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Abstract 

 

Graphical Display Methods for Exploiting the Dimensionality of Flow Cytometry Data  

By Meredith N. Scarberry 

 

 

 

 

 

 

 

 

 

Flow cytometry is an emerging technology that measures characteristics of 

particles, such as blood cells, as they flow in a stream through a beam of light.  This 

procedure is capable of producing data measurements on many variables simultaneously.  

In the past, scientists have limited their focus to a small subset of the data recorded by the 

flow cytometer to ease the tasks of understanding and analyzing the data.  I propose the 

use of radar charts, windrose charts, star charts, and pie charts for visualizing such data.  

Flow cytometry data from the Protective Immunity Project (NIH NO1-AI-50025, PI: C. 

Larsen) is presented to exemplify the graphical displays.  I discuss the adherence of the 

proposed graphics to principles of data visualization proposed by experts in the field and 

assess the effectiveness of each plot for conveying the intended information.  
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Introduction 

 

Flow cytometry is increasingly popular in many fields of study, including 

molecular biology and immunology.  This technology is capable of recording 

measurements on many particle characteristics simultaneously.  The dimensional 

capabilities of flow cytometry are often ignored due to the difficulty in comprehending 

and analyzing data of such magnitude.  The aim of this report is to suggest data display 

options which exploit the dimensionality of flow cytometry.  Such graphics convey 

patterns within the high-dimensional data that may be difficult to show numerically. 

The graphics explored here are applied to data from the Protective Immunity 

Project, an ensemble of studies exploring immune function following renal 

transplantation.  Though not typically applied to medical datasets, radar charts, windrose 

charts, star charts, and, in special cases, pie charts are proposed for exploring flow 

cytometry data.  These visual tools enable comparisons between patients, visualizations 

of patients’ change over time, and displays of average characteristics.  I examine how 

well each graphic conveys the intended information and how well each adheres to 

principles of data visualization proposed by authorities in the field.  

 

Background 

 

Flow Cytometry 

Flow cytometry measures multiple physical characteristics of particles, such as 

cells, as they flow in a fluid stream through a beam of light.  The characteristics of each 
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particle are determined based on how incident laser light is scattered and emits 

fluorescence.
3 

There are currently a number of instruments available for sorting cells according 

to the molecules they display on their surface, and the breadth of flow cytometric analysis 

and sorting is expanding.  For example, Mario Roederer of the US National Institutes of 

Health has simultaneously analyzed seventeen different intracellular and cell-surface 

markers in a single experiment.
6
  Many of the commercial flow cytometers are capable of 

analyzing at least a dozen fluorescent parameters.  Such technology creates large amounts 

of complex data.   

 

Multidimensional Graphics 

In the past, for ease of analysis, investigators have often narrowed their focus to a 

small number of parameters.  Such an approach fails to exploit the high-dimensional 

capabilities of flow cytometry.  One of the difficulties with multidimensional data arises 

during data visualization.  Graphical presentations are useful for conveying the meaning 

of data when numerical descriptions are inadequate; however, as the number of 

dimensions increases, displaying the data in two dimensions becomes difficult.   In this 

paper, I intend to convey the utility of multidimensional graphical displays commonly 

used in other scientific fields for visualizing an immunology dataset produced using flow 

cytometry. 

The graphics explored here are the radar chart, the windrose chart, the star chart, 

and, in a few cases, the pie chart.  These charts are all circular histograms that allow 

concise visualization, particularly of compositional data.   
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Radar charts display the relative frequencies of data measures.  In a radar chart, 

each variable has its own axis, and the axes radiate from the center of the chart. These 

plots are commonly used in quality control, market research, analytical chemistry, and 

toxicology.
10, 11

   Though this graphic is seldom used in medicine, there are numerous 

possible applications of the radar chart to this field.  Saary proposes that radar charts are 

useful in clinical research: they can depict changes over time in multiple variables for 

both individuals and groups, multiple-treatment group differences on multiple-outcome 

measures, and differences between disease conditions on multiple variables.
10

  She also 

posits that radar graphing would be effective for displaying biologic marker composition, 

as we exemplify in this study. 

