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Abstract 

Invasive Front Analysis of Brain Tumors  

 

By 

Haoyu Zhang 

 

 

 

  Glioma, a tumor that starts in the brain or spine, makes up about 30% of all tumors 

of the central nervous system and 80% of all malignant brain tumors. The mutations 

in isocitrate dehydrogenase 1 (IDH1) was found as a novel biomarker of gliomas. 

Sections of patient tumors of gliomas grades II-IV, stained with an antibody specific 

to the mutated IDH1 protein, were contributed by Andreas von Diemling and 

colleagues. We analyzed the glioma cell distributions in these slides and compared the 

cell distributions in the invasive front with different tumor types and grades. Our 

approach provides some basic understanding of the glioma tumor patterns and their 

invasive front, which will potentially help provide better therapy for patients, 

especially during surgery. 

 

 

  



 

                                                                

Invasive Front Analysis of Brain Tumors 

 
 

 

By 

Haoyu Zhang 

B.S., University of Science and Technology of China, 2013 

 

 

Advisor: Fereydoon Family 

 

 

 

 

A thesis submitted to the Faculty of the 

James T. Laney School of Graduate Studies of Emory University 

in partial fulfillment of the requirements for the degree of 

Master of Science 

in Physics 

2015 

 

  

http://www.physics.emory.edu/home/people/faculty/family-fereydoon.html


 

Contents 

1. Introduction                                                  1 

1.1 Glioma                                                1 

1.2 Approaches for distinguishing gliomas                       2 

1.3 Reaction-Diffusion model for tumor growth                   3 

1.4 Questions and Motivation                                  4 

2. Methods                                                      6 

2.1   Raw images                                             6 

2.2   Cutting images                                           8  

      2.3   Image Processing                                         10 

2.4   Definition and Calculation of Density                         13 

2.5   Finding the direction of diffusion                             15 

2.6   Calculating the steepness of cell density profiles                 17 

2.7   Boundary effect                                          18 

3. Results and Analysis                                            21 

      3.1   Pipeline of our analysis                                    21 

      3.2   The distribution of slope for samples of the same type  

            and different grades                                       22 

3.3   Average slopes for glioma in same sample and different grades     24 

3.4   Average slope of gliomas in different types and grades            25 

4. Conclusions and Discussion              27 

Bibliography                                              28 



 

List of Figures 

 
Figure 1  Cell density profiles for tumors with different ρ/D                4 

Figure 2  Examples of raw images                                      8 

Figure 3  Density may change multiple times inside a glioma                 9 

Figure 4  (a) MRI of glioma  (b) Image of IDH1 stained glioma             10 

Figure 5  A. original image B. Grayscale image C. Binary image before 

morphological operations D. Image after morphological operations    11 

 

Figure 6  Examples of segmentation results with the original images  

 overlaid with binary image outlines (white)                       11 

Figure 7  Mass of the center (blue points) of each connected area             12 

Figure 8  Definition and Calculation of the density                        14 

Figure 9  K dimensional tree                                          14 

Figure 10  Finding the direction of glioma diffusion                       16 

Figure 11  Calculating the steepness                                    17 

Figure 12  Boxsize selection                                          19 

Figure 13   Pipeline of our analysis                                    22 

Figure 14   The distribution of the slopes for samples of the same type 

 and different grades                                       23 

Figure 15   Average slopes for glioma in same sample and different grades     25 

Figure 16   Average slope of gliomas in different types and grades     26 

  



1 
 

 

 

Chapter 1 

 

Introduction  

 

1.1 Glioma 

 

Glioma is a tumor that starts at the brain or spine. It makes up about 30% of all 

brain and central nervous system tumors and 80% of all malignant brain tumors [1]. 

