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Abstract

Overcoming Spatiotemporal Trade-offs in Calcium Imaging Using Deep
Learning-based Dynamics Modeling

By Feng Zhu

Recent advances in neural interfaces have enabled monitoring of the activity of in-
creasingly large neuronal populations. Among these techniques, two-photon (2p)
calcium imaging is a powerful tool to probe how population-level computations relate
to biological structure, as it can identify layers and cell types of interest. However,
extracting fast patterns of neural activity from 2p data has proven challenging be-
cause of limitations on temporal resolution imposed by the spatiotemporal trade-offs
inherent to 2p laser scanning. Noises and nonlinearities introduce additional chal-
lenges to analyzing 2p data. This dissertation bridges this gap by taking a dynamical
systems approach to denoise and improve temporal resolution of 2p data. In Chapter
1, we provide a broad introduction to the challenges with 2p data and methods for
modeling neural dynamics, and discuss the benefits of modeling dynamics from 2p
data. In Chapter 2, we present a novel neural network training strategy that offers a
principled solution to spatiotemporal trade-offs created by bandwidth limits in neu-
ral interfaces. This strategy enables inference of latent dynamics with spatiotemporal
super resolution and is applicable for a wide range of neural interfaces. In Chapter 3,
we detail the results of extending a state-of-the-art deep learning method that models
neural dynamics in spiking activity for application to 2p imaging. We demonstrate
that our new method outperforms standard methods in recovering high-frequency
components in synthetic tests and predicting single-trial behaviors in 2p recordings
from sensorimotor areas in mice performing a forelimb reach task. In Chapter 4,
we present machine learning innovations that eliminate the need of deconvolution as
a preprocessing step for our approach. This opens the door to modeling fast and
complex dynamics from 2p data in settings where massive populations of neurons are
imaged with extremely slow sampling rates as a trade-off. In sum, our work provides
an avenue to overcome the limits of spatiotemporal trade-offs in 2p calcium imaging,
enabling accurate inference of population dynamics across a wide range of sampling
rates in vast populations with identified neurons.
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2.1 Exploiting space-time trade-offs in neural interfaces using SBTT. (a)

In 2-photon calcium imaging (top), individual neurons are serially

scanned at a low frame rate, resulting in staggered sample times. In

modern electrophysiological recordings (bottom), bandwidth or power

constraints prevent simultaneous monitoring of all recording sites. (b)

Observed neuronal activity reflects latent, low-dimensional dynamics

(captured by the function f). (c) SBTT applied to a sequential au-

toencoder for inferring latent dynamics from neural population activity. 16

2.2 SBTT allows inference of latent dynamics from M1/PMd electrophysi-

ology data with sparse observations. (a) Spike count input and inferred

rate output of LFADS for the same example trial with increasingly

sparse observations. Masked data are shown in white, observed ze-

roes are shown in light purple, and nonzero spike counts are shown in

darker shades. Units are sorted by timing of firing rate peaks for the

fully sampled model. (b) Accuracy of linear hand velocity decoding

from inferred latent factors. (c) Quality of GLM fits from inferred la-

tent factors to 50 held-out units. pR2 values for each held-out unit are

normalized to the corresponding values achieved by the GPFA base-

line. Points denote the median across all units. Shaded areas depict
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2.3 SBTT improves inference of high-frequency dynamics from simulated

2P data with known dynamical structure. (a) True and inferred Lorenz

latent states (X/Y/Z dimensions) for a single example trial from Lorenz

systems simulated at two different frequencies (7Hz and 15Hz). Black:

ground truth. Colored: inferred. (c) Performance in estimating the

Lorenz Z dimension as a function of Lorenz speed was quantified by

variance explained (R2) for all three methods. The speed of the Lorenz

dynamics was quantified based on the peak location of the power spec-

tra of Lorenz Z dimension, with a sampling frequency of 100Hz. . . . 28

2.4 SBTT improves inference of latent dynamics from mouse 2P calcium

imaging data. (a) Left: an example field-of-view (FOV), colored by

neurons. Right: calcium traces (dF/F) from a single trial for 5 exam-

ple neurons. (b) Performance of capturing empirical PSTHs was quan-

tified by computing the correlation coefficient r between the inferred

single-trial event rates and empirical PSTHs, comparing ALFADS vs

ALFADS-SBTT. Each point represents an individual neuron. (c) De-

coding performance was quantified by computing the R2 between the

true and decoded position (left) and velocity (right) across all trials.

(d) Quality of reconstructing the kinematics across frequencies was

quantified by measuring coherence between the true and decoded po-

sition for all three methods. . . . . . . . . . . . . . . . . . . . . . . . 30



2.5 Retraining full-data LFADS encoders on sparse data improves decoding

performance. (a) Hand velocity decoding performance in function of

dropped samples (as in Fig. 2.2b). “Trained full” indicates training

on fully observed data and inference on sparse data. “Trained sparse”

indicates training and inference on sparse data. “Retrained sparse”

indicates training on fully observed data, followed by encoder retraining

and inference on sparse data. (b) Spike count input and inferred rate

output of LFADS. Conventions are as in Fig. 2.2a. . . . . . . . . . . 32



3.1 Improving inference of network state from 2p imaging. (a) Calcium

imaging offers the ability to monitor the activity of many neurons si-

multaneously, in 3-D, often with cell types of interest and layers iden-

tified. In contrast, electrophysiology sparsely samples the neurons in

the vicinity of a recording electrode, and may be biased toward neu-

rons with high firing rates. (b) Calcium fluorescence transients are a

low-passed and lossy transformation of the underlying spiking activity.

Spike inference methods may provide a reasonable estimate of neu-

rons’ activity on coarse timescales (left), but yield poor estimates on

fine timescales (right; data from (Chen et al., 2013b)). (c) RADICaL

uses a recurrent neural network-based generative model to infer net-

work state - i.e., de-noised event rates for the population of neurons

- and assumes a time-varying ZIG observation model. For any given

trial, the time-varying network state can be captured by three pieces

of information: the initial state (i.e., “initial condition”) of the dy-

namical system (trial-specific), the dynamical rules that govern state

evolution (shared across trials), and any time-varying external inputs

(i.e., “inferred inputs”) that may affect the dynamics (trial-specific).

(d) Top: in 2p imaging, the laser’s serial scanning results in different

neurons being sampled at different times within the frame. Bottom:

individual neurons’ sampling times are known with sub-frame precision

(colors) but are typically analyzed with whole-frame precision (gray).

(e) Sub-frame binning precisely captures individual neurons’ sampling

times but results in neuron-time points without data. The numbers in

the table indicate the deconvolved event in each frame. (f) SBTT is

a novel network training method for sparsely sampled data that pre-

vents unsampled time-neuron data points from affecting the gradient

computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



3.2 Application of RADICaL to synthetic data. (a) Example firing rates

and spiking activity from a Lorenz system simulated at 7 Hz, decon-

volved calcium events (inputs to RADICaL), and the corresponding

rates and factors inferred by RADICaL. Simulation parameters were

tuned so that the performance in inferring spikes using OASIS matched

previous benchmarks (Berens et al., 2018) (see Methods). (b) True and

inferred Lorenz latent states (Z dimension) for a single example trial

from Lorenz systems simulated at three different Lorenz oscillation

frequencies. Black: true. Colored: inferred. (c) Performance in esti-

mating the Lorenz Z dimension as a function of simulation frequency

was quantified by variance explained (R2) for all 4 methods. . . . . . 44



3.3 Application of RADICaL to real two-photon calcium imaging of a wa-

ter grab task. (a) Task. Top left: Mouse performing the water grab

task. Pink trace shows paw centroid trajectory. Bottom: Event se-

quence/task timing. RT: reaction time. ITI: inter-trial interval. Top

right: Individual reaches colored by subgroup identity. (b) Top: an ex-

ample field of view (FOV), identified neurons colored randomly. Bot-

tom left: dF/F from a single trial for 5 example neurons. Bottom

right: Allen Atlas M1/S1 brain regions imaged. (c) Comparison of

trial-averaged (left) and single-trial (right) rates for 8 individual neu-

rons for two different brain areas (left vs. right) and two different mice

(top half vs. bottom half) for smth-dec and RADICaL (alternating

rows). Left: each trace represents a different reach subgroup (4 in

total) with error bars indicating s.e.m. Right: each trace represents

an individual trial (same color scheme as trial-averaged panels). Odd

rows: smth-dec event rates (Gaussian kernel: 40 ms s.d.). Even rows:

RADICaL-inferred event rates. Horizontal scale bar represents 200ms.

Vertical scale bar denotes event rate (a.u.). Vertical dashed line de-

notes lift onset time. (d) Performance of RADICaL and smth-dec in

capturing the empirical PSTHs on single trials. Correlation coefficient

r was computed between the inferred single-trial event rates and empir-

ical PSTHs. Each point represents an individual neuron. (e) Kinematic

profiles and neural representations of atypical trials. Top: Z-dimension

of hand velocity profile. Each trace represents an individual trial, col-

ored by typical vs. atypical. Atypical trials are identified as the trials

that have a second peak in Z-dimension of the hand velocity that is

larger than 50% of the first peak. Middle and Bottom: Comparison
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scale bar represents 200ms. Vertical scale bar denotes event rate (a.u.).

Vertical dashed line denotes lift onset time. . . . . . . . . . . . . . . . 47



3.4 RADICaL produces neural trajectories reflecting trial subgroup iden-

tity in an unsupervised manner. (a) Single-trial neural trajectories

derived from RADICaL rates (top row) and smth-dec rates (bottom

row) for two experiments (left: Mouse2/M1; right: Mouse1/S1), col-

ored by subgroups. Each trajectory is an individual trial, plotting from

200 ms before to 400 ms after lift onset. Lift onset times are indicated

by the dots in the same colors with the trajectories. Grey dots indicate

200 ms prior to lift onset time. Neural trajectories from additional ex-

periments are shown in Fig. A.6. (b) Performance of RADICaL and

smth-dec in revealing distinct subgroups in single-trial neural trajecto-

ries. The ratio of the cross-group distance to the within-group distance

was computed for each individual time point in a window from 200 ms

before to 400 ms after lift onset. Horizontal scale bar represents 100ms.

Vertical dashed line denotes lift onset time. Error bar indicates the

s.e.m. across individual trials. Dots indicate the maximum ratio for
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3.5 RADICaL improves prediction of behavior. (a) Decoding hand kine-

matics using ridge regression. Each column shows an example mouse/area.

Row 1: true hand position trajectories, colored by subgroups. Rows

2–4: predicted hand positions using ridge regression applied to the

event rates inferred by RADICaL or AutoLFADS, or smth-dec rates

(Gaussian kernel: 40 ms s.d.). Hand positions from additional experi-

ments are shown in Fig. A.7. (b) Decoding accuracy was quantified

by measuring variance explained (R2) between the true and decoded

position (top) and velocity (bottom) across all trials across each of

the 4 datasets (2 mice for M1, denoted by squares, and 2 mice for

S1, denoted by triangles), for all 3 techniques. Error bar indicates the

s.e.m. across 5 folds of test trials. (c) Quality of reconstructing the

kinematics across frequencies was quantified by measuring coherence

between the true and decoded position (top) and velocity (bottom) for

individual trials across all 4 datasets, for all 3 techniques. (d) Pre-

dicting single-trial reaction times using RADICaL or smth-dec rates.

Each dot represents an individual trial, color-coded by event rate infer-

ence method. Correlation coefficient r was computed between the true

and predicted reaction times. Prediction of single-trial reaction times

from additional experiments are shown in Fig. A.8. (e) Performance

of predicting single-trial reaction times across each of the 4 datasets

(2 mice for M1, denoted by squares, and 2 mice for S1, denoted by

triangles), for all 3 techniques. . . . . . . . . . . . . . . . . . . . . . . 50



3.6 RADICaL retains high decoding performance in a neuron downsam-

pling experiment. Decoding performance was measured as a function of

the number of neurons used in each technique (top: Position; bottom:

Velocity). Data are from Mouse2/M1 (left) and Mouse1/S1 (right).

Performance was quantified using variance explained (R2). Figure in-

sets indicate the selected neurons in the FOV for the full population

of neurons and examples for different subsets. Error bar indicates the

s.e.m. across 5 folds of test trials. Each black dot in the insets rep-

resents a neuron. Analyses were robust to the seed used for selecting

different random subsets of neurons (Fig. B.9). . . . . . . . . . . . . 52
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tion pipeline detailed in 4.5.1). Performance in capturing the ground

truth firing rates as a function of Lorenz oscillation frequency was

quantified by correlation coefficient r between the trial-averaged spikes

or deconvolved events and the true rates (right). Error bars indicate

the variability across simulated neurons. (c) The DfRAD architecture

for inferring latent dynamics from neural population activity. . . . . . 82
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4.3 DfRAD improves inference of fast dynamics at extremely slow sampling

rates. (a) Example ground truth firing rates from a Lorenz system

simulated with 7 Hz oscillations (left). Illustration of 2p sampling at

different sampling rates (right). Orange traces: simulated fluorescence
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A.1 Simulation of Lorenz system at different speeds. This figure illustrates

the underlying dynamical system used for the simulation experiments.

(a) An example Lorenz trajectory in a 3-dimensional state space (far

left) and with three dynamic variables plotted as a function of time
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computed by a linear readout of the Lorenz variables followed by an

exponential nonlinearity (middle right). Spikes from the firing rates

were then generated by a Poisson process (far right). The example

trial shown here is identical to “Trial 2” in Fig. 3.2a, but with a

wider plotting window. (b) Power spectrum of the individual Lorenz

variables for the system with a Z-oscillation peak frequency at 7 Hz.

Because only the Z variable has a clear peak in the power spectrum,

this variable was used exclusively for all further analyses in simulations

except Fig. B.1. (c) Power spectrum of the Z dimension for Lorenz

systems simulated with different Z-oscillation peak frequencies. . . . . 104



A.2 Simulation pipeline to generate artificial fluorescence traces from the

underlying Lorenz system. (a) This pipeline begins from the Poisson-

random spikes generated in the far-right panel of Fig. A.1. Calcium

traces were generated by first corrupting the spikes with amplitude

noise, then modeling the dynamics of calcium indicators in response

to a spike with an autoregressive process of order 2 transformed by

a piecewise-linear non-linearity. Sources of noise corrupting this flu-

orescence trace were then added. The nonlinearity and noise sources

were chosen to approximate the variability observed in real data. (b)

Example ground truth and simulated data using a GCaMP6f model.

From top to bottom: original ground truth spikes fed into the simula-

tor, perturbed spikes, idealized calcium trace, fluorescence trace with

nonlinearity and noise sources added, fluorescence trace after subsam-

pling, deconvolved spikes, and finally original ground truth spikes fed

into the simulator (shown again for comparison; same as top). (c)

Estimated nonlinearities for GCaMP6f from (Dana et al., 2019). (d)

Example traces generated by the simulator for a train of 10 Hz stimuli,

with and without nonlinearity applied. . . . . . . . . . . . . . . . . . 105



A.3 RADICaL retains high latent recovery performance in a simulation ex-

periment that lacks stereotyped conditions. This analysis was targeted

at determining whether RADICaL simply ‘memorized’ the stereotyped

trajectories for a limited number of conditions, or whether it could

generalize to cases where each trial was more unique. To answer this

question, we designed a “zero condition” simulation experiment, where

each trial had its own unique Lorenz initial state and there were no

repeated trials with the same underlying latent trajectories. (a) Ex-

ample true (top left) and estimated Lorenz trajectories by RADICaL

(top right), AutoLFADS (bottom left), and smth-dec (bottom right).

Each trajectory is an individual trial, colored by the location of the

initial state of the true Lorenz trajectory. The initial states of the

trials are indicated by the dots in the same colors as the trajectories.

(b) Performance in estimating the Lorenz Z dimension as a function of

Lorenz oscillation frequency was quantified by variance explained (R2)

for all 4 methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



A.4 RADICaL retains high latent recovery performance at slower imaging

speeds, but there are limits to deconvolution with slower sampling. To

understand the extent to which the model performance depends on

imaging speeds, we simulated data at different sampling rates rang-

ing from 2 Hz to 33.3 Hz. (a) Example ground truth spikes, simulated

fluorescence, and deconvolved signals at different sampling rates. Sam-

ple times are denoted by gray triangles. Deconvolution performance

degraded at slower sampling rates, particularly in regimes when tran-

sients could be missed entirely. In our simulation we used a GCaMP6f

model with a decay time of 400ms (see Methods). At an imaging rate

of 2 Hz, the majority of transients were missed and the estimate of the

decay time constant tau was inaccurate (916.8 +/- 49.4ms, compared

to the ground truth 400ms). Because deconvolution performs poorly at

these sampling rates (i.e., ¡= 2 Hz) with fast indicators, we do not rec-

ommend using RADICaL under such circumstances. (b) Performance

in estimating the Lorenz Z dimension as a function of sampling rate

was quantified by variance explained (R2) for all 3 methods, for Lorenz

oscillation frequencies of 10Hz (top) and 15Hz (bottom). Squares with

solid lines denote experiments with 278 neurons. Triangles with dashed

lines denote experiments with 500 neurons. RADICaL retained high

performance and outperformed AutoLFADS and smth-dec in recov-

ering the latent states of a 10 Hz Lorenz system at moderately slow

sampling rates (8 and 16 Hz; top). In real experiments, there may be

benefits to slower sampling, e.g., one can image more neurons using

a larger FOV. Increasing the number of neurons boosted RADICaL’s

performance, while AutoLFADS and smth-dec showed negligible im-

provement (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



A.5 Performance of RADICaL and AutoLFADS in capturing the empirical

PSTHs on single trials in the mouse water grab experiments. This fig-

ure is related to Fig. 3.3d, but compares RADICaL with AutoLFADS

instead of smth-dec. Correlation coefficient r was computed between

the inferred single-trial event rates and empirical PSTHs. Each point

represents an individual neuron. These results demonstrate that RAD-

ICaL captures the key features of individual neurons’ responses from

single-trial activity better than AutoLFADS in nearly every case. . . 108

A.6 Single-trial neural trajectories for additional mouse water grab exper-

iments. This figure is related to Fig. 3.4a, and shows the remain-

ing datasets. Single-trial, log-transformed event rates were projected

into a subspace computed by applying PCA to the trial-averaged, log-

transformed rates, colored by subgroups. Lift onset times are indicated

by the dots in the same colors as the trajectories. Gray dots indicate

200 ms prior to lift onset time. Top row: single-trial neural trajec-

tories derived from RADICaL rates; Bottom row: single-trial neural

trajectories derived from smth-dec rates. . . . . . . . . . . . . . . . . 109

A.7 Hand trajectories for additional mouse water grab experiments. This

figure is related to Figure 5a, and shows the remaining datasets. True

and decoded hand positions for Mouse1/S1 (left) and Mouse2/M1 (right).110

A.8 Prediction of single-trial reaction times for additional mouse water grab

experiments. This figure is like Fig. 3.5d, for the remaining datasets.

Each dot represents an individual trial, color-coded by the technique.

Correlation coefficient r was computed between the true and predicted

reaction times. Data from Mouse2/M1 (left) and Mouse2/S1 (right). 111



A.9 RADICaL retains high decoding performance in an FOV-shrinking ex-

periment. This is an alternative method for evaluating performance

with reduced neuron counts to the method in Fig. 3.6. (a) The area

selected to include was gradually shrunk to the center of the FOV to

reduce the number of neurons included in training RADICaL or AutoL-

FADS. (b) Decoding performance measured using variance explained

(R2) as a function of the number of neurons used in each technique (top:

Position; bottom: Velocity). Error bar indicates the s.e.m. across 5

folds of test trials. Data from Mouse2/M1. . . . . . . . . . . . . . . . 111

B.1 Performance of estimating other Lorenz dimensions in the simulation

experiments. Performance of estimating Lorenz X (left) and Y (right)

dimensions as a function of simulation frequency was quantified by

variance explained (R2) for all 4 methods. Note that these variables

are dominated by lower frequencies than the Z variable used in other

figures, and therefore make for an easier challenge. We therefore used

the Z variable for all other results. . . . . . . . . . . . . . . . . . . . . 113

B.2 Both SBTT and ZIG improve latent recovery performance separately.

To understand the contributions of ZIG and SBTT independently in

RADICaL’s performance in latent recovery, we fit RADICaL to differ-

ent Lorenz oscillation frequencies with only the ZIG emission model

enabled (no SBTT; “RAD/ZIG”) or only SBTT enabled (no ZIG;

“RAD/SBTT”). Performance in estimating the Lorenz Z dimension as

a function of Lorenz oscillation frequency was quantified by variance

explained (R2). RAD/ZIG performed a little better than AutoLFADs,

while RAD/SBTT performs substantially better, but combining both

(the full RADICaL model) performed substantially better still. . . . . 113



B.3 Deconvolution places an upper bound on RADICaL’s performance re-

covering higher-frequency features. To understand how deconvolu-

tion performs across Lorenz oscillation frequencies, we measured how

well trial-averaged deconvolved events captured the true underlying

rates for individual (simulated) neurons. Averaging deconvolved events

across the noisy repeated trials that have the same true underlying

rates is a straightforward way to test, on average, whether deconvolu-

tion irreversibly loses information about the underlying rates. There

were three main steps in the rates-to-events generation process: Pois-

son sampling of spikes from the underlying rates, fluorescence genera-

tion and sub-sampling, and deconvolution (detailed in Methods). To

specifically isolate the effect of fluorescence generation and deconvolu-

tion on rate recovery, we also tested recovery with those steps omitted,

i.e., spikes generated in the rates-to-events process were sub-sampled

from a sampling frequency of 100 Hz to 33.3 Hz as was done for the flu-

orescence traces, and were averaged across trials to quantify how well

they captured the true underlying rates. (a) Example ground truth

firing rates, averaged spikes across trials (3000 trials), and averaged

deconvolved calcium events across trials (3000 trials), for Lorenz oscil-

lation frequencies of 7Hz (top) and 40Hz (bottom). (b) Performance in

capturing the ground truth firing rates as a function of Lorenz oscilla-

tion frequency was quantified by correlation coefficient r between the

trial-averaged spikes or deconvolved events and the true rates. Error

bars indicate the variability across simulated neurons. The correla-

tion between the trial-averaged deconvolved events and the true rates

dropped as the Lorenz oscillation frequency increased, suggesting that

deconvolution fails at higher Lorenz oscillation frequencies. The corre-

lation between the trial-averaged spikes and the true rates did not drop

as the Lorenz oscillation frequency increased, suggesting that the drop

seen for the deconvolved events was mainly due to deconvolution and

not the Poisson sampling and sub-sampling steps. (c) To determine

whether RADICaL’s performance loss for high-frequency signals was

purely due to deconvolution failure or might involve limitations of the

model itself, we eliminated the fluorescence generation/deconvolution

step and applied RADICaL directly to the sub-sampled spiking activ-

ity. In this test, we did not use RADICAL’s ZIG observation model,

but kept the SBTT approach and used a Poisson observation model.

Performance in using ground truth spikes to estimate the Lorenz Z

dimension as a function of Lorenz oscillation frequency was quantified

by variance explained (R2) for smoothing and RADICaL. RADICaL

retained high performance in latent recovery across Lorenz oscillation

frequencies from 4Hz to 40Hz, whereas smoothing showed a much faster

degradation of latent recovery performance. Together, these analy-

ses demonstrate that the degradation in RADICaL’s performance at

higher Lorenz oscillation frequencies is mainly due to inaccuracies in

deconvolution, and not due to the model itself. . . . . . . . . . . . . . 114



B.4 Model tolerance to spike inference noise. In our simulations, we chose

parameters so that the resulting signal-to-noise regime produced simi-

lar correlations between real and inferred spike trains as observed in a

recent benchmarking study (Berens et al., 2018) (see Methods). How-

ever, the spike inference noise can vary in real experiments and could

affect RADICaL’s performance. To test how larger spike inference

noise affects the performance of RADICaL and smth-dec, we raised the

level of the Gaussian noise used in generating simulated fluorescence

traces by 2x or 4x. Performance in estimating the Lorenz Z dimen-

sion as a function of the level of spike inference noise was quantified

by variance explained (R2) for RADICaL and smth-dec. Performance

declined for both methods as the noise level increased. However, RAD-

ICaL retained high performance at the 2x noise level (R2=0.91) and

reasonable performance at the 4x noise level (R2=0.56). Smth-dec had

low performance across the board (R2=0.27 and 0.08 for 2x and 4x

noise, respectively). Notably, RADICaL performed better at the 4x

noise level than smth-dec at the original noise level. . . . . . . . . . . 115



B.5 RADICAL (with SBTT) improves latent recovery when using spikes

inferred by MLspike, but does not perform as well as when using

OASIS for deconvolution. To test whether RADICaL could be ef-

fective with deconvolution algorithms that infer spike times instead

of event rates, we analyzed simulated data that had spike inference

performed with MLspike (Deneux et al., 2016). Performance in es-

timating the Lorenz Z dimension as a function of Lorenz oscillation

frequency was quantified by variance explained (R2) for six methods.

These included three methods in which the inputs were deconvolved

events from OASIS: RADICaL (“RAD/OASIS”), AutoLFADS (“AL-

FADS/OASIS”) and smoothing (“smth-dec/OASIS”); and three meth-

ods in which inputs were spikes inferred with MLspike: RADICaL

(“RAD/MLspike”), AutoLFADS (“ALFADS/MLspike”) and smooth-

ing (“smth-dec/MLspike”). When pairing RADICaL with deconvo-

lution methods that produce spike times as output, we can use a

Poisson observation model (as one would use for spikes measured via

electrophysiology) instead of ZIG, while retaining the SBTT approach

for sub-frame sampling. RADICaL with a Poisson observation model

(RAD/MLspike) was able to model MLspike output, and substantially

outperformed AutoLFADS and smth-dec (ALFADS/MLspike and smth-

dec/MLspike), but did not perform as well as RADICaL applied to

OASIS-deconvolved events (RAD/OASIS). In addition, the parameter

tuning required for MLspike is more involved and requires more ex-

pertise than OASIS (see Methods). Therefore, we recommend using

OASIS as the deconvolution method for RADICaL. . . . . . . . . . . 116



B.6 RADICaL reduces decoding errors on the vast majority of single trials

for all datasets. Single-trial decoding error was quantified by measuring

the absolute difference between the true and decoded hand position

for each individual trial. Each point represents an individual trial.