The windrose chart is a graphic tool typically used by meteorologists to visually 

display frequencies of wind speeds and directions.  Like the radar chart, each axis 

radiates from the center and represents a particular category.  In meteorology, the axis 

directions correspond to compass directions.  For displaying data not associated with 

compass directions, the axes’ orientations are arbitrary. 

The star chart is very similar to the radar chart in its creation and appearance.  It 

consists of lines or connected slices radiating from the center.  Each slice represents a 

category, and magnitudes correspond to the length of each slice.  Star charts are often 

thought to be simply a variation of the radar chart, but this variation of appearance may 

convey different aspects of the data. 

Finally, in the commonly known pie chart, slices of the circle represent each 

category.  The size of the slice corresponds to the frequency measure.  This chart will be 

used when the others are made ineffective by the structure of the data being modeled. 
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Principles of Data Visualization 

 In creating each display, I have attempted to adhere to the guidelines proposed by 

experts in the fields of statistics and data visualization.  I briefly discuss a few of these 

principles here.   

Edward R. Tufte is possibly the most prominent authority in the arena of data 

visualization.  In his 1983 book, The Visual Display of Quantitative Information, Tufte 

explains that the goal of creating statistical graphics is to communicate complex ideas 

with clarity, precision, and efficiency.  Tufte posits the idea of graphical excellence.  He 

says, “graphical excellence is that which gives to the viewer the greatest number of ideas 

in the shortest time with the least ink in the smallest space.”  Additionally, as with all 

statistics, a quality graph should tell the truth about the data; it should not be deceptive.  

The size of the effect shown in the graphic should mirror the size of the effect in the data.   

A few of Tufte’s suggestions, for example, the minimization of ink used in a 

graphic, are not applied here.  As the following plots were generated using SAS® 

software, implementing such changes would be difficult and diminish the practicality of 

the graphic. 

In 1990, Tufte published Envisioning Information in which he broadens his focus 

from statistical graphics to all types of informational displays.  He critiques previously 

published informational graphics and proposes effective design strategies.  Tufte’s 

previous work on statistical displays is more directly applicable to this study; however, 

his general advice concerning image layering, image separation, and the use of color 
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addressed in Envisioning Information is acknowledged in the creation of the graphics 

produced in this report. 

William S. Cleveland also contributed greatly to the current literature and 

practices of data visualization. In 1985, he outlined new and lesser known graphical 

methods and principles for data communication in his book The Elements of Graphing 

Data.  He discussed principles of graph construction, graphical methods, and graphical 

perception.  Many of Cleveland’s principles are similar to those of Tufte and include such 

rules as avoiding clutter in the data region and making overlapping datasets 

distinguishable.  I will later discuss how well the figures used in this analysis adhere to 

some of the guidelines put forth by Tufte and Cleveland. 

 

The Protective Immunity Project 

The data used in this analysis comes from the Protective Immunity Project (PIP) 

(NIH NO1-AI-50025, PI: C. Larsen), an ensemble of studies examining immune function 

following renal transplantation.
7
   This is an ongoing study at Emory University which 

began in 2005.  PIP consists of three complementary studies.  The first study aims to 

characterize the impact of immunosuppressive regimens on protective immunity over 

time.  Sixty subjects were recruited from patients ages 18 to 59 who had undergone renal 

transplantation at Emory University.  Additionally, a control group was recruited 

consisting of twenty age-, sex-, and race-matched healthy volunteers.  Subjects were 

followed for two years.  Blood samples were drawn at baseline, 3, 6, 9, 12, 18, and 24 

months.  The data used for the following analysis is a subset of the data gathered for this 

first of the PIP studies. 
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The variables used in this analysis were identified using flow cytometry.  Whole 

blood was passed through the flow cytometer to determine blood composition (Fig. 1).  

