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Abstract 

Efficient Preconditioner for Covariance Matrices Using Geometric Information 

By Rocky Luo 

The Gaussian process is a non-parametric machine learning tool designed to solve regression 

and make predictions. While the Gaussian process is very applicable in statistical modeling, in 

most cases the computation remains expensive because of its dense covariance matrix. To 

tackle this problem, we examine the geometry of the Gaussian process dataset and propose a 

method to solve the covariance matrix linear system using sampling techniques and low-rank 

approximation. We then validate the effectiveness of our method through theoretical analysis 

and several numerical experiments.
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Chapter 1

Introduction

We begin with some relevant background about the Gaussian process. For a more com-

prehensive review of this topic, please refer to [1].

A random variable x ∈ Rn is multivariate Gaussian if it has the following probability

density function:

P (x, µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(1.1)

where µ is the mean and Σ is the symmetric positive semidefinite covariance matrix. In

most cases, the covariance matrix is positive definite.

The Gaussian process is a set of random variables such that the joint distribution of

any finite subset is multivariate Gaussian. It extends the multivariate Gaussian distribu-

tions to infinite dimension and is thus used to capture the property of infinite-dimensional

function:

f ∼ GP(µ, k) (1.2)

where µ(x) : Rd → R is the mean function and k : Rd → Rd is the kernel function.

It is common to assume the mean of a Gaussian process as 0. However, for the kernel

function k, it must be the case that the resulting matrix K generated from any subset
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of random variables x1, x2, ..., xm

K =



k(x1, x1) k(x1, x2) . . . k(x1, xm)

k(x2, x1) k(x2, x2) . . . k(x2, xm)

...
...

. . .
...

k(xm, x1) k(xm, x2)
... k(xm, xm)


is a valid covariance matrix corresponding to some multivariate Gaussian distribution. To

satisfy the positive semidefiniteness requirement for the covariance matrices, the kernel

function must also be positive semidefinite such as the squared exponential kernel function

k(x, y) = σ2 exp(−∥x−y∥2
l2

) defined on Rn or the standard Brownian motion kernel function

k(s, t) = min(s, t) defined on R+.

Gaussian processes are kernel-based probability distributions with shape and smooth-

ness determined by the kernel function k. It is a flexible non-parametric model to make 

predictions. However, many practical applications of the Gaussian process involve the 

expensive computation associated with the dense covariance matrix K. For instance, 

K−1y and log det K require O(N3). The cost becomes not affordable when the matrix 

size gets large (N > 105).

In this thesis, we propose an approach that combines the low-rank approximation 

and sampling techniques to solve the linear system Ku = y through iterative methods. 

In Chapter 2, we review the existing iterative methods and preconditioners we plan to 

improve on. In Chapter 3, we discuss the low rank approximation idea related to our 

problem. In Chapter 4, we propose the sampling technique to obtain our preconditioner. 

In Chapter 5, we provide some theoretical analysis for our method. Numerical exper-

iments and discussions are presented in Chapter 6, and we draw some conclusions in 

Chapter 7.
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Chapter 2

Iterative Methods

An iterative method is a way of solving linear systems by using an initial value to generate

a sequence of improving approximations to the true solution. For instance, to solve the

equation Ax = b, we can start with an initial guess x0 (a common choice of the initial

guess is the zero vector). Then, the iterative technique converts the system Ax = b to a

linear transformation xk+1 = xk + c, where the sequence {xn} will converge to the true

solution x∗. In practice, the iterative method will stop when some convergence tolerance

has been satisfied.

For a very large dimensional system, direct methods such as Gaussian elimination

could be prohibitively expensive while iterative methods is usually efficient in terms of

running time and space usage. Constructing a preconditioner for iterative methods will

further accelerate the computation. In this chapter, we will illustrate an iterative method

called conjugate gradient (CG) and some of its existing preconditioners.

2.1 Conjugate Gradient

The conjugate gradient (CG) is a very classic iterative method to solve the linear system

Ax = b, where A is symmetric and positive definite. This method fits the aim of our

problem because the covariance matrix is symmetric and mostly positive definite. It

improves the steepest gradient descent by the conjugate search direction. The algorithm

is shown as below:
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Algorithm 1 Conjugate Gradient

1: r0 = b−Ax0

2: if r0 satisfies the convergence tolerance, then return x0 as the result
3: p0 = r0 k = 0
4: while rk+1 does not satisfy the convergence tolerance do

5: αk =
rT
krk

pT
kApk

6: xk+1 := xk + αkpk

7: rk+1 := rk − αkApk

8: βk :=
rT
k+1rk+1

rT
krk

9: pk+1 := rk+1 + βkpk

10: k := k + 1
11: end while
12: return xk as the result

As the conjugate gradient iteration solves the linear system associated with the pos-

itive definite matrix A, we have xTAx > 0 for every nonzero vector x ∈ Rm. The

function ∥ · ∥A can then be defined by:

∥x∥A :=
√
xTAx (2.1)

The conjugate gradient method can be interpreted as an optimization problem that

minimizes the norm ∥ek∥A, where ek = x∗ − xk. ∥ek∥A has the following property [2]:

Theorem 1. Define Pk as the set of polynomials such that Pk := {p ∈ P ′
k : p(0) = 1},

where P ′
k is the set of polynomials of degree less than or equal to k. Then ∥ek∥A satisfies:

∥ek∥A = inf
p∈Pk

∥p(A)e0∥A

≤ inf
p∈Pk

max
λ∈σ(A)

|p(λ)| ∥e0∥A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

∥e0∥A (2.2)

where σ(A) denotes the spectrum of A and κ(A) denotes the condition number of A.