Error was greatly reduced compared with both smth-dec (left) and

AutoLFADS (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.7 RADICaL improves prediction of single-trial deviations from the mean

of hand positions. This figure demonstrates that RADICaL does not

simply learn a ‘typical’ trajectory for left-reach trials and another for

right-reach trials, but instead reflects small deviations from the con-

dition average better than other methods. The residuals of hand po-

sitions (i.e., single-trial deviations from the mean) were computed by

subtracting the left-reach or right-reach trial-averaged hand positions

from the single trials. Error of residual prediction was computed by

taking the absolute value of the difference between true and predicted

residuals of hand positions. . . . . . . . . . . . . . . . . . . . . . . . . 118



B.8 Performance of ZIG-only (A-ZIG) and SBTT-only (A-SBTT) on de-

coding hand kinematics. To test whether the innovations of RAD-

ICaL contributed separately to the improved decoding performance,

we performed an ablation study where we enabled solely the ZIG

emissions model (RAD/ZIG) or SBTT (RAD/SBTT). Decoding ac-

curacy was quantified by measuring variance explained (R2) between

the true and decoded position (left) and velocity (right) across all tri-

als, for RAD/ZIG, RAD/SBTT and other techniques. Analyzed data

are from Mouse2/M1. Note that in this test, RAD/ZIG outperformed

RAD/SBTT, which is the opposite of the results from synthetic data

shown in Fig. B.2. The discrepancy could potentially be due to

different properties of the datasets, such as the frequency of the un-

derlying features or noise properties. However, for both simulated and

real data, either innovation (SBTT or ZIG) helps improve performance

and combining them yields the highest performance. . . . . . . . . . . 118

B.9 RADICaL is robust to the random seed used in selecting subsets of

neurons in a neuron downsampling experiment. This figure is related

to Figure 6. Decoding performance measured using variance explained

(R2) as a function of the number of neurons used in each technique

(top: Position; bottom: Velocity). For a given number of neurons

(except the full population of 439 neurons), 3 random seeds were used,

and each data point represents an individual random seed. The dotted

line represents the mean performance across the three random seeds

for each method. Data from Mouse2/M1. Figure insets indicate the

selected neurons in the FOV for experiments of the full population and

example subsets of the population. . . . . . . . . . . . . . . . . . . . 119
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B.10 RADICaL improves decoding performance using decoders trained with

smth-dec rates. This analysis demonstrates that the decoding perfor-

mance benefit due to RADICaL cannot be due to training a better

decoder alone, but results from better denoising of the trajectories

themselves. Decoding performance was quantified by measuring vari-

ance explained (R2) between the true and decoded hand position across

each of the 4 datasets (2 mice for M1, denoted by squares, and 2 mice

for S1, denoted by triangles), for decoders trained with smth-dec rates

and applied to smth-dec rates (gray) or applied to RADICaL rates (red).120

B.11 Visualization of transformation from factors to neurons. This analy-

sis demonstrates that the different bands of the image use the same

factors and not segregated ones, despite being divided up into sepa-

rate sub-bins for improving temporal resolution with SBTT. The plot

shows a 2-dimensional t-SNE space representation of weights mapping

from RADICaL factors to ZIG parameters for Mouse1/M1. Each point

represents an individual neuron (510 neurons total). Neurons are color

coded based on the neurons’ position within the field of view (i.e., top,

middle, and bottom). The interspersal of the points shows that neu-

rons do not have systematically different relationships with the factors

in RADICAL based on which band they are in. . . . . . . . . . . . . 120
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Chapter 1

Introduction

1.1 Benefits and challenges with two-photon (2p)

calcium imaging

Over the past decade, the ability to record from large populations of neurons has

increased exponentially (Stevenson and Kording, 2011; Steinmetz et al., 2021; Demas

et al., 2021). Such advances in neural interfaces are enabling new insights into how

neural populations implement the computations necessary for motor, sensory, and

cognitive processes (Vyas et al., 2020a). Among these techniques, two photon (2p)

calcium imaging offers the revolutionary ability to monitor in vivo vast populations

of neurons - rapidly increasing from tens of thousands to millions - in 3-D, with cell

types of interest and layers identified (Demas et al., 2021; Pachitariu et al., 2017;

Peron et al., 2015b). Therefore, 2p imaging is a powerful technique that has been

widely used by neuroscientists to provide insights on how neural circuitry gives rise

to function.
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1.1.1 Challenges with analyzing 2p data

A key trade-off in 2p imaging, however, is that greater spatial sampling (i.e., more

neurons) is typically associated with lower temporal resolution of sampling (Siegle

et al., 2021). With 2p imaging, neurons are serially scanned by a focused laser beam

that traverses the field of view (FOV), resulting in different neurons being sampled at

different times within an imaging frame. As a consequence, a trade-off exists between

the size of the FOV (and hence the number of neurons monitored), the sampling

frequency, and the pixel size (and hence the signal-to-noise with which each neuron is

sampled). Further, 2p calcium imaging provides a noisier and indirect measurement

of neurons’ spiking activity (Wei et al., 2020b; Peron et al., 2015a). The measured

fluorescence transients are a low-passed transformation of the underlying spiking ac-

tivity, with the time course of the transient dictated by the calcium indicator’s rise

and fall times, and also limited by the kinetics of calcium buffering (Wei et al., 2020b).

Moreover, the transformation is nonlinear: the magnitude of fluorescence change pro-

duced by spiking is not linearly proportional to the number of spikes (Tian et al.,

2009; Chen et al., 2013b; Scheuss et al., 2006). For example, a single spike might

have little effect on the measured fluorescence, while two spikes might produce a sub-

stantial increase. These challenges together limit the fidelity with which the activity

of large neuronal populations can be monitored and extracted via 2p, and thus limit

our ability to link 2p activity to neural computation and behavior on fine timescales.

1.1.2 Computational methods for analyzing 2p data

In recent years, a variety of computational methods have been employed to combat the

challenges with 2p data and improve inference of neuronal activity from 2p imaging

data. Some previous work has made steps in overcoming the limits of modest 2p

frame rates in attempts to infer the fast changes in neural firing rates that relate

to fast behaviors. Efforts to chip away at this barrier have relied on regularities
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imposed by repeated stimuli or highly stereotyped behavior (Picardo et al., 2016;

Mano et al., 2019), or jittered inferred events on sub-frame timescales to minimize

the reconstruction error of the associated fluorescence (Hoang et al., 2020). However,

these methods show limited improvements and could not be generalized to more

naturalistic or flexible behaviors due to the requirement of stereotypy in the behavior

or neural response.

More effort has been dedicated to the inference of neurons’ spike times from 2p

imaging data (Pnevmatikakis, 2019a). Established pipelines for the analysis of cal-

cium imaging data (Freeman et al., 2014; Giovannucci et al., 2019; Kaifosh et al.,

2014; Lu et al., 2018; Pachitariu et al., 2017; Pnevmatikakis et al., 2016; Romano

et al., 2017; Zhou et al., 2018) usually feature infrastructure to handle large datasets

(Freeman et al., 2014; Giovannucci et al., 2019), algorithms to correct for motion

artifacts (Friedrich et al., 2017), routines to localize neurons from summary statistics

(Apthorpe et al., 2016; Kaifosh et al., 2014; Kirschbaum et al., 2020; Mishne et al.,

2018; Pachitariu et al., 2013; Reynolds et al., 2017; Soltanian-Zadeh et al., 2019) or

methods based on matrix factorization to simultaneously tackle the problem of sepa-

rating signals from overlapping fluorescence sources in both the spatial and temporal

domains (Giovannucci et al., 2017, 2019; Inan et al., 2017; Keemink et al., 2018;

Maruyama et al., 2014; Mishne and Charles, 2019; Mukamel et al., 2009; Pachitariu

et al., 2017; Pnevmatikakis et al., 2016; Saxena et al., 2020; Zhou et al., 2018). The

resulting fluorescence signals can then be processed to infer spike times by a variety

of spike detection algorithms. A popular family of such algorithms exploits biophysi-

cal models of calcium spike generation to estimate a correlate of firing rate (Friedrich

et al., 2017; Pachitariu et al., 2017; Pnevmatikakis et al., 2016; Vogelstein et al., 2010;

Wei et al., 2020a; Yaksi and Friedrich, 2006) or single spikes (Deneux et al., 2016;

Ganmor et al., 2016; Jewell et al., 2020; Oñativia et al., 2013; Pnevmatikakis et al.,

2013; Vogelstein et al., 2009) to solve the spike extraction problem (Berens et al.,
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2018; Hoang et al., 2020; Rupprecht et al., 2021; Sebastian et al., 2021; Speiser et al.,

2017; Theis et al., 2016) with promising results. Finally, some algorithms are trying

to exploit the spatio-temporal relationship among neurons or across trials to build a

better representation of spiking patterns directly from raw movies or from de-noised

fluorescence traces (Picardo et al., 2016).

Ideally the spikes-to-fluorescence transformation would be invertible, such that

analyzing calcium events would be equivalent to analyzing spiking activity (Wei et al.,

2020b). However, recent benchmarks illustrate that the spike inference algorithms

described above all achieve limited correspondence to ground truth spiking activity

obtained with electrophysiology, particularly on fine timescales (Berens et al., 2018;

Pachitariu et al., 2018). Rather than focusing on the responses of individual neurons,

an alternative approach is to leverage the coordinated patterns of activity across the

neural population. Empirical studies have repeatedly demonstrated strong shared

structure underlying the activity of large populations of neurons (Montijn et al.,

2016), as might be expected from a highly interconnected network. Due to this

coordination, population activity might serve as a rich, complementary source of

information to improve inference from calcium signals.

There are multiple lines of work that have attempted to capture the population

structure underlying calcium imaging signals, such as methods to identify repeated

sequences (Mackevicius et al., 2019) or temporal factors that slowly change across

trials (Williams et al., 2018) from neural population activity monitored with calcium

imaging, or methods to extract recurring firing motifs directly from calcium imaging

videos using a variational autoencoder framework (Kirschbaum et al., 2019). Dimen-

sionality reduction methods have been developed to decouple evoked and spontaneous

activities (Triplett et al., 2020) or to identify an input manifold of odor representations

(Wu et al., 2018) from calcium signals. However, to our best knowledge, no study has

demonstrated a precise inference of the population state from calcium imaging that
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corresponds closely with single-trial behavior on fine timescales (i.e., 10 millisecond).

1.1.3 A dynamical systems approach for 2p data

Among the broad family of population-level analysis, there is one class of methods that

takes a dynamical systems approach. These dynamics models characterize patterns

of covariation across a neuronal population to reveal the multi-dimensional internal

state of the network (i.e., network state) as a whole. They find the consistent rules

(i.e., dynamics) that govern how the network state evolve over time, and describes

the time-varying activity of each neuron as a reflection of the underlying network

state (Linderman et al., 2017; Zoltowski et al., 2020; Pandarinath et al., 2018b). For

example, when applied to electrophysiological data, dynamics models assume that

an individual neuron’s spiking is a noisy observation of a latent “firing rate”, which

fluctuates in a coordinated way with the firing rates of other neurons in the popula-

tion. Leveraging the dynamics inherent in the neural populations, dynamics models

offer great promise in improving inference: the trajectory of network state inferred by

dynamics models can reveal key insights into the computations being performed by

the brain areas of interest (Vyas et al., 2020a), and the inferred network state can also

enhance our ability to relate neural activity to behavior. For example, one state-of-

the-art dynamics model is Latent Factor Analysis via Dynamical Systems (LFADS),

which is a deep learning-based method that estimates network state from electrophys-

iological spiking data (Sussillo et al., 2016; Pandarinath et al., 2018b). When applied

to data from motor, sensory, and cognitive regions, LFADS-inferred network state re-

veals close correspondence with single-trial behavior on a 5-10 millisecond timescale

(Pandarinath et al., 2018b; Keshtkaran et al., 2021).

Given the success of dynamics models in uncovering network state from electro-

physiological data, this dissertation develops new approaches based on dynamics to

tackle challenges and achieve accurate inference of network state from activity mon-
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itored through 2p calcium imaging. We build upon the state-of-the-art dynamics

model, LFADS, and develop innovations to adapt the model to fit calcium signals

and utilize staggered sample times of the neurons to achieve sub-frame temporal res-

olution. We next evaluate the new method using both simulated 2p data in which

activity reflects known, nonlinear dynamical systems, and with real 2p data from

mice performing a water reaching task. Last, we identify a limitation of the new

method at slower imaging rates due to the dependency of deconvolution, and develop

additional innovations to eliminate the need of deconvolution. Ultimately, work from

this dissertation provides an avenue to link network-level computation to biological

structure (i.e., cell types and layers) in unprecedented ways.

In Chapter 1.2, we will detail the concepts of neural dynamics and methods to

model dynamics, and discuss why modeling dynamics could mitigate the challenges

with calcium imaging, such as low temporal resolution and distortions of the signals.

1.2 Model neural populations as dynamical sys-

tems

1.2.1 Definition and evidence of neural population dynamics

Early work to understand how neural activity has focused on analyzing individual

neurons’ activities and how they ”represent” externally-measurable or controllable

parameters (Georgopoulos et al., 1982; Hubel and Wiesel, 1959). However, the in-

creased ability to get access to the activity of many neurons simultaneously has re-

vealed many features at the level of neural population that are difficult to explain

using the representational viewpoint (Churchland and Shenoy, 2007; Fetz, 1992). This

has motivated a shift of the field towards understanding how neurons within a network

coordinate their activity to perform computations.
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A large body of work suggests that the activity of individual neurons within a

large population is not independent, but instead is coordinated through a lower-

dimensional, internal state that evolves following lawful dynamics in time (Yuste,

2015; Vyas et al., 2020a). Here we formulate such neural population dynamics as

follows: At a given time point t, we can represent the observed activity of a population

of N neurons as a vector yt ∈ RN . The latent, internal state underlying these observed

neural activity (yt) can be represented as a vector xt ∈ RD, where yt ≈ h(xt) for

some function h. In many brain areas, the dimension D of xt to be far smaller than

the number of possible observations N (Cunningham and Yu, 2014). The evolution of

the latent state over time is largely driven by dynamics captured by a function f such

that xt+1 ≈ f(xt). Note that, in systems that receive inputs (i.e., a non-autonomous

dynamical system), the governing rule of the evolution of the latent state is a function

of both the current state of the system and the inputs.

Motor cortex, in particular, has emerged as a key area for understanding neural

dynamics, as its activity is strongly governed by internal dynamics, yet also well re-

lated to observable behavior (Churchland and Shenoy, 2007; Churchland et al., 2012;

Elsayed et al., 2016; Pandarinath et al., 2018b,a). A piece of groundbreaking work

has revealed that activity in motor cortex during movement generation can be well

explained by rotational dynamics, with the initial condition seeded by preparatory

activity and consistent rotational rules governing the evolution of the population ac-

tivity during movement execution (Churchland et al., 2012). The dynamical systems

framework has then provided a new avenue to probe many functions of the motor

cortex, including movement preparation and execution (Ames et al., 2014; Kaufman

et al., 2014; Elsayed et al., 2016), motor learning (Sadtler et al., 2014; Golub et al.,

2015), and generation of muscle activity (Russo et al., 2018). In addition to motor

areas, computation through dynamics is increasingly recognized as a widespread phe-

nomenon across many other brain areas (Vyas et al., 2020a). Modeling the activity
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of neural populations as latent dynamical systems has provided new insights into the

computations involved in cognitive processes such as decision-making (Mante et al.,

2013; Raposo et al., 2014; Carnevale et al., 2015), interval timing (Remington et al.,

2018), and navigation (Harvey et al., 2012; Morcos and Harvey, 2016).

1.2.2 Methods for inferring neural dynamics

Recent empirical evidence of neural dynamics has highlighted the need to further

develop tools capable of inferring latent structure and dynamics more efficiently and

accurately. A common approach to estimate latent structure is principal component

analysis (PCA). However, methods based on PCA usually require averaging across

repeated trials as a denoising step to yield reasonable performance (Yu et al., 2009;

Pandarinath et al., 2018a). As an alternative, factor analysis (FA) is used for single-

trial analysis, by treating activity shared across neurons as ”signal” and independent

activity as ”noisy” (Sadtler et al., 2014; Golub et al., 2015, 2018), or by introducing

a set of ”trial factors” to account for variability across trials (Williams et al., 2018).

However, a key limitation of PCA or FA is that they do not model the temporal

dependency between time points, and thus cannot leverage dynamics to provide more

precise estimation of the latent state.

A variety of methods have been developed to improve inference of latent states

by modeling the interdependencies between time points. One class of such methods

are based on Gaussian process (GP) (Yu et al., 2009; Lakshmanan et al., 2015; Zhao

and Park, 2017). These methods assume that the latent factors evolve independently

in time, with the smoothness of each factor dictated by its own characteristic time

constant (Yu et al., 2009; Pandarinath et al., 2018a). Another class of methods are

based on linear dynamical systems (LDS) (Macke et al., 2012; Gao et al., 2016; Kao

et al., 2015). LDS-based methods assume that the latent state at a given time point

is a linear transformation of its state at the previous time point, allowing interactions
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between latent factors (Macke et al., 2012; Pandarinath et al., 2018a). Because activ-

ity at different behavioral phases might be governed by different dynamics, switching

LDS (SLDS) was developed to allow a set of linear dynamics to be learned to capture

latent state at different phases (Petreska et al., 2011; Linderman et al., 2017; Glaser

et al., 2020). Despite the improvements provided by GP- and LDS-based methods,

they all rely on strong simplifying assumptions about the underlying dynamics. As

a result, their performance of estimating latent dynamics breaks down when tested

on nonlinear systems with higher complexity, as revealed by recent benchmarks on

real neural population recordings (Pei et al., 2021; Sussillo et al., 2016; Pandarinath

et al., 2018b).

Instead of simplifying assumptions about the underlying dynamics, a recently

developed method uses recurrent neural networks (RNNs) which are powerful nonlin-

ear function approximators, capable of modeling complex, highly nonlinear dynamics

(Sussillo et al., 2016; Pandarinath et al., 2018b). Using a sequential autoencoder

configuration, this method, known as Latent factor analysis via dynamical systems

(LFADS), models neural population activity as an input-driven dynamical system and

achieves a breakthrough in the ability to infer latent state and dynamics on single

trials. The latent state inferred by LFADS can be linked to behavior with unprece-

dented accuracy on a moment-by-moment basis (Pandarinath et al., 2018b). Recent

work further developed a powerful, large-scale hyperparameter optimization frame-

work on top of LFADS, known as AutoLFADS (Keshtkaran and Pandarinath, 2019;

Keshtkaran et al., 2021), to ensure the hyperparameters to be optimized properly and

efficiently.

More recent effort on modeling neural dynamics has focused on utilizing new

advances in computer science and deep learning. Besides RNN-based models (i.e.,

LFADS / AutoLFADS), a transformer-based model was developed to reduce infer-

ence time for potential applications in brain-machine interfaces (Ye and Pandarinath,
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2021). A method based on neural ODE was developed to improve interpretability of

learned dynamics (Kim et al., 2021). A control-based method was developed to tackle

the challenge of inferring ongoing external inputs to the dynamical system (Schimel

et al., 2022). Given the bloom of methods for modeling neural dynamics, a bench-

mark has been developed to systematically compare methods and coordinate efforts

across various developers (Pei et al., 2021).

In this dissertation, we develop and test dynamics models for application to 2p

calcium imaging data. We build our models on top of AutoLFADS, as it gives state-of-

the-art performance on the benchmark (Pei et al., 2021) and has demonstrated superb

ability to link neural activity to behavior across datasets from different brain areas

(Pandarinath et al., 2018b) and recording modalities (Flint et al., 2020; Wimalasena

et al., 2022).

1.2.3 How could modeling dynamics mitigate challenges with

calcium imaging

As detailed in 1.1.1, analyzing 2p imaging data has proven challenging because of

the distortions of neuronal activity (noises and nonlinearities) and limitations on

temporal resolution. Here we provide reasonings on why modeling neural dynamics

could tackle these challenges.

As shown in prior work (Pandarinath et al., 2018b), modeling dynamics is an

effective way to denoise the neural population activity because of two key principles

it relies on. First, simultaneously recorded neurons are not independent, but rather

exhibit coordinated spatial patterns of activation that reflect the state of the network

(Cunningham and Yu, 2014; Pandarinath et al., 2018a). Due to this coordination,

a substantial fraction of a given neuron’s activity can be inferred by knowing the

activity of other neurons in the same network (Montijn et al., 2016; Yu et al., 2009).

As a consequence, network states might also be reliably estimated even if the mea-
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surement of individual neurons’ activity is unreliable (e.g., distorted due to noises

or nonlinearities in 2p imaging). Second, the activation of these coordinated spatial

patterns evolves over time in ways that are largely predictable based on consistent

rules (dynamics) (Shenoy et al., 2013; Vyas et al., 2020a). Thus, while it may be

challenging to accurately estimate the network’s state based solely on activity ob-

served at a single time point, knowledge of the network’s dynamics provides further

information to help constrain network state estimates using data from multiple time

points. These principles of neural dynamics make it possible to substantially denoise

2p data and extract the underlying latent state with higher precision.

Modeling dynamics also provides a solution to improve temporal resolution. As

described in 1.1.1, in 2p experiments, neurons are serially scanned by a laser that

traverses the field of view (FOV), resulting in different neurons being sampled at

different times within an imaging frame. For each individual neuron, the sampling

rate is relatively low, equal to the frame rate of imaging. Indeed, current population-

level analysis methods treat 2p data as if all neurons within a FOV were sampled

at the same time at the imaging frame rate. However, the fact that each neuron is

sampled at staggered, known times within the frame could be employed to increase the

time resolution at the level of population. The dynamical systems approach allows us

to leverage such sub-frame timing information to increase temporal resolution. One

way of doing so is to rebin the data into finer, sub-frame bins, with activity from

each neuron assigned to the appropriate bins according to the sampled times. In this

way, we create a sparse matrix with more precise timing and recast the underlying

interpolation problem as a missing data problem that can be naturally handled by

the dynamical systems approach. Due both to the fact that the dynamics imposes a

significant amount of structure on the trajectory of the latent state and the fact that

the dimensionality of latent state is typically far smaller than the number of observed

neurons, it is possible to estimate the latent state without observing every neuron at
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every time bin. This approach opens the door for breaking the limit of space-time

trade-offs inherent to 2p imaging (and many other neural interfaces) and achieving

sub-frame temporal resolution.

In sum, the dynamical systems approach provides an avenue to precisely infer

latent state from 2p imaging data with substantially improved temporal solution.

1.3 Dissertation overview

My research and dissertation focus on developing methods to improve inference of

latent dynamics from 2p imaging data, with the goal of providing a better analytical

tool of 2p data for the neuroscience community. This dissertation is divided into three

main parts, each having a different focus (chapters 2, 3 and 4).

In Chapter 2, we formulate a fundamental challenge in neuroscience, the space-

time trade-off, due to bandwidth limits that are inherent to a variety of modern

neural interfaces. We develop a novel neural network training strategy, namely selec-

tive backpropagation through time (SBTT), to achieve spatiotemporal super resolu-

tion. We validate the applicability of SBTT across different recording modalities (i.e.,

electrophysiology and 2p calcium imaging), neural network architectures (i.e., RNNs

and transformers), and training settings (i.e., transfer learning for practical usage in

brain-machine interfaces).

In Chapter 3, we design and incorporate innovations tailored specifically for 2p

data, and validate and provide a framework, namely Recurrent Autoencoder for Dis-

covering Imaged Calcium Latents (RADICaL), to precisely infer single-trial latent dy-

namics from 2p data that is convenient to use by the neuroscience community. With

synthetic data, we find that RADICaL outperforms other state-of-the-art methods

in recovering higher-frequency features in the latent state, and provide evidence on

when RADICaL will succeed or fail across a variety of experimental settings (i.e.,
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sampling rate, frequency of the underlying features, noise level, nonstereotyped trial

structure, way to deconvolve). With real 2p data from mice performing a forelimb

reach task, we test RADICaL across 2 mice and 2 brain areas (M1 and S1). We

find that RADICaL precisely infers latent state that shows a close correspondence

with the animals’ behavior, substantially outperforming alternate methods. We also

demonstrate that RADICaL maintains high-quality inference even when neuronal

populations are greatly reduced.

In Chapter 4, we identify a limitation of RADICaL described in Chapter 3. RAD-

ICaL relies on deconvolution as a pre-processing step, but deconvolution breaks down

when sampling rate is low (e.g., < 8 Hz). To enable RADICaL to be generalized

to slower sampling regimes which are common in 2p experiments, we eliminate the

need of deconvolution by integrating a generative rate-to-fluorescence autoregressive

model into RADICaL. We next develop a regularization strategy, per-neuron coor-

dinated dropout, to better separate the inference of population-level, latent dynam-

ics from inference of the neuron-level, calcium dynamics. Our new method, namely

deconvolution-free RADICaL (DfRAD), demonstrates precise inference of latent state

when the sampling rate is substantially reduced (e.g., 2 Hz) and enables the applica-

tion of dynamics modeling of some of the most exciting, massive datasets in systems

neuroscience.

Chapter 5 discusses future directions and summarizes the dissertation.

A comprehensive list of references is provided at the end of the dissertation.
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Chapter 2

Deep inference of latent dynamics

with spatio-temporal

super-resolution using selective

backpropagation through time

2.1 abstract

Modern neural interfaces allow access to the activity of up to a million neurons within

brain circuits. However, bandwidth limits often create a trade-off between greater

spatial sampling (more channels or pixels) and the temporal frequency of sampling.

Here we demonstrate that it is possible to obtain spatio-temporal super-resolution in

neuronal time series by exploiting relationships among neurons, embedded in latent

low-dimensional population dynamics. Our novel neural network training strategy,

selective backpropagation through time (SBTT), enables learning of deep generative

models of latent dynamics from data in which the set of observed variables changes at

each time step. The resulting models are able to infer activity for missing samples by
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combining observations with learned latent dynamics. We test SBTT applied to se-

quential autoencoders and demonstrate more efficient and higher-fidelity characteriza-

tion of neural population dynamics in electrophysiological and calcium imaging data.

In electrophysiology, SBTT enables accurate inference of neuronal population dynam-

ics with lower interface bandwidths, providing an avenue to significant power savings

for implanted neuroelectronic interfaces. In applications to two-photon calcium imag-

ing, SBTT accurately uncovers high-frequency temporal structure underlying neural

population activity, substantially outperforming the current state-of-the-art. Finally,

we demonstrate that performance could be further improved by using limited, high-

bandwidth sampling to pretrain dynamics models, and then using SBTT to adapt

these models for sparsely-sampled data.

2.2 Introduction

Modern systems neuroscientists have access to the activity of many thousands to

potentially millions of neurons via multi-photon calcium imaging and high-density

silicon probes (Stringer et al., 2019a; Demas et al., 2021; Jun et al., 2017; Steinmetz

et al., 2021). Such interfaces provide a qualitatively different picture of brain activity

than was achievable even a decade ago.

However, neural interfaces increasingly face a trade-off – the number of neurons

that can be accessed (capacity) is often far greater than the number that is simulta-

neously monitored (bandwidth). For example, with 2-photon calcium imaging (2p;

Fig. 2.1a, top), hundreds to thousands of neurons are serially scanned by a laser that

traverses the field of view, resulting in different neurons being sampled at different

times within an imaging frame. As a consequence, a trade-off exists between the size

of the field-of-view (and hence the number of neurons monitored), the sampling fre-

quency, and the signal-to-noise with which each neuron is sampled. Whereas current
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analysis methods treat 2p data as if all neurons within a field-of-view were sampled

at the same time at the imaging frame rate, the fact that each neuron is sampled

at staggered, known times within the frame could be employed to increase the time

resolution.

Electrophysiological interfaces face similar trade-offs (Fig. 2.1a, bottom). With

groundbreaking high-density probes such as Neuropixels and Neuroseeker (Jun et al.,

2017; Steinmetz et al., 2021; Raducanu et al., 2017), simultaneous monitoring of all

recording sites is either not currently possible or limits the signal-to-noise ratio, so

users typically monitor a selected subset of sites within a given recording session.

For example, Neuropixels 2.0 probes contain up to 5120 electrodes, 384 of which

can be recorded simultaneously (Steinmetz et al., 2021). In other situations, power

constraints might make it preferable to restrict the number of channels that are simul-

taneously monitored, such as in wireless or fully-implanted applications where battery

life and heat dissipation are key challenges (Miranda et al., 2010; Borton et al., 2013;
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Figure 2.1: Exploiting space-time trade-offs in neural interfaces using SBTT. (a) In 2-photon calcium
imaging (top), individual neurons are serially scanned at a low frame rate, resulting in staggered
sample times. In modern electrophysiological recordings (bottom), bandwidth or power constraints
prevent simultaneous monitoring of all recording sites. (b) Observed neuronal activity reflects la-
tent, low-dimensional dynamics (captured by the function f). (c) SBTT applied to a sequential
autoencoder for inferring latent dynamics from neural population activity.
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Simeral et al., 2021). As newer interfacing strategies provide a pathway to hundreds

of thousands of channels for revolutionary brain-machine interfaces (Sahasrabuddhe

et al., 2021; Musk et al., 2019), neural data processing strategies that can leverage

dynamic deployment of recording bandwidth might allow substantial power savings.

Solutions to these space-time trade-offs may come from the structure of neural

activity itself. A large body of work suggests that the activity of individual neurons

within a large population is not independent, but instead is coordinated through

a lower-dimensional, latent state that evolves with stereotyped temporal structure

(Fig. 2.1b). We can represent the state at time t as a vector xt ∈ RD that evolves

according to dynamics captured by a function f such that xt+1 ≈ f(xt). Rather than

directly observing the latent state xt, we observe neural activity that we represent

as yt ∈ RN , where yt ≈ h(xt) for some function h. Due both to the fact that f

imposes a significant amount of structure on the trajectory of the xt’s and the fact

that we typically expect the dimension D of xt to be far smaller than the number

of possible observations N , one might expect that it should be possible to estimate

the xt’s without observing every neuron at every time step (i.e., measuring only

some of the elements of each yt), just as we generally infer latent states from only a

fraction of the neurons in a given area. If so, principled exploitation of the space-time

trade-off of neural interfaces might achieve higher-fidelity or more bandwidth-efficient

characterization of neural population activity.

To our knowledge, no methods have demonstrated inference of dynamics from data

in which the set of neurons being monitored changes dynamically at short intervals.

