Cov(X)11
, ...,

1√
Cov(X)vv

)·

Cov(X) · diag( 1√
Cov(X)11

, ...,
1√

Cov(X)vv
)u (C.6)

= ũTCov(X)ũ ≥ 0.

If {Yk}tk=1 spans the whole vector space Rn, in which case t must be no less

than n, then Cov(X) is positive definite. Otherwise, there must be some vector u

perpendicular to all Yk, which leads to
∑

i(Y
T
k u)2 = 0.

C.2 Geodesics and Swelling Effect

We list the geodesic equation and Riemannian distance function induced from log-

Euclidean metric on Sym+(n) here followed by a rigorous proof on the swelling effect.

Definition C.2.1. Let Sym+(n) denote the manifold of positive definite matrices

equipped with the log-Euclidean metric. Analytically, the induced distance function

reads

d(Si, Sj) = ∥logSi − logSj∥, (C.7)

which measures the distance between different two points Si, Sj ∈ Sym+(n), with the

following geodesic connecting two points:

γ(λ) = exp((1− λ) logSi + λ logSj). (C.8)

Detailed derivation of the geodesics equation can be found in [158, 124, 72].
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Proposition C.2.2 (Swelling Effect). Given arbitrary Si, Sj ∈ Sym+(n), then

det ( exp((1− λ) logSi + λ logSj))

≤ det (((1− λ) logSi + λ logSj)).

(C.9)

Especially,

min{detSi, detSj}

≤ det ( exp((1− λ) logSi + λ logSj)) ≤ max{detSi, detSj},
(C.10)

while det ((1 − λ) logSi + λ logSj) would exceed the determinants of both Si and Sj

as shown in Figure 5.2 in the main text.

Proof. To prove the first inequality, we note one basic fact of matrix exponential:

det(exp(A)) = exp(TrA). Thus,

det ( exp((1− λ) logSi + λ logSj))

= exp (Tr((1− λ) logSi + λ logSj))

= exp ((1− λ)Tr logSi) exp (λTr logSj))

=( expTr logSi)
1−λ( expTr logSj)

λ

=(detSi)
1−λ(detS2)

λ.

(C.11)

Then we make use of the following identity of n-dimensional Gaussian integral:

∫
exp(−1

2
xTSx)dx =

√
(2π)n

detS
, (C.12)
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where x ∈ Rn and S ∈ Sym+(n). In our case,

√
(2π)n

det (((1− λ)Si + λSj))

=

∫
exp(−1

2
xT ((1− λ)Si + λSj)x)dx

=

∫ (
exp(−1

2
xTSix)

)1−λ(
exp(−1

2
xTSjx)

)λ
dx

≤
(∫

exp(−1

2
xTSix)dx

)1−λ(∫
exp(−1

2
xTSjx)dx

)λ
=

√
(2π)n

(detSi)1−λ(detSj)λ
.

(C.13)

We use Hölder’s inequality in the last step from above, which yields

det ( exp((1− λ) logSi + λ logSj))

=(detSi)
1−λ(detSj)

λ ≤ det (((1− λ)Si + λSj)).

(C.14)

To prove the second inequality, let us assume detSi ≤ detSj and let a = detSj/detSi ≥

1. It is straightforward to check that aλ − 1 ≤ (a − 1)λ when 0 ≤ λ ≤ 1. This fact

indicates that

(
detSj

detSi

)λ − 1 ≤ (
detSj

detSi

− 1)λ

=⇒ (
detSj

detSi

)λ ≤ (
detSj

detSi

)λ+ (1− λ)

=⇒ (detSi)
1−λ(detSj)

λ ≤ (detSi)(1− λ) + (detSj)λ,

(C.15)

and finishes the proof.

