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Abstract

For the theoretical study of the chemical reactions, potential energy surface (PES)

plays a crucial role. High quality PESs are always desired; however, there are many

challenges in constructing these surfaces, and one of them is caused by the molec-

ular permutation symmetry. In this dissertation, several methods targeting at the

invariant property of the PES are addressed, especially the most advanced approach

using the invariant polynomials. Based on the high quality PESs constructed with

intrinsic permutation symmetry, extensive quasiclassical trajectory simulations of the

small molecule reactions H2 + H3
+, H + CH4, CH+

5 /CH5 and H3O
+/H3O including

their isotopomers are performed to understand the underlying microscopic reaction

mechanism. In addition to the study of the dynamics of chemical reactions, some

static properties of H+
5 and CH+

5 are also investigated based upon diffusion Monte

Carlo methods. By the good agreement between the theoretical simulation results

and the available experimental data, it indicates that quasiclassical trajectory simu-

lation based on accurate potential energy surface is a powerful method to investigate

and further understand the microscopic chemical reaction mechanism.
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4.2 Bond distances (Å) of the ten stationary points on the PES . . 80

4.3 Energy comparison between present ab initio CCSD(T)/aug-cc-pVTZ

and PES (Hartree) and their difference (cm−1) for the ten stationary

points . . . . . . . . . . . . . . . . . 81

4.4 Energy Comparison for the ten known stationary points between in-

dicated ab initio calculations, current PES and a previously reported

PES. The value for 1-C2v is the absolute global minimum energy in

Hartree. Other values are the energies in wavenumber relative to the

global minimum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Harmonic frequencies (cm−1) at the stationary points on the PES 83

4.6 Comparison of the PES normal mode frequencies with previous bench-

mark results . . . . . . . . . . . . . . . 84

4.7 Classical branching ratio of products H4D
+ indicated to initial config-

uration . . . . . . . . . . . . . . . . . 94

5.1 Cross sections (Bohr2) for forward reaction HD+H+
3 −→ H2+H2D

+, H’D+

H+
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



LIST OF TABLES

5.2 Cross sections (Bohr2) for reverse reaction H2 + H2D
+ −→ HD +

H+
3 , H’H” + H2D

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1 ZPE (in cm−1) of H+
5 and its isotopomers obtained from DMC calcu-

lations, with and without importance sampling. . . . . . . . . . . . . 137

6.2 ZPE of each of the possible fragmentation channels for unimolecular

dissociation of H+
5 and its isotopomers. . . . . . . . . . . . . . . . . . 140

6.3 Dissociation energies for unimolecular dissociation of H+
5 and its iso-

topomers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4 Zero-Point energy of various H+
5 isotopomers . . . . . . . . . . . . . . 147

6.5 Statistical bond lengths (Bohr) of H+
5 and its isotopomers from DMC

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.1 CH5 abstraction saddle point geometry and energy on the ZBB2 po-

tential energy surface (PES) and other sources, as indicated. . . . . . 160

7.2 Normal mode frequencies (cm−1) of indicated geometries on the ZBB2

potential energy surface (PES) and other sources, as indicated. . . . . 161

7.3 CH5 abstraction (ABSP) and exchange (EXSP) saddle point geome-

tries, energies, and harmonic frequencies (cm−1) on the ZBB3, ZBB2

potential energy surfaces and those directly from ab initio calculations 163

8.1 Present PES normal mode frequencies (cm−1) for reactants and prod-

ucts and for the H-atom and D-atom abstraction saddle point configu-

rations, denoted as H-ABSP and D-ABSP, respectively. The last row

is the harmonic zero-point energy and the values denoted as “REF”

are from a compilation of results in Ref. 101. . . . . . . . . . . . . . . 184



LIST OF TABLES

8.2 Reaction cross sections for reactions indicated at the initial relative

kinetic energy of 1.53 eV. . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.1 Key parameters for semi-rigid sampling simulation . . . . . . . . . . . 213

9.2 Key parameters for direct jumping simulation . . . . . . . . . . . . . 214

9.3 Key parameters for resonant case simulation . . . . . . . . . . . . . . 220

9.4 Key parameters for Near-Resonant Case simulation . . . . . . . . . . 221

9.5 Bond distances in CH+
5 . . . . . . . . . . . . . . . . . . . . . . . . . . 228

9.6 Zero-Point energy (cm−1) of CH+
5 , CHD+

4 and CD3H
+
2 from the DMC

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

10.1 H3O
+ energy and geometry . . . . . . . . . . . . . . . . . . . . . . . 242

10.2 Normal mode frequencies (cm−1) of H3O
+ C3v and D3h structure . . . 243



1 INTRODUCTION

1 Introduction

1.1 Chemical Reactions, Quasiclassical Trajectory Simula-

tion and Potential Energy Surface

There are numerous chemical reactions occurring every second in the universe, and

to understand these chemical reactions is the goal of many scientific researchers.

Many instruments and theoretical methods have been developed to facilitate the

researchers to understand the chemical reactions. Quasiclassical trajectory (QCT)

simulation is one of the methods developed to investigate those chemical reactions. In

the 1930s, classical trajectory calculations were carried out to theoretically investigate

the dynamics of the reactive collisions [1–3]. The approach known as QCT method

had developed very rapidly since the 1960s. The prefix “quasi” means the assignment

of quantum states to the rotational and vibrational states of the reactants, and it

is mainly developed by Karplus et al [4]. It was gradually substituted by a series

of quantum mechanical approximation methods in 1970s and 1980s [5–7]. However,

detailed analysis of many quantum effects for chemical reactions reported in the

literature demonstrated that they were, to a considerable extent, describable with

classical mechanics. This situation has led in recent times to a reconsideration of

the QCT method for the investigation of reactive collisions. During the 1990s, the

quality of available potential energy surface (PES) was improved greatly, which shed

new light on the QCT methods. The PES, describing the interactions of the molecular

species, is crucial for the theoretical simulation. Without an accurate PES, no matter

how accurate the model is, the simulation is doomed to fail; while with an accurate

PES, even though the model has some limitations or shortcomings, the simulation

1



1 INTRODUCTION

can still provides some valuable information about the chemical reactions. In most

cases, quasiclassical trajectory simulation based on high quality ab initio potential

energy surface is such a combination that can describe a lot of chemical reactions

reasonably as shown in the second part of this thesis.

1.2 Outline

This thesis is organized as following: part I is most involved in the theory and meth-

ods for the invariant potential energy function fitting, some basic calculations on the

surface, and the methods to set up the initial conditions for quasiclassical trajectory

simulation. The analysis of the final states of the trajectory simulation is addressed

too. The whole section 3.2 is devoted to the notorious ZPE issue in QCT. Part II

is mainly about various molecule systems we’ve studied mostly based on QCT sim-

ulations. Section 4, 5, 6 are devoted to the H+
5 system. Section 7 and Section 8 are

mostly for the H + CH4 reaction and its isotopomer reaction. Section 9 is the study

of the charge exchange reaction of CH+
5 and the dissociation of CH5. Section 10 is

for the currently ongoing project on the charge exchange reaction of H3O
+ and the

dissociation of H3O. Finally, a brief summary is given in Section 11.

2
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Theory and Methods
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2 AB INITIO MOLECULAR POTENTIAL ENERGY CONSTRUCTION

2 Ab initio Molecular Potential Energy Construc-

tion

2.1 Molecule Symmetry and Representation

A molecule is a collection of atoms in three-dimensional space, and every atom has

its coordinates. Consequently, in order to represent a molecule uniquely, every atom

should be represented. One of the most straightforward representations is to specify

the Cartesian coordinates for all the atoms, i.e., the x, y and z values for each atom.

This results in a 3n tuple to represent a molecule that has n atoms in space and

is usually called XYZ representation of a molecule. As is known, there are 3n − 6

degrees of freedom for a non-linear n-atom molecule, and 3n−5 for a linear molecule.

Obviously, there is some redundancy in the XYZ representation, and this redundancy

is caused by the molecule symmetry. This symmetry includes molecular translational

symmetry and rotational symmetry, since a molecule keeps the same if it is translated

or rotated in space, especially its potential energy. To construct a potential energy

function of a molecule, it is a requirement that the function should be invariant with

the translation and rotation motions. There are basically two approaches to satisfy

the symmetry requirement. One is to build the symmetry into the functional form of

the potential energy function, and the other is to represent the molecule in a way such

that the representation is invariant under the translation and rotation motions. The

first approach may be involved, and here we just consider the second approach since

it is relatively easy to represent a molecule and also consider the translational and

rotational symmetry. There are many other representations that have been developed

for molecules. Here we just focus on the bond length representation.
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2 AB INITIO MOLECULAR POTENTIAL ENERGY CONSTRUCTION

The bond length representation of a molecule is nothing but specifying all the

n(n−1)
2

bond lengths for a general n-atom molecule. It is obvious that the bond lengths

are invariant with respect to the translation and rotation of a molecule, which is the

main property we desired for potential energy surface fitting. Before we celebrate that

we have found the right representation of a molecule, a few other issues need to be

considered. The first issue we need to consider is existence and uniqueness. Existence

and forward uniqueness are obvious, but backward uniqueness does not exist. It is a

mapping from a molecule to a vector for a representation. For forward uniqueness, it

is the uniqueness of the bond length vector for a given molecule configuration; and

backward uniqueness is the uniqueness to construct a molecule given the bond length

vector. Fig. 2.1 shows a counterexample for backward uniqueness. In chemistry,

especially organic chemistry, the molecules in Fig. 2.1(a) and (b) are two different

molecules, and their chemical properties may differ significantly. Fortunately, the

D

C

B

A

(a)

D

C

B

A

(b)

Figure 2.1: A counterexample for bond length representation backward uniqueness

potential energies for the two molecules in Fig. 2.1 are the same, and as a result, we

do not need to distinguish this kind of molecules. Consequently, we still have the

desired “uniqueness” for the bond length representation. The second issue we need

5



2 AB INITIO MOLECULAR POTENTIAL ENERGY CONSTRUCTION

to consider is the degree of freedom (DOF) of the bond length representation and the

actual DOF of a molecule. As shown previously, for an n-atom non-linear molecule,

there are 3n − 6 DOF (3n − 5 for linear molecule), and there are n(n−1)
2

DOF for

the bond length representation. Table 2.1 list the first few DOF of a molecule and

that using the bond length representation. Since the degree of freedom of a molecule

Table 2.1: Degree of freedom of molecules and the bond length representation

n (# of Atoms) 2 3 4 5 6 7 8 9 10 · · ·
Molecule Degree of Freedom 1 3 6 9 12 15 18 21 24 · · ·
Bond Length Representation 1 3 6 10 15 21 28 36 45 · · ·

is linear on the number of atoms n, but the number of bond lengths is quadratic

on n, it is expected that these two degree of freedoms will diverge eventually. As

can be seen in Table 2.1, for n = 2, 3, 4, these two DOFs are exactly the same, and

the difference between them for n = 5, 6 or even n = 7 are small, but when n ≥ 8,

the difference increases very quickly. For an “good” representation, the degree of

freedom should equal to the actual degree of freedom for efficiency, and as a result,

the bond length representation is considered as “good” for n ≤ 7. In most of the small

molecule studies, 7 is a big number and it can cover a lot of small molecules. For

larger molecules that have more than 7 atoms, a new representation may be needed

for efficiency.

Up to this point, the bond length representation is a “good” representation for

small molecules, and it is capable to represent the translational and rotational sym-

metries of molecules. However, there is still another symmetry called permutation

symmetry that needs consideration. To explain the permutation symmetry, we take

the H3O molecule as an example. As can be seen, there are three identical H atoms

6
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in H3O. If we label the four atoms in H3O as 1, 2, 3, 4 and restrict 4 to O atom, then

the corresponding bond length vector can be represented as (r12, r13, r14, r23, r24, r34.

If we permute H atom 1 with 2, the H3O molecule keeps the same but the the bond

length vector changes to (r12, r23, r24, r13, r14, r34. Now the problem becomes clear, in

the bond length representation, different order of likely atoms generate different bond

length vectors, while the potential of the energy should be the same no mater the or-

der of the likely atoms is. This is the most difficult part for the molecule bond length

representation in potential energy fitting and it is further discussed in Subsection 2.4.

2.2 Molecular PES Least Squares Fitting

Before the discussion of implementing of permutation symmetry into the PES fitting,

we first discuss some of the general strategies in PES fitting.

In the bond length representation of a molecule, any molecule of n atoms is repre-

sented as a vector (r1,2, r1,3, · · · , r1,n, r2,3, · · · , r2,n, · · · , rn−1,n)T . In a short notation, it

is x = (x1, x2, · · · , xm)T where m = n(n−1)
2

. The potential energy V of the molecule is

a function of x or V ≡ V (x). Physically, there might be some complicated functional

form for the function V (x), considering the simplicity and accuracy, one approach is

just to expand V (x) in polynomial basis function. As a result, the actual potential

energy V (x) can be approximated by

f(x) =
∑

α1,··· ,αm

aα1,··· ,αm
xα1

1 · · ·xαm

m .

or in a short notation as

f(x) =
∑

i

aiBi(x), (2.1)

7
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where Bi(x) is a polynomial basis function. In the PES fitting problem, suppose

we collected a large amount of molecules M1, · · · ,Mn, and they are represented as

x1, · · · ,xn. For every molecule Mi, there is an potential energy value Ei associated

with it, hence every data entry is a tuple (xi, Ei). All the xi variables are called

independent variables and Ei are dependent variables. The least squares method is

to find a model function f(x, β) where the vector β holds the coefficients for each

basis function as Bi(x) in Eq. 2.1. We wish to find the coefficients for which the

model “best” fit the data. The least squares methods defines the “best” as when the

sum, S, of squared residuals

S =
i=n
∑

i=1

r2
i (2.2)

is minimum.

A residual is defined as the difference between the values of the dependent variable

and the model as

ri = Ei − f(xi, β).

The least squares system can be constructed easily providing the data set in PES

constructing.

The object function in the linear least squares system is Eq. 2.2 or more explicitly,

S =
n
∑

i=1

(Ei − f(xi, β))2 . (2.3)

The minimum of the sum of squares is found by setting the gradient to zero. Since

the model contains n parameters there are n gradient equations.

∂S

∂βj

= −2
∑

i

∂f(xi, β)

∂βj

(Ei − f(xi, β)) = 0, j = 1, · · · , n.

8
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The least squares system is linear since the model function is just a linear combi-

nations of all the basis function Bi(x), or

f(xi, β) =
∑

j=1

βjBj(xi),

Therefore,

∂f(xi, β)

∂βj

= Bj(xi)

and the gradient equations become

∑

i

Bj(xi)(Ei − f(xi, β)) = 0.

Denote Aij = Bj(xi), then

f(xi, β) =
∑

j

βjAij

∑

i

Aij

(

Ei −
∑

k

βkAik

)

= 0.

Rearrange the above equation, we get

∑

i

AijEi =
∑

ik

AijβkAik

or

AT E = AT Aβ (2.4)

which is called the normal equations of linear system.

Solution of the normal equations yield the least squares estimator β̂, of the pa-

9
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rameter values, or the coefficients.

The expressions given above are based on the implicit assumption that all the

measurements are uncorrelated and have equal uncertainty. The Gauss-Markov theo-

rem shows that, when this is so, β̂ is a best linear unbiased estimator. If, however, the

energies are uncorrelated but have different uncertainties, a modified approach must

be adopted. Aitken showed that when a weighted sum of squared residues is mini-

mized, β̂ is the best linear unbiased estimator if each weight is equal to the reciprocal

of the variance of the measurement.

S =
n
∑

i=1

Wiir
2
i ,Wii =

1

σ2
i

. (2.5)

The matrix form Eq. 2.5 is

(AT WA)β = AT WE, (2.6)

where matrix A is defined as Aij = Bj(xi).

When the energy errors are uncorrelated, the weight matrix W is diagonal. If

the errors are correlated, the weight matrix should be equal to the inverse of the

variance-covariance matrix of the observations, but this does not affect the matrix

expression of the normal equations and the parameters are still best linear unbiased

estimator.

The general solution to the least squares system (Eq. 2.4) can be written as

β̂ =
(

AT A
)−1

AT E. (2.7)

In practice, the normal equations are not used due to the numerical unsteadiness.

Instead, orthogonal decomposition of the A matrix is adopted for the purpose of the

10
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numerical stability.

The linear system in the matrix form can be written as

Aβ = E

where A ∈ Rn×m, β ∈ Rm, and E ∈ Rn, (n > m), after the QR decomposition of A,

the linear system can be written as

QRβ = E

where Q ∈ Rn×n is an orthogonal matrix and R ∈ Rn×m is partitioned into m × m

blocks Rm, and a (n − m) × m zero block. Rm is upper triangular, and R can be

written as

R =







Rm

0







After the QR decomposition of A matrix, the parameter vector β can be solved

easily by a backward substitution due to the triangular nature of Rm.

An alternative decomposition of the A matrix is the singular value decomposition

(SVD) [8]

A = UΣV T , (2.8)

where A ∈ Rn×m, U ∈ Rn×n, V ∈ mathbbRm×m and Σ ∈ Rn×m is a matrix with

non-negative numbers on the diagonal and zeros off the diagonal. Both U and V are

orthogonal matrices. After the SVD decomposition of A matrix, the linear system

Aβ = E can be solved easily as β̂ = V Σ−1UT E. Incorporating the truncated SVD

approach, this decomposition gives a more stable and exact answer for the estimation

11



2 AB INITIO MOLECULAR POTENTIAL ENERGY CONSTRUCTION

of β.

Similarly, the matrix form the weighted least squares problems can be written as

√
WAβ =

√
WE,

both QR and SVD decomposition of
√

WA matrix can be adopted to solve the prob-

lem.

The least squares method may theoretically solve the PES fitting problem, but in

reality, there are still some issues, especially when approximating the potential energy

function using polynomials.

Fig. 2.2 just shows the weakness of the least squares fitting using the usual poly-

nomial basis functions.
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Figure 2.2: The failure of the usual polynomial based least squares fitting and an
alternative solution by changing the variables.

12



2 AB INITIO MOLECULAR POTENTIAL ENERGY CONSTRUCTION

In one dimensional case, theoretically, it is possible for a function expanded in the

polynomial basis to go through all the data point when the degree of basis function

getting higher and higher. This is not desired since the prediction for the fitted model

function becomes very poor.

In the example of H2 PES shows in Fig. 2.2, the known data points are scattered,

and the dotted blue lines shows the usual polynomial based function. As we can see,

the model function may fit the data available region reasonably well, but blowed up

right outside the data point region. There is method by selecting the data points

as the Chebyshev nodes, which will reduce the oscillation of the model function,

but in the PES fitting process, it is difficult to sample the data point by following

the Chebyshev nodes, especially in the high dimensional space. An easy alternative

method to overcome the weakness of the usual polynomial basis function is by chang-

ing the variables. As shown in Fig. 2.2, by change the usual bond length variable x

to 1− exp(−0.7x), the model function behaves much better than the unchanged one

in both the data available region and extended region. There are many choices for

the variable change, and particularly in the PES fitting process, due to the nature of

the PES, a new variable which decays to a constant in the large values, and increases

sharply in the short value region will be suitable. The choice of variables also depends

on the molecule system, and in the later applications, we can notice different choice

of the variable changes.

2.3 Invariant Fitting Strategies

To implement the permutation symmetry into the potential energy surface fitting

is not a trivial task and several approaches have been developed. One of the most

13
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straightforward approach, which will be discussed on the following section. Another

approach is a restricted coefficients approach, and it will be discussed in Section 2.3.2.

The most advanced approach is to use the invariant polynomial, it is complicated and

will be addressed in Section 2.4.

2.3.1 Straightforward Approach

The basic idea of the “straightforward approach” approach is to duplicate the data

set. For example, suppose we want to fit a PES for H2O molecule, and we have some

configurations of H2 M1, · · · ,Mn with energy E1, · · · , En. Based on M1, · · · ,Mn

and E1, · · · , En, we can set up a least square system as in Section 2.2, and get

a potential energy function f , for any given configuration Mi, we can predict the

potential energy symbolically as f(Mi). Due to the permutation symmetry of the

H2O molecule, the representation of the water molecule changes from Mi to M ′
i if

we switch the two H atoms. The molecule does no change, but the representation

changes since the representation does not reflect the permutation symmetry. Since

both Mi and M ′
i are corresponding to the same water molecule, their potential energy

should be the same. As a result, we would require f(Mi) = f(M ′
i), which is not

usually true during the fitting process provided M1, · · · ,Mn and E1, · · · , En. In the

straightforward approach, the molecule configurations are just duplicated. For H2O,

there are only one non-trivial permutation, and for every configuration Mi, the only

possible other configuration is M ′
i . If both Mi and M ′

i are included in the data set,

then hopefully, the final fitted function has the permutation symmetry. In summary,

the original data set is {M1, · · · ,Mn} and {E1, · · · , En}, and the new data set is

{M1, · · · ,Mn} ⊕ {M ′
1, · · · ,M ′

n} and {E1, · · · , En} ⊕ {E ′
1, · · · , E ′

n}.

14
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The straightforward approach may work for some simple molecules which do not

have many likely atoms. This approach is easy to implement. However, one of major

drawback of this approach is when the molecule becomes a litter more complicated,

for example, H3O, only one more H atom is added to the H2O molecule, but there

are 5 non-trivial permutation. This extra 5 permutation need to make the data set

5 times larger than the original one, which will make the potential energy fitting

process much longer. Generally, for a molecule xayb, the new data set will be a!b!− 1

times larger the original data set, this is extremely undesired. In addition, by the

duplication of data set, there is no guarantee for the fitted potential energy to be

invariant under the permutation. In other word, f(Mi) = f(M ′
i) may not satisfied

even if in the date set both Mi and Mi have the same energy.

2.3.2 Restricted Coefficients Approach

In the straightforward approach, the data set gets duplicated, and the fitted PES

function may have loose invariant property. In order to make the invariant property

be exact, a restricted coefficients approach is developed.

In order to show the idea behind restricted coefficients approach, we may examine

a simple example. Suppose we want to fit a function f of two variables x, y. The

date set we have is x1, · · · , xn, y1, · · · , yn and E1, · · · , En. Based on the least squares

fitting strategy as in Section 2.2, the basis functions are xαyβ where α and β are

non-negative integers. Generally, the function f is expressed as

f(x, y) =
∑

α,β

aα,βxαyβ. (2.9)

To introduce some permutation symmetry into this example, we require the function
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f to be invariant to the permutation of x and y. That is, f needs to satisfy

f(x, y) = f(y, x).

From Eq. 2.9, we get

f(y, x) =
∑

α,β

bα,βyαxβ.

or

f(y, x) =
∑

α,β

aβ,αxβyα. (2.10)

Comparing Eq. 2.9 and Eq. 2.10, we need to restrict aα,β = aβ,α. In other word,

the coefficients for the xβyα and xαyβ should be the same in order to satisfy the per-

mutation symmetry of f(x, y). As a result of restricting the coefficients, the function

f(x, y) may be expanded as

f(x, y) =
∑

α,β

aα+β(xαyβ + xβyα). (2.11)

In Eq. 2.11, the permutation invariant property f(x, y) = f(y, x) is satisfied rig-

orously. In addition, by restrict the coefficients, the final least square system may

reduce the size dramatically. For the above example, the original adjacent matrix in

least squares system may be n × m, where n is the number of data points and m

is the number of coefficients. The new adjacent matrix’s size after the coefficients

restriction reduces to n × m
2
. For large molecules, this factor is significant.

In the real molecule example such as H3O, we can see that this approach is ba-

sically the same. For H3O, we can use x1, · · · , xn to denote (r12, r13, r14, r23, r24, r34)

which is the bond length vector of H3O. Table 2.2 shows an example on a basis func-
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tion x1
1x

0
2x

2
3x

3
4x

1
5x

2
6. After the restriction of coefficient, we can see that x1

1x
0
2x

2
3x

3
4x

1
5x

2
6,

x1
1x

3
2x

1
3x

0
4x

2
5x

2
6, x3

1x
0
2x

2
3x

1
4x

1
5x

2
6, x0

1x
1
2x

2
3x

3
4x

2
5x

1
6, x0

1x
3
2x

2
3x

1
4x

2
5x

1
6 and x3

1x
1
2x

1
3x

0
4x

2
5x

2
6 share a

common coefficient.

Table 2.2: Illustration of the coefficients restriction on a basis function x1
1x

0
2x

2
3x

3
4x

1
5x

2
6

for H3O molecule in potential energy function fitting.

permutation representation Power Index Basis Term

(1) (x1, x2, x3, x4, x5, x6) (1,0,2,3,1,2) x1
1x

0
2x

2
3x

3
4x

1
5x

2
6

(12) (x1, x4, x5, x2, x3, x6) (1,3,1,0,2,2) x1
1x

3
2x

1
3x

0
4x

2
5x

2
6

(13) (x4, x2, x6, x1, x5, x3) (3,0,2,1,1,2) x3
1x

0
2x

2
3x

1
4x

1
5x

2
6

(23) (x1, x1, x3, x4, x6, x5) (0,1,2,3,2,1) x0
1x

1
2x

2
3x

3
4x

2
5x

1
6

(123) (x4, x1, x5, x2, x6, x3) (0,3,2,1,2,1) x0
1x

3
2x

2
3x

1
4x

2
5x

1
6

(132) (x2, x4, x6, x1, x3, x5) (3,1,1,0,2,2) x3
1x

1
2x

1
3x

0
4x

2
5x

2
6

By the restriction of the coefficients, the number of coefficients for the potential

energy function be reduced by a large factor related to the molecule of interest.

Table 2.3 show the comparison between the coefficient restrict approach and the non-

restricted one.

Table 2.3: Comparison of the basis size for the potential energy function of H3O at
certain degree using restricted coefficients and non-restricted ones

Maximum Degree 1 2 3 4 5 6 7 8 9

Basis Size (restricted) 3 9 23 51 103 196 348 590 960
Basis Size (non-restricted) 7 28 84 210 462 924 1716 3003 5005

By the implementation of restricted coefficient approach, the fitting efficiency

enhanced greatly along with the exact permutation invariant property. For H3O

molecule, suppose we originally have 10000 data points, and we want to fit the po-

tential energy function up to degree 8. In the straightforward approach, we need to

solve a least system of 60000×3003, while using the restrict coefficients approach, we
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only need to solve a least squares system of size 10000 × 590 which is much smaller.

The restricted coefficients approach is better than the straightforward approach

in most of the aspect except for the implementation (coding) process.

The restricted coefficients approach can be applied for small molecules, one of its

drawback is the evaluation time for the fitted function. As can be seen in Eq. 2.11,

both xαyβ and xβyα needed to be evaluated if we want the function value at some

point (x, y), though the coefficients may reduced a lot. This limitation is due to the

lack of recursive relation between all the basis functions. As a result, this approach

is superseded by an advance approach with the adoption of invariant polynomials,

especially primary invariants and secondary invariants. Based on primary and sec-

ondary invariants, all the invariant polynomials cane be generated recursively, and

this can further reduce the function evaluation time which is extremely important for

the various application using PES. This new approach is discussed in Section 2.4.

2.4 Invariant Polynomials

Invariant polynomials of finite group are the fundamentals in the PES fitting with

permutation invariant property. It is a whole research field in Algebra and here I

can just briefly outline some of the important results which are closely related to our

invariant PES fitting approach. The proofs of the theorems, propositions, corollaries

are not provided here for the purpose of compactness. See the book [9] by Harm

Derksen and Gregor Kemper for details.

Before the introduction of polynomials, we define the monomial,
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Definition 2.1 A monomial in x1, x2, · · · , xn is a product of the form

xα1
1 · xα2

2 · · ·xαn

n ,

where all of the exponents α1, α2, · · · , αn are non-negative integers. The total degree

of this monomial is the sum α1 + α2 + · · · + αn.

We can simplify the notation for monomial as follows: let α = (α1, · · · , αn) be an

n-tuple of non-negative integers. Then we set

xα = xα1
1 · xα2

2 · · ·xαn

n .

Let |α| = α1 + α2 + · · · + αn and denote it as the total degree of the monomial xα.

Definition 2.2 A polynomial f in x1, · · · , xn with coefficients in field k is a finite

linear combination (with coefficients in k) of monomial. We will write a polynomial

f in the form

f =
∑

α

aαxα, aα ∈ k,

where the sum is over a finite number of n-tuples α = (α1, · · · , αn). The set of all

polynomials in x1, · · · , xn with coefficients in k is denoted k[x1, · · · , xn].

For example,

f = x3yz +
5

2
x2y3 − 7xyz + z2

is a polynomial in Q[x, y, z].

Definition 2.3 Let f =
∑

α aαxα be a polynomial in k[x1, · · · , xn].
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1. We call aα the coefficients of the monomial xα.

2. If aα 6= 0, then we call aαxα a term of f .

3. The total degree of f , denoted deg(f), is the maximum |α| such that the

coefficient aα is nonzero.

The sum and product of two polynomials is again a polynomial. We say that a

polynomial f divides a polynomial g provided that g = fh for some h ∈ k[x1, · · · , xn].

As can be shown that under addition and multiplication, k[x1, · · · , xn] satisfies all

of the field axioms except of the existence of multiplicative inverse. Such a mathemat-

ical structure is called a commutative ring, therefore, k[x1, · · · , xn] is usually called

as a polynomial ring.

With the definition of monomials and polynomials, we come to the invariants of

finite groups.

Symmetric polynomials arises naturally when studying the invariant, and here is

the definition,

Definition 2.4 A polynomial f ∈ k[x1, · · · , xn] is symmetric if

f(xi1 , · · · , xin) = f(x1, · · · , xn)

for every possible permutation xi1 , · · · , xin of the variables x1, · · · , xn.

For example, if the variables are x, y and z, then x2+y2+z2 and xyz are obviously

symmetric. The following symmetric polynomials are very important in the later

discussion.
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Definition 2.5 Given variables x1, · · · , xn, we define σ1, · · · , σn ∈ k[x1, · · · , xn] by

the formulas

σ1 = x1 + · · · + xn,

...

σr =
∑

i1<i2<···<ir

xi1xi2 · · ·xir ,

...

σn = x1x2 · · ·xn.

Thus, σr is the sum of all monomials that are products of r distinct variables.

In particular, every term of σr has total degree of r. These symmetric polynomials

σ1, · · · , σn are called the elementary symmetric functions.

Theorem 2.6 (The fundamental Theorem of Symmetric Polynomials) Every

symmetric polynomial in k[x1, · · · , xn] can be written uniquely as a polynomial in the

elementary symmetric functions σ1, · · · , σn.

In dealing with symmetric polynomials, it is often convenient to work with ones

that are homogeneous. Here is the definition,

Definition 2.7 A polynomial f ∈ k[x1, · · · , xn] is homogeneous of total degree d

provided that every term appearing in f has total degree d.

For example, the ith elementary symmetric function σi is homogeneous of total degree

i. An important fact is that every polynomial can be written uniquely as a sum of

homogeneous polynomials. Namely, given f ∈ k[x1, · · · , xn, let fd be the sum of all
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terms of f of total degree d. Then each fd is homogeneous and f =
∑

d fd. We can

fd the dth homogeneous component of f .

We can understand symmetric polynomials in terms of their homogeneous com-

ponents as follows.

Proposition 2.8 A polynomial f ∈ k[x1, · · · , xn] is symmetric if and only if all if

its homogeneous components are symmetric.

Now we will give some basic definition for invariants of finite matrix groups, and

here we assume that for the field k we discussed, its characteristic is zero.

Definition 2.9 Let GL(n, k) be the set of all invertible n × n matrices with entries

in the field k.