The speed of tumor growth increases with grades rising from I to IV, and the survival 

rate of patients decreases sharply as the grade increases. Malignant gliomas, the most 

common subtype of primary brain tumors, are aggressive, highly invasive, and 

neurologically destructive tumors considered to be among the deadliest of human 

cancers. In its most aggressive manifestation, glioblastoma (GBM), median survival 

time ranges from 9 to 12 months despite maximum treatment efforts—a statistical fact 

that has changed little over several decades of technological advances in neurosurgery, 

radiation therapy, and clinical trials of conventional and novel therapeutics. Gliomas 

have been defined pathologically as tumors that display histological, 

immunohistochemical, and ultrastructural evidence of glial differentiation. The most 

widely used scheme for classification and grading of gliomas is that of the World 

Health Organization (WHO). Gliomas are classified according to their hypothesized 

line of differentiation, that is, whether they display features of astrocytic, 
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oligodendroglial, or ependymal cells. They are called astrocytoma, and 

oligodendrocytoma, respectively. They are then graded on a scale of I to IV according 

to their degree of malignancy as judged by various histological features [2]. 

 

1.2 Approaches for distinguishing gliomas 

 

The most common imaging approach for distinguishing gliomas are radiological 

methods, such as magnetic resonance imaging (MRI) and CAT scan, often with the 

help of biomarkers. The resolution for MRI, however, is limited, suffering from a 

poor tumor-edema differentiation [3]. Unlike other solid tumors, gliomas, though 

never metastasize outside the central nervous system, are intrinsically invasive. The 

tumor cells migrate and invade the surrounding tissue. Instead of a sharp boundary 

between tumor and surrounding tissue, in most primary solid tumors, gliomas have a 

diffuse interface between tumor and healthy tissue, featuring a varying tumor cell 

density [1]. This diffusive front is the main culprit of MRI resolution limit [4].  

  The mutations in isocitrate dehydrogenase (IDH) 1 and 2, which are enzymes that 

are encoded by the IDH1 gene, were first discovered in 2009 and became one of the 

most novel biomarkers for gliomas [7]. It occurs in up to 75% of low grade gliomas 

and secondary high grade gliomas, and more than 90% are mutations of the R132H 

type [7]. Clinical relevance and the highly homogeneous pattern of IDH1 mutations 

make it possible to develop a mutation-specific antibody. In previous work, 

researchers have already successfully produced a mouse monoclonal antibody 

http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Gene
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targeting the IDH1 R132H mutation, which could be used to detect the IDH1 

mutations in gliomas [7]. Compared with other immunohistological approaches, the 

IDH1 clearly identifies glioma cells [7]. 

 

1.3 Reaction-Diffusion model for tumor growth 

 

  Building mathematical models is very important in biological research. The 

mathematical model we use is based on a well-known differential equation [8]: 

∂c

∂t
= ∇ ∙ (𝐷∇𝑐) + 𝜌𝑐 ,                (1) 

where c(x,y,t) is the tumor cell density at location (x,y) at time t, ρ is the net 

proliferation rate, D is the diffusion coefficient which represents the degree of motility 

of glioma cells. Swanson et al. have used this model with realistic brain anatomy to 

guide brain tumor surgery [8]. The model is based on two assumptions: (1) Diffusion 

in tumors is Fickian diffusion and (2) the tissue environment surrounding the tumor is 

homogeneous so that the diffusion coefficient D is constant and uniform in the brain.  

  An interesting feature of the model is that the density of the tumor cells depends on 

the ratio ρ/D of growth rate ρ to the diffusion coefficient D. When ρ and D vary 

with a fixed ρ/D, the geometry of the tumor growth and invasion remain the same. 

And when ρ/D becomes large the cell density profile becomes steeper. Figure 5 

shows a comparison of the cell density profile for tumors with high and low ρ/D.  In 

our raw data, all pictures are taken at a fixed time, so we don’t know how a given 

glioma behaves at different times. However, the density of each glioma could be 
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calculated, and using the relationship between ρ/D and density profiles we could 

compare features of different gliomas.   