C.3 Kernel Regression on Sym+(n)

We now present the proof details of Theorem 5.3.3 from the main text. To begin

with, we introduce a method from heat kernel theory [12] to generalize to Euclidean
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Gauss kernel

KE(Si, S̃) =
1

(2πσ2)n2/2
exp(− 1

2σ2
∥Si − Ŝ∥2) (C.16)

on Sym+(n) over which our samples are distributed. The notion of geodesic regression

[16, 66] would also become apparent as we move forward. Let us first consider the

following classical heat equation on Euclidean space

( ∂

∂t
−
∑
i

∂2

∂x2
i

)
f =

∂f

∂t
+∆f = 0, (C.17)

where ∆ =
∑

i
∂2

∂x2
i
is the Laplacian. A solution f(x, t) to this equation is interpreted

as the temperature at position x and time t. Substituting t = σ2/2 into Eq.(5.9), it

can be check by definition that the function

Kt(x, y) =
1

(4πt)n2/2
exp(− 1

4t
∥x− y∥2) (C.18)

solves Eq.(C.17). It is called the fundamental solution or heat kernel as any other

solutions to Eq.(C.17) can be written as the convolution with a certain function f(y):

f(x, t) =

∫
Rn×n

Kt(x, y)f(y)dy. (C.19)

Based on this fact, it is natural to define Riemannian Gauss kernel as the funda-

mental solution to heat equation on Riemannian manifolds. To this end, we need to

replace the Laplacian on Euclidean spaces by Laplace–Beltrami operator, still denoted

by ∆, on manifolds. The formal definition of this operator is unnecessary here and

we recommend interested readers to [12, 72] for more details. It is enough to known

its local coordinate expression for our purpose. Specifically, being different from Eu-

clidean spaces with a standard and explicit coordinate system, i.e., any vector x ∈ Rn
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can be explicitly expressed by its components (coordinates) xi, the coordinates of

points p in a manifold M always need being defined exclusively depending on the

concerned manifold. In the most general case, it is only known that manifolds ad-

mit local coordinate parametrizations for its local regions as they resemble Euclidean

spaces. Expressed by any local coordinates,

∆f =
∑
i,j

gij
(∂2f

∂x2
i

− Γk
ij

∂f

∂xk

)
(C.20)

where gij,Γk
ij are called dual metric and Christoffel symbols and are all determined

by the Riemannian metric [158, 124]. Now we wish to analyze the heat equation

expressed by local coordinates. However due to its intricate form involving the Rie-

mannian metric, it is generally impossible to solve the equation analytically. Even

though, the following theorem is established in heat kernel theory using advanced

tools from differential geometry:

Theorem C.3.1. [12] Let M be a complete Riemannian manifold, then there exists

a function Kt(p, q), called heat kernel, with the following properties

1. Kt(p, q) = Kt(q, p) for all p, q ∈M .

2. limt→0Kt(p, q) equals the Dirac delta function δx(y).

3. Kt(p, q) is positive definite and solves the heat equation.

4. Kt(p, q) =
∫
M
Kt−s(p, p

′)Ks(p
′, q)dp′ for any s > 0.

We are only interested in the third property as its confirms that the heat kernel

truly determines a feature map from Sym+(n) into a higher dimensional feature space

[164]. Let y = (yi) denote the column vector consisting of training data labels, let KS̃

denote the column vector consisting of KR(Si, S̃) and let G = (KR(Si, Sj) denote the

kernel matrix evaluated by KR on the data set. Then the predictor function regressed
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through kernel ridge regression is

m̃(S̃) = yTG−1KS̃. (C.21)

As a reminder, if detG = 0 (when does not happen here since the kernel function is

positive definite), a regularization ζ ≥ 0 can be chosen as a trade-off between weights

and square errors when optimizing the regression. The log-Euclidean metric is now

explicitly used in evaluating KS̃ as well as G. On the other hand, a vanilla geodesic

regression could be intuitively treat as the multi-linear regression on manifold with

the Riemannian metric substituting for the Euclidean metric, which is fairly easy to

deal with when we have a coordinate system and this is what we are going to do in

the following proof.

Theorem C.3.2. For Sym+(n) with log-Euclidean metric and estimators m̃ obtained

with either geodesic regression or Gaussian kernel regression on samples. Augmented

data from Riemannian geodesics bear the mean square error no more than those from

straight lines.