From the knowledge in matrix and the above definition, it is obvious GL(n, k) is a

group, and it is customarily called the general linear group.

The permutation groups we are interested in for PES fitting are subsets of GL(n, k).

Definition 2.10 A finite subset G ⊂ GL(n, k) is called a finite matrix group pro-

vided it is nonempty and closed under matrix multiplication. The number of elements

of G is called the order of g and is denoted as |G|.

An example of the finite matrix group is given by

A =







0 −1

1 0






∈ GL(2, k).

The permutation group is no doubt the finite matrix group we are interested in

for PES fitting.
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Let τ denote a permutation xi1 , · · · , xin of x1, · · · , xn. Since τ is determined by

what it does to the subscripts, we will set i1 = τ(1), i1 = τ(2), · · · , in = τ(n). Then

the corresponding permutation of variables is xτ(1), · · · , xτ(n).

We can create a matrix form τ as follows. Consider the linear map that takes

(x1, · · · , xn) to (xτ(1), · · · , xτ(n)). The matrix representing this linear map is denoted

Mτ and is called a permutation matrix. Thus, Mτ has the property that under matrix

multiplication, it permutes the variables according to τ :

Mτ ·













x1

...

xn













=













xτ(1)

...

xτ(n)













.

It is easy to show that Mτ is obtained from the identity matrix by permuting its

columns according to τ . As an example, consider the permutation τ that takes

(x, y, z) to (y, z, x). Here τ(1) = 2, τ(2) = 3 and τ(3) = 1, and

Mτ ·













x

y

z













=













0 1 0

0 0 1

1 0 0

























x

y

z













=













y

z

x













.

Since there are n! way to permute the variables, we get n! permutation matrices.

Furthermore, this set is closed under matrix multiplication, and it is easy to show

that

Mτ · Mν = Mντ ,

where ντ is the permutation takes i to ν(τ(i)). Thus the permutation matrices form
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a finite matrix group in GL(n, k). In group theory, this kind of permutation matrices

is denoted as Sn.

In PES fitting, due to the representation of the molecules, we can not direct study

the permutation matrices Sn, instead, it is just a group G.

Definition 2.11 Let G ⊂ GL(n, k) be a finite matrix group, then a polynomial

f(x) ∈ k[x1, · · · , xn] is invariant under G if

f(x) = f(A · x)

for all A ∈ G. The set of all invariant polynomials is denoted k[x1, · · · , xn]G.

Example If we consider the group Sn ⊂ GL(n, k) of permutation matrices, then it

is obvious that

k[x1, · · · , xn]Sn = {all symmetric polynomials in k[x1, · · · , xn]}

or

k[x1, · · · , xn]Sn = k[σ1, · · · , σn].

Thus, every invariants can be written as a polynomial in finitely many invariants.

In addition, we know that the representation in terms of the elementary symmetric

functions is unique. Hence, we have a very explicit knowledge of the invariants of Sn.

In the case of a general finite matrix group G, we have

Proposition 2.12 Let G ⊂ GL(n, k) be a finite matrix group. Then the set k[x1, · · · , xn]G

is closed under addition and multiplication and contains the constant polynomials.
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Multiplication and addition in k[x1, · · · , xn]G automatically satisfies the distribu-

tion, association etc properties since these properties are true in k[x1, · · · , xn], and it

is a ring. Furthermore, we say that k[x1, · · · , xn]G is a subring of k[x1, · · · , xn].

Same as symmetric polynomials whose homogeneous components are also sym-

metric, we have

Proposition 2.13 Let G ⊂ GL(n, k) be a finite matrix group. Then a polynomial

f ∈ k[x1, · · · , xn] is invariant under G if and only if all of its homogeneous compo-

nents are.

Proposition 2.13 allows us to reduce the case of homogeneous invariants.

The following lemma provides an explicit criteria to tell whether a polynomial is

invariant under the action of group G.

Lemma 2.14 Let G ⊂ GL(n, k) be a finite matrix group and suppose that we have

A1, · · · , Am ∈ G such that every A ∈ G can be written in the for

A = B1B2 · · ·Bt,

where Bi ∈ {A1, · · · , Am} for every i (we say that A1, · · · , Am generate G). Then

f ∈ k[x1, · · · , xn] is in k[x1, · · · , xn]G if and only if

f(x) = f(A1 · x) = · · · = f(Am · x).

Lemma 2.14 provides a method to check whether f ∈ k[x1, · · · , xn] is in k[x1, · · · , xn]G,

and we need further method to determine, in an algorithm fashion, the ring of invari-

ants k[x1, · · · , xn]G of a finite group G ⊂ GL(n, k). Here we assume that the field k
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has characteristic zero. We begin by some definitions,

Definition 2.15 Given f1, · · · , fm ∈ k[x1, · · · , xn], we let k[f1, · · · , fm] denote the

subset of k[x1, · · · , xn] consisting of all polynomial expressions in f1, · · · , fm with

coefficients in k.

This means that the elements f ∈ k[f1, · · · , fm] are those polynomials which can

be written in the form

f = g(f1, · · · , fm),

where g is a polynomial in m variables with coefficients in k.

Since k[f1, · · · , fm] is closed under multiplication and addition and contains the

constants, it is a subring of k[x1, · · · , xn]. We say that k[f1, · · · , fm] is generated by

f1, · · · , fm over k.

An important tool in the study of k[x1, · · · , xn]G is the Reynolds operator, which

is defined as follows.

Definition 2.16 Given a finite matrix G ⊂ GL(n, k), the Reynolds operator of

G is the map RG : k[x1, · · · , xn] → k[x1, · · · , xn] defined by the formula

RG(f)(x) =
1

|G|
∑

A∈G

f(A · x)

for f(x) ∈ k[x1, · · · , xn].

Note that the division by |G| is allowed since k has characteristic zero. The Reynolds

operator has the following crucial properties.

Proposition 2.17 let RG be the Reynolds operator of the finite matrix group G.
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1. RG is k-linear in f .

2. If f ∈ k[x1, · · · , xn], then RG(f) ∈ k[x1, · · · , xn]G.

3. If f ∈ k[x1, · · · , xn]G, then RG(f) = f .

It is easy to prove that, for any monomial xα, the Reynolds operator gives us

a homogeneous invariant RG(xα) of total degree |α| whenever it is nonzero. The

following theorem of Emmy Noether shows that we can always find finitely many of

these invariants that generate k[x1, · · · , xn]G.

Theorem 2.18 Given a finite matrix group G ⊂ GL(n, k), we have

k[x1, · · · , xn]G = k[RG(xβ) : |β| ≤ |G|].

In particular, k[x1, · · · , xn]G is generated by finitely many homogeneous invariants.

Theorem 2.18 guarantees that for finite matrix group G ⊂ GL(n, k), there exist

finite number of generators for the invariant polynomial ring k[x1, · · · , xn]G. In addi-

tion, Theorem 2.18 provides a method to list all the generators. The main drawback

of Theorem 2.18 is that when |G| is large, we need to compute the Reynolds operator

for lots of monomials. For example, consider the cyclic group C8 ⊂ GL(2, R) of order

8 generated by the 45◦ rotation

A =
1√
2







1 −1

1 1






∈ GL(2, R).

In this case, Theorem 2.18 says that k[x, y]C8 is generated by 44 invariants RC8(x
iyj),

i + j ≤ 8. In reality, only 3 are needed. For large groups, thing are even worse, es-
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pecially if more variables are involved. Fortunately, there are more efficient methods

for finding a generating set of invariants. The main tool is Molien’s Theorem, which

enables one to predict in advance the number of linearly independent homogeneous

invariants of given total degree d.

Now the question becomes how to generate all the f ∈ k[x1, · · · , xn]G, and this is

achieved by the so called primary invariants and secondary invariants.

Definition 2.19 A set f1, · · · , fr ∈ k[x1, · · · , xn] of homogeneous elements is called

a homogeneous system of parameters if

1. f1, · · · , fr are algebraically independent and

2. k[x1, · · · , xn] is a finitely generated module over k[f1, · · · , fr].

If f1, · · · , fr ∈ k[x1, · · · , xn]G is a homogeneous system of parameters, then we call

the fi primary invariants. The invariant ring k[x1, · · · , xn]G is a finite k[f1, · · · , fr]-

module, say

k[x1, · · · , xn]G = Fg1 + Fg2 + · · · + Fgs,

where F is the polynomial ring k[f1, · · · , fr] and g1, · · · , gs ∈ k[x1, · · · , xn]G homoge-

neous. The invariants g1, · · · , gs are called secondary invariants.

More importantly, Hochster and Roberts proved that

Theorem 2.20 (Hochster and Roberts) If G is linearly reductive group, then

k[x1, · · · , xn]G is Cohen-Macaulay.

Since every finite group is linear reductive group, we know that k[x1, · · · , xn]G is

Cohen-Macaulay, and there is a decomposition

k[x1, · · · , xn]G = Fg1 ⊕ Fg2 ⊕ · · · ⊕ Fgs (2.12)
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with g1, · · · , gs ∈ k[x1, · · · , xn]G homogeneous, and actually g1, · · · , gs are secondary

invariants. The decomposition 2.12 is often called Hironaka decomposition.

As a result, given the primary and secondary invariants, the invariant polynomial

ring k[x1, · · · , xn]G can be generated explicitly. Here we will not dig into the algorithm

for the computing of the primary and secondary invariants, and they can be generated

using some well known algebra system such as Magma [10].

Now we will study some real example H3O by the usage of primary and second

invariants along with the Molien series.

Example There are 4 atoms in H3O, and we can label them as 1, 2, 3 and 4. We also

explicit label the O atom as 4, and then 1, 2, 3 are equivalent due to the equivalence

of the three H atoms. There are
(

4
2

)

bond lengths for a 4 atom molecule, they are

rT = (r12, r13, r14, r23, r24, r34)

Denote xT = (x1, · · · , x6) as a short notation of rT = (r12, r13, r14, r23, r24, r34),

and we use xT = (x1, · · · , x6) to represent the molecule H3O.

Since all the three H atoms are equivalent in H3O, the permutation group of H3O

is S3. The elements of group S3 are

(1), (12), (13), (23), (123), (132).

All these elements can act directly on the H3O molecule, hence on the r vector. For
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instance,

(12) ·

































r12

r13

r14

r23

r24

r34

































=

































r12

r23

r24

r13

r14

r34

































In the x notation,

(12) ·

































x1

x2

x3

x4

x5

x6

































=

































x1

x4

x5

x2

x3

x6

































As a result, the permutation matrix corresponding to the action (12) is

































1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1
































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and
































1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

































·

































x1

x2

x3

x4

x5

x6

































=

































x1

x4

x5

x2

x3

x6

































.

There are 6 this kind of permutation matrix and they compose a group G ⊂

GL(6, Q).

For this particular permutation group G, the Molien series is

Order 0 1 2 3 4 5 6 7 8 9 10 · · ·
Molien Series 1 2 6 14 28 52 93 152 242 370 546 · · ·

and the primary invariants are

f1 = x1 + x2 + x4,

f2 = x3 + x5 + x6,

f3 = x2
1 + x2

2 + x2
4,

f4 = x2
3 + x2

5 + x2
6,

f5 = x3
1 + x3

2 + x3
4,

f6 = x3
3 + x3

5 + x3
6.
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and the secondary invariants are

g1 = 1

g2 = x1x3 + x1x5 + x2x3 + x2x6 + x4x5 + x4x6,

g3 = x2
1x3 + x2

1x5 + x2
2x3 + x2

2x6 + x2
4x5 + x2

4x6,

g4 = x1x
2
3 + x1x

2
5 + x2x

2
3 + x2x

2
6 + x4x

2
5 + x4x

2
6,

g5 = g2
2,

g6 = g3
2

According to Eq: 2.12, the invariant polynomial ring

k[x1, · · · , x6]
G = Fg1 ⊕ Fg2 ⊕ Fg3 ⊕ Fg4 ⊕ Fg4 ⊕ Fg5 ⊕ Fg6

where F = k[f1, · · · , f6].

As a result, we can compute all the f in k[x1, · · · , x6]
G. In application, we usually

cut the f to some maximum degree.

2.5 Normal Mode Analysis

A classical model for molecular vibration is a set of N points masses(the nuclei), each

of which vibrates about an equilibrium position. One of the main goal of Normal

mode analysis is to describe these vibrational motions. In order to describe these

motions, we should have a coordinates system. The most natural one is the Carte-

sian Coordinates. Let x1, y1, z1, · · · , xN , yN , zN be the Cartesian coordinates of an N

atom molecule. x1,e, y1,e, z1,e, · · · , xN,e, yN,e, zN,e be the coordinates in the equilibrium

values. m1,m2, · · · ,mN be the mass of these N nuclei.
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The 3N Cartesian displacement coordinates, which measure the displacement of

each nucleus from equilibrium, are defined as:

g1 = x1 − x1,e, g2 = y1 − y1,e, g3 = z1 − z1,e, · · · (2.13)

The classical kinetic energy of vibration about the equilibrium position is

T =
1

2

3N
∑

i=1

mC(i/3)

(

dgi

dt

)2

(2.14)

where C(x) is the smallest integer that greater or equal to real number x.

To simplify this equation, we define mass-weighted Cartesian displacement coor-

dinates q1, q2, · · · , q3N :

qi =
√

mC(i/3)gi (2.15)

The kinetic energy becomes

T =
1

2

3N
∑

i=1

(

dqi

dt

)2

=
1

2

3N
∑

i=1

q̇2
i (2.16)

In matrix notation

T =
1

2
q̇′q̇ (2.17)

For a molecule, the vibrational potential energy V is given by the function U :

V = U(q1, q2, · · · , q3N) (2.18)
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We expand the potential energy in a Taylor series about the equilibrium positions,

which correspond to q1 = q2 = · · · = q3N = 0. The potential energy is a function of

several variables, and the Taylor-series expansion is

U = Ue +
3N
∑

i=1

(

∂U

∂qi

)

e

qi +
1

2

3N
∑

i=1

3N
∑

j=1

(

∂2U

∂qi∂qj

)

e

qiqj+

1

6

3N
∑

i=1

3N
∑

j=1

3N
∑

k=1

(

∂3U

∂qi∂qj∂qk

)

e

qiqjqk + · · · (2.19)

For equilibrium, the partial potential energy difference along each q should be 0.

Hence:
(

∂U

∂qi

)

e

= 0, i = 1, 2, · · · , 3N (2.20)

We should neglect terms higher than quadratic in (2.19); this is a good approxi-

mation if the vibrations are small. Equation 2.19 becomes

U = Ue +
1

2

3N
∑

i=1

3N
∑

j=1

ui,jqiqj (2.21)

ui,j ≡
(

∂2U

∂qi∂qj

)

e

(2.22)

In matrix notation,

U = Ue +
1

2
q′Uq (2.23)

where the matrix U has the elements uij and the column vector q has elements

q1, q2, · · · , q3N .

We now solve for the classical-mechanical vibration motion for the potential energy
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(Eq: 2.21). Newton’s second law Fi = mai and the definition of potential energy give

Fi = −∂V

∂gi

= mC(i/3)
d2gi

dt2
(2.24)

where Fi is the ith component of force acting on the mass mC(i/3). The mass-weighted

coordinate qi is defined by Eq 2.15,hence

∂V

∂gi

=
∂V

∂qi

∂qi

∂gi

=
√

mC(i/3)
∂V

∂qi

(2.25)

d2gi

dt2
=

d2

dt2

(

qi√
mC(i/3)

)

=
1

√
mC(i/3)

d2qi

dt2
(2.26)

Substitution of Eq 2.25 and Eq 2.26 into Eq 2.24 gives

d2qi

dt2
+

∂V

∂qi

= 0, i = 1, 2, · · · , 3N (2.27)

V is given by Eq 2.21 and contains a double sum over the q’s. Hence ∂V/∂qi will

contain a single sum over the q’s. Thus each differential equation in Eq 2.27 involves

all the qi’s which complicates the solution process. To get a simpler set of differential

equations, we will carry out a change of variables. The change of variables we want

is one that reduces the double sum in Eq 2.21 to a single sum of squares. The U

matrix is real symmetry matrix and hence can be diagonalized to a diagonal matrix

using a unitary matrix L:

L′UL = Λ (2.28)

The column vectors of L defines an orthonormal coordinate system. Let Q be the
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coordinates in that space. Here

Q = L′q and q = LQ (2.29)

qi =
3N
∑

k=1

likQk, i = 1, 2, · · · , 3N (2.30)

Substitute Eq 2.29 into Eq 2.17 and Eq 2.23 gives

T =
1

2
q̇′q̇ =

1

2
(LQ̇)′LQ̇ =

1

2
Q̇′L′LQ̇ =

1

2
Q̇′Q̇ (2.31)

T =
1

2

3N=6
∑

k=1

Q̇2
k (2.32)

and

U − Ue =
1

2
q′Uq =

1

2
(LQ)′U(LQ) =

1

2
Q′L′ULQ =

1

2
Q′ΛQ (2.33)

U = Ue +
1

2

3N−6
∑

k=1

λkQ
2
k (2.34)

Therefor

d2Qk

dt2
=

3N
∑

i=1

lik
d2qi

dt2
= −

3N
∑

i=1

lik
∂V

∂qi

(2.35)

and

∂V

∂Qk

=
3N
∑

i=1

∂V

∂qi

∂qi

∂Qk

=
3N
∑

i=1

∂V

∂qi

lik (2.36)

Hence

d2Qk

dt2
+

∂V

∂Qk

= 0, k = 1, 2, · · · , 3N (2.37)
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d2Qk

dt2
+ λkQk = 0, k = 1, 2, · · · , 3N (2.38)

These equations of motion can be solved at once to give

Qk = Bk sin(λ
1/2
k t + bk), k = 1, 2, · · · , 3N (2.39)

where Bk and bk are constants. Use Eq 2.30 and Eq 2.39, we find for the mass-weighted

Cartesian coordinates

qi =
3N
∑

k=1

Aik sin(λ
1/2
k + bk), i = 1, 2, · · · , 3N (2.40)

where

Aik ≡ likBk (2.41)

Let us look at the physical nature of the solutions Eq 2.40. We first consider the

special case with all arbitrary constant Bk = 0, except Bm 6= 0. For this case, Eq 2.40

becomes

qi = Aim sin(λ1/2
m t + bm), i = 1, 2, · · · , 3N (2.42)

In this case, the coordinates of each atom vibrate in phase with one another with

the same frequency νm = λ
1/2
m /2π. Each such vibration is called Normal mode of

vibration.

Let us summarize the result. In order to study the vibrational motions of the mass

nuclei, we used the mass-weighted Cartesian coordinates q, and then we get mass-

weighted Hessian matrix U. Diagonalize Hessian matrix gives matrix L and Λ which

satisfy L′UL = Λ. The diagonal element of Λ λ can gives the frequencies of these
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normal mode by νm = λ
1/2
m /2π. Q = L′q defines the Normal Coordinates. The motion

of the normal coordinates can be described by Qk = Bk sin(λ
1/2
k t+bk). Since q = LQ,

we can describe the vibrational motion in mass-weighted coordinates system after we

know L and Q. When q is known, then the usual Cartesian coordinates motion can

be known.

2.6 Molecular Geometry Optimization

The geometry of a molecule determines many of its physical and chemical properties.

This is why it is very important that we understand the geometry of a molecule when

running computations. Given a potential energy surface (PES), a geometry is just a

point on it, and there are many other points on the PES. Among all the points on a

surface, there are some points distinct from others. They are

Local Maxima: that point on the potential energy surface that is the highest value

in a particular section or region of the PES

Global Maxima: that point on the potential energy surface that is the highest value

in the entire PES

Local Minima: that point on the potential energy surface that is the lowest value

in a particular section or region of the PES

Global Minima: that point on the PES that is the lowest value in the entire PES

Saddle Point: a point on the PES that is a maximum in one direction and a min-

imum in the other. Saddle points represent a transition structure connecting

two equilibrium structures.
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As for minima and maxima, they can be illustrated using the following Fig. 2.3.

x

0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
6

−
4

−
2

0
2

4
6

global maximum

global minimum

local maximum

local minimum

Figure 2.3: Illustration of maxima and minima on a 1D curve

In reality, local and global minima are more important than maxima, since minima

are corresponding to geometries that are relative stable than others. In addition, a

global minimum is also a local minimum, and usually it is very difficult to determine

that if a local minimum is actually the global minimum.

From Fig. 2.3, it is easy to see that all the minima and maxima (except for those

boundary points) are extreme points on PES, i.e., the first derivative of the PES or

the gradient at those points are zero. For minima, the second derivative of the PES at

that point is positive, and negative for those maxima. This is the case in 1-dimension

space, for n-dimensional space, there are n first order derivatives, and n non-zero

second order derivative (suppose it is in the orthogonal coordinate space). If all of
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the first derivative are zero and all the second order derivative are positive at some

point, then that point is a minimum. If all the first derivatives are zero and second

derivatives are negative at some point, then it is a maxima.

Figure 2.4: Saddle point with the coordinates of z = x2 − y2.

There may be many local maxima and minima, but only one global minima and

maxima. In addition, a PES can have saddle points as illustrated in Fig. 2.4. Saddle

point is a point that is maximum in some directions and minimum in the others. It

takes its name in that graphically it looks like a saddle when plotted. A saddle point

represents a transition structure connecting two equilibrium structures. For a saddle

point in n-dimension space, if there are only one negative second order derivative,

and all the others are positive, then it is called first order saddle point. If there
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are k negative second order derivative, then it is called kth order saddle point. In

the study of chemical reaction, only first order saddle point may of interest. The

characterization of saddle points, local minima will be addressed more in Section 2.5.

There are possibly many saddle points and local minima and one global minimum,

and they are all called stationary points since their first order derivatives are all zero.

The stationary points are very important to chemical reactions and also important

in characterization potential energy surfaces. The purpose of geometry optimization

is to locate the stationary points based on some geometry for the molecule.

There are a number of different algorithms for performing optimizations, such

as Berny, Fletcher-Powell, quasi-Newton, and others. Most of these optimization

algorithms also calculate the second derivative of the energy with respect to the

coordinates, known as a Hessian. The Hessian serves to specify the curvature of the

surface for that particular geometry, and thus “optimizes” the determination of how

to vary the geometry for the next step. There are also things that the computational

chemist can do to make optimizations behave better such as:

• use of symmetry or dummy atoms

• counting the number of internal coordinates

• forcing strong coupling between internal coordinates

• better initial guess for the geometry

• providing an initial guess for the Hessian

• testing stationary points

Here we just focus on quasi-Newton methods in optimization.
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The potential energy surface or function is nothing but a multivariate function

and can be represented as f(x, where x represents a point in multi-dimensional space,

or a molecule configuration. If a function f has only one variable x, it is well known

that f(x + h) can be expanded as Taylor series

f(x + h) = f(x) + hf ′(x)|x +
h2

2
f ′′(x)|x + O(h3) (2.43)

providing ‖h‖ is small.

Similarly, if f is a scalar function over vector space Rn, f(x + h) can also be

expanded as a Taylor series:

f(x + h) = f(x) +
∑

i

hi
∂f

∂xi

∣

∣

∣

∣

x

+
1

2

∑

ij

hihj
∂2f

∂xi∂xj

∣

∣

∣

∣

x

+ O(|h|3) (2.44)

if ‖h‖2 is small.

The optimization criteria is f ′(x) = 0 for 1D case and ∇f = 0 in multi-dimensional

space.

In 1D case, suppose we have x which is very close to the stationary point we can

looking for, and only a small step h is need to reach the target, then we have

f ′(x + h) = f ′(x) + hf ′′(x)|x + O(h2) = 0.

Neglect the small term O(h2) since h is small, we get

f ′(x) + hf ′′(x)|x ≈ 0.
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Consequently,

h ≈ − f ′(x)

f ′′(x)
.

There for the final position

x′ = x + h = x − f ′(x)

f ′′(x)
.

Similarly, in the n dimensional space, we get

∂f(x + h)

∂x
=



















∂f
∂x1

∂f
∂x2

...

∂f
∂xn



















+



















∑

i hi
∂2f

∂xi∂x1

∑

i hi
∂2f

∂xi∂x2

...
∑

i hi
∂2f

∂xi∂xn



















+ · · · = 0

and

∇f |x + H|x · h ≈ 0. (2.45)

As a result,

h = −H|−1
x

· ∇f |x (2.46)

Finally,

x′ = x + h = x − H|−1
x

· ∇f |x. (2.47)

In summary, given any function f(x) and the initial point x which is close to

the saddle point of function f(x), we can update the point x to x + h where h =

−H|−1
x

· ∇f |x. This is the algorithm for quasi-newton method in optimization.
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In real application, usually we can not have a point which is close enough (only one

step away) to the real target we are looking for, therefore, the above algorithm need to

be exercised multi-times until the gradient is small enough or the step size h is small

enough. In addition, Eq. 2.47 usually is not good enough, and some modification

need to be adopted to achieve better result. One approach to add a parameter λ in

the front of h, and using the updating equation as

x′ = x + λh = x − λH|−1
x

· ∇f |x. (2.48)

The main part of the Fortran 90 code for geometry optimization is listed below

to show the iterative process and the implementation of the coefficient λ (coef in

code).
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do while(imxg>cmxg .and. n <= maxc) !not converged yet

hess = hessian(p,pes)

if(present(mask)) then

disp = matmul(inverse(hess,mask),grad)

else

disp = matmul(inverse(hess),grad)

end if

coef = 1.0

do while(coef>1.0E-5)

tdisp = disp * coef

tp = p - tdisp

grad = gradient(tp,pes)

maxg = maxval(abs(grad))

if(maxg>imxg*1.1) then

coef = coef * 0.5

cycle

else

p = tp

imxg = maxg

exit

end if

end do

if(coef <= 1.0E-5) then

if(flag) write(*,*) ’Optimization Terminated!’

return

end if

enrg = pes(p) !energy at the new position

maxd = maxval(abs(tdisp)) !maximum displacement

n = n + 1 !move to the next cycle

if(flag) write(*,’(A,I3,A,F10.7,A,F10.7,A,F15.9)’) &

"STEP:",n," MAX_GRAD:",imxg," MAX_DISP:", maxd," ENERGY:", enrg

end do
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Note that in the optimization, there is a subroutine called inverse which is sup-

posed to get the inverse of the Hessian matrix. In the code, it is just mainly a

diagonalization step. Let H denote the Hessian matrix. For the Hessian matrix, we

know it must be symmetric, i.e., HT = H, and it can be diagonalized as

H = UDU−1

where U is a unitary matrix and D is diagonal matrix. To get the inverse of H,

we can just compute the inverse of UDU−1 as (UDU−1)
−1

= UD−1U−1. Since D is

diagonal, its inverse is easy to compute and finally we get the inverse of Hessian H.

In real situation, due to the choose of different representation of a molecule, there

may be some redundancy in the molecule representation, consequently, there may be

some very small number in the diagonal of D matrix. If we compute the inverse of

D, this will cause some problem. In coding, this difficulty is overcome by force the

inverse of several small values in D matrix to be 0.

For the above derivation, we notice that x is a general representation of a molecule

configuration, and it can be a representation in any coordinate system. One of the

most common coordinate system is the Cartesian coordinates, where x is just the

3n xyz coordinates. We can also represent a molecule using the internal coordinates

system such as “Z-Matrix” representation. Once we can express the potential energy

function in Z-Matrix coordinates, we can take the advantage of Z-Matrix represen-

tation, and perform contained optimization. Here I just briefly outline the steps in

optimization in different coordinates system.

Suppose we initially have the potential energy function f which is expressed in

coordinate system A, and x is a configuration in A. The goal here is we want to

46



2 AB INITIO MOLECULAR POTENTIAL ENERGY CONSTRUCTION

optimize the same configuration in another coordinates system B. We also assume

that a configuration in B is represented by y, and there is a unique transform func-

tion F which can convert x in A to y in B, i.e., y = F (x), x = F−1(y). Now the

target function f(x) in coordinates system A becomes g(y) in coordinates system

B, and the relation between f(x) and g(y) is g(y) = f(x) = f(F−1(y)). Now the

optimization reduced to the original optimization. From another point of view, in

quasi-newton’s algorithm, gradient and Hessian are needed at the current coordi-

nates system, but since we can convert the coordinates from one to another, we can

calculate the gradient and Hessian easily from a potential energy function in another

coordinates system.
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3 Molecular Dynamics Simulation

3.1 Initial Conditions

The initial conditions is crucial in the quasi-classical trajectory simulations. The

initial conditions are supposed to mimic the quantum effects in the classical system

during the simulation, and there are quite a few methods developed for setting up

the initial conditions, and here we just focus on normal mode sampling method.

3.1.1 Normal Mode Sampling

In this subsection, I just talk about to set the molecule in it lowest vibrational

state(v = 0).

In order to sampling in the phase space, normal mode analysis was done first.

Suppose there are n normal modes of a molecule, and the harmonic frequencies for

these modes are ω. The harmonic zero point energy for these modes are E = 1
2
ω.

The energy Ei is the total energy for mode i, it includes the potential energy and the

kinetic energy of mode i. The total energy Ei is distributed to the phase space as

following:

1. generate a random number 0 ≤ θ ≤ 1

2. Pi =
√

2Ei sin(2πθ)

3. Qi =
√

2Ei

ωi

cos(2πθ)

Here we note,

Ei =
P 2

i + ω2
i Q

2
i

2
. (3.1)
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Here we also note that both Pi and Qi can be plus or minus. So, two random

numbers(R1andR2) are generated separately. If R1 > 0.5, then Qi is set to minus,

otherwise, Qi is set to plus. It is similar for the sign of Pi.

Here we can see that the sampling is in the normal coordinates. After the phase

space sampling is done, the coordinates should be transformed to the usual Cartesian

coordinates.

3.1.2 Rotational Sampling

Figure 3.1: Rigid body

Classical Mechanics of A Rigid Rotor Angular momentum of a rigid body(Fig 3.1)

can be obtained from the sum of the angular momentums of the particles forming the
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body:

J =
n
∑

i=1

Li =
n
∑

i=1

ri × (mivi) =
n
∑

i=1

mi[ri × (ω × ri)] (3.2)

where ri is the position vector of particle i, and ω the angular velocity vector of the

rigid body. Now, let

ri ≡













xi

yi

zi













(3.3)

and

ω =













ωx

ωy

ωz













(3.4)

Thus,

J =

















n
∑

i=1

mi(y
2
i + z2

i ) −
n
∑

i=1

mixiyi −
n
∑

i=1

mixizi

−
n
∑

i=1

miyixi

n
∑

i=1

mi(z
2
i + x2

i ) −
n
∑

i=1

miyizi

−
n
∑

i=1

mizixi −
n
∑

i=1

miziyi

n
∑

i=1

mi(x
2
i + y2

i )





























ωx

ωy

ωz













(3.5)
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Let

Ixx ≡
n
∑

i=1

(y2
i + z2

i ), Iyy ≡
n
∑

i=1

(z2
i + x2

i ), Izz ≡
n
∑

i=1

(x2
i + y2

i )

Ixy = Iyx ≡ −
n
∑

i=1

mixiyi

Ixz = Izx ≡ −
n
∑

i=1

mixizi

Iyz = Izy ≡ −
n
∑

i=1

miyizi

Then,

J =













Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

























ωx

ωy

ωz













= Iω (3.6)

The angular moment of a molecule with n atoms can also be expanded as:

Jx =
n
∑

i=1

mi(yivzi − zivyi)

Jy =
n
∑

i=1

mi(zivxi − xivzi) (3.7)

Jz =
n
∑

i=1

mi(xivyi − yivxi)

Here we note that the above expression is in the center of mass frame and these is no

movement for the center of mass.
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In the principle axis frame, Eq (3.7) also holds and Eq (3.6) can be simplifies as

Jx = Ixxωx

Jy = Iyyωy (3.8)

Jz = Izzωz

When the J of a molecule is calculated in the principle axis frame following Eq

(3.7), ω can also be calculated as:

ωx = Jx/Ixx

ωy = Jy/Iyy (3.9)

ωz = Jz/Izz

spherical top Ia = Ib = Ic

prolate symmetric top Ia 6= Ib 6= Ic

oblate symmetric top Ia = Ib 6= Ic

asymmetric top Ia 6= Ib 6= Ic

Add in the Desired Rotational Energy The rotational energy is added to the

molecule by changing the velocity of each atom in the molecule.

v = v0 − ω0 × r + ω × r (3.10)
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When the ω is known, then it is easy to add in the desired rotational velocity as

following:

vx = vx0 − (zωy0 − yωz0) + (zωy − yωz)

vy = vy0 − (xωz0 − zωx0) + (xωz − zωx)

vz = vz0 − (yωx0 − xωy0) + (yωx − xωy)

Rotational Energy Once the quantum number J is determined, the rotational

energy can be calculated for symmetric tops using the following equations:

E =
J(J + 1)~2

2I
(spherical) (3.11)

E/h = BJ(J + 1) + (C − B)K2 (oblate) (3.12)

E/h = BJ(J + 1) + (A − B)K2 (prolate) (3.13)

where

J = 0, 1, 2, · · · K = 0,±1,±2, · · · ,±J (3.14)

and

A ≡ h

8π2Ia

≥ B ≡ h

8π2Ib

≥ C ≡ h

8π2Ic

(3.15)

As for linear molecule,

E/h = BJ(J + 1) (linear) (3.16)
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In the principle axis system, the rotational energy(Erot) can be expressed as:

Erot =
1

2
(Ixω

2
x + Iyω

2
y + Izω

2
z). (3.17)

Consequently, we can generate three random number ωx, ωy and ωz and scale them

to satisfy Eq. 3.17.