 

1.4 Questions and Motivation  

 

  The main question is how does the invasive front changes as tumors progress and 

how the spreading of the front depends on the brain tumor type? Our goal is to answer 

these questions by analyzing the cell density in high resolution patient slides. We 

investigate how ρ/D in density profiles in the invasive front depend on the types and 

grades of gliomas. The difficulty is in finding a quantitative method to specify and 

compare the steepness of different density profiles. Although the answer seems 

obvious in an ideal model like Figure 1, the cell density profiles in gliomas are usually 

irregular and cannot be easily fit to a unique straight line.  

 

Figure 1. Cell density profiles for tumors with different ρ/D. 

 

Applying the mathematical model to magnetic resonance image (MRI) of gliomas 

has been extensively studied. However, since IDH1 is a biomarker that has been 
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found within the last 5 years or so, few researches have applied the mathematical 

model directly to the gliomas stained with IDH1 antibody.  

The dependence of a tumor on ρ/D is an important biomarker, especially during 

surgery.  At low ρ/D the tumor is diffusive and cannot be completely removed 

during surgery. On the other hand, when  ρ/D is large the tumor has a solid pattern 

with a sharp boundary and surgical procedures are more effective.  
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Chapter 2 

 

Methods 

 

2.1  Raw images 

 

Sections of patient tumors of gliomas grades II-IV, stained with an antibody specific 

to the mutated IDH1 protein were contributed by Andreas von Diemling and 

colleagues [7]. The slides were scanned at the Winship Cancer Institute Pathology 

Core at 40X magnification in order to preserve the maximum amount of detail. There 

are 133 glioma images, each corresponding to one patient, comprising 8 different 

types. The types are astrocytoma grade II (AII), astrocytoma grade III (AIII), 

Oligoastrocytoma grade II (OAII), Oligoastrocytoma grade III (OAIII), 

Oligodendroglioma grade II (OII), Oligodendroglioma grade III (OIII), Glioblastoma 

multiforme grade (GBM) and Glioblastoma multiforme secondary (GBMII). About 

half of the images are low grade glioma (such as AII, OAII, OII), which are rare 

because low grade gliomas do not produce obvious clinical effect and are often not 

detected until they turn into higher grade tumors.  
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Figure 2: Examples of raw images 

 

2.2  Cutting images 

 

We mainly focus on the cell density distribution near the boundary of glioma 

(invasive front) which is the part of the glioma that connects to the healthy brain 

tissue. The cell density profile near the tumor boundary shows how the tumor grows 

and invades the healthy brain. The cell density inside the glioma is more complex and 

currently there are no universally accepted understanding of the variations of the 

density inside the glioma. Figure 3 shows the type of area we are interested in. Inside 
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a glioma, the cell density may go up and down multiple times. But we only consider 

the area inside the tumor near the boundary with the healthy brain. Near this boundary 

the glioma cell density is almost zero and does not across any peaks.  

 

 

 

 

Figure 3: Density may change multiple times inside a glioma. The red rectangles show the kind of area 

we are interested in. 

 

The raw images are cut into several small images due limitations in the computer 

memory size and processing speed. However, finding the place to cut the images 

could be difficult. The reason is that sometimes it is not clear where is the boundary of 

the glioma in IDH1 images. Figure 4 shows a comparison of an MRI and an IDH1 

image of glioma. In the MRI image we can clearly identify the glioma (the white area) 

and the healthy brain. In IDH1 images, on the other hand, the glioma tissue may have 

been reshaped and separated into several cuts during surgery. Sometimes it is hard to 

distinguish the areas of the healthy brain versus the glioma. We have been able to 

overcome this problem by following a suggestion by clinical neruopathoogist Daniel J. 

Brat from the Winship Cancer Center. He has suggested that the best instrument for 

distinguishing the place to cut an image is the eye.  

Location 
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Figure 4: (a) MRI of glioma, the red rectangle shows the area we want to analyze as the invasive front 

of glioma.  (b) Image of IDH1 stained glioma: brown is IDH1 mutant stain, indicating glioma cells, 

and blue indicates normal tissue. The green rectangle indicates a region that corresponds to an invasive 

front that we analyze.   