Proof. We first note the fact that the exponential and logarithm functions

exp : Sym(n)→ Sym+(n), log : Sym+(n)→ Sym(n) (C.22)

are isometries between Sym+(n) and Sym(n). That is: (a) they are bijective and (b)

preserve the Riemannian distance functions:

∥Hi −Hj∥= d(expHi, expHj), d(Si, Si) = ∥logSi − logSj∥ (C.23)

for any Si, Sj ∈ Sym+(n) and any Hi, Hj ∈ Sym(n). A detailed proof on the RHS

equation from can be found in [72] and with the bijectivity of exp and log, we obtain

the LHS equation from above. Besides, being defined as collection of all symmetric
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n×n matrices, Sym(n) is an 1
2
n(n− 1)-dimensional Euclidean space with a standard

coordinate system introduced above. Combining with the logarithm function log :

Sym+(n) → Sym(n), then we obtain a coordinate system for Sym+(n) within which

we can express the heat equation Eq.(C.17) explicitly.

Since log is an isometry and since Sym(n) is a Euclidean space, as a basic result in

Riemannian geometry, the Christoffel symbols Γk
ij in Eq.(C.20) vanishes [124] in the

defined coordinate system and hence the Laplace–Beltrami operator degenerates to

the common Laplacian. As a result, the fundamental solution is exactly Eq.(C.18) ex-

pressed by the coordinates. After taking the inverse map exp, the Euclidean distance

is replaced by Riemannian distance in Eq.(C.18). Hence,

KR(Si, Ŝ) =
1

(2πσ2)
n(n−1)

4

exp

(
− 1

2σ2
d(Si, Ŝ)

2

)
, (C.24)

is the heat kernel on Sym+(n) with the property being positive definite by Theorem

C.3.1.

Recall that the Riemannian geodesic of log-Euclidean metric is

γ(λ) = S̃ = exp ((1− λ) logSi + λ logSj) . (C.25)

Its coordinate representations is then

log(γ(λ)) = (1− λ) logSi + λ logSj, (C.26)

which is a straight line connecting log Si and logSj ∈ Sym(n). As a contrary, the

coordinate representation of

η(λ) = S̃ ′ = (1− λ)Si + λSj (C.27)
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is highly curved as

log(η(λ)) = (log(1− λ)Si + λSj) . (C.28)

Since Sym(n) is an Euclidean space and since we verified above that the function log

is an isometry, conducting geodesic regression for the samples {(Si, yi)|i = 1, ..., N}

is merely solving the linear model of {(logSi, yi)|i = 1, ..., N}. Since the total sample

number N in our case is less than the dimension of the ambient Euclidean space n2,

the optimal solution is just a hyperplane encompassing all samples as well as those

synthesized via Eq.(C.26). However, curves like Eq.(C.28) are manifestly deviated

from the regression hyperplane which leads to large square loss.

To verify the case involving Gaussian kernel, we make use of the following operator

inequalities [21]:

log((1− λ)Si + λSj) ≥ (1− λ) logSi + λ logSj. (C.29)

Intuitively, the logarithm is a concave function on (0,+∞), which is generalized to

hold in the setting of positive semidefinite matrices with A ≥ B meaning A − B is

positive semidefinite. For simplicity, we only analyze Eq.(C.21) for a pair of samples

Si, Sj as an augmented sample S̃ is coined in this way through our mixup method.

In statistics, penalty functions [206] can be employed weaken the influence of other

samples and achieve this effect. With these preparation,

m̃(S) = yTG−1KS = (yi, yj)

KR(Si, Si) KR(Si, Sj)

KR(Sj, Si) KR(Si, Si)


−1KR(Si, S)

KR(Sj, S)


=

1

1−K2
ij

(
(yi −Kijyj)Ki,S + (yj −Kijyi)Kj,S)

)
, (C.30)

where Kij = exp
(
− 1

2σ2d(Si, Ŝ)
2
)
is an abbreviation for the non-normalized Gaussian
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distribution of log-Euclidean distance with Ki,S being denoted analogously. Substi-

tuting S̃ and S̃ ′ from Eq.(C.25) and Eq.(C.27) into the above equation, we then

compare the estimators with ỹ = (1− λ)yi + λyj directly.