Boltzmann Distribution and Sampling According to Boltzmann distribution,

the ratio of the state when a molecule has a rotation quantum number J to the J = 0

state is:

r = (2J + 1) exp

(−Erot(J)

kT

)

(3.18)

It is a little complicate to generate a random number satisfying distribution as

Eq (3.18). However, is it easy to relative ratio of each rotation state J to the zero

rotational state. The truncating to some large J(usually 2 is large enough at low

temperature). After obtaining all the ratio at different rotational state, we can scale

these probability to make the sum to 1. Thus, we can divide the range [0, 1] to some

small segments and finally generate the quantum number J which satisfies Boltzmann

distribution.

Before adding the new angular velocity, we should remove the possible angular

movement in the molecule.

3.1.3 Relative Position and Energy

After sampling the vibrational and rotational energy for each fragments, the relative

position of these fragments should also be set up. Here we use H+
3 + HD as an

example to show how to set up the relative position of H+
3 and HD.
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Figure 3.2: Relative position for collision

First, the H+
3 is moved to the origin. At the origin, two random angle θ and ϕ are

generated and the H+
3 fragment is rotated in the 3D space according to these angles.

similarly, the HD fragment is rotated and move to the point (0, b,−
√

R2 − b2). Then

the whole molecule is move to the center of mass frame.

In order to make the fragments to collide with each other, there should be some

relative energy(Erel) in these two fragments.

There are also some conditions should be satisfied when adding in this relative

energy Erel,










m1v1 = m2v2

1
2
m1v

2
1 + 1

2
m2v

2
2 = Erel

(3.19)

where m1 is the mass of fragment 1 and m2 is the mass of fragment 2. v1 and v2 are

the center of mass velocities for the fragments.

Let

1

µ
=

1

m1

+
1

m2

(3.20)
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Then

v1 =
1

m1

√

2µErel and v2 =
1

m2

√

2µErel (3.21)

3.2 Zero Point Energy Constraint in Quasiclassical Trajec-

tory

Abstract

A method to constrain the zero-point energy in quasi-classical trajectory

calculations is proposed and applied to Henon-Heiles system. The main idea of

this method is to smoothly eliminate the coupling terms in the Hamiltonian as

the energy of any mode falls below a specified value.
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3.2.1 Introduction

A well-known shortcoming of the quasi-classical trajectory method is the failure to

enforce zero-point energy(ZPE) [11–24]. This is of course an error inherent in classical

mechanics, because ZPE is a manifestation of the quantum uncertainty principle.

Consequently, no matter how accurately one can assign the ZPE to each normal

mode of a molecule initially, after a number of steps the energies in these modes

may fluctuate. One consequence of this energy fluctuation may be the formation of

reaction products with energy less than ZPE. This can also become a critical issue if

the ZPE is comparable to the barrier height of a reaction.

The energy fluctuation between modes for a multi-mode Hamiltonian is caused

by the mode-mode coupling. If there was only one mode in the Hamiltonian, the

mode energy would be conserved. In the case of separable modes, the energies for

these modes would be conserved too. Any coupling terms between the modes in

the Hamiltonian cause energy transfer between them. Without any control of the

coupling term, it is possible for one mode to transfer its energy to other modes and

to lose energy less than the zero-point energy.

Independently, Bowman and co-workers [25] and Miller and co-workers [19] pro-

posed a method to constrain the ZPE by changing the sign of momentum when the

energy of any mode reaches the ZPE. This method did prevent energy from going

below the ZPE, however, since the momentum change occurs instantaneously it is

equivalent to an infinite impulse that is perhaps too abrupt and can cause noise in

say a classical correlation function. Here we propose another method to constrain

the ZPE by smoothly switching off mode coupling when the energy in a mode drops

below the ZPE. An application is made to the degenerate Henon-Heiles system.

57



3 MOLECULAR DYNAMICS SIMULATION

3.2.2 Method and Application

Method Consider a general n-mode Hamiltonian written as

H = H0 + Vc(1, . . . , N), (3.22)

where H0 is a separable, zero-order Hamiltonian given by
∑

i hi and Vc is an intrinsic

coupling term. The objective is to eliminate coupling when the energy in a mode

or modes (defined according to H0) drops below a specified value. How this is done

for the mode(s) in question depends to some extent on how the coupling potential is

represented. One possibility is to write Vc in an n-mode representation as follows [26]

Vc(1, . . . , N) =
∑

i>j

V (2)(i, j) +
∑

i>j>k

V (3)(i, j, k) + · · · (3.23)

Then the proposal is to modify this representation of Vc by the following expression

Vc(1, . . . , N) =
∑

i>j

V (2)(i, j)S(i)S(j) +
∑

i>j>k

V (3)(i, j, k)S(i)S(j)S(k) + · · · (3.24)

where S(i) is a switching function that depends on the energy in mode i. One possible

expression for S(i) that contains the flavor of the approach is the unit step function

θ[ǫi(t) − ǫi,zpe], where ǫi(t) is the energy of mode i at time t. Clearly this “instantly”

turns off the coupling between mode i and all other modes if the mode i energy

drops below the zero-point energy of that mode. This is too abrupt in two important

ways. First, as written this is an explicitly time-dependent term which can “spoil”

energy conservation and second once the mode coupling is totally eliminated it cannot

“return”. This means that mode i is basically eliminated from further coupling in

58



3 MOLECULAR DYNAMICS SIMULATION

the dynamics. To deal with both of these defects we propose a smoother switching

and one that is not explicitly a function of time. Thus we propose S(i) to be given

by S[hi − ǫi,zpe], where S(x) is a simple polynomial function [27]

S(x) =























0, x < 0

10x3 − 15x4 + 6x5, 0 ≤ x ≤ 1

1, x > 1

(3.25)

Note that in most instances hi is given by the sum of a kinetic energy and potential.

For energies near the ZPE hi would be well represented by a harmonic oscillator

Hamiltonian although this is not essential. In any case S[hi − ǫi,zpe]is polynomial in

the momentum and coordinate of mode i and thus modifies the equations of motion

in a straightforward fashion. This is illustrated in an application to the Henon-

Heiles system in the next section. Before considering that application we make some

remarks on other possible forms for the coupling potential and how the switching

off of mode coupling could be implemented. One form that is very widely used is a

simple multinomial representation of Vc, i.e., an expansion about a minimum,

Vc(q1, · · · , qN) =
∑

Cn1···nN
qn1
1 · · · qnN

N . (3.26)

In this case one could simply multiply each term by the appropriate product of switch-

ing functions.

Another more general strategy is to replace each mode coordinate qi by S(i)qi.

The advantage of this strategy is that it can be implemented even in the absence of

an analytical expression for Vc, e.g., in direct-dynamics calculations. In this case Vc
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is given by the full potential(calculated “on-the-fly”) minus the separable(harmonic

or possible anharmonic potential). Then each coordinate is replaced by S(i)qi and

Vc(q1, · · · , qN) is replaced by Vc(S(1)q1, · · · , S(N)qN). Thus, if S(i) approaches zero

the variable S(i)qi approaches zero, its reference value, and is decoupled from the

coupling potential. This would probably render analytical differentiation quite com-

plex and one would have to resort to numerical differentiation in order to propagate

the classical equations of motion.

Application We consider the degenerate Henon-Heiles Hamiltonian of reference 25:

H =
1

2
(p2

1 + p2
2 + q2

1 + q2
2) + q2

1q2 −
1

3
q3
2. (3.27)

h1 = 1
2
(p2

1 +q2
1) is clearly the Hamiltonian for the first mode and h2 = 1

2
(p2

2 +q2
2)−

1
3
q3
2 is the Hamiltonian for the second mode, and the coupling term is V12 = q2

1q2.

According to Eq. (3.24) the modified Hamiltonian is:

H = h1(p1, q1) + h2(p2, q2) + S(x1)S(x2)V12(q1, q2) (3.28)

where x1 = h1(p1,q1)−a1

b1−a1
and x2 = h2(p2,q2)−a2

b2−a2
. Here a1, a2, b1 and b2 are constants that

determine the range over which the switching occurs.

We used the Velocity-Verlet algorithm to integrate the equations of motion. In

this algorithm, p and q are updated according to the following equations:

q(t + ∆t) = q(t) + q̇(t)∆t +
1

2
q̈(t)∆t2 (3.29)

p(t + ∆t) = p(t) +
1

2
(ṗ(t) + ṗ(t + ∆t)) ∆t (3.30)
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According to Hamilton’s equations,

ṗ1 = −∂H

∂q1

≡ Hq1 and ṗ2 = −∂H

∂q2

≡ Hq2 (3.31)

q̇1 =
∂H

∂p1

≡ Hp1 and q̇2 =
∂H

∂p2

≡ Hp2 . (3.32)

Thus,

q̈1 =
∂Hp1

∂p1

ṗ1 +
∂Hp1

∂p2

ṗ2 +
∂Hp1

∂q1

q̇1 +
∂Hp1

∂q2

q̇2 (3.33)

q̈2 =
∂Hp2

∂p1

ṗ1 +
∂Hp2

∂p2

ṗ2 +
∂Hp2

∂q1

q̇1 +
∂Hp2

∂q2

q̇2. (3.34)

Since the Hamiltonian of the Henon-Heiles system (Eq. 3.27) and the form of

the switch function(Eq. 3.25) are known analytical functions, all the derivatives

can be calculated analytically. However, for this exercise all of the time derivatives

q̇1, q̇2, ṗ1, ṗ2, q̈1, q̈2 were calculated using Mathematica 5.1 [28].

3.2.3 Results and Discussion

We considered the same total energy of 0.16 as in reference 25 and this energy was

equally divided between the two modes at t = 0. The phase space trajectories of

these two modes for the unconstrained dynamics and the mode energies are shown in

Fig. 3.3. As seen each mode loses all of its energy at some times during the trajectory

and there is complete energy transfer back and forth between the two modes. Also

note that the energy in a given mode can exceed the total energy, as seen in this

figure. This occurs when the energy in the other mode drops to near zero.

We now apply mode switching with switch ranges 0.00−0.08 and 0.02−0.10. The

61



3 MOLECULAR DYNAMICS SIMULATION

 0.0

 0.1

 0.2

 0.3

 0  100  200  300  400  500

E
1

t

ETOTAL

 0.0

 0.1

 0.2

 0.3

 0  100  200  300  400  500

E
2

t

ETOTAL

-0.8

-0.4

 0.0

 0.4

 0.8

-1.0 -0.5  0.0  0.5  1.0

p 1

q1

-0.8

-0.4

 0.0

 0.4

 0.8

-1.0 -0.5  0.0  0.5  1.0

p 2

q2

Figure 3.3: Mode energy profile and p, q relation of the fully coupled Henon-Heiles
system
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Figure 3.4: Mode energy profile and p, q relation of the Henon-Heiles system when
setting the switch range to [0.00, 0.08]
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results for the first range are shown in Fig. 3.4 and for the second range in Fig. 3.5.

As seen both switch ranges work effectively and in neither case does the switching

actually reach the limit of zero and so energy exchange between the modes continues

throughout this time course of this trajectory. (Note that the energy range is not

meant to literally enforce the zero-point energy in this system, because that energy

is actually above the dissociation energy of this model.)

 0.0

 0.1

 0.2

 0.3

 0  100  200  300  400  500

E
1

t

ETOTAL

 0.0

 0.1

 0.2

 0.3

 0  100  200  300  400  500

E
2

t

ETOTAL

-0.8

-0.4

 0.0

 0.4

 0.8

-1.0 -0.5  0.0  0.5  1.0

p 1

q1

-0.8

-0.4

 0.0

 0.4

 0.8

-1.0 -0.5  0.0  0.5  1.0

p 2

q2

Figure 3.5: Mode energy profile and p, q relation of the Henon-Heiles system when
setting the switch range to [0.02, 0.10]

In summary a new method to smoothly switch off mode coupling has been pro-

posed with the aim of mitigating zero-point energy leak has been presented and

demonstrated for a two-mode Henon-Heiles model.
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3.3 Final Conditions

The final conditions of the classical trajectories include the relative energy of the

two fragments, the scattering angle θ, the vibrational and rotational energies of the

fragments. Of course, it will be better to determine the quantum vibrational and

rotational states of those fragments.

Suppose we have a reaction:

A + B −→ C + D, (3.35)

and the vector R defines the separation of C and D. µ is the reduced mass of C and

D.

3.3.1 Relative Velocity and Translation Energy

Then, the relative energy of C and D,

Erel =
µ

2
Ṙ · Ṙ (3.36)

where Ṙ is the relative velocity of the center of mass of C and D.

3.3.2 Velocity Scattering Angle

The velocity scattering angle θ is defined as the angle between the relative velocity

vector for the reactions Ṙ0 and the product’s relative velocity vector Ṙ:

θ = cos−1

(

Ṙ · Ṙ0

ṘṘ0

)

(3.37)
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If the relative position and velocity are set up as described in Section 3.1.3, then

the scattering angle can be easily calculates as:

θ = cos−1

(

Ṙ(3)

‖Ṙ‖1/2
2

)

(3.38)

3.3.3 Internal Vibrational Energy

As stated in section 3.1.1, the internal vibration energy of a molecule includes the

potential energy(Ep) and the kinetic energy(ET ).

The potential energy Ep is calculates as the energy difference of the equilibrium

geometry and the current geometry. ET is simply the sum of kinetic energies of every

atom.

3.3.4 Rotational Energy

The rotational energy is calculated simply as Eq (3.17). Firstly, the fragment is

transfered to the principle axis frame. Secondly, the angular momentum is calculated

as Eq (3.7). Thirdly, the rotational velocities are calculates as Eq (3.9).

3.4 Propagation Algorithm

The engine of a molecular dynamics program is its time integration algorithm, re-

quired to integrate the equation of motion of the interacting particles and follow their

trajectory.

Time integration algorithms are based on finite difference methods, where time is

discretized on a finite grid, the time step ∆t being the distance between consecutive

points on the grid. Knowing the positions and some of their time derivatives at time t
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(the exact details depend on the type of algorithm), the integration scheme gives the

same quantities at a later time t+∆t. By iterating the procedure, the time evolution

of the system can be followed for long times.

Of course, these schemes are approximate and there are errors associated with

them. In particular, one can distinguish between

Truncation errors related to the accuracy of the finite difference method with re-

spect to the true solution. Finite difference methods are usually based on a

Taylor expansion truncated at some term, hence the name. These errors do not

depend on the implementation: they are intrinsic to the algorithm.

Round-off errors related to errors associated to a particular implementation of

the algorithm. For instance, to the finite number of digits used in computer

arithmetics.

Both errors can be reduced by decreasing ∆t.For large ∆t, truncation errors domi-

nate, but they decrease quickly as ∆t is decreased. For instance, the Verlet algorithm

discussed in Section 3.4.1 has a truncation error proportional to ∆t4 for each inte-

gration time step. Round-off errors decrease more slowly with decreasing ∆t,and

dominate in the small ∆t limit. Using 64-bit precision (corresponding to “double

precision” when using Fortran on the majority of today’s workstations) helps to keep

round-off errors at a minimum.

Two popular integration methods for MD calculations are the Verlet algorithm

and predictor-corrector algorithms. They are quickly presented in the sections below.

For more detailed informations on time integration algorithms, the reader is referred

to refs. [29,30] for a general survey.
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3.4.1 Verlet Algorithm

In molecular dynamics, the most commonly used time integration algorithm is the

so-called Verlet algorithm [31, 32]. The basic idea is to write two third-order Taylor

expansions for the positions r(t), one forward and one backward in time. Calling v

the velocities, a the accelerations, and b the third derivatives of r with respect to t,

one has:

r(t + ∆t) = r(t) + v(t)∆t +
1

2
a(t)∆t2 +

1

6
b(t)∆t3 + O(∆t4) (3.39)

r(t − ∆t) = r(t) − v(t)∆t +
1

2
a(t)∆t2 − 1

6
b(t)∆t3 + O(∆t4) (3.40)

Adding Eq. 3.39 and Eq. 3.40 gives

r(t + ∆t) = 2r(t) − r(t − ∆t) + a(t)∆t2 + O(∆t4) (3.41)

This is the basic form of the Verlet algorithm. Since we are integrating Newton’s

equations, a(t) is just the force divided by the mass, and the force is in turn a function

of the positions r(t):

a(t) = − 1

m
∇V (r(t)) (3.42)

As one can see, the truncation error of the algorithm when propagating the system

by ∆t is of order ∆t4, even without the explicitly third derivatives. This algorithm

is also simple to implement, accurate and stable.

A problem with this version of the Verlet algorithm is that velocities are not
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directly generated. However, they are required to compute the kinetic energy K,

whose evaluation is necessary to test the conservation of the total energy E = K +V .

This is one of the most important tests to verify that a MD simulation is proceeding

correctly. One could compute the velocities from the positions by using

v(t) =
r(t + ∆t) − r(t − ∆t)

2∆t
. (3.43)

However, the error associated to this expression is of order ∆t2 instead of ∆t4.

To overcome this difficulty, some variants of the Verlet algorithm have been de-

veloped. They give rise to exactly the same trajectory, and differ in what variables

are stored in memory and at what times. The leap-frog algorithm [33], is one of such

variants where velocities are handled somewhat better.

An even better implementation of the same basic algorithm is the so-called velocity

Verlet scheme, where positions, velocities and accelerations at time t+∆t are obtained

from the same quantities at time t in the following way:

r(t + ∆t) = r(t) + v(t)∆t +
1

2
a(t)∆t2 (3.44)

v(t + ∆t) = v(t) +
a(t) + a(t + ∆t)

2
∆t (3.45)

The propagation for position r and v shown as in Eq. 3.44 and Eq. 3.45 are the

main time integration algorithm implemented in the following MD simulations.
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4 Ab initio Global Potential Energy Surface for

H+
5 → H+

3 + H2

Abstract

An accurate global potential energy surface (PES) is reported for H+
5 based

on more than 100,000 CCSD(T)/aug-cc-pVTZ ab initio energies. This PES

has full permutational symmetry with respect to interchange of H atoms and

dissociates to H+
3 and H2. Ten known stationary points of H+

5 are characterized

and compared to previous ab initio calculations. Quantum Diffusion Monte

Carlo calculations are performed on the PES to obtain the zero-point energy

of H+
5 and the anharmonic dissociation energy (D0) of H+

5 → H+
3 +H2. The

rigorous zero-point state of H4D
+ is also calculated and discussed within the

context of a strictly classical approach to obtain the branching ratio of the

reaction H4D
+ → H+

3 + HD and H2D
++H2. Such an approach is taken using

the PES and critiqued based on the properties of the quantum zero-point state.

Finally, a simple procedure for adding the long range interaction energy is

described.
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4.1 Introduction

The H+
5 cation plays a very important role in ion-molecule chemistry in interstellar

space [34]. A key point is the H/D ratio in space and the reaction H+
3 + HD⇋ H2D

+ +

H2 is of particular interest. This is a challenging system to study theoretically [35–38],

and the potential energy surface is a pre-requisite to a rigorous dynamics calculation.

Two potential surfaces have been reported in the literature [36, 37]. The first, based

on the diatomics-in-molecules approach, used limited ab initio electronic energies and

so is not very accurate. A second potential surface is based on a Shepard-type inter-

polation of numerous local force fields, fit to MP2/6-311G(d,p) ab initio calculations

of the energy, gradient and second derivatives. The MP2 energies were replaced by

coupled cluster ones [CCSD(T)/6-311G(d,p)] and the final interpolated surface was

denoted CCSD(T)-MP2. This surface has the important property of permutational

invariance with respect to interchange of the H atoms. This was achieved by replicat-

ing the force-fields upon permutation of the H atoms. We will examine the accuracy

of this surface in this paper.

The H+
5 potential is known to contain ten stationary points, corresponding to

minima and saddle points. Perhaps the most accurate ab initio calculations of these

stationary points are those of Prosmiti et al. [36] who performed QCISD calculations

with a large basis(cc-pVQZ). Kutzelnigg et al. [39] studied the four lowest energy

conformers with CC-R12 calculations using a 16s8p6d/10s6p4d basis. It is reasonable

to assume that these various stationary points are important in the chemical reaction

and thus it is important that they be accurately represented in a global potential

energy surface. We present such a potential energy surface here.

This surface is a highly precise fit to of order 105 ab initio energies, obtained
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using the CCSD(T) method with an aug-cc-pVTZ basis which is expect to give more

accurate energies than the basis used in reference 37. In the next subsection we

describe the generation of these ab initio energies and their fitting, using an approach

that builds in the permutational symmetry directly into the fit. This approach has

been used recently to obtain potential energy surface for CH+
5 [40,41], H3O

−
2 [42] and

H5O
+
2 [43]. The accuracy of the fit is also presented in that subsection.

In Subsection 4.3 properties of the ten stationary points on the potential surface

are presented and compared to previous calculations. Quantum Diffusion Monte Carlo

calculations of the zero-point energies of H+
5 and the separated fragments H2 + H+

3

are presented and the zero-point energy of H4D
+ is also reported. A limited classical

calculation of the branching ratio of the unimolecular dissociation of H4D
+ is also

presented in that subsection. Finally, in Subsection 4.4 we describe a simple procedure

to add the standard long range ion-induced dipole and ion-quadrupole interaction to

the potential energy surface. A summary and conclusions are given in Subsection 4.5.

4.2 Fitting Procedures

4.2.1 Sampling Strategy and ab initio Calculation

H+
5 has nine degrees of freedom, so it would be very expensive if a grid method was

used to generate the points for a fit. For example, if only 10 points were sampled

along each degree of freedom this would result in a total of 109 points. Obviously,

it would be unfeasible to do this many ab initio calculations. An approach that is

feasible, and which we have used previously, is to base a fit on “scattered data”. In

our previous work on CH+
5 [40, 41], these data were obtained from classical, direct-

dynamics calculations. In the present case we performed roughly 100 trajectories
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ranging from 3 kcal/mol to 50 kcal/mol above the global minimum. These were

all started from the global minimum and each trajectory was run for 1000 steps.

All the direct-dynamics trajectories were run at the MP2/aug-cc-pVTZ level using

Molpro [44].

A total of roughly 100,000 geometries were obtained from these trajectories, and

a small selection of high energy points were added to make the data set cover more

regions. Finally, 105,888 geometries were fit to an analytical function form which has

“built-in” full permutational symmetry, as described below.

This functional form uses all ten internuclear distances and Table 4.1 shows the in-

ternuclear distance distribution of this data set. This statistical information indicates

that the data points obtained using the direct-dynamics method span the internuclear

distance space fairly completely. Note, the permutational symmetry built into the fit

effectively permutes these data among the five H atoms.

After obtaining these data points, the more accurate method CCSD(T) was used

to calculate the energy with an aug-cc-pVTZ basis set at all of the configurations.

4.2.2 Fitting ab initio Data

In our previous fits using permutational symmetry a single global expression was used

to represent the fitting function [40–43]. Here we take a different approach, which is

a generalization of the many-body expansion technique [45]. Thus, the expression for

the potential energy function is given as follows:

VH+
5

=
∑

V
(1)
H +

∑

V
(2)
H2

+
∑

V
(3)
H3

+
∑

V
(5)
H5

. (4.1)
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Table 4.1: Internuclear distance distribution (number of configurations) for each H
pair

Internuclear Distance (Angström)
atom pair 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8

H1-H2 1002 1747 67063 14054 8646 6454 4857 2065
H1-H3 1854 2851 66425 13331 7850 6328 5507 1742
H1-H4 99868 5387 88 272 138 72 63 0
H1-H5 27649 48846 7839 6713 5519 4841 3127 1354
H2-H3 95774 6938 857 1036 788 195 178 122
H2-H4 1255 1952 66473 14081 9187 6160 4505 2275
H2-H5 47899 38533 7061 4682 3014 2876 1098 725
H3-H4 2214 2469 66789 12943 8837 5434 5111 2091
H3-H5 47006 38530 7265 4273 4128 2973 1046 667
H4-H5 27019 49524 7525 6811 5642 4583 3258 1526

V
(1)
H is the (constant) energy of a single H atom, V

(2)
H2

is a two-body term which is

a function of the separation of the two H atoms and which tends asymptotically to

zero as the internuclear distance approaches infinity. The three-body term V
(3)
H3

goes

to zero as any fragments H and H2 separate to infinity and V
(5)
H5

goes to zero as any

fragments separate. In particular this term goes to zero as the fragments H+
3 and H2

separate. The four-body term V
(4)
H4

is absent in the above expression due to the lack

of data for the H4 and H+
4 fragments which are not relevant in reaction H+

5 → H+
3 +

H2.

The functional form used here for the various n-body terms is the product of a

polynomial PN(R) and a damping function d(R),

V (n) = PN(R)d(R) (4.2)

where R denotes the internuclear distance vector and the damping function has the
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following form:

d(R) = max

(

0, 1 − ‖R‖1/2
2

n · a

)5

(4.3)

where n is the length of R, i.e., the number of internuclear distances, and a is a

constant. This constant is adjusted to give smooth asymptotic behavior. In the

present case a equals 7.0 Bohr. The polynomials PN(R) are simple functions of

R and are made manifestly permutationally invariant using the techniques described

elsewhere [43]. The maximum power for the two-body terms is 8, 7 for the three-body

terms, and 5 for the five-body terms.

The above expression for the PES was least-squares fit to the 105,888 energies.

The RMS fitting error for the whole data set is 45.7 cm−1. It is much smaller for

the low energy part of those points and increases slightly for high energy points. The

relation between the RMS error and energy is shown in Fig. 4.1 along with the number

of configurations up to the energy indicated.

4.3 Results and Discussion

4.3.1 Properties of Stationary Points on the PES

As reported previously by Yamaguchi et al. [35] there are ten stationary points on the

H+
5 PES. (These authors did not obtain a full PES, but did locate and characterize

these stationary points.) We located these stationary points on the present PES.

Note that these points were not explicitly included in the data set used to obtain the

fit. Fig. 4.2 shows the geometry and symmetry of all these stationary points. The

corresponding bond lengths for these stationary points are listed in Table 4.2. These

geometries agree well with previous reported ones [35,36,38,39].
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A comparison of the energies of these points obtained from the PES and the ab

initio calculations is given in Table 4.3. The maximum deviation of the PES is 165.3

cm−1 and the minimum deviation is less than 1 cm−1. This is quite good agreement,

especially when it is recalled that these stationary points, except the global minimum,

were not explicitly included in data used in the fit. Including them would probably

not result in much smaller differences with ab initio values unless they were assigned

large weights, and for the purpose of generating a global PES, we see no reason to do

this.
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Table 4.3: Energy comparison between present ab initio CCSD(T)/aug-cc-pVTZ and
PES (Hartree) and their difference (cm−1) for the ten stationary points

Conformer ab initio PES Difference

1-C2v -2.52799394 -2.5280145 4.5
2-D2d -2.52777327 -2.5277767 0.8
3-C2v -2.52755496 -2.5275454 -2.1
4-D2h -2.52725219 -2.5272847 7.1
5-C2v -2.52103732 -2.5208799 -34.5
6-C2v -2.51759316 -2.5170415 121.1
7-C2v -2.52045808 -2.5203725 -18.8
8-C2v -2.51593652 -2.5166298 152.2
9-Cs -2.51828572 -2.5184193 29.3

10-C3v -2.51490248 -2.5156554 165.3

A comparison of energies at stationary points of the present ab initio calculations

and the PES based on them with previous high-level ab initio calculations (assumed to

be benchmark results) is given in Table 4.4. We also show results from the previous

PES of reference 37. As seen the present ab initio and PES absolute energies are

closer to the benchmark CC-R12 energy at the global minimum (difference of 830

cm−1) than the energy of the PES of reference 37 (difference of 2980 cm−1). This also

holds at the other stationary points. This table shows that the current PES agrees

very well with these benchmark calculations, with an average absolute deviation of 58

cm−1. (The CC-R12 energies are used as the benchmark results for three stationary

points indicated and for the other stationary points the QCISD ones are used as the

benchmark results.) For the previous PES [37] the average absolute deviation is 175

cm−1.
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A normal mode analysis was performed on the PES at the ten stationary points

and the results are given in Table 4.5. Benchmark quantum calculations have only

been done at the minimum and one saddle point. A comparison with those results is

given in Table 4.6. As seen the harmonic frequencies from the PES agree very well

with those from the benchmark calculations.

Table 4.5: Harmonic frequencies (cm−1) at the stationary points on the PES

mode 1-C2v 2-D2d 3-C2v 4-D2h 5-C2v 6-C2v 7-C2v 8-C2v 9-Cs 10-C3v

1 211 503i 211i 508i 431i 658i 429i 443i 343i 402i
2 487 217 474 217i 227 654i 202i 438i 320i 402i
3 829 971 795 906 321 253 279 90 17 183i
4 882 971 1011 1147 449 350 418 186 406 183i
5 1190 1430 1041 1346 570 370 493 350 413 339
6 1799 1616 1824 1418 2659 2636 2677 2748 2782 2823
7 2128 1616 2151 1761 2824 2666 2830 2820 2786 2823
8 3666 3861 3658 3858 3478 3408 3481 3422 3455 3460
9 4091 3924 4086 3912 4299 4362 4287 4428 4353 4494
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4.3.2 Dissociation Properties

The PES describes the dissociation of H+
5 to H2 and H+

3 . The potential for H2 is

shown in Fig. 4.3 along with an independent calculation based on a full CI/aug-cc-

pVTZ calculation. As seen the potential from the PES agrees very well with the

full CI/aug-cc-pVTZ one.