This theorem illustrates the convergence of the conjugate gradient iteration. Although

it only provides a pessimistic upper bound, we would expect that the convergence is faster

if A is more well-conditioned.
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2.2 Preconditioning

The previous section provides an example that the condition number of the matrix A

can affect the convergence of an iterative method. Thus, in many cases, the original

linear system can be transformed into another one so that the new matrix is more well-

conditioned for faster convergence. This process, which happens before the iteration, is

called ”preconditioning”.

There are three common types of preconditioners: left preconditioners, right precon-

ditioners, and split preconditioners [2].

• In the case of left preconditioners, the linear system becomes:

M−1Ax = M−1b (2.3)

• In the case of right preconditioners, the linear system becomes:

AM−1y = b with x = M−1y (2.4)

• If M can be factorized in the form M = MLMR, where ML and MR are typically

lower and upper triangular matrices, respectively, we can construct a split preconditioner

as follows:

M−1
L AM−1

R y = M−1
L b with x = M−1

R y (2.5)

A good preconditioner typically has two properties: M or MR is structured enough,

and the new matrix on the left-hand side of the linear system is more well-conditioned.

To use conjugate gradient iteration after preconditioning, people will often choose the

split preconditioner to preserve symmetry and positive definiteness as long as the matrix

M holds these properties.
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2.3 Existing Preconditioners for Conjugate Gradient

In order to improve the performance of the conjugate gradient iteration, there are several

preconditioners that can make the iteration converge faster.

2.3.1 Jacobi Preconditioner

One of the most straightforward choices of preconditioners is the Jacobi preconditioner:

M = diag(A) [2]. The resulting linear system for conjugate gradient iteration will then

be:

M−1/2AM−1/2y = M−1/2b (2.6)

This preconditioner produces A′ = M−1/2AM−1/2, which is diagonally scaled.

It is also possible to use the block versions of the Jacobi preconditioner. If we have

an index set I = {1, ..., n}, and I is partitioned as I = ∪iIi with each subset Ii mutually

disjoint, then

mi,j =


ai,j, if i and j are in the same subset Ik

0, otherwise

(2.7)

In this case, we will have the preconditioner M as a block diagonal matrix,

The Jacobi preconditioner results in a very computationally inexpensive matrix in-

verse. However, we will not select this preconditioner as it does not greatly improve the

convergence.

2.3.2 Incomplete Cholesky Preconditioner

Consider the preconditioned linear system in Equation 2.5. Even when A and M are

favorably sparse, we usually encounter the problem that the lower factor ofM is much less

sparse thanM . Under such conditions, the incomplete Cholesky factorization can remedy

this issue [2]. The most common incomplete Cholesky preconditioner is constructed by
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factorizing the matrix A with zero fill-in, i.e., if ai,j = 0, then the corresponding entry in

MR is 0. The algorithm is shown below:

Algorithm 2 Zero Fill-in Incomplete Cholesky Factorization

1: for k = 1 : n− 1 do
2: rk,k =

√
ak,k

3: for j = k + 1 : n do
4: rk,j =

ak,j
rk,k

5: end for
6: for i = k + 1 : n do
7: for j = 1 : n do
8: if ai,j ̸= 0 then
9: ai,j = ai,j − rk,irk,j
10: end if
11: end for
12: end for
13: end for

The accuracy of the zero fill-in incomplete Cholesky preconditioner may not result

in a good convergence rate. There are several improvements that allow some levels of

fill-in. Moreover, instead of dropping out elements during the factorization, there are

also methods that compensate for the discarded entries, which is called the diagonal

compensation strategy [2]. Unfortunately, the strategies mentioned above only work

for the favorable sparse matrices, whereas the covariance matrix in our case is dense.

However, the dropping elements idea will be applied to our numerical test. To resolve

the traditional incomplete factorization which is blind to numerical values, we can set a

tolerance value to help us determine whether to drop an element on the off diagonal, i.e.,

ignoring small values. More details will be covered in the later chapter.

2.3.3 Spatial Data and Factorized Sparse Approximate Inverse

In one dimensional space, the inverse of the covariance matrix generated from the expo-

nential kernel function is sparse. In higher dimensions, the inverse may not be sparse, but

the value of the elements decays rapidly from the diagonal, which makes the Factorized

Sparse Approximate Inverse (FSAI) method very effective [3].
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This method provides a preconditioner in the form of:

GT
LGL ≈ A−1 (2.8)

where GL has some sparsity pattern on its lower triangular part. Suppose A has the

exact Cholesky factorization A = LLT . In order to have GLAGT
L close to the identity

matrix, the FSAI method computes GL by minimizing the norm:

∥I −GLL∥2F = tr((I −GLL)(I −GLL)T )

= tr(I −GLL−LTGT
L +GLLLTGT

L) (2.9)

