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Abstract 

Nonuniqueness Properties of Zeckendorf Related Decompositions 
By David Chang Luo 

Zeckendorf’s Theorem states that every natural number can be uniquely written as the sum of 
distinct and nonconsecutive terms of the Fibonacci number sequence. Similarly, every natural 
number can be written as the sum of distinct and nonconsecutive terms of the Lucas number 
sequence. Although such decompositions of natural numbers in the Lucas number sequence need 
not be unique, there has been much progress on categorizing those natural numbers that do not 
carry this uniqueness property. We investigate the proportion of natural numbers that cannot be 
uniquely written as the sum of distinct and nonconsecutive terms of the Lucas number sequence. 
In doing so, we show the limiting value of this proportion and speculate on future research that 
generalizes the ideas presented in this paper. 
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1. Introduction

The Fibonacci and Lucas number sequences have interested mathematicians for

centuries through their applications in nature and mathematical theory. In 1972,

Belgian mathematician [Kim98] Edouard Zeckendorf published the following theorems

in relation to the Fibonacci and Lucas number sequences, Theorem 1.1 being the well–

known Zeckendorf’s Theorem [Zec72].

Definition 1.1. Define the Fibonacci number sequence
{
Fk
}∞
k=0

by the second–order

linear recurrence F0 = 0, F1 = 1, and Fk = Fk−2 + Fk−1 for k ≥ 2. Let
{
Lk
}∞
k=0

denote the Lucas number sequence given by the second–order linear recurrence L0 = 2,

L1 = 1, and Lk = Lk−2 + Lk−1 for k ≥ 2.

From the way we defined the Fibonacci number sequence, there is an additional

condition on the term’s indices in Theorem 1.1 [Zec72].

Theorem 1.1. (Zeckendorf’s Theorem). Every natural number n can be uniquely

written as the sum of distinct and nonconsecutive terms whose indices are greater

than one of the Fibonacci number sequence (called a Zeckendorf representation of n).

Theorem 1.2. (Zeckendorf). Every natural number can be written as the sum of

distinct and nonconsecutive terms of the Lucas number sequence.

Note that the distinction between Theorems 1.1 and 1.2 lies in the uniqueness prop-

erty of the decompositions of natural numbers in the Fibonacci and Lucas number
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sequences. While five can be uniquely decomposed as F5 in the Fibonacci number

sequence, its decomposition need not be unique in the Lucas number sequence as

5 = L0 + L2 = 2 + 3 = L1 + L3 = 1 + 4.

One attempt by Zeckendorf to categorize those natural numbers which cannot be

uniquely decomposed as the sum of distinct and nonconsecutive terms of the Lucas

number sequence is stated in the following theorem, the proof of which can be found

in [Zec72].

Theorem 1.3. Natural numbers of the form L2v+1 + 1 cannot be uniquely written as

the sum of distinct and nonconsecutive terms of the Lucas number sequence.

Using five from our previous example, we see that 5 = L2·1+1 + 1 = L3 + 1. Although

Theorem 1.3 captures a class of natural numbers that do not have a unique decompo-

sition of distinct and nonconsecutive terms of the Lucas number sequence, the result

is incomplete as

23 = L0 + L2 + L6 = L1 + L3 + L6

but 23 cannot be decomposed in the form L2v+1 + 1 for any integer v.

A quantity we can consider from this incomplete result by Zeckendorf is the

proportion α of natural numbers that cannot be uniquely decomposed as the sum of

distinct and nonconsecutive terms of the Lucas number sequence. To find this value,

we start by defining the following functions, terms, and notations. Throughout this

paper, N denotes the set of natural numbers and I denotes the set of all infinite

sequence of integers.
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Definition 1.2. Given a natural number n and an infinite sequence of integers{
ak
}∞
k=0

, we say n has a decomposition in
{
ak
}∞
k=0

if n can be written as the sum of

distinct and nonconsecutive terms of
{
ak
}∞
k=0

. Furthermore, we call a decomposition

of n in
{
ak
}∞
k=0

unique if it is the only possible decomposition.

Definition 1.3. Define the decomposition counting function D : I × N → Z∗ ∪ {∞}

associated to an infinite sequence of integers
{
ak
}∞
k=0

of a natural number n by

D
({
ak
}∞
k=0

, n
)

:= number of distinct decompositions of n in
{
ak
}∞
k=0

.