For predictions of S̃, we note that

Kij = exp

(
− 1

2σ2
∥logSi − logSj∥

)
, (C.31)

Ki,S̃ = exp

(
− 1

2σ2
λ∥logSi − logSj∥

)
= Kλ

ij (C.32)

Kj,S̃ = exp

(
− 1

2σ2
(1− λ)∥logSi − logSj∥

)
= K1−λ

ij (C.33)

with

m̃(S̃) =
1

1−K2
ij

(
Kλ

ij(yi −Kijyj) +K1−λ
ij (yj −Kijyi))

)
(C.34)

being a concave function for λ ∈ [0, 1]. This can be demonstrated by examining that

the second order derivative

d2m̃(S̃(λ))

dλ2
=

ln2Kij

Kλ
ij(1−K2

ij)

(
(Kij −K2λ+1

ij )yj + (K2λ
ij −K2

ij)yi

)
, (C.35)

which is nonnegative because Kij ≤ 1 and Kij −K2λ+1
ij , K2λ

ij −K2
ij ≥ 0. As a result,

m̃(S̃) ≤ ỹ. On the other hand,

Ki,S̃′ = exp

(
− 1

2σ2
∥log((1− λ)Si − λSj)− logSi∥

)
(C.36)

Kj,S̃′ = exp

(
− 1

2σ2
∥log((1− λ)Si − λSj)− logSj∥

)
(C.37)

are intricate as the linear combination of matrices ((1−λ)Si−λSj) does not commute

with the logarithm. Despite of this difficulty, we are still above to compare m̃(S̃) and



133

m̃(S̃ ′) based on their general expansion in Eq.(C.30). By (C.29),

log((1− λ)Si + λSj)− logSi ≥ λ(logSi + logSj)

=⇒ ∥log((1− λ)Si + λSj)− logSi∥≥ ∥λ(logSi + logSj)∥

=⇒ Ki,S̃′ = exp

(
− 1

2σ2
∥log((1− λ)Si − λSj)− logSi∥

)
≤ exp

(
− 1

2σ2
λ∥logSi − logSj∥

)
= Ki,S̃.

(C.38)

The second inequality is due to the fact that the operator norm ∥ - ∥ equals the largest

eigenvalue of any positive semidefinite operator. Similar argument also implies case

with Sj. Together with the concavity of m̃(S̃), Eq.(C.30) and the range of our labels,

we conclude that

0 ≤ m̃(S̃ ′) ≤ m̃(S̃) ≤ ỹ =⇒
∑

(m̃(S̃)− ỹ)2 ≤ (m̃(S̃ ′)− ỹ)2, (C.39)

which are finally summed over the samples to show that the square error of estimation

using geodesics is no more than that using straight lines on Sym+(n).

Remark C.3.3. For affine-invariant metric, it has been shown that the induced Rie-

mannian curvature tensor R is nonzero [158, 176] and hence it is impossible to find

coordinate systems within which Γk
ij = 0 [124]. Therefore, the fundamental solution

to the heat equation can never take in the concise form as Eq.(C.24) and Theorem

5.3.3 becomes invalid to appraise the case when using affine-invariant metric.

C.4 Running Time on three smaller datasets

As shown in Figure C.1, on the smaller datasets, PNC, ABIDE, and TCGA-Cancer,

there is no significant difference in elapsed time between the different methods. No-

tably, the proposed R-Mixup is magically faster than C-Mixup on the TCGA-Cancer
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Figure C.1: Running Time in PNC, ABIDE and TCGA-Cancer. R-Mixup is the
original version of our method while R-Mix(Opt) is the proposed optimized version
in Section 5.3.5.

dataset. This is mainly due to the small node size of TCGA-Cancer, which reduces

the main barrier of the eigenvalue decomposition in R-Mixup, while the time cost

of the sampling operation in the C-Mixup baseline does not change dynamically with

the node size.

C.5 Code Implementation

1 import torch

2 import numpy as np

3

4 wdef tensor_log(t):

5 # condition: t is symmetric.

6 s, u = torch.linalg.eigh(t)

7 s[s <= 0] = 1e-8

8 return u @ torch.diag_embed(torch.log(s)) @ u.permute(0, 2, 1)

9
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10 def tensor_exp(t):

11 # condition: t is symmetric.

12 s, u = torch.linalg.eigh(t)

13 return u @ torch.diag_embed(torch.exp(s)) @ u.permute(0, 2, 1)

14

15 def r_mixup(x, y, alpha =1.0, device=’cuda’):

16 if alpha > 0:

17 lam = np.random.beta(alpha , alpha)

18 else:

19 lam = 1

20 batch_size = y.size()[0]

21 index = torch.randperm(batch_size).to(device)

22 x = tensor_log(x)

23 x = lam * x + (1 - lam) * x[index , :]

24 y = lam * y + (1 - lam) * y[index]

25 return tensor_exp(x), y

Listing C.1: Python Example

C.6 GCN Backbone Performance

The performance of models with the GCN backbones can be found in Table C.1.