The matrix L is not available in this case. However, we assume that the sparsity pattern

of GL, denoted as S such that S = {(i, j) | GL(i,j) ̸= 0}, is given. By taking the partial

derivative of tr(I − GLL − LTGT
L + GLLLTGT

L) with respect to the entries located

in the sparsity pattern of GL, and using the following derivatives of traces formula [4]:

∂tr(XA)
∂X

= AT , ∂tr(AXT )
∂X

= A and ∂tr(XBXT )
∂X

= XBT + XB, we obtain the following

property:

(GLA)ij = (LT )ij, (i, j) ∈ S (2.10)

Moreover, (i, j) ∈ S implies that i ≥ j since GL is lower triangular. Since LT is upper

triangular, The Equation 2.10 can be simplified as below:

(GLA)ij =


(LT )ij, i = j

0, i ̸= j and (i, j) ∈ S

(2.11)

This property shows that the off-diagonal entries of L do not need to be computed exactly

when we try to use GL to approximate L−1. If we cannot obtain the diagonal entries of

L, we can still construct GL using the matrix G′
L which shares the same sparsity pattern

8



and G′
L satisfies:

(G′
LA)ij = Iij ∀(i, j) ∈ S (2.12)

Note that G′
L can be constructed relatively cheaply because we can compute each row

independently by solving a small system associated with a symmetric positive definite

matrix AJ,J where J is the index set {j | (i, j) ∈ S} [5]. Then choose a diagonal scaling

matrix D and let GL = DG′
L such that:

(GLAGT
L)ij = 1, i = j (2.13)

Therefore, GL can be computed without knowing the Cholesky factor L.

FSAI helps us realize the possibility of reducing the cost of constructing a precondi-

tioner for dense and large covariance matrix if we don’t use all entries of the covariance

matrix during computation. In the next chapter, we will introduce the idea of construct-

ing an efficient Cholesky factor based on the low-rank approximation.
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Chapter 3

Another View of the Cholesky

Factorization

The eigenvalue distribution of two covariance matrices, as shown in Figure 3.1, presents

a low proportion of large eigenvalues. This phenomenon motivates us to construct an

efficient preconditioner based on the low-rank approximation idea. In this chapter, we

will introduce the pivoted (incomplete) Cholesky factorization using the low-rank ap-

proximation, which can reduce the task of constructing an efficient Cholesky factor to

selecting rows (columns) from the symmetric and positive definite matrix.

(a) the Absolute Exponential Covariance
Matrix

(b) the Squared Exponential Covariance
Matrix

Figure 3.1 Eigenvalue Distribution
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3.1 Low-Rank Approximation

In this section, we will introduce some background about the low-rank approximation

that is related to our method and the comparison experiments in Chapter 6.

A matrix A ∈ Rm×n is low-rank if r = rank(A)≪ m,n. Under this condition, A has

a nice factorization of the form:

A = BCT (3.1)

where B ∈ Rm×r and C ∈ Rn×r.

However, in numerical computations, it is almost impossible to have a low-rank matrix.

Therefore, the low-rank approximation aims to find B and C such that A ≈ BCT , i.e.,

∥A−BCT∥ is small. To investigate the low-rank approximation, it is more common to

write it in the following form:

A ≈ BHCT (3.2)

where B ∈ Rm×r, H ∈ Rr×r, and C ∈ Rn×r.

Recall the Singular Value Decomposition (SVD) of A is:

A = UΣV T (3.3)

Then a rank-r approximation of A is given by:

A ≈ BHCT = UrΣrV
T
r (3.4)

where Ur has the first r left singular vectors of A in its column, Σr is a diagonal matrix

with the first r singular value on the diagonal, and Vr has the first r right singular vectors

of A in its column.

In fact, the SVD gives the best theoretical low-rank approximation because the sin-
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gular values and singular vectors are ordered in terms of ”importance”[6]. Nevertheless,

the SVD generally runs in cubic time.

The Nyström method provides a low-rank approximation by directly sampling a col-

umn index set J = {j1, j2, ..., jr} and a row index set I = {i1, i2, ..., ir} from the matrix A

and constructing B = A(:, J), H−1 = A(I, J) and CT = A(I, :) accordingly [7]. Unfor-

tunately, computing the optimal J and I is an NP-hard problem. The Nyström method

based on the determinantal point process (DPP) gives a near-optimal solution while it

is still too expensive to be implemented in real cases. There are heuristic algorithms to

reduce the computation cost, and the Adaptive Cross Approximation (ACA) is a very

popular one among them [8].

The ACA with full pivoting is shown in Algorithm 3. At each step, the ACA selects

the maximum element from the matrix A. The indices of this entry are put into J and I,

respectively. Then, we update A based on the pseudocode in line 8 so that the values in

the selected rows and columns were cleared to 0. The algorithm terminated when some

stopping criterion fulfilled, such as the updated ∥A∥F is small.

Algorithm 3 Adaptive Cross Approximation with Full Pivoting

1: A0 = A, I = {}, J = {}, k = 0
2: while the stopping criterion is not satisfied do
3: k = k + 1
4: (i∗, j∗) = argmaxi,j |Ak−1(i, j)|
5: I ← I ∪ {i∗}, J ← J ∪ {j∗}
6: δk = Ak−1(i

∗, j∗)
7: uk = Ak−1(:, j

∗), vk = Ak−1(i
∗, :)T/δk

8: Ak = Ak−1 − ukv
T
k

9: end while
10: return I and J as the result

The ACA with full pivoting performs well, but it is still computationally expensive,

especially in the process of searching for the maximum element. The ACA with partial

pivoting aims to reduce the cost by only searching the maximum in a certain row. The

algorithm starts with the 1st row, and at the end of each step it updates the new searching

row by selecting the maximum from the indexed column.