Definition 1.4. Given an infinite sequence of integers
{
ak
}∞
k=0

, define the nonunique-

ness counting function U : I× N→ N associated to
{
ak
}∞
k=0

by

U
({
ak
}∞
k=0

, N
)

:= #

{
1 ≤ x ≤ N : D

({
ak
}∞
k=0

, x
)
6= 1

}
.

In Section 2, we present data that motivates our research and exploration of the

following limit

lim
N→∞

U
({
Lk
}∞
k=0

, N
)

N

which gives us a better understanding of the proportion α we wish to calculate. We

then transition to Section 3 where we give the necessary definitions and notations we

use throughout this paper. The major results we obtain are presented in the following

theorems below. The proofs and greater explanation of Theorems 1.4 and 1.5 will be

provided in Section 4. Finally, we end with a discussion of future research in Section

5 which consists of generalizing ideas presented in this paper.
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Theorem 1.4. The maximum number of decompositions a natural number can have

in the Lucas number sequence is two.

Theorem 1.5. Let U be the nonuniqueness counting function associated to the Lucas

number sequence. Then

lim
N→∞

U
({
Lk
}∞
k=0

, N
)

N
=

1

2Φ3 − Φ2

where Φ = 1+
√

5
2

denotes the golden ratio.
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2. Motivation

In this section, we provide data which motivates our desire to study the proportion

α discussed in Section 1. To generate data, we implement a computer algorithm

written in Java which inputs two integers N0 and N1 that determine the second–

order linear recurrence integer sequence and a third integer N2 which sets an upper

bound. The algorithm then returns decompositions of all natural numbers between

zero and N2 in the second–order linear recurrence sequence determined by N0 and

N1. Furthermore, the algorithm also returns the number of natural numbers within the

range that do not have unique decomposition. To study the Lucas number sequence,

we set N0 = 2, N1 = 1, and let N2 vary. Let U be the nonuniqueness counting function

associated to the Lucas number sequence. The data we collect for various N2 values

is shown in the table below.

N2 U
({
Lk
}∞
k=0

, N2

) U

({
Lk

}∞
k=0

,N2

)
N2

10,000 1,708 17.08%

50,000 8,541 17.082%

100,000 17,082 17.082%

200,000 34,164 17.082%

500,000 85,410 17.082%

Table 1
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The algorithm follows the logic of subtracting Lucas sequence terms (which have

pairwise nonconsecutive indices and are distinct) from a natural number n until n

reaches zero. From Table 1, we see that the proportion α of natural numbers that do

not have unique decomposition in the Lucas number sequence approaches 17.082%

which roughly equates to 1
2Φ3−Φ2 where Φ = 1+

√
5

2
denotes the golden ratio. For our

next observation, we list the first fifty natural numbers and their decompositions in

the Lucas number sequence.

1 = L1 2 = L0

3 = L2 4 = L3

5 = L0 + L2 = L1 + L3 6 = L0 + L3

7 = L4 8 = L1 + L4

9 = L0 + L4 10 = L2 + L4

11 = L5 12 = L0 + L2 + L4 = L1 + L5

13 = L0 + L5 14 = L2 + L5

15 = L3 + L5 16 = L0 + L2 + L5 = L1 + L3 + L5

17 = L0 + L3 + L5 18 = L6

19 = L1 + L6 20 = L0 + L6

21 = L2 + L6 22 = L3 + L6

23 = L0 + L2 + L6 = L1 + L3 + L6 24 = L0 + L3 + L6
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25 = L4 + L6 26 = L1 + L4 + L6

27 = L0 + L4 + L6 28 = L2 + L4 + L6

29 = L7 30 = L0 + L2 + L4 + L6 = L1 + L7

31 = L0 + L7 32 = L2 + L7

33 = L3 + L7 34 = L0 + L2 + L7 = L1 + L3 + L7

35 = L0 + L3 + L7 36 = L4 + L7

37 = L1 + L4 + L7 38 = L0 + L4 + L7

39 = L2 + L4 + L7 40 = L5 + L7

41 = L0 + L2 + L4 + L7 = L1 + L5 + L7 42 = L0 + L5 + L7

43 = L2 + L5 + L7 44 = L3 + L5 + L7

45 = L0 + L2 + L5 + L7 = L1 + L3 + L5 + L7 46 = L0 + L3 + L5 + L7

47 = L8 48 = L1 + L8

49 = L0 + L8 50 = L2 + L8

In the list above, we notice that the natural numbers which do not have unique

decomposition in the Lucas number sequence carry the Lucas sequence terms L0 and

L2 in their representations. This observation leads to the result by Brown which gives

conditions for when decompositions of natural numbers in the Lucas number sequence

are unique [BJ69].
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Theorem 2.1. (Brown). Let n be a nonnegative integer satisfying 0 < n < L, for

some k > 1. Then

n =
k−1∑

0

αiLi (1)

where Li corresponds to the ith term of the Lucas number sequence and αi binary

digits satisfying

1. αiαi+1 = 0 for i ≥ 0

2. α0α2 = 0.