Lymphocytes were isolated by visualization.  The percentage of lymphocytes displaying 

the CD3+ surface marker, known as T lymphocytes, was recorded.  The T lymphocytes 

were then broken into four categories: CD4+CD8- (T helper cells), CD4-CD8+ 

(cytotoxic T cells), CD4-CD8-, and CD4+CD8+.  Percentages for each category were 

recorded.  The T helper cells were further broken into four categories: CCR7+CD45RA- 

(central memory), CCR7+CD45RA+ (naïve), CCR7-CD45RA- (effector memory), and 

CCR7-CD45RA+.  These percentages were recorded.  Finally, the cytotoxic T cells were 

further broken into 4 categories: CCR7+CD45RA- (central memory), CCR7+CD56RA+ 

(naïve) CCR7-CD45RA- (effector memory), and CCR7-CD45RA+ (effector memory 

RA).  These percentages were also recorded.   
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Figure 1. Hierarchy of blood cell types in PIP dataset. 

Note: There are more blood cell types than are displayed here.  Only cells that are isolated in the 

PIP study by flow cytometry are included in this figure. 

 

 

Blood Composition 

 I provide below a brief explanation of blood composition, specifically the 

variables contained in the PIP dataset.   

Whole Blood

Lymphocytes

T Lymphocytes

(CD3+)

(CD4-CD8-)
T Helper Cells

(CD4+CD8-)

Central Memory

(CCR7+CD45RA-)

Effector Memory

(CCR7-CD45RA-)

(CCR7-CD45RA+)

Naive

(CCR7+CD45RA+)

Cytotoxic T Cells

(CD4-CD8+)

Central Memory

(CCR7+CD45RA-)

Effector Memory

(CCR7-CD45RA-)

Effector Memory 
RA

(CCR7-CD45RA+)

Naive

(CCR7+CD45RA+)

(CD4+CD8+)
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Human blood is composed of red blood cells, white blood cells, platelets, and 

other substances suspended in plasma.
9
  White blood cells are immune cells and help the 

body fight infection and disease.  A lymphocyte is a type of white blood cell.  There are 

two types of lymphocytes: B cells and T cells.  T lymphocytes (T cells) help control 

immune responses and fight foreign or diseased cells.  Cytotoxic T cells, identified by the 

CD3+CD4-CD8+ marker combination, kill foreign or infected cells.  T helper cells, 

identified by the CD3+CD4+CD8- marker combination, recognize foreign cells and 

secrete substances that activate killer T cells.
8
  Memory T cells can recognize foreign or 

infected cells that were encountered previously, during infection or vaccination.
15

  They 

exist among both cytotoxic and helper T cells.  Central memory T cells may represent 

memory stem cells.  Both effector memory subtypes, effector memory and effector 

memory RA, express genes for molecules essential to the functioning of the T cells.  

Naïve T cells are those that have not encountered a foreign cell.
2
  They are able to 

respond to novel foreign cells, and, therefore, fight new viruses or diseases. 

 

Compositional Data 

The nature of this dataset requires statistical methodology tailored to 

compositional data.  In compositional data, the variables take on values that are 

proportions of some whole.  Therefore, the sum of the variables is constrained to be a 

constant.  In this case, that constant is one hundred percent.  This characteristic of the 

data causes statistical methods designed for unconstrained data to be inappropriate.  In 

this report logratio analysis, a statistical methodology for compositional data, is used.  
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This method involves a logarithm of ratios transformation, as logratios are 

mathematically more tractable than ratios.
1
 

 

Application 

 

Methods 

 Analyses were conducted for seven different subsets of the data: (1) all eight 

memory categories (the four types of T helper cells and the four types of cytotoxic T 

cells), (2) the four categories of T helper cells, (3) the four categories of cytotoxic T cells, 

(4) the four types of T lymphocytes, (5) the two central memory T cells, (6) the two naïve 

T cells, and (7) the two effector memory T cells (refer back to Fig.1).   