When the matrix A becomes symmetric and positive definite, the ACA will always

select the entry on the diagonal where the largest element is guaranteed to be. The

12



Algorithm 4 Adaptive Cross Approximation with Partial Pivoting

1: A0 = A, I = {}, J = {}, k = 1, i∗ = 1
2: while the stopping criterion is not satisfied do
3: j∗ = argmaxj |Ak−1(i

∗, j)|
4: δk = Ak−1(i

∗, j∗)
5: uk = Ak−1(:, j

∗)
6: if δk then
7: I ← I ∪ {i∗}, J ← J ∪ {j∗}
8: i∗ = argmaxi/∈I |uk(i)|
9: else
10: vk = Ak−1(i

∗, :)T/δk
11: Ak = Ak−1 − ukv

T
k

12: k = k + 1
13: I ← I ∪ {i∗}, J ← J ∪ {j∗}
14: i∗ = argmaxi/∈I |uk(i)|
15: end if
16: end while
17: return I and J as the result

algorithm becomes the same as the pivoted Cholesky factorization, which is the method

we plan to modify. In Chapter 6, we will compare the performance of our method with

the ACA.

3.2 Pivoted Cholesky Factorization

Consider a symmetric and positive definite matrix A that is partitioned by the first row

and the first column:

A =

a11 aT
1

a1 A22

 (3.5)

where a11 > 0.

Then the well-defined Schur complement S := A22 − 1
a11

a1a
T
1 is also symmetric and

positive definite shown as below:

ST = AT
22 −

1

a11
(a1a

T
1 )

T = A22 −
1

a11
a1a

T
1 = S (3.6)
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and

0 <

x
y


T

A

x
y

 =

x
y


T a11x+ aT

1 y

xa1 +A22y

 =

x
y


T  0

Sy

 = yTSy (3.7)

where y is an arbitrary nonzero vector in Rn−1 and x := −aT
1 y

a11
.

Therefore, the first step of the Cholesky factorization decomposes A into the form of

a rank 1 matrix and an extra matrix E1:

A =
1

a11

a11
a1


a11
a1


T

+E1 (3.8)

where E1 =

0 0

0 S

.
In fact, the Cholesky factorization can be viewed as a recursive factorization of the

Schur Complement, which implies at the kth step A can be decomposed into k rank 1

matrix and Ek. If the rank k factorization already gives a good enough approximation

A, the Cholesky factorization no longer continues to decompose Ek based on the low-

approximation idea .

Figure 3.2 provides a visualization of the approximated Cholesky factor. Notice that

starting from the (k+1)th diagonal entries, a small value has been added to preserve the

positive definiteness for the approximation.

14



Figure 3.2 Approximated Cholesky Factor Visualization

It is not likely that the first kth columns and rows give a good Cholesky factor. We

consider permuting the matrix A so that we can obtain a more accurate approximation

provided k is fixed. Under this condition, the original linear system Ax = b is modified

to:

PAPz = Pb (3.9)

where P is an elementary permutation matrix and z = P Tx.

As computing Pb and solving z = P Tx only requires O(n) cost, any permutation on

A is acceptable. Therefore, we can freely select the set of rows (columns) to be factorized.

In the next chapter, we will propose how to choose the rows (columns) for the covari-

ance matrix generated from the Gaussian process.
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Chapter 4

Inducing Points Selection

The low-rank approximation serves as a common strategy to overcome the expensive

operation on dense matrices. The examples illustrated in Chapter 3 are all algebraic

methods. However, in the case of the covariance matrix K generated from the Gaussian

process, the matrix has a nice property that each row and column represents a data

point’s correlation with all other points in the space. Therefore, to construct the low-

rank approximation of K using the Nyström method, we can choose rows (columns) by

simply selecting the set of inducing points S. In this chapter, we propose a method to

choose S based on the Farthest Point Sampling technique. Some experiments and results

to construct the preconditioner using this method will be discussed in Chapter 6.

4.1 Motivation from Spatial Statistics

The covariance matrix K captures the relationship between pairs of data points. Con-

sider a common covariance matrix generated from squared exponential kernel function

k(x, y) = σ2 exp(−∥x−y∥2
l2

). Since the kernel function is Lipschitz continuous, the distance

between a pair of data points provides an upper bound for the corresponding kernel func-

tion with a constant. Therefore, it would be nice if we could utilize the geometry of the

dataset when constructing the low-rank approximation.
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Recall the Cholesky factorization can be written as the block version of K = LDLT :

K11 K12

K21 K22

 =

 I 0

K21(K11)
−1 I


K11 0

0 K22 −K21(K11)
−1K12


I (K11)

−1K12

0 I

 (4.1)

The computation process can be viewed as a recursive factorization of the part K22 −

K21(K11)
−1K12, which is the Schur complement of the block K11.