Consider next the H+
3 potential from the PES. A contour plot of the potential in

the two internuclear distances for the collinear arrangement is shown in Fig. 4.4. A

corresponding plot is shown in Fig. 4.5 with ∠H−H−H fixed at 60o. These contour

plots show the symmetry and smoothness of the potential.
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Figure 4.3: H2 potential from the H+
5 PES, the energy for H2 is shifted up 1.0 Hartree
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The equilibrium geometry of H+
3 is equilateral triangular, and the HH bond length

is 0.8747 Angström which is very close to the experimental value [46]. The harmonic

normal mode frequencies of H+
3 from the PES are 3399 and 2786(E) cm−1 which are

close to benchmark values [47], 3428 and 2775(E) cm−1.

For H2 on the PES, the equilibrium bond length is 0.7433 Angström which is

only 0.0016 Angström longer than the benchmark value [48] 0.7415 Angström. In

addition, the H2 harmonic frequency on the PES is 4388 cm−1, which agrees well

with the benchmark value of 4401 cm−1 [49]. Thus, the fragments are accurately

described by the present PES.

Numerous efforts have been devoted to obtain the dissociation energy(De and D0)

of H+
5 [35, 36, 39, 50–58]. The most recent experimental values of D0 are 6.6±0.3

kcal/mol [55] and 7.0±0.1 kcal/mol [57], and the most accurate theoretical value for

De is 8.58 kcal/mol [39]. On the present PES, De equals 8.30 kcal/mol. Based on the

harmonic normal frequencies for H+
5 , H+

3 , and H2 we obtain an estimate of D0 of 5.57

kcal/mol, which is not in good agreement with experiment. H+
5 is highly fluxional

and so the harmonic approximation for its zero-point energy (ZPE) is highly suspect.

For this reason we performed quantum Diffusion Monte Carlo calculations of the ZPE

of H+
5 and the combined separated fragments H+

3 and H2. Details and results of these

calculations are described next.

Twenty thousand walkers were propagated for 5000 steps for each of ten DMC

“trajectories”. Fig. 4.6 shows the imaginary time evolution of the ZPE of H+
5 for one

trajectory, which was initiated at the global minimum. Fig. 4.7 shows the evolution of

the ZPE of the initially separated H+
3 and H2 fragments. As seen, after a time interval

of stability where the ZPE of the separated fragments can be determined, the ZPE
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decreases at around τ = 5000(a.u.) and then becomes steady again at the H+
5 ZPE.

Thus, the ZPE of both H+
5 and the fragments can be obtained in one simulation.

In the global minimum region, the interval in imaginary time 3000 to 7000(a.u.)

was chosen as the stable region in which to collect ZPE data. A standard analysis

of the distribution of values leads to an average ZPE of 7210 cm−1 (20.61 kcal/mol)

with a standard deviation of 11 cm−1.

The ZPE values in the imaginary time interval 2500 to 4000 were chosen as the

stable region for the separated fragments. The analysis of these values leads to an

average ZPE of 9424 cm−1 (26.94 kcal/mol) with a standard deviation of 9 cm−1.

Based on these DMC results, we obtain a value for D0 of 6.33±0.03 kcal/mol which

agrees well with Beuhler’s experimental result [55]. However, it is slightly outside the

error bar range of the estimate reported by Hiraoka and Mori [57]. This result is

quite gratifying and also indicates the importance of doing a rigorous calculation

of the ZPE and not relying on the harmonic approximation, which leads to a poor

estimate of D0.

We used the PES in a preliminary dynamics study of the unimolecular dissocia-

tion of the complexes that can be formed in the astrophysically important reaction

H+
3 + HD ⇋ [H4D

+] ⇋ H2D
+ + H2. This study is strictly classical and is done in

part to test the PES in a more global way than simply examining the properties of

isolated configurations. The second motivation is to raise suspicions about a classical

approach, when at least one quantum aspect of the unimolecular dissociation is shown

to be at variance with the corresponding classical picture.

In considering a purely classical description of the unimolecular dissociation of

the complex H4D
+ trajectories have to be initiated at some initial configuration. One
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reasonable way to pick initial configurations is to note that the global minimum of

H+
5 is of C2v symmetry (see Fig. 2(a)) and thus, the H atoms are not all equivalent.

According to that figure there are three classes of hydrogens and referring to Fig. 2(a),

we see that H(1) and H(2) are in the same class, H(3) and H(4) belong to second class,

and H(5) alone is the third class. As a result of this inequality, the singly deuterated

molecule can have three different configurations, as indicated below (see Equation 4.4

- 4.6). Note the atom with the charge indicated is atom no. 5 in Fig. 2(a).

H+
3 · · ·HD →











H+
3 + HD

H2D
+ + H2

(4.4)

DH+
2 · · ·H2 →











H2D
+ + H2

H+
3 + HD

(4.5)

H2D
+ · · ·H2 →











H2D
+ + H2

H+
3 + HD

(4.6)

This inequality of initial configurations could lead to different outcomes of the

unimolecular dynamics, depending on the relative time scale of dissociation and in-

termolecular energy redistribution. Both time scales are expected to depend on the

total energy and here we consider a total energy of 28.6 kcal/mol. This is roughly 2

kcal/mol above the ZPE of the most endoergic product. Of course classical dynamics

does not obey ZPE constraints; however, consideration of the ZPE of the products

is often included in classical simulations, so that correct energetic thresholds are en-

forced. Note we have not considered the ZPE of the reactant complex; however, we

return to this point below.
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We performed 1000 classical trajectories for each at five initial configurations, for

a total of 5000 trajectories. The initial momenta were selected randomly with the

constraints of the fixed total energy and zero total angular momentum. As noted

above there are three distinct classes of configurations and we could have restricted

the initial configurations to these. However, as a test of the symmetry of the PES

we did not do this. We did verify subsequently that equivalent configuration did give

the same branching ratio (within the usual statistical uncertainty of running a finite

number of trajectories). The branching ratio for the three distinct initial configura-

tions is given in Table 4.7. As seen, there are substantial differences depending on

the initial configuration. This indicates that the complex has “memory” of its initial

configuration, i.e., the dynamics is not statistical. With this in mind it is also easy

to rationalize the large difference in branching for the H2D
+ · · ·H2 initial configura-

tion. Clearly the “least motion path” is to form the products H2D
+ + H2 products.

Further, the path to form the other products HD + H+
3 would require a significant

re-arrangement of the initial configuration, e.g., an internal rotation of the H2D
+

fragment. It should be clear from consideration of other initial configurations that

the path to make H+
3 from the H2D

+ · · ·H2 initial configuration is the most indirect

one and so it is not surprising that the branching ratio to make these products from

this configuration is the smallest among all initial configurations.

We now consider a critique of these classical calculations, based on considera-

tion of the quantum ZPE. First, to contrast the results for a standard harmonic

treatment of the ZPE with a rigorous DMC one, we calculated the harmonic ZPE

at each of the three distinct configurations of H4D
+. The results are H+

3 · · ·HD:

7248.4 cm−1, DH+
2 · · ·HH: 7185.1 cm−1; HHD+ · · ·HH: 7243.5 cm−1, indicating that
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the DH+
2 · · ·HH configuration is the most stable one. This result could be incorpo-

rated into the classical calculation to weight the initial configurations accordingly

(albeit to a 0 K distribution). However, a rigorous DMC calculation of the ZPE sug-

gests a different picture. The DMC ZPE was calculated starting the “trajectories”

from these initial configurations as well as from the 2-D2d saddle point (see Fig. 2(b)).

The result is an average ZPE equal to 6826±15 cm−1, i.e., a single value. This is not a

surprising result given that this molecular cation is highly fluxional. However, it does

not necessarily imply that the three classes of initial configurations are all equally

probably, as was assumed in the classical simulation.

Obviously a more thorough classical simulation is required, including of course a

study of the bimolecular reaction as well as the unimolecular one. We plan to carry

this out in the near future, using the present PES.

Table 4.7: Classical branching ratio of products H4D
+ indicated to initial configura-

tion

Reaction Channel Ratio

H+
3 · · ·HD → HD + H+

3 0.549
 

1 H2 + H2D
+ 0.451

DHH+ · · ·H2  HD + H+
3 0.379

→ H2 + H2D
+ 0.621

HHD+ · · ·H2  HD + H+
3 0.067

→ H2 + H2D
+ 0.933

1 the squiggle arrow indicates a non-least motion path.

4.4 Long Range Interaction

In order to carry out scattering calculations of, for example, the H2 and H2D
+ reaction

at low temperatures of relevance in interstellar space, the long range interaction is
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very important. This interaction is not adequately contained in the present PES,

owing to the use of damping functions in eq. 4.2. As discussed by Prosmiti et al. [36]

the relevant long range interaction is the sum of the charge-induced dipole(U4 term)

and the charge-quadrupole(U3 term). These are given by

U4 = −
[

1

2
α +

1

3
(α‖ − α⊥)P2(cos θ)

]

/R4 (4.7)

U3 = QH2P2(cos θ)/R3, (4.8)

where R is the distance from center of mass of H+
3 to center of mass of H2, θ is the angle

between
−→
R and the H2 bond. α, α‖ and α⊥ are the average, parallel and perpendicular

polarizabilities of the H2 molecule, and QH2 is the quadrupole moment of H2. We

adopt this form for the long range potential and take for the H+
3 and H2 intermolecular

potentials the ones from the PES. The H2 polarizability and quadrupole moment were

taken from Wolniewicz et al. [59,60]. The dependence of QH2 in particular on the H2

internuclear distance, rHH is quite strong [59, 60] and so a spline interpolation was

incorporated to obtain QH2 and the polarizability as a function of rHH .

This long range potential is “blended” into the PES by using a simple switching

technique that is commonly used for such purposes. Thus, the complete potential, V,

is given by

V (x) = (1 − S(R))PES(x) + S(R)(U4 + U3 + VH+
3

+ VH2) (4.9)

where the switching function S varies between 0 and 1, has the following form [27]:

S(x) = 10x3 − 15x4 + 6x5, (0 ≤ x ≤ 1) (4.10)
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where

x =
R − Ra

R − Rb

(4.11)

where Ra and Rb are ending points of the switch region of fitted PES and the long

range interaction and R is the center of mass distance of H+
3 and H2. Outside of this

switching region S is either 0 or 1.

We plan to use the full potential in various scattering calculations of the reac-

tion. The hope will be to improve agreement between classical calculations done

previously [37] and experiment at very low temperatures.

4.5 Summary

A potential energy surface for H+
5 based on more than 100,000 CCSD(T)/aug-cc-pVTZ

ab initio energies was reported. The fit was obtained by a standard least-squares ap-

proach; however, using a novel many-body, permutationally invariant form. This

PES is accurate up to 15000 cm−1 or 43 kcal/mol relative to the global minimum,

and dissociates correctly to the fragments H+
3 and H2. Ten known stationary points

were located and characterized on the PES. A comparison with previous benchmark

energies at these stationary points showed an average absolute difference of only 58

cm−1. A normal mode analysis was also done at these points and again agreement

with the limited benchmark results is excellent. Quantum Diffusion Monte Carlo

calculations of the H+
5 and H+

3 + H2 zero-point energies were reported. These rig-

orous ZPEs together with the value of De of 8.30 kcal/mol result in a dissociation

energy, D0, of 6.33 kcal/mol which is in very good agreement with one experiment and

slightly outside the error bars of another. By contrast the value of D0 obtained using

harmonic estimates of the ZPEs equals 5.57 kcal/mol, which is in poor agreement
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with experiment.

A preliminary classical dynamics calculation of the unimolecular dissociation of

H4D
+ was reported. The dependence of the branching ratio to form the two products,

H2D
++H2 and H+

3 +HD on the initial classical configuration (the location of the D

atom in H4D
+) was studied at one total energy. A marked dependence was found;

however, the determination of the rigorous ZPE casts some doubt on localization

assumption of the classical calculation.

Finally, the long range ion-induced dipole and charge-quadrupole interactions were

added to the fitted PES to make it extend to long range. The extended potential will

be needed in scattering calculations, especially at very low temperatures, of interest

in astrophysical applications. Such calculations are planned in the future.
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5 THEORETICAL STUDY OF THE FORMATION AND DESTRUCTION OF
H2D

+ VIA REACTIONS HD + H+
3 ↔ H2 + H2D

+

5 Theoretical Study of the Formation and Destruc-

tion of H2D
+ via Reactions HD+H+

3 ↔ H2+H2D
+

Abstract

Detailed quasiclassical trajectory calculations of the title reaction on the

recent ab initio-based H+
5 potential energy surface [Z. Xie, B.J. Braams and

J.M. Bowman, J. Chem. Phys. 122, 224307 (2005)] are reported. Both forward

and reverse reaction were studied in detail. k1 and k−1 from 10 to 300 K were

calculated. The different channels cross section and products state distributions

are also reported. The competing of hopping and complex forming mechanism

for the formation and destruction of H2D
+is also addressed in detail.
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5.1 Introduction

H+
3 , the simplest polyatomic molecule, has been identified as the main driver of gas

phase, ion-molecular chemistry in the interstellar medium for a long time. A re-

markable demonstration of the fundamental role that H+
3 plays in interstellar chem-

istry has been revealed in the observed untrahigh deuterium fractionation in proto-

stars [61]. Some pioneering experimentalists and theorists were engaged in this

molecule [34, 61, 62], and an accurate global ab initio potential energy for H+
5 was

developed which enables more rigorous theoretical studies [63].

Though many theoretical works were involved in the characterization of H+
3 and

H+
5 , there is no detailed treatments of the collision dynamics of H2D

+ describing

its formation and destruction. Most of the understanding to the reaction HD +

H+
3 ↔ H2 + H2D

+ is based on simple thermodynamics arguments, or crude reaction

models such as H atom exchange and proton jump, or statistical considerations by

the assumption of long-lived collision complex H4D
+.

Deuterated isotopomers play an very important role in the low-temperature in-

terstellar clouds and attract many interests in recent years [34]. One of the most

interest issues about these deuterated isotopomers is the abundance ratios of the

singly deuterated species to the normal ones tends to be factors of up to 104 greater

than the D/H elemental ratio of typical 2 × 10−5.

H2D
+ ion is a singly deuterated molecule of special importance. Its role in inter-

stellar ion chemistry, especially for deuterating other molecules, has been discussed

throughly [64, 65]. H2D
+ is supposed to be formed via the classical proton-deuteron

exchange reaction [34]. A few high quality quantum mechanical calculations have been

done for the H+
5 ion and a few potential energy surface(PES) are available [36, 37].
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The most recent PES with permutational invariant symmetry and capable describing

the reaction HD + H+
3 ↔ H2 + H2D

+ was developed in our group [63]. Nonetheless,

there exists no detailed calculation of the reaction rate constant and reaction dy-

namics describing the formation of H2D
+. Therefore, in order to get some clue of

the mechanics of the formation of the H2D
+ and shine some light on the reaction

HD + H+
3 ↔ H2 + H2D

+, we carried out the detailed quasiclassical trajectory calcu-

lation of the reaction on our newly developed potential energy surface.

Because H+
5 is relatively weakly bound, i.e., De = 8.30 kcal/mol [63], it cannot

be safely assumed that the reaction H+
3 + H2 proceeds statistically via a long-lived

H+
5 complex. Indeed in the literature describing experimental measurements of the

rate constant or cross section of this reaction (as well as a number of astrophysically

important reactions involving istopologs) a proton hop and a hydrogen exchange

mechanism for the reaction have been invoked.The former mechanism is presumed to

occur in a direct reaction, that is without the need to form a complex and the latter

mechanism is believed to occur via a complex.Gerlichand Oka and co-workershave

used this terminology and have interpreted their data in terms of these mechanisms.As

an illustration of these two mechanisms consider Gerlich’s argument for the D+
3 + H2

reaction

D+
3 + H2 −→











HD+
2 + HD (R1)

H2D
+ + D2 (R2)

If these products are exclusively formed via a long-lived H2D
+
3 complex the ratio

of the cross sections of (R2) to (R1) should be 0.5 based on very simple statistical

argument which just counts up the number of ways the products can be formed from
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H2D
+
3 . In several experimentsthis ratio varies considerably from roughly 0.5 at the

lowest energies/temperatures to much larger than 1 at higher energies. For example

at a temperature of 300 K Giles et al. reported a ratio of 2 which is 4 times larger

than the simple statistical result. Since (R2) can also occur via a simple proton hop

mechanism it was argued that this mechanism becomes increasingly dominant as the

collision energy increases which is accompanied by a decrease in the cross section for

complex formation. This argument reasonably assumes that (R1) can only occur via

a complex-forming mechanism.

The argument of Oka and co-workers applies to the reactions

p-H+
3 + p-H2 −→











p-H+
3 + H2 (R3)

o-H+
3 + H2 (R4)

.

Cordonnier et al. argued reasonably that reaction (R4) cannot occur via a simple

proton hop. They estimated the proton hopping rate constant to be roughly 2.4 times

larger than the exchange rate constant at 400 K.

The proton hop mechanism is envisioned, again quite reasonably, as being a direct

and perhaps even a somewhat long range mechanism whereas the exchange mecha-

nism is envisioned as requiring complex formation. As appealing as these simple

characterizations are the actual dynamics may be subtle. Indeed in a limited study

of the classical dynamics on a global potential energy surface we showed that the dis-

sociation dynamics of the HD+H+
3 complex did not produce a statistical distribution

of products and this has been also noted in recent review paper Gerlich et al.In ear-

lier work Moyano and Collins performed quasiclassical trajectory calculations of the

HD+H+
3 and D+

2 +H+
3 reactions using an interpolated potential energy surface (based
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on MP2/6-311G(d,p) calculations and thus an approximate description of the correct

long range electrostatic behavior). These authors concurred with earlier experimen-

tal evidence that the reaction dynamics cannot be characterized as scrambling via a

long-lived collision complex.

Given the intriguing dynamics of the H+
5 system and its relevance in astrophysics

we present a detailed quasiclassical trajectory study of the reaction of HD with H+
3

here. We use the global CCSD(T)/avtz potential energy surface we reported recently

which does contain an accurate description of the long range ion-induced dipole and

ion-quadrupole interaction. A major goals of this work is to characterize the reac-

tion dynamics in detail and to hopefully better understand the proton hopping and

exchange mechanisms.

The paper is organized as follows. In the next subsection we discuss the long

range behavior of the PES. Following that we give some details of the quasiclassical

trajectory calculations. In subsection 5.3 we present our results and comparison with

experiment. We give a summary and conclusions in the final subsection.

5.2 Calculation

5.2.1 Reaction Channels

The main reactions we considered here are the following two:
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Eq. 5.1 shows the all the possible forward reaction channels. Since the first channel

is just the non-reactive channel, only the reactive and exchange channels were consid-

ered. (The same rule is applied to the reverse reaction in the following.) Theoretically

there are 6 types of combinations to make H2, while in the trajectory calculations,

we just distinguish them by “H-Hopping”, “H-D Exchange” and “H-H Exchange”

mechanism as shown in Fig. 5.1.

As for the reverse reaction shown by Eq. 5.2, we note that are there 4 H atoms

reactants, as a result, there are 4 types of HD in the “HD Forming” channel and they

are distinguished with each other as “HHPA”, “HHPB”, “HDEA” and “HDEB” as in

Eq. 5.2. The “Hopping” and “Exchange” mechanisms are similar to those in Fig. 5.1

for the forward reaction.

Similarly, there are 5 possible combinations for the “HH Forming” channel. They

are labeled as “DHP”, “HHEA”, “HHEB”, “HHEC” and“HHED” as in Eq. 5.2. Four

of these sub-channels are similar expect for the “DHP” one differs significantly from

others.

5.2.2 Potential Energy Surface with Long Range Interaction

The long range interaction for the H2 and H2D
+ is crucial for the scattering calcula-

tions of H2 and H2D
+ reaction at low temperatures of relevance in interstellar space.

This interaction is not adequately contained in our reported PES [63] owing to the

use of damping functions in fitting. As discussed by Prosmiti et al. [36] the relevant

long range interaction is the sum of the charge-induced dipole (U4 term) and the

charge-quadrupole (U3 term). These are given by
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Figure 5.1: Schematic of “H-Hopping”, “H-H Exchange” and “H-D Exchange” mech-
anism for the forward reaction HD + H+

3 −→ H2 + H2D
+, H’D + H+

3
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U4 = −
[

1

2
α +

1

3
(α‖ − α⊥)P2(cos θ)

]

/R4, (5.3)

U3 = QH2P2(cos θ)/R3. (5.4)

where R is the distance from center of mass of H+
3 to the center of mass of H2,

θ is the angle between R and the H2 bond. α, α‖ and α⊥ are the average, parallel

and perpendicular polarizabilities of the H2 molecule, and QH2 is the quadrupole

moment of H2. We adopt this form for the long range potential and take for the H+
3

and H2 intermolecular potentials the ones from the PES. The H2 polarizability and

quadrupole moment were taken from Wolniewicz et al. [59, 60]. The dependence of

QH2 in particular on the H2 inter-nuclear distance, rHH is quite strong [59, 60] and

so a spline interpolation was incorporated to obtain QH2 and the polarizability as a

function of rHH .

This long range potential is “blended” into the PES by using a simple switching

technique that is commonly used for such purposes. Thus, the complete potential,

V , is given by

V (x) = (1 − S(R))PES(x) + S(R)(U4 + U3 + VH+
3

+ VH2) (5.5)

where the switching function S varies between 0 and 1, has the following form [27]:

S(x) = 10x3 − 15x4 + 6x5, (0 ≤ x ≤ 1) (5.6)
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where

x =
R − Ra

R − Rb

(5.7)

where Ra and Rb are ending points of the switch region of fitted PES and the long

range interaction and R is the center of mass distance of H+
3 and H2. Outside of this

switching region S is either 0 or 1.

A contour plot of the PES (R, θ dependence) is shown in Fig. 5.2, which describes

the long range behavior of the PES. Especially the region where the incoming H2

approaching the vicinity of H+
3 (H2D

+).

The figure clearly shows the incoming H2 angular dependence of the PES. When

the angle is small or the two H atoms in the incoming H2 is shooting the target in

a line, there is a barrier which is about 200 cm−1. Noticing that this barrier is very

high Com pairing the collision energy, it supposed to effect the reaction significantly.

When the two H atoms in H2, are approaching the target side by side (is this case

the angle we defined in Fig. 5.2 is large or close to 90 degree), this is no barrier. This

long range PES behavior has a dramatic effect for the different rotational states of

incoming H2 or HD as addressed later.

5.2.3 Initial Conditions for Quasiclassical Trajectory

The initial conditions for the quasiclassical trajectories are essentially the usual ones [66].

For the title reaction, both monomers were at the ground ro-vibrational state. Har-

monic zero-point energy was added to both reactants initially and random sampling

of initial normal-mode coordinates and momenta was done. Standard adjustments

were made to enforce zero angular momentum.

The initial conditions are critical in quasiclassical trajectory simulation. In this
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Figure 5.2: Contour plot of the long range behavior of the H+
5 potential energy

surface. The energies (relative to the H+
5 dissociation limit energy) are in cm−1, and

R is the center of mass distance of H+
3 , and H2 is in its equilibrium structure. θ is

the angle of H2 orientation and the center of mass position vector of H+
3 and H2
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calculation, the harmonic zero-point energies were carefully sampled into each normal

mode in phase space. For the forward reaction (Eq. 5.1), due to the spin statistics

limitation, the rotational quantum number J for H+
3 was set only to 1. As for HD,

J = 0 and J = 1 were both sampled. Before collision, the monomers HD and H+
3

were separated in 100 Bohr and the orientation of these monomers were randomly

selected. The collision energies(Ecol) for the collisions were 5, 10, 25, 40, 50, 60 and 90

cm−1. The impact parameter was scan from 0 to a larger number until zero reaction

probability was reached. At each given set of parameters (Ecol, b, JHD, JH+
3
), 2000

initial relative configurations of HD and H+
3 were sampled and then run until finally

the products dissociated. The same procedure was applied for the reverse reaction

except that the rotational quantum number of H2D
+ was set to 0 and the collision

energies were 100, 150, 200, 250, 300, 350 and 400 cm−1 considering the reaction

barrier of 89.87 cm−1.

The ZPE leaking problem is notorious in QCT studies and it was discussed in a

series of paper [63, 67, 68] on trajectory calculations. In this study, we kept all the

trajectories, and we want to show how big the problem could be when comparing to

experimental results in this case. This issue will be discussed in later subsections.

5.3 Results and Discussion

5.3.1 Forward Reaction: Forming of H2D
+

Cross Sections The reaction cross section is a key step to understand the reactions

HD + H+
3 ↔ H2 + H2D

+. For the forward reactions at various collision energies, it

was found that the cross sections were decreasing exponentially as collision energy in-

creasing as shown in Table 5.1 and Fig. 5.3. Since the forward reaction is exothermic,
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there is no barrier for the formation of H2D
+, the cross section increasing exponen-

tially in the low temperature limit. This partially supports the arguments that in

the lower temperature limit, the fraction of deuterated H+
3 (H2D

+) is untrahight [62].

From a pure statistic point view with the assumption that the reaction undergoes a

long-lived complex, the ratio to give H2 over H’D should be about 2. However, the

classical trajectory calculations showed that is ratio is 10, which is significantly great

that 2. This large ratio supported the experimental evidence for the “incomplete

scrambling” of H and D [62].

Table 5.1: Cross sections (Bohr2) for forward reaction HD+H+
3 −→ H2+H2D

+, H’D+
H+

3

Ecoll (cm−1) H2 + H2D
+ (HHF) H’D + H+

3 (HDF)
jHD = 0 jHD = 1 jHD = 0 jHD = 1

05 3137.45 1138.22 303.42 122.44
10 2141.00 828.97 207.86 87.18
25 1236.51 564.33 116.35 54.35
40 920.60 463.85 74.67 43.31
50 815.33 431.19 71.16 36.33
60 753.72 399.53 61.04 34.77
90 549.27 328.13 42.07 25.40

Fig. 5.3 shows clearly that the cross sections change with the initial rotational

state of the incoming HD. The reaction is much easier to occur for the rotational cold

HD (j = 0) than the rotational hot species (j = 1). The reaction probability was

further examined to shine some light on it. As shown in Fig. 5.4, the main difference

lies in the fact that the reaction probability drops very quickly as increasing the

impact parameter for rotational hot HD, while it is almost constant for the rotational

cold HD until the impact parameter approaching bmax. Considering the nature of the

long range behavior of the PES as shown in Fig. 5.2, there is a strong dependence on
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3 cross sections changing with collision

energies and their dependence on the initial rotational states of HD
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the orientation of the HD. For the side-by-side (H and D atoms are side by side and

θ is close to 90◦) shooting HD, these is no barrier and this is more likely to be the

roadway for the rotational code HD, since this kind of HD is much easier to adapt its

orientation and follows the downhill pathway. For the rotational hot HD molecules,

they are rotating very fast comparing their translation. As a consequence, they have

the capability to approaching the PES barrier for small θ, and bounced back.
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Figure 5.4: HD+H+
3 −→ H2 +H2D

+, H’D+H+
3 reaction probabilities changing with

impact parameters at collision energy 10 cm−1 and their dependence on the initial
rotational states of HD. The solid lines are for the two main channels of H2 forming
and HD forming. The H2 forming channels can be divided into “H-Hopping” and
“H-D Exchange” two sub-channels as shown in dashed and dotted lines.

“Hopping” and “Complex Forming” are two different reaction mechanism for the
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title reactions, but there is no detailed theoretical simulation has been performed

as we known. The “Hopping” mechanism is supposed to be faster than the “Com-

plex Forming” one [69].There should be some evidences in the QCT simulations and

they are shown in Fig. 5.5. The time steps profile keeps similar at different impact

parameters b. A dramatic effect is observed for different rotational state of HD.
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Figure 5.5: Total time steps for the reaction HD + H+
3 −→ H2 + H2D

+, H’D + H+
3 at

collision energy 10 cm−1 and initial states as indicated.

Reaction Rate Constant The reaction rate constant can be further calculated

based on the reaction cross section as in Table 5.1. Being aware of the zero-point

energy issue and the limitation of classical picture, it is not surprised to see that
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the calculated rate constant from cross subsection should be large than the actual

values. As expected, the calculated rate constant shown in Fig. 5.6 is higher than the

available experimental result [34,70]. The low temperature limit (10 K) is extremely

hard for both experiments and theoretical simulations. Comparing to the latest result

reported by Gerlich et al. in 2002, the trajectory result is 2.3 × 10−09cm−1/s great

than the experimental values by a factor of 7. At high temperature, the deviation

from experiments are quite small. To further show the significance or sensitivity

of the rate constant at low temperature limit, some artificial numerical experiments

were performed. As shown in Fig. 5.3, a mandatory cut line at 5 cm−1 was added

to zero out the cross section blow 5 cm−1. A modified temperature depend rate

constant was calculated based on the cross section data above the threshold. As

can be seen in Fig. 5.6, the rate constant drops dramatically in the low temperature

limit. If the threshold was moved to 10 cm−1, the behavior of the rate constant totally

changed in the low temperature region. However, there is almost no effect in the high

temperature region. In the classical picture, there are no too many options to deal

with this difficulty. It’s left open to more rigorous quantum mechanics calculation.

The reaction rate constants calculated at 10 K with jHD = 1 is 9.18×10−10, 6.63×

10−10and4.02 × 10−10 cm3/s.

H2 and H’D Angular Distributions From the cross section ratio to give H2D
+

and H’D in previous subsection, the trajectory calculation already showed that for-

mation of H2D
+ can not be fully regards as the dissociation product of the long-lived

complex H4D
+. The product angular distribution will further strengthen this ar-

gument. From the statistical point of view, if the reactions undergoes a long-lived

complex, then the product would be almost uniformly scattered from 0 to 180 de-
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Figure 5.6: HD + H+
3 −→ H2 + H2D
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3 rate constant calculated based on

the cross sections. The experimental data at 10 K is from reference 34 and other data
are from reference 70
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gree. Otherwise, there must be some fingerprints in the product angular distribution

pattern. It’s easy to image that the reactive channel in reaction 5.1 can undergo a

mixture of striping, rebound and complex mechanism. For the exchange channel in

reaction 5.1, it is impossible for an incoming molecular to pick up an atom in another

molecule and then leaves away. There must be some long-lived complex formed and

finally dissociated to H’D. All these features can be seen in Fig. 5.7. First of all, both

the scattering angle of the H2 and H’D have a very broad distribution. This suggests

that long-lived complex was formed in some extent. Agreed with the intuition, the

angular distribution of H’D was almost flat over the whole range, and there was a

wide peak in the H2 angular distribution which indicated some non-longlived complex

mechanism. This supported the argument about the incomplete scrambling of H and

D atom [62].

5.3.2 Reverse Reaction: Destructing of H2D
+

Nature is a balance and so reactions. It’s shown that the forward reaction populates

the H2D
+ molecule especially in low temperature limit, and it is also need to show

the possible destructing of H2D
+ especially in low temperature limit, then the argu-

ment that the fraction of deuterated H+
3 is extremely high in proto-star can be fully

understand in the classical frame.

Cross Sections Similar to the forward reaction or the forming of H2D
+, the re-

action cross section is the key step in understanding the reaction mechanism. It’s

a little more complicated for the reverse reaction comparing to the forward reaction

since there are more channels opened as addressed in subsection 5.2.1.

The channels are labels as HHPA, HHPB, HDEA, HDEB, DHP, HHEA, HHEB,
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Figure 5.7: H2 and H’D angular distributions
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HHEC, HHED. These 9 channels fall into two main categories as the “HDF” and

“HHF” channels. The reason that the channels were filtered into so many channels

is for more insight into the destructing of H2D
+. In channel HHPA and HHPB, the

hydrogen in the final HD is from the reactant H2D
+, or one proton in H2D

+hopped

to the H2 part. Channel HDEA and HDEB are different from HHPA and HHPB in

that the H atom in HD is from the reactant H2. There is obviously no simple “Hop-

ping” mechanism to for these channels are some complex must be formed and then

followed by “H-D Exchange”. To simplify the notation, a symbol such as CS(X) is

used to denote the cross section of channel “X”. As expected, CS(HHPA) should be

roughly equally to CS(HHPB) since the equivalence of the two H atoms in H2D
+, and

there should be no significant difference between CS(HDEA) and CS(HDEB). This

is exactly the result came out from the trajectory calculations as show in Table 5.2.