Subset 1: All memory categories 

 To make comparisons among all eight memory categories, new component values 

were calculated.  That is, for each cell type, a new percentage was calculated out of the 

population consisting of all T helper cells and all cytotoxic T cells.  This was done for 

each time point (0, 3, 6, 9, 12, 18, and 24 months).  Next, compositional means were 

calculated for each time point using logratio analysis.  As the data is compositional, 

arithmetic means were not appropriate for summarizing the blood composition variables. 

 The method for calculating the means is as follows.  The data was first 

transformed into logratios:  the ratio of each variable was taken with respect to one 

arbitrary reference variable, and the logarithms of these ratios were calculated.  The 

arithmetic means for each time point were then calculated.  Finally, the means were 

transformed back to their original scale by exponentiation, division by the sum of the 
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exponentials, and multiplication by one hundred.  The value of the exponential of the 

reference category is defined to be one.  Details of this calculation can be found in 

Aitchison’s Concise Guide to Compostional Data Analysis.   

 The data could now be displayed graphically.  SAS® version 9.2 was used to 

generate all graphics.
11

  First, radar plots were created using the GRADAR procedure.  

Three types of radar plots were created in order to show different aspects of the data.  The 

first plots were grouped by month, and plots for each patient were tiled horizontally.  

This type of chart allows for comparisons between patients at each time point.  Plots were 

tiled rather than overlaid, as the number of patients caused overlaid lines to be 

indistinguishable.  The second type of radar diagram visualizes patient progression over 

time.  One plot was created for each patient, and plots for each month were overlaid.  

Finally, mean plots for each month were overlaid to create a single radar plot which 

summarizes the data. 

 Next, two types of windrose plots were generated by the GRADAR procedure 

with the windrose option.  SAS® does not allow windrose charts to be tiled or overlaid.  

Therefore, a single display was created for each patient at each timepoint.  These could 

then be grouped by either patient or month to view patient progression or comparisons 

between patients, respectively.  Mean windrose plots were also created for each time 

point. 

 The last plots created for this subset of the data were star charts.  The star 

statement of the GCHART procedure generated these displays.  Like windrose charts, 

star charts cannot be tiled or overlaid.  Plots were created for each patient at each time 

point, and a mean plot was created for each month. 
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Subset 2: T helper cell categories 

 In the original data, the values for each of the T helper cell categories - central 

memory, effector memory, naïve, and the unnamed category - were expressed as 

percentages of all T helper cells; therefore, these values did not need to be transformed.  

Logratio analysis (as previously explained) was used with these original values to 

calculate the compositional means. 

 Radar and star charts were used to visualize this data subset.  Windrose plots 

could not be used here, as they require a minimum of eight components.  Three types of 

radar charts and two types of star charts were made as they were for the first subset of the 

data:  radar charts grouped by month with the patient plots horizontally tiled, radar charts 

for each patient with time point measurements overlaid, a radar chart with the mean plots 

for each month overlaid, star charts for each patient for each time point, and mean star 

charts for each time point. 

Subset 3: Cytotoxic T cell categories 

 Graphics displaying the composition of cytotoxic T cells (central memory T cells, 

effector memory T cells, effector memory RA T cells, and naïve T cells) were created 

just as they were for T helper cells (subset 2). 

Subset 4: T lymphocyte categories 

 Like the data for subsets 2 and 3, the original data for the four lymphocyte 

categories (T helper cells, cytotoxic T cells, double negative CD4-CD8-, and double 

positive CD4+CD8+) were expressed as percentages of all T lymphocytes.  Therefore, 

means were calculated and graphics were created for this dataset as they were for subsets 

2 and 3. 