To address this challenge, we introduce selective backpropagation through time (SBTT;

Fig. 2.1c), a method to train deep generative models of latent dynamics from data

where the identity of observed variables varies from sample to sample. Here we explore

applications of SBTT to state space modeling of neural population activity that obeys

low-dimensional dynamics.
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This paper is organized as follows. Section 2.3 provides an overview of related

work. Section 2.4 details SBTT and its integration with sequential autoencoders for

modeling neural population dynamics. Section 2.5 demonstrates the effectiveness of

this solution in achieving more efficient and higher-fidelity inference of latent dynamics

in applications to electrophysiological and calcium imaging data.

2.3 Related work

There is a long and rich literature on methods for system identification, particularly in

the case of linear dynamical systems. The last several years have witnessed a burst of

activity in establishing a more robust theoretical understanding of when and how well

these methods work. Particularly relevant to our approach,(Hardt et al., 2018) shows

that under suitable conditions on the dynamical system, performing gradient descent

on the reconstruction loss of observed data can provably recover the parameters of the

system despite the nonconvexity of the problem. Additional guarantees are provided

in (Simchowitz et al., 2018; Hazan et al., 2018; Oymak and Ozay, 2019; Tsiamis

and Pappas, 2019; Lee and Zhang, 2020) which make varying assumptions on the

underlying dynamics and the observation function, the existence of an observable

control input, and the stochasticity of the dynamical system. Adversarial noise models

are further considered in (Simchowitz et al., 2019, 2020). We emphasize, however,

that all of the above works limit their focus to linear dynamical systems where the

observations are fully sampled, i.e., where all of yt = Hxt is measured for all t.

In the case of a linear observation model (yt = Hxt) but where we observe only

a subset of the elements of each yt, the problem is reminiscent of the low-rank matrix

completion problem (Davenport and Romberg, 2016). Specifically, by letting Y and

X denote the matrices whose columns are given by the yt and xt respectively, we can

write Y = HX. If D ≪ N , this is a low-rank matrix, and hence could be recovered
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from a random sampling of O(D logN) elements of each column of Y (Davenport

and Romberg, 2016). However, this strategy essentially assumes that there is no

relationship between the xt – one would expect to obtain significant improvements

by exploiting the dynamical structure among the xt imposed by f . Indeed, in (Xu

and Davenport, 2016, 2017) the authors show that if the dynamics f are known, then

it is possible to significantly reduce the sampling requirements. However, the question

of learning such an f from undersampled observations has again not been addressed

in this literature.

In some application domains, there have been hints in this direction. In particular,

in the related contexts of recommendation systems (Hidasi et al., 2015; Wu et al.,

2017b) and student knowledge tracking (Piech et al., 2015; Xu and Davenport, 2020)

there have been successful empirical efforts aimed at learning dynamical systems for

modeling how user preferences/knowledge change over time. While such approaches

have also had to confront the issue of missing observations (items that are not rated

or questions that are not answered), they are aided by the existence of rich sources

of additional metadata (e.g., tags) that lead to fundamentally different approaches

than what we take here.

Within our application domain, a variety of methods have been developed to infer

latent dynamical structure from neural population activity on individual trials, in-

cluding those based on Gaussian processes (Yu et al., 2009; Duncker et al., 2019; Zhao

and Park, 2017; Wu et al., 2017a), linear (Macke et al., 2012; Gao et al., 2016; Kao

et al., 2015) and switching linear dynamical systems (Petreska et al., 2011; Linderman

et al., 2017; Glaser et al., 2020), and nonlinear dynamical systems such as recurrent

neural networks (Pandarinath et al., 2018b; Keshtkaran and Pandarinath, 2019; She

and Wu, 2020; Keshtkaran et al., 2021), hidden Markov models (Hernandez et al.,

2018), neural ODEs (Kim et al., 2021), and transformers (Ye and Pandarinath, 2021).

Variants of these methods accommodate cases where the particular observed neurons
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change over long time periods (e.g., over the course of days) (Pandarinath et al.,

2018b; Nonnenmacher et al., 2017; Kao et al., 2017), but these are not appropriate

for cases where neurons are intermittently sampled on short timescales. As described

below, several of these methods would be amenable to using SBTT to adapt to inter-

mittent sampling, as SBTT should be applicable to any neural network architecture

that learns weights via backpropagation through time.

2.4 Selective backpropagation through time

2.4.1 Overview

SBTT is a learning rule for updating the weights of a neural network that allows

backpropagation of loss for the portions of data that are present while preventing

missing data from corrupting the gradient signal. The technique optimizes the model

to reconstruct observed data while extrapolating to the unobserved data. The imple-

mentation of SBTT is related to other approaches that augment network inputs and

cost functions to reflect different subsets of the data matrix across samples, in par-

ticular coordinated dropout (Keshtkaran and Pandarinath, 2019), masked language

modeling (Devlin et al., 2018), and DeepInterpolation (Lecoq et al., 2020). Though

not designed for missing data, these previous approaches split fully-observed data into

two portions - a portion that is provided at the input to the network, and a portion

that is used to compute loss at the output. SBTT uses a similar strategy to accommo-

date missing data, by zero-filling missing input points and aggregating only losses for

observed data points at the output. Though prior work has adopted a similar strategy

to handle missing data (Hurwitz et al., 2019), the contribution of SBTT is integrating

the strategy with models with a temporal component to learn a dynamical system.

To demonstrate SBTT, we provide code for a basic experiment using a sequential

autoencoder and Lorenz dataset (https://github.com/snel-repo/sbtt-demo).

https://github.com/snel-repo/sbtt-demo
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2.4.2 Illustration with a simple linear dynamical system

We begin by describing our approach in the context of a simple linear dynamical

system. In the case where we have no (observable) inputs, we can model a linear

dynamical system as

xt+1 = Axt +wt

yt = Hxt + zt.

Here, x ∈ RD represents a hidden state, y ∈ RN represents our observations, and wt

and zt represent noise. The matrix A models the dynamics of the hidden state, and

H models the observation function of our system. In this setting, our task is to learn

the parameters A and H given the observations y0, . . . ,yT−1 as well as the initial

system state x0.

SBTT is a variation of standard back-propagation where loss terms attributed to

missing observations are ignored when computing back-propagation updates. Con-

cretely speaking, consider a linear recurrent network that can learn this linear model

using a least squares loss

L =
1

T

T−1∑
t=0

1

2
∥yt −Hxt∥22.

If the observation vector yt contains a missing entry at index i, the least squares loss

would not contain the (yit − (Hxt)
i)2 term, where the superscript i represents the ith

index of a vector. If ot = Hxt is taken to be the output of the recurrent network at

time step t, then the loss with respect to the outputs of the network is

∂L
∂ot

=
1

T
(ot − yt). (2.1)

SBTT requires that loss terms, and subsequently loss gradients, related to missing
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observations are ignored. This means that elements in the gradient vector (2.1) are

ignored and set to 0 at indices i where the corresponding observations, yit, are missing.

This gradient is then back-propagated through time to obtain gradients with respect

to model parameters A and H as shown below

∂L
∂H

=
T−1∑
t=0

∂L
∂ot

(xt)
⊺,

∂L
∂A

=
T−1∑
t=1

∂L
∂xt

x⊺
t−1,

where ∂L
∂xt

is recursively computed using back-propagation through time:

∂L
∂xt

= A⊺ ∂L
∂xt+1

+H⊺ ∂L
∂ot

.

These parameters can then be updated using gradient descent.

2.4.3 Integration with a deep generative model of neural

population dynamics

Here we will demonstrate the use of SBTT with a recently developed framework for

inferring nonlinear latent dynamics from neural population recordings. This frame-

work, Latent Factor Analysis via Dynamical Systems (LFADS), is a sequential varia-

tional auto-encoder (SVAE), detailed in (Pandarinath et al., 2018b). LFADS models

single-trial latent dynamics by learning the initial state of the dynamical system, the

dynamical rules that govern state evolution, and any time-varying inputs that cannot

be explained by the dynamics (i.e., in the case of a non-autonomous dynamical sys-

tem). Briefly, a bidirectional RNN encoder operates on the neural spiking sequence

y(t) and produces a conditional distribution over initial condition z, Q(z|y(t)). A

Kullback-Leibler (KL) divergence penalty is applied as a regularizer for divergence

between the uninformative prior P (z) and Q(z|y(t)). The initial condition is then

drawn from Q(z|y(t)) and mapped to an initial state for a generator RNN, which
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learns to approximate the dynamical rules underlying the neural data. A controller

RNN takes as input the state of the generator at each time step, along with a time-

varying encoding of y(t) (produced by a second bidirectional RNN encoder), and

injects a time-varying input u(t) into the generator. Similar to z, u(t) is drawn from

a parameterized time-varying distribution of Q(u(t)|y(t)) produced by the controller.

A second KL penalty is applied between P (u(t)) and Q(u(t)|y(t)). At each time step,

the generator state evolves with input from the controller and the controller receives

delayed feedback from the generator. The generator states are linearly mapped to

factors, which are in turn mapped to the firing rates of the neurons using a linear

mapping followed by an exponential nonlinearity. LFADS assumes a Possion emis-

sion model for the observed spiking activity. The optimization objective combines

the reconstruction cost of the observed spiking activity (i.e., the Poisson likelihood of

the observed spiking activity given the rates produced by the generator network), the

KL penalties described above, and L2 regularization penalties on the weights of the

recurrent networks. During training, network weights are optimized using stochastic

gradient descent and backpropagation through time.

The first step in applying SBTT to LFADS is to zero-fill the missing data before

feeding it into the initial condition (IC) and controller input (CI) encoders. After

passing the data through the remaining hidden layers, we use the resulting rate es-

timates to compute a reconstruction loss (Poisson negative log-likelihood) for each

observed neuron-timepoint and aggregate by taking the mean. The modified recon-

struction loss is combined with other losses as in the standard LFADS model. The

network only optimizes for reconstruction of observed data and is free to interpolate

at unobserved points.

Throughout this paper we use population-based training along with coordinated

dropout, together known as AutoLFADS, to optimize our models (Keshtkaran and

Pandarinath, 2019; Keshtkaran et al., 2021; Jaderberg et al., 2017). This framework is
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essential for achieving reliably high-performing LFADS models, regardless of dataset

statistics.

2.5 Experiments

2.5.1 High performance with limited bandwidth on primate

electrophysiological recordings

A key target application of AutoLFADS with SBTT is to enable reduced sampling of

electrodes: either to enable recording from larger populations of electrodes with lim-

ited bandwidth (such as with Neuropixels), or to reduce power consumption (such as

for fully-implantable brain-machine interfaces). To investigate the performance of Au-

toLFADS models trained with SBTT, we started with a large and well-characterized

dataset containing electrophysiological recordings from macaque primary motor and

dorsal premotor cortex (M1/PMd) (Churchland et al., 2010, 2021). The data were

collected during a delayed reaching task, in which the monkey made both straight

and curved reaches from a center position, around virtual barriers (the maze), to one

of 108 possible target positions. The dataset consisted of 2296 trials with 202 sorted

units aligned to movement onset in a window from 250 ms before to 450 ms after

this point. Spike counts were binned at 10 ms (70 bins). We held out 50 randomly

selected units from modeling to use for evaluation of inferred latent factors. We simu-

lated various missing data scenarios for the remaining 152 units by randomly masking

a fraction of the observations at each time step for each trial (Fig. 2.2a, top).

For each of the masked datasets, we used AutoLFADS with SBTT to robustly

train neural dynamics models. Latent factors and firing rates were inferred for all time

steps, despite the missing (masked) observations. Even with 70% dropped samples,

the inferred firing rates showed structure comparable to the model of fully observed

data (Fig. 2.2a, bottom).
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To determine whether the models were able to capture biologically relevant in-

formation from sparsely sampled data, we evaluated the inferred latent factors in

terms of their ability to predict hand velocity (Fig. 2.2b) and the spiking activity of

held-out units (Fig. 2.2c). As a recognizable baseline, we trained a Gaussian Pro-

cess Factor Analysis (GPFA) model (40 latent dimensions, 20 ms bins) on the fully

observed dataset (Yu et al., 2009; Denker et al., 2018). GPFA is a commonly-used

and versatile method for extracting latent structure from neural population activity,

and these parameters have been validated on this dataset in prior work (Pandarinath

et al., 2018b). We trained simple linear decoders to predict hand velocity from the

inferred latent factors with an 80 ms delay (50/50, trial-wise train-test split), and

evaluated using the coefficient of determination, averaged over x- and y-dimensions.

For AutoLFADS with SBTT, decoding performance showed a minimal decline un-

til around 80% of the data had been dropped, with some models outperforming the

GPFA baseline using as little as 15% of the original data (Fig. 2.2b). To measure

how well the models captured the population structure, we trained generalized linear

models (GLMs) (Paninski, 2004; Jas et al., 2020) to predict the spikes for the held

out units and evaluated fit quality using pseudo-R2 (pR2). Similar to the decoding

results, we found that AutoLFADS with SBTT captured population structure sig-

nificantly better than fully observed GPFA, and that the information content of the

factors declined slowly until about 80% missing samples (Fig. 2.2c).

To evaluate the importance of modeling latent dynamics for accurate inference

with sparsely observed data, we also trained NDT with selective backpropagation on

the same datasets (Ye and Pandarinath, 2021). We found that decoding performance

from inferred firing rates declined faster than for AutoLFADS with SBTT, but NDT

still outperformed GPFA with up to 40% missing data (Fig. 2.2b).
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Figure 2.2: SBTT allows inference of latent dynamics from M1/PMd electrophysiology data with
sparse observations. (a) Spike count input and inferred rate output of LFADS for the same example
trial with increasingly sparse observations. Masked data are shown in white, observed zeroes are
shown in light purple, and nonzero spike counts are shown in darker shades. Units are sorted by
timing of firing rate peaks for the fully sampled model. (b) Accuracy of linear hand velocity decoding
from inferred latent factors. (c) Quality of GLM fits from inferred latent factors to 50 held-out units.
pR2 values for each held-out unit are normalized to the corresponding values achieved by the GPFA
baseline. Points denote the median across all units. Shaded areas depict the 25th and 75th quantiles.
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2.5.2 Recovery of high frequency features in simulated 2P

calcium imaging data

High-frequency features of neural responses are generally assumed to be lost in 2P

imaging due to limited scanning speeds and indicator kinetics. We hypothesized

that some of the loss is actually due to standard 2P data processing, which discards

information regarding sub-frame sampling time of individual neurons, and that SBTT

could recover some of this information. The inherently staggered sampling of neurons

due to raster scanning can be treated as a time series with missing values and higher

temporal resolution than the frame rate. We tested SBTT on both simulated and

real calcium imaging data. In both cases, we adapted AutoLFADS to better account

for the statistics of deconvolved calcium activity (AutoLFADS-ZIG) by substituting

the underlying Poisson emission model with a Zero-Inflated Gamma distribution (Wei

et al., 2020a). In our experiments we compared three methods: AutoLFADS-ZIG with

SBTT (ALFADS-SBTT), a standard frame-resolution version of AutoLFADS-ZIG

without SBTT (ALFADS), and Gaussian smoothing of deconvolved calcium activity.

We generated artificial 2P data from a population of simulated neurons (278 neu-

rons) whose firing rates were linked to the state of an underlying Lorenz system

(Zhao and Park, 2017; Sussillo et al., 2016). To assess the ability to reconstruct la-

tent dynamics at different frequencies, we simulated Lorenz systems with different

speeds. For each Lorenz system we report the Z dimension power spectrum peak,

which contains the most concentrated and highest frequencies. Fluorescence traces

were simulated from the spike trains using an order 1 autoregressive model followed

by a non-linearity and injected with 4 sources of noise. Firing rates were simulated

with a sampling frequency of 100Hz, and a ”location” was randomly chosen for each

simulated neuron, such that sampling times for different neurons were staggered to

simulate 2p laser scanning sampling times. This produced fluorescence traces with

one of three possible associated phases (0,11,22ms) and overall sample rate 33 Hz. We
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Figure 2.3: SBTT improves inference of high-frequency dynamics from simulated 2P data with
known dynamical structure. (a) True and inferred Lorenz latent states (X/Y/Z dimensions) for a
single example trial from Lorenz systems simulated at two different frequencies (7Hz and 15Hz).
Black: ground truth. Colored: inferred. (c) Performance in estimating the Lorenz Z dimension as a
function of Lorenz speed was quantified by variance explained (R2) for all three methods. The speed
of the Lorenz dynamics was quantified based on the peak location of the power spectra of Lorenz Z
dimension, with a sampling frequency of 100Hz.

deconvolved neural activity from the fluorescence traces using the OASIS algorithm

(Friedrich et al., 2017) as implemented in the CaImAn package (Giovannucci et al.,

2019).

For ALFADS-SBTT we used the sub-frame phase information to generate intermittently-

sampled data. In contrast, for both ALFADS and Gaussian smoothing, we discarded

phase information and collapsed samples into a single time bin per frame, as is stan-

dard in 2p imaging data processing. To evaluate the performance in recovering the

ground truth Lorenz states, we trained a mapping from the output of each method

(i.e., the inferred event rates from ALFADS-SBTT and ALFADS, and smoothed de-

convolved events by Gaussian smoothing; signals were interpolated to 100 Hz for

the latter methods) to the ground truth Lorenz states using cross-validated ridge

regression. We used R2 between the true and inferred Lorenz states as a metric of

performance.

The true and predicted Lorenz states for two example trials are illustrated in

Fig. 2.3a. The performance of smoothing and ALFADS dropped substantially for

higher Lorenz state frequencies, while ALFADS-SBTT maintained reasonable esti-

mates (R2 ≈ 0.8) up to 15Hz (Fig. 2.3a & b) and never dropped below 0.4 in the

range of tested frequencies.
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2.5.3 Improved representation of hand kinematics in mouse

2P calcium imaging data

We next applied SBTT to real 2P calcium imaging data we collected from motor

cortex in a mouse performing a forelimb water grab task. The dataset comprised

475 trials in which the mouse was cued by a tone to reach to a left or right spout

and retrieve a droplet of water with its right forepaw. Pyramidal cells expressing the

GCaMP6f calcium indicator were imaged with a two-photon microscope at a 31 Hz

frame rate, and a subset of 439 modulated neurons within the field-of-view (FOV)

were considered for analysis (FOV shown in Fig. 2.4a, left ; example calcium traces

in Fig. 2.4a, right). The mouse’s forepaw position was tracked in 3D at 150 Hz

with stereo cameras and DeepLabCut Mathis et al. (2018). Calcium events were

deconvolved with OASIS (Friedrich et al., 2017; Giovannucci et al., 2019).

2P data for ALFADS-SBTT were processed analogously to the simulations, using

neuron locations within the FOV to inform the intermittent sampling times. Trials

represented a window spanning 200 ms before to 800 ms after the mouse’s reach onset.

This resulted in 100 time points per trial for ALFADS-SBTT, and 31 time points per

trial for ALFADS and Gaussian smoothing. For both ALFADS-SBTT and ALFADS,

trials were split into 80/20 train/validation.

To compare representations inferred by ALFADS-SBTT and ALFADS, we first

evaluated how closely the single-trial event rates inferred for each neuron resembled

that neuron’s peri-stimulus time histogram (PSTH). PSTHs were calculated by tak-

ing the average of the Gaussian-smoothed deconvolved events across trials within

each experimental condition. Because the mouse’s reaches were not stereotyped to

each spout (i.e., left or right), we subgrouped trials into 4 finer conditions based on

forepaw Z position during the reach. ALFADS-SBTT single-trial event rates were

more strongly correlated with neurons’ PSTHs compared to those inferred by AL-

FADS (Fig. 2.4b).
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We next decoded the mouse’s single-trial forepaw kinematics (position and ve-

locity) based on each model’s output. Decoding was performed using ridge regres-

sion with 5-fold cross validation. We used R2 between the true and predicted hand

positions and velocities as a metric of performance. R2 was averaged across XYZ

behavioral dimensions and all 5 folds of the test sets. Decoding using ALFADS-

SBTT inferred rates outperformed results from smoothing deconvolved events, or

from the ALFADS inferred rates (Fig. 2.4c). Because the improvement of decoding

performance for position is modest, we further assessed how the improvement was

distributed as a function of temporal frequency. We computed the coherence between

the true and decoded positions for each method (Fig. 2.4d). Consistent with the

simulations, ALFADS-SBTT predictions showed higher coherence with true position

than predictions from other methods, with improvements more prominent at higher

frequencies (5-15Hz).
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2.5.4 Using high-bandwidth observations to improve perfor-

mance in low-bandwidth conditions

In implantable or wireless applications, using the device’s full interface bandwidth

might incur significant power costs, which would burden users with frequent battery

recharging. However, it may be possible to leverage high-bandwidth recordings from

limited time periods to learn models of latent dynamics, and then switch to low-

bandwidth modes for subsequent long-term operation, in order to minimize ongoing

power use. Such an approach is enabled by the stability of latent dynamics over

months to years (Pandarinath et al., 2018b; Kao et al., 2017; Gallego et al., 2020).

We tested these ideas on the same electrophysiological dataset described in section

2.5.1. After training AutoLFADS models on the fully sampled data, we retrained the

initial condition and controller input encoders using SBTT on each of the sparsely

sampled datasets. The weights for the rest of the network remained fixed. In this

way, the dynamical rules learned from the fully sampled data are maintained, while

the mappings from data to the initial conditions and controller inputs are adapted

for sparse data. Retraining the encoding networks in this way (Fig. 2.5, “Retrained

sparse”) maintained performance to high levels of missing data, outperforming AutoL-

FADS trained on fully observed data but run with missing data (Fig. 2.5, “Trained

full”) or training directly on sparsely-sampled data (Fig. 2.5, “Trained sparse”, same

as in Fig. 2.2b). These results show that dynamics models are learned most accu-

rately on fully observed data, but that the learned dynamics can be used to model

sparsely sampled data if models are adapted to the sparser domain using SBTT.

2.6 Discussion

We introduced SBTT, a novel approach for learning latent dynamics from irregu-

larly or sparsely sampled time series data. In experiments on real electrophysiology
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Figure 2.5: Retraining full-data LFADS encoders on sparse data improves decoding performance. (a)
Hand velocity decoding performance in function of dropped samples (as in Fig. 2.2b). “Trained full”
indicates training on fully observed data and inference on sparse data. “Trained sparse” indicates
training and inference on sparse data. “Retrained sparse” indicates training on fully observed data,
followed by encoder retraining and inference on sparse data. (b) Spike count input and inferred rate
output of LFADS. Conventions are as in Fig. 2.2a.

data from macaque motor cortex, we show that models trained with SBTT learn

biologically relevant neural dynamics with up to 80% masked training data. On data

from a synthetic 2P calcium imaging simulation, we show that models trained with

SBTT capture high frequency features of the latent dynamics that are not captured

at frame resolution. We also showed improved behavioral decoding performance on

real 2P imaging data from mouse M1. Finally, we demonstrate that retraining the

early layers of a full-data model on sparse datasets using SBTT can substantially

improve decoding performance at the most challenging sparsity levels, outperforming

models trained on the sparse data alone. Taken together, these results clearly show

that SBTT is a valuable technique for training models with irregularly or sparsely

sampled time series data.

2.6.1 Limitations

Though we made an effort to characterize performance across multiple potential appli-

cations, it remains untested how this approach would generalize to other experimen-

tal settings (microscopes, calcium indicators, expression levels), model systems, and
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brain areas or tasks with more complex or higher-dimensional dynamics (Keshtkaran

et al., 2021), but we are optimistic that these properties will extend to AutoLFADS

models that use SBTT in other settings. Applications to brain-machine interfaces

await incorporation of neural network-based dynamics models into closed-loop, real

time systems. We also note that hardware implementations of intermittent sampling

for electrophysiology are still largely unexplored, and might incur time or power costs

when switching between channels. This might change the point at which intermittent

sampling is beneficial from a power or performance perspective. We hope that this

work indicates new directions for future generations of recording hardware that focus

on high interface capacities and rapid switching between contacts.

2.6.2 Broader impact

Our results could pave the way to substantially decreased power consumption for

fully-implantable brain-machine interfaces. Ultimately, this should result in more

reliable and less burdensome assistive devices for people with disabilities. Further,

expanding the information that can be gathered through a given recording bandwidth

has scientific implications, and could enable neuroscientists to ask new questions via

larger-scale studies of the brain.

Like any resource-intensive technology, this technique has the potential to increase

inequity by only benefiting those who can afford the most advanced neural interfaces.

Efforts to deploy such technologies should weigh input from ethicists to ensure that

everyone benefits from these scientific innovations (Klein et al., 2015; Goering et al.,

2021).
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Chapter 3

A deep learning framework for

inference of single-trial neural

population dynamics from calcium

imaging with sub-frame temporal

resolution

3.1 abstract

In many brain areas, neural populations act as a coordinated network whose state is

tied to behavior on a millisecond timescale. Two-photon (2p) calcium imaging is a

powerful tool to probe such network-scale phenomena. However, estimating network

state and dynamics from 2p measurements has proven challenging because of noise,

inherent nonlinearities, and limitations on temporal resolution. Here we describe

RADICaL, a deep learning method to overcome these limitations at the population

level. RADICaL extends methods that exploit dynamics in spiking activity for ap-
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plication to deconvolved calcium signals, whose statistics and temporal dynamics

are quite distinct from electrophysiologically-recorded spikes. It incorporates a novel

network training strategy that capitalizes on the timing of 2p sampling to recover

network dynamics with high temporal precision. In synthetic tests, RADICaL infers

network state more accurately than previous methods, particularly for high-frequency

components. In 2p recordings from sensorimotor areas in mice performing a forelimb

reach task, RADICaL infers network state with close correspondence to single-trial

variations in behavior, and maintains high-quality inference even when neuronal pop-

ulations are substantially reduced.

3.2 Introduction

In recent years, advances in neural recording technologies have enabled simultaneous

monitoring of the activity of large neural populations (Stevenson and Kording, 2011;

Steinmetz et al., 2021; Demas et al., 2021). These technologies are enabling new

insights into how neural populations implement the computations necessary for motor,

sensory, and cognitive processes (Vyas et al., 2020a). However, different recording

technologies impose distinct tradeoffs in the types of questions that may be asked (Wei

et al., 2020b; Siegle et al., 2021; Chen et al., 2013b). Modern electrophysiology enables

access to hundreds to thousands of neurons within and across brain areas with high

temporal fidelity (Steinmetz et al., 2021). Yet in any given area, electrophysiology is

limited to a sparse sampling of relatively active, unidentified neurons (Siegle et al.,

2021) (Fig. 3.1a). In contrast, two photon (2p) calcium imaging offers the ability to

monitor the activity of vast populations of neurons - rapidly increasing from tens of

thousands to millions (Demas et al., 2021; Pachitariu et al., 2017; Peron et al., 2015b)

- in 3-D, often with identified layers and cell types of interest (Chen et al., 2013a,

2015). Thus 2p imaging is a powerful tool for understanding how neural circuitry
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gives rise to function.

A key tradeoff, however, is that the fluorescence transients measured via calcium

imaging are a low-passed and nonlinearly-distorted transformation of the underlying

spiking activity (Fig. 3.1b). Further, because neurons are serially scanned by a

laser that traverses the field of view (FOV), a trade-off exists between the size of

the FOV (and hence the number of neurons monitored), the sampling frequency, and

the pixel size (and therefore the signal-to-noise with which each neuron is sampled).

These factors together limit the fidelity with which the activity of large neuronal

populations can be monitored and extracted via 2p, and thus limit our ability to

link activity measured with 2p imaging to neural computation and behavior on fine

timescales. Although a large amount of effort has been dedicated to improving the

inference of spike trains from 2p calcium data (Pnevmatikakis, 2019b), recent bench-

marks illustrate that a variety of algorithms to infer calcium events all achieve limited

correspondence to ground truth spiking activity obtained with electrophysiology, par-

ticularly on fine timescales (Berens et al., 2018; Pachitariu et al., 2018).

Rather than focusing on the responses of individual neurons, an alternative ap-

proach is to characterize patterns of covariation across a neuronal population to reveal

the multi-dimensional internal state of the network as a whole. These “latent variable

models”, or simply “latent models”, describe each neuron’s activity as a reflection of

the whole network’s state over time. For example, when applied to electrophysi-

ological data, latent models assume that an individual neuron’s spiking is a noisy

observation of a latent “firing rate”, which fluctuates in a coordinated way with the

firing rates of other neurons in the population. Despite their abstract nature, the

trajectory of network state inferred by latent models can reveal key insights into the

computations being performed by the brain areas of interest (Vyas et al., 2020a).