A noticeable feature of these cross sections is that CS(HDEA) or CS(HDEB) is very

small comparing to CS(HHPA) and CS(HHPB). This is not surprise with the assump-

tion that “Hopping” is much faster and easier than the “Exchange” mechanism.

Channels DHP, HHEA, HHEB, HHEC and HHED are also expect to give small

cross section except for channel DHP, in which case the Deuterium is supposed to

hop from H2D
+ to H2 part. CS(DHP) is much greater that CS(HHEA) and so on,

but it is still significantly smaller than CS(HHPA) and CS(HHPB).

From a pure statistical point of view, the probability for the “H-Hopping” is twice

of that of “D-Hopping”. Further considering the mass difference of H and D atoms, it

is not too surprise to see that the CS(DHP) is only a small fraction of CS(HHPA) or

CS(HHPB). Similar situation was also observed in reaction H + CHD3 we studied [68].
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Figure 5.8: H2 + H2D
+ −→ HD + H+

3 , H’H” + H2D
+ cross sections changing with

collision energies and its dependence on the initial rotational state of H2

Reaction Rate Constant Similar to the forward reaction, the reverse reaction

rate constant was also calculated in a similar way except that there is a threshold

for the reverse reaction. From Diffusion Monte Carlo calculation, we get the energy

difference of the products and reactants to be 89.87 cm−1 (this energy difference

is caused by the ZPE difference of the reactants and products). Due to the spin

statistics limitation, as stated elsewhere [62], the H+
3 rotational motion can not be

0. In addition, with the consideration of the initial rotational state of H2, the actual

threshold should be larger than 89.87 cm−1. Since the classical picture is not very

accurate about the state to state scattering, here we just adopt the number 161.1
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Figure 5.9: H2 + H2D
+ −→ HD + H+

3 , H’H” + H2D
+ reaction probabilities changing

with impact parameter at collision energy 100 cm−1 and its dependence on the initial
rotational state of H2. The solid and dashed lines separate the two main channels: HD
forming and H2 forming. Circle (• or ◦) and cross (×) are further used to distinguish
“Hopping” and “Exchange” sub-channels.
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Figure 5.10: Total time steps for the reaction H2+H2D
+ −→ HD+H+

3 , H’H”+H2D
+

at collision energy 100 cm−1 and initial states as indicated.
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cm−1 as the threshold for both p-H and o-H. The reaction rate constant calculated

based on this threshold is shown in Fig. 5.11. Another two lines were also shown in

this figure to show how sensitive the rate constant when varying the threshold.
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Figure 5.11: H2 + H2D
+ −→ HD + H+

3 , H’H” + H2D
+rate constant

As can be seen in the Fig. 5.11, if we assume there is no threshold, which is the

assumption hold by classical trajectories, the cross sections are extrapolated to infinity

when the collision energy tends to zero. The rate constant based on this assumption

obviously gave a wrong behavior. If the threshold was enforced at 89.87 cm−1, which

is lower that the actual threshold, the calculation gave a much better result, although

it is quite above the known experimental results. If the threshold was enforced at

161.61 cm−1, the calculated results went through the experimental data. As discussed
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by Gerlich [62], the enthalpy of the H2D
+destruction would be 161.1-118.4 cm−1, a

modified rate constant calculation was also performed and shown in Fig. 5.11. From

these artificial enforcement of the reaction threshold, though not accurate enough,

we can still notice that in the reverse reaction rate constant is quite in range and

the classical trajectory result agreed with the experimental. If we suppose the rate

constant using the cross sections cut from 118.4 cm−1, finally we reach to a expression

Ke = 0.91 ∗ exp(152.35K/T ) which gives Ke ≈ 1.5 at 300 K.

Angular Distributions The angular distributions of the reaction products can

help to give an illusive picture of the reaction mechanism. From Fig. 5.12, there are

mainly two series of distribution, one is flat and the other is a little peaked at low

scattering angle. The flat distribution is corresponding to H’H” distribution which

was from complex mechanism, and the peaked distribution was for HD which was

from the combination of striping and complex forming mechanism.

5.4 Summary

In summary, we studied that quasiclassical trajectories on the potential energy sur-

face of H+
5 implemented with long range interaction. After examining numerous

trajectories, we calculated the rate constant for reaction HD + H+
3 → H2 + H2D

+ in

temperature range 0-300 K. The comparison with the experimental data was not bad

in the hight temperature region, while in the lower temperature region, the deviation

was large. This may partially because the ZPE “leaking” problem in quasiclassical

trajectory simulation. Furthermore, we also studied the angular distribution of the

collision products of HD with H+
3 , the result was against the long lived “complex”
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Figure 5.12: HD and H’H” angular distribution
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mechanism and the reaction probability was against the classical proton-deuteron

exchange mechanism. Finally, we propose that the reaction may undergo a “strip”

process in which HD striped a proton from H+
3 ion and then left away. When the

impact parameter was small, the fragment containing D tended to bounce back, and

in the large impact parameter region, the fragment containing D tended to move

forward. Due to the ZPE “leaking” problem, some uncertainty may induced in our

calculation. How to overcome the ZPE “leaking” problem in quasiclassical trajectory

simulation remains a challenge for us and that is out next in QCT study. A tentative

approach was proposed and more through work will be done in future.
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6 Vibrational Ground State Properties of H+
5 and

its Isotopomers from Diffusion Monte Carlo Cal-

culations

Abstract

Diffusion Monte Carlo computations, with and without importance sam-

pling, of the zero-point properties of H+
5 and its isotopomers using a recent

high accuracy global potential energy surface are presented. The global min-

imum of the potential possesses C2v symmetry, but the calculations predict a

D2d geometry for zero-point averaged structure of H+
5 with one H atom “in

the middle” between two HH diatoms. The predicted zero-point geometries of

the deuterated forms have H in the middle preferred over D in the middle and

for a nonsymmetric arrangement of D atoms the preferred arrangement is one

which maximizes the number of D as the triatomic ion. We speculate on the

consequences of these preferences in scattering of H2 + H+
3 and isotopomers at

low energies, such as those in the interstellar medium.
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6.1 DMC Study of the Ground State Structure of H+
5 and

its Isotopomers

6.1.1 Introduction

The cations H+
n and its isotopomers play important roles in the deuterium frac-

tionation in interstellar space [34]. The first molecule of the series larger than a

diatomic is H+
3 whose identification in interstellar space was reported relatively re-

cently [71] and since then it has been the subject of much experimental and theoretical

work [61, 72–74]. H+
5 is an even more challenging system. It has been observed ex-

perimentally since 1962 [75], but the experimental evidence is scarce and only low

resolution spectra of a few vibrational states are available [76, 77]. Just as challeng-

ing is its theoretical description. Until recently, two potential energy surfaces were

reported in the literature, relatively low accuracy diatomics in molecules [36] and a

Shepard-type interpolation of several local force fields fitted to MP2 and CCSD(T)

energies [37] In this work, we will use the recently reported potential energy surface

of Xie et al., which is a generalized many-body expansion that has full permutational

symmetry and was fitted to roughly 100000 different geometries using the CCSD(T)

method and an aug-cc-pVTZ basis set [63]. These and other ab initio studies find

that the global minimum is a C2v structure; with, however, numerous low-lying saddle

points. Using a diffusion Monte Carlo (DMC) strategy with no importance sampling

the quantum zero-point energy (ZPE) was determined to be 7210 ± 11cm−1 and the

dissociation energy of H+
5 into H+

3 and H2 as 6.33 kcal/mol. This dissociation energy

is in very good agreement with one experiment [55] and just outside the error bars of

another [57].
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These encouraging results motivated us to undertake a complete characterization

of the vibrational ground state of H+
5 and its deuterated counterparts. We would like

to answer the following questions: What is the symmetry of the H+
5 ground state?

Will D prefer the central position or one of the H2 sites of DH+
4 ? What is the pre-

ferred configuration of D2H
+
3 ? These questions will be answered in the framework of

DMC. The DMC without importance sampling has the advantage of making no as-

sumptions about the nature of wave function. However, the extraction of distribution

functions, which help us to characterize the ground state of the system, is not totally

straightforward. That is not the case when using importance sampling, where the

knowledge of the system, in the form of a reasonably derived trial wave function, is

used to speed up the calculation and lower the variance of the estimated quantities.

The extraction of the distribution functions in this case is indeed straightforward and

is only limited by the quality of the trial wave function.

In this work, we perform a comparison between the quantities computed using dif-

fusion Monte Carlo, with and without importance sampling, to determine the ground

state properties of H+
5 and some of its isotopomers. In the next section, we will have

a brief description of the details of our calculations. In Sec. 6.1.3 , we present and dis-

cuss the results of our simulations, including some speculations on their implications

for the reactive scattering mechanism. Concluding remarks are given in Sec. 6.1.4.

6.1.2 Methodology

In this work, we use two different diffusion Monte Carlo techniques to simulate the

ground state properties of H+
5 and its isotopomers. The first one is the more direct

diffusion Monte Carlo approach [78] that directly simulates the Schröger equation in

129



6 VIBRATIONAL GROUND STATE PROPERTIES OF H+
5 AND ITS

ISOTOPOMERS FROM DIFFUSION MONTE CARLO CALCULATIONS

imaginary time. In this method there is no trial wave function and the walkers are

distributed according to Φ(R), the ground state wave function of the system. This is

a powerful method to determine the ground state energy of the system. However, the

extraction of structural properties, such as distribution functions, is not straightfor-

ward. To address this and also to present an independent approach we also employ

importance sampling diffusion Monte Carlo [79]. This method also starts from the

diffusion equation in imaginary time, but the walkers are distributed according to a

“mixed” distribution [79, 80] f(R) = Φ(R)Ψ(R) where Φ(R) is the ground state of

the system and Ψ(R) is a trial wave function that represents a reasonable guess of

the true ground state. This method has the advantage that the extraction of the

structural properties is straightforward and we use linear and geometric extrapolated

estimates as described in Ref. 80. The error in these estimates is proportional to the

square of the difference between the ground state and the trial wave function. So, an

accurate determination of the computed quantities and their variances will depend

strongly on the accuracy of the wave function. In our calculation of the ground state

of H+
5 , DH+

4 , D2H
+
3 , D3H

+
2 , and D4H

+ we employed the following trial wave function

that has been frequently used as a first approximation to the vibrational ground state

of molecules as follows [81,82]:

Ψ(R) = exp

(

∑

µ,ν

∆SµAµν∆Sν

)

, (6.1)

where Aµν are variational parameters and ∆Sµ = qµ − q0
µ, and qµ and q0

µ are

generalized coordinates and their equilibrium values, respectively. The parameters

are optimized to minimize a linear combination of the energy and its variance.

To compute the expectation values of local operators that do not commute with
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the Hamiltonian one could also use variational path integral [83] or reptation Monte

Carlo methods [84]. However, our trial function is very accurate, as exemplified by

the ZPE and their standard deviations, so we could accurately extract such quantities

using the importance sampling DMC.

For each of the systems studied in this work 20000 walkers were propagated for

5000 steps of 1.0 a.u. for each of the ten DMC “trajectories” in the simulations

without importance sampling. The importance sampling simulations propagated the

same number of walkers for 20000 steps, each of 0.5 a.u, for five different trajectories.

6.1.3 Results and Discussion

H+
5 The minimum of the potential energy surface [63] used in this work is of C2v

symmetry and represents a H2 bonded to H3
+ [see Fig. 6.1(a)]. However, the D2d

saddle point [Fig. 6.1(b)] is only 57 cm−1 above the global minimum [63]. Therefore,

it is possible that the maximum amplitude of the ground state wave function may be

either at the C2v minima or the D2d saddle point. To investigate this we will use DMC

calculations, with and without importance sampling, to determine pair distribution

functions and other diagnostics.

The trial wave function used in this work is symmetric with respect to the exchange

of the central atom between the two equivalent C2v minima. The DMC zero-point

energy of H+
5 using such a trial wave function as the starting point of the simulation

was calculated as 7208 ± 4cm−1. This result is excellent with the previous result of

7210 ± 11cm−1 [63]. We have also computed the “exact” anharmonic dissociation

energy of H+
5 to be 6.37 ± 0.01 kcal/mol, in agreement with the result of Xie et

al [63]. These first results show that both DMC implementations, one using a trial
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Figure 6.1: (a) C2v global minimum of the PES of H+
5 . (b) D2d saddle point of the

PES of H+
5 .

wave function and importance sampling and the other using only walkers starting

at a given configuration, yield the same ground state energies for this system. The

issue now is whether we can answer questions about the ground state geometry of

H+
5 using the different approaches. To answer this we compute several distribution

functions. First consider the overall HH pair distribution function, obtained with the

importance sampling DMC, shown in Fig. 6.2. Also displayed are the different HH

distances at the C2v global minimum and at the lowest D2d saddle point. One can

clearly identify two peaks in the distribution function with the major one containing

a shoulder. Moreover, as seen, these peaks/shoulders are in good agreement with the

HH bond distances corresponding to the D2d saddle point configuration and do not

correspond to those at the C2v minimum. This is our first indication of a symmetric

D2d ground state configuration.

132



6 VIBRATIONAL GROUND STATE PROPERTIES OF H+
5 AND ITS

ISOTOPOMERS FROM DIFFUSION MONTE CARLO CALCULATIONS

Figure 6.2: HH pair distribution function of H+
5 from importance sampling simula-

tions. The full continuous line is the extrapolated estimate of the pair distribution
function. The vertical sticks represent the bond lengths at the C2v global minimum
(solid) and at the lowest D2d (dashed) saddle point of the PES
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A more definitive confirmation is obtained from the distribution function describ-

ing the position of the “central” atom along the principal axis with lower moment of

inertia shown on Fig. 6.3. As one can see the distribution is symmetric about zero,

Figure 6.3: Distribution of the central H in H+
5 along the principal axis of the lowest

moment of inertia as obtained in the importance sampling simulations.

consistent with a ground state of D2d symmetry. Next, consider the results from the

DMC approach without importance sampling, namely, the distribution (over walkers)

of the quantity (r15 +r25−r35−r45)/2 (refer to Fig. 6.1 for definition of indices). This

is shown in Fig. 6.4. The distribution is centered at the origin consistent with a state

of D2d symmetry but not C2v symmetry, confirming that indeed both approaches

predict a D2d ground state in which the largest probability is to find the proton in

the center and not on one of the equivalent C2v wells. One further piece of evidence

supporting this conclusion is the average bond distances shown in Fig. 6.5. In the
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Figure 6.4: Distribution of the difference (r15 + r25 − r35 − r45)/2 as obtained in the
DMC simulations, without importance sampling, of the ground state of H+

5 .
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case of H+
5 there are only three distinct values, namely, 1.55, 2.27, and 4.34 bohrs

(r13 = r23 = r14 = r24, not shown in the figure), which again is an indication of a D2d

ground state.

H4D
+ We turn our attention to the single deuterated species to investigate how

deuteration affects the geometry of the ground vibrational state. This is by itself

an interesting issue; however, we are further motivated to investigate this because of

the role of this complex in deuterium fractionation in interstellar space through the

reaction H+
3 + HD ↔ H2D

+ + H2. At the very low temperatures of the interstellar

medium it is reasonable to assume that the (relatively weakly bound) H4D
+ complex

is formed as a transient intermediate. A further reasonable speculation is that the

ground vibrational state is the dominant quantum state of this complex and thus our

investigation of the properties of this state is further motivated by this possibility.

In our previous paper [63], a classical trajectory study of the unimolecular dissoci-

ation of the complex H4D
+ into its fragments was carried out starting at the C2v min-

imum and considering the three different initial complexes H+
3 · · ·HD, DH+

2 · · ·H2,

and HHD+ · · ·H2 (Notation: The central atom in Fig. 6.1 is the atom with the

charge.) The branching ratios for various products were very different for these dif-

ferent initial configurations and it was noted there that a quantum distribution of the

initial state very likely is quite different from these classical ones and we investigate

that here.

One simple way to explore the three distinct possible arrangements for the atoms

at the minimum is to perform a standard normal mode analysis at the C2v minimum.

This was done [63] and the results indicated that the DH+
2 · · ·HH is the most stable

configuration, i.e., it is the one with the lowest harmonic ZPE and that the other two
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are nearly degenerate. DMC calculations were done starting walkers from the three

arrangements of the atoms and a single ZPE of 6826±15cm−1 was reported; however,

no exploration of the properties of the ground state wave function was done.

Table 6.1: ZPE (in cm−1) of H+
5 and its isotopomers obtained from DMC calculations,

with and without importance sampling.

Species D position Importance sampling No importance sampling Comments

H+
5 7208 ± 4 7213 ± 9

H4D
+ D: 4 6816 ± 2 6816 ± 7 e(D,1) a

D: 5 6860 ± 1 6868 ± 11 c(D) b

H3D
+
2

D: 1,2 6374 ± 1 6372 ± 5 e(D,1)
D: 1,4 6420 ± 3 6422 ± 8 e(D,1)
D: 4,5 6457 ± 1 6455 ± 5 c(d), e(D,1)

H2D
+
3

D: 1,3,4 5980 ± 1 5979 ± 6 e(D,2) c

D: 3,4,5 6000 ± 4 5998 ± 8 c(D), e(D,1)
D: 1,4,5 6055 ± 1 6055 ± 7 c(D), e(D,2)

HD+
4

D: 1,2,3,4 5533 ± 2 5535 ± 7 e(D,2)
D: 1,2,3,5 5603 ± 7 5602 ± 8 c(D), e(D,2)

D+
5 5151 ± 1 5154 ± 7 c(D), e(D,2)

a D atom(s) is (are) on one edge.
b One D atom is in the center position
c D atoms are on two edges.

We revisit these simulations using the importance sampling DMC and perform

a careful analysis of the previous DMC results. In the same fashion, as was done

previously, one can distinguish between the three distinct locations of the D, i.e., “in

the middle” or “outside,” in this case belonging to either the diatom or the triatom. In

the importance sampling DMC a trial wave function of D2d symmetry was used with

D substituting for H in one of the H2 sites or as the central atom. The lowest energy

conformer has the deuterium in one of the H2 sites and with the central H slightly

closer to the DH molecule (see Tables 6.1 and 6.2, and Fig. 6.5). The ZPE for this

conformation is 6816± 2cm−1, indicating that the conformer DH+
2 · · ·H2 is preferred
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Figure 6.5: Geometry of the ground state of H+
5 and its isotopomers. Also displayed

are the geometries of other conformers of the same isotopomer. The open circles
represent the H atoms and the gray circles represent the D.
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over the H+
3 · · ·HD conformer. We confirmed this using a C2v wave function that

yields a ZPE of 6816± 3cm−1 for DH+
2 · · ·H2 and 6819± 4cm−1 for H+

3 · · ·HD. For

the HHD+ · · ·H2 complex the computed ZPE is 6860 ± 1cm−1. This indicates that

the conformer with D in the center is the least probable, based on the calculations of

the ZPE.

These findings may have important consequences for the reaction mechanism and

branching ratios of certain reactions where more than one product is possible. This

is discussed next where results are presented for other isotopomers.

Higher Deuterated Isotopomers and Their Conformers In this subsection

we present a summary of the results of our simulations for H+
5 and its isotopomers,

up to D+
5 . In Table 6.1 we present the ZPE obtained for a given conformer, where

applicable, of the indicated isotopomer. From a quick inspection of the table one

can determine that in all deuterated forms DH+
4 , D2H

+
3 , D3H

+
2 , and D4H

+ the low-

est energy form has the H+ at the central position. Figure 6.5 presents the DMC

computed expectation values of the bond distances of each of the isotopomers and

its different conformers. The filled circles represent the D atoms. The isotopomers

are ordered in increasing order of deuteration and each isotopomer is ordered by in-

creasing energy. The geometries of all the isotopomers are slight distortions from the

reference D2d structure. The trend is that for the more symmetric arrangement of

atoms the geometry is nearly an ideal D2d, and for the less symmetric arrangements

the preference is to have more deuterium in the triatom than in the diatom. The

most stable conformer of D4H
+ has H+ in the middle, the other conformer with a

deuterium in the central position can be viewed as D+
3 bonded to DH instead of HD+

2

bonded to D2, although the difference in bond lengths is small. In summary, we have
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found that for all mixed isotopomers the ground vibrational state has a preference

for H+ in the middle.

Table 6.2: ZPE of each of the possible fragmentation channels for unimolecular dis-
sociation of H+

5 and its isotopomers.

Fragments ZPE (cm−1)

H+
3 + H2 9438 ± 1

DH+
2 + H2 9054 ± 1

H+
3 + DH 9150 ± 1

H+
3 + D2 8808 ± 1

DH+
2 + DH 8766 ± 2

D2H
+ + H2 8636 ± 2

DH+
2 + D2 8424 ± 1

D2H
+ + DH 8349 ± 1

D+
3 + H2 8189 ± 2

D2H
+ + D2 8006 ± 2

D+
3 + DH 7901 ± 1

D+
3 + D2 7557 ± 2

For completeness we have also computed the ZPE of each of the possible pairs

of fragments in unimolecular dissociation. These energies are presented in Table 6.2.

Table 6.3 contains the unimolecular dissociation energies of H+
5 and all of the iso-

topomers displayed in Fig. 6.5. We consider only the dissociation into the lower

energy pair of products.

We conclude this section with some speculations on the effect of the character of

the vibrational ground state on the reaction mechanism and branching of products

in the reactions between H+
3 and its various isotopomers with H2, HD, and D2. Here,

we want to shed some light on these reactions using only the information from the

DMC computed energies and structures of the five atom complex and the separated

diatom and triatom. We do not consider the symmetry and nuclear spin restrictions
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Table 6.3: Dissociation energies for unimolecular dissociation of H+
5 and its iso-

topomers.

Reaction channel D0 (kcal/mol)

H+
3 · · · H2 → H+

5 + H2 6.37 ± 0.01
DH+

2 · · · H2 → DH+
2 + H2 6.40 ± 0.01

H2D
+ · · · H2 → H2D

+ + H2 6.27 ± 0.01
H+

3 · · · D2 → H+
3 + D2 6.96 ± 0.01

H+
3 · · · D2 → D2H

+ + H2 6.47 ± 0.02
HD+

2 · · · H2 → D2H
+ + H2 6.73 ± 0.01

H2D
+ · · · DH → D2H

+ + DH 6.71 ± 0.01
D2H

+ · · · DH → D2H
+ + DH 6.77 ± 0.01

D+
3 · · · H2 → D+

3 + H2 6.94 ± 0.01
HD+

2 · · · DH → HD+
2 + DH 6.56 ± 0.01

D2H
+ · · · D2 → D2H

+ + D2 7.07 ± 0.01
D+

3 · · · DH → D+
3 + DH 6.57 ± 0.01

D+
3 · · · D2 → D+

3 + D2 6.20 ± 0.01

in this system and just focus on the properties of the ground state wave function

of the relevant complex. First we have noted that the ground vibrational state of

the complex prefers to have a D2d or somewhat distorted D2d geometry. This is a

saddle point on the bare potential energy surface (PES) that corresponds to what

is referred to in the literature as the “hopping” reaction mechanism [61, 62]. To be

specific, consider the H4D
+ complex that arises in the reaction H+

3 + HD. In this

case, based on the geometry of the zero-point state (cf. Fig. 6.5) the proton “hops”

preferentially because it occupies the middle position and the preferred products

would be H2+H2D+. This qualitative conclusion is in accord with experiment [62].

Conclusions for all isotopomers are summarized graphically in Fig. 6.6. As can

be seen in Fig. 6.6, there are basically ten nontrivial combinations of H+
3 (and its

isotopomers) with H2 (and its isotopomers). These combinations (we will call them

separated molecules from now on) are at the top in each of the four panels in Fig. 6.6.
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The difference in zero-point energies of the various triatom cation plus neutral diatom

combinations are of importance in discussions of the possible thermal equilibrium of

these species in the interstellar medium [62]. Here, we provide their energies based on

the DMC calculations on our global potential energy surface. Below each separated

pair of molecules are the various intermediate complexes for the scattering reactions.

The importance of these intermediates is that they connect all the separated molecules

and provide the possible pathways for the reactions transforming one pair of molecules

to another. In this discussion we assume that the two separated molecules (one

triatom plus a diatom) will join to form one of the complexes displayed in Fig. 6.4

and only the atom in the middle can be exchanged between the outer diatoms.

There is a wealth of information in Fig. 6.6 and a discussion of all possible reactions

will be repetitive. So, we will restrict our discussion to reactions where more than

one product can be formed and for very low collision energies (appropriate for the

interstellar medium), where it is reasonable to assume that collision complex is formed

dominantly in the ground vibrational state. Consider first the reaction H+
3 +D2. From

Fig. 6.6 the preferred reaction channel is the proton “hopping” one, i.e., HD+
2 + H2.

Moreover, of course for the reverse reaction HD+
2 + H2 the H+

3 + D2 products are

preferred over the H2D
+ + HD ones. Next, consider the D+

3 + H2 reaction. This

is an interesting case because the lowest energy configuration D2H
+ · · ·HD would

require a high barrier rearrangement of the atoms and so is “forbidden.” Instead,

from Fig. 6.6 the D+
3 · · ·H2 configuration is the likely one and the likely products are

H2D
++D2. (Note this again is the “hopping” mechanism.) The reactions HD+

2 +HD

and H2D
+ +D2 are also quite interesting because either D+ or H+ could hop to make

the corresponding set of products. Figure 6.6 indicates that H+ is more likely to
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Figure 6.6: Energy landscape of the reactants, intermediate complexes, and products
for scattering reactions of H+

3 and H2 and isotopomers.
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hop since it is in the middle of the lowest energy conformer D2H
+ · · ·HD and gives

rise to the products D2 + H2D
+ and HD + HD+

2 , respectively. In both reactions

the preferred direction is the one that adds a deuterium to the triatom. Analysis

of the reactions H+
3 + HD ↔ H2D

+ + H2 and D+
3 + HD ↔ HD+

2 + D2 leads to

similar conclusions, that is, the products H2D
+ + H2 are favored over H+

3 + HD and

D+
3 + HD are favored over HD+

2 + D2.

From a purely thermodynamic point of view, that is, considering only the energy

differences between the reactants and the products and disregarding the role of the

intermediate, the conclusions are even stronger, e.g., H2D
+ + H2 is favored over

H+
3 +HD. For the reactions involving two deuterium atoms the most likely products

are HD+
2 + H2, then H2D

+ + HD, and finally H+
3 + D2. The same conclusions will

be drawn for the reactions involving 3 and 4 deuterium.

6.1.4 Summary and Conclusions

We have presented an extensive analysis of the ground state properties of H+
3 and

its isotopomers using two implementations of DMC, with and without importance

sampling. The energies and structural properties predicted in both approaches are

in excellent agreement with each other. The ground state of H+
5 is predicted to

have an ideal D2d symmetry, whereas the isotopomers are found to be only slightly

distorted from the H+
5 reference geometry. As expected, the ZPE decreases as the

number of deuterium in the isotopomer increases. Both approaches predict that the

H prefers to be in the middle and there is a tendency of maximizing the number of

deuterium in the triatomic ion. Implications of the ground state conformations on

low energy reactive scattering were discussed. In particular, our simulations support
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the experimental results of large DH+
2 to H+

3 ratio in interstellar space. We have

also concluded that the ratio D2H
+ to DH+

2 should also be large, while the ratio

of D+
3 to D2H

+ should also be large. These conclusions are in agreement with the

conclusions from chemical model calculations which predict that n(H+
3 ) ≤ n(DH+

2 ) ≤

n(D2H
+) ≤ n(D+

3 ) [61,85].
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6.2 Additional Information

There are mainly two lowest energy configurations as shown in Fig. 6.7 for H+
5 on the

potential energy surface (PES). The lowest one geometry in C2v symmetry and the

second lowest geometry is in D2d symmetry. The main difference between these two

configuration is the position of the middle proton, and the energy difference is about

60 cm−1. The problem is what the real symmetry of the H+
5 is in its ground state and

its various isotopomers. Diffusion Monte Carlo (DMC) method was used to explore

the ground state of H+
5 .

The Zero-Point Energies (ZPE) for various H+
5 isotopomers are listed in Table 6.4.

It is clear from the table that

• The more D atoms, the lower the ZPE

• The configurations for D in the center have higher ZPE than those D atoms on

145



6 VIBRATIONAL GROUND STATE PROPERTIES OF H+
5 AND ITS

ISOTOPOMERS FROM DIFFUSION MONTE CARLO CALCULATIONS

3 5 

4 

2 

1 

(a) 1-C2v

3 

1 
5 

4 

2 

(b) 2-D2d

Figure 6.7: Two lowest energy configurations of H+
5 . (a) is the global minimum

configuration and (b) is the second lowest structure.

the edge.

• The more edges D atoms occupy, the high the ZPE.

• D atom center effect is great than edge effect.

• There is no significant difference if the central atom is close to one edge or the

other. (The geometry H5+ may be in D2d symmetry)

To have a clear picture of the central atom position, part of the bond lengths

distribution in H+
5 and its various isotopomers are plotted in the following figures

(Fig. 6.8, Fig. 6.9, Fig. 6.10, Fig. 6.11, Fig. 6.12), and the expectation value of the

all the interested bond length are shown in Table 6.2.
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Table 6.4: Zero-Point energy of various H+
5 isotopomers

Isotope D Position ZPE (cm−1) Comments

H+
5 7213 ± 9

D+
5 5154 ± 7 c(D)1, e(D,2)2

HD+
4 D: 1, 2; 3, 4 5535 ± 7 e(D,2)

HD+
4 D: 2; 3, 4; 5 5599 ± 7 c(D), e(D,2)

HD+
4 D: 1; 3, 4; 5 5604 ± 9 c(D), e(D,2)

HD+
4 D: 1, 2; 4; 5 5602 ± 6 c(D), e(D,2)

HD+
4 D: 1, 2; 3; 5 5604 ± 11 c(D), e(D,2)

H4D
+ D: 1 6817 ± 5 e(D,1)

H4D
+ D: 2 6818 ± 7 e(D,1)

H4D
+ D: 3 6815 ± 9 e(D,1)

H4D
+ D: 4 6813 ± 5 e(D,1)

H4D
+ D: 5 6868 ± 11 c(D)

H2D
+
3 D: 1, 2; 3 5976 ± 6 e(D,2)

H2D
+
3 D: 1; 3, 4 5981 ± 6 e(D,2)

H2D
+
3 D: 3, 4; 5 5995 ± 6 c(D), e(D,1)

H2D
+
3 D: 1, 2; 5 6000 ± 6 c(D), e(D,1)

H2D
+
3 D: 1; 3; 5 6055 ± 7 c(D), e(D,2)

H3D
+
2 D: 3, 4 6372 ± 5 e(D,1)

H3D
+
2 D: 2; 4 6422 ± 8 e(D,2)

H3D
+
2 D: 4; 5 6454 ± 7 c(D),e(D,1)

H3D
+
2 D: 2; 5 6456 ± 4 c(D),e(D,1)

1 one D atom is in the center position
2 there are two edges that have D atom
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Figure 6.8: H+
5 and D+

5 bond length distributions. The broad red curve is the rd as in
Table 6.2 distribution, the red curve in the middle is the bond r12 length distribution,
the blue curve in the middle is the bond r34 length distribution, the red curve on
the right side is the bond r15 length distribution, the right blue curve is the bond
r25 length distribution, the green curve is the bond r35 length distribution, and the
yellow curve is the bond r45 length distribution.
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Figure 6.9: Various bond length distributions in H3D
+
2 , the D atom positions are

indicated in the sub-figure labels and the labels for the curves are the same as in
Fig. 6.8.
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Figure 6.10: Various bond length distribution in H2D
+
3 , the D atom positions are

indicated in the sub-figure label and the labels for the curves are the same as in
Fig. 6.8.
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Figure 6.11: Various bond length distributions in H4D
+, the D atom positions are

indicated in the sub-figure labels and the labels for the curves are the same as in
Fig. 6.8.
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Figure 6.12: Various bond length distributions in HD+
4 , the D atom positions are

indicated in the sub-figure labels and the labels for the curves are the same as in
Fig. 6.8.
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6 VIBRATIONAL GROUND STATE PROPERTIES OF H+
5 AND ITS

ISOTOPOMERS FROM DIFFUSION MONTE CARLO CALCULATIONS

From all these bond length distribution for H+
5 different isotopomers, it is clear

that for the ground H+
5 and D+

5 , the central H or D atom tends to be in the middle of

two H2 (D2) fragments. From the bond length distribution, we can also see that the

D atoms tend to aggregate together and also the H atoms tends join the fragment

with more D atoms.
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7 Quasiclassical Trajectory Study of the Reaction

H + CH4(ν3 = 0, 1) → CH3 + H2 Using a New ab

initio Potential Energy Surface

Abstract

Detailed quasiclassical trajectory calculations of the reaction H + CH4(ν3 =

0, 1) → CH3 + H2 using a slightly updated version of a recent ab initio-based

CH5 potential energy surface [X. Zhang, B. Braams and J.M. Bowman, J.