 

2.3  Image Processing 

 

 We take a series of steps to transform the original images to binary images in which 

we use white to represent the cells and black to represent the background. At first, we 

convert the images to grayscale and segment them by thresholding. Most of automatic 

threshold determining algorithms such as (maximum likelihood algorithm) would fail 

because the shape and size of tumor cells, the color of background and cells vary 

greatly.  The reason is that the glioma morphology changes with different patients 

(who have different types and grades), and the staining process is done manually 

which brings a lot of uncertainty to color. As a result, we select a threshold manually. 

Then, we delete small objects by removing connected objects below the threshold of 

30 pixel and connectivity of 8. Figure 5 shows the result of these steps, and Figure 6 

provides examples of segmentation results with the original images overlaid with the 
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outlines of the binary image shown in white.  

 

Figure 5: A. original image B. Grayscale image C. Binary image before morphological operations D. 

Image after morphological operations 

 

Figure 6: Examples of segmentation results with the original images overlaid with binary image 

outlines (white) 

  Converting color images to grayscale and then setting up a threshold is a common 

method to do the segmentation. However, it may cause a problem in our case, because 

it would be difficult to distinguish between the brown (tumor cells) and dark blue 

(background). As a result, some blue areas may be treated as cells which are actually 

just the background. Our solution is to search the blue background and lighten the 

color using the RGB values before converting the images to grayscale. After doing 

that, the light blue areas will be treated as background in segmentation.  

We then record the location of glioma cells in the binary images. The most direct 

method is to calculate the center of mass of each connected area in binary images, and 

use that location to represent the location of the cells. However, due to the 

segmentation restriction, if multiple cells are close to each other, we can not 

distinguish them as multiple connected areas. As a result, they will be treated as one 

cell. Figure 7 shows this situation. If we only use a threshold to segment an image, 

A B C D 
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this problem could always happen. Some researchers try to figure out a solution for 

this kind of problem, but none of these methods have been applied to glioma images 

because glioma cells are much more complex and more varied than other cells.   

 

 
Figure 7 Blue points are the center of mass of each connected area. Each connected area (brown) will 

be treated as a cluster of cells (red arrow)  

 

Our method shows not only the location of each connected area, but also how many 

pixels there are in each area. The basic idea is to get the density of cells in a given 

area. It is not necessary to know whether a pixel belongs to a particular cell or another 

cell, because we only need to know if it is part of the tumor and should be counted in 

the calculation of the density. Our method makes cell segmentation much easier, and 

it should provide the same result as the previous method. Furthermore, even if one 

could successfully separate the cells, our method would still be a valid approach, 

because it is the cell areas that contribute to the tumor density.  
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2.4  Definition and Calculation of Density  

 

We use a box counting method to calculate the cell density. We draw a circle with a 

radius that we call the “boxsize”. We then determine the location of each center of 

mass within the circle and the total areas that belong to these centers. We add up the 

pixel values of all the cell areas and divide it by the area of the circle to determine the 

cell density. In our definition, the density is simply the fraction or the percentage of 

the area covered by the cells and consequently it is a dimensionless quantity.  

In order to improve the efficiency of the calculations, we use the K Dimensional 

Tree method [15] to do the range query for finding the number of centers of mass 

inside a circle. This is a very efficient method, becasue f the number of center of mass 

is n, then the computatioal time cost for this method would be proportional to √n 

instead of n [15].  

 g  

 

A 
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Figure 8  (A) The cell density is calculated by dividing the areas belonging to the center of mass 

within the circle divided by the area of the circle. The orange arrow shows the boxsize. (B) Results of 

density calculation as a function of x and y distance in a typical image. 