Table C.1: Overall performance comparison based on the GCN backbone. The best
results are in bold, and the second best results are underlined. The ↑ indicates a
higher metric value is better and ↓ indicates a lower one is better.

Method
ABCD-BioGender ABCD-Cog PNC ABIDE TCGA-Cancer

AUROC↑ Accuracy↑ MSE↓ AUROC↑ Accuracy↑ AUROC↑ Accuracy↑ Precision↑ Recall↑

w/o Mixup 78.82±0.62 71.55±0.43 80.85±4.69 59.14±5.66 60.00±4.72 55.09±6.91 55.20±6.18 30.49±6.89 40.83±6.18

V-Mixup 81.47±0.79 73.97±0.79 80.35±3.09 63.63±3.80 61.76±3.25 58.49±6.58 56.40±3.91 38.50±9.22 46.67±11.18
D-Mixup 81.30±0.35 73.67±0.39 80.90±9.48 58.68±6.24 58.43±5.99 60.19±6.58 55.40±6.15 37.67±5.47 50.00±4.17
DropNode 80.77±2.02 73.18±2.09 88.11±10.59 63.65±5.04 61.57±5.16 59.49±4.99 56.60±5.55 29.58±7.69 39.17±10.46
DropEdge 79.98±1.54 72.23±1.37 85.98±2.31 56.61±2.72 56.67±2.89 56.58±6.78 54.80±4.76 39.44±7.72 50.00±7.80
G-Mixup 81.30±1.07 73.90±0.86 81.28±3.46 57.25±3.75 57.45±2.91 62.43±2.94 60.40±3.44 38.64±8.47 49.17±9.03
C-Mixup 81.62±1.65 73.62±1.80 78.86±3.51 60.88±7.24 58.24±7.61 60.22±9.32 57.40±5.32 34.17±11.74 46.67±15.14

R-Mixup 82.85±1.86 75.86±1.88 74.88±2.03 64.39±5.05 62.31±3.32 63.03±5.58 59.67±5.96 44.78±8.64 48.44±8.61
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C.7 Case Study About Arbitrarily Incorrect Label

Problem

To verify how R-Mixup migrate the arbitrarily incorrect label problem, we design the

following process:

Algorithm 1 The Measurement of Arbitrarily Incorrect Label
1: i← n
2: dv ← 0
3: dr ← 0
4: while i > 0 do
5: (X1, y1), (X2, y2), (X3, y3) ∼ DABCD−Cog, where y1 < y2 < y3 ▷ Randomly

sample 3 data points and sorted by y
6: w = y2−y3

y1−y3
▷ Ensure wy1 + (1− w)y3 = y2

7: Xvmix = wX1 + (1− w)X3

8: Xrmix = exp (w logX1 + (1− w) logX3)
9: dv+ = ||Xvmix −X2||1
10: dr+ = ||Xrmix −X2||1
11: end while
12: dv =

dv
n

13: dr =
dr
n

We set n as 1000 and obtain dv = 24, 416.04±4, 066.60, dr = 22, 622.41±3, 873.05,

where the sample distance dr from R-Mixup is significantly smaller (7.3%) than the

sample distance dv from V-Mixup. The phenomenon shows our R-Mixup indeed can

migrate the arbitrarily incorrect label problem.
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Appendix D

Additional Information for

Multi-task Learning Framework

D.1 Task Definition

D.2 Edge Importance and Task-level Correlation

The algorithm uses these symbols: M for the trained multi-task learning model, ns

for the number of samples selected from the test set, X(i) and Y(i) for the input brain

networks and target labels of sample i, respectively, v for the number of views (e.g.

rest-state or N-Back task), M for the number of nodes in each brain network, IG
(i)
j,e,k

for the integrated gradients of edge e and task k in view j for sample i, t for the

total number of tasks, ¯IG
k
j for the average edge importance of view j and task k,

gk
j for the vectorized edge importance of view j and task k, Ĝk for the concatenated

edge importance across views for task k, Gk for the averaged edge importance across

views for task k, and C for the correlation matrix between task-level edge importance

vectors.
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Table D.1: Summary of tasks and their distributions. For numerical measures, the
distribution is presented as mean±standard deviation.