Inferred network state can also enhance our ability to relate neural activity to be-

havior. For example, one state-of-the-art deep learning method to estimate network
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state from electrophysiological spiking data is Latent Factor Analysis via Dynamical

Systems (LFADS) (Sussillo et al., 2016; Pandarinath et al., 2018b). In applications

to data from motor, sensory, and cognitive regions, LFADS uncovers network state

that corresponds closely with single-trial behavior on a 5-10 millisecond timescale

(Pandarinath et al., 2018b; Keshtkaran et al., 2021).

Building on the success of latent models for electrophysiological data, here we

develop an approach to achieve accurate inference of network state from activity

monitored through 2p calcium imaging. We first begin with LFADS and evaluate

network state inference using simulated 2p data in which activity reflects known,

nonlinear dynamical systems, and with real 2p data from mice performing a water

reaching task. LFADS uncovers network state with substantially higher accuracy than

standard approaches (e.g., deconvolution plus Gaussian smoothing). We then develop

the Recurrent Autoencoder for Discovering Imaged Calcium Latents (RADICaL) to

improve inference over LFADS through innovations tailored specifically for 2p data.

In particular, we modify the network architecture to better account for the statistics

of deconvolved calcium signals, and develop a novel network training strategy that ex-

ploits the staggered timing of 2p sampling of neuronal populations to achieve precise,

sub-frame temporal resolution. Our new approach substantially improves inference

from 2p data, shown in synthetic data through accurate recovery of high-frequency

features (up to 20 Hz), and in real data through improved prediction of neuronal ac-

tivity, as well as prediction of single-trial variability in hand kinematics during rapid

reaches (lasting 200-300 ms). Ultimately, RADICaL provides an avenue to tie precise,

population-level descriptions of neural computation with the anatomical and circuit

details revealed via calcium imaging.
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3.3 Results

Inferring network state from 2p imaging data using dynamics Dynamical systems

models such as LFADS rely on two key principles to infer network state from neural

population activity. First, simultaneously recorded neurons exhibit coordinated pat-

terns of activation that reflect the state of the network (Cunningham and Yu, 2014;

Pandarinath et al., 2018a). Due to this coordination, network state might be reli-

ably estimated even if the measurement of individual neurons’ activity is unreliable.

Second, these coordinated patterns evolve over time based on consistent rules (dy-

namics) (Vyas et al., 2020a; Shenoy et al., 2013). Thus, while it may be challenging

to accurately estimate the network’s state based on activity at a single time point,

knowledge of the network’s dynamics provides further information to help constrain

network state estimates using data from multiple time points.

To apply these principles to improve inference from 2p data, we extended LFADS

to produce RADICaL (Fig. 3.1c). Both LFADS and RADICaL model neural popu-

lation dynamics using recurrent neural networks (RNNs) in a sequential autoencoder

configuration (details in Methods, and in previous work (Sussillo et al., 2016; Pandar-

inath et al., 2018b)). This configuration is built on the assumption that the network

state underlying neural population activity can be approximated by an input-driven

dynamical system, and that observed activity is a noisy observation of the state of the

dynamical system. The dynamical system itself is modeled by an RNN (the ‘genera-

tor’). The states of the generator are linearly mapped onto a latent space to produce

a ‘factors’ representation, which is then transformed to produce the time-varying out-

put for each neuron (detailed below). The model has a variety of hyperparameters

that control training and prevent overfitting, whose optimal settings are not known

a priori. To ensure that these hyperparameters were optimized properly for each

dataset, we built RADICaL on top of a powerful, large-scale hyperparameter opti-

mization framework we recently developed known as AutoLFADS (Keshtkaran et al.,
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2021; Keshtkaran and Pandarinath, 2019).

3.3.1 Novel features of RADICaL

RADICaL incorporates two major innovations over LFADS and AutoLFADS. First,

we modified RADICaL’s observation model to better account for the statistics of de-

convolved events. In LFADS, discrete spike count data are modeled as samples from

an underlying time-varying Poisson process for each neuron. However, deconvolving

2p calcium signals results in a time series of continuous-valued events, with imperfect

correspondence to the actual spike times and counts (Berens et al., 2018). These

deconvolved events can be better approximated at each timepoint by a zero-inflated

gamma (ZIG) distribution, which combines a gamma distribution to model the cal-

cium event magnitudes and a point mass that represents the elevated probability of

zero values (Wei et al., 2020a). In RADICaL, deconvolved events are therefore mod-

eled as samples from a time-varying ZIG distribution whose parameters are taken

from the output of the generator RNN (Fig. 3.1c; details in Methods). We define

the network state at any given time point as a vector containing the inferred (i.e.,

de-noised) event rates of all neurons, where the de-noised event rate is taken as the

mean of each neuron’s inferred ZIG distribution at each time point (equation (3.3) in

Methods). The de-noised event rates are latent variables that are tied to the under-

lying network state at each time point. Because of the complicated transformation

from generator states to individual neurons’ activity, we used the de-noised event

rates as the model output for subsequent analyses to compare methods as directly as

possible.

Second, we developed a novel neural network training strategy, selective backprop-

agation through time (Zhu et al., 2021b) (SBTT), that leverages the precise sampling

times of individual neurons to enable recovery of high-frequency network dynamics.

Since standard 2p microscopes rely on point-by-point raster scanning of a laser beam
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to acquire frames, it is possible to determine the sample times for each neuron with

high precision within the frame (Fig. 3.1d). To leverage this information to improve

inference of high-frequency network dynamics on single trials, we recast the underly-

ing interpolation problem as a missing data problem: we treat imaging a whole frame

as sequentially imaging multiple, smaller bands containing different neurons. In this

framing, each neuron is effectively sampled sparsely in time, i.e., the majority of time

points for each neuron do not contain valid data (Fig. 3.1e). Such sparsely sam-

pled data creates a challenge when training the underlying neural network: briefly,

neural networks are trained by adjusting their parameters (weights), and performing

this adjustment requires evaluating the gradient of a cost function with respect to

weights. SBTT allows us to compute this gradient using only the valid data, and

ignore the missing samples (Fig. 3.1f ; see Methods). Because SBTT only affects

how we compute the gradient and update the weights, the network still infers event

rates for every neuron at every time point, regardless of whether samples exist at

that time point or not. This allows the trained network to accept sparsely-sampled

observations as input, and produce high-temporal resolution event rate estimates as

its output.
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Figure 3.1: Improving inference of network state from 2p imaging. (a) Calcium imaging offers the
ability to monitor the activity of many neurons simultaneously, in 3-D, often with cell types of
interest and layers identified. In contrast, electrophysiology sparsely samples the neurons in the
vicinity of a recording electrode, and may be biased toward neurons with high firing rates. (b)
Calcium fluorescence transients are a low-passed and lossy transformation of the underlying spiking
activity. Spike inference methods may provide a reasonable estimate of neurons’ activity on coarse
timescales (left), but yield poor estimates on fine timescales (right; data from (Chen et al., 2013b)).
(c) RADICaL uses a recurrent neural network-based generative model to infer network state - i.e.,
de-noised event rates for the population of neurons - and assumes a time-varying ZIG observation
model. For any given trial, the time-varying network state can be captured by three pieces of
information: the initial state (i.e., “initial condition”) of the dynamical system (trial-specific), the
dynamical rules that govern state evolution (shared across trials), and any time-varying external
inputs (i.e., “inferred inputs”) that may affect the dynamics (trial-specific). (d) Top: in 2p imaging,
the laser’s serial scanning results in different neurons being sampled at different times within the
frame. Bottom: individual neurons’ sampling times are known with sub-frame precision (colors) but
are typically analyzed with whole-frame precision (gray). (e) Sub-frame binning precisely captures
individual neurons’ sampling times but results in neuron-time points without data. The numbers
in the table indicate the deconvolved event in each frame. (f) SBTT is a novel network training
method for sparsely sampled data that prevents unsampled time-neuron data points from affecting
the gradient computation.
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3.3.2 RADICaL uncovers high-frequency features from sim-

ulated data

We first tested RADICaL using simulated 2p data where the underlying network state

is known and parameterizable. We hypothesized that the new features of RADICaL

would allow it to infer higher-frequency features with greater accuracy than stan-

dard approaches, such as Gaussian-smoothing the deconvolved events (“smth-dec”),

smoothing the simulated fluorescence traces themselves (“smth-sim-fluor”), or state-

of-the-art tools for electrophysiology analysis, such as AutoLFADS. We generated

synthetic spike trains by simulating a population of neurons whose firing rates were

linked to the state of a Lorenz system (Sussillo et al., 2016; Zhao and Park, 2017)

(detailed in Methods and Fig. A.1a). We ran the Lorenz system at various speeds,

allowing us to investigate the effects of temporal frequency on the quality of network

state recovery achieved by different methods. In the 3-dimensional Lorenz system,

the Z dimension contains the highest-frequency content (Fig. A.1b). Here we denote

the frequency of each Lorenz simulation by the peak frequency of the power spectrum

of its Z dimension (Fig. A.1c).

We used the synthetic spike trains to generate realistic noisy fluorescence signals

consistent with GCAMP6f (detailed in Methods and Fig. A.2). To recreate the vari-

ability in sampling times due to 2p laser scanning, fluorescence traces were simulated

at 100 Hz and then sub-sampled at 33.3 Hz, with offsets in each neuron’s sampling

times consistent with spatial distributions across a simulated FOV. We then decon-

volved the generated fluorescence signals to extract events (Friedrich et al., 2017;

Giovannucci et al., 2019). Because RADICaL uses SBTT, it could be applied directly

to the deconvolved events with offset sampling times. In contrast, for both AutoL-

FADS and smth-dec, deconvolved events for all neurons were treated as all having

the same sampling times (i.e., consistent with the frame times), as is standard in 2p

imaging (detailed in Methods).
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Despite the distortions introduced by the fluorescence simulation and deconvolu-

tion process, RADICaL was able to infer event rates that closely resembled the true

underlying rates (Fig. 3.2a). To assess whether each method accurately inferred

the time-varying state of the Lorenz system, we mapped the representations from the

different approaches - i.e., the event rates inferred by RADICaL or AutoLFADS, the

smoothed deconvolved events, and the smoothed simulated fluorescence traces - onto

the true underlying Lorenz states using cross-validated ridge regression. We then

quantified performance using the coefficient of determination (R2), which quantifies

the fraction of the variance of the true latent variables captured by the estimates. Fig.

3.2b shows the Lorenz Z dimension for example trials from three Lorenz speeds, as

well as the recovered values for three of the methods. RADICaL inferred latent states

with high fidelity (R2 >0.8) up to 15 Hz, and significantly outperformed other meth-

ods across a range of frequencies (Fig. 3.2c; performance for the X and Y dimensions

is shown in Fig. B.1; p<0.05 for all frequencies and dimensions, paired, one-sided

t-Test, detailed in Methods). Notably, performance in estimating latent states was

improved due to both of the innovations in RADICaL, with SBTT contributing more

(Fig. B.2). To test RADICaL’s ability in estimating single-trial dynamics for a

task that lacks a repetitive trial-structure, we varied the simulation so that each trial

had a unique initial condition for the Lorenz system. RADICaL accurately inferred

the latent states on single trials (Fig. A.3a) and outperformed AutoLFADS and

smth-dec at high Lorenz oscillation frequencies (Fig. A.3b).

To better understand the regimes in which RADICaL recovers the underlying

latent variables well or poorly, we performed variants of the simulation experiments

along 4 additional axes: imaging speed (Fig. A.4), high frequency structure in

the latent variables (Fig. B.3), noise levels (Fig. B.4), and whether RADICaL

could be effective when used with algorithms that infer spike times instead of event

rates, such as MLspike (Deneux et al., 2016) (Fig. B.5). In all cases we found that
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Figure 3.2: Application of RADICaL to synthetic data. (a) Example firing rates and spiking activity
from a Lorenz system simulated at 7 Hz, deconvolved calcium events (inputs to RADICaL), and
the corresponding rates and factors inferred by RADICaL. Simulation parameters were tuned so
that the performance in inferring spikes using OASIS matched previous benchmarks (Berens et al.,
2018) (see Methods). (b) True and inferred Lorenz latent states (Z dimension) for a single example
trial from Lorenz systems simulated at three different Lorenz oscillation frequencies. Black: true.
Colored: inferred. (c) Performance in estimating the Lorenz Z dimension as a function of simulation
frequency was quantified by variance explained (R2) for all 4 methods.

RADICaL substantially outperformed alternate approaches. However, as expected,

our analysis showed that deconvolution itself performs poorly at very slow sampling

rates (e.g., 2Hz and below), and for very high frequency content (e.g., >20 Hz), and

thus RADICaL’s performance in those regimes is limited by the use of deconvolution

as a preprocessing step.

These simulations demonstrate RADICaL’s performance in various circumstances,

but the parameter space of possible experiments is very large (calcium indicators, ex-

pression patterns, imaging settings, etc.) and an exhaustive search of this parameter

space is infeasible. Thus, we next benchmarked performance on real data to demon-

strate RADICaL’s utility in the real world.
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3.3.3 RADICaL improves inference in a mouse “water grab”

task

We next tested RADICaL on 2p recordings from mice performing a forelimb water

grab task (Fig. 3.3a, top). We analyzed data from four experiments: two mice

with two sessions from each mouse, in which different brain areas were imaged (M1,

S1). Our task was a variant of the water-reaching task of (Galiñanes et al., 2018).

In each trial, the mouse was cued by the pitch of an auditory tone to reach to a

left or right spout and retrieve a droplet of water with its right forepaw (Fig. 3.3a,

bottom; see Methods). The forepaw position was tracked at 150 frames per second

with DeepLabCut (Mathis et al., 2018) for 420-560 trials per experiment. To test

whether each method could reveal structure in the neural activity at finer resolution

than left vs. right reaches, we divided trials from each condition into subgroups

based on forepaw height during the reach (Fig. 3.3a, top right; see Methods). Two-

photon calcium imaging from GCaMP6f transgenic mice was performed at 31 Hz,

with 430-543 neurons within the FOV in each experiment (Fig. 3.3b).

With real datasets, a key challenge when benchmarking latent variable inference

is the lack of ground truth data for comparison. A useful first-order assessment is

whether the event rates inferred for individual trials match the empirical peri-stimulus

time histograms (PSTHs), i.e., the rates computed by averaging noisy single-trial

data across trials with similar behavioral characteristics (Pandarinath et al., 2018b;

Keshtkaran et al., 2021). While this approach obscures meaningful across-trial vari-

ability, it provides a ‘de-noised’ estimate that is useful for coarse performance quan-

tification and comparisons. To compute empirical PSTHs, we averaged the smoothed

deconvolved events (smth-dec rates) across trials within each subgroup.

We found that RADICaL-inferred event rates recapitulated features of individual

neurons’ activity that were apparent in the empirical PSTHs, both when averaging

across trials, but also on individual trials (Fig. 3.3c). Importantly, RADICaL is
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an unsupervised method, meaning that it was not provided any behavioral infor-

mation, such as whether the mouse reached to the left or right on a given trial, or

which subgroup a trial fell into. Yet the single-trial event rates inferred by RADICaL

showed clear separation not only between left and right reach conditions, but also

between subgroups of trials within each condition. This separation was not clear

with the single-trial smth-dec rates. We quantified the correspondence between the

single-trial inferred event rates and the empirical PSTHs via Pearson’s correlation

coefficient (r ; see Methods). RADICaL single-trial event rates showed substantially

higher correlation with the empirical PSTHs than smth-dec rates (Fig. 3.3d) or

those inferred by AutoLFADS (Fig. A.5). Importantly, these improvements were

not limited to a handful of neurons, but instead were broadly distributed across the

population. Within the trials modeled by RADICaL, we found there was a subset

of right reaches from Mouse1/S1 that were “loopy” and atypical, showing multiple

large peaks in hand speed (Fig. 3.3e, top). The RADICaL single-trial event rates

exhibited distinct patterns of neural responses for these atypical trials (Fig. 3.3e,

bottom), demonstrating RADICaL’s ability to automatically capture idiosyncrasies

of single-trial activity that are common in experiments that constrain behavior less

tightly.
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Figure 3.3: Application of RADICaL to real two-photon calcium imaging of a water grab task. (a)
Task. Top left: Mouse performing the water grab task. Pink trace shows paw centroid trajectory.
Bottom: Event sequence/task timing. RT: reaction time. ITI: inter-trial interval. Top right:
Individual reaches colored by subgroup identity. (b) Top: an example field of view (FOV), identified
neurons colored randomly. Bottom left: dF/F from a single trial for 5 example neurons. Bottom
right: Allen Atlas M1/S1 brain regions imaged. (c) Comparison of trial-averaged (left) and single-
trial (right) rates for 8 individual neurons for two different brain areas (left vs. right) and two
different mice (top half vs. bottom half) for smth-dec and RADICaL (alternating rows). Left: each
trace represents a different reach subgroup (4 in total) with error bars indicating s.e.m. Right: each
trace represents an individual trial (same color scheme as trial-averaged panels). Odd rows: smth-
dec event rates (Gaussian kernel: 40 ms s.d.). Even rows: RADICaL-inferred event rates. Horizontal
scale bar represents 200ms. Vertical scale bar denotes event rate (a.u.). Vertical dashed line denotes
lift onset time. (d) Performance of RADICaL and smth-dec in capturing the empirical PSTHs on
single trials. Correlation coefficient r was computed between the inferred single-trial event rates and
empirical PSTHs. Each point represents an individual neuron. (e) Kinematic profiles and neural
representations of atypical trials. Top: Z-dimension of hand velocity profile. Each trace represents
an individual trial, colored by typical vs. atypical. Atypical trials are identified as the trials that
have a second peak in Z-dimension of the hand velocity that is larger than 50% of the first peak.
Middle and Bottom: Comparison of single-trial rates for 2 example neurons (data from Mouse1/S1)
for smth-dec (middle row) and RADICaL (bottom row). Each trace represents an individual trial
(same color scheme as top row). Horizontal scale bar represents 200ms. Vertical scale bar denotes
event rate (a.u.). Vertical dashed line denotes lift onset time.
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We next tested whether the population activity inferred by RADICaL also showed

meaningful structure on individual trials. We used principal component analysis

(PCA) to produce low-dimensional visualizations of the population’s activity (de-

tailed in Methods). The low-D trajectories computed from the RADICaL-inferred

rates showed consistent, clear single-trial structure that corresponded to behavioral

conditions and subgroups for all four experiments (Fig. 3.4a, top row; Fig. A.6, top

row), despite RADICaL receiving no direct information about which trials belonged

to which subgroup, or even the kinematics used to define the subgroups. In compar-

ison, low-D trajectories computed from the smth-dec rates showed noisy single-trial

structure with little correspondence to behavioral subgroups (Fig. 3.4a, bottom row;

Fig. A.6, bottom row). To provide a quantitative summary, we measured the dis-

tance of the low-D trajectories between each trial and other trials across subgroups

(dacross) vs. within the same subgroup (dwithin) for any given time and computed

the distance ratio (detailed in Methods). The distance ratio (i.e., dacross/dwithin) of

RADICaL-derived trajectories was higher than smth-dec-derived trajectories across

time points, which was also consistent across four experiments (Fig. 3.4b).

3.3.4 RADICaL captures dynamics that improve behavioral

prediction

We next tested whether the RADICaL-inferred event rates were closely linked to be-

havior by decoding forepaw positions and velocities from the inferred event rates using

cross-validated ridge regression (Fig. 3.5a; Fig. A.7). Decoding using RADICaL-

inferred rates significantly outperformed results from smth-dec rates, or from the

AutoLFADS-inferred rates (Fig. 3.5b; position: average R2 of 0.91 across all ex-

periments, versus 0.75 and 0.85 for smth-dec and AutoLFADS, respectively; velocity:

average R2 of 0.62 across the mice/areas, versus 0.37 and 0.51 for smth-dec and

AutoLFADS, respectively; p<0.05 for position and velocity for all individual exper-
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Figure 3.4: RADICaL produces neural trajectories reflecting trial subgroup identity in an unsu-
pervised manner. (a) Single-trial neural trajectories derived from RADICaL rates (top row) and
smth-dec rates (bottom row) for two experiments (left: Mouse2/M1; right: Mouse1/S1), colored by
subgroups. Each trajectory is an individual trial, plotting from 200 ms before to 400 ms after lift
onset. Lift onset times are indicated by the dots in the same colors with the trajectories. Grey
dots indicate 200 ms prior to lift onset time. Neural trajectories from additional experiments are
shown in Fig. A.6. (b) Performance of RADICaL and smth-dec in revealing distinct subgroups in
single-trial neural trajectories. The ratio of the cross-group distance to the within-group distance
was computed for each individual time point in a window from 200 ms before to 400 ms after lift
onset. Horizontal scale bar represents 100ms. Vertical dashed line denotes lift onset time. Error bar
indicates the s.e.m. across individual trials. Dots indicate the maximum ratio for each method.

iments, paired, one-sided t-test, detailed in Methods). Improvements achieved by

RADICaL were shown on most trials (Fig. B.6). Importantly, the performance

advantage was not achieved by simply predicting the mean event rates for all tri-

als of a given condition: RADICaL also outperformed AutoLFADS and smth-dec

in decoding the kinematic residuals (i.e., the single-trial deviations from the mean;

Fig. B.7). To assess how decoding improvements were distributed as a function

of frequency, we computed the coherence between the true and decoded positions

and velocities for each method (Fig. 3.5c). RADICaL predictions showed higher

coherence with behavior than predictions from smth-dec or AutoLFADS across a

wide range of frequencies, and the difference in coherence between RADICaL and

AutoLFADS widened (especially for position) at higher frequencies (5-15 Hz). This

argues that RADICaL improved decoding particularly because it improved recovery

of higher-frequency features of the neural activity. Notably, decoding was improved

due to both innovations in RADICaL (i.e., modeling events with a ZIG distribu-

tion, and SBTT), and the combination of the two innovations significantly improved



50

performance over each innovation alone (Fig. B.8).

We next tested whether RADICaL could capture meaningful trial-to-trial variabil-

ity by predicting reaction time (RT) from the inferred event rates using cross-validated

logistic regression (Kaufman et al., 2016) (detailed in Methods). The RT in a trial is

defined as the time between water presentation and movement onset. RTs predicted

Figure 3.5: RADICaL improves prediction of behavior. (a) Decoding hand kinematics using ridge
regression. Each column shows an example mouse/area. Row 1: true hand position trajectories,
colored by subgroups. Rows 2–4: predicted hand positions using ridge regression applied to the
event rates inferred by RADICaL or AutoLFADS, or smth-dec rates (Gaussian kernel: 40 ms s.d.).
Hand positions from additional experiments are shown in Fig. A.7. (b) Decoding accuracy was
quantified by measuring variance explained (R2) between the true and decoded position (top) and
velocity (bottom) across all trials across each of the 4 datasets (2 mice for M1, denoted by squares,
and 2 mice for S1, denoted by triangles), for all 3 techniques. Error bar indicates the s.e.m. across
5 folds of test trials. (c) Quality of reconstructing the kinematics across frequencies was quantified
by measuring coherence between the true and decoded position (top) and velocity (bottom) for
individual trials across all 4 datasets, for all 3 techniques. (d) Predicting single-trial reaction times
using RADICaL or smth-dec rates. Each dot represents an individual trial, color-coded by event rate
inference method. Correlation coefficient r was computed between the true and predicted reaction
times. Prediction of single-trial reaction times from additional experiments are shown in Fig. A.8.
(e) Performance of predicting single-trial reaction times across each of the 4 datasets (2 mice for
M1, denoted by squares, and 2 mice for S1, denoted by triangles), for all 3 techniques.
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from RADICaL-inferred rates showed high correlation with the true RTs (Fig. 3.5d),

and outperformed results from smth-dec rates, or from the AutoLFADS-inferred rates

(Fig. 3.5e; Fig. A.8; average r of 0.93 across all experiments, versus 0.71 and 0.86

for smth-dec and AutoLFADS, respectively).

3.3.5 RADICaL retains high performance with reduced neu-

ron counts

To evaluate RADICaL’s performance as a function of population size, we gradually

reduced the number of neurons used in training RADICaL or AutoLFADS, either in a

random fashion (Fig. 3.6), or in a FOV-shrinking fashion (Fig. A.9). In both cases,

RADICaL retained relatively high decoding performance as the population size was

reduced. Decoding performance declined gradually, with a steeper slope for velocity.

Notably, however, performance when only 25% of the neurons were used for training

RADICaL was similar to that of AutoLFADS - and higher than for smth-dec - when

those methods were applied to the full population of neurons. These results provide

an avenue to retain information when scanning sparser populations (such as when a

cell type of interest is in the minority), smaller areas when imaging deep structures

with a limited FOV due to a relay (GRIN) lens, or using smaller FOVs to capture

multiple layers or regions while retaining overall frame rate (see Discussion).

3.4 Discussion

2p imaging is a widely-used method for interrogating neural circuits, with the po-

tential to monitor vast volumes of neurons and provide new circuit insights that

elude electrophysiology. To date, however, it has proven challenging to precisely infer

network state from imaging data, due in large part to the inherent noise, indica-

tor dynamics, and low temporal resolution associated with 2p imaging. RADICaL
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Figure 3.6: RADICaL retains high decoding performance in a neuron downsampling experiment.
Decoding performance was measured as a function of the number of neurons used in each technique
(top: Position; bottom: Velocity). Data are from Mouse2/M1 (left) and Mouse1/S1 (right). Perfor-
mance was quantified using variance explained (R2). Figure insets indicate the selected neurons in
the FOV for the full population of neurons and examples for different subsets. Error bar indicates
the s.e.m. across 5 folds of test trials. Each black dot in the insets represents a neuron. Analyses
were robust to the seed used for selecting different random subsets of neurons (Fig. B.9).

bridges this gap. RADICaL is tailored specifically for 2p imaging, with a noise emis-

sions model that is appropriate for deconvolved calcium events, and a novel network

training strategy (SBTT) that takes advantage of the specifics of 2p laser scanning to

achieve substantially higher temporal resolution. Through synthetic tests, we demon-

strated that RADICaL accurately infers network state and substantially outperforms

alternate approaches in uncovering high-frequency fluctuations. Then, through care-

ful validation on real 2p data, we demonstrated that RADICaL infers network state

trajectories that are closely linked to single-trial behavioral variability, even on fast

timescales. Finally, we demonstrated that RADICaL maintains high-quality inference

of network state even as the neural population size is reduced substantially.

The ability to de-noise neural activity on single trials is highly valuable. First,

de-noising improves the ability to decode behavioral information from neural activity,
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allowing subtle relationships between neural activity and behavior to be revealed (Fig.

3.5). Second, de-noising on single trials reduces the dependence on the stereotyped

behaviors needed for de-noising through trial-averaging, which could allow greater

insight in experiments with animals such as mouse and marmoset, where powerful

experimental tools are available but highly repeatable behaviors are challenging to

achieve. A move away from trial-averaging could also enable better interpretability of

more complex or naturalistic behaviors (Keshtkaran et al., 2021; Hatsopoulos et al.,

2007; Krakauer et al., 2017; Whishaw et al., 2017; Wiltschko et al., 2020). Third, this

de-noising capability will enable greater insight into processes that fundamentally dif-

fer from trial to trial, such as learning from errors (Herzfeld et al., 2018; Vyas et al.,

2020b), variation in internal states such as arousal (Steinmetz et al., 2019; Stringer

et al., 2019b), or paradigms in which tuning to uninstructed movements contaminates

measurement of the task-related behavioral variables of interest (Musall et al., 2019).

Finally, this de-noising greatly improves inference of network state (Fig. 3.2), miti-

gating some of the known distortions of neural activity introduced by calcium imaging

(Wei et al., 2020b). Importantly, electrophysiology and calcium imaging have distinct

advantages and disadvantages, and both provide biased information about the un-

derlying neural population (Siegle et al., 2021). Whereas LFADS has served as a

powerful tool for denoising electrophysiology data and accurately inferring network

state, no similar method existed for the complementary technique of calcium imaging;

RADICaL fills this gap.

In recent years, a variety of computational methods have been developed to ana-

lyze 2p imaging data (Pnevmatikakis, 2019b). 2p preprocessing pipelines (Pachitariu

et al., 2017; Giovannucci et al., 2019) normally include methods that correct for brain

motion, localize and demix neurons’ fluorescence signals, and infer event rates from

fluorescence traces. Several studies have applied deep learning in attempts to improve

spike inference (Hoang et al., 2020; Rupprecht et al., 2021; Sebastian et al., 2021),
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while a few others have focused on uncovering population-level structure (Dechery

and MacLean, 2018; Kirschbaum et al., 2019; Mackevicius et al., 2019; Triplett et al.,

2020; Williams et al., 2018; Wu et al., 2018) or locally linear dynamics underlying pop-

ulation activity, in particular via switching linear dynamical systems-based methods

(Costa et al., 2019; Glaser et al., 2020). Here we built RADICaL on the AutoLFADS

architecture, which leverages deep learning and large-scale distributed training. This

enables the integration of more accurate observation models (ZIG) and powerful op-

timization strategies (SBTT), while potentially inheriting the high performance and

generalized applicability previously demonstrated for AutoLFADS (Keshtkaran et al.,

2021).