 

 

 

 

 

 

 

Figure 9  K Dimensional Tree 

 

One of the drawbacks of our method is the boundary effect. If part of a cell is inside 

the circle but the center of mass is outside the circle, then the cell will not contribute 

to the density. This will both underestimate the density and also make the density 

discontinuous. Why don’t we instead of recording the locations of the center of mass, 

B 
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directly count how many pixels belong to the cells inside a circle? This seems 

accurate in theory, however, this idea does not work in actual calculations due to the 

computational restrictions. Each connected area has about 100 pixels on average, so 

even with the most advanced range query algorithm, it will be 10 times slower than 

searching for the centers of mass. Another disadvantage of these query algorithms is 

the cost in memory, if one tries to make the algorithm efficient. Thus, querying pixels 

will easily run out of memory. Although counting pixels is not a practical approach, 

there are still limitations to our approach due to boundary effects.  

 

 

2.5  Finding the direction of diffusion  

 

After calculating the density, we use the result to calculate the cell density profile. 

The cell density profile, however, are different in different directions. Clearly, our 

interest is in determining the direction in which the tumor grows and finding this 

direction is nontrivial. Figure 10(A) shows an ideal case of glioma diffusion, where 

the boundary of the glioma is a straight line and the regions that are the same distance 

from the boundary have the same cell density. In Figure 10, darker colors show 

regions with higher cell density. In this case, the direction of diffusion is 

perpendicular to the front boundary, and the cell density profile in diffuse direction 

has the steepest slope. 
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Figure 10  Finding the direction of glioma diffusion: (A) Ideal case (B) Real calculation of the cell 

density in different directions.   

In reality, the tumor boundary is not a line, and the cell density distribution is also  

more complex so that the direction of the diffusion may not be very clear to the eye. 

To determine the diffusion direction we calculate the slope in different direction and 

define the diffusion direction as the profile with the steepest slope. We first determine 

Health Brain Glioma 

 

B 

A 
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the “peak” of the distribution in each sample by identifying the maximum of the cell 

density. Then we calculate the cell density profiles of each sample along several 

different directions with the angle of the direction increasing by 10 degrees each time. 

Finally, we choose the steepest cell density profile as the density profile in the diffuse 

direction for the sample. The figure 10(b) shows our calculation of the direction of 

diffusion in an actual image.  

 

2.6  Calculating the steepness of cell density profiles  

 

  To calculate the steepness of the cell density we assume that the density profiles to 

be almost linear except near the boundary. We use linear regression to determine the 

slope of the cell density profiles and use the slope of the fitting function to represent 

the steepness of the cell density profiles, as shown in Figure 11. The steepness is 

determined by the ratio ρ/D of the glioma density to its diffusion constant, which is 

related to the kinetic properties of the glioma.  

 

Figure 11 Calculating the steepness  
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2.7  Boundary effect 

 

We purpose two methods to overcome boundary effect in our density calculations. 

The first approach is to optimize the boxsize selection. When a box size is small, the 

boundary effect is large. As the boxsize gets larger, the cell density profile becomes 

smother, thus reducing the boundary effect. On the other hand, if the boxsize is too 

large, the cell density is just equal to the average cell density and not the local density 

of the cells, which we are trying to calculate. As a result, selecting a proper boxsize is 

very important. In Figure 11, we show our approach for selecting an optimum boxsize. 

Figure 12(b) shows a plot of the slope of cell density profiles for a given sample vs 

different boxsizes. We find that when the boxsize is under 400 pixels the slopes 

fluctuate, but have very similar values. On the other hand, when the boxsize is larger 

than 400 pixels, the slope keeps decreasing. As an optimum value, we select 400 

pixels as our boxsize.  As can be seen from figure 12(a), when the boxsize is equal to 

400 pixels, the box includes a proper amount of cells and it seems to properly reflect 

the cell density of the center of the box.   