12 
 

Subsets 5, 6, 7: Central memory T cells, Naïve T cells, Effector memory T cells 

 To create the graphical displays for these subsets, the transformed data values 

from subset 1 (all memory categories) were used.  In this subset, the magnitudes of each 

type of T helper cell were comparable to their cytotoxic T cell counterparts.  Likewise, 

the means calculated for subset 1 were comparable. 

 For each subset, only two categories were compared.  Neither the radar chart, nor 

the windrose chart, nor the star chart is capable of effectively plotting two categories.  

The windrose chart requires at least eight categories.  Both the radar chart and the star 

chart attempt to display the two categories as single spokes in opposite directions, and all 

that is apparent is an axis line.   

As all previous charts are inadequate, simple pie charts were created using the pie 

statement of the GCHART procedure.  Plots were created for each patient at each time 

point, and mean plots were created for each time point.  These plots allow the viewer to 

see whether each memory category is more heavily represented in the T helper cells or 

cytotoxic T cells. 

 

Results 

 Eighteen of the sixty renal transplant patients were used in this analysis.  These 

patients were chosen for their relatively complete follow-up information.  Three of the 

patients had no missing data.  Four patients had observations for five of the six time 

points.  Ten patients had data for four time points, and one patient had observations for 

three time points.  All patients provided blood samples at baseline.  Fifteen returned for 

follow-up at 3 months, thirteen at 6 months, fifteen at 9 months, sixteen at 12 months, 
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three at 18 months, and only one at 24 months.  Though the data is compositional and 

theoretically should sum to one hundred, measurement error caused some deviation from 

this total.  Therefore, there is some error in the original data and all subsets that were 

created. 

 The effector memory T helper cell component was used as the reference variable 

when calculating the means for all data subsets except for subset 3, the categories of 

cytotoxic T cells.  For this subset, the effector memory RA cytotoxic T cell was used, as 

the effector memory T helper cell was not a member of this subset. 

Subset 1: All memory categories 

 I first created patient radar plots for the dataset with all eight memory cell 

categories as variables.  The first graphic arranges patient plots side-by-side for 

comparison, and groups the plots by time point.  For example, Figure 2 displays all 

patients’ blood composition at baseline.  All patients could not be displayed in a single 

row, for such plots were too small to read.  I judged six plots per row to be the most 

effective.  A legend is used to prevent the clutter of axis labels, and each axis is identified 

by its position on a clock.  Note that on radar plots the vertex is not necessarily zero.  By 

default, the first tick mark is the lowest observed value, the last is the highest, and the 

middle tick mark is halfway between these two values. 
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Figure 2: Tiled patient radar charts for baseline subset 1 data. 

Note: CD4+ denotes T helper cells and CD8+ denotes cytotoxic T cells. 

 

 

 

 The next type of radar plot is useful for viewing changes over time.  In this type 

of plot, one chart is created for each patient.  Observations for each time point are 

overlaid on the same axes.  This allows easy comparison between time points and 

conveys how the patient’s blood cell counts changed at intervals following 

transplantation.  Figure 3 displays the radar plot for patient 13 as an example.  Note that 

only a few examples of the graphics produced are included in this report, as the graphical 

tool is of interest here, not the data itself. 
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Figure 3: Radar chart for patient 13.   

Measurements from each available follow-up blood sample are overlaid. 

 

 

 

 Next, one type of windrose chart was produced that displays the same information 

as the preceding two types of radar charts.  A single windrose chart was generated for 

each patient for each time point.  Figure 4 gives an example of such a plot.  Groups of 

these charts could be viewed together to convey the desired information.  All patients at a 

single time point could be viewed for comparison (similar to the tiled radar charts), or all 

time points for a single patient could be viewed to observe patient progression (similar to 

the overlaid radar charts). 