From the spatial statistics point of view, if we have the joint Gaussian distribution

(X, Y ) ∼ GP(0,K
′
), the conditional of Y given X is also in the Schur complement form:

Cov(Y |X) = K
′

22 −K
′

21(K
′

11)
−1K

′

12 (4.2)

The Cholesky factorization represents the iteration of conditioning a Gaussian process,

which suggests that the conditional independence is related to the sparsity in the Cholesky

factor of K [9].

Many kernel functions under the Matérn kernel family are generated from the finitely

smooth Gaussian process. These kernel functions give larger values to pairs of nearby

points and smaller values to pairs of distant points. The finite smoothness also indicates

that for a data point x1 its value is nearly independent of a distant point x2 conditional

on a known neighbor point x3 of x1 [9]. Therefore, the set of inducing points could be

chosen so that any point from the entire dataset X is close enough to an inducing point

in S.

The information above guides us to recursively select the most distant point away from

the selected set S, which matches an algorithm called the Farthest Point Sampling. To

validate this intuitive understanding, in Chapter 5 we will give some theoretical analysis

for our low-approximation preconditioner using the Farthest Point Sampling. Before that,

we will illustrate this sampling method in detail [10].
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4.2 Farthest Point Sampling Method

The Farthest Point Sampling (FPS) is a sampling method widely used in deep learning

neural networks such as PointNet++ and VoteNet to process point cloud data or detect

3D objects. In this section, we will illustrate this method, which is applicable to select

the set of inducing points S in our problem.

4.2.1 The Method Overview

Suppose there are n data points, and we would like to sample k data points to form the

set of inducing points S based on the Farthest Point Sampling. First, create another set

called R which represents all the points that will not be selected. Initially, R = X, where

X is the whole set of data points.

• Step 1: Randomly select a data point from R denoted as x1 and put it to the set S.

Now we have 1 point in S and n− 1 points in R.

• Step 2: Calculate the distance between each point in R to the point in S. Select the

point with the maximal distance denoted as x2. Now we have 2 points in S and n − 2

points in R.

• Step 3: Now, it brings up a question about how to define the distance between each

point in R to the points in S because there is more than one element in the latter set.

Suppose xr is a data point in R, then its valid distance to S is defined as:

min(d(x1, xr), d(x2, xr))

Pick the maximum from n− 2 valid distances and put the corresponding data point

to S.

...
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• Step k: Pick the maximum from n−k+1 valid distances and put the corresponding

data point to S. Now, we finalize our sampling with k points in S.

The core of the FPS method can be summarized as an iteration of the following

process: for each data point in R, calculate its nearest neighbor in S and record the

distance. Then select the point in R that has the maximal distance to its nearest neighbor

and move the point from R to S.

Figure 4.1 and Figure 4.2 illustrate 100 sampling vertices from 1859 vertices of the

Simplified Stanford Bunny model [11] based on uniform sampling and the FPS, respec-

tively. As we can see, the FPS method generates a sample that spreads more evenly over

the model.

Figure 4.1 Stanford Bunny and Uniform Sampling Vertices
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Figure 4.2 Stanford Bunny and the FPS Vertices

4.2.2 The First Point of the FPS

At Step 1, it brings up a question of whether any arbitrary point is good enough to

be the first selected point. Figure 3.3 presents an extreme case that the Farthest Point

Sampling may not capture comprehensive geometric information if the first selected point

is bad and the number of selected points is limited.

Figure 4.3 Farthest Point Sampling from Data Points on Two Loops

Figure 4.3 displays 16 data points, which are evenly distributed on two circular rings,

where the radius ratio is 5 : 4. If we would like to obtain a set of only 8 selected points
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S, then there is a 50% chance that we will select all points on the boundary (outer ring)

without jumping into the interior region (inner ring). This issue tends to be more severe

if the data points are in a very high dimension [12]. Therefore, although computing the

center of dataset costs more time, it could be considered in advance to ensure performance.

4.2.3 Reducing the Repetitive Computation

The method in Section 4.2.1 includes a large amount of repetitive computation. At the

start of Step m, where m ≥ 3, the set S has m−1 data points, and R has n−m+1 data

points. For every point S, we need to calculate its distance to every point in R in order

to obtain the valid maximum distance. The time complexity for this single step will be

O(nm−m2) if the brute force approach is implemented. However, for an arbitrary data

point xr in R, at Step (m-1) we have already calculated its distance to m − 2 points

in S, denoted as d(x1, xr), d(x2, xr), ..., d(xm−2, xr). Moreover, we also obtained the valid

distance for xr, denoted as dm−2
r such that:

dm−2
r = min(d(x1, xr), d(x2, xr), ..., d(xm−2, xr)) (4.3)

Therefore, if we store the value dm−2
r , we only need to compute d(xm−1, xr) at Step m

based on the following property:

min(d(x1, xr), d(x2, xr), ..., d(xm−1, xr)) = min(dm−2
r , d(xm−1, xr)) (4.4)

We can create an array of size n to store the valid distance between every point in R to

the set S and thus reduce each step’s implementation to linear time complexity.

4.2.4 Applying Domain Decomposition

Domain decomposition is the partitioning of a certain region or space, which splits a prob-

lem on a large domain into smaller problems on subdomains. The subproblems are often

times independent, which makes them suitable for parallel computing. Domain decompo-
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sition methods have been widely used for solving PDEs and constructing preconditioners

for Krylov iterative methods.