Many behaviors are performed on fast timescales (e.g., saccades, reaches, move-

ment correction, etc.), and thus previous work has made steps in overcoming the limits

of modest 2p frame rates in attempts to infer the fast changes in neural firing rates

that relate to these fast behaviors. Efforts to chip away at this barrier have relied

on regularities imposed by repeated stimuli or highly stereotyped behavior (Picardo

et al., 2016; Mano et al., 2019), or jittered inferred events on sub-frame timescales to

minimize the reconstruction error of the associated fluorescence (Hoang et al., 2020).

RADICaL takes a different approach. In particular, it links sub-frame timing to neu-

ral population dynamics, representing a more powerful and generalizable approach

that does not require stereotypy in the behavior or neural response and which could

therefore be applied to datasets with more naturalistic or flexible behaviors. Broadly

speaking, this approach provides a solution to the spatiotemporal tradeoff that is

inherent to any scanning technique, enabling retention of temporal resolution while

increasing the spatial area of sampling.

As shown in our simulated experiments, deconvolution places an upper bound on

RADICaL’s performance, limiting its potential in slow sampling regimes (i.e., 2 Hz)

with fast indicators or in more challenging inference cases (e.g., higher-frequency la-
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tent content, higher noise levels, etc). To mitigate these limitations, future work could

build an end-to-end model that integrates the generative rates-to-fluorescence process

and operates on the fluorescence traces directly. Complementary work has begun ex-

ploring in this direction (Prince et al., 2021), but our unique innovation of SBTT

presents an opportunity to greatly improve the quality of recovering high-frequency

features when the sampling rate is limited. More broadly, as benchmarking efforts

are an invaluable resource for systematically comparing methods and building on ad-

vances from various different developers (Pei et al., 2021), carefully-designed bench-

marking efforts for network state inference from 2p data could accelerate progress in

this field.

The ability to achieve high-quality network state inference despite limited neu-

ronal population size opens the door to testing new choices about how to perform

the experiments themselves. For example, it could enable understanding the role of

an uncommon neuronal subtype, or the single-trial outputs of an area by imaging

projection neurons that are sparsely distributed throughout that area. With subcor-

tical structures that require relay lenses, it could extract more information from a

smaller FOV, permitting the use of a smaller relay lens that causes less damage to

overlying brain structures. Or, when hopping between different layers (Chen et al.,

2013a, 2015) or brain areas (Minderer et al., 2019; Sofroniew et al., 2016), fewer

lines could be imaged per FOV to retain a higher overall frame rate while achieving

good inference from each FOV. When the number of neurons within each FOV is

limited, one further advantage that RADICaL inherits from LFADS is that it allows

for multi-session stitching16, which could provide an avenue to combine data from

different sessions to improve inference of the underlying dynamics for each FOV.

In sum, RADICaL provides a framework to push back the limits of the space-time

tradeoff in 2p calcium imaging, enabling accurate inference of population dynamics

in vast populations and with identified neurons. Future work will explore how best to
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exploit these capabilities for different experimental paradigms, and to link the power

of dynamics with the anatomical detail revealed with calcium imaging.

3.5 Methods

3.5.1 AutoLFADS and RADICaL architecture and training

The core model that AutoLFADS and RADICaL build on is LFADS. A detailed

overview of the LFADS model is given in (Sussillo et al., 2016; Pandarinath et al.,

2018b). Briefly, LFADS is a sequential application of a variational auto-encoder

(VAE). A pair of bidirectional RNNs (the initial condition and controller input en-

coders) operate on the spike sequence and produce initial conditions for the generator

RNN and time-varying inputs for the controller RNN. All RNNs were implemented

using gated recurrent unit (GRU) cells. At each time step, the generator state evolves

with input from the controller and the controller receives delayed feedback from the

generator. The generator states are linearly mapped to factors, which are mapped to

the firing rate of the neurons using a linear mapping followed by an exponential non-

linearity. The optimization objective is to maximize a lower bound on the likelihood

of the observed spiking activity given the rates produced by the generator network,

and includes KL and L2 regularization penalties. During training, network weights

are optimized using stochastic gradient descent and backpropagation through time.

Identical network sizes were used for both AutoLFADS and RADICaL runs and

for both simulation and real 2p data. The dimension of initial condition encoder,

controller input encoder, and controller RNNs was 64. The dimension of the generator

RNN was 100. The generator was provided with 64-dimensional initial conditions

and 2-dimensional controller outputs (i.e., inferred inputs u(t)) and linearly mapped

to 100-dimensional factors. The initial condition prior distribution was Gaussian

with a trainable mean that was initialized to 0 and a variance that was fixed to
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0.1. The minimum allowable variance of the initial condition posterior distribution

was set to 1e-4. The controller output prior was autoregressive with a trainable

autocorrelation tau and noise variance, initialized to 10 and 0.1, respectively. The

Adam optimizer (epsilon: 1e-8; beta1: 0.9; beta2: 0.99; initial learning rate: 1e-3)

was used to control weight updates. The loss was scaled by a factor of 1e4 prior to

computing the gradients for numerical stability. To prevent potential pathological

training, the GRU cell hidden states were clipped at 5 and the global gradient norm

was clipped at 300.

AutoLFADS is a recent implementation of the population based training (PBT)

approach (Jaderberg et al., 2017) on LFADS to perform automatic, large-scale hyper-

parameter (HP) search. A detailed overview of AutoLFADS is in (Keshtkaran et al.,

2021; Keshtkaran and Pandarinath, 2019). Briefly, PBT distributes training across

dozens of models in parallel, and uses evolutionary algorithms to tune HPs over many

generations. To do so, trials were first split into training and validation sets. At the

beginning of training, the value of the searchable HPs was randomly drawn from an

initial range for each individual model. At the end of each generation, a selection

process was performed to choose models with higher performance (i.e., lower negative

log likelihood, or NLL) on the validation set and replace the poor models with the

higher performing models. The HPs of the higher performing models were perturbed

before the next generation to increase the HP search space.

Training and hyperparameter search varies in the number of generations needed to

converge (typically 70 - 150 generations), depending on the data and hardware used

(number and type of GPUs). With our data and hardware (10x NVIDIA GeForce

RTX 2080 Ti GPUs), a run of RADICaL typically converges in 3 - 5 hours. RADICaL

was built in Python 2 and TensorFlow 1.14, and cloud implementations of RADICaL

on Google Cloud Platform and NeuroCAAS are also being made available.

For the PBT approach, 20 single models were trained in parallel for both AutoL-
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FADS and RADICaL runs and for both simulation and real 2p data. Generations con-

sisted of 50 epochs, and KL and L2 regularization penalties were linearly ramped for

the first 80 epochs of training during the first generation. Training was stopped when

there was no improvement in performance after 25 generations. The HPs optimized

by PBT were the model’s learning rate and six regularization HPs: scaling weights

for the L2 penalties on the generator, controller, and initial condition encoder RNNs,

scaling weights for the KL penalties on the initial conditions and controller outputs,

and two dropout probabilities (“keep ratio” for coordinated dropout (Keshtkaran and

Pandarinath, 2019); and RNN network dropout probability). Coordinated dropout is

a regularization technique which prevents pathological overfitting by forcing the net-

work to model only structure that is shared across neurons. The magnitudes of the

HP perturbation were controlled by weights and specified for different HPs (a weight

of 0.3 results in perturbation factors between 0.7 and 1.3). The learning rate and

dropout probabilities were restricted to their specified search ranges and were sam-

pled from uniform distributions. The KL and L2 HPs were sampled from log-uniform

distributions and could be perturbed outside of the initial search ranges. Identical

hyperparameter settings were used for both RADICaL and AutoLFADS and for both

synthetic datasets and real 2p datasets.

RADICaL is an adaptation of AutoLFADS for 2p calcium imaging. RADICaL

operates on sequences of deconvolved calcium events x(t). x(t) are modeled as a noisy

observation of an underlying time-varying Zero-Inflated Gamma (ZIG) distribution

(Wei et al., 2020a):

xn(t) ∼ (1− qn(t)) · δ(0) + qn(t) · gamma(αn(t), kn(t), locn), (3.1)

where xn(t) is the distribution of observed deconvolved events, αn(t), kn(t), and

locn are the scale, shape, and location parameters, respectively, of the gamma distri-

bution, and qn(t) denotes the probability of non-zeros, for neuron n at time t. locn was
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fixed as the minimum nonzero deconvolved event (smin). In the original AutoLFADS

model, factors were mapped to a single time-varying parameter for each neuron (the

Poisson firing rate) via a linear transformation followed by an exponential nonlin-

earity. RADICaL instead infers the three time-varying parameters for each neuron,

αn(t), kn(t), and qn(t), by linearly transforming the factors followed by a trainable

scaled sigmoid nonlinearity (sign). sign is a positive parameter that scales the outputs

of the sigmoid to be in a range between 0 and sign, and is optimized alongside network

weights. An L2 penalty is applied between sign and a PBT-searchable prior to pre-

vent extreme values. The training objective is to minimize the negative log-likelihood

of the deconvolved events given the inferred parameters:

∏
p(xn(t)|ZIG(α̂n(t), k̂n(t), q̂n(t))) (3.2)

The event rate for neuron n at time t was taken as the time-varying mean of the

inferred ZIG distribution:

r̂n(t) = q̂n(t) · (k̂n(t) · α̂n(t) + smin) (3.3)

In AutoLFADS, the instantaneous intensity parameter of the Poisson process com-

pletely specifies the spike count distribution for a neuron, while in RADICaL, the ZIG

distribution requires three parameters. The RADICaL generator RNN can therefore

produce features that may not directly correspond to the biological network’s activ-

ity to produce the time-varying, three-parameter distribution for each neuron at its

output. To avoid analyzing these parameters, rather than using the intermediate

factors representation as an estimate of the biological network’s state, we used the

inferred event rates for the neuronal population. Doing so for both RADICaL and

AutoLFADS allowed us to compare methods as directly as possible.

RADICaL uses an SBTT training strategy to achieve sub-frame modeling resolu-
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tion. RADICaL operates on binned deconvolved calcium events, with bin size smaller

than the frame timebase of imaging. Bins where the neurons were sampled were filled

with the corresponding event rates, while bins where the neurons were not sampled

were filled with NaNs. Choosing the sub-frame bin width involves a trade-off. Finer

bins improve the possible temporal resolution, but if the data are binned too finely,

there may be very few neurons in certain bins, leading to uncertainty about the es-

timated latent states. It is important to choose the sub-frame bin size to ensure a

reasonable number of neurons in each bin. We recommend a neuron count greater

than 20 per sub-frame bin based on the results from our neuron downsampling ex-

periments.

The networks output the time-varying ZIG distribution at each sub-frame timestep;

however, a mask was applied to the timesteps where the NaN samples were to pre-

vent the cost computed from these timesteps being backpropagated during gradient

calculation. As a result, the model weights were only updated based on the cost at

the sampled timesteps. The reconstruction cost also excluded the cost calculated at

the non-sampled timesteps so the PBT model selection was not affected by the cost

computed from the non-sampled timesteps.

3.5.2 Simulation experiments

Generating spike trains from an underlying Lorenz system

Synthetic data were generated using the Lorenz system as described in the original

LFADS work (Sussillo et al., 2016; Pandarinath et al., 2018b). Lorenz parameters were

set to standard values (σ: 10, ρ: 28, and β: 8/3), and δt was set to 0.01. Datasets with

different speeds of dynamics were generated by downsampling the original generated

Lorenz states by different factors. The speed of the Lorenz dynamics was quantified

based on the peak location of the power spectra of the Lorenz Z dimension, with a

sampling frequency of 100 Hz. The downsampling factors were 3, 5, 7, 9, 11 and 14
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for speeds 4, 7, 10, 13, 15 and 20 Hz, respectively. Each dataset/speed consisted of

32 conditions, with 60 trials per condition. Each condition was obtained by starting

the Lorenz system with a random initial state vector and running it for 900 ms. The

trial length for the 4 Hz dataset was longer (1200 ms) than that of other datasets

(900 ms) to ensure that all conditions had significant features to be modeled - with

shorter windows, the extremely low frequency oscillations caused the Lorenz states

for some conditions to have little variance across the entire window, making it trivial

to approximate the essentially flat firing rates. We simulated a population of 278

neurons with firing rates given by linear readouts of the Lorenz state variables using

random weights, followed by an exponential nonlinearity. Scaling factors were applied

so the baseline firing rate for all neurons was 3 spikes/sec. Each bin represents 10 ms

and an arbitrary frame time was set to be 30 ms (i.e., one “imaging frame” takes 3

bins). Spikes from the firing rates were then generated by a Poisson process.

Generating fluorescence signals from synthetic spike trains

Realistic fluorescence signals were generated from the spike trains by convolving them

with a kernel for an autoregressive process of order 2 and passing the results through

a nonlinearity that matched values extracted from the literature for the calcium in-

dicator GCaMP6f (Wei et al., 2020b; Dana et al., 2019) (Fig. A.2a & b). Three

noise sources were added to reproduce variability present in real data (Art, 2006;

Starck et al., 1998; Vogelstein et al., 2010): Gaussian noise to the size of the calcium

spike, and Gaussian and Poisson noise to the final trace (Fig. A.2a & b). This

fluorescence generation process was realized as follows: First, spike trains s(t) were

generated from the Lorenz system as mentioned above. Independent Gaussian noise

(sd = 0.1) was added to each spike in the spike train to model the variability in

spike amplitude. Next, we modeled the calcium concentration dynamics c(t) as an

autoregressive process of order 2:
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c(t) = γ1c(t− 1) + γ2c(t− 2) + s(t) (3.4)

with s(t) representing the number of spikes at time t. The autoregressive coeffi-

cients and were computed based on the rise time, decay time (τrise = 20 ms, τdecay =

400 ms for GCaMP6f) of the calcium indicators, and the sampling frequency. Note

that while there is substantial variability in taus across neurons in real data (Wei

et al., 2020b), selecting and mimicking this variability was not relevant in our work,

because we compared the methods (i.e., RADICaL, AutoLFADS, and smth-dec) af-

ter deconvolution. The calcium concentration dynamics were further normalized so

that the peak height of the calcium dynamics generated from a single spike equalled

one, regardless of the sampling frequency. Subsequently, we computed the noiseless

fluorescence signals by passing the calcium dynamics through a nonlinear transfor-

mation estimated from the literature (Dana et al., 2019) for the calcium indicator

GCaMP6f (Fig. A.2c & d). After the nonlinear transformation, the relationship

between spike size and trace size was corrupted, and therefore we assumed the base-

line of fluorescence signals to be zero and the signals were rescaled to the range in

[0,1] using min-max normalization. Finally, Gaussian noise (∼ N(0, sn)) and Poisson

noise (simulated as gaussian with mean 0 and variance proportional to the signal

amplitude at each time point via a constant d) were added to the normalized traces.

The resulting fluorescence traces had the same sampling frequency as the synthetic

spike trains (100 Hz).

A crucial parameter is the noise level associated with each fluorescence trace. High

noise levels lead to very poor spike detection and very low noise levels enable a near-

perfect reconstruction of the spike train. In order to select a realistic level of noise

we matched the correlations between real and inferred spike trains of the simulated

data to those observed in a recent benchmarking study (Berens et al., 2018). We

found that a truncated normal distribution of noise level for Gaussian and Poisson
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noise best matched the correlations. More specifically, for each neuron, sn = d

was sampled independently from a truncated normal distribution N(0.12, 0.02) with

the tail below 0.06 removed. With the above noise setting, the mean correlation

coefficient r between the deconvolved events and ground truth spikes was 0.32, which

is consistent with the standard results reported in the “spikefinder” paper (Berens

et al., 2018) for OASIS. In our additional tests of model tolerance to spike inference

noise, the Gaussian noise added to the fluorescence traces was increased by 2x or 4x.

It is worth stressing that real data feature a broad range of noise levels that depend

on the imaging conditions, depth, expression level, laser power and other factors.

Here we did not attempt to investigate all possible noise conditions, but instead,

we aimed to create a simulation with known latent variables (i.e., low-dimensional

factors and event rates) that reasonably approximated realistic signal-to-noise levels,

in order to provide a tractable test case to compare RADICaL to other methods

before attempting comparisons on real data.

Recreating variability in sampling times due to 2p laser scanning

The fluorescence traces were simulated at 100 Hz as mentioned above. A subsampling

step was then performed with sampling times for each neuron staggered in time to

simulate the variability in sampling times due to 2p laser scanning (as in Fig. 3.1e).

This produced fluorescence traces where individual neurons were sampled at 33.3 Hz,

with phases of 0, 11, 22 ms based on each neuron’s location (top, middle and bottom

of the FOV, respectively). To break this down, each neuron was sparsely sampled

every three time points and the relative sampled times between neurons were fixed.

For example, in trial 1, neuron 1 was sampled at time points 1, 4, 7, . . . and neuron 2

was sampled at time points 2, 5, 8, . . . ; in trial 2, neuron 1 was sampled at time points

2, 5, 8, . . . and neuron 2 was sampled at time points 3, 6, 9, . . . . Thus, the sampling

frequency for each individual neuron was 33.3 Hz, while the sampling frequency for

the population was retained at 100 Hz by filling the non-sampled time points with
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NaNs. The resulting 33.3 Hz simulated fluorescence signals for each individual neuron

(i.e., with NaNs excluded) were deconvolved using OASIS (Friedrich et al., 2017) (as

implemented in CaImAn (Giovannucci et al., 2019)) using an auto-regressive model

of order 1 with smin of 0.1. For experiments with slower imaging speeds, the same

steps were repeated but the simulated 100 Hz fluorescence signals were subsampled

at different rates (i.e., 16 Hz, 8 Hz and 2 Hz).

Data preparation for each method

Four methods (RADICaL, AutoLFADS, smth-dec and smth-sim-fluor) were compared

by their performance on recovering the ground truth latent states across different

datasets/speeds. Trials (480 total for each simulated dataset) were split into 80/20

training and validation sets for modeling AutoLFADS and RADICaL. To prepare data

for non-RADICaL methods, non-sampled bins were removed so all the sampled bins

were treated as if they were sampled at the same time and each bin then represented 30

ms (i.e., sampling frequency = 33.3 Hz). Preparing the data for AutoLFADS required

discretizing the deconvolved events into spike count estimates, because AutoLFADS

was primarily designed to model discrete spiking data. In the discretizing step, if the

event rate was 0, it was left as 0; if the event rate was between 0 and 2, it was cast to

1 (to bias toward the generally higher probability of fewer spikes). If the event rate

was greater than 2, it was rounded down to the nearest integer. We note that this

is one of many possible patches to convert continuously-valued event intensities to

natural numbers for compatibility with the Poisson distribution and AutoLFADS; a

more principled solution would be to modify the network to use the ZIG distribution,

as we have done in RADICaL. With smth-dec, the deconvolved events were smoothed

by convolution with a Gaussian filter (6 ms s.d.) to produce event rates. With smth-

sim-fluor, the generated fluorescence signals were smoothed by convolution with a

Gaussian filter (6 ms s.d.) to produce event rates. The choice of filter width was

optimized by sweeping values ranging from 3 to 40 ms. Smoothing with a 6 ms
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s.d. filter gave the highest performance in recovering the ground truth Lorenz states

for experiments with higher Lorenz frequencies (i.e., >= 10 Hz). The event rates

produced from RADICaL had a sampling frequency of 100 Hz, while the event rates

produced from the non-RADICaL methods had a sampling frequency of 33.3 Hz. The

non-RADICaL rates were then resampled at 100 Hz using linear interpolation.

Mapping to ground truth Lorenz states

Since our goal was to quantify modeling performance by estimating the underlying

Lorenz states, we trained a mapping from the output of each model (i.e., the event

rates) to the ground truth Lorenz states using ridge regression. First, we split the

trials into training (80%) and test (20%) sets. We used the training set to optimize

the regularization coefficient using 5-fold cross-validation, and used the optimal regu-

larization coefficient to train the mapping on the full training set. We then quantified

state estimation performance by applying this trained mapping to the test set and cal-

culating the coefficient of determination (R2) between the true and predicted Lorenz

states. We repeated the above procedure five times with train/test splits drawn from

the data in a complementary fashion. We reported the mean R2 across the repeats,

such that all reported numbers reflect held-out performance. We tested whether the

difference of R2 between each pair of methods was significant by performing a paired,

one-sided Student’s t-test on the distribution of R2 across the five folds of predictions.

In our simulations we observed a delay caused by deconvolution, where the decon-

volved events came systematically later than the true spikes, consistent with findings

in a recent study (Rupprecht et al., 2021). We swept across different lags between

the event rates and the true latent states in the latent mapping analysis and chose to

include a 30 ms lag correlation which gave the highest latent recovery performance

empirically.

Additional tests of deconvolution using MLspike
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To test whether RADICaL works on deconvolved events that have a spike-time-like

structure, we tested MLspike (Deneux et al., 2016) as an alternative for deconvolution.

Calcium traces were generated using the identical steps as described above. For

MLspike, the cubic polynomial model was chosen as the nonlinearity model consistent

with GCaMP6f. The drift parameter was set to 0.001. The decay time constant tau

was set to 0.4s. We did not use auto calibration in MLspike because it produced

inconsistent results in our tests. Instead, to give MLspike the best chance at high

performance, we manually tuned the remaining parameters in MLspike by reducing

the error rates for inferred spikes compared to ground truth spikes using a small

subset of neurons. Transient amplitude was set to 1 and the noise parameter sigma

was set to 0.15. Spikes inferred by MLspike were then prepared for AutoLFADS and

RADICaL as described above. Note that the discretizing step was omitted here when

preparing data for AutoLFADS.

3.5.3 Real 2p experiments

Subjects and surgical procedures

All procedures were approved by the University of Chicago Animal Care and Use Com-

mittee. Two male Ai148D transgenic mice (TIT2L-GC6f-ICL-tTA2, stock 030328;

Jackson Laboratory) were used. Mice were individually housed in a reverse 12-hour

light/dark cycle, with an ambient temperature of 71.5 degree fahrenheit and a humid-

ity of 58%. Experiments were conducted during the animal’s dark cycle. Each mouse

underwent a single surgery. Mice were injected subcutaneously with dexamethasone

(8 mg/kg) 24 hours and 1 hour before surgery. Mice were anesthetized with 2-2.5%

inhaled isoflurane gas, then injected intraperitoneally with a ketamine-medetomidine

solution (60 mg/kg ketamine, 0.25 mg/kg medetomidine), and maintained on a low

level of supplemental isoflurane (0-1%) if they showed any signs that the depth of anes-

thesia was insufficient. Meloxicam was also administered subcutaneously (2 mg/kg)
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at the beginning of the surgery and for 1-3 subsequent days. The scalp was shaved,

cleaned, and resected, the skull was cleaned and the wound margins glued to the

skull with tissue glue (VetBond, 3M), and a 3 mm circular craniotomy was made

with a 3 mm biopsy punch centered over the left CFA/S1 border. The coordinates

for the center of CFA were taken to be 0.4 mm anterior and 1.6 mm lateral of bregma.

The craniotomy was cleaned with SurgiFoam (Ethicon) soaked in phosphate-buffered

solution (PBS), then virus (AAV9-CaMKII-Cre, stock 2.1*1013 particles/nL, 1:1 di-

lution in PBS, Addgene) was pressure injected (NanoJect III, Drummond Scientific)

at two or four sites near the target site, with 140 nL injected at each of two depths

per site (250 and 500 µm below the pia) over 5 minutes each. The craniotomy was

then sealed with a custom cylindrical glass plug (3 mm diameter, 660 µm depth;

Tower Optical) bonded (Norland Optical Adhesive 61, Norland) to a 4 mm #1 round

coverslip (Harvard Apparatus), glued in place first with tissue glue (VetBond) and

then with cyanoacrylate glue (Krazy Glue) mixed with dental acrylic powder (Ortho

Jet; Lang Dental). A small craniotomy was also made using a dental drill over right

CFA at 0.4 mm anterior and 1.6 mm lateral of bregma, where 140 nL of AAVretro-

tdTomato (stock 1.02*1013 particles/nL, Addgene) was injected at 300 µm below the

pia. This injection labeled cells in left CFA projecting to the contralateral CFA. Here,

this labeling was used solely for stabilizing the imaging plane (see below). The small

craniotomy was sealed with a drop of Kwik-Cast (World Precision Instruments). Two

layers of MetaBond (C & B) were applied, then a custom laser-cut titanium head bar

was affixed to the skull with black dental acrylic. Animals were awoken by adminis-

tering atipamezole via intraperitoneal injection and allowed to recover at least 3 days

before water restriction.

Behavioral task

The behavioral task (Fig. 3a) was a variant of the water reaching task of (Galiñanes

et al., 2018) which we term the “water grab” task. This task was performed by
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water-restricted, head-fixed mice, with the forepaws beginning on paw rests (eyelet

screws) and the hindpaws and body supported by a custom 3D printed clear acrylic

tube enclosure. After holding the paw rests for 700-900 ms, a tone was played by

stereo speakers and a 2-3 µL droplet of water appeared at one of two water spouts (22

gauge, 90-degree bent, 1” blunt dispensing needles, McMaster) positioned on either

side of the snout. The pitch of the tone indicated the location of the water, with

a 4000 Hz tone indicating left and a 7000 Hz tone indicating right, and it lasted

500 ms or until the mouse made contact with the correct water spout. The mouse

could grab the water droplet and bring it to its mouth to drink any time after the

tone began. Both the paw rests and spouts were wired with capacitive touch sensors

(Teensy 3.2, PJRC). Good contact with the correct spout produced an inter-trial

interval of 3-6 s, while failure to make contact (or insufficiently strong contact) with

the spout produced an inter-trial interval of 20 s. Because the touch sensors required

good contact from the paw, this setup encouraged complex contacts with the spouts.

The mice were trained to make all reaches with the right paw and to keep the left

paw on the paw rest during reaching. Training took approximately two weeks, though

the behavior continued to solidify for at least two more weeks. Data presented here

were collected after 6-8 weeks’ experience with the task. Control software was custom

written in MATLAB R2018a using PsychToolbox 3.0.14, and for the Teensy. Touch

event monitoring and task control were performed at 60 Hz.

Behavior was also recorded using a pair of cameras (BFS-U3-16S2M-CS, FLIR;

varifocal lenses COZ2813CSIR2, Computar) mounted 150 mm from the right paw

rest at 10° apart to enable 3D triangulation. Infrared illuminators enabled behavioral

imaging while performing 2p imaging in a darkened microscope enclosure. Cam-

eras were synchronized and recorded at 150 frames per second with real-time image

cropping and JPEG compression, and streamed to one HDF5 file per camera (areaD-

etector module of EPICS, CARS). The knuckles and wrist of the reaching paw were
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tracked in each camera using DeepLabCut (Mathis et al., 2018) and triangulated into

3D using camera calibration parameters obtained from the MATLAB Stereo Camera

Calibration toolbox (Heikkila and Silvén, 1997; Zhang, 2000). To screen the tracked

markers for quality we created distributions of all inter-marker distances in 3D across

every labeled frame and identified as problematic frames with any inter-marker dis-

tance exceeding the 99.9th percentile of its respective distribution. Trials with more

than one problematic frame in the period of -200 ms to 800 ms after the raw reach

onset were discarded (where reach onset was taken as the first 60 Hz tick after the

paw rest touch sensor fell below contact threshold). The kinematics of all trials that

passed this screening procedure were visualized to confirm quality. Centroid marker

kinematics were obtained by averaging the kinematics of all paw markers, locking

them to behavioral events and then smoothing using a Gaussian filter (15 ms s.d.).

To obtain velocity and acceleration, centroid data was numerically differentiated with

MATLAB’s diff function and then smoothed again using a Gaussian filter (15 ms s.d.).