Further, the representation of n in this form is unique. If k − 1 < 2 in Equation (2),

we define α2 = 0 so that the condition α0α2 = 0 is automatically satisfied.

Something interesting to note about Theorem 2.1 is the condition α0α2 = 0

which as Brown states, reflects the particularity of the Lucas sequence [BJ69]. We see

this particularization further in our list of decompositions. The characterization by

Brown and our table of data affirm our hypothesis that there is a way to determine

the proportion α of natural numbers that do not have unique decomposition in the

Lucas number sequence.
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3. Preliminaries and Background

In this section, we present definitions, notations, and the proof of Zeckendorf’s

Theorem which will give us intuition of how we prove our major results. Recall that

we define the Fibonacci and Lucas number sequences in the following manner.

Definition 1.1. Define the Fibonacci number sequence
{
Fk
}∞
k=0

by the second–order

linear recurrence F0 = 0, F1 = 1, and Fk = Fk−2 + Fk−1 for k ≥ 2. Let
{
Lk
}∞
k=0

denote the Lucas number sequence given by the second–order linear recurrence L0 = 2,

L1 = 1, and Lk = Lk−2 + Lk−1 for k ≥ 2.

Definition 1.2. Given a natural number n and an infinite sequence of integers{
ak
}∞
k=0

, we say n has a decomposition in
{
ak
}∞
k=0

if n can be written as the sum of

distinct and nonconsecutive terms of
{
ak
}∞
k=0

. Furthermore, we call a decomposition

of n in
{
ak
}∞
k=0

unique if it is the only possible decomposition.

Definition 1.3. Define the decomposition counting function D : I × N → Z∗ ∪ {∞}

associated to an infinite sequence of integers
{
ak
}∞
k=0

of a natural number n by

D
({
ak
}∞
k=0

, n
)

:= number of distinct decompositions of n in
{
ak
}∞
k=0

.

Definition 1.4. Given an infinite sequence of integers
{
ak
}∞
k=0

, define the nonunique-

ness counting function U : I× N→ N associated to
{
ak
}∞
k=0

by

U
({
ak
}∞
k=0

, N
)

:= #

{
1 ≤ x ≤ N : D

({
ak
}∞
k=0

, x
)
6= 1

}
.
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Definition 3.1. Let A = {a0, a1, . . . , am} be the set consisting of the first m+1 terms

of the sequence
{
ak
}∞
k=0

. We say a proper subset H of A is a nonconsecutive subset

of A if the indices of the elements of H are pairwise nonconsecutive.

Definition 3.2. Let A = {a0, a1, . . . , am} be the set consisting of the first m + 1

terms of the sequence
{
ak
}∞
k=0

. We call a sum S of A nonconsecutive if S is the sum

of distinct elements of A whose indices are pairwise nonconsecutive.

The proof of Theorem 1.1 (Zeckendorf’s Theorem) is adapted from [Hen16]. To give

the full proof, we need the following lemma, the proof of which can be found in

[Hen16].

Lemma 3.1. For any increasing sequence {si}ki=0 such that si ≥ 2 and si+1 > si + 1

for i ≥ 0, we have
k∑
i=0

Fsi < Fsk + 1.

Theorem 1.1. (Zeckendorf’s Theorem). Every natural number n can be uniquely

written as the sum of distinct and nonconsecutive terms whose indices are greater

than one of the Fibonacci number sequence (called a Zeckendorf representation of n).