To further reduce the number of candidate points in the set R at each step, we can

apply the non-overlapping domain decomposition technique to obtain an approximate

solution to the optimal FPS. For example, in Figure 4.4, we generate 50 random data

points on the domain [0, 1]× [0, 1] ∈ R2 to demonstrate the first few steps of the heuristic

FPS. First, partition the domain into four equal squares, and select the first point using

the original FPS method, which is located in the lower-right square. Now we only search

the data points in the upper-left square because those points in the upper-left corner tends

to have the maximal distance to the set S. In the next two steps, we only search the data

points in the remaining two squares and the remaining one square. Now, partition each

square into four small squares and iterative this process on small empty squares. Figure

4.4 illustrates a descent result because the FPS using domain decomposition actually

provides the same set of selected points as the optimal FPS. It is not a common case

as the discrepancy between two methods in a certain step may affect the following valid

distances. Nevertheless, overall we could expect good performance for this heuristic FPS

because in each step it will select one of the top candidates.
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(a) Initial Stage (b) Step 1

(c) Snapshot 2 (d) Snapshot 3

(e) Snapshot 4 (f) Snapshot 5

(g) Snapshot 6 (h) Snapshot 10

Figure 4.4 FPS using Domain Decomposition
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Chapter 5

Theoretical Analysis

In this chapter, we provide some theoretical analysis of our FPS Cholesky factorization.

Recall we can write the rank k factorization of a covariance matrix K ∈ Rn×n as the

following form:

Kk =

K11

KT
12

K−1
11

[
K11 K12

]
(5.1)

where is K11 is a k × k submatrix of K.

For the FPS method, suppose we have sampled i data points from the dataset X,

and the set of selected points is denoted as Xi. Therefore, the next sample point xi+1 is

defined as:

xi+1 := argmax
x∈X\Xi

d(x,Xi) (5.2)

Now, we define the fill distance between X and Xi as:

hi = max
x∈X\Xi

d(x,Xi) (5.3)

According to [13], the following error bound has been proved for a rank k approxima-
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tion Kk to the Gaussian Kernel matrix K:

∥K −Kk∥2 < C
′∥K∥2 e−C/hk (5.4)

where C and C
′
are positive constants.

As we can see from Equation 5.4, a smaller hk leads to better low-rank approximation.

This result matches what we stated before that Xk needs to be spread over the entire

dataset X so that any non-selected data point is not far away from Xk. Unfortunately, at

the (i+1)th step, the FPS can only select the point which obtains the fill distance hi, but it

does not guarantee to minimize hi as it is already fixed. However, we can provide an upper

bound for the fill distance hk obtained by the desired kth step of the FPS. The argument

is based on the setting of continuous points in the Voronoi Diagram [14], and we suppose

r ≤ k, where k is the desired rank we want for our low-rank approximation. Figure 5.1

shows an example of the Voronoi diagram with inducing points sampled through the FPS.

Definition 1. The Voronoi diagram of a set of points Xr, denoted as V D(Xr), is defined

to be the collection of Voronoi cells of all the points in the set, where each Voronoi cell

V c(xi) of xi is defined to be all the points which are closer to xi than other selected points

xj. The bounded Voronoi diagram BVD(Xr) restricts V D(Xr) to have the domain X

(the entire dataset in our case). The vertices of edges of BVD(Xr) are denoted as V r

and Er. Define drM as the maximum distance between the vertex and the set of sampling

points Xr. d
r
m as the minimum distance between the vertex and the set of sampling points

Xr.
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(a) Voronoi Diagram - Before Adding
(23 , 0.375)

(b) Voronoi Diagram - After Adding
(23 , 0.375)

Figure 5.1 Voronoi Diagram with Inducing Points Sampled through the FPS: the domain
X is [0, 0.75] × [0, 0.75] ⊂ R2, and we continuously select the data points (0.25, 0.25),
(0.75, 0.75), (0, 0.75), (0.75, 0), (0.375, 0.625) via the FPS. The next point selected via
the FPS is (2

3
, 0.375).

Theorem 2. In [10], the following properties have been proved if the set Xk is sampled

via the FPS:

• The next sampling point xr+1 lies on the vertex V k.

• d(xi, xj) ≥ dkM for all the data points xi, xj ∈ Xk

• dkM ≤ 2dkm.

• d(xi, xj) ≤ dkM for all the data points xi, xj ∈ Xk such that xi and xj share a

common edge.

Let qk := minxi,xj∈Xk
d(xi, xj). We can obtain these two results: qk ≤ 2hk and hk ≤ qk

[15]. Based on Equation 5.4, the second result guarantees the low-rank approximation

accuracy because the fill distance hk via the FPS method is bounded above by the min-

imum distance between two points in Xk. From the numerical stability perspective, if

two data points in the set of selected points Xk are too close to each other, then the

r× r covariance matrix K11 could be ill-conditioned, which leads to a huge gap between

the theoretical approximation error and the numerical error. However, the first result

guarantees that the next point sampled via the FPS will not be too close to any of the

selected points. Therefore, the FPS Cholesky factorization is validated to have good

approximation accuracy and numerical stability.
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Chapter 6

Numerical Experiments

In this chapter, we conduct several experiments to examine the effectiveness of the pre-

conditioners using the FPS Cholesky factorization.