19 
 

 

 

 

Figure 12  Boxsize selection: (A ) Examples of boxsizes with 100, 200 and 700 pixels radii. (B) Cell 

density vs slope of cell density profiles 

 

  Another method we apply to overcome the boundary effect is splitting bigger areas 

into smaller areas. Due to our segmentation method, there are some areas which are 

too big. They will enhance the boundary effect, when the centers of mass of these 

areas are near the box boundary. Including or not including the big areas will lead to 

big changes in the cell density. The method we use is to separate the areas that are 
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larger than twice the average area size. For example, if an area is more than twice and 

less than three times the average, we separate it into two areas. On the other hand, if 

an area is more than three times and less than four times the average area, we separate 

it into three areas. We calculate the center of mass for each smaller area, and use the 

smaller areas to calculate the cell density. Our results indicate that these methods are 

effective in reducing the boundary effect.  
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Chapter 3 

 

Results and Analysis 

 

3.1 Pipeline of our analysis 

 

 We have analyzed 70 samples and 147 cuts in six different grades and types. We 

excluded some samples that did not have a clear boundary between glioma and 

healthy brain tissue. We also did not use the GBM and GBMII data because we only 

have one GBM sample and that may not be typical.  

 We made 2~3 cuts for each sample based as discussed before, we then carried out 

the image processing and the density calculation for each cut. We calculated the cell 

density profiles in different directions in each cut and selected the steepest one to 

represent the cut. Finally, we calculated the slope for the density profiles. Figure 13 

shows the pipeline of our analysis. 
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Figure 13 Pipeline of our analysis 

 

3.2 The distribution of slope for samples in the same glioma type 

and different grades 

 

Figure 14 shows the distribution of slopes for gliomas of the same type and 

different grades. We find that, for type A and OA, there are clear differences in the 

slope distribution. The lower grade gliomas tend to have a higher frequency in the 

high slope region. However, for type O, the OIII’s slope distribution is more 

concentrated and OII’s distribution is more diffused. Consequently, it is not possible 

to unequivocally say which type has a higher slope.  
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Figure 14 The distribution of slope for samples in same type and different grades 
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3.3 Average slopes for glioma in same sample and different 

grades 

 

We make 2 to 3 cuts in each sample and then average the slope of the cuts from the 

same sample. Figure 15 shows our results for different samples. We see that, for type 

A and OA, most of the lower grade samples have a higher slope than higher grade 

samples. But, for type O, the coincidence between higher grade and lower grade is 

larger.  
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Figure 15 Average slopes for glioma in same sample and different grades 

 

3.4 Average slope of gliomas in different types and grades 

 

 Figure 16 shows the average slope for gliomas in different types and grades. 

Although the difference between OII and OIII is smaller than other types of gliomas, 
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we find a consistent trend that a lower grade glioma has a higher slope or higher ratio 

of ρ/D. Since the high grade glioma is developed from low grade glioma, our results 

indicate that a lower grade glioma will become more diffusive and grows slower as 

with time. In statistics, the p-value is the probability that data at least as surprising as 

the observed sample results would be generated under a model of random chance 

(determined by the null hypothesis). We have calculated the p-value to see if the 

differences between the mean values of the slopes of AII and AIII; OAII and OAIII, 

OII and OIII are significant. The results are 9.26E-09, 0.0208, 0,0152, respectively, 

which is much smaller than 0.05, indicating that the differences are significant.  

 

Figure 16 Average slope of gliomas in different types and grades 

 

 

 

 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Null_hypothesis
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Chapter 4 

 

Conclusions and Discussion 

 

Our analysis of patient slides has enabled us for the first time to investigate and 

characterize the invasive front of gliomas of different types and grades. Higher grade 

gliomas have shallower invasive front, corresponding to more spreading and less 

proliferation. This trend remains the same across all three glioma types from grade II 

to grade III. Our approach provides some basic understanding of the growth of glioma 

tumors and their invasive front, which will potentially help provide better therapy for 

patients, especially during surgery.  

This work may be continued in several directions. First it would be informative to 

segment cells instead of segmenting pixels. As we have discussed, segmenting pixels 

and cells may be both acceptable, but this should be checked.  

The second work could be to find a better way to grade the segments. In pathology, 

a tumor will be graded as a high grade glioma if parts of it have a high grade tumor, 

which means another part could be a lower grade glioma. Thus, the grade may not be 

consistent. That is also why the slopes have a relatively large range. If we could find 

grades for each segment instead of samples, our result will be more representative.  
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