Proof. To prove Theorem 1.1, we first show the existence portion and then the unique-

ness portion of Zeckendorf representations for all natural numbers. For existence, we

proceed by strong induction. We see that 1 = F2, 2 = F3, 3 = F4, and 4 = F2+F4. This

shows the base case. Assume the existence portion of Theorem 1.1 holds for all natu-

ral numbers less than or equal to k. If k+ 1 is a Fibonacci sequence number, then we
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are done. Otherwise, we have that k + 1 satisfies Fj < k + 1 < Fj+1 for some natural

number j greater than one. Let a = k+ 1−Fj = k− (Fj − 1), this implies a ≤ k. By

our inductive hypothesis, we have that a carries a Zeckendorf representation. Further-

more, a+Fj = k+ 1 < Fj+1 = Fj−1 +Fj by definition, implying a < Fj−1. Therefore,

k+ 1 has a Zeckendorf representation as k+ 1 = Fj +a and a has a Zeckendorf repre-

sentation that does not carry Fj−1, asserting that we do not contradict the definition

of Zeckendorf representations in that we do not use consecutive Fibonacci sequence

terms. This proves the existence portion of Zeckendorf’s Theorem.

To show uniqueness, let S and T be sets which contain Fibonacci sequence terms

that make up two Zeckendorf representations of an arbitrary natural number n. Con-

sider the sets S ′ = S − T and T ′ = T − S. From these sets, we get the equation

∑
x∈S

x−
∑
a∈S∩T

a =
∑
y∈T

y −
∑
b∈S∩T

b

which implies ∑
x∈S′

x =
∑
y∈T ′

y. (2)

Without loss of generality, suppose S ′ is empty. Then
∑
x∈S′

x and
∑
y∈T ′

y will be equal

to zero. This implies T ′ is empty as well since T ′ contains only nonnegative inte-

gers. Hence we have that S = T as S ′ and T ′ are both empty. For our next case,

suppose S ′ and T ′ are both nonempty and let Fs and Ft be the maximum elements

of S ′ and T ′ respectively. Without loss of generality, let Fs < Ft. From Lemma 3.1,
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we have that ∑
x∈S′

x < Fs+1 ≤ Ft. (3)

By Equation 2,
∑
x∈S′

x =
∑
y∈T ′

y which yields a contradiction as Inequality 3 asserts

∑
x∈S′

x <
∑
y∈T ′

y.

Therefore, S ′ and T ′ must be empty, implying S = T . This proves the uniqueness

portion of Zeckendorf’s Theorem.

The proof of existence for decompositions the Lucas number sequence is ap-

proached similarly to the proof of existence for Zeckendorf representations in the

Fibonacci number sequence, although we must exercise caution when setting condi-

tions for the base case and the inductive step as the Lucas number sequence is not

an increasing sequence of integers due to the initial two terms L0 = 2 and L1 = 1.
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4. Main Results

In this section, we present our results. To prove our main results which are stated

in Theorems 1.4 and 1.5, we present several lemmas.

Lemma 4.1. Let A = {a0, a1, . . . , am−1} be the set consisting of the first m terms of

the infinite sequence
{
ak
}∞
k=0

. There exist Fm+2 distinct and nonconsecutive subsets

of A where Fm+2 denotes the (m+ 2)nd term of the Fibonacci number sequence.

Proof. Lemma 4.1 follows directly from the well–known result that there are Fm+2

subsets of {1, 2, . . . ,m} which do not contain a pair of consecutive integers. For a

formal proof of Lemma 4.1, we proceed by strong induction. For m − 0, A is equal

to the empty set and we can form F2 = 1 distinct and nonconsecutive subset which

is the empty set itself. When m = 1, A = {a0} and we can form F3 = 2 distinct and

nonconsecutive subsets which are the empty set and the singleton set consisting of

a0. This shows the base case. Assume Lemma 4.1 holds for all natural numbers less

than or equal to m = k. For the set A = {a0, a1, . . . , ak}, we have that the total num-

ber of distinct and nonconsecutive subsets of A we can form is the sum of the total

number of distinct and nonconsecutive subsets that contain the term ak and those

that do not. From our inductive hypothesis, we know that there are Fk+2 distinct and

nonconsecutive subsets which do not contain ak. For those distinct and nonconsecu-

tive subsets which contain ak, we need only consider the subset {a0, a1, . . . , ak−2, ak}

of A. From our inductive hypothesis, we can form Fk+1 distinct and nonconsecutive
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subsets which contain ak. Hence there are Fk+3 = Fk+2 + Fk+1 distinct and noncon-

secutive subsets of A. This completes the inductive step.