6.1 Number of Large Elements for the Cholesky Fac-

tor

To verify that the FPS method facilitates the Cholesky factorization to become ”sparser,”

we compare the number of large values in the Cholesky factors that were generated with-

out permutation with those generated with permutation based the FPS. Our experiments

incorporate the following variables: the threshold to determine whether a value is large

(1e−2, 1e−3, and 1e−4), the dataset dimension (R2, R3, and R6), the distribution of data

points (points on a grid and random coordinates), the kernel function type (the squared

exponential kernel function and the absolute exponential kernel function), the covariance

matrix size (1000 × 1000, 2500 × 2500, 6000 × 6000), and the Cholesky factor type (no

permutation, partial permutation, and full permutation). The results are displayed in

Table 6.1. To make each subtable more concise, we only name them using the keywords

for the variables. For instance, ”2500× 2500, R3, Squared Exponential Kernel Function,

Random Coordinates” means that this subtable displays the experiments conducted on

2500× 2500 squared exponential covariance matrices generated from data points in R3.

27



Table 6.1: Number of Large Values in the Covariance Matrix

(a) 1000× 1000, R2, the Squared Exponential Kernel Function, Random Coordinates

Threshold Value
1e−2 1e−3 1e−4

Chol without permutation 31,242 90,428 265,345
Chol full permutation 26,798 80,480 251,806
Chol partial permutation (k = 120) 26,777 80,758 254,591

(b) 2500× 2500, R2, the Squared Exponential Kernel Function, Random Coordinates

Threshold Value
1e−2 1e−3 1e−4

Chol without permutation 88,078 304,837 1,008,935
Chol full permutation 79,348 262,268 923,169
Chol partial permutation (k = 120) 79,336 269,067 953,357

(c) 6000× 6000, R2, the Squared Exponential Kernel Function, Random Coordinates

Threshold Value
1e−2 1e−3 1e−4

Chol without permutation 246,049 910,241 3,262,113
Chol full permutation 213,310 757,634 2,935,150
Chol partial permutation (k = 120) 217,297 826,045 3,164,918

(d) 2500× 2500, R3, the Squared Exponential Kernel Function, Random Coordinates

Threshold Value
1e−2 1e−3 1e−4

Chol without permutation 191,069 742,091 1,762,144
Chol full permutation 175,567 693,307 1,615,506
Chol partial permutation (k = 120) 190,296 746,083 1,758,407
Chol partial permutation (k = 250) 178,476 733,955 1,744,043

(e) 2500× 2500, R6, the Squared Exponential Kernel Function, Random Coordinates

Threshold Value
1e−2 1e−3 1e−4

Chol without permutation 78,233 329,682 953,791
Chol full permutation 74,906 318,963 919,325
Chol partial permutation (k = 120) 78,070 326,080 937,319
Chol partial permutation (k = 800) 76,463 321,801 920,283

To be Continued
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(f) 2500× 2500, R2, the Squared Exponential Kernel Function, Points on a Grid

Threshold Value
1e−2 1e−3 1e−4

Chol without permutation 1,317,230 2,519,366 3,099,515
Chol full permutation 41,292 174,221 973,346
Chol partial permutation (k = 120) 41,290 171,137 1,438,313

(g) 2500× 2500, R2, the Absolute Exponential Kernel Function, Random Coordinates

Threshold Value
1e−2 1e−3 1e−4

Chol without permutation 72,785 186,399 346,231
Chol full permutation 57,514 140,989 254,992
Chol partial permutation (k = 120) 60,513 153,332 284,262

As we can see from Table 6.1, selecting the rows (columns) based on the FPS will

decrease the number of large elements in the Cholesky factor, which intuitively suggests

that this method can improve the approximation of the pivoted Cholesky factorization.

Moreover, if the threshold value is set to be 1e−2 or 1e−3, the partial permutation also

performs well. The result improves the feasibility of the FPS method because the cost to

reorder all data points is prohibitive.

There are several additional findings of partial permutation worth mentioning. First,

from subtables (a) to (c), we see that the performance of the partial permutation remains

as good as the full permutation in a fixed number of steps even if the size of the dataset

increases. This result implies that in a low dimension, we could avoid cubic computational

cost by not selecting the inducing points proportional to the size of the dataset. Second,

both partial permutation and full permutation lead to a huge decrease in the number

of large values if the data points are on a grid. The grid domain is more regular and

well-shaped for the FPS to capture the geometric information.

Table 6.1 also presents a limitation of the FPS method. As the dimension of the

dataset increases, the full sampling maintains a good performance while the effect of the

partial sampling weakens. This finding corresponds to what we stated in Chapter 4: in

higher dimensions, it is harder for the FPS to capture the geometric information because

the method tends to first select a large number of data points on the boundary [12].

Therefore, we may need to expand the set of selected rows to improve the performance.
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6.2 Low-rank Approximation Comparison

We then compare the performance of the low-rank approximation between our method,

the ACA with partial pivoting, and the SVD. In this test, we generate the absolute

exponential covariance matrix and the squared exponential covariance matrix from 100

grid points and 100 random coordinates, respectively. From Figure 6.1, we find that

the FPS Cholesky factorization outperforms the ACA with partial pivoting in terms

of both accuracy and numerical stability. A potential reason is that the FPS Cholesky

factorization utilizes the geometric information from the dataset while the ACA algorithm

is purely algebraic.