 Note that on windrose charts the vertex represents zero, and concentric circles 

mark proportionally spaced values on the axes.  Also, as windrose charts are typically 

used for displaying wind direction, SAS® labels axes with compass directions.  As such, 

a legend must be provided to relate each axis with a data category. 
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Figure 4: Windrose chart for patient 13 at baseline. 

 

 

 

 The final patient plot is the star chart.  Like windrose charts, star charts cannot be 

tiled or overlaid in SAS®.  Therefore, a single plot for each patient at each time point 

must be created.  Figure 5 shows the star chart that displays the same information as the 

windrose chart of Figure 4.  Note, however, that the categories are not displayed in the 

same directions as in the windrose chart.  The star chart conveniently provides both the 

category labels and values next to each slice on the graphic.   
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Figure 5:  Star chart for patient 13 at baseline. 

 

 

 

 Finally, graphics were produced which summarize this subset of the data.  One 

type of each chart – radar, windrose, and star – was created to display the mean 

component values.  The compositional means for subset 1 are reported in Table 1.  

Generally, the largest percentages of cells are central memory T helper cells or naïve T 

helper cells.  For all time points, central memory cytotoxic T cells have the lowest 

percentage. 
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Table 1: Compositional means for subset 1 data  

 

Cytotoxic T cells T Helper Cells 

Month 

Central 

Memory Naïve 

Effector 

Memory 

Effector 

Memory 

RA 

Central 

Memory Naïve 

Effector 

Memory Other 

         0 0.391 3.048 4.844 1.885 31.924 33.930 21.082 2.895 

3 0.494 4.928 7.433 2.750 29.356 24.124 27.746 3.171 

6 0.434 3.238 5.446 3.267 35.403 25.011 24.725 2.476 

9 0.369 3.872 7.126 3.559 31.121 25.674 25.239 3.041 

12 0.342 3.402 6.983 4.467 29.438 22.138 29.828 3.402 

18 0.325 2.502 3.863 2.086 39.891 29.401 20.610 1.322 

24 0.330 1.697 1.001 3.128 38.476 41.385 11.074 2.909 

 

 

 First, a single radar chart depicts all values from Table 1 (Fig. 6).  For windrose 

and star charts, separate plots must be created for each time point (Fig. 7 and Fig. 8, 

respectively).  To convey changes in the mean composition over time, all seven time 

point plots must be provided. 
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Figure 6: Radar chart of compositional means with each time point overlaid. 

Note: Month 24 data was available for only one patient. 
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Figure 7:  Windrose chart of component means at baseline. 
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Figure 8:  Star chart of component means at baseline. 

 

 

 

Subsets 2, 3, and 4: T helper cell, cytotoxic T cell, and T lymphocyte categories 

 Similar plots were made for subsets 2, 3, and 4.  Each of these subsets consisted 

of four variables; therefore, the charts were all constructed the same way but had 

different data values.  As the data is not of interest here, I present example charts for the 

T helper cell dataset only.   

 The first graphic, similar to Figure 2, enables comparisons between patients at a 

given time point (Fig. 9).  Separate plots for each patient are placed side-by-side, and the 

plots are grouped by month.  The second type of radar chart for these datasets is similar 

to that of Figure 3 (Fig. 10).  One plot was generated for each patient.  The flow 

cytometry measurements for each time point are overlaid on the same axes.  Such a plot 

reveals patient progression over the course of the study.  The final type of individual 

patient graphic for these data subsets is the star chart (Fig. 11).  A star chart was created 
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for each patient at each time point.  To reveal the data patterns shown in the previous two 

radar plots, the star charts may be grouped by either time point or patient.  Once again, 

windrose plots are not generated for these smaller datasets, as SAS® requires at least 

eight variables for this type of graphic. 
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Figure 9:  Tiled patient radar charts for baseline data showing composition of T helper cells. 

 

 

 

 
Figure 10: Radar chart of T helper cell composition for patient 13 with plots for each time point 

overlaid. 
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Figure 11: Star chart for patient 13 at baseline showing composition of T helper cells. 