Lemma 4.2. Let A = {L0, L1, . . . , Lm} be the set consisting of the first m+ 1 terms

of the Lucas number sequence and S be a nonconsecutive sum of A. Then

1. if m ≥ 1 is odd, then S assumes all values between zero and Lm+1− 1 inclusive

and

2. if m ≥ 0 is even, then S assumes all values between zero and Lm+1 +1 inclusive

excluding Lm+1.

Proof. To prove Lemma 4.2, we proceed by strong induction. For m = 0, we have the

singleton set A = {L0} which forms the nonconsecutive sums: 0 and L0+1 + 1 as the

empty set results in a sum of zero. For m = 1, we have the set A = {L0, L1} which

forms the nonconsecutive sums: 0, L1, and L1+1−1. This shows the base case. Assume

Lemma 4.2 holds for all integers less than or equal to m = k. Without loss of gen-

erality, suppose k is an odd integer. Consider the set A = {L0, L1, . . . , Lk+1}. Since

the nonconsecutive sums of A that include Lk+1 cannot contain Lk, we need only

consider the subset A0 = {L0, L1, . . . , Lk−1, Lk+1} of A. From our inductive hypothe-

sis, the nonconsecutive sums we can form from the initial terms L0, L1, . . . , Lk−1 are

the values between zero and Lk + 1 inclusive excluding Lk. By adding Lk+1 to these

values, we have that the following nonconsecutive sums we can form from A0 range

from zero to Lk+2 + 1 inclusive.
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To show that Lk+2 cannot be formed as a possible nonconsecutive sum of A0,

consider B0 which is a nonconsecutive subset of {L0, L1, . . . , L2j} where j is an non-

negative integer such that 2j < k. For sake of contradiction, suppose the sum of the

elements of B0 is equal to L2j+1. In our first case, suppose L2j is not in B0. This

implies B0 is a nonconsecutive subset of {L0, L1, . . . , L2j−1} and that the sum of the

terms of B0 are less than or equal to L2j+1 − 1 from our inductive hypothesis. Hence

we have a contradiction as L2j+1 − 1 < L2j+1 from our initial assumption. This im-

plies L2j must be in B0. Consider the set B1 = B0/{L2j} which is a nonconsecutive

subset of {L0, L1, . . . , L2j−2}. We have that the sum of the elements of B1 is equal

to the difference between the sum of the elements of B0 and L2j. This implies that

the sum of the elements of B1 equals L2j−1 which cannot be formed as a nonconsec-

utive sum from the set {L0, L1, . . . , L2j−2} by our inductive hypothesis. Therefore,

we have a contradiction and L2j+1 cannot be formed as a nonconsecutive sum of

{L0, L1, . . . , L2j}.

Applying this result to our induction step, we have that Lk cannot be formed as

a nonconsecutive sum from the subset {L0, L1, . . . , Lk−1} of A. Therefore, there is no

possible way to form Lk+2 = Lk +Lk+1 as a nonconsecutive sum of A. This completes

the inductive step.

Lemma 4.3. The Lucas sequence terms have unique decomposition in the Lucas

number sequence.

Proof. It suffices to show that for all Lucas sequence terms Lm, Lm does not have a
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decomposition in A = {L0, L1, . . . , Lm−1}. To prove Lemma 4.3, we proceed by strong

induction. For m = 0, 1, and 2, the Lucas sequence terms L0, L1, and L2 do not have

a decomposition in their respective A sets. This shows the base case. Assume Lemma

4.3 holds for all integers less than or equal to m = k. Without loss of generality,

suppose k is an odd integer. Consider the set A = {L0, L1, . . . , Lk} and let B0 be a

nonconsecutive subset of A. For sake of contradiction, suppose the sum of the elements

of B0 is equal to Lk+1. In our first case, suppose Lk is not in B0, this implies B0 is

a nonconsecutive subset of {L0, L1, . . . , Lk−1}. Using Lemma 4.2, we have that the

sum of the elements of B0 is less than or equal to Lk + 1, implying Lk−1 ≤ 1. This

implies Lk−1 = 1 = L1. From our base case, we showed that Lm for m = 2 has unique

decomposition in the Lucas number sequence, hence yielding a contradiction. This

implies Lk is in B0. Consider the set B1 = B0/{Lk} which is a nonconsecutive subset

of {L0, L1, . . . , Lk−2}. From Lemma 4.2, we have that the sum of the elements of B1

is less than or equal to Lk−1−1. By definition, the sum of the elements of B1 is equal

to the difference between the sum of the elements of B0 and Lk, this implies that the

sum of the elements of B1 is equal to Lk−1. Therefore we have a contradiction which

completes the inductive step.