(a) Absolute Exponential - Points on a
Grid

(b) Squared Exponential - Points on a Grid

(c) Absolute Exponential - Random Coor-
dinates

(d) Squared Exponential - Random Coor-
dinates

Figure 6.1 Comparison of Low-rank Approximation
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6.3 Solving Linear Systems and Related Applications

Now we apply our method to solve some linear systems associated with the squared

exponential covariance matrix and the absolute exponential covariance matrix. First,

we generate a 2500 × 2500 covariance matrix from data points on the grid [0, 50] ×

[0, 50]. Based on the number of inducing points k, we construct the preconditioners using

the FPS Cholesky factorization. Then, we compare the number of CG iterations with

preconditioners applied with the number of iterations without preconditioners applied.

The tolerance for the relative residual is set to be 1e−6, and the initial guess for the

solution is the zero vector. From Figure 6.2, we see that for both covariance matrices,

our preconditioners decrease the number of CG iterations. For the squared exponential

matrix, selecting 70 out of 2500 data points will lead to one-third number of iterations.

For the absolute exponential covariance matrix, 40 inducing points help us achieve half

the number of iterations.

We also investigate the number of CG iterations when the number of pivoted Cholesky

steps exceeds the number of inducing points. In Figure 6.3, as we do not see any further

improvement in the convergence rate, we conclude that the main contribution of the

faster convergence in CG is made by the FPS method.

(a) Squared Exponential Covariance Ma-
trix

(b) Absolute Exponential Covariance Ma-
trix

Figure 6.2 Comparison of Number of Iterations
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(a) Squared Exponential Covariance Ma-
trix

(b) Absolute Covariance Matrix with
smooth

Figure 6.3 Convergence Rate When the Number of Cholesky Steps Exceeds the Number
of Inducing Points (k = 70)

Finally, we apply our methods to the Gaussian process predictions, which include a

step of solving linear systems. First, we generate a Gaussian process sample on a regular

[0, 100] × [0, 100] grid using the squared exponential kernel k(x, y) = σ2 exp(−∥x−y∥2
l2

)

where σ2 is the signal covariance parameter and l is the length parameter. We fix the

signal variance σ2 = 1 and attempt to tune the length parameter l with the true hyper-

parameter l = 7. The dataset is split into a training part and a testing part. Our

goal is to utilize the training dataset to tune the optimal length parameter and perform

predictions for the testing dataset based on that length parameter. To select the length

parameter that fits the data well, we need to calculate the log-likelihood functions for each

potential parameter and choose the maximum among them. This process is also called

the Maximum Likelihood Estimation, and it requires solving several linear systems. The

formula of the log-likelihood function is displayed below:

L = −1

2
(ytrn − µ)TK−1(ytrn − µ)− 1

2
log det(K)− n

2
log 2π (6.1)

where K is the covariance matrix parameterized by a potential length parameter l, ytrn

is the training sample, and µ is the mean which we assumed to be 0.

Since directly calculating K−1 is very unstable, we would like to obtain the first part

of Equation 6.1 by solving Kx = ytrn. We will make the prediction about testing values
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using the length parameter l we choose:

ypred = K(X∗,X, l)K(X,X, l)−1ytrn (6.2)

where K(X∗, X, l) measures the covariance between testing dataset X∗ and training

dataset X given our calculated l and K(X,X, l) is the covariance matrix of training

data points given our calculated l.

Figure 6.4 provides the visualization of our Gaussian process random field. We ran-

domly select 30% of the data points as our training dataset displayed in Figure 6.5.

Figure 6.4 Gaussian Random Field

Figure 6.5 Training Data
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Assume we know the interval for tuning l is [5, 9] and we pick nine evenly-spaced 

points inside the interval. Then we have to solve nine linear systems associated with 

3000 × 3000 covariance matrices. In this experiment, we select 50 inducing data points 

out of 3000 using the FPS and constructed the preconditioners by the pivoted Cholesky 

factorization. Notice that we only need to conduct the selection process once because 

this set of inducing points works for all nine linear systems.

Figure 6.6 Log-likelihood Function

Figure 6.6 shows the log-likelihood plot after we compute the log-likelihood for nine

potential length parameters. We obtain the true parameter l = 7 as the log-likelihood

function reaches its maximal value at this point. Lastly, we use the estimated length

parameters to make predictions for the testing data points and generate the Gaussian

random field shown in Figure 6.7. The relative error is 0.031. As we can see, the random

field is well recovered by Gaussian process predictions.

34



Figure 6.7 Prediction
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Chapter 7

Conclusions

In this thesis, we propose an efficient method to solve the linear system associated with

the dense covariance matrix. Motivated by the geometric information of the data points

from the Gaussian process and the low-rank approximation idea, we use the Farthest

Point Sampling Cholesky factorization to construct the preconditioner for the conjugate

gradient iterative method. We then validate the effectiveness of our method through

both theoretical analysis and numerical experiments, including comparing with the ACA

method, analyzing the number of iterations when solving linear systems, and applying

it to make predictions on a synthetic Gaussian process dataset. In the future, we will

work on deriving the low-approximation error bound and the conditional number bound

for our method when the data points from the Gaussian process are in discrete settings.

Moreover, we hope to propose an efficient implementation of Farthest Point Sampling

Cholesky factorization in high dimensions.
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