 

 

 

 Next, plots of component means were created for these three subsets: T helper cell 

categories, cytotoxic T cell categories, and T lymphocyte categories.  One radar plot was 

generated to summarize each data subset (Fig. 12).  These charts present all 

compositional means by overlaying the plots for each time point.  This image depicts the 

progress of the “average” patient over the course of follow-up.  Finally, star charts of the 

compositional means were produced for each time point.  As before, star charts from each 

time point must be viewed together to visualize change over time.  A single plot, 

however, is effective in communicating a profile of an “average” patient at a given time. 
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Figure 12:  Radar chart of mean T helper cell components with data from each time point 

overlaid. 

 

 

 

 
Figure 13: Star chart of mean T helper cell components at baseline. 
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Subsets 5, 6, and 7: Central memory T cells, Naïve T cells, and Effector memory T cells 

 Data subsets 5, 6, and 7 are very similar.  Each dataset contains patient id, time 

point, and two T cell categories.  The plots created for these datasets visualize the relative 

frequencies of helper T cells and cytotoxic T cells for each type of memory cell.  Only 

central memory T cells, naïve T cells, and effector memory T cells exist in both cell 

types, so these are the variables presented.  The examples that follow are for central 

memory T cells but are representative of the types of plots created for all three subsets. 

 First, pie charts are created for each patient at each available time point (Fig. 14).  

Remember that the two components do not sum to one, as the values are from the dataset 

containing all eight memory categories.  The relative sizes of the pie slices, however, 

reveal the relative proportions of memory cells of each cell type, T helper and cytotoxic 

T.  Depending on the objective, these may be grouped by month or patient.  Figure 15 

gives an example of a graphical display of means when there are only two categories. 
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Figure 14: Pie chart of central memory T cells for patient 13 at baseline. 

Note: CD4+ denotes T helper cells and CD8+ denotes cytotoxic T cells. 

 

 

 

 
Figure 15:  Pie chart of mean central memory T cells at baseline. 
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Discussion 

 

 The application of radar, windrose, star, and pie charts to the PIP dataset has 

exemplified the utility of these graphical tools for displaying flow cytometry data.  Such 

charts enable faster comprehension than do tables of numerical values.  Often statisticians 

and scientists are inhibited by relying solely on the common tools of their respective 

fields.  Here, data graphics common to fields as diverse as market research and 

meteorology facilitate the display of immunology data.  Though the focus here is on 

compositional longitudinal clinical data, such plots may be useful for many types of 

categorical data. 

 I believe that for the PIP dataset, the radar chart best coincides with Tufte’s idea 

of graphical excellence.  It is the most versatile and allows for conveying a large amount 

of information in a small space.  The ability to tile and overlay radar charts permits quick 

comparisons between patients or time points.  The overlaid plots use space most 

efficiently, but observations are indistinguishable when too many plots are displayed on 

the same axes.  Cleveland warns against such indistinguishable graphics.  When there are 

many plots, tiled charts make the most efficient use of space.  Additionally, the radar 

chart of the mean data summarizes of the entire dataset in a single graphic. 

 Radar charts produced in SAS®, however, have one major downfall: the scale of 

the axes.  As previously mentioned, data values must be interpolated from only three 

identified values, the minimum, the maximum, and the value halfway between these two 

values.  Identifying precise values for a category or observation of interest is very 

difficult.  As such, the radar charts lack Tufte’s ideals of clarity and precision.  The area 
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between the vertex and the first tick mark is essentially meaningless and wasted space.  

Though the distance between each tick mark and the next is proportional, the wasted 

space between the vertex and the first tick mark crams the data values together.  The 

appearance of differences between groups is thus diminished. 