The following lemma will be used to prove Theorem 1.4. The ideas behind the

proofs of Lemma 4.4 and Theorem 1.4 is adapted from [Her20a].

Lemma 4.4. Natural numbers of the form L2m+1 + 1 where m is a natural number

and L2m+1 represents the (2m+ 1)st term of the Lucas number sequence have exactly
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two decompositions in the Lucas number sequence.

Proof. It suffices to show that every natural number of the form L2m+1+1 has no more

than one decomposition in the set A = {L0, L1, . . . , L2m}. To prove Lemma 4.4, we

proceed by strong induction. When m = 1, A = {L0, L1, L2} and when m = 2, A =

{L0, L1, L2, L3, L4}. In each case, we see that L2·1+1 + 1 and L2·2+1 + 1 have no more

than one decomposition in each case respectively. This shows the base case. Assume

Lemma 4.4 holds for all integers less than or equal to m = k. Consider the set

A = {L0, L1, . . . , L2k+2}. From Lemma 4.2, the only possible nonconsecutive sums we

can form from A are the values from zero to L2k+3+1 inclusive excluding L2k+2. Let B

be a nonconsecutive subset of {L0, L1, . . . , L2k+2}. For sake of contradiction, suppose

that the sum of the elements of B is equal to L2k+3 + 1 and that B does not contain

the term L2k+2. This implies B is a subset of {L0, L1, . . . , L2k+1}. From Lemma 4.2,

the nonconsecutive sums we can form from {L0, L1, . . . , L2k+1} are the values from

zero to L2k+2− 1 inclusive. Hence we have a contradiction as the sum of the elements

of B is larger than L2k+2 − 1. This implies B contains L2k+2 and from our induction

hypothesis, L2k+1 +1 has no more than one decomposition in {L0, L1, . . . , L2k}. Since

L2k+3 + 1 = L2k+2 + (L2k+1 + 1) by definition and B cannot contain both L2k+2 and

L2k+1, this implies L2k+3+1 has no more than one decomposition in A. This completes

the inductive step.

Theorem 1.4. The maximum number of decompositions a natural number can have

in the Lucas number sequence is two.
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Proof. It suffices to show that for every m, there is no natural number with more than

two decompositions in the set A = {L0, L1, . . . , Lm}. To prove Theorem 1.4, we pro-

ceed by strong induction. When m = 0, A = {L0} and when m = 1, A = {L0, L1}. In

both cases, no natural has more than two decompositions in A. This shows the base

case. Assume Theorem 1.4 holds for all integers less than or equal to m = k. For our

first case, suppose k is an odd integer and let A = {L0, L1, . . . , Lk}. From Lemma

4.2, all nonconsecutive sums that can be formed from A are the values from zero to

Lk+1 − 1 inclusive. Hence when we add the term Lk+1 to A, all new nonconsecutive

sums that can be formed must be at least Lk+1. This implies there is no possible way

in which we can form a third decomposition for any natural number in A as there is no

intersection between the old and the new nonconsecutive sums in which we can form

after the addition of the term Lk+1. We consider the next case when k is even. From

Lemma 4.2, all nonconsecutive sums that can be formed from A are the values from

zero to Lk+1 + 1 inclusive excluding Lk+1. When we add the term Lk+1 to A, all new

nonconsecutive sums that can be formed are at least Lk+1 with Lk+1 +1 being formed

again, namely Lk+1 + L1. By Lemma 4.4, we know that Lk+1 + 1 has exactly two

decompositions in the Lucas number sequence. Therefore, there is no possible way

we can form a third decomposition for any natural number in A which completes the

inductive step.

The idea behind the proof of Theorem 1.5 is adapted from [Her20b].

Theorem 1.5. Let U be the nonuniqueness counting function associated to the Lucas
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number sequence. Then

lim
N→∞

U
({
Lk
}∞
k=0

, N
)

N
=

1

2Φ3 − Φ2

where Φ = 1+
√

5
2

denotes the golden ratio.