Two-photon imaging

Calcium imaging was performed with a Neurolabware two-photon microscope running

Scanbox 4.1 and a pulsed Ti:sapphire laser (Vision II, Coherent). Depth stability of

the imaging plane was maintained using a custom plugin that acquired an image stack

at the beginning of the session (1.4 µm spacing), then compared a registered rolling

average of the red-channel data to each plane of the stack. If sufficient evidence

indicated that a plane not at the center of the stack was a better match to the

image being acquired, the objective was automatically moved to compensate. This

typically resulted in a slow and steady upward (outward) movement of the objective

over the course of the session. This plane drift is probably due to ETL warming, as

it occurred when imaging slides at high power but not low power. The power range

used in imaging was approximately 50-65 mW average power, including the net power

reduction due to end-of-line blanking.
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Offline, images were run through Suite2p to perform motion correction, region-of-

interest (ROI) detection, and fluorescence extraction from both ROIs and neuropil.

ROIs were manually curated using the Suite2p GUI to retain only those corresponding

to somas. We then subtracted the neuropil signal scaled by 0.77. Neuropil-subtracted

ROI fluorescence was then detrended by performing a running 10th percentile opera-

tion, smoothing with a Gaussian filter (20 s s.d.), then subtracting the result from the

trace. This result was fed into OASIS (Friedrich et al., 2017) using the ‘thresholded’

method, AR1 event model, and limiting the tau parameter to be between 300 and 800

ms. Neurons were discarded if they did not meet a minimum signal-to-noise (SNR)

criterion. To compute SNR, we took the fluorescence at each time point when OASIS

identified an “event” (non-zero), computed (fluorescence - neuropil) / neuropil, and

computed the median of the resulting distribution. ROIs were excluded if this value

was less than 0.05. To put events on a more useful scaling, for each ROI we found

the distribution of event sizes, smoothed the distribution (ksdensity in MATLAB,

with an Epanechnikov kernel and log transform), found the peak of the smoothed

distribution, and divided all event sizes by this value. This rescales the peak of the

distribution to have a value of unity. Data from two mice and two brain areas (4

sessions in total) were used (Mouse1/M1: 510 neurons, 560 trials; Mouse1/S1: 543

neurons, 506 trials; Mouse2/M1: 439 neurons, 475 trials; Mouse2/S1: 509 neurons,

421 trials).

Data preparation for modeling with RADICaL and AutoLFADS

To prepare data for RADICaL, the deconvolved events were normalized by the smin

value output by OASIS so that the minimal event size was 0.1 across all neurons.

The deconvolved events for individual neurons had a sampling rate equal to the

frame rate (31.08 Hz). For modeling with RADICaL, the deconvolved events were

assigned into 10ms bins using the timing of individual measurements for each neuron

to achieve sub-frame resolution (i.e., 100 Hz). The non-sampled bins were filled
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with NaNs. To prepare data for AutoLFADS, the deconvolved events were rescaled

using the distribution-scaling method described above, and casted using the casting

step described in the simulation section. For both AutoLFADS and smth-dec, the

deconvolved events were assigned into a single time bin per frame (i.e., 32.17 ms

bins) to mimic standard processing of 2p imaging data, where the sub-frame timing

of individual measurements is discarded. Trials were created by aligning the data to

200 ms before and 800 ms after reach onset (100 time points per trial for RADICaL,

and 31 time points per trial for AutoLFADS and smth-dec). An individual RADICaL

model and AutoLFADS model were trained for each dataset (4 total). Failed trials

(latency to contact with correct spout > 15 s for Mouse1, 20 s for Mouse2), or trials

where the grab to the incorrect spout occurred before the grab to the correct spout,

were discarded. For each dataset, trials (Mouse1/M1: 552 total; Mouse1/S1: 500

total; Mouse2/M1: 467 total; Mouse2/S1: 413 total) were split into 80/20 training

and validation.

Trial grouping

PSTH analysis and low dimensional neural trajectory visualization were performed

based on subgroups of trials. Trials were sorted into two subgroups per spout based

on the Z dimension (height) of hand position. The hand position was obtained by

smoothing the centroid marker position with a Gaussian filter (40 ms s.d.). Time

windows where the height of hand was used to split trials were hand-selected to

present a good separation between subgroups of hand trajectories. For Mouse1/M1,

a window of 30 ms to 50 ms after reach onset was used to split left condition trials and

a window of 180 ms to 200 ms after reach onset was used to split right condition trials;

for Mouse1/S1, a window of 140 ms to 160 ms after reach onset was used to split

both left and right condition trials; for both Mouse2/M1 and Mouse2/S1, a window

of 30 ms to 50 ms after reach onset was used to split both left and right condition

trials. For both left or right conditions and for all mice/areas, 55 trials with the
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lowest and highest heights were selected as group 1 and group 2, respectively; trials

with middle-range heights were discarded.

PSTH analysis and comparing RADICaL and AutoLFADS single-trial

rates

RADICaL was first validated by comparing the PSTHs computed using RADICaL

inferred event rates and the empirical PSTHs. Empirical PSTHs were computed by

trial-averaging smth-dec rates (40 ms kernel s.d., 32.17 ms bins) within each of the 4

subgroups of trials. RADICaL inferred rates were first downsampled from 100 Hz to

31.08 Hz with an antialiasing filter applied, to match the sampling frequency (i.e., the

frame rate) of the original deconvolved signals. RADICaL PSTHs were computed by

similarly averaging RADICaL rates. Single-trial inferred rates were then compared

to the empirical PSTHs to assess how well each method recapitulated the empirical

PSTHs on single trials. The correlation coefficient r was computed between inferred

single-trial event rates and the corresponding empirical PSTHs in a cross-validated

fashion, i.e., each trial’s inferred event rate was compared against an empirical PSTH

computed using all other trials within the subgroup. r was assessed for the time

window spanning 200 ms before to 800 ms after reach onset, and computed by con-

catenating all trials across the four subgroups, yielding one r for each neuron. Neurons

that had fewer than 40 nonzero events within this time window (across all trials) were

excluded from the analysis.

Low-D analysis

To visualize the low-dimensional neural trajectories that RADICaL produced, princi-

pal component analysis (PCA) was performed on RADICaL inferred rates and smth-

dec event rates. RADICaL or smth-dec rates (aligned to 200 ms before and 800 ms

after reach onset) were log-transformed (with 1e− 4 added to prevent numerical pre-

cision issues) and normalized to have zero mean and unit standard deviation for each
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neuron. PCA was applied to the trial-averaged rates and the projection matrix was

then used to project the log-transformed and normalized single-trial rates (aligned to

200 ms before and 400 ms after reach onset) onto the top 3 PCs.

Subgroup distance ratio analysis

To quantitatively measure how informative RADICaL was about the subgroup iden-

tity of each trial, a subgroup distance ratio analysis was performed in the inferred

rate space. For each trial at each time point, we measured the Euclidean distances to

the corresponding time point of each other trials within the same subgroup as well as

the distances to the corresponding time point of each trial from the other subgroup

of the same condition. The distance ratio was computed as the ratio of the mean

across-subgroup differences to the mean within-subgroup distances. A distance ratio

greater than one indicates that the trial is more closely grouped with the trials within

the same subgroup compared to the other subgroup. An averaged distance ratio was

computed across all trials for each time point.

Decoding analysis

RADICaL-inferred rates, AutoLFADS-inferred rates, and smth-dec (Gaussian kernel

40 ms s.d.) rates were used to decode hand position and velocity using ridge regres-

sion. The hand position and velocity were obtained as described above and binned

at 10 ms (i.e., 100 Hz). The non-RADICaL rates were retained to a sampling fre-

quency of 100 Hz using linear interpolation. For simplicity, we did not include a

lag between the neural data and kinematics. Trials with an interval between water

presentation and reach onset that was longer than a threshold were discarded due to

potential variations in behavior (e.g., inattention). The threshold was selected arbi-

trarily for different sessions based on the actual distribution of the intervals in the

session (Mouse1/M1: 500 ms; Mouse1/S1: 600 ms; Mouse2/M1: 400 ms; Mouse2/S1:

600 ms). The data were aligned to 50 ms before and 350 ms after reach onset. The
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decoder was trained and tested using cross-validated ridge regression. First, we split

the trials into training (80%) and test (20%) sets. We used the training set to opti-

mize the regularization coefficient using 5-fold cross-validation, and used the optimal

regularization coefficient to train the decoder on the full training set. This trained

decoder was applied to the test set, and the coefficient of determination (R2) was

computed and averaged across x-, y- and z- kinematics. We repeated the above pro-

cedure five times with train/test splits drawn from the data in an interleaved fashion.

We reported the mean R2 across the repeats, such that all reported numbers reflect

held-out performance. We tested whether the difference of R2 between each pair

of methods was significant by performing paired, one-sided Student’s t-Tests on the

distribution of R2 across the five folds of predictions.

One possible concern is that RADICaL improves decoding not because the single-

trial traces are better denoised, but instead because they for some reason result in

learning a better decoder. To address this, we performed a “cross-decoder” anal-

ysis where the decoder trained with smth-dec rates was applied to the RADICaL

inferred rates. Note that it is not guaranteed that the cross-decoder would give bet-

ter performance even if RADICaL’s rates are better denoised, because this is also

a task of generalization - during training, the decoder did not see the RADICaL

rates which might have different distributions of signal-to-noise across neurons or

might require a different level of regularization. Despite this being a difficult task,

the cross-decoder analysis shows improved performance over the original smth-dec

decoding (Fig. B.10). This suggests that the improvement seen in Fig. 3.5a & b

does not merely reflect the training performance of the decoder but also demonstrates

the higher quality of the inferred rates themselves.

Coherence analysis

Coherence was computed between the true and predicted kinematics (window: 200

ms before and 500 ms after reach onset) across all trials and across all x-, y- and z-
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dimensions using magnitude-squared coherence (MATLAB: mscohere). The power

spectral density estimation parameters within mscohere were specified to ensure a

robust calculation on the single trial activity: Hanning windows with 35 timesteps

(i.e., 350 ms) for the FFT and window size, and 25 timesteps (i.e., 250 ms) of overlap

between windows.

Although the coherence analysis presents the performance of each method as a

function of frequency (Fig. 3.5c), the values are not directly comparable to the

latent recovery analysis in simulation (Fig. 3.2c). In the simulations, the known,

true underlying latent states can be used to directly measure success. In contrast,

with real data the true underlying latent states are unknown and the behavioral

measurements (hand position and velocity) are indirect correlates. The coherence

metric therefore includes other sources of error such as muscle and tracking noise.

Both the quicker drop as frequency increases, and the smaller difference between

methods, could potentially be explained by the limitations of indirect measurement.

In addition, the relationship between neural activity and hand position/velocity may

be nonlinear or history-dependent, while our decoding was linear and instantaneous.

Reaction time prediction analysis

RADICaL-inferred rates, AutoLFADS-inferred rates, and smth-dec (Gaussian kernel

40 ms s.d.) rates were used to predict reaction time (RT) using logistic regression.

This analysis follows the same procedure used in ref. 30. Reaction time was defined

as the interval from water presentation to movement onset. Movement onset was

defined as the time when the speed of the paw centroid exceeded 20% of this trial’s

peak speed. Single-trial rates by the three methods were first aligned to movement

onset, then projected into the top 10-PC space. Data were binned into a “premove-

ment” time point (100ms before to movement onset) and a “movement” time point

(movement onset to 100ms after). Trials were split into training (75%) and test (25%)

sets. A logistic regression classifier was trained using the training set and returned a
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projection dimension that best discriminated between premovement and movement

data. The projection returned by logistic regression was then used to project the test

trials binned at original bin size (i.e., 100 Hz). The RT was predicted as the time

when the projected activity crossed a 50% threshold. The correlation coefficient r

was computed between the true and predicted RTs for the test trials, such that the

reported numbers reflect held-out performance.

t-SNE analysis on the weights mapping from factors to ZIG parameters

RADICaL relies on sub-frame bins in which neurons are grouped based on their

spatial locations within the FOV. Because this strategy results in consistent neuron

grouping, it could potentially result in different groups of neurons corresponding to

different latent factors. To test whether such an artifact existed, we visualized the

transformation from latents to neurons by using t-SNE to reduce the 300-dimensional

weights vector (100 factors * 3 ZIG parameters) into a 2-D t-SNE space for each

individual neuron (510 neurons total) (Fig. B.11). We did not observe a relationship

between neurons’ position within the field of view (i.e., top, middle, and bottom) and

the underlying factors. This suggested that the model did not use distinct factors for

sets of neurons that were sampled with different phases, despite neurons in distant

portions of the FOV never being grouped in the same bin.

Neuron downsampling

Two neuron downsampling experiments were performed with different procedures to

test the methods’ tolerance to low neuron counts. The first procedure was designed

to mimic scanning a sparse population of neurons. To do so, the number of neurons

included when training RADICaL or AutoLFADS was gradually reduced by randomly

dropping a subset of neurons from the previous subset, with a fraction kept of 1, 3/4,

1/2, 1/4, 1/8 or 1/16. This results in 439, 329, 219, 109, 54 or 27 neurons kept for the

Mouse2/M1 dataset, and 543, 407, 271, 135, 67 or 33 kept for the Mouse1/S1 dataset.
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One RADICaL model and one AutoLFADS model were trained for each number of

neurons. Decoding was performed using ridge regression (see above).

The other procedure was designed to emulate scanning a smaller field of view, such

as when using a relay lens to image deep structures., Here, the number of neurons

included when training RADICaL or AutoLFADS was gradually reduced by limiting

the area of FOV that the neurons were sampled from. The area was shrunk from the

entire FOV with an area-to-FOV ratio of 1, 25/36, 9/16, 1/4, and 1/9, resulting in

the number of included neurons being 439, 321, 262, 121 or 59 for Mouse2/M1. An

individual RADICaL model and AutoLFADS model were trained for each number

of neurons. Decoding was performed using ridge regression (see above). Note that

this analysis represents a lower bound on performance: for this proof-of-concept, we

simply artificially excluded data from outside the restricted FOVs, which resulted in

substantial time periods that lacked data entirely (e.g., 2/3 of the total sampling time

for the smallest FOV considered). In a real application, those time periods that were

artificially excluded could instead be used to monitor other brain areas or layers, or

to monitor the same neurons with higher sampling rates, either of which might be

expected to provide additional information.
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Chapter 4

Inferring fast structures from

calcium imaging at slow sampling

rates using deconvolution-free

dynamics modeling

4.1 Abstract

Two-photon (2p) calcium imaging is a powerful tool to monitor the activity of large

neuronal populations and probe network-scale computations. However, greater spa-

tial sampling results in lower temporal resolution due to the bandwidth limit created

by raster scanning of the laser. A deep learning-based method, namely RADICaL,

was recently developed to tackle the space-time trade-off and infer latent dynamics

from 2p imaging with sub-frame temporal resolution. Yet, RADICaL relies on decon-

volution, which sets an upper bound on the performance of inferring latent dynamics,

especially in regimes where sampling rates are low (e.g., < 4Hz). Here we demonstrate

that it is possible to remove the deconvolution step by integrating an Autoregressive
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(AR) process into RADICaL to approximate the calcium dynamics for each observed

neuron. Our novel regularization strategy, neuron Coordinated Dropout (nCD), al-

lows the network to better separate the inference of population dynamics from the

per-neuron, calcium dynamics. We first demonstrate that nCD provides an advan-

tage in inferring population dynamics and reconstructing the underlying rates of the

neurons. We next test deconvolution-free RADICaL (DfRAD), with nCD integrated,

in slower sampling regimes. DfRAD retains a high performance in estimating high-

frequency features (> 7Hz) in the latent states as the sampling rate was lowered to

2Hz.

4.2 Introduction

Recent advances in neural interfaces have enabled access to the activity of large

neuronal populations, allowing neuroscientists to study how computations underly-

ing motor, sensory, and cognitive processes are implemented at the level of neural

populations (Vyas et al., 2020a). Among these techniques, two-photon (2p) calcium

imaging offers the revolutionary ability to monitor the activity of millions of neurons

while identifying cell types and layers where the neurons are located (Demas et al.,

2021; Pachitariu et al., 2017; Peron et al., 2015b; Chen et al., 2013a, 2015). Thus,

2p imaging provides an avenue to link population-level computations to biological

structures.

However, with 2p imaging, neurons are serially scanned by a laser that traverses

the field of view (FOV), which creates a fundamental trade-off between the size of

the FOV (or the number of planes within the FOV), the sampling frequency, and the

signal-to-noise (SNR) with which each neuron is sampled (Demas et al., 2021). With

a larger FOV or more planes within a FOV, more neurons can be monitored, but the

temporal frequency of sampling for each individual neuron is reduced (Fig. 4.1a).
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A recently developed deep learning-based method, Recurrent Autoencoder for Dis-

covering Imaged Calcium Latents (RADICaL), offers a principled approach to probe

the space-time trade-off created by the bandwidth limit of 2p imaging (Zhu et al.,

2021a). It improves temporal resolution at the level of population by incorporating

the information about the subframe sample times of the neurons into the modeling of

neural population dynamics (Zhu et al., 2021b,a) (detailed in 4.3). In applications to

synthetic and real 2p data from sensorimotor areas, RADICaL achieves state-of-the-

art performance in capturing high-frequency dynamics and predicting fast, ongoing

behaviors (Zhu et al., 2021a).

Like many other computational approaches for analyzing calcium imaging data,

RADICaL relies on deconvolution as a preprocessing step to obtain spike-like, decon-

volved calcium events. As an indirect measurement of the neuronal activity, calcium

imaging produces fluorescence traces that are a low-pass filtered version of the under-

lying spiking activity, with the rise and decay dynamics dictated by the time constants

of the calcium indicators (Wei et al., 2020b; Pnevmatikakis, 2019b). Deconvolution

is therefore commonly used to undo the effect of calcium indicators and reveal decon-

volved events that improve downstream studies (Berens et al., 2018; Pnevmatikakis,

2019b). One key limitation of deconvolution, however, is that the performance of

spike inference drops when the sampling frequency is reduced (Fig. 4.1b) (Zhu

et al., 2021a) because the sparse sampling of the fluorescence is not sufficient to cap-

ture the indicator dynamics. Experiments with slow sampling rates are common; with

imaging settings that allow monitoring of tens of thousands to millions of neurons, the

sampling frequency is limited to 2 - 3 Hz (Demas et al., 2021; Pachitariu et al., 2017),

where deconvolution completely breaks down (Fig. 4.1b) (Zhu et al., 2021a). Slow

indicators such as GCaMP6s may be used as a remedy for slow sampling frequencies

to capture more signals related to underlying spikes on coarse timescales, but they

set a upper bound on the performance of deconvolution on fine timescales. Thus,
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deconvolution fundamentally prevents RADICaL from being generalized to massive-

population / slow-sampling regimes, limiting the use of its solution to space-time

trade-off to uncover fast structures in some of the most exciting, massive datasets in

systems neuroscience.

Here we address this challenge by introducing deconvolution-free RADICaL (DfRAD),

a method to model population dynamics from 2p data without the need of deconvo-

lution by integrating Autoregressive (AR) models into RADICaL to account for the

indicator dynamics (Fig. 4.1c). Section 4.3 provides a review of the background and

related work. Section 4.4 details DfRAD and a novel regularization strategy, neu-

ron Coordinated Dropout (nCD), to prevent the model from errorneously using the

shared variability across the population to explain the individual neuron-level vari-

ability resulted from the randomness of spiking activity and indicator dynamics. In

Section 4.5, we first demonstrate the effectiveness of nCD in achieving higher-fidelity

inference of neural population dynamics from 2p data. With experiments sweeping

across different frequencies of the underlying features and across different sampling

rates, we show that DfRAD maintains high performance in inferring fast structures at

extremely slow sampling frequencies (e.g., 2 Hz), outperforming alternate methods.

4.3 Background

Recent years have witnessed a burst of activity in developing models to uncover latent

structures underlying neural population activity monitored by calcium imaging. Di-

mensionality reduction methods have been developed to identify repeated sequences

(Mackevicius et al., 2019), temporal factors that slowly change across trials (Williams

et al., 2018), or a latent manifold of odor representations (Wu et al., 2018), or to de-

couple evoked and spontaneous activities (Triplett et al., 2020). Additional work

extracts recurring firing motifs directly from calcium imaging videos using a varia-
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Figure 4.1: Eliminating deconvolution as a limitation at slow sampling rates. (a) In 2p calcium
imaging, imaging a greater space results in sampling more neurons but the sampling rate of each
individual neuron is lower. Raster scanning of the laser creates staggered sample times across the
neurons. (b) To illustrate how deconvolution performs across sampling frequencies, we measured
how well averaged, deconvolved events across repeated trials captured the true underlying rate for
individual, simulated neurons, which is an effective way to test whether deconvolution irreversibly
loses information about the underlying rates (left; simulation pipeline detailed in 4.5.1). Performance
in capturing the ground truth firing rates as a function of Lorenz oscillation frequency was quantified
by correlation coefficient r between the trial-averaged spikes or deconvolved events and the true rates
(right). Error bars indicate the variability across simulated neurons. (c) The DfRAD architecture
for inferring latent dynamics from neural population activity.
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tional autoencoder framework (Kirschbaum et al., 2019). Switching linear dynamical

systems (SLDS) -based methods are further considered to uncover locally linear dy-

namics underlying the population activity (Costa et al., 2019; Glaser et al., 2020).

However, these studies do not utilize the subframe timing information, and thus, are

limited in the ability to extract fast structures when the sampling rate is low.

Previous studies have made an effort to preserve subframe timing and overcome

the limits of modest 2p frame rates. These studies make varying assumptions on the

neural response and the behavior (Picardo et al., 2016), or trial structure (Mano et al.,

2019). Rather than relying on these assumptions, RADICaL takes an alternative

approach, which is to link subframe sample times of individual neurons to neural

population dynamics. Briefly, RADICaL models the neural population activity as an

input-driven dynamical system:

ẋt = f(xt + ut), (4.1)

where the latent state xt ∈ RD evolves according to dynamics capture by a nonlinear

function f , allows inputs ut ∈ RK to perturb the system, and is seeded by initial

condition x0. The observed activity (i.e., the deconvolved calcium events) yt ∈ RN is

a noisy reflection of the latent state of the dynamical system. RADICaL incorporates

subframe timing information into the dynamics model by first rebinning the data into

finer, subframe bins to reach desired temporal resolution and assigning the observed

activity into these subframe bins based on the exact times when each individual neu-

rons are sampled. In this way, a sparse data matrix with neurons’ activity placed in

stagger time bins was created, and the problem of improving temporal resolution is

recasted as a missing data problem. The inherent traits of a dynamical system (i.e.,

D typically far smaller than N ; f imposing certain temporal structure) become help-

ful constraints for inferring latent states xt with even partially observed input data.

RADICaL then uses selective backpropagation through time (SBTT) to infer dynam-
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ics from the partially observed data. SBTT is a neural network training method that

allows to compute gradient using only the valid data and ignore the missing samples.

With SBTT, RADICaL infers xt at subframe temporal resolution and provides an

avenue to link calcium imaged neural activity to fast, ongoing behavior.

One of the preprocessing steps for RADICaL is deconvolution, which is a criti-

cal step to extract estimates of the underlying spiking activity. There is a long and

rich literature on deconvolution methods that exploits biophysical models of spike-

to-fluorescence generation to detect spikes. These methods include algorithms that

explicitly estimate the number of spikes using sequential Monte-Carlo (Vogelstein

et al., 2009), Bayesian models (Pnevmatikakis et al., 2013; Deneux et al., 2016), su-

pervised learning approach (Theis et al., 2016), and variational autoencoders (Speiser

et al., 2017), or estimate the amplitudes of the calcium transients (i.e., calcium events,

a correlate of firing rate) by casting the deconvolution problem as a convex opti-

mization problem (Vogelstein et al., 2010; Pnevmatikakis et al., 2016; Jewell and

Witten, 2018) with fast, online versions available (Friedrich et al., 2017). More re-

cently, deep learning-based methods were developed to further improve deconvolution

(Hoang et al., 2020; Sebastian et al., 2021; Rupprecht et al., 2021). However, as illus-

trated above in 4.2, a fundamental challenge of deconvolution is that the performance

breaks down as the sampling rate is reduced.

A potential solution to avoid deconvolution and enable the application of RAD-

ICaL to slow sampling regimes is to integrate the biophysical model of fluorescence

generation into the dynamics model itself. Hints in this direction include works that

incorporate an Autoregressive (AR) model into a variational ladder autoencoder ar-

chitecture (Prince et al., 2021) or a linear dynamical system (LDS) (Koh et al., 2022)

to explain the indicator dynamics while modeling the neural population-level dynam-

ics. However, these methods demonstrate limited performance in inferring dynamics

from calcium imaging data, and do not offer a mechanism to utilize subframe timing
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to improve temporal resolution. Here, we take a similar approach to relieve RADI-

CaL of deconvolution. By integrating AR models into RADICaL and applying a novel

regularization strategy nCD, we present the first demonstration of precisely inferring

fast dynamics from 2p imaging at extremely slow sampling rates.

4.4 Deconvolution-free RADICaL

4.4.1 Overview

Deconvolution-free RADICaL (DfRAD) is an extension of RADICaL for extracting

fast neural population dynamics from 2p imaging data at slow sampling frequencies.

The backbone of DfRAD is a sequential variational autoencoder (SVAE) that recon-

structs the fluorescence traces given the underlying time-varying rates that reflect

the latent dynamics underlying the neural population. The goal is to infer the rates

and the latent dynamics given the observed fluorescence traces. DfRAD models the

rate-to-fluorescence transformation as a generative AR model, and applies nCD, a

regularization strategy, to force the network to only capture the shared structure be-

tween neurons as the population dynamics. The benefits of nCD in combination of

the AR-integrated SVAE enable the model to see through the per-neuron-level cal-

cium dynamics and precisely extract population-level dynamics at subframe temporal

resolution when sampling rate is limited.

4.4.2 The AR-integrated SVAE architecture

Like RADICaL, DfRAD models the single-trial population dynamics by learning the

dynamical rule f , the initial condition x0, and inputs ut, as detailed in 4.3. The

SVAE consists of two main components, an encoder and a generator. A bidirectional

RNN encoder (RNNz) takes as input the observed fluorescence traces yt and pro-

duces a conditional distribution over initial condition z, Q(z|yt), with means and
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diagonal covariance matrices taken as a linear transformation of the final states of

the bidirectional RNNs, Ez.

µz = Wµz(Ez) (4.2)

σz = exp

(
1

2
Wσz(Ez)

)
. (4.3)

A Kullback-Leibler (KL) divergence loss is applied to penalize deviation of Q(z|yt)

from an uninformative Gaussian prior P (z). The initial conditions ẑ is then dawn

from Q(z|yt) and mapped to the initial state of the generator RNN, g0.

ẑ ∼ N (z | µz,σz) (4.4)

g0 = Wg0(ẑ) (4.5)

The generator RNN, RNNgen learns to approximate the dynamical rules f . To

allow the SVAE to model data observed from a non-autonomous dynamical system,

a controller RNN, RNNcon, is used to learn a set of time-varying “inferred inputs”,

ut. A second bidirectional RNN encoder, RNNce, operates on the fluorescence yt and

produces time-varying cell state Econ
t . At each time step t, the controller takes as

input a delayed feedback from the generator, which is the state of a linear readout

of the generator at the previous time step, ft−1, and Econ
t , such that the cell state of

RNNcon, cont, is updated as:

cont = RNNcon (cont−1, [E
con
t , ft−1]) . (4.6)

Similar to ẑ, the inferred input ût is then drawn from diagonal Gaussian distri-
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butions Q(ut|yt), where mean and log-variance are given by a linear transformation

of cont.

ût ∼ N (ut |µu
t ,σ

u
t ) (4.7)

where

µu
t = Wµu(cont) (4.8)

σu
t = exp

(
1

2
Wσu(cont)

)
. (4.9)

A second KL penalty is applied between an autoregressive Gaussian prior P (ut)

and Q(ut|yt). The inferred input ut is then injected into the generator. At each time

step, the generator states, gt, is updated as:

gt = RNNgen (gt−1, ût) (4.10)

gt are then linearly mapped to the factors, f̂t, which are in turn linearly mapped

to the neuronal dimensions followed by an exponential nonlinearity to produce the

underlying rates of the neurons.

f̂t = Wfac(gt) (4.11)

r̂t = exp
(
Wrate

(
f̂t

))
(4.12)

The rate for a given neuron, (rt) is an abstract quantity that fluctuates in a

coordinated way with the rates of other neurons in the population, reflecting the
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shared, population-level dynamics. We assume the observed fluorescence trace for

a given neuron is driven by the calcium concentration dynamics dictated by the

indicator, and is also influenced by the underlying time-varying rate rt as the input

to the calcium concentration dynamics. We approximate the calcium concentration

(ct) dynamics using an AR process of order p (Fig. 4.1c):

ct =

p∑
k=1

γkct−k + rt (4.13)

where γk are trainable parameters that capture the time constants (decay: τd, rise:

τr) of the indicator by:

γ1 = exp (−1/τd) , if p = 1, or (4.14)

γ1 = exp (−1/τd) + exp (−1/τr) , (4.15)

γ2 = exp (−1/τd) ∗ exp (−1/τr) , if p = 2 (4.16)

We test both AR1 and AR2 models. We use a fast indicator in our experiments

to better recover fast population dynamics. Because the fast indicators have τr that

is small compared to the length of the time bin, we present results using the AR1

model which is sufficient to capture instantaneous increase of calcium concentration in

response to a positive input. The fluorescence is related to the calcium concentration

as:

yt = a (ct + b) (4.17)

where a is a nonnegative scalar, b is the baseline concentration, both being trainable
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parameters. The observed fluorescence yt is modeled as noisy samples from a time-

varying Gaussian distribution, where the mean is ŷt and the standard deviation σ̂u

is a vector of trainable, time-invariant parameters, one for each neuron.