Chem. Phys. 124, 021104 (2006)] are reported. The reaction cross sections

are calculated at initial relative translational energies of 1.52 eV, 1.85 eV and

2.20 eV in order to make direct comparison with experiment. The relative reac-

tion cross section enhancement ratio due to the excitation of the C-H asymmet-

ric stretch varies from 2.2 to 3.0 over this energy range, in good agreement with

the experimental result of 3.0 ± 1.5 [J.P. Camden, H.A. Bechtel, D.J. Akeny

Brown and R.N. Zare, J. Chem. Phys. 123, 134301 (2005)]. The lab-frame

speed and center-of-mass angular distributions of CH3 are calculated as are the

vibrational and rotational distributions of H2 and CH3. We confirm that this

reaction occurs with a combination of stripping and rebound mechanisms by

presenting the impact parameter dependence of these distributions and also by

direct examination of trajectories.
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7.1 Introduction

The reaction of hydrogen with methane plays a central role in experimental and

theoretical reaction kinetics and dynamics. Much of the background literature re-

lated to this reaction has recently appeared in an important series of papers report-

ing experimental and theoretical investigations of this reaction (actually H+CD4) at

hyper-thermal collision energies (1.5 - 2.0 eV) [86–88]. In this work direct-dynamics

quasiclassical trajectory (QCT) calculations, based on the DFT B3LYP/6-31G** en-

ergies and gradients, were able to capture the features seen experimentally. This level

of theory predicts a barrier for the abstraction that is roughly 5 kcal/mol below the

accurate result; however, at the high energies considered this level of error is evidently

not serious.

One conclusion of these studies was the inadequacy of two existing global, ana-

lytical potential energy surfaces (PES) to describe the experimental findings, which

included angular and laboratory speed distributions of the products. These PESs are

due to Jordan and Gilbert (JG) [89] and Espinosa-Garćıa (EG) [90]. Both utilize

an analytical form based on “LEPS” expressions with parameters determined to ap-

proximately reproduce ab initio properties of the abstraction saddle point and known

properties of the reactants and products. Of the two PESs the EG one is more real-

istic since it was based on more recent, accurate ab initio saddle point calculations

and it also corrected a symmetry-deficiency of the JG PES.

Although the EG PES is a significant improvement over the JG one, the EG PES

barrier height of 12.9 kcal/mol is low compared to the most accurate ab initio value

of 14.93 kcal/mol reported recently by Wu et al. [91, 92]. Those authors obtained

a PES limited to the region of the abstraction saddle point based on CCSD(T)/cc-
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pVTZ/cc-pVQZ calculations and estimated the error due to the basis set as less

than 0.1 kcal/mol. They used this limited PES in accurate quantum calculations of

the thermal rate constant. Prior to that calculation of the rate constant, the most

extensive high-level study of the potential and rate constant was reported by Pu

and Truhlar [93]. Those authors presented a number of so-called “implicit” PESs

with fitted “reaction parameters” and calculated the thermal rate constant over a

wide temperature range using multi-dimensional tunneling in the small curvature

tunneling approximation. They concluded that the barrier height is 14.8 kcal/mol,

in good agreement with the calculations of Wu et al. mentioned above.

Recently, we reported a global PES based on accurate fitting of roughly 20, 000

electronic energies obtained with CCSD(T)/aug-cc-pVTZ calculations [94]. We also

reported a small set of QCT calculations for the H + CD4 reaction using this PES and

found agreement (at least semi-quantitative) with the DFT direct-dynamics results.

We have refined this potential, which we refer to as ZBB1, by adding more ab

initio data and will report two new PESs here, which we denote as ZBB2 and ZBB3.

ZBB2, which contains more data in the regions of the two van der Waals minima, is

used in the QCT calculations. ZBB3 contains these data as well as additional energies

to more accurately describe the exchange saddle point. While this property of the

PES is not of direct interest here, for completeness we briefly present the properties

of this PES. ZBB3 was completed after the QCT calculations using ZBB2 were done.

We have re-done some QCT calculations at one energy using ZBB3 and the results

agree very well with those done with ZBB2. (We will present that comparison in

detail below.)

The major focus of this paper is the hyper-thermal collisions of H with CH4 in
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the ground vibration/rotation state and also in the first excited asymmetric C-H

stretch state, i.e., CH4 (ν3 = 1), also in the ground rotational state. Our interest is

to make direct comparisons with recent experiments of Zare and co-workers [95, 96].

This group determined several distributions of the products and were also able to

determine the relative enhancement of the reaction cross section due to excitation of

the asymmetric C-H stretch. We also examine the details of the reaction mechanism of

H + CH4; however, this work basically confirms the QCT results already presented

by Schatz and co-workers [86–88], albeit for the H + CD4 reaction in the ground

vibrational state.

The paper is organized as follows. In the next section we discuss the new PESs

and examine and compare properties of the abstraction saddle points and reactants

and products with previous high-level calculations and experiment (for reactants and

products). Following that we give some details of the quasiclassical trajectory calcu-

lations and also the procedure and tests to prepare CH4 in the excited asymmetric

stretch state. In section 7.3 we present our results and comparison with experiment.

The discussion in that section focuses on the dependence of the scattering dynamics

on the impact parameter. We give a summary and conclusions in the final section.

7.2 Calculations

7.2.1 Potential Energy Surface

As noted already the PES used in the QCT calculations here is a slight refinement of

the PES reported by Zhang, Braams and Bowman [94]. The new PES contains addi-

tional ab initio energies, calculated with the same method and basis (RCCSD(T)/aug-

cc-pVTZ) as before, at more configurations. The details of constructing the PES were
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given elsewhere [43, 63, 94] and here we just show some of the main features of this

new PES, which as noted above is denoted ZBB2. Another important property of all

the ZBB PESs is the invariance with respect to any permutation of the five H atoms.

The advantage of this property is that the reaction can occur with any H atom of

CH4. The details of PES permutation invariance are described elsewhere [43,63].

The relevant properties of ZBB2 are given in Tables 7.2.1 and 7.2.1 where they

are compared with recent high-level ab initio calculations of Wu et al. [91] and other

sources, as indicated. In Table 7.2.1 H’ refers to the abstracted H-atom and H” to the

reacting H-atom. As seen the energetics and structures of the reactants, abstraction

saddle point and products are precisely fitted by the PES. There are slight differences

with our previous PES, [94] ZBB1, mainly in some of the normal mode frequencies.

Also ZBB2 provides a better description of the van der Waals minima than ZBB1.

The reactant vdW minima is -0.12 kcal/mol relative to the reactants H + CH4 and

2.68 kcal/mol for the product vdW minima. These energies compare well with those

reported by Wu et al. [91] using an aug-cc-pVTZ basis, i.e., -0.10 and 2.58 kcal/mol,

respectively.

As is well known the abstraction saddle point has a collinear CH’H” configuration.

The collinear, rebound reaction mechanism is shown in Fig. 7.1. This figure also

illustrates the stripping mechanism which is now known to play an important role

at hyper-thermal collision energies. These two mechanisms have been found in the

direct-dynamics DFT calculations reported by Camden et al. to explain features

observed for the hyper-thermal reactive scattering of H + CD4 [86–88]. We confirm

these mechanisms in the QCT calculations we report below.
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Figure 7.1: Illustration of the rebound and stripping mechanisms of reaction
H + CH4. The upper part shows the rebound and the lower part shows the stripping
mechanism.

Table 7.1: CH5 abstraction saddle point geometry and energy on the ZBB2 potential
energy surface (PES) and other sources, as indicated.

PES Ref. 941 Ref. 912

Energy3(kcal/mol) 14.8 14.8 14.93
RCH (Å) 1.0843 1.0854 1.085
RCH’ (Å) 1.4086 1.3991 1.401

RH’H” (Å) 0.9016 0.8970 0.895
∠H-C-H’ (Degree) 102.8 103.12 103.1
∠C-H’-H” (Degree) 180.0 180.0

1 RCCSD(T)/aug-cc-pVTZ, Zhang, Braams and Bowman (2006)
2 CCSD(T)/scaled cc-pVTZ, Wu, Werner and Manthe (2006)
3 relative to the energy of H + CH4
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Properties of the ZBB3 PES are given in Table 7.2.1 along with those of ZBB2 for

reference. Recall that ZBB3 PES is a fit to additional ab initio energies in the vicinity

of the exchange saddle point. As seen ZBB3 faithfully reproduces the abstraction

saddle point properties but gives a much better representation of the higher energy

exchange saddle point than ZBB2. However, the abstraction saddle point is better

represented that the exchange one. The present quasiclassical trajectory calculations,

which are described next, focus strictly on the abstraction reaction and the effect of

excitation of the asymmetric stretch were done using the ZBB2 PES. The result is

checked and reproduced nearly perfectly at one energy using the ZBB3 PES as will

be reported below.
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(Å

)
0.

89
70

0.
90

27
0.

90
16

∠
H

-C
-H

’
(D

eg
re

e)
10

3.
12

10
2.

84
10

2.
82

1
C

H
5

ab
st

ra
ct

io
n

sa
d
d
le

p
oi

n
t

2
C

H
5

ex
ch

an
ge

sa
d
d
le

p
oi

n
t

3
R

C
C

S
D

(T
)/

au
g-

cc
-p

V
T

Z
,
Z
h
an

g,
B

ra
am

s
an

d
B

ow
m

an
(2

00
6)

163



7 QUASICLASSICAL TRAJECTORY STUDY OF THE REACTION H +
CH4(ν3 = 0, 1) → CH3 + H2 USING A NEW AB INITIO POTENTIAL ENERGY

SURFACE

7.2.2 Trajectory Calculations

The initial conditions for the quasiclassical trajectories are essentially the usual ones [66].

For the reaction with the ground ro-vibrational state of CH4 harmonic zero-point

energy was added to CH4 initially and random sampling of initial normal-mode co-

ordinates and momenta was done. Standard adjustments were made to enforce zero

angular momentum. In order to simulate the reaction with CH4 with the ν3 fun-

damental excited we proceeded carefully because of the possibility of rapid classical

energy relaxation of the excited harmonic mode. This is made particularly likely

because this mode is triply degenerate and so the expectation was that exciting one

component of this mode would result in rapid sharing of the energy with the two

other degenerate components of ν3, which would be followed by relaxation to other

vibrational modes of CH4. One important mitigating factor that lessens this con-

cern is the short interaction time of the hyper-thermal collisions we consider here.

We determined this time by starting the trajectories with the incoming H atom 9

bohrs from the center of mass of CH4 and initial relative kinetic energy of 1.52 eV.

Trajectories with this initial condition reach the strong interaction region, i.e., the

near vicinity of the saddle point, in roughly 10 femtoseconds. So, the practical con-

cern about relaxation of vibrationally excited CH4 is limited to this relatively short

time-scale. With this time-scale in mind we examined the vibrational relaxation as

a function of time. At t = 0 vibrational energy equal to the harmonic fundamental

was added to one component of ν3 and zero-point energy was given to the remaining

harmonic modes. Then the energy content of all normal modes was determined as a

function of time. Since the isolated CH4 potential of the full PES is not harmonic (in

fact it is quite realistic relative to highly accurate CH4 molecular potentials) there is
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relaxation just due to anharmonicity of the ν3 mode. In Fig. 7.2 we show the energy

content of the initially excited component of ν3 averaged over 41 trajectories. As seen

there is energy relaxation; however, on the time scale of 10 fs more than 80 percent of

the initial energy remains in the component of ν3 initially excited and only after 25 fs

does this energy drop below 80 percent. Thus, we conclude that the simple approach

to excite the harmonic normal mode ν3 is realistic for the collisions of interest here.

To conclude this discussion of initial conditions we note that all trajectories were

initiated with the H atom 9 bohrs from the center of mass of CH4 and the impact

parameter b was scanned from 0.0 to bmax with a step size of 0.3 bohr (bmax was first

determined precisely). Initial collision energies of 1.52, 1.85 and 2.20 eV were chosen

in order to compare directly with experiment [96]. For every set of initial conditions

(Ecol, ν3, b), 6 independent batches of 5000 trajectories were run. Error estimators

were determined form the results of these 6 batches. All trajectories were initiated

with CH4 initially non-rotating, but with random initial orientation.

Final state analysis of the products focused on the differential cross section of CH3,

the rotational and vibrational distributions of H2 and CH3 and lab-speed distribution

of CH3. All these distributions were obtained using the following approach. At each

impact parameter, b, the scattering angle, rotation angular momenta, etc. of CH3

and H2 were calculated. The associated probability densities, denoted generically

as p(b), were then determined using a well-established Gaussian-window smoothing

technique [99,100] and the final densities were obtained by the usual impact-parameter

weighted integration of bp(b). The CH3 lab-speed distribution was obtained using the

center-of-mass scattering angle and center-of-mass velocity in the standard way, as

given elsewhere [96]. (Note, there is a missing factor of 2 in Eq. 9 of Ref. 96)
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Figure 7.2: Time-Dependence of the energy in the excited ν3 mode of CH4. The mode
energy is averaged over 41 trajectories.
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Finally, the vibrational energy of each product was obtained as the difference of

the total internal energy and the rotational energy of H2 or CH3. The rotational

energy was calculated approximately as 1
2
Iω2, where I is the inertia tensor in the

principal-axis frame and ω is the corresponding angular velocity. The rotational en-

ergy was determined at a fixed end-time of each trajectory instead of averaging over

time. Since we ran many thousands of trajectories the averaging over trajectories ef-

fectively averages over the vibration/rotation interaction. In any case, this separation

of vibration and rotation is not exact; however, since the rotational excitation of H2

or CH3 is not large (see below) this treatment should be quite reasonable.

The reaction cross sections were obtained in the usual way and the enhancement

ratio r due to the CH4 asymmetric stretch excitation was calculated as

r =
σ[H + CH4(ν3 = 1)]

σ[H + CH4(ν3 = 0)]
. (7.1)

7.3 Results and Discussion

7.3.1 CH3 Angular Distribution

The differential cross sections of the CH3 product (normed arbitrarily so that they

integrate to one) are shown in Fig. 7.3 for the three initial relative kinetic energies

indicated and for CH4 ν3 = 0 and 1. As seen the distributions show both forward and

backward scattering, with the peak at sideways scattering. Note the similarities for

CH4 ν3 = 0 and 1, with somewhat more forward scattering seen for CH4 ν3 = 1. For

both initial states there is a noticeable shift in the peak to more backward scattering

of CH3 as the energy increases. This backward scattering of CH3 is a clear indication

of a stripping mechanism, as discussed elsewhere [95] and in more detail below. Thus
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this mechanism is increasingly important as the collision energy increases.

Experimental and direct-dynamics DFT angular distributions for the isotopolog

version of this reaction, H + CD4 have been reported in Ref. 86 Fig. 1 at a colli-

sion energy of 1.20 eV. The present results agree qualitatively with these in showing

forward and backward scattering and with a peak at sideways scattering.

To gain some insight into these angular distributions we plot the b-dependent CH3

partial differential cross sections for selected impact parameters in Fig. 7.4. These

cross sections are b-weighted so that integrating them and multiplying by 2π would

give the absolute differential cross section. Note we examined these plots at the

three collision energies, 1.52, 1.85 and 2.20 eV, and the changes with energy are not

large. Thus, only the distributions at 1.85 eV are shown in the figure. As seen the

CH3 angular distributions show a strong b dependence. Examination of trajectories

indicates that the reaction proceeds by the stripping mechanism at large impact

parameters and a rebound mechanism at small impact parameters. Also as seen

there is a slight shift in the CH3 angular distribution between CH4 ν3 = 0 and 1.

At this point, the collision mechanism of H + CH4 is quite clear. At small im-

pact parameter b, the rebound mechanism is favored and the stripping mechanism is

favored for large impact parameters. Also, as the collision energy increases, the con-

tribution of the stripping mechanism increases. Excitation of CH4 ν3 mode slightly

favors the rebound process. (These mechanisms are clearly seen in representative

trajectories, which can be viewed at the url

http://www.chemistry.emory.edu/faculty/bowman/H+CH4.htm.)

Next,we consider the consequences of these two mechanisms on the rotational distri-

butions of the products.
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7.3.2 H2 and CH3 Rotational Distributions

From the schematic figure of the rebound and stripping mechanisms given in Fig. 7.1,

it seems reasonable that the rotational distributions of the products will reflect these

two mechanisms. To investigate this we calculated the rotational distributions of H2

and CH3 and the results are shown in Fig. 7.5. As seen the H2 and CH3 distributions

are quite similar with the peak in the former one increasing with collision energy

from 6 to 8, whereas the peak in the CH3 distribution is constant at 5. Note also the

vibrational excitation of CH4 has very little effect on these rotational distributions.

The b dependent H2 rotational distribution is shown in Fig. 7.6 for vibrationally

excited CH4. From this figure it is clear that the large impact parameter collisions

lead to higher rotational excitation. Smaller b tends to have colder H2 rotational

motion and this is attributed to the rebound mechanism at small b’s and the stripping

collisions at large b leads to rotationally hotter H2. The results for CH3 are much less

dramatic with b with only a slight shift to lower rotational excitation as b increases.

7.3.3 Cross Section Enhancement Ratio

In a very recent experiment Zare and co-workers determined the enhancement of

the reaction cross section due to vibrational excitation of CH4 ν3 mode [96]. They

reported an enhancement of 3.0 ± 1.5 and found that this enhancement remained

constant within their uncertainty for the three energies, 1.52, 1.85 and 2.20 eV. We

calculated the reaction cross sections for CH4 ν3 excited and unexcited and the en-

hancement ratio. First, however, consider the impact parameter dependence of the

corresponding reaction probabilities; these are shown in Fig. 7.7. As seen there is an

enhancement of the reaction probability of about a factor of 3 and also that this factor
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is largely independent of the impact parameter. The resulting reaction cross sections

and ratios are plotted in Fig. 7.8. As seen the ratio varies in the range 2.2 - 3.0 over

the collision energy range of the experiment and thus the agreement with experiment

is excellent. However, we note that the calculated cross sections are summed over final

“states” of the products whereas the experimental ratio is for the ground vibrational

state of CH3; it was noted that enhancement was found for all states populated by

the ground state reaction [96]. The mild enhancement of the cross section together

with the “spectator” characterization of this vibrational mode is consistent with the

following simple vibrationally adiabatic (VA) argument. The VA barrier for this re-

action is defined as the energy difference between the saddle point energy plus the

vibrational energy in the CH5 saddle point normal modes minus the corresponding

vibrational energy of CH4. The relevant quantity for the enhancement issue is the

difference between the vibrationally adiabatic barriers for the vibrationally excited

and ground state reactions. Assuming that one quantum of excitation in the triply

degenerate ν3 mode of CH4 correlates with the single CH-mode of the saddle point

(see Table 7.2.1) this energy difference is −100 cm−1. Thus the VA barrier is lowered

for the excited state reaction relative to the unexcited one by 100 cm−1. This, at least

naively, would be expected to result in a modest increase in the reaction cross section,

consistent with the calculations and experiment. The VA approximation, which was

also invoked by Camden et al. [96], has its limitations and it may only apply for the

reaction up to the saddle point and then break down, at least partially, in the region

of the products. This appears to be occurring in the case of the umbrella mode of

CH3 which is excited even for the reaction with CH4 in the ground vibrational state,

as pointed out by Camden et al. [96] and as seen in the QCT calculation.

174



7 QUASICLASSICAL TRAJECTORY STUDY OF THE REACTION H +
CH4(ν3 = 0, 1) → CH3 + H2 USING A NEW AB INITIO POTENTIAL ENERGY

SURFACE

We calculated this enhancement ratio using the ZBB3 PES at 1.52 eV and find a

value of 2.3 in very good agreement with the result of 2.2 shown obtained with the

ZBB2 PES (see Fig. 7.8).
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Figure 7.7: The impact parameter dependent reaction probabilities at the indicated
initial collision energies for CH4 ν3 = 0, 1.

7.3.4 CH3 Vibrational Energy Distribution

The vibrational energy distributions of the CH3 product were obtained at the three

collision energies, as described above, and the results are shown in Fig. 7.9 for
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CH4 (ν3 = 0, 1). As seen there is a large shift upwards in the vibrational energy

distributions for the reaction with CH4(ν3 = 1). The peak of the distribution shifts

by roughly 2500 cm−1. We have not attempted an analysis of the specific modes of

CH3 that are excited in a systematic way; however, by examination of trajectories

we conclude that the umbrella bend and CH-stretch modes are excited. (We also

examined the impact parameter b dependence of these vibrational energy distribu-

tions and the result shows that there is no strong b dependence.) These results are

in qualitative agreement with experiment, which showed that CH3 is excited in the

umbrella and symmetric stretch modes in the reaction with CH4(ν3 = 1).

7.3.5 Lab Speed Distribution

Finally we show a comparison between the calculated and experimental lab frame CH3

speed distribution in Fig. 7.10 for the collision energy of 1.52 eV. The comparison

is not totally consistent because the QCT calculations are summed over the internal

“states” of the products whereas the experiment is specific to the indicated state of

symmetric stretch of CH3. With this caveat in mind, there is overall good agreement

with experiment. Both the calculated and experimental speed distributions show

virtually no dependence on the initial vibrational state of CH4. Also note that the

direct-dynamics DFT calculations of the lab-speed distribution agree well with the

experimental one for the H+CD4 reaction [88].

The peaks in the QCT distributions are about 200 m/s lower than the exper-

imental ones. One possible source of the shift is easy to understand for the case

CH3(ν1 = 0). In this case because the QCT distribution includes trajectories that

correspond to vibrational excitation, the corresponding relative speeds would be lower
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than experimental one. Another possible source of the shift is the approximation of

the QCT method.

7.4 Summary and Conclusions

We reported a quasiclassical trajectory study of the H + CH4(ν3 = 0, 1) reaction at

collision energies of 1.52, 1.85 and 2.20 eV, using an accurate, ab initio-based, full-

dimensional CH5 potential energy surface. The CH3 center-of-mass angular distribu-

tion and lab-speed distribution were calculated and compared directly to experimental

ones. The angular distribution was shown to be consistent with a rebound process at

small impact parameter and stripping process at large impact parameter. Rotational

distributions of H2 and CH3 were also calculated and the former one also showed

clear signatures of the rebound and stripping reaction mechanisms. These distribu-

tions were shown to be largely the same for both vibrational states of CH4, suggesting

that the ν3 mode is largely a spectator mode, in agreement with the conclusions of

experiment. However, the experimental enhancement of the cross section due to fun-

damental excitation of this mode of 3.0± 1.5 is reproduced by the QCT calculations

where the reaction cross section enhancement ratio was found to range from 2.2− 3.0

over the energy range 1.52 to 2.20 eV.
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8 Quasiclassical Trajectory Study of the Reaction

of Fast H Atoms with C-H Stretch Excited CHD3

Abstract

Quasiclassical trajectory calculations are reported of the reactions H +

CHD3 (νC-H stretch = 0, 1) to give H2 + CD3 and HD + CHD2 using a recent

ab initio-based CH5 potential energy surface. The cross sections, angular, and

internal energy distributions are calculated at the initial relative kinetic energy

of 1.53 eV in order to make comparisons with corresponding recent experiments,

[J.P. Camden, H.A. Bechtel, D.J. Akeny Brown and R.N. Zare, J. Chem. Phys.

124 (2006) 034311 ].
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8.1 Introduction

The reaction H + CH4 is one of most extensively studied atom-polyatomic reactions.

It is a challenging reaction for rigorous dynamical studies and also requires high level

ab initio electronic structure calculations to obtain an accurate reaction barrier.

Zare and co-workers recently reported a series of experimental papers [86–88,95,96,

101] describing the reaction of CD4, CH4 and most recently CD3H with translationally

hot H atoms [101], produced by photo-dissociation of HBr. Complementary calcu-

lations for the H + CD4 reaction have been done by Schatz and co-workers [86–88]

using direct-dynamics quasiclassical trajectory calculations (QCT) based on Density

Functional Theory.

We recently reported a global potential energy surface (PES) based on fitting

roughly 20000 ab initio energies obtained with the coupled cluster method, CCSD(T),

with an aug-cc-pVTZ basis and preliminary QCT calculations of the H + CD4 reac-

tion using this PES [94]. This surface was used subsequently by us in a study of the

effect of excitation of the antisymmetric C-H stretch in the H + CH4 reaction [67]

using a slightly refined version of the original PES. We obtained an enhancement

factor and other results in very good agreement with experiment [67].

In this paper we extend our QCT studies to the H + CHD3 reaction and examine

the effect of vibrationally exciting the C-H stretch. The goal here, as before, is a direct

comparison with experiments of Zare and co-workers [101]. In those experiments HBr

was photolyzed to produce fast H atoms (resulting in a relative collision energy of

1.53 eV) and the C-H stretch was excited to the fundamental and first overtone.

Experiments were also done with Cl as the reacting atom, through photolysis of Cl2,

which resulted in a much lower collision energy of 0.18 eV. We do not consider the
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reaction with Cl here but only the reaction with the fast H atom. For that reaction

both sets of products, i.e., HD + CHD2 and H2 + CD3, were observed. For the

reaction with CHD3 in the ground vibrational the authors wrote that “. . . the ground

state reaction shows no clear preference for the H- or D-abstraction products” [101].

However they did note that their detection sensitivity for CHD2 was less than for

CD3. (Naively one might expect abstraction of D to be roughly three times more

likely than abstraction of H given the 3 to 1 ratio of D to H in CHD3.) These authors

also reported that the reaction with the C-H stretch excited enhances the production

of CHD2, which is an indication that the C-H stretch excitation is maintained in the

reaction and in that sense is a spectator. The reaction to abstract the H atom leading

to CD3 does produce some umbrella excitation but no C-D stretch excitation.

The paper is organized as follows. In the next section we present a brief review of

the PES and give some relevant details of the quasiclassical trajectory calculations.

Following that we present results and discussion. Finally we give a summary in

section 8.4.

8.2 Potential Energy Surface and Calculation Details

The PES used here is the the updated one, denoted ZBB3 in our recent paper describ-

ing QCT calculations of the H + CH4 reaction [67]. The PES is based on accurate

fitting of roughly 20000 CCSD(T)/aug-cc-pVTZ electronic energies; details of this

construction of this PES are given elsewhere [67,94].

The harmonic normal-mode frequencies of the reactant and products are given in

Table 8.1. The C-H stretch harmonic frequency is 3136 cm−1 and, as is well known,

this is basically a local mode. The results compare well with earlier ab initio and DFT
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ones, compiled from several sources in Table III of Camden et al. [101]. We also give

the harmonic frequencies at the abstraction saddle point for the two cases where either

D or H is the abstracted atom. As seen, there are differences in these frequencies,

as expected. Note especially that the zero-point energy of the H-abstraction saddle

point is 400 cm−1 less than the one for D-abstraction. (This is easy to understand as

the high frequency C-H stretch in the case of D-abstraction is the imaginary frequency

mode in the case of H-abstraction.)

Table 8.1: Present PES normal mode frequencies (cm−1) for reactants and products
and for the H-atom and D-atom abstraction saddle point configurations, denoted as
H-ABSP and D-ABSP, respectively. The last row is the harmonic zero-point energy
and the values denoted as “REF” are from a compilation of results in Ref. 101.

H-ABSP D-ABSP CHD3 CHD2 + HD CD3 + H2

PES PES PES REF PES REF PES REF

1361i 1034i 1018 1003 456 431 413 458
421 421 1046 1036 1043 1006 1037 1026
421 461 1046 1036 1292 1248 1037 1026
792 783 1306 1291 2269 2187 2192 2158
994 791 1306 1291 2453 2358 2453 2381
994 883 2187 2142 3236 3114 2453 2381
1071 1089 2343 2263 3821 4411
1071 1300 2343 2263
1746 1737 3136 2993
2173 2243
2409 2409
2409 3192

7252 7655 7865 7659 7285 5172 6998 4715

The initial conditions for the QCT calculations (done with our own code) are

essentially the standard ones [66]. For the reaction with the ground ro-vibrational

state of CHD3 harmonic zero-point energy (Table 8.1) was added to CHD3 initially

and random sampling of initial normal-mode coordinates and momenta was done.
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Standard adjustments were made to enforce zero angular momentum.

In order to simulate the reaction with the C-H stretch fundamental excited the

energy of that normal mode was given as 3/2 the normal-mode harmonic energy.

The approach was taken by us previously for the H + CH4 reaction [67], where it was

shown that the C-H stretch energy remained 80 percent localized up to 25 fs. This

time scale for localization is also seen for CHD3 and is satisfactory since the collision

time is of the order of 10 fs at the high translational kinetic energy of 1.5 eV, with

the H atom initially 9 Bohrs from the center-of-mass of CD3H. Thus, we conclude

that the simple approach to excite the C-H stretch is realistic for the collisions of

interest here. Although this paper is centered on the reaction with CHD3, to aid in

the analysis we also calculated the reaction cross sections for the reactions with CD4

and CH4, unexcited and also with the antisymmetric C-H(D) stretch excited.

Final state analysis of the products includes the differential cross sections and

vibrational distributions of CD3 and CHD2 and the rotational distributions of H2 and

HD. The details of obtaining these distributions are given elsewhere [67].

8.3 Results and Discussion

The six reactions we consider are:

H + CH4(ν3 = 0) → H2 + CH3 (8.1)

H + CH4(ν3 = 1) → H2 + CH3 (8.2)

H + CHD3(ν1 = 0) → H2 + CD3 (8.3)

H + CHD3(ν1 = 1) → H2 + CD3 (8.4)
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H + CHD3(ν1 = 0) → HD + CHD2 (8.5)

H + CHD3(ν1 = 1) → HD + CHD2 (8.6)

We denote the six reactions using a shorthand notation (CH4,G,H2), (CH4,E,H2),

(CHD3,G,H2) or (CHD3,G,CD3), (CHD3,E,H2) or (CHD3,E,CD3), (CHD3,G,HD) or

(CHD3,G,CHD2), and (CHD3,E,HD) or (CHD3,E,CHD2). The first element in a triple

indicates the reactant (CH4 or CHD3). The second element in the triple indicates the

C-H stretch vibrational state, where “G” stands for ground state and “E” stands for

the first excited state. The last element in a triple identifies the product. In addition,

we use “[ ]” to enclose all the possible value for any element in a triple to represent

a series of reactions. For example, (CH4,[GE],H2) represents reactions of (CH4,G,H2)

and (CH4,E,H2).