Proof. Let U be the nonuniqueness counting function associated to the Lucas num-

ber sequence, Φ = 1+
√

5
2

be the golden ratio, and β = − 1
Φ

. Consider the set A =

{1, 2, . . . , Lm+1} consisting of the first Lm+1 natural numbers. To determine which

natural numbers between one and Lm+1 inclusive do not have unique decomposi-

tion in the Lucas number sequence, we need only consider elements in the subset

B = {L0, L1, . . . , Lm} of A as Lm+1 has unique decomposition in the Lucas number

sequence by Lemma 4.3. We first consider the case when m is odd. From Lemma 4.1,

we know that we can form Fm+3 distinct and nonconsecutive subsets of B, implying

there are Fm+3− 1 distinct sums of Lucas sequence terms which are natural numbers

as the empty set results in a sum of zero. By Lemma 4.2 and Theorem 1.4, we have

that

(Fm+3 − 1)− (Lm+1 − 1)

gives the total number of natural numbers in A that do not have unique decomposition

in the Lucas number sequence. From the well-known identity Lm = Fm−1 + Fm+1,

(Fm+3 − 1)− (Lm+1 − 1) becomes Fm−1 [Aza12].

We next consider the case when m is even. Using a similar argument, we have

that

(Fm+3 − 1)− (Lm+1)
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gives the total number of natural numbers in A that do not have unique decom-

position in the Lucas number sequence. From the identity used in the odd case,

(Fm+3 − 1)−(Lm+1) becomes Fm−1−1 [Aza12]. When computing the limit for asymp-

totic density, the difference of one between Fm−1 and Fm−1 − 1 is negligible. Hence

on the subsequence of Lucas numbers up to Lm+1, we have the following equation

lim
m→∞

U
({
Lk
}∞
k=0

, Lm+1

)
Lm+1

= lim
m→∞

Fm−1

Lm+1

. (4)

Binet’s formula for Fibonacci and Lucas sequence terms enables us to rewrite Equa-

tion 4 as

lim
m→∞

Fm−1

Lm+1

= lim
m→∞

Φm−1−βm−1

Φ−β

Φm+1 + βm+1

= lim
m→∞

Φm−1−βm−1

Φ−β · 1
Φm−1

Φm+1 + βm+1 · 1
Φm−1

=
1

2Φ3 − Φ2

as lim
m→∞

(
Φ

β

)m−1

= 0 and Φ− β = 2Φ− 1. Therefore,

lim
N→∞

U
({
Lk
}∞
k=0

, N
)

N
=

1

2Φ3 − Φ2
.
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5. Future Work

In this section we discuss potential research which generalizes the ideas presented

in this paper. An interesting concept we stumble across in Brown’s paper is a complete

sequence of integers [BJ61].

Definition 5.1. An arbitrary sequence {fi}∞i=0 of positive integers is complete if and

only if every positive integer n can be represented in the form

∞∑
i=1

αifi

where each αi is either zero or unity.

Notable complete sequences we have explored in great depth within this paper

include the Fibonacci and Lucas number sequences. Brown also proves in his paper

the following theorem [BJ61].

Theorem 5.1. (Brown). Let {fi}∞i=0 be a nondecreasing sequence of positive integers

with f1 = 1. Then {fi} is complete if and only if fp+1 ≤ 1 +

p∑
i=1

fi for p = 1, 2, . . ..

We can also think of the Lucas number sequence as a swapped Fibonacci number

sequence. The Lucas number sequence is obtained by swapping the order of F2 = 1 and

F3 = 2. We can consider another swapped Fibonacci number sequence by switching

the order of F3 = 2 and F4 = 3. From this, we have the sequence {Sk}∞k=0 where

S0 = −1, S1 = 3, and Sk = Sk−2 + Sk−1 for k ≥ 2. The proof that {Sk}∞k=0 is

a complete (we alter the definition of complete sequences to be sequences which
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can carry non–positive integers as well) sequence follows similarly to the proof of

Zeckendorf’s Theorem described in Section 3. From our computer algorithm discussed

in Section 2, we have the following table of data for varying values of N2.

N2 U
({
Sk
}∞
k=0

, N2

) U

({
Sk

}∞
k=0

,N2

)
N2

10,000 991 9.91%

50,000 4,955 9.91%

100,000 9,910 9.91%

200,000 19,821 9.9105%

Table 2

From Table 2, we observe that the proportion α of natural numbers that do not

have unique decomposition in {Sk}∞k=0 approaches 9.91%. If we generalize the ideas in

this paper to any complete sequence of integers {ak
}∞
k=0

, then we can determine the

proportion of natural numbers that do not have unique decomposition in {ak
}∞
k=0

.
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