The training objective function is defined as the log likelihood of the data,
∑

y logP (y1:T ),

optimized in a VAE setting by maximizing a variational lower bound, L, on the log

likelihood,

logP (y1:T ) ≥ L = Ly − LKL, (4.18)

where Ly is the reconstruction loss which is the log likelihood of yt given the inferred

parameters:

Ly =

〈
T∑
t=1

log
(
Gaussian(yt|ŷt, σ̂

u)
)〉

z,u1:T

(4.19)

And LKL is the KL penalty described above. Additional L2 regularization penal-

ties on the weights of the recurrent networks are also applied. During training, net-

work weights and learnable parameters described above are optimized using stochas-

tic gradient descent and backpropagation through time. Hyperparameters are tuned

using population-based training inherited from RADICaL (Zhu et al., 2021a) and

AutoLFADS (Keshtkaran et al., 2021) to achieve reliably high-performing models.

4.4.3 Neuron Coordinated Dropout

In the literature of biophysical models for calcium concentration dynamics, the AR

process is directly perturbed by spikes (Pnevmatikakis et al., 2016). Spikes are in turn

considered as noisy samples drawn from the time-varying rates via a Poisson process.
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Such randomness in spike generation creates a spiking variability that is accumulated

in time due to the slow decay of the calcium dynamics. Further, because spikes re-

flect the underlying rates which represent the shared population dynamics (detailed

in 4.3), they also contain variability of the coordinated patterns of activity across

the population. Thus, the observed fluorescence at any given time carries a mixture

of the accumulated spiking variability at the individual-neuron level and the shared

variability at the population level. We formulate the concepts of population-level

variability and per-neuron-level variability with Fig. 4.2a. Consider a dynamical

system where the latent states are driven by f . Different initial conditions result in

distinct trajectories in the latent space (Fig. 4.2a, left) and distinct rates in the

high-dimensional neuron space (not shown), creating the population-level variability.

Taking one condition, different spiking patterns are generated even with the same

underlying rate (Fig. 4.2a, right). The spiking variability propagates to the fluores-

cence traces through the AR calcium dynamics model, creating the per-neuron-level

variability.

Our DfRAD generative model passes the rates directly to the AR process, which

does not explain the per-neuron-level variability. As a result, it is possible for the

model to learn erroneous population-level variability to explain the per-neuron-level

variability. Building an appropriate model to explain the accumulated spiking vari-

ability is not trivial. Prince et al. (2021) build a recognition network to explicitly infer

spikes to explain the calcium dynamics as part of a hierarchy of dynamical systems.

Ganmor et al. (2016) compute the likelihood of observing the fluorescence traces based

on the rates by integrating all possible spike counts in each time bin and use the ob-

served fluorescence at each time step to approximate the calcium concentration for

updating the AR process to the next time step. Koh et al. (2022) integrate deconvo-

lution with LDS and approximate the spiking variability using a Gaussian noise term

that can be naturally solved with the EM algorithm. However, these studies either
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scale up the complexity of the model leading to harder HP optimization (Prince et al.,

2021), did not demonstrate SOTA performance (Prince et al., 2021; Koh et al., 2022)

due to simplifying assumptions about the underlying dynamics (Koh et al., 2022), or

rely on densely sampled fluorescence traces at a fast rate which are not available in

slower sampling regimes (Ganmor et al., 2016).

With the goal of precisely inferring the population dynamics, rather than explain-

ing the per-neuron-level variability, here we take a simple approach to better separate

the inference of population dynamics from the inference of calcium dynamics. Similar

to Coordinated Dropout (CD) (Keshtkaran and Pandarinath, 2019), our approach,

nCD, makes a reasonable assumption that the observed neuronal activity is from a

lower-dimensional, latent state. With this assumption, for the observed activity of

a given neuron, the portion that is part of the population dynamics is shared with

and can be inferred by activity of other neurons in the population, and the portion

that reflects the spiking variability and calcium dynamics is independent to each

neuron and not informative from activity of other neurons. At each training step,

nCD regularizes the flow of information through the network by applying a random

mask to dropout a proportion of channels (i.e., neurons) at the input and using the

complement of that mask to block the gradients of the rest of the channels that were

seen by the network as input (Fig. 4.2b). In this way, we ensure that the neurons’

rates can only be reconstructed using the information that comes from other neurons

(i.e., information shared across the population) and receive no information about the

per-neuron-level activity (due to spikes and calcium dynamics) of themselves. Thus,

this simple strategy better regularizes the learning of the population dynamics and

prevents the network predicting erroneous population-level variability to explain the

per-neuron-level variability.



92

4.5 Experiments and Results

4.5.1 Simulation pipeline

To test the performance of DfRAD and the effectiveness of nCD on estimating latent

states, we need a fluorescence dataset for which ground truth latent states and neural

firing rates were known. Real neural data does not have measurable, ground truth

latent states or firing rates. Behaviors as an indirect measurement are often slow

and sampled at low temporal resolution in experiments with slow imaging rates that

are suitable for testing DfRAD. Therefore, we use realistic simulations of fluorescence

traces to test DfRAD across a variety of experimental conditions. We adopt the

simulation pipeline described in Zhu et al. (2021a). Briefly, artificial datasets were

generated by simulating a population of neurons (278 neurons) whose firing rates are

tied to the state of a Lorenz system (Zhao and Park, 2017; Sussillo et al., 2016).

We simulated 32 conditions, each obtained by starting the Lorenz system with a

random initial state vector. 60 spike trains (i.e., trials) were drawn from the firing

rates for each condition via a Poisson process. We generated decay time constants

across neurons from a distribution characterized for GCaMP6f in Wei et al. (2020b).

Fluorescence traces were then simulated by passing the spike trains through an AR

model (p = 1) with the decay time constants. Various sources of noise were injected

to the fluorescence traces (Zhu et al., 2021a).

4.5.2 Inferring higher-quality latent states with nCD

We first tested a baseline model with nCD disabled. As detailed in 4.4.3, because

the model sees the activity of each neuron and reconstructs the activity of the same

neuron, it is possible for the model to explain the per-neuron-level variability by

predicting erroneous variability in the inferred rates. Here we examined the rates

reconstruction within each condition, where the rates were consistent across trials
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and the trial-to-trial variability in the fluorescence traces was exclusively resulted

from the per-neuron-level spiking variability and calcium dynamics. Rates predicted

by the baseline model showed a significant amount of trial-to-trial variability that was

not present in the ground truth rates (Fig. 4.2c, left). To understand whether the

inferred initial conditions were informative about the true conditions, we performed

t-SNE on the high-dimensional vector of the inferred rates at the trial start. Trials

belonging to the same condition should be clustered closely with each other in the

state space. However, low-dimensional embeddings of the inferred initial conditions

were tangled and not informative of what true conditions they belonged to (Fig.

4.2d, left).

We next tested the full DfRAD with nCD enabled. The inferred rates showed

little erroneous, trial-to-trial variability and correlated closely with the ground truth

rates (Fig. 4.2c, right). The low dimensional embeddings of the inferred initial

conditions showed clean clusters of trials belonging to the same conditions (Fig.

4.2d, right). We measured the correlation coefficient r between the true and inferred

rates to quantitatively assess the quality of the rate inference. DfRAD-inferred rates

demonstrated higher correlation with the ground truth rates across the majority of

the neurons compared to the baseline model with nCD disabled. To evaluate the

performance in recovering the ground truth Lorenz states, we trained a cross-validated

ridge regression to map the inferred rates to the ground truth Lorenz states and

measured the R2 between the true and inferred latent states. Fig. 4.2f shows the

true and predicted Lorenz states for an example condition. DfRAD outperformed the

baseline model in capturing the ground truth latent states.

4.5.3 Improved inference at extremely slow sampling rates

With DfRAD, the promise is to improve inference of latent dynamics at slower sam-

pling rates. We tested this by evaluating the performance of inference across a wide
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Figure 4.2: Neuron Coordinated Dropout (nCD) improves inference of population-level dynamics.
(a) Illustration of population-level variability and per-neuron-level variability. (b) Illustration of
nCD for a single training example. (c) True and inferred rates for three example neurons in a single
example condition of a Lorenz system. Black: ground truth. Colored: inferred. Each colored trace
represents a trial. (d) 2-dimensional t-SNE space representation of the inferred initial conditions.
Each dot represents a trial. (e) Performance comparison in capturing the ground truth rates. Cor-
relation coefficient r was computed between the true and inferred single-trial rates. Each point
represents an individual neuron. (f) True and inferred Lorenz latent states (X/Y/Z dimensions) for
a single example condition. Black: ground truth. Colored: inferred. Each colored trace represents
a trial.

range of the frequency of the underlying features and across different sampling rates.

The Lorenz states, rates, spikes and fluorescence traces were generated at a sam-

pling frequency of 33 Hz. In real 2p experiments, the laser traverses the FOV, and

the fluorescence trace of a given neuron is sparsely sampled at times when the laser

hits, depending on where the neuron is located in the FOV. We first set a 2p sampling

rate (i.e., the frame rate) at which each neuron’s fluorescence trace was sampled. We

then randomly assigned a location to each simulated neuron, such that each neuron

was sampled at the 2p sampling rate but the sampling times for different neurons

were staggered to simulate 2p laser scanning sampling times. We next reduced the

2p sampling rate to simulate the slowly sampled 2p datasets.

To assess the performance of inferring latent dynamics with different underlying

frequencies, we also varied the speed of the Lorenz dynamics. Different speeds of

dynamics were generated by downsampling the original generated Lorenz states by
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different factors. For each speed, we report the peak location of the Z dimension power

spectrum, which contains the most concentrated and highest frequencies. Faster

dynamics are harder to capture. Here we specifically tested whether DfRAD could

improve our ability to infer fast dynamics at slow sampling rates.

We tested 3 sampling frequencies. At a fast, 33 Hz sampling rate, all time points of

the fluorescence traces were sampled, leading to a fully observed dataset (Fig. 4.3a,

top). At slower sampling rates (4 Hz and 2 Hz), each fluorescence trace was heavily

sparse-sampled, leading to partially observed data (Fig. 4.3a, middle and bottom on

the right; 87% missing for 4 Hz and 93% missing for 2 Hz). As described in 4.2, lower

sampling rates can enable imaging larger (or more) FOVs and therefore more neurons

in real applications. We therefore increased the number of neurons for simulations

at slower sampling rates (Fig. 4.3b, bottom). We compared the performance of

DfRAD to the standard processing methods in the field, deconvolving and applying

Gaussian smoothing (“smth-dec”) or using the fluorescence traces directly (“fluor”).

While SBTT allows DfRAD to output inferred rates at the original, 33 Hz sampling

frequency at which the ground truth data (i.e., Lorenz states and rates) was generated,

outputs from smth-dec and fluor are at the frame rate (i.e., 33 Hz, 4 Hz, or 2 Hz

depending on the 2p sampling rate). Thus, outputs from these latter methods were

linearly interpolated to 33 Hz to examine how well they uncovered the ground truth.

We first evaluated the performance of each method in inferring the rates. Fig.

4.3b shows an example trial’s inferred rates by smth-dec and DfRAD across different

sampling rates. The underlying Lorenz system had a Z frequency peak at 7 Hz. At

a 2p sampling rate of 33 Hz, both smth-dec and DfRAD revealed structures that

corresponded closely with the true rates (Fig. 4.3b, top). At slower sampling

rates (4 Hz and 2 Hz), DfRAD precisely captured the structures in the rates, while

smth-dec completely failed (Fig. 4.3b, middle and bottom). We again measured

the correlation between the true and inferred rates from different methods. At 33
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Hz sampling, DfRAD-inferred rates showed superior performance in matching the

ground truth rates across a variety of underlying oscillation frequencies, compared to

smoothed deconvolved calcium events or fluorescences (Fig. 4.3c, top). This suggests

that DfRAD provides powerful denoising benefits even in the fast sampling regimes.

At slower sampling rates (4 Hz and 2 Hz), the performance of smth-dec and fluor

dropped substantially (r < 0.2), while DfRAD maintained a reasonable performance

in capturing the rates of datasets with fast Lorenz dynamics (Fig. 4.3c, middle

and bottom; mean r >= 0.7 for 7 Hz Lorenz oscillations and > 0.4 for 9 Hz Lorenz

oscillations). We next quantified the performance of predicting latent states using

cross-validated ridge regression. Fig. 4.3d shows the true and predicted latent states

for an example trial across 2p sampling rates. DfRAD retained a high performance in

recovering fast latent structure (R2 >= 0.8 for 7 Hz Lorenz oscillations and > 0.5 for

9 Hz Lorenz oscillations), while smth-dec and fluor failed (R2 < 0.1) at slow sampling

frequencies.

4.6 Discussion

We introduced DfRAD, a novel approach for learning fast latent dynamics from slowly

sampled 2p imaging data. It inherits from RADICaL the ability to infer single-trial

dynamics at subframe temporal resolution, eliminates the need of deconvolution as a

preprocessing step to enable generalizability in slow sampling regimes, and applies a

novel regularization technique to better separate the inference of population dynam-

ics from the per-neuron calcium dynamics. When applied to datasets with varying

2p sampling rates, we show that DfRAD precisely recovers fast structures (>= 7Hz)

of the underlying latent states and rates at slow sampling rates (<= 4 Hz), outper-

forming standard methods in the field. Taken together, DfRAD provides a promising

avenue for uncovering rich and complex dynamics from massive neural populations
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Figure 4.3: DfRAD improves inference of fast dynamics at extremely slow sampling rates. (a)
Example ground truth firing rates from a Lorenz system simulated with 7 Hz oscillations (left).
Illustration of 2p sampling at different sampling rates (right). Orange traces: simulated fluorescence
traces. Purple crosses: sampled data points. (b) Example DfRAD inferred rates and smoothed
deconvolved calcium signals. (c) Performance in capturing ground truth firing rates as a function
of the underlying oscillations frequency was quantified by r for all 3 methods across sampling rates
(top: 33 Hz; middle: 4 Hz; bottom: 2 Hz). (d) True and inferred Lorenz latent states (Z dimension)
across sampling rates for a single example trial from Lorenz systems simulated with 7 Hz oscillations.
Black: true. Colored: inferred. (e) Performance in estimating the Lorenz Z dimension as a function
of Lorenz oscillation frequencies was quantified by variance explained (R2) for all 3 methods across
sampling rates.

monitored by 2p imaging.

Though we made an effort to cover a wide range of experimental conditions (e.g.,

different sampling rates, frequencies of the underlying structures), the parameter

space of possible experiments is very large (various indicators, noise levels, etc). It

remains untested how this technique would perform in other settings. In our exper-

iments at slow sampling rates, we increased the number of neurons because slower

sampling allows for imaging more neurons. However, we only doubled the neuron

counts to provide a proof-of-concept test. In reality, reducing the sampling rate from

33 Hz to e.g., 2 Hz can allow sampling 16x more neurons with potentially richer

and more complex dynamics. DfRAD makes it possible to infer such dynamics at

high temporal resolution. Yet, increased neuron counts represent a computational

challenge as the dimensionality of the datasets scales up quickly. More efficient com-
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putational strategies (e.g., sparse matrix storage, etc) will need to be developed to

enable wider usability of DfRAD.



99

Chapter 5

Dissertation summary and future

directions

5.1 Dissertation summary

My research and dissertation center on developing computational methods to break

through the limits imposed by space-time trade-offs in 2p calcium imaging. In the

first study (chapter 2), We recognize that the space-time trade-off due to bandwidth

limits is a fundamental challenge that modern neural interfaces are faced with. We

aim to provide a principled solution to this problem, which can be applicable for a va-

riety of recording techniques. We first recast the problem as a missing data problem,

where the set of neurons being monitored changes dynamically at short intervals. We

then tackle this challenge through the lens of dynamical systems and develop a ma-

chine learning innovation, SBTT, a neural network training strategy that trains deep

generative models of latent dynamics from neural data that are partially observed.

We demonstrated the effectiveness of this method with data from both electrophysi-

ology and 2p calcium imaging. In the second study (chapter 3), we took a deeper dive

on the 2p imaging applications. We develop innovations tailored specifically for 2p
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data, integrate SBTT to model dynamics at subframe temporal resolution, and pack

our methods as a open-source framework, RADICaL, that can be used by the broad

neuroscience community. We validate RADICaL extensively. We first demonstrate

that RADICaL greatly improves the ability to infer high-frequency features through

carefully designed simulations. We then test RADICaL’s performance on real data

across multiple subjects and brain areas. RADICaL precisely uncovers single-trial

latent dynamics that corresponds closely with behavior on a moment-by-moment ba-

sis. We also provide thorough analyses on when RADICaL will succeed or fail and

its performance in low-neuron count situations. In the third study (chapter 4), we

recognize that 2p imaging enables access to massive number of neurons, potentially to

millions of neuron, but the sampling frequency is limited to extremely low. However,

even RADICaL have a mechanism to improve temporal resolution, it cannot be gen-

eralized to slower sampling regimes because it relies on deconvolution which breaks

down at slow sampling rates. We therefore developed machine learning innovations

to integrate the generative AR process into RADICaL and regularize the network to

better capture the population dynamics. We show that our method, namely DfRAD,

is capable of inferring fast dynamics (> 7 Hz) when sampling rate is as low as 2 Hz.

Together, methods developed by my work bypass the modest temporal sampling of

2p imaging and provide an avenue towards modeling fast, complex dynamics from

massive number of neurons and understanding how population-level computations

are tied with anatomical and circuit details reveled via 2p calcium imaging.

5.2 Future directions

One promise of my work is to enable the modeling of latent dynamics from massive

number of neurons. However, increased number of neurons (from hundreds to tens

of thousands to a million) imposes great computational challenges. More efficient



101

strategies to handle the data need to be developed before applying our tools to mas-

sive datasets. Due to the complexity of the model, in-depth investigation of how

the memory cost is distributed across different parts of the model is needed. Sparse

matrices can be potentially utilized to handle the data to reduce memory cost. Re-

lated, the current models are written and tested in TensorFlow 1.14. Migration to

TensorFlow 2 or PyTorch is a necessary next step to flexibly develop new features as

more resources are available at the new frameworks.

Tools from my work enable modeling dynamics from 2p data at subframe tem-

poral resolution. There is trade-off on the desired bin size and the sparsity of the

input data. As an extreme example, modeling data with a 2p sampling rate of 2 Hz

at a modeling frequency of 500 Hz will result in an input matrix where 99.6% of the

data is missing. It is unlikely the model could model the dynamics in such situations

and is untested whether increasing the number of neurons (or how much increase)

could rescue the model’s performance. One potential solution is to utilize the idea of

pretraining. Results in Chapter 2 show that pretraining a dynamics model with fully

observed data and applying it to subsequent, partially observed data could improve

the inference on the partially observed data. This strategy can be used combat the

high-sparsity problem if high-bandwidth experimental sessions are available. System-

atic tests are needed to validate this idea in such regimes. Related, one consequence

of rebinning input data at subframe resolution is that the sequence length is substan-

tially increased. Our models are based on RNNs, which are prone to problems related

to long sequences, such as gradient vanishing. Long sequences also substantially in-

crease computational cost and lead to long training time. Alternative architectures,

such as Transformers can be considered.

Compared to applications to electrophysiology, modeling dynamics is a relatively

new trend in calcium imaging. Our work resolves a series of specific challenges and

opens the door for precise inference of dynamics from calcium imaging data. This
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enables a lot of exciting, new questions to be explored. First, calcium imaging al-

lows the identification of cell types when monitoring a large network of neurons. Do

populations of different cell types exhibit different dynamics? How do neurons with

different cell types contribute to the overall dynamics of the network? How do differ-

ent cell types communicate at the population level? These are a mixture of scientific

and engineering questions. Future work can build dynamics models for different cell

types and study the properties of the dynamics from different cell types. Alterna-

tively, an interesting engineering challenge is to integrate cell type identities into the

dynamics model of the whole network. These studies will facilitate the understand-

ing of how a neural circuitry gives rise to function. Further, calcium imaging can

image a large FOV, with spatial information available, or image multiple planes, with

layer information available. How do populations across different spatial locations or

layers contribute to the overall dynamics? How do neurons from different layers or

brain areas communicate? Can we build dynamics model that incorporates in the

information about spatial locations, layers or brain areas? Can we build dynamics

model to explain the communication between different populations? These, again,

are interesting scientific and engineering questions waited to be answered.
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Appendix A

Extended data figures
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Figure A.1: Simulation of Lorenz system at different speeds. This figure illustrates the underlying
dynamical system used for the simulation experiments. (a) An example Lorenz trajectory in a 3-
dimensional state space (far left) and with three dynamic variables plotted as a function of time
(middle left) for a system with Z-oscillation peak frequency of 7 Hz (i.e., the power spectrum of the
Lorenz system’s Z-dimension had a pronounced peak at 7 Hz). Firing rates for the simulated neurons
were computed by a linear readout of the Lorenz variables followed by an exponential nonlinearity
(middle right). Spikes from the firing rates were then generated by a Poisson process (far right). The
example trial shown here is identical to “Trial 2” in Fig. 3.2a, but with a wider plotting window.
(b) Power spectrum of the individual Lorenz variables for the system with a Z-oscillation peak
frequency at 7 Hz. Because only the Z variable has a clear peak in the power spectrum, this variable
was used exclusively for all further analyses in simulations except Fig. B.1. (c) Power spectrum of
the Z dimension for Lorenz systems simulated with different Z-oscillation peak frequencies.
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Figure A.2: Simulation pipeline to generate artificial fluorescence traces from the underlying Lorenz
system. (a) This pipeline begins from the Poisson-random spikes generated in the far-right panel
of Fig. A.1. Calcium traces were generated by first corrupting the spikes with amplitude noise,
then modeling the dynamics of calcium indicators in response to a spike with an autoregressive
process of order 2 transformed by a piecewise-linear non-linearity. Sources of noise corrupting this
fluorescence trace were then added. The nonlinearity and noise sources were chosen to approximate
the variability observed in real data. (b) Example ground truth and simulated data using a GCaMP6f
model. From top to bottom: original ground truth spikes fed into the simulator, perturbed spikes,
idealized calcium trace, fluorescence trace with nonlinearity and noise sources added, fluorescence
trace after subsampling, deconvolved spikes, and finally original ground truth spikes fed into the
simulator (shown again for comparison; same as top). (c) Estimated nonlinearities for GCaMP6f
from (Dana et al., 2019). (d) Example traces generated by the simulator for a train of 10 Hz stimuli,
with and without nonlinearity applied.
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Figure A.3: RADICaL retains high latent recovery performance in a simulation experiment that
lacks stereotyped conditions. This analysis was targeted at determining whether RADICaL simply
‘memorized’ the stereotyped trajectories for a limited number of conditions, or whether it could
generalize to cases where each trial was more unique. To answer this question, we designed a “zero
condition” simulation experiment, where each trial had its own unique Lorenz initial state and there
were no repeated trials with the same underlying latent trajectories. (a) Example true (top left) and
estimated Lorenz trajectories by RADICaL (top right), AutoLFADS (bottom left), and smth-dec
(bottom right). Each trajectory is an individual trial, colored by the location of the initial state
of the true Lorenz trajectory. The initial states of the trials are indicated by the dots in the same
colors as the trajectories. (b) Performance in estimating the Lorenz Z dimension as a function of
Lorenz oscillation frequency was quantified by variance explained (R2) for all 4 methods.
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Figure A.4: RADICaL retains high latent recovery performance at slower imaging speeds, but there
are limits to deconvolution with slower sampling. To understand the extent to which the model
performance depends on imaging speeds, we simulated data at different sampling rates ranging from
2 Hz to 33.3 Hz. (a) Example ground truth spikes, simulated fluorescence, and deconvolved signals
at different sampling rates. Sample times are denoted by gray triangles. Deconvolution performance
degraded at slower sampling rates, particularly in regimes when transients could be missed entirely.
In our simulation we used a GCaMP6f model with a decay time of 400ms (see Methods). At an
imaging rate of 2 Hz, the majority of transients were missed and the estimate of the decay time
constant tau was inaccurate (916.8 +/- 49.4ms, compared to the ground truth 400ms). Because
deconvolution performs poorly at these sampling rates (i.e., ¡= 2 Hz) with fast indicators, we do not
recommend using RADICaL under such circumstances. (b) Performance in estimating the Lorenz Z
dimension as a function of sampling rate was quantified by variance explained (R2) for all 3 methods,
for Lorenz oscillation frequencies of 10Hz (top) and 15Hz (bottom). Squares with solid lines denote
experiments with 278 neurons. Triangles with dashed lines denote experiments with 500 neurons.
RADICaL retained high performance and outperformed AutoLFADS and smth-dec in recovering the
latent states of a 10 Hz Lorenz system at moderately slow sampling rates (8 and 16 Hz; top). In real
experiments, there may be benefits to slower sampling, e.g., one can image more neurons using a
larger FOV. Increasing the number of neurons boosted RADICaL’s performance, while AutoLFADS
and smth-dec showed negligible improvement (bottom).
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Figure A.5: Performance of RADICaL and AutoLFADS in capturing the empirical PSTHs on single
trials in the mouse water grab experiments. This figure is related to Fig. 3.3d, but compares
RADICaL with AutoLFADS instead of smth-dec. Correlation coefficient r was computed between
the inferred single-trial event rates and empirical PSTHs. Each point represents an individual
neuron. These results demonstrate that RADICaL captures the key features of individual neurons’
responses from single-trial activity better than AutoLFADS in nearly every case.
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Figure A.6: Single-trial neural trajectories for additional mouse water grab experiments. This figure
is related to Fig. 3.4a, and shows the remaining datasets. Single-trial, log-transformed event rates
were projected into a subspace computed by applying PCA to the trial-averaged, log-transformed
rates, colored by subgroups. Lift onset times are indicated by the dots in the same colors as
the trajectories. Gray dots indicate 200 ms prior to lift onset time. Top row: single-trial neural
trajectories derived from RADICaL rates; Bottom row: single-trial neural trajectories derived from
smth-dec rates.
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Figure A.7: Hand trajectories for additional mouse water grab experiments. This figure is related
to Figure 5a, and shows the remaining datasets. True and decoded hand positions for Mouse1/S1
(left) and Mouse2/M1 (right).
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Figure A.8: Prediction of single-trial reaction times for additional mouse water grab experiments.
This figure is like Fig. 3.5d, for the remaining datasets. Each dot represents an individual trial,
color-coded by the technique. Correlation coefficient r was computed between the true and predicted
reaction times. Data from Mouse2/M1 (left) and Mouse2/S1 (right).

Figure A.9: RADICaL retains high decoding performance in an FOV-shrinking experiment. This
is an alternative method for evaluating performance with reduced neuron counts to the method in
Fig. 3.6. (a) The area selected to include was gradually shrunk to the center of the FOV to reduce
the number of neurons included in training RADICaL or AutoLFADS. (b) Decoding performance
measured using variance explained (R2) as a function of the number of neurons used in each technique
(top: Position; bottom: Velocity). Error bar indicates the s.e.m. across 5 folds of test trials. Data
from Mouse2/M1.
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Appendix B

Supplementary figures
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Figure B.1: Performance of estimating other Lorenz dimensions in the simulation experiments.
Performance of estimating Lorenz X (left) and Y (right) dimensions as a function of simulation
frequency was quantified by variance explained (R2) for all 4 methods. Note that these variables are
dominated by lower frequencies than the Z variable used in other figures, and therefore make for an
easier challenge. We therefore used the Z variable for all other results.