 A nice feature of windrose charts is the clear distinction between groups.  The 

white spaces between the categories cause data values to stand out.  On radar charts and 

star charts where the values of each category are connected, the placement of categories 

around the circle may distort the data.  Altering the placement of the groups will alter the 

shape of the enclosed figure.  Different figures may cause different perceptions of the 

data.  Windrose charts are immune to this problem.   

Additionally, windrose charts do not have the scale distortion characteristic of 

radar charts.  The vertex is zero and the axes are scaled according to the data maximum.  

Since there is more space to present the range of the data, there is better distinction 

between the values.  Though the axes of windrose charts must be labeled by compass 

directions, this is no more difficult to read than the clock legend of the radar chart.  

(There are other options for labeling the axes of radar charts, for example degrees and 

integers; however, I believe the hours on a clock to be the most easily understood.) 

 A disadvantage of windrose charts is their inability to display fewer than eight 

data categories.  SAS® requires between eight and sixteen variables for this type of 

graphical display.  Also, perhaps more importantly, windrose charts cannot be tiled or 

overlaid.  Therefore, a separate chart must be created for each data point, and multiple 

images must be viewed to visualize patterns in the data.  The same is true of star charts. 
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 Star charts, however, also have some redeeming qualities.  By default, SAS® 

includes both the data values and the category labels adjacent to each spoke on the chart.  

This format allows the viewer to take in the information more quickly than if a legend is 

used.  Also, on star charts, each category is displayed with a unique color-pattern 

combination.  Depending on the data, the choice of colors and patterns may be 

meaningful and facilitate better or faster comprehension of the dataset. 

 I would like to reemphasize that the purpose of this report is to demonstrate the 

utility of the visualization tools and not to attribute scientific meaning to the particular 

dataset.  In fact, the dataset contains so few patients that any analyses are likely to be 

invalid.  The original data was used to generate seven different subsets so that plots with 

different numbers of variables could be presented.  The primary examples of each type of 

chart involved the dataset containing all eight memory categories.  These examples were 

chosen in order to construct high dimensional figures and exemplify the utility of the 

plots for high dimensional flow cytometry data.  These eight variable graphics, however, 

do not have much clinical meaning.  Additionally, the relatively small amount of 

cytotoxic T cells causes these categories to be greatly overshadowed by the T helper cell 

categories.  The four variable plots for T helper cells and cytotoxic T cells likely provide 

more relevant clinical information.  The pie charts are presented as an option when only 

two categories are of interest; however, the examples provided in this report are clinically 

meaningless. 

 It may be argued that the preceding displays do not make the most efficient use of 

space or ink.  However, these plots were chosen as they are relatively easy to produce.  

SAS® is commonly used by statisticians.  The typical statistician is likely to have easy 
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access to this software and should have little trouble coding the built-in GRADAR and 

GCHART procedures.  As much as possible, SAS® defaults were used in the generation 

of the plots.  I have tried to balance practicality with good data visualization principles. 

 This application of radar charts, windrose charts, star charts, and pie charts to data 

from the Protective Immunity Project has raised a few questions for further investigation.  

The capabilities of flow cytometry are increasing.  Will the graphics presented here be 

effective in displaying many more variables?  SAS® will not create windrose charts with 

more than sixteen categories.  Perhaps a different software is more flexible or can 

produce graphics that better adhere to Tufte’s principles of ink minimization and efficient 

use of space.  Another aspect of data visualization that I did not thoroughly explore is the 

use of color.  The graphics could be enhanced by color and pattern combinations that 

optimize visual perception and understanding. 

 Overall, I hope to have shown that there are a number of graphical display options 

available for high dimensional data.  As new technologies capable of producing large 

amounts of data emerge, we must be creative and innovative in our presentation and 

explanation of such datasets.  We must not neglect the capabilities of technologies such 

as flow cytometry simply because our typical descriptive and analytical tools are 

inadequate.  Often the necessary methods already exist; we must merely look beyond the 

confines of our scientific discipline.   
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