8.3.1 Reaction Probabilities and Cross Sections

The impact-parameter dependence of the reaction probabilities for the reactions

(CHD3,[GE],[CD3 and CHD2] is shown in Fig. 8.1, and the corresponding reaction

cross sections are given in Table 8.2, along with cross sections for (CH4,[GE],H2)

and (CD4,[GE],H2). As seen the reaction (CHD3,E,H2) has a much larger reaction

probability than that of any other reactions and at all impact parameters. Clearly

exciting the C-H stretch promotes the H-atom abstraction; this result is in qualitative

agreement with experiment. The cross section ratio of (CHD3,G,H2)/(CHD3,G,HD)

is about 0.5 which also agrees qualitatively with the experimental finding of “no clear

preference” for H or D abstraction. As noted in the Introduction, from a simple

statistical viewpoint, the ratio of cross section to abstract D vs H would be 3:1, but
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Table 8.2: Reaction cross sections for reactions indicated at the initial relative kinetic
energy of 1.53 eV.

Notation Reactant Product Cross Section (Bohr2)

(CH4,G,H2) H + CH4 (G) H2 + CH3 1.08
(CH4,E,H2) H + CH4 (E) H2 + CH3 2.51
(CD4,G,HD) H + CD4 (G) HD + CHD3 0.31 ± 0.03
(CD4,E,HD) H + CD4 (E) HD + CHD3 1.17 ± 0.02
(CHD3,G,H2) H + CHD3 (G) H2 + CD3 0.13 ± 0.01
(CHD3,G,HD) H + CHD3 (G) HD + CHD2 0.28 ± 0.01
(CHD3,E,H2) H + CHD3 (E) H2 + CD3 1.75 ± 0.03
(CHD3,E,HD) H + CHD3 (E) HD + CHD2 0.34 ± 0.02

from Table 8.2 this ratio is closer to 2:1. This indicates that the incident H atom is

more likely to abstract the H atom than the D atom. One way to rationalize this

difference in reactivity is by recalling that the vibrationally ground state adiabatic

barrier is 400 cm−1 higher for the D-atom abstraction than the H-atom abstraction.

The higher reactivity of the H atom in methane is also seen in the differences

in reaction cross sections for (CH4,G,H2) and (CD4,G,HD), which are also given in

Table 8.2. As seen the cross section for (CH4,G,H2) is roughly 3.6 times the one for

(CD4,G,HD).

Also note that the ratio of cross sections for (CHD3,E,H2) and (CHD3,G,H2) is

about 14, which is much greater that the reaction cross section enhancement ratio due

to the C-H stretch excitation in CH4 as we reported in Ref. [67] and also indicated in

Table 8.2. Also as seen in the table, there is virtually no effect on the cross section

to abstract the D atom due to excitation of the C-H stretch. Both of these results

are in agreement with experiment which determined qualitative but not quantitative

effects due to C-H stretch excitation.
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Figure 8.1: H + CHD3 reaction probability to produce products H2 + CD3 and
HD + CHD2.
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8.3.2 CD3 and CHD2 Angular Distributions

Consider now the differential cross sections for CD3 and CHD2 for ground and vi-

brationally excited CHD3. These are shown in Fig. 8.2, and as seen there are some

differences among them. The CHD2 product is generally more sideways and backward

scattered than CD3, which is more forward scattered. These results follow from the

impact-parameter dependence of the corresponding reaction probabilities shown in

Fig. 8.1. ¿From previous analysis done by us [67] and Schatz and co-workers [86–88]

for H + CD4 and H + CH4 it is known that reaction at smaller b corresponds to a re-

bound mechanism leading to forward scattering of the methyl product, i.e., cos θ = 1,

whereas reaction at larger b corresponds to the stripping mechanism leading to back-

ward scattering of the methyl product. For those reactions both mechanisms con-

tributed about equally resulting in both sideways, backward and forward scattering.

Evidently the rebound mechanism is dominant for the CD3 + H2 products in the

present reaction.

8.3.3 H2 and HD Rotational Distributions

Now consider the H2 and HD rotational distributions; these also reflect the reaction

mechanism as we have shown previously [67]. Specifically the stripping mechanism

leads to greater rotational excitation of H2 and HD than does the rebound mecha-

nism. This is clearly seen in Fig. 8.3 which shows these distributions for the reactions

(CHD3,[GE],[HD/H2]). As seen, H2 from (CHD3,E,H2) is the rotationally coldest and

that is attributed to the dominance of the rebound mechanism for this product. H2

from (CHD3,G,H2) is a little colder than HD from (CHD3,[GE],HD). The rotational

distributions for the HD products are hotter than for H2 (beyond what might be
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Figure 8.2: CD3 and CHD2 differential cross sections.
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expected just based on a difference in rotation constant) and this reflects the relative

dominance of the stripping mechanism for the HD product. These rotational distri-

butions and their attribution to the rebound or stripping mechanism are completely

consistent with the angular distributions shown for the corresponding CD3 and CHD3

products.
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Figure 8.3: H2 and HD rotational distributions.

8.3.4 CD3 and CHD2 Vibrational Energy Distributions

Fig. 8.4 shows the vibrational energy distributions of CD3 and CHD2 for the reactions

indicated. They are all quite symmetric and unimodal. If we assign the most probable
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vibrational energy to a quantum state we would assign the products of the reaction

with CHD3(ν1 = 0) to the zero-point state. For the reaction with CHD3(ν1 = 1) we

would assign the product CD3 to the zero-point state with excitation in some other

mode(s). Examination of trajectories indicates some excitation in the CD3 umbrella

mode, ν2. For the CHD2 product, which has the largest amount of vibrational energy,

the peak position equals 84 percent of the sum of the harmonic ZPE plus one quanta of

C-H stretch. Inspection of trajectories does confirm that the C-H stretch is excited in

the CHD2 product, confirming this assignment. This indicates again that excitation

of the C-H stretch in CHD3 is well-preserved in the reaction at least at the high

energy considered here. This finding is completely consistent with the conclusions of

Zare and co-workers [101].

8.4 Summary and Conclusions

We reported quasiclassical trajectory calculations of the reaction of H with CHD3

at an initial relative kinetic energy of 1.53 eV and with the C-H stretch excited

and unexcited, using an ab initio-based potential energy surface. Reaction cross

sections for the two sets of products were presented as were the angular and vibrational

distributions of the CD3 and CHD2 products and the rotational distributions of the H2

and HD products. For the ground state reaction the cross sections are small, i.e., 0.13

and 0.28 Bohr2 respectively for H-and D-abstraction. For the vibrationally excited

reaction the cross section for H-abstraction is enhanced by a factor of 14 whereas the

cross section for D-abstraction is virtually unchanged. This clearly indicates the the

C-H stretch is highly localized and remains so during the reaction. These results were

compared to recent experiments of Zare and co-workers. Agreement with experiment
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Figure 8.4: CD3 and CHD2 vibrational energy distributions. The positions of peaks
from left to right are 4160, 5120, 6080 and 7280 cm−1.
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is good and conclusions drawn in that work are confirmed in the calculations. Finally,

evidence was presented that indicates that the reaction to abstract H is dominated

by the rebound mechanism whereas abstraction of D is dominated by the stripping

mechanism.
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Abstract

Dissociative charge exchange of CH+
5 with Cs, coupled with quasiclassical

trajectory calculations on an ab initio PES for CH5, has been used to probe

the structure of the CH+
5 cation. Product kinetic energy release distributions

and branching ratios for CH5 → CH4 + H and CH5 → CH3 + H2 have been

compared. The agreement of the product branching ratios provides evidence

for the fluxional nature of CH+
5 .
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9.1 Probing the Structure of CH+
5 by Dissociative Charge

Exchange

The simplest nonclassical carbonium ion is CH+
5 [102]. It is an important ion in

the interstellar medium, where it is formed via radiative association of CH3
+ and

H2 [103]. The ion was first observed in a mass spectrum in the 1950s and later shown

to dissociate upon neutralization by charge exchange [104]. However, it has only

been within the past 10 years that Oka and co-workers were able to measure its high

resolution infrared spectrum [105]. The highly fluxional character of the CH+
5 zero-

point wave function and the “quantum deconstruction” of the IR spectrum using a

global potential energy surface (PES) was recently reported [106]. The H atoms freely

exchange by passage over low energy isomerization barriers of Cs and C2V symmetry.

The neutralization of CH+
5 by dissociative recombination with free electrons is of

importance in astrophysics, and there has been some controversy about the product

branching ratios from ion storage ring and flowing afterglow measurements [107,108].

From a fundamental perspective the attachment process serves as a probe of the

nascent phase space of CH+
5 .

In the current work, the product branching ratios in the dissociative charge ex-

change (DCE) of CH+
5 with Cs are examined and compared to predictions using qua-

siclassical trajectory calculations on accurate ab initio potential energy surfaces. In

these experiments, fragment channels 9.1 and 9.2 are detected in coincidence, yielding

product kinetic energy release (KER) distributions and the branching ratios.

CH5 → CH4 + H (9.1)
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CH5 → CH3 + H2 (9.2)

Figure 9.1: Energy level diagram showing the two energetically accessible dissociation
limits of CH5 and where on the neutral surface the CH5 is formed via DCE with Cs.
The three-body dissociation limit is nearly resonant with the 3S state and was not
observed

The comparison with theory provides experimental evidence for the fluxional na-

ture of CH+
5 . The experimental apparatus has been described elsewhere and will

only be discussed briefly [109]. CH+
5 was formed with a pulsed discharge in a super-

sonic expansion (1 kHz) with a 1:9:60 CH4/Ar/H2 mixture. This source is expected

to produce CH+
5 with a rotational temperature of 20-60 K and a vibrational tem-

perature less than 1660 K as discussed further in the Supporting Information (SI).

The cations were skimmed, accelerated to 16 keV, and massselected by time-of-flight.

Before reaching the Cs cell all ions with the exception of CH+
5 are deflected. The

transient CH5 is formed when it is passed through an ∼ 1mm3 interaction region

197



9 CH+
5 /CH5

containing ∼ 1 × 10−5 Torr of Cs. Remaining CH+
5 is deflected into an ion detector.

The neutral fragments fly ∼ 110 cm to a multiparticle time and position-sensitive de-

tector. Using this information along with the parent mass and ion beam velocity, the

fragment masses and center-of-mass KER of each dissociation channel can be calcu-

lated, yielding experimental N(KER) distributions. These experimental distributions

are corrected to yield P(KER) probability distributions by accounting for any loss of

products owing to the kinematics as discussed in the Supporting Information (SI).

Integration of the P(KER)s over KER yields product branching ratios from a single

data set.

To simulate the experiment, quasiclassical trajectory (QCT) calculations were

performed in the classical Franck-Condon approximation, i.e., by making vertical

transitions from the CH+
5 phase space to CH5 using an ab initio PES for CH5 [67]. The

CH+
5 phase space was obtained from trajectories with the quantum zero-point energy

of roughly 11000 cm−1 on an ab initio CH+
5 PES [110]. In addition to these vertical

trajectories, two other batches were run with initial kinetic energy to be consistent

with the experiment for the “resonant” and “nonresonant” cases, as described below

and in detail in the SI. Product branching ratios, internal energy distributions, and

the KER distributions were obtained from roughly 25000 trajectories with zero total

angular momentum for each of these cases. For diagnostic purposes, trajectories

were also performed at the CH+
5 equilibrium geometry with standard normal mode

sampling of initial conditions appropriate for a semirigid molecule [66] for both the

vertical transition and the nonresonant case.

Experimentally, the neutral CH5 is formed slightly (∼ 0.1eV) above the predicted

energy of the 3S Rydberg state [111], rather than directly on the ground neutral
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surface, as assumed in the calculations. The transition to the neutral surface is

assumed to be vertical. The two lowest dissociation channels are nearly isoenergetic

as shown in Figure 9.1 . Although H2 loss is kinematically more favorable to detect,

H atom loss is found to be the dominant dissociation channel.

The difference in energy between the ground vibrational state of CH+
5 + e− and

the dissociation limit of CH4 + H from the present PESs is 8.0 eV, in agreement with

the experimental estimate of 8.0± 0.5 eV [112]. (This is further discussed in the SI.)

For the case of resonant charge exchange with Cs, the neutral is formed 3.9 eV below

the cation, yielding a maximum KER (KERmax) of 4.1 eV, approximately the same

for both product channels.

However, the experimentally observed KERmax is ∼ 5eV. This may be a result of

some vibrational excitation in CH+
5 as well as nonresonant charge exchange [113] lead-

ing to the production of neutral states above the resonant level. Experimentally, the

branching ratio is 11± 2 : 1, for H loss to H2 loss. The results from the three batches

of trajectories described above using the correct “fluxional” phases pace sampling of

CH+
5 are 14:1 (vertical), 11:1 (resonant), and 9:1 (nonresonant) in very good accord

with the experiment. The results from standard mode sampling are 34:1 (vertical)

and 18:1 (nonresonant) which are not in agreement with experiment. This result

provides a strong consistency argument for the fluxional nature of the parent CH+
5

cation determining the experimental branching ratio.

The P(KER) for the dominant channel, CH4 + H, is shown in Figure 9.2(a),

along with the theoretical prediction. Both exhibit a peak with a shoulder at lower

energy. It is clear that most of the energy goes into internal excitation (vibrational

and rotational) of the CH4, as shown by the small probability for products at KERmax.
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Figure 9.2: (a) P(KER) distribution for CH5 → CH4 + H and (b) CH5 → CH3 +
H2. The open circles represent the experimental KER, while the solid line is the
theoretical KER
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The P(KER) for the molecular hydrogen loss channel is shown in Figure 9.2(b).

This channel exhibits a bimodal distribution, with peaks at 1.0 and 2.9 eV. The

theoretical KER peaks at approximately 2.8 eV but does not reveal the bimodal

distribution seen experimentally; however, a shoulder at around 1.3 eV is observed.
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Figure 9.3: Classical HH bond length distribution of CH+
5 with zero-point energy

(dashed curve) and magnified part of that distribution that correlates with the CH3

+ H2 products. The shoulder near 2.0 Bohr corresponds to the H2 moiety, whereas
the peak at 3.5 Bohr corresponds to the HH distances with H atoms in the CH3 group.

The explanation for this shoulder comes from consideration of the HH bond length

distribution in the parent CH+
5 and more significantly the portion of that distribution

that correlates with CH3 + H2 products; both are shown in Figure 9.3. The full

classical distribution, which agrees well with quantum diffusion Monte Carlo calcula-

tions [41], is bimodal with a short bond length corresponding to the H2 moiety in CH+
5

and a long bond length arising from the other HH distances. The distribution corre-

lating with CH3 + H2 shows a larger contribution from the short HH distance than
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the long one. Examination of the trajectories leading to highly vibrationally excited

H2 indicates a greater contribution from the large HH bond length in the correlated

distribution than from the short HH bond length. It is important to note that the

corresponding correlated distribution from the normal mode sampling is unimodal for

both the vertical and nonresonant cases with a peak at the HH moiety equilibrium

distance. Also the corresponding CH3 + H2 P(KER) for the nonresonant case shows

less probability at low KER than that seen for the theoretical P(KER) with fluxional

phase space sampling shown in Figure 9.3. The vibrational distributions of CH3 and

H2 are shown in the SI.

QCT calculations are not exact dynamics, and there are also uncertainties in the

CH5 PES. However, both represent the current, feasible state-of-the-art calculations

for a problem this complex. With these caveats in mind, the agreement between the

experimental and theoretical branching ratios provides evidence that the quantum

mechanically predicted fluxional nature of CH+
5 [41] is responsible for the experimental

branching ratio. However, the lack of quantitative agreement between the calculations

and experiment for the more dynamically detailed KERs, in particular, the bimodal

distribution in the CH3 + H2 channel, may indeed result from these caveats. Neglect

of the coupling of the 3S Rydberg state to the ground electronic state in the present

calculations may also play a role in the discrepancy.

DCE experiments on selected isotopologues of CH+
5 , namely CD3H

+
2 , CD4H

+, and

CD+
5 , have also been performed. Comparison of those results with QCT simulations

will be reported and discussed in a later publication.
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Supporting Information Available: Branching ratio calculations; detection ef-

ficiency; ion temperature; details of QCT calculations and energetics. This material

is available free of charge via the Internet at http://pubs.acs.org.

9.2 Supporting Information

In the supporting information, several issues will be clarified from both an experimen-

tal and theoretical perspective. Experimentally, the temperature of the CH+
5 formed

in the pulsed discharge supersonic expansion ion source will be discussed, followed

by the procedure used to extract the product branching ratios. Theoretically, further

details concerning the energetics and the quasiclassical trajectory (QCT) calculations

and results are presented.

9.2.1 Experimental

CH+
5 Temperature Accurate knowledge of the vibrational and rotational distri-

butions in the cation beam is necessary to determine the total available energy for

the dissociation and assign the features observed in the kinetic energy release (KER)

spectra. In the case of the dissociation of CH5, there are no peaks in the KER

that can be assigned to vibrational or rotational excitation in the cation, so the

temperature of CH+
5 cannot be determined directly. However, the dissociative charge

exchange (DCE) of O+
2 with Cs and the DCE of H+

3 with Cs can be used to determine

the vibrational temperatures for different vibrational frequencies of ions produced in

the pulsed discharge supersonic expansion. In addition, spectroscopic studies of H+
3
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formed in a similar ion source can provide an estimate of the rotational temperature.

The DCE of O+
2 with Cs is used to calibrate the detector [114] in these exper-

iments. The dissociation dynamics of the DCE of O+
2 with Cs have been studied

previously [115, 116] and have shown that the vibrational distribution of the cation

can be correlated to peaks in the KER of the neutral dissociation. A thorough study

of the vibrational distribution of the O+
2 beam was carried out by Petrignani and

coworkers in 2005 [117]. In that experiment the ions were generated in different vi-

brational populations, neutralized by Cs and their KER measured. The P(KER) for

the DCE of a 16 keV beam of O+
2 with Cs, which was collected as a calibration file

for the data presented in this work, is shown in Figure 9.4 . The KER at 16 keV

shows the most vibrational excitation observed in the O+
2 /Cs spectra collected on

this apparatus, and its temperature is taken as an upper limit for the 1904.7 cm−1

harmonic frequency of O+
2 . It should be noted that the KER shown in Figure 9.4

actually has less vibrational excitation than the coldest spectrum collected by Petrig-

nani et al [117]. The main feature of the O2 KER are the peaks at 1.06 and 1.15

eV, corresponding to the dissociation of the low-lying Rydberg states of O2 shown in

reactions 9.3 and 9.4 below:

O+
2 (X2Πg, ν = 0)

Cs−→ O∗
2(3sσ

3Πg, ν = 0) → O(3P ) + O(1D) + KER (9.3)

O+
2 (X2Πg, ν = 0)

Cs−→ O∗
2(3sσ

1Πg, ν = 0) → O(3P ) + O(1D) + KER (9.4)
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Figure 9.4: The P(KER) of DCE of O2 with Cs. The * marks the location of the
dissociation resulting in ν = 1 excitation in O+

2

In order to determine an approximate temperature for the O+
2 beam, the spectrum

between 0.5 and 1.5 eV was fit to four Gaussian distributions, one each for the peaks

at 1.06 eV, 1.15 eV, one for the dissociation of the O∗
2(3sσ

3Πg, ν = 1) peaked at

∼ 1.3 eV, and one for the background. The fits of the first and third Gaussian were

integrated and a beam temperature of 710 K was obtained by using a Boltzmann

distribution. The fit assumed that the only two vibrational states of the cation to

contribute to the spectrum were the ν = 0 and ν = 1 states. At the calculated beam

temperature, 98% of the O+
2 is in the ν = 0 state, while 2% is in the ν = 1 state.
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The 3-body dynamics of the dissociation from DCE of H+
3 with Cs has also been

studied on this apparatus and the results presented in a previous publication [113],

so the KER will not be shown here. The KER of this dissociation shows a peak at

1.5 eV corresponding to overlapping contributions of vibrational excitation in the ν1

(3178 cm−1) [118] and ν2 (2521 cm−1) [119] modes of H+
3 . A similar treatment to

that followed for O+
2 was applied to recent data for 16 keV H+

3 /Cs, with the further

assumption that only the higher energy vibration ν1 = 1 contributes. This provides

an upper limit to the vibrational temperature for this mode of 1660 K. It should also

be noted that McCall and co-workers [120] have used an ion source almost identical

to the one used in this experiment in order to produce rotationally cold (20-60 K)

H+
3 . The dependence of the rotational temperature on source conditions was studied

by changing several parameters and was insignificant.

The O+
2 /Cs and H+

3 /Cs experiments provide evidence for vibrational temperatures

of 710 K (1872 cm−1), 1660 K (3178 cm−1) and a rotational temperature of ∼ 40 K.

CH+
5 has twelve normal modes of vibration, 200, 839, 1297, 1303, 1478, 1500, 1587,

2418, 2708, 3001, 3133, and 3224 cm−1 [110]. The average thermal excitation energy

in CH+
5 can be calculated using the sum of the average energy of each normal mode

in the separable harmonic approximation. As noted in the manuscript, excess en-

ergy of 0.9 eV was added to the QCT calculations to match the experimental KER.

If all of this excess energy derived from vibrational excitation in the cation as op-

posed to near-resonant charge exchange, it would imply a vibrational temperature of

1840 K, which is likely in excess of the true cation temperature. Lower frequency

vibrations are expected to relax more efficiently in a supersonic expansion and a rea-

sonable model for the vibrational excitation would use the 40 K rotational tempera-
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ture as a lower limit on the vibrational temperature, with the temperatures scaling

quadratically with vibrational frequency using the experimental points at 1872 cm−1

and 3178 cm−1 discussed above. This fit yields a CH+
5 internal energy an order of

magnitude lower ∼ 0.09 eV. This treatment ignores possible chemical variations in

vibrational relaxation in the source. However, coupled with the relative insensitivity

of the QCT branching ratios to this CH+
5 internal energy, these considerations lead us

to conclude that ambiguity concerning the initial state of the cation in the experiment

is not a significant issue.

Product Branching Ratios Both channels are collected simultaneously and the

same data set is used to determine the branching ratio. Descriptions of the calcu-

lations for the fragment masses, center-of-mass velocity, and kinetic energy release

have been described elsewhere [114]. The parent and fragment masses are set for a

specific channel. The centroid for each dissociation event is calculated in terms of the

position-of-arrival of the center-of-mass at the detector in each dimension, x, y, and

z, where x and y are on the face of the detector and z is in the direction of the beam.

The centroid is based on the conservation of momentum between the two particles,

for example in the z coordinate:

zcentroid =

j
∑

i=1

mi · νz,i (9.5)

Here, j is the number of fragments, mi is the assigned mass, and νz,i is the center-of-

mass velocity in the z direction. In order to separate the two channels, assuming that

the dissociation is prompt, the events that are associated with the assigned fragment

masses will have centroid values between ±1 mm, while dissociation events associated
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with the other fragmentation channel and false coincidences will be outside this range.

The fragment mass distribution is calculated using the three-dimensional recoil radius

at the detector and the parent mass by the following equations

mcalc,2 = M · d1

d1 + d2

(9.6)

where di is given by the equation:

di =
√

x2
i + y2

i + z2
i . (9.7)

The mass of the other particle, mcalc,1, is determined in a similar manner with an

error of m/∆m = 32 at 16 amu. In the case of CH5, a plot of the calculated fragment

mass for all particles shows peaks at 1, 2, 15, and 16 amu, consistent with the two frag-

mentation channels observed. Calculated masses between the FWHM of the assigned

fragment mass are assigned to belong with the appropriate channel. The experimental

KER distribution, given by, NE
n (KER), where n is the dissociation channel, over the

range of 0-5 eV for data falling within the centroid and mass ranges previously stated

is obtained. As discussed in the paper, the kinematics of the dissociation causes some

fragments to miss the detector [121]. A corrected Pn(KER) distribution, taking this

into account, is determined using a Monte Carlo simulation of the experiment for a

constant KER distribution over the same range as the experiment. From the sim-

ulation the NMC
n (KER) distribution is obtained. The detector-acceptance function

(DAF) corrected Pn(KER) is calculated by the following equation:

Pn(KER) =
NE

n (KER)

NMC
n (KER)

· η. (9.8)
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In this equation, η is a normalization factor, taken as the maximum intensity

of the NMC
n (KER). This assumes that 100% of the particles will be detected at the

maximum intensity of the NMC
n (KER) distribution. Once a Pn(KER) is obtained for

each channel, the branching ratio (BR) is calculated using the following equation:

BR =

∫ 5eV

0
P1(KER)dKdKER

∫ 5eV

0
P2(KER)dKER

(9.9)

The Pn(KER) of each channel are integrated and the ratio of the integration

between the two channels is the branching ratio.

The other significant question experimentally involves the detection efficiency for

the neutral products with the microchannel-plate-based time- and position-sensitive

detector. At a beam energy of 16 keV, the laboratory energies of the CH4, CH3,

H2 and H products are 15060, 14120, 1880, and 940 eV, respectively. The difference

between the energies of H2 and H laboratories energies is the largest, and the detection

efficiencies of these would be the most likely source of error. However, examination

of the work of Peko and Stephen [122] indicates that at lab energies approaching

1000 eV the detection of both H and H+
2 converge to approximately equal detection

efficiencies. H2 was not specifically measured in this study, however, H−, H and H+

were and all of the detection efficiencies for these species also saturated ∼ 1000 eV.

Thus, the detection efficiency of this experiment for H and H2 should be nearly the

same and will not significantly effect the branching ratio calculation.

9.2.2 Theoretical

Energetics Energetics from the potential energy surface (refs. 67 and 110) that

lead to the adiabatic electron attachment energy are given in Figure 9.5.
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Figure 9.5: Schematic of the potential and zero point energies (in eV) of CH+
5 , CH5

and products CH4 + H, CH+
3 + H2 from the potential energy surfaces. The CH+

5 zero
point energy (ZPE) is relative to the CH+

5 global minimum, and the neutral products
harmonic ZPEs are relative to CH4(eq) + H. The vertical attachment energy from
the minimum of the CH+

5 PES to the neutral PES is 4.45 eV and the energy at that
geometry on the neutral PES is 3.39 eV relative to CH4(eq) + H. Thus the adiabatic
attachment energy from the PESs ≈ 8.0 eV for either product
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The initial conditions for the three sets of quasiclassical trajectory calculations

were obtained as follows. First trajectories were run for CH+
5 with zero total angular

momentum and with the approximate quantum zero point energy of 11000 cm−1 to

establish the associated phase space in Cartesian coordinates and momenta, denoted

ρ(p,q). (The trajectories were “equilibrated”, i.e., run long enough to sample the

minima of the highly fluxional CH+
5 and the distribution of HH bond lengths, shown in

Figure 9.3, was obtained from the CH+
5 phase space distribution.) CH5 trajectories for

the “vertical” case were initiated with coordinates and momenta sampled from ρ(p,q).

For example, from Figure 9.5 the value of the potential is 3.39 eV (corresponding to

the geometry of the CH+
5 global minimum) and the value of the initial kinetic energy

would be the CH+
5 zero-point energy, 1.41 eV for a total energy of 4.8 eV. For the

resonant case we need to account for the energy released in the charge exchange with

Cs. This energy is the difference between the “energy gap” (EG), defined as the

difference between the CH+
5 and CH5 electronic energies from the respective PESs

at q and the ionization potential of Cs, 3.9 eV. In the example in Figure 9.5 this

would result in an additional kinetic energy of 0.55 eV for a total energy of 5.35 eV.

Then, subtracting the ZPE of the CH4 + H products results in a maximally observed

“available energy” in relative kinetic energy of 4.1 eV. Finally, for the non-resonant

case, which gives a maximum available energy of ∼ 5 eV due to non-resonant effects

as discussed in the text a final adjustment to the initial kinetic energy was to add 0.9

eV to it. This was done by a simple scaling of the initial momenta. Thus the total

initial energy of the CH5 trajectories was 6.25 eV not 5.35 eV. Note that because

EG varies somewhat with q the total energies of the 25000 trajectories run for the

fluxional CH+
5 phase space are distributed narrowly about the value of 6.25 eV with
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a FWHM of roughly 0.25 eV.
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Figure 9.6: Vibrational distribution of H2 (solid curve) and CH3 (dashed curve) for
the minor channel CH3 + H2. The energies are measured relative to the minimum of
the respectively separated molecular potentials

Classical vibrational distributions were obtained for the products of the minor

channel CH3 + H2 and these are given in Figure 9.6. (Note the zero point energies of

H2 and CH3 are approximately 0.3 eV and for 0.9 eV, respectively.) The tail of the

H2 distribution at high energies is due mainly to initial HH distances that are larger

than 2.5 Bohrs.

9.3 Additional Information

Here are some details for the QCT calculations of the dissociative charge exchange of

CH+
5 .
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To simulate the experiments, quasiclassical trajectory (QCT) calculations were

performed in the spirit of Frank-Condon approximation, using the ab initio PESs

for CH+
5 and CH5. Initial conditions were determined from the CH+

5 phase space,

obtained from trajectories with the quantum zero-point energy of roughly 11000 cm−1.

Since the experiments conditions are a little complicated and the experimentalists

claimed that CH+
5 charge exchange may occurred in both resonant and near resonant

cases, for testing purpose, we simulate the whole process with some difference in

charge exchange process. These processes include semi-rigid sampling, direct jumping,

resonant and near-resonant models as discussed in the following sections.

9.3.1 Semi-Rigid Sampling

For semi-rigid sampling model, all the initial CH+
5 geometries are put at the global

minimum (Cs(I)) structure, then a standard normal mode sampling scheme is applied

to all these geometries on the cation surface. After this is done (the p and q are

determined), the potential energy surface is switched to the neutral surface (CH5),

and the trajectories propagate there.

Tab. 9.1 shows some main parameters and results for this simulation.

Table 9.1: Key parameters for semi-rigid sampling simulation

TNT1 NT(CH4 + H)2 NT (CH3 + H2)
3 Branching Ratio

1000 977 23 42.5

1 Total number of trajectories
2 Trajectories giving CH4 + H
3 Trajectories CH3 + H2

As can be seen from Tab. 9.1, the dissociation of nascent CH5 are mainly CH4 + H.
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9.3.2 Direct Jumping

The semi-rigid Sampling model is not very close to the real experimental conditions,

though it reveals that CH4 + H channel is more favored to the CH3 + H2 channel.

The second case we tested is so called direct jumping model. In this model, initially,

all the CH+
5 are sampled as that in “semi-rigid” case. Instead of jumping to the

neutral surface directly, the trajectories are first propagated on the cation surface

for 2000 steps to represent the correct CH+
5 ground state phase space. Then, all

the trajectories jump to the neutral surface. The geometry and momentum for each

jumping CH+
5 are kept on the neutral surface. Then those trajectories propagate until

dissociation.

Tab. 9.2 shows some key parameters and the branching ratio for the reaction.