Figure B.2: Both SBTT and ZIG improve latent recovery performance separately. To understand the
contributions of ZIG and SBTT independently in RADICaL’s performance in latent recovery, we fit
RADICaL to different Lorenz oscillation frequencies with only the ZIG emission model enabled (no
SBTT; “RAD/ZIG”) or only SBTT enabled (no ZIG; “RAD/SBTT”). Performance in estimating
the Lorenz Z dimension as a function of Lorenz oscillation frequency was quantified by variance
explained (R2). RAD/ZIG performed a little better than AutoLFADs, while RAD/SBTT performs
substantially better, but combining both (the full RADICaL model) performed substantially better
still.
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Figure B.3: Deconvolution places an upper bound on RADICaL’s performance recovering higher-
frequency features. To understand how deconvolution performs across Lorenz oscillation frequencies,
we measured how well trial-averaged deconvolved events captured the true underlying rates for indi-
vidual (simulated) neurons. Averaging deconvolved events across the noisy repeated trials that have
the same true underlying rates is a straightforward way to test, on average, whether deconvolution
irreversibly loses information about the underlying rates. There were three main steps in the rates-
to-events generation process: Poisson sampling of spikes from the underlying rates, fluorescence
generation and sub-sampling, and deconvolution (detailed in Methods). To specifically isolate the
effect of fluorescence generation and deconvolution on rate recovery, we also tested recovery with
those steps omitted, i.e., spikes generated in the rates-to-events process were sub-sampled from a
sampling frequency of 100 Hz to 33.3 Hz as was done for the fluorescence traces, and were aver-
aged across trials to quantify how well they captured the true underlying rates. (a) Example ground
truth firing rates, averaged spikes across trials (3000 trials), and averaged deconvolved calcium events
across trials (3000 trials), for Lorenz oscillation frequencies of 7Hz (top) and 40Hz (bottom). (b)
Performance in capturing the ground truth firing rates as a function of Lorenz oscillation frequency
was quantified by correlation coefficient r between the trial-averaged spikes or deconvolved events
and the true rates. Error bars indicate the variability across simulated neurons. The correlation
between the trial-averaged deconvolved events and the true rates dropped as the Lorenz oscillation
frequency increased, suggesting that deconvolution fails at higher Lorenz oscillation frequencies. The
correlation between the trial-averaged spikes and the true rates did not drop as the Lorenz oscilla-
tion frequency increased, suggesting that the drop seen for the deconvolved events was mainly due
to deconvolution and not the Poisson sampling and sub-sampling steps. (c) To determine whether
RADICaL’s performance loss for high-frequency signals was purely due to deconvolution failure or
might involve limitations of the model itself, we eliminated the fluorescence generation/deconvolution
step and applied RADICaL directly to the sub-sampled spiking activity. In this test, we did not use
RADICAL’s ZIG observation model, but kept the SBTT approach and used a Poisson observation
model. Performance in using ground truth spikes to estimate the Lorenz Z dimension as a function of
Lorenz oscillation frequency was quantified by variance explained (R2) for smoothing and RADICaL.
RADICaL retained high performance in latent recovery across Lorenz oscillation frequencies from
4Hz to 40Hz, whereas smoothing showed a much faster degradation of latent recovery performance.
Together, these analyses demonstrate that the degradation in RADICaL’s performance at higher
Lorenz oscillation frequencies is mainly due to inaccuracies in deconvolution, and not due to the
model itself.
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Figure B.4: Model tolerance to spike inference noise. In our simulations, we chose parameters so
that the resulting signal-to-noise regime produced similar correlations between real and inferred spike
trains as observed in a recent benchmarking study (Berens et al., 2018) (see Methods). However,
the spike inference noise can vary in real experiments and could affect RADICaL’s performance.
To test how larger spike inference noise affects the performance of RADICaL and smth-dec, we
raised the level of the Gaussian noise used in generating simulated fluorescence traces by 2x or 4x.
Performance in estimating the Lorenz Z dimension as a function of the level of spike inference noise
was quantified by variance explained (R2) for RADICaL and smth-dec. Performance declined for
both methods as the noise level increased. However, RADICaL retained high performance at the 2x
noise level (R2=0.91) and reasonable performance at the 4x noise level (R2=0.56). Smth-dec had
low performance across the board (R2=0.27 and 0.08 for 2x and 4x noise, respectively). Notably,
RADICaL performed better at the 4x noise level than smth-dec at the original noise level.
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Figure B.5: RADICAL (with SBTT) improves latent recovery when using spikes inferred by ML-
spike, but does not perform as well as when using OASIS for deconvolution. To test whether
RADICaL could be effective with deconvolution algorithms that infer spike times instead of event
rates, we analyzed simulated data that had spike inference performed with MLspike (Deneux et al.,
2016). Performance in estimating the Lorenz Z dimension as a function of Lorenz oscillation fre-
quency was quantified by variance explained (R2) for six methods. These included three methods in
which the inputs were deconvolved events from OASIS: RADICaL (“RAD/OASIS”), AutoLFADS
(“ALFADS/OASIS”) and smoothing (“smth-dec/OASIS”); and three methods in which inputs were
spikes inferred with MLspike: RADICaL (“RAD/MLspike”), AutoLFADS (“ALFADS/MLspike”)
and smoothing (“smth-dec/MLspike”). When pairing RADICaL with deconvolution methods that
produce spike times as output, we can use a Poisson observation model (as one would use for spikes
measured via electrophysiology) instead of ZIG, while retaining the SBTT approach for sub-frame
sampling. RADICaL with a Poisson observation model (RAD/MLspike) was able to model ML-
spike output, and substantially outperformed AutoLFADS and smth-dec (ALFADS/MLspike and
smth-dec/MLspike), but did not perform as well as RADICaL applied to OASIS-deconvolved events
(RAD/OASIS). In addition, the parameter tuning required for MLspike is more involved and re-
quires more expertise than OASIS (see Methods). Therefore, we recommend using OASIS as the
deconvolution method for RADICaL.
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Figure B.6: RADICaL reduces decoding errors on the vast majority of single trials for all datasets.
Single-trial decoding error was quantified by measuring the absolute difference between the true and
decoded hand position for each individual trial. Each point represents an individual trial. Error was
greatly reduced compared with both smth-dec (left) and AutoLFADS (right).
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Figure B.7: RADICaL improves prediction of single-trial deviations from the mean of hand positions.
This figure demonstrates that RADICaL does not simply learn a ‘typical’ trajectory for left-reach
trials and another for right-reach trials, but instead reflects small deviations from the condition
average better than other methods. The residuals of hand positions (i.e., single-trial deviations from
the mean) were computed by subtracting the left-reach or right-reach trial-averaged hand positions
from the single trials. Error of residual prediction was computed by taking the absolute value of the
difference between true and predicted residuals of hand positions.

Figure B.8: Performance of ZIG-only (A-ZIG) and SBTT-only (A-SBTT) on decoding hand kinemat-
ics. To test whether the innovations of RADICaL contributed separately to the improved decoding
performance, we performed an ablation study where we enabled solely the ZIG emissions model
(RAD/ZIG) or SBTT (RAD/SBTT). Decoding accuracy was quantified by measuring variance ex-
plained (R2) between the true and decoded position (left) and velocity (right) across all trials, for
RAD/ZIG, RAD/SBTT and other techniques. Analyzed data are from Mouse2/M1. Note that in
this test, RAD/ZIG outperformed RAD/SBTT, which is the opposite of the results from synthetic
data shown in Fig. B.2. The discrepancy could potentially be due to different properties of the
datasets, such as the frequency of the underlying features or noise properties. However, for both
simulated and real data, either innovation (SBTT or ZIG) helps improve performance and combining
them yields the highest performance.
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Figure B.9: RADICaL is robust to the random seed used in selecting subsets of neurons in a neuron
downsampling experiment. This figure is related to Figure 6. Decoding performance measured using
variance explained (R2) as a function of the number of neurons used in each technique (top: Position;
bottom: Velocity). For a given number of neurons (except the full population of 439 neurons), 3
random seeds were used, and each data point represents an individual random seed. The dotted
line represents the mean performance across the three random seeds for each method. Data from
Mouse2/M1. Figure insets indicate the selected neurons in the FOV for experiments of the full
population and example subsets of the population.
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Figure B.10: RADICaL improves decoding performance using decoders trained with smth-dec rates.
This analysis demonstrates that the decoding performance benefit due to RADICaL cannot be due
to training a better decoder alone, but results from better denoising of the trajectories themselves.
Decoding performance was quantified by measuring variance explained (R2) between the true and
decoded hand position across each of the 4 datasets (2 mice for M1, denoted by squares, and 2 mice
for S1, denoted by triangles), for decoders trained with smth-dec rates and applied to smth-dec rates
(gray) or applied to RADICaL rates (red).

Figure B.11: Visualization of transformation from factors to neurons. This analysis demonstrates
that the different bands of the image use the same factors and not segregated ones, despite being
divided up into separate sub-bins for improving temporal resolution with SBTT. The plot shows a
2-dimensional t-SNE space representation of weights mapping from RADICaL factors to ZIG param-
eters for Mouse1/M1. Each point represents an individual neuron (510 neurons total). Neurons are
color coded based on the neurons’ position within the field of view (i.e., top, middle, and bottom).
The interspersal of the points shows that neurons do not have systematically different relationships
with the factors in RADICAL based on which band they are in.



121

Bibliography

K. C. Ames, S. I. Ryu, and K. V. Shenoy. Neural dynamics of reaching following

incorrect or absent motor preparation. Neuron, 81(2):438–451, 2014.

N. Apthorpe, A. Riordan, R. Aguilar, J. Homann, Y. Gu, D. Tank, and H. S. Se-

ung. Automatic Neuron Detection in Calcium Imaging Data Using Convolutional

Networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, edi-

tors, Advances in Neural Information Processing Systems, volume 29. Curran As-

sociates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/

0771fc6f0f4b1d7d1bb73bbbe14e0e31-Paper.pdf.

J. Art. Photon detectors for confocal microscopy. In Handbook of biological confocal

microscopy, pages 251–264. Springer, 2006.

P. Berens, J. Freeman, T. Deneux, N. Chenkov, T. McColgan, A. Speiser, J. H.

Macke, S. C. Turaga, P. Mineault, P. Rupprecht, and others. Community-based

benchmarking improves spike rate inference from two-photon calcium imaging data.

PLoS computational biology, 14(5):e1006157, 2018. Publisher: Public Library of

Science.

D. A. Borton, M. Yin, J. Aceros, and A. Nurmikko. An implantable wireless neural

interface for recording cortical circuit dynamics in moving primates. Journal of

neural engineering, 10(2):026010, 2013.

https://proceedings.neurips.cc/paper/2016/file/0771fc6f0f4b1d7d1bb73bbbe14e0e31-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/0771fc6f0f4b1d7d1bb73bbbe14e0e31-Paper.pdf


122

F. Carnevale, V. de Lafuente, R. Romo, O. Barak, and N. Parga. Dynamic control of

response criterion in premotor cortex during perceptual detection under temporal

uncertainty. Neuron, 86(4):1067–1077, 2015.

J. L. Chen, S. Carta, J. Soldado-Magraner, B. L. Schneider, and F. Helmchen.

Behaviour-dependent recruitment of long-range projection neurons in somatosen-

sory cortex. Nature, 499(7458):336–340, 2013a. Publisher: Nature Publishing

Group.

S. X. Chen, A. N. Kim, A. J. Peters, and T. Komiyama. Subtype-specific plasticity

of inhibitory circuits in motor cortex during motor learning. Nature neuroscience,

18(8):1109–1115, 2015. Publisher: Nature Publishing Group.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R.

Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, et al. Ultrasensitive fluorescent

proteins for imaging neuronal activity. Nature, 499(7458):295–300, 2013b.

M. M. Churchland and K. V. Shenoy. Temporal complexity and heterogeneity of

single-neuron activity in premotor and motor cortex. Journal of neurophysiology,

97(6):4235–4257, 2007.

M. M. Churchland, J. P. Cunningham, M. T. Kaufman, S. I. Ryu, and K. V. Shenoy.

Cortical preparatory activity: representation of movement or first cog in a dynam-

ical machine? Neuron, 68(3):387–400, 2010.

M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian,

S. I. Ryu, and K. V. Shenoy. Neural population dynamics during reaching. Nature,

487(7405):51–56, 2012.

M. M. Churchland, M. T. Kaufman, J. P. Cunningham, J. D. Foster, P. Nuyu-

jukian, S. I. Ryu, and K. V. Shenoy. Neural population dynamics during reach-



123

ing dataset. https://dandiarchive.org/dandiset/000070/, 2021. [Data set].

DANDI archive.

A. C. Costa, T. Ahamed, and G. J. Stephens. Adaptive, locally linear models of

complex dynamics. Proceedings of the National Academy of Sciences, 116(5):1501–

1510, Jan. 2019. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1813476116. URL

http://www.pnas.org/lookup/doi/10.1073/pnas.1813476116.

J. P. Cunningham and B. M. Yu. Dimensionality reduction for large-scale neural

recordings. Nature Neuroscience, 17(11):1500–1509, Nov. 2014. ISSN 1097-6256,

1546-1726. doi: 10.1038/nn.3776. URL http://www.nature.com/articles/nn.

3776.

H. Dana, Y. Sun, B. Mohar, B. K. Hulse, A. M. Kerlin, J. P. Hasseman, G. Tsegaye,

A. Tsang, A. Wong, R. Patel, J. J. Macklin, Y. Chen, A. Konnerth, V. Ja-

yaraman, L. L. Looger, E. R. Schreiter, K. Svoboda, and D. S. Kim. High-

performance calcium sensors for imaging activity in neuronal populations and

microcompartments. Nature Methods, 16(7):649–657, July 2019. ISSN 1548-

7091, 1548-7105. doi: 10.1038/s41592-019-0435-6. URL http://www.nature.com/

articles/s41592-019-0435-6.

M. A. Davenport and J. Romberg. An overview of low-rank matrix recovery from

incomplete observations. IEEE J. of Selected Topics in Signal Processing, 10(4):

608–622, June 2016.

J. B. Dechery and J. N. MacLean. Functional triplet motifs underlie accurate pre-

dictions of single-trial responses in populations of tuned and untuned V1 neurons.

PLoS computational biology, 14(5):e1006153, 2018. Publisher: Public Library of

Science San Francisco, CA USA.

J. Demas, J. Manley, F. Tejera, H. Kim, K. Barber, F. M. Traub, B. Chen, and

https://dandiarchive.org/dandiset/000070/
http://www.pnas.org/lookup/doi/10.1073/pnas.1813476116
http://www.nature.com/articles/nn.3776
http://www.nature.com/articles/nn.3776
http://www.nature.com/articles/s41592-019-0435-6
http://www.nature.com/articles/s41592-019-0435-6


124

A. Vaziri. Volumetric calcium imaging of 1 million neurons across cortical regions

at cellular resolution using light beads microscopy. bioRxiv, 2021.

T. Deneux, A. Kaszas, G. Szalay, G. Katona, T. Lakner, A. Grinvald, B. Rózsa,
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M. Jas, T. Achakulvisut, A. Idrizović, D. Acuna, M. Antalek, V. Marques, T. Od-

land, R. Garg, M. Agrawal, Y. Umegaki, P. Foley, H. Fernandes, D. Harris, B. Li,

O. Pieters, S. Otterson, G. D. Toni, C. Rodgers, E. Dyer, M. Hamalainen, K. Ko-

rding, and P. Ramkumar. Pyglmnet: Python implementation of elastic-net reg-

ularized generalized linear models. Journal of Open Source Software, 5(47):1959,

2020. doi: 10.21105/joss.01959. URL https://doi.org/10.21105/joss.01959.

S. Jewell and D. Witten. Exact spike train inference via 0 optimization. The annals

of applied statistics, 12(4):2457, 2018.

http://www.nature.com/articles/s41598-020-74672-y
https://proceedings.neurips.cc/paper/2017/file/e449b9317dad920c0dd5ad0a2a2d5e49-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/e449b9317dad920c0dd5ad0a2a2d5e49-Paper.pdf
http://arxiv.org/abs/1711.09846
https://doi.org/10.21105/joss.01959


129

S. W. Jewell, T. D. Hocking, P. Fearnhead, and D. M. Witten. Fast nonconvex

deconvolution of calcium imaging data. Biostatistics, 21(4):709–726, Oct. 2020.

ISSN 1465-4644, 1468-4357. doi: 10.1093/biostatistics/kxy083. URL https://

academic.oup.com/biostatistics/article/21/4/709/5310127.

J. J. Jun, N. A. Steinmetz, J. H. Siegle, D. J. Denman, M. Bauza, B. Barbarits,

A. K. Lee, C. A. Anastassiou, A. Andrei, Aydın, and others. Fully integrated

silicon probes for high-density recording of neural activity. Nature, 551(7679):232–

236, 2017. Publisher: Nature Publishing Group.

P. Kaifosh, J. D. Zaremba, N. B. Danielson, and A. Losonczy. SIMA: Python software

for analysis of dynamic fluorescence imaging data. Frontiers in Neuroinformatics,

8, Sept. 2014. ISSN 1662-5196. doi: 10.3389/fninf.2014.00080. URL http://

journal.frontiersin.org/article/10.3389/fninf.2014.00080/abstract.

J. C. Kao, P. Nuyujukian, S. I. Ryu, M. M. Churchland, J. P. Cunningham, and

K. V. Shenoy. Single-trial dynamics of motor cortex and their applications to

brain-machine interfaces. Nature communications, 6(1):1–12, 2015.

J. C. Kao, S. I. Ryu, and K. V. Shenoy. Leveraging neural dynamics to extend

functional lifetime of brain-machine interfaces. Scientific reports, 7(1):1–16, 2017.

M. T. Kaufman, M. M. Churchland, S. I. Ryu, and K. V. Shenoy. Cortical activity

in the null space: permitting preparation without movement. Nature neuroscience,

17(3):440–448, 2014.

M. T. Kaufman, J. S. Seely, D. Sussillo, S. I. Ryu, K. V. Shenoy, and M. M. Church-

land. The largest response component in the motor cortex reflects movement timing

but not movement type. Eneuro, 3(4), 2016. Publisher: Society for Neuroscience.

S. W. Keemink, S. C. Lowe, J. M. P. Pakan, E. Dylda, M. C. W. van Rossum,

and N. L. Rochefort. FISSA: A neuropil decontamination toolbox for calcium

https://academic.oup.com/biostatistics/article/21/4/709/5310127
https://academic.oup.com/biostatistics/article/21/4/709/5310127
http://journal.frontiersin.org/article/10.3389/fninf.2014.00080/abstract
http://journal.frontiersin.org/article/10.3389/fninf.2014.00080/abstract


130

imaging signals. Scientific Reports, 8(1):3493, Dec. 2018. ISSN 2045-2322.

doi: 10.1038/s41598-018-21640-2. URL http://www.nature.com/articles/

s41598-018-21640-2.

M. R. Keshtkaran and C. Pandarinath. Enabling hyperparameter optimization in

sequential autoencoders for spiking neural data. In Advances in Neural Information

Processing Systems, pages 15937–15947, 2019.

M. R. Keshtkaran, A. R. Sedler, R. H. Chowdhury, R. Tandon, D. Basrai, S. L.

Nguyen, H. Sohn, M. Jazayeri, L. E. Miller, and C. Pandarinath. A large-scale

neural network training framework for generalized estimation of single-trial popu-

lation dynamics. bioRxiv, 2021. Publisher: Cold Spring Harbor Laboratory.

T. D. Kim, T. Z. Luo, J. W. Pillow, and C. D. Brody. Inferring latent dynamics un-

derlying neural population activity via neural differential equations. In Proceedings

of the 38th International Conference on Machine Learning, 2021.

E. Kirschbaum, M. Haußmann, S. Wolf, H. Sonntag, J. Schneider, S. Elzoheiry,

O. Kann, D. Durstewitz, and F. A. Hamprecht. LeMoNADe: Learned Motif and

Neuronal Assembly Detection in calcium imaging videos. arXiv:1806.09963 [q-bio],

Feb. 2019. URL http://arxiv.org/abs/1806.09963. arXiv: 1806.09963.

E. Kirschbaum, A. Bailoni, and F. A. Hamprecht. DISCo: Deep Learning, Instance

Segmentation, and Correlations for Cell Segmentation in Calcium Imaging. In

A. L. Martel, P. Abolmaesumi, D. Stoyanov, D. Mateus, M. A. Zuluaga, S. K.

Zhou, D. Racoceanu, and L. Joskowicz, editors, Medical Image Computing and

Computer Assisted Intervention – MICCAI 2020, volume 12265, pages 151–162.

Springer International Publishing, Cham, 2020. ISBN 978-3-030-59721-4 978-3-

030-59722-1. doi: 10.1007/978-3-030-59722-1 15. URL http://link.springer.

http://www.nature.com/articles/s41598-018-21640-2
http://www.nature.com/articles/s41598-018-21640-2
http://arxiv.org/abs/1806.09963
http://link.springer.com/10.1007/978-3-030-59722-1_15


131

com/10.1007/978-3-030-59722-1_15. Series Title: Lecture Notes in Computer

Science.

E. Klein, T. Brown, M. Sample, A. R. Truitt, and S. Goering. Engineering the brain:

ethical issues and the introduction of neural devices. Hastings Center Report, 45

(6):26–35, 2015.

T. H. Koh, W. E. Bishop, T. Kawashima, B. B. Jeon, R. Srinivasan, S. J. Kuhlman,

M. B. Ahrens, S. M. Chase, and M. Y. Byron. Dimensionality reduction of calcium-

imaged neuronal population activity. bioRxiv, 2022.

J. W. Krakauer, A. A. Ghazanfar, A. Gomez-Marin, M. A. MacIver, and D. Poeppel.

Neuroscience needs behavior: correcting a reductionist bias. Neuron, 93(3):480–

490, 2017. Publisher: Elsevier.

K. C. Lakshmanan, P. T. Sadtler, E. C. Tyler-Kabara, A. P. Batista, and B. M.

Yu. Extracting low-dimensional latent structure from time series in the presence

of delays. Neural computation, 27(9):1825–1856, 2015.

J. Lecoq, M. Oliver, J. H. Siegle, N. Orlova, and C. Koch. Removing independent

noise in systems neuroscience data using deepinterpolation. bioRxiv, 2020.

H. Lee and C. Zhang. Robust guarantees for learning an autoregressive filter. In

A. Kontorovich and G. Neu, editors, Proceedings of the 31st International Con-

ference on Algorithmic Learning Theory, volume 117 of Proceedings of Machine

Learning Research, pages 490–517, San Diego, California, USA, Feb. 2020. PMLR.

URL http://proceedings.mlr.press/v117/lee20a.html.

S. Linderman, M. Johnson, A. Miller, R. Adams, D. Blei, and L. Paninski. Bayesian

learning and inference in recurrent switching linear dynamical systems. In Artificial

Intelligence and Statistics, pages 914–922. PMLR, 2017.

http://link.springer.com/10.1007/978-3-030-59722-1_15
http://link.springer.com/10.1007/978-3-030-59722-1_15
http://proceedings.mlr.press/v117/lee20a.html


132

J. Lu, C. Li, J. Singh-Alvarado, Z. C. Zhou, F. Fröhlich, R. Mooney, and F. Wang.

MIN1PIPE: A Miniscope 1-Photon-Based Calcium Imaging Signal Extraction

Pipeline. Cell Reports, 23(12):3673–3684, June 2018. ISSN 22111247. doi: 10.

1016/j.celrep.2018.05.062. URL https://linkinghub.elsevier.com/retrieve/

pii/S221112471830826X.

J. H. Macke, L. Buesing, J. P. Cunningham, B. M. Yu, K. V. Shenoy, and M. Sahani.

Empirical models of spiking in neural populations. In Advances in Neural Infor-

mation Processing Systems 24: 25th conference on Neural Information Processing

Systems (NIPS 2011), pages 1350–1358, 2012.

E. L. Mackevicius, A. H. Bahle, A. H. Williams, S. Gu, N. I. Denisenko, M. S.

Goldman, and M. S. Fee. Unsupervised discovery of temporal sequences in high-

dimensional datasets, with applications to neuroscience. eLife, 8:e38471, Feb. 2019.

ISSN 2050-084X. doi: 10.7554/eLife.38471. URL https://elifesciences.org/

articles/38471.

O. Mano, M. S. Creamer, C. A. Matulis, E. Salazar-Gatzimas, J. Chen, J. A.

Zavatone-Veth, and D. A. Clark. Using slow frame rate imaging to extract fast

receptive fields. Nature communications, 10(1):1–13, 2019. Publisher: Nature Pub-

lishing Group.

V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome. Context-dependent com-

putation by recurrent dynamics in prefrontal cortex. nature, 503(7474):78–84, 2013.

R. Maruyama, K. Maeda, H. Moroda, I. Kato, M. Inoue, H. Miyakawa, and T. Aon-

ishi. Detecting cells using non-negative matrix factorization on calcium imaging

data. Neural Networks, 55:11–19, July 2014. ISSN 08936080. doi: 10.1016/

j.neunet.2014.03.007. URL https://linkinghub.elsevier.com/retrieve/pii/

S0893608014000707.

https://linkinghub.elsevier.com/retrieve/pii/S221112471830826X
https://linkinghub.elsevier.com/retrieve/pii/S221112471830826X
https://elifesciences.org/articles/38471
https://elifesciences.org/articles/38471
https://linkinghub.elsevier.com/retrieve/pii/S0893608014000707
https://linkinghub.elsevier.com/retrieve/pii/S0893608014000707


133

A. Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy, M. W. Mathis, and

M. Bethge. DeepLabCut: markerless pose estimation of user-defined body parts

with deep learning. Nature neuroscience, 21(9):1281–1289, 2018. Publisher: Nature

Publishing Group.

M. Minderer, K. D. Brown, and C. D. Harvey. The spatial structure of neural en-

coding in mouse posterior cortex during navigation. Neuron, 102(1):232–248, 2019.

Publisher: Elsevier.

H. Miranda, V. Gilja, C. A. Chestek, K. V. Shenoy, and T. H. Meng. Hermesd: A high-

rate long-range wireless transmission system for simultaneous multichannel neural

recording applications. IEEE Transactions on Biomedical Circuits and Systems, 4

(3):181–191, 2010.

G. Mishne and A. S. Charles. Learning Spatially-correlated Temporal Dictionaries

for Calcium Imaging. In ICASSP 2019 - 2019 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 1065–1069, Brighton,

United Kingdom, May 2019. IEEE. ISBN 978-1-4799-8131-1. doi: 10.1109/ICASSP.

2019.8683375. URL https://ieeexplore.ieee.org/document/8683375/.

G. Mishne, R. R. Coifman, M. Lavzin, and J. Schiller. Automated cellular struc-

ture extraction in biological images with applications to calcium imaging data.

preprint, Neuroscience, May 2018. URL http://biorxiv.org/lookup/doi/10.

1101/313981.

J. S. Montijn, G. T. Meijer, C. S. Lansink, and C. M. Pennartz. Population-level

neural codes are robust to single-neuron variability from a multidimensional coding

perspective. Cell reports, 16(9):2486–2498, 2016. Publisher: Elsevier.

A. S. Morcos and C. D. Harvey. History-dependent variability in population dynamics

https://ieeexplore.ieee.org/document/8683375/
http://biorxiv.org/lookup/doi/10.1101/313981
http://biorxiv.org/lookup/doi/10.1101/313981


134

during evidence accumulation in cortex. Nature neuroscience, 19(12):1672–1681,

2016.

E. A. Mukamel, A. Nimmerjahn, and M. J. Schnitzer. Automated Analysis of

Cellular Signals from Large-Scale Calcium Imaging Data. Neuron, 63(6):747–

760, Sept. 2009. ISSN 08966273. doi: 10.1016/j.neuron.2009.08.009. URL

https://linkinghub.elsevier.com/retrieve/pii/S0896627309006199.

S. Musall, M. T. Kaufman, A. L. Juavinett, S. Gluf, and A. K. Churchland. Single-

trial neural dynamics are dominated by richly varied movements. Nature neuro-

science, 22(10):1677–1686, 2019. Publisher: Nature Publishing Group.

E. Musk et al. An integrated brain-machine interface platform with thousands of

channels. Journal of medical Internet research, 21(10):e16194, 2019.

M. Nonnenmacher, S. C. Turaga, and J. H. Macke. Extracting low-dimensional dy-

namics from multiple large-scale neural population recordings by learning to predict

correlations. arXiv preprint arXiv:1711.01847, 2017.

S. Oymak and N. Ozay. Non-asymptotic identification of lti systems from a single

trajectory. In 2019 American Control Conference (ACC), pages 5655–5661, 2019.

doi: 10.23919/ACC.2019.8814438.
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