Type Task ABCD field Distribution

C
o
g
n
it
io
n

Vocabulary nihtbx picvocab uncorrected 85.29±7.73
Attention nihtbx flanker uncorrected 94.56±8.72

Working Memory nihtbx list uncorrected 97.69±11.47
Executive Function nihtbx cardsort uncorrected 93.37±8.86
Processing Speed nihtbx pattern uncorrected 88.75±14.36
Episodic Memory nihtbx picture uncorrected 103.58±12.03

Reading nihtbx reading uncorrected 91.40±6.52
Fluid Cognition nihtbx fluidcomp uncorrected 92.61±10.20

Crystallized Cognition nihtbx cryst uncorrected 87.10±6.65
Overall Cognition nihtbx totalcomp uncorrected 87.28±8.56
Short Delay Recall pea ravlt sd trial vi tc 9.88±2.95
Long Delay Recall pea ravlt ld trial vii tc 9.40±3.10
Fluid Intelligence pea wiscv trs 18.19±3.71

Visuospatial Accuracy lmt scr perc correct 0.60±0.17
Visuospatial Reaction time lmt scr rt correct 2691.27±461.01

P
e
rs
o
n
a
li
ty

Negative Urgency upps y ss negative urgency 8.40±2.61
Lack of Planning upps y ss lack of planning 7.68±2.29
Sensation Seeking upps y ss sensation seeking 9.84±2.67
Positive Urgency upps y ss positive urgency 7.86±2.89

Lack of Perseverance upps y ss lack of perseverance 6.96±2.17
Behavioral Inhibition bis y ss bis sum 9.45±3.66
Reward Responsiveness bis y ss bas rr 10.94±2.90

Drive bis y ss bas drive 3.96±2.97
Fun Seeking bis y ss bas fs 5.65±2.59

M
e
n
ta
l
H
e
a
lt
h

Total Psychosis Symptoms pps y ss number 2.30±3.30
Psychosis Severity pps y ss severity score 5.33±9.44
Anxious Depressed cbcl scr syn anxdep r 2.45±3.01

Withdrawn Depressed cbcl scr syn withdep r 0.97±1.64
Somatic Complaints cbcl scr syn somatic r 1.46±1.92
Social Problems cbcl scr syn social r 1.46±2.13

Thought Problems cbcl scr syn thought r 1.53±2.08
Attention Problems cbcl scr syn attention r 2.71±3.30

Rule-breaking Behavior cbcl scr syn rulebreak r 1.07±1.70
Aggressive Behavior cbcl scr syn aggressive r 3.02±4.11

Mania pgbi p ss score 1.16±2.56
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Algorithm 2 Obtaining Task-level correlation matrix C and edge importance Gk

for each task k by Integrated Gradients

Require: Trained multi-task learning model M, test set Dtest, number of samples
ns

Ensure: Task-level correlation matrix C and edge importance Gk for each task k
1: Save the best-performing modelM∗ based on validation set performance
2: Randomly select ns samples {(X(i),Y(i))}ns

i=1 from Dtest

3: for each sample (X(i),Y(i)) do
4: for each view j ∈ {1, . . . , v} do
5: for each edge e ∈ {1, . . . ,M2} do
6: for each task k ∈ {1, . . . , t} do
7: Compute integrated gradients IG

(i)
j,e,k for edge e in view j and task

k
8: end for
9: end for
10: end for
11: end for
12: for each task k ∈ {1, . . . , t} do
13: for each view j ∈ {1, . . . , v} do
14: ¯IG

k
j =

1
ns

∑ns

i=1 IG
(i)
j,k ▷ Average edge importance across samples

15: end for
16: ˆIG

k
=
⊕v

j=1 g
k
j ▷ Concatenate edge importance across views for task k

17: Gk = 1
v

∑v
j=1

¯IG
k
j ▷ Average IG across views for task k

18: end for
19: Compute correlation matrix C ∈ Rt×t between { ˆIGk}tk=1
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