Table 9.2: Key parameters for direct jumping simulation

TNT1 NIS2 NITES3 NT(CH4 + H)4 NT(CH3 + H2)
5 Branching Ratio

50,000 50 1,000 46,725 3,275 14.3

1 Total Number of Trajectories
2 Number of independent simulations
3 Number of independent trajectories in each simulation
4 Number of trajectories giving CH4 + H
5 Number of trajectories giving CH3 + H2

One direct comparison between the experiment results and theoretical simulation

is the kinetic energy release (KER) distribution which is the sum of the relative

translational energy of the two fragments in the products.

The KER distributions capture some features of the experimental ones, but the

may be not quite similar to the experiments considering the energy conservation in

the experiments. In the experiments, the free electron is supposed to come from the
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Figure 9.7: Kinetic energy release (KER) distribution for the two channels.

Cs atoms, considering the ionization energy of Cs atom which is roughly 3.9 eV, this

energy should somehow come from the energy gap between the two potential energy

surface at the jumping position. To get some idea on this energy gap, we define the

potential energy gap between the cation (CH+
5 ) and neutral (CH5) at the jumping

position as EG, then, we can get the EG distribution for the two channels and they

are shown in Fig. 9.8. These two EG distribution should be the same and they reveals

the energy difference between the two potential energy surfaces.

It’s clear from the distributions that the energy gap is almost always great than

the Cs ionization energy.

Associated with the energy gap and kinetic energy release, it is useful to obtain

some other energy distributions for the products to understand more on the CH5

dissociation.

Fig. 9.9 is the translational energy (TE), vibrational energy (VE) and rotational

energy (RE) distributions for the CH3 and H2 fragments in the products. From these

distributions, we can see that the both CH3 and H2 are vibrational excited, and H2
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Figure 9.8: Energy gap (EG) distribution for the two channels. (a) is the EG distri-
bution for H + CH4 channel and (b) is for H2 + CH3 channel.

is rotationally hot.

Fig. 9.10 is the various energy distributions for both CH4 and H in the CH4 + H

channel. Similarly, the CH4 is vibrationally excited.

One of the goals of the experiments on this project is to explore the fluxional

nature of CH+
5 , and also for the simulation. There are some DMC work done by

McCoy on CH+
5 , and here we want also get the various bond length distributions in

CH+
5 as shown in Fig. 9.11. It clearly shows that the five H atoms are scrambled in

CH+
5 from Fig. 9.11 (a), but these H atoms are classified into two main groups as seen

from Fig. 9.11 (b). One group H atoms are closed to each other and the H atoms in

the other groups are loosely gathered.

Since there are mainly two groups on H atoms in CH+
5 , one consequent interesting

issue is which group does the H2 in CH3 + H2 channel comes from. If we label all the

five H atoms in CH+
5 and trace back the two H atoms in the final products H2 to the

nascent CH5, and then get the bond length distribution of the two H atoms in the

nascent CH5 and draw the plot as shown in Fig. 9.11 (c), we can see that almost all
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Figure 9.9: CH3 and H2 translational energy (TE), vibrational energy (VE) and
rotational energy (RE) distributions from channel CH3 + H2 in the direct jumping
model.
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Figure 9.10: CH4 translational energy (TE), vibrational energy (VE) and rota-
tional energy (RE) distributions and H translational energy distribution from channel
CH4 + H in the direct jumping model.
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Figure 9.11: Bond length distribution for the CH+
5 at the jumping position. (a) is the

bond length distribution for all the bonds in CH+
5 , (b) is the bond length distribution

for all the HH bonds and (c) is the bond length distribution for those HH pairs which
finally appear in the products of the channel CH3+H2.

the H2 are from the short HH distance group in CH+
5 . Here we should note that, the

short HH distance group in CH+
5 may not be the original diatomic part HH in CH+

5 .

This reveals the fluxional nature of CH+
5 and also that the five H atoms in CH+

5 are

not identical.

9.3.3 Resonant Case

In the CH+
5 charge exchange dissociation experiment, both resonant and near-resonant

cases are possible. For resonant case, we suppose that potential energy gap all goes

into the nascent CH5 except for the energy to ionize Cs atom which is about 3.9

eV. Consequently, the sampling of the CH+
5 phase space is the same as in the direct

jumping case. The only difference in the algorithm is the energy difference between

energy gap and Cs ionization energy is treated as some extra kinetic energy for the

nascent CH+
5 .

Tab. 9.3 shows some key parameters for this simulation and the main difference

between this case and direct jumping model is the branching ratio decreasing.
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Table 9.3: Key parameters for resonant case simulation

TNT1 NIS2 NITES3 NT(CH4 + H)4 NT(CH3 + H2)
5 Branching Ratio

50,000 50 1,000 45,847 4,124 11.1

1 Total Number of Trajectories
2 Number of independent simulations
3 Number of independent trajectories in each simulation
4 Number of trajectories giving CH4 + H
5 Number of trajectories giving CH3 + H2

Fig. 9.12, 9.13, 9.14, 9.15, 9.16 show the similar distributions to those in the direct

jumping model.
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Figure 9.12: Kinetic energy release (KER) distribution for the two channels.

9.3.4 Non-Resonant Case

Experiments always have intrinsic complexity. Except for the pure resonant case, the

near-resonant case is also possible. Different from resonant case, in the near-resonant

case, the nascent CH5 is not in its ground state, but in the so called 3S Rydberg

state which is energetically slightly higher than the ground state Ch5. To simulate

this case, an extra energy about 0.9 eV is added to the trajectories as kinetic energy
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Figure 9.13: Energy gap (EG) distribution for the two channels. (a) is the EG
distribution for H + CH4 channel and (b) is for the H2+CH3 channel.

comparing to the “resonant” case, and all the other steps are essentially the same as

the “resonant” model.

Tab. 9.4 shows some key parameters for this simulation and the main difference

between this case and resonant model is the branching ratio decreasing.

Table 9.4: Key parameters for Near-Resonant Case simulation

TNT1 NIS2 NITES3 NT(CH4 + H)4 NT(CH3 + H2)
5 Branching Ratio

25,000 50 500 22,303 2,510 8.9

1 Total Number of Trajectories
2 Number of independent simulations
3 Number of independent trajectories in each simulation
4 Number of trajectories giving CH4 + H
5 Number of trajectories giving CH3 + H2

Fig. 9.17, 9.18, 9.19, 9.20, 9.21 show the similar distributions to those in the

resonant model.

For the three models (direct jumping, resonant and near-resonant), the nascent

CH5 got more and more kinetic energy, and as shown in the Tab. 9.2, 9.3 and 9.4, the
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Figure 9.14: CH3 and H2 translational energy (TE), vibrational energy (VE) and
rotational energy (RE) distributions from channel CH3 + H2 in the direct resonant
model.

222



9 CH+
5 /CH5

CH4 TE cm−1

0 500 1000 1500 2000

P
op

ul
at

io
n

(a) CH4 TED

H TE cm−1

0 10000 20000 30000

P
op

ul
at

io
n

(b) H TED

CH4 VE cm−1

10000 20000 30000 40000

P
op

ul
at

io
n

(c) CH4 VED

CH4 RE cm−1

0 1000 2000 3000 4000 5000

P
op

ul
at

io
n

(d) CH4 RED

Figure 9.15: CH4 translational energy (TE), vibrational energy (VE) and rota-
tional energy (RE) distributions and H translational energy distribution from channel
CH4 + H in the resonant model.
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Figure 9.16: Bond length distribution for the CH+
5 at the jumping position. (a) is the

bond length distribution for all the bonds in CH+
5 , (b) is the bond length distribution

for all the HH bonds and (c) is the bond length distribution for those HH pairs which
finally appear in the products of the channel CH3+H2.
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Figure 9.17: Kinetic energy release (KER) distribution for the two channels.
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Figure 9.18: Energy gap (EG) distribution for the two channels. (a) is the EG
distribution for H + CH4 channel and (b) is for the H2+CH3 channel.
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Figure 9.19: CH3 and H2 translational energy (TE), vibrational energy (VE) and
rotational energy (RE) distributions from channel CH3 + H2 in the near-resonant
model.
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Figure 9.20: CH4 translational energy (TE), vibrational energy (VE) and rota-
tional energy (RE) distributions and H translational energy distribution from channel
CH4 + H in the near-resonant model.
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Figure 9.21: Bond length distribution for the CH+
5 at the jumping position. (a) is the

bond length distribution for all the bonds in CH+
5 , (b) is the bond length distribution

for all the HH bonds and (c) is the bond length distribution for those HH pairs which
finally appear in the products of the channel CH3+H2. The dashed line in (c) is the
potential energy curve for H2.

branching ratio is decreasing as the initial kinetic energy increases. In addition, the

KER distribution as shown in Fig. 9.7, 9.12 and 9.17 is moving slightly right, and

the shoulder on the lower KER site is increasing. This may caused by the more and

more excitation of the vibrational state of H2 and CH4/CH3.

Interestingly, for the source of H2 of channel CH3 + H2, as the kinetic energy

increases, the portion of H from the large HH distance H group in CH+
5 is increasing.

9.4 DMC Calculation on CH5
+ and its Isotopomers

There some several low lying structure of CH+
5 according to the newly developed

global potential energy surface [110], Fig. 9.22 shows the global minimum structure

of CH+
5 which is often denoted as Cs(I) geometry.

As labeled in Fig. 9.22, the five H atoms are not identical in the global minimum

structure of CH+
5 . The bond length between H(2) and H(3) is the shortest distance

among all the bond lengths in CH5
+ as shown in Tab. 9.5, and we call H(2)-H(3) as

the diatomic part in CH+
5 and the other three H atoms as tripod part.
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Figure 9.22: CH+
5 global minimum Cs(I) geometry

Table 9.5: Bond distances in CH+
5

Bond Distance (Å)

R12 2.0382
R13 1.4437
R14 1.7912
R15 1.7912
R16 1.1084
R23 0.9517
R24 1.7187
R25 1.7187
R26 1.1965
R34 1.9432
R35 1.9432
R36 1.1973
R45 1.8797
R46 1.0884
R56 1.0884
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To study the geometries of CH+
5 and its various isotopomers, standard diffusion

Monte Carlo method is performed. Tab. 9.6 lists zero-point energies of various CH+
5

isotopomers. In addition, the D position effect is also studied and shown in Tab. 9.6.

In most of the DMC simulations, we initiated 10 independent trajectories, and there

are about 20000 walkers in each trajectory and propagated in the imaginary time for

5000 steps.

Table 9.6: Zero-Point energy (cm−1) of CH+
5 , CHD+

4 and CD3H
+
2 from the DMC

simulation

isotope H Position ZPE (cm−1)

CH+
5 10914 ± 12

CD+
5 8049 ± 8

CD4H
+ H: 2 8570 ± 9

CD4H
+ H: 3 8568 ± 11

CD4H
+ H: 1 8608 ± 5

CD4H
+ H: 4 8662 ± 6

CD4H
+ H: 5 8666 ± 11

CD3H
+
2 H: 2, 3 9089 ± 7

CD3H
+
2 H: 1, 3 9105 ± 12

CD3H
+
2 H: 2, 4 9163 ± 11

CD3H
+
2 H: 2, 5 9157 ± 14

CD3H
+
2 H: 1, 2 9181 ± 9

CD3H
+
2 H: 3, 4 9195 ± 6

CD3H
+
2 H: 3, 5 9184 ± 9

CD3H
+
2 H: 1, 4 9195 ± 18

CD3H
+
2 H: 1, 5 9216 ± 15

CD3H
+
2 H: 4, 5 9297 ± 14

From Tab. 9.6, it is clear that the more the D atoms, the lower the zero-point

energy, and there are some preference for the H atom positions. In the case of

CD4H
+, the energy when H is in the position 2,3,1 has relative lower energy then

those configurations where H is in the 4 and 5 position. Similarly, when the two H
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atoms are in the position 2,3 seems has the lowest ZPE comparing to all the other

CD3H
+
2 configurations.
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Figure 9.23: CH+
5 and CD+

5 bond length distributions from the DMC simulation

All the internal bond length distribution of CH+
5 and CD+

5 are shown in Fig. 9.23.

Comparison between Fig. 9.23(a) and Fig. 9.23(b) may reveal that the D atoms in

CD+
5 are more localized than the H atoms in CH+

5 .

The bond length distribution of four deuterated CH+
5 (CD4H

+) is shown in Fig. 9.24.

Comparing to the initial bond length of CD4H
+, we may conclude that the H atom

tends to gather together with an D atoms and forms the diatomic part in CD4H
+, and

this is verified from the long time DMC trajectories (30000 steps for each trajectory)

as shown in Fig. 9.25.

For the triple deuterated CH+
5 (CD3H

+
2 ), all the bond length distributions from

the DMC simulation are shown in Fig. 9.26 and Fig. 9.27. One of the conclusion can

be drew from these distribution is that the two H atoms tend to gather together to

form the diatomic part and the three D atoms prefer to constitute the tripod part in

CD3H
+
2 .
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Figure 9.24: CD4H
+ bond length distributions from the DMC simulation
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Figure 9.25: CD4H
+ bond length distributions from the long DMC simulation

The long time DMC trajectories (30000 steps in each trajectory) results shown in

Fig. 9.28 confirm this result.

9.5 PIMC Study of the Geometry of CD3H
+
2

DMC provides an good method to get the grand state property of the molecule, with

the assumption that the temperature is in 0 K. In addition to DMC, path integral

Monet cargo (PIMC) provides an alternate method to add the temperature effect.

Here we just study the CD3H
+
2 in two temperature (30 K and 300 K) using PIMC

method and the bond length distributions are shown in Fig. 9.29. Note that in these

simulations, the initial positions of the two H atoms are at site 2,3 and 4,5 which

means that the initial H atoms can be in both diatomic part and tripod part. There

two choice of initial configurations may reveal the migration or scrambling of H and

D atoms in CD3H
+
2 .

As can be seen in Fig. 9.29(a) and 9.29(b) which is the case in 300 K, all the

HH/HD/DD bond length distributions are quite similar. This may indicate that at
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Figure 9.26: CD3H
+
2 (H:12,H:13,H:14,H:23) bond length distribution from the DMC

simulation
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Figure 9.27: CD3H
+
2 (H:24,H:34,H:45) bond length distributions from the DMC sim-

ulation
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Figure 9.28: CD3H
+
2 bond length distributions from long time DMC trajectories.

The initial configuration for (a) is from the global minimum structure and the initial
configuration for (b) is from the Cs(II) geometry.

300 K, all the atoms are scrambled. However, when the temperature drops to 30 K,

the bond length distribution changes to Fig. 9.29(c) and 9.29(d). By analyzing the

bond length distribution, it is not difficult to see that the structure looks like that HH

diatomic part is rotating around an axis which pass through the plane of the three D

atoms and the carbon atom. This information may suggest that if the nascent CD3H2

was produced by the charge exchange of CD3H
+
2 at low temperature such as 30 K,

the probability for the dissociation into CD3 + H2 may enhanced.
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Figure 9.29: CD3H
+
2 Bond length distribution from the PIMC simulations (300, 30K)
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+/H3O

H3O
+, or Hydronium is the simplest type of oxonium ion. Together with water (H2O),

they are of greatest interest in interstellar space, hence the charge exchange reaction

of H3O
+ to become H3O and further dissociation into H2O is of particular interest

and importance.

10.1 Experimental Work

Similar to the charge exchange reactions of CH+
5 as performed at UCSD, another

charge exchange reaction as following

H3O
+ + e → H3O → H2O + H (10.1)

was performed. The electron e in the reaction 10.1 was from the ionization of Cs

atom as

Cs → C+
s + e. (10.2)

Theoretically, there are at least two possible dissociation channels for H3O. One

is shown in Eq. 10.1, and the other is

H3O
+ + e → H3O → H2 + OH. (10.3)

It can be seen from the reaction energetics shown in Fig. 10.1 that both channels

for H3O dissociation are energetically accessible.

To understand the dissociation of the nascent H3O molecules, the kinetic energy

release of the products was measured and shown in Fig. 10.2.
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Figure 10.1: Experimental H3O
+/H3O energy levels
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Figure 10.2: H3O experimental kinetic energy release spectrum at 16 keV
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As is known, the total energy of the nascent H3O is distributed as the internal

energy of the products and also as the translational energy of the products or the

kinetic energy release. Under the assumption that the total initial energy of H3O is

constant, once the kinetic energy release (KER) is measured, the internal energy of

the products can be known.

From the experiments, it can be seen that most of the products of the dissociation

of H3O are H + H2O. Considering the single atom nature of H atoms, all the internal

energy is in the H2O molecule. Consequently, the KER spectra should be the mirror

image of the H2O internal energy distribution.

From the KER spectra of H3O → H + H2O, one may notice that the peaks

are almost separated by 0.4 eV, which is roughly the sum of the symmetric and

asymmetric stretch energies of H2O molecule. The highest peak in the KER spectrum

should be corresponding to the ground rovibrational state of H2O. Complementary

to the experiments, quasiclassical trajectory simulations were also performed to shine

more light on the dissociation of the nascent H3O.

To simulate the dissociation of H3O, we need both of the potential energy surfaces

for H3O
+ and H3O that are discussed in the following subsections.

10.2 H3O
+ Potential Energy Surface

14230 geometries of H3O
+ were sampled by using the low level (HF/VDZ) direct

dynamics. After obtaining these configurations, ab initio energy for them were calcu-

lated at the CCSD(T)/aug-cc-pVTZ level. Thus, the date set is prepared and followed

by the invariant polynomial least squares fitting.

The RMS for the current fit is 3.3445 cm−1 for 14230 ab initio CCSD(T)/aug-cc-
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pVTZ energies. As usual, the transformed bond lengths r′ = 2.0(1.0 − exp(−0.4r))2

are used as variables in fitting.

There is a known global minimum structure of H3O
+ in C3v symmetry and also a

D3h saddle point for the inversion of H3O
+ that are shown in Fig. 10.3.

β

H

H

H H

H
H

O

O

Figure 10.3: The C3v global minimum and the D3h saddle point structure of the H3O
+

molecule

The energy difference between the inversion saddle point and the C3v minimum is

about 800 cm−1, which is a small barrier under a deep well. The energy comparison

between the ab initio calculation and PES fitting values is listed in Table 10.1.
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The harmonic frequencies for the two stationary geometries are characterized on

the PES as shown in Table 10.2.

Table 10.2: Normal mode frequencies (cm−1) of H3O
+ C3v and D3h structure

Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

H3O
+ (C3v)

AVQZ 895.03 1698.57 1698.85 3600.28 3698.98 3699.17
AVTZ 918.35 1700.06 1700.19 3585.27 3682.65 3682.66
PFIT 918.92 1702.03 1702.03 3575.33 3677.05 3677.05
HCB-1 916.00 1693.00 1693.00 3578.00 3691.00 3691.00
HCB-2 881.00 1693.00 1693.00 3582.00 3695.00 3695.00
HCB-3 891.00 1696.00 1696.00 3597.00 3707.00 3707.00

H3O
+ (D3h )

AVQZ 680.34i 1633.23 1633.23 3655.37 3806.53 3806.61
AVTZ 723.73i 1627.30 1627.34 3642.52 3793.30 3793.35
PFIT 713.92i 1628.96 1628.97 3631.67 3786.87 3786.87
HCB-1 695.00i 1628.00 1628.00 3651.00 3808.00 3808.00
HCB-2 662.00i 1633.00 1633.00 3664.00 3819.00 3819.00
HCB-3 670.00i 1632.00 1632.00 3662.00 3816.00 3816.00

Both Table 10.1 and 10.2 indicate that the H3O
+ PES is very accurate.

10.3 H3O Potential Energy Surface

Different from H3O
+, the PES for H3O is floppy and difficult for the usual global

fitting strategy. One approach called integrated local PES fitting is under developing

and will be addressed in future publications. To overcome the shortage of H3O PES,

direct ab initio dynamics was performed instead.
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10.4 Direct Dynamics Simulation

Initial Conditions The direct dynamics simulation was performed at the Frank-

Condon principle. Assume a H3O
+ molecule at some configuration fetched an electron

from Cs, then it becomes a H3O neutral molecule with the same configuration, and

also the same momentum. In the picture of potential energy surfaces, a H3O
+ con-

figuration is a point on the cation surface. When it absorbs an electron, it jumps to

the neutral surface directly from the same position.

To start the simulation, a sample of H3O
+ was generated on the H3O

+ PES. The

sample of H3O
+ was basically from 1000 H3O

+ trajectories.

Fig. 10.4 shows the various energy distributions of H3O
+. The right most red

curve in Fig. 10.4 is the initial total energy of H3O
+. In the beginning, all the H3O

+

molecules are supposed to be in their ground vibrational states. As a result, they

all have the zero point energy. Due to the anharmonicity of the real PES and the

approximation of the normal mode sampling, there is a small variation of the total

H3O
+ initial energy.

To sample the phase space of the H3O
+, 10,000 H3O

+ with random normal coor-

dinates displacement (from the normal mode sampling) were sampled as the starting

configurations of 10,000 trajectories. Every trajectory was run for 3000 steps. Then,

every final configuration of the H3O
+ jumped to the H3O PES, and the energy gap

between the cation PES and the neutral surface was named as the energy gap. For ex-

ample, suppose one H3O
+ was in configuration x after 3000 steps on the cation PES,

and the cation PES function is denoted as PP . Similarly, the neutral PES function

is denoted as PN . As a result, the potential of the H3O
+ on the cation surface is

PP (x) and its potential energy on the neutral surface is PN(x). The difference be-
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tween PP (x) and PN(x) is defined as the energy gap as Egap(x) = PP (x)−PN(x).

Since the potential energy surfaces of H3O
+ and H3O are not supposed to be parallel

around it C3v minimum geometry, the energy distribution is not supposed to be a

delta function. The real distribution is shown as the grey curve in Fig. 10.4. During

the jumping process of H3O
+ to the neutral surface, the gap energy is supposed to be

released. As a result, the total energy of the nascent H3O is the difference between

the cation initial total energy and the energy gap, or PP (x)−Egap(x), which is shown

as the blue curve in Fig. 10.4.

Energy (eV)

0 1 2 3 4 5 6 7 8

P
op

ul
at

io
n

H
3 O

+ 
  In

iti
al

 E
ne

rg
y

3.
68

 e
V

H
2 O

   
H

ar
m

on
ic

 Z
P

E
 (

0.
58

 e
V

)

H3 O   Total Energy

H3 O   Adjusted Total Energy

Energy Gap

H
3 O

+ 
  M

IN
 P

ot
en

tia
l (

5.
82

 e
V

)

H
3 O

   
P

ot
en

tia
l (

1.
59

 e
V

)

H
2 O

  +
 H

H
2   +

 O
H

 (0.70 eV
)

Figure 10.4: H3O various energy distributions for the trajectory simulation.
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Final Conditions Fig. 10.5 is the final energy distribution for H3O → H + H2O.

As for final energy, there is a total energy for the whole system (H and H2O), which

we denote as E(total), and the distribution of this energy is plotted as the dotted lines

in Fig. 10.5. Note that the dotted line is the total energy for H and H2O, and it is

exactly the same as the initial total energy distribution of H3O during the simulation

which is shown as the blue curve in Fig. 10.4. There is also some rotational energy

(classically, the rotational energy can be computed as Eq. 3.17) for H2O, which can

be denoted as E(rotation). The distribution of E(rotation) is plotted as the dashed

line in Fig. 10.5. The difference between E(total) and E(rotation) should be the

translational energies of both H and H2O, along with the vibrational energy of H2O.

The sum of translational and vibrational energy of H + H2O is plotted as the solid

curve in Fig. 10.5, and this energy distribution is peaked at 3.59 eV as shown in the

Figure.

For each dissociation trajectory of H3O, it is easy to calculate the sum of the

kinetic energy of H and H2O, also known as the kinetic energy release, which is

plotted in Fig. 10.6. The gray sticks on the bottom of the figure is corresponding to

the vibrational states of H2O (the right most stick is for the ground state of H2O,

and the sticks on the left are for those high energy vibrational states).

Similarly, the H2O vibrational energy can be calculated and is plotted in Fig. 10.7.

The bottom sticks in fig. 10.7 show the vibrational states of the H2O.

Since the sum of the H2O vibrational energy (VE) and the total H + H2O transla-

tion energy is the energy distribution shown in Fig. 10.5, which is sharply distributed

around 3.59 eV, the kinetic energy release distribution and vibrational energy distri-

bution are almost mirror images of each other.
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Figure 10.5: The final energy distribution for H3O → H + H2O.
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Figure 10.6: The classical H3O → H + H2O kinetic energy release distributions.
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Figure 10.7: The classical H2O vibrational energy distributions from H3O → H +
H2O.

249



10 H3O
+/H3O

It is well known that the classical trajectories are not aware of the vibrational

states of the H2O, hence both the KER and VE distributions are supposed to be

continuous, and some quantization techniques should be employed to approximate

the experimental results.

Suppose the vibrational energy from the simulation trajectory is E, and all the

energies for all the vibrational states of H2O are E1, E2, · · · , En. We suppose that the

trajectory vibrational energy is the combination of all the vibrational states of H2O,

i.e.,

E =
n
∑

i=1

piEi, (10.4)

where pi is the probability for the energy E associated with the vibrational state i

whose energy is Ei. Naively, pi should be related to the energy difference E−Ei, and

here we assume pi ∝
1

(E−Ei)
2

m−1
where m > 1 is an adjustable parameter.

Considering the normalization condition as

n
∑

i=1

pi = 1, (10.5)

we can compute pi as

pi =
1

∑n
k=1

(

E−Ei

E−Ek

) 2
m−1

(10.6)

Based on the probability, we can assign an intensity to each H2O vibrational

states i as Ii. For each trajectory vibrational energy E, every H2O vibrational state

i’s intensity Ii get populated by pi, and finally the energy state has a total intensity.

For each state with energy Ei and total intensity Ii, we can represent the state as

a scaled Gaussian distribution as IiN(Ei, σ) = Ii

σ
√

2π
exp

(

− (x−Ei)
2

2σ2

)

, where σ is an
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adjustable parameter representing the resolution (in this work, σ = 0.08).

Based on the above quantization approach, the classical VE distribution is quan-

tized as Fig. 10.8. In addition to the overall spectra of quantized VE distribution,

VED (eV)

0 1 2 3 4

P
(V

E
D

)

Figure 10.8: The quantized H2O vibrational energy distribution from H3O → H +
H2O.

the intensities for each H2O vibrational states are also shown as sticks on the bottom

of Fig. 10.8.
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Since the sum of the rotational energy of H2O and the total kinetic energy release is

peaked at 3.59 eV and the spread of this distribution is not wide, we can approximate

KER as 3.59 - VE, which is shown in Fig. 10.9.

KER (eV)

0 1 2 3 4

P
(K

E
R

)

Figure 10.9: The H3O → H + H2O kinetic energy release distributions from the
quantization of the classical vibrational energy distribution as shown in Fig. 10.7.

In the experimental KER distribution (Fig. 10.2), the right most peak is corre-

sponding to the ground vibrational state of H2O. Given the classically simulated KER
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distribution and the vibrational energy states of H2O, we can line them up and the

anchor points are the H2O ground vibrational state energy and the right most peak

position in the experimental KER distribution. This approach is shown in Fig. 10.10.

As expected, the distributions calculated by using different approximations should be

KER (eV)

0 1 2 3 4

P
(K

E
R

)

Figure 10.10: The H3O → H + H2O kinetic energy release distributions from the
direct quantization of the classical KER distribution as shown in Fig. 10.6.

similar to each other, which can be seen in Fig. 10.9 and Fig. 10.10.
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Comparing the experimental KER distribution (Fig. 10.2) and the simulated KER

(Fig. 10.9, 10.10), we may notice that the peak positions are approximately matched.

This shows that the peaks in the experimental KER distributions are due to the

excitation of the vibrational states of H2O, and most of the H2O molecules from the

dissociation of H3O are highly vibrational excited.

The bending angle distribution of H2O is also plotted in Fig. 10.11 to throw some

light on the bending state of H2O. The ∠H-O-H in the equilibrium H2O configura-

tion is about 100 degree and as can be seen in Fig. 10.11, the H2O bending angle

distribution is peaked around 100 degree and spreads mostly between 80 and 120

degree.

Based on the ∠H-O-H distribution, all the high overtone states (n1 > 3) of H2O

bending are removed to quantize the H2O vibrational energy distribution as shown

in Fig. 10.12.

Similarly, the KER distribution is generated and shown in Fig. 10.13.

Distinct from the KER distributions in Fig. 10.9 and 10.10, the peaks in Fig. 10.13

are more isolated. This is due to the clustering of the vibrational states of H2O

as shown in Fig. 10.12. As can be seen in Fig. 10.7 and Fig. 10.8, the energy gap

between H2O vibrational states becomes smaller and smaller as the vibrational energy

increases, and almost continuous above 3 eV. If all the n1 > 3 states are removed,

the vibrational states of H2O become isolated clusters below 4 eV, which causes the

peaks in Fig. 10.13 to be more isolated than those in Fig. 10.9 and 10.10.

Comparing the experimental KER distribution (Fig. 10.2) and the simulated KER

distributions as shown in Fig. 10.9, Fig. 10.10 and Fig. 10.13, we can see that the

experimental result is somewhat between the simulated ones. Considering the ap-

254



10 H3O
+/H3O

Angle (Degree)

P
op

ul
at

io
n

60 80 100 120 140 160 180

Figure 10.11: The ∠H-O-H distribution for H2O from H3O → H + H2O.
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Figure 10.12: The quantized H2O vibrational energy distribution from H3O → H +
H2O. Note that during the quantization, all the H2O vibrational states with n1 > 3
are removed.
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Figure 10.13: The H3O → H + H2O kinetic energy release distributions from the
quantization of the classical vibrational energy distribution as shown in Fig. 10.7.
Note that during the quantization, all the H2O vibrational states with n1 > 3 are
removed.
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proximation inherited in the classical trajectory simulation, the experimental and

theoretical results match quite well, and the conclusion we can draw from this study

is that during the charge exchange dissociation of H3O
+, H2O and H are the dominate

products, and the H2O molecules from the dissociation of H3O are highly vibrational

excited. Among the vibrational modes of H2O, the bending one is relatively cooler

than the symmetric and asymmetric stretch mode of H2O.

For the charge exchange dissociation of H3O
+, only one H atom is leaving, but

the experiments can not tell which H atom actually leaves the H3O. It will be very

interesting to see if the initial H3O
+ is deuterated, and that has been done for in the

experiments and is still in the progress for the simulation.
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11 Summary

In summary, the adoption of the invariant polynomials (primary and secondary invari-

ants) in the PES construction process not only satisfies the permutation symmetry

of molecules but also enhances the potential energy function fitting and evaluating

processes. Some quasiclassical and ab initio direct trajectory simulations were per-

formed to study the microscopic reaction mechanism of the reactions H2 + H3
+, H

+ CH4, CH+
5 and H3O charge exchange dissociation dynamics, plus their various iso-

topomers. The theoretical simulation results agree quite well with most of the known

experimental results, and there are also limitations showed for the classical trajectory

simulations. One of them is the notorious zero-point energy (ZPE) issue, which is

due to the inherit limitation of the classical mechanism. Overall, quasiclassical trajec-

tory method remains a robust, intuitive and simple tool to investigate the chemical

reaction dynamics. If quantum effects, such as ZPE etc, can be incorporated into

the classical picture, this method will be extremely useful to understand the reaction

dynamics. As for the potential energy surface fitting, the current approach is still

limited to small molecules. This limitation comes from the lack of efficient representa-

tion of molecules, the complexity in computing the primary and secondary invariants,

and the cost in obtaining the high quality ab initio energies. Considering the fast de-

velopment of the computer techniques, it is still very promising to construct highly

accurate potential energy surfaces for large molecule systems.
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