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Abstract

Enabling Relational Databases for Effective CSP Solving
By Sebastien Siva

Constraint satisfaction problems (CSP) are frequently solved over data re-
siding in relational database systems. In such scenarios, the database is typ-
ically just used as a data storage back end. However, there exist important
advantages, such as the wide availability of database practices and tools, to
having database systems that are capable of natively modeling and solving
CSPs. This research introduces general concepts and techniques to extend
a database system with constraint processing capabilities. The work focuses
on relational constraint satisfaction problems (RCSP) and their specification
in SQL, compiling RCSP into boolean satisfiability problems, supporting
multiple solving algorithms, and automated problem decomposition.



Enabling Relational Databases for Effective CSP Solving

by

Sebastien Siva
M.S., Emory University, 2006

Advisor : James Lu

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2011



Acknowledgements

I would like to thank all the people in the Math and Computer Science
Department at Emory. Their stimulating conversation and excellent tutelage
have only strengthened my desire for academic life and career. I give special
thanks to Dr. James Lu, who patiently guided me through my thesis. Also,
I thank Dr. Mandelberg, Dr. Parekh, and Dr. Xiong, whose friendship and
mentoring will be cherished for many years to come.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Constraint Satisfaction Problem . . . . . . . . . . . . . . . . . . . . . 2

1.3 Relational Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Relational Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Relational CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 SQL CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Example Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 9

2.1 CONSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 D-Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Deductive Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Open Research Quesions . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Proposed Solution 14

i



3.1 Leveraging SQL’s Data Definition Language . . . . . . . . . . . . . . 15

3.2 Translating RCSP to Boolean Satisfiability . . . . . . . . . . . . . . . 17

3.2.1 Variable Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Extended Conjunctive Normal Form . . . . . . . . . . . . . . 20

3.2.3 SQL Constraint Patterns . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 Translation Summary . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Problem Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Solver Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Implementation Details 40

4.1 The SCDE Command Language . . . . . . . . . . . . . . . . . . . . . 41

4.2 The RCSP Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Problem Modeler . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Variable Map Processor . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Constraint Processor . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.4 Problem Decomposer . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 The eCNF Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Unifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Simplifer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



4.3.4 Back-End Solvers . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Theoretical Analysis 57

5.1 On the Expressiveness of SCL . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 3-SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.2 Count Constraints . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Variable Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Boolean Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 Check Exists . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.2 Check Count . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.3 Check Not Exist . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.4 Check Not Exist Count . . . . . . . . . . . . . . . . . . . . . . 64

6 Experiments and Results 65

6.1 NQueens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 SCL Specification . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.2 OPL and XCSP Specification . . . . . . . . . . . . . . . . . . 71

6.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Round Robin Tournament . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 SCL Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.2 CB-Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 77



6.2.3 OPL and XCSP Encodings . . . . . . . . . . . . . . . . . . . . 79

6.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Course Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 SCL Specification . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Oxford College Freshman Partitioning . . . . . . . . . . . . . . . . . 93

6.4.1 SCL Specification . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.2 OPL Specification . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Conclusion 98

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.1 Optimization Problems . . . . . . . . . . . . . . . . . . . . . . 99

7.1.2 Interactive CSP Solving . . . . . . . . . . . . . . . . . . . . . 99

7.1.3 Other Decomposition Approaches . . . . . . . . . . . . . . . . 100

7.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



List of Figures

3.1 Course Scheduling ER Diagram . . . . . . . . . . . . . . . . . . . . . 15

3.2 VBmap Swap Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Algorithm for CE constraints . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Algorithm for CNE constraints . . . . . . . . . . . . . . . . . . . . . 26

3.5 Algorithm for CC constraints . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Algorithm for CNEC constraints . . . . . . . . . . . . . . . . . . . . . 31

3.7 Algorithm for eCNF simplification . . . . . . . . . . . . . . . . . . . . 38

4.1 SCDE Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 The RCSP Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Algorithm for filter constraints . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Algorithm for unique key enforcement . . . . . . . . . . . . . . . . . . 47

4.5 Algorithm for key tuple equality amongst multiple relations . . . . . . 48

4.6 Algorithm for CB-Decomposition . . . . . . . . . . . . . . . . . . . . 51

4.7 The eCNF Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



4.8 Algorithm for translating eCNF to BC . . . . . . . . . . . . . . . . . 54

4.9 Algorithm for translating eCNF to PB . . . . . . . . . . . . . . . . . 55

5.1 SQL for 3-SAT base tables. . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 SQL specification for 3-SAT problem. . . . . . . . . . . . . . . . . . . 59

5.3 SQL for base table describing (¬v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ ¬v4). . 61

5.4 The CNEC SQL constraint for 3-SAT. . . . . . . . . . . . . . . . . . 61

6.1 The 5-Queens Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Encoding 1: SQL for N-Queens base tables. . . . . . . . . . . . . . . 69

6.3 Encoding 1: SCL for N-Queens problem . . . . . . . . . . . . . . . . 69

6.4 OPL specification for N-Queens problem. . . . . . . . . . . . . . . . . 71

6.5 XCSP specification for N-Queens problem. . . . . . . . . . . . . . . . 72

6.6 SQL RoundRobin base tables. . . . . . . . . . . . . . . . . . . . . . . 77

6.7 SCL for RoundRobin problem . . . . . . . . . . . . . . . . . . . . . . 78

6.8 OPL for RoundRobin problem . . . . . . . . . . . . . . . . . . . . . . 81

6.9 Experiment 2 Translation/Solve Times . . . . . . . . . . . . . . . . . 86

6.10 Experiment 2 Run Times . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.11 SCL for Course Scheduling Problem . . . . . . . . . . . . . . . . . . . 89

6.12 SCL for Constraint 11 - Experiment B . . . . . . . . . . . . . . . . . 90

6.13 Encoding Metrics for Course Scheduling . . . . . . . . . . . . . . . . 90



6.14 Experiment A Run Times (sec) . . . . . . . . . . . . . . . . . . . . . 92

6.15 Experiment B Run Times (sec) . . . . . . . . . . . . . . . . . . . . . 92

6.16 SCL for Oxford Freshman Partitioning problem . . . . . . . . . . . . 95

6.18 Run Times for Oxford Freshman Partitioning problem . . . . . . . . 96

6.17 OPL for Oxford Freshman Partitioning problem . . . . . . . . . . . . 97



List of Tables

4.1 SCDE Command Language . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Solve And Translation Times in milliseconds . . . . . . . . . . . . . . 67

6.2 Translation and Total Solve Times in milliseconds . . . . . . . . . . . 73

6.3 SCDE’s SAT Solver Times in milliseconds . . . . . . . . . . . . . . . 74

6.4 RoundRobin solution for n = 8 . . . . . . . . . . . . . . . . . . . . . 75

6.5 Domain of G variables . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.6 Illegal combinations for team 2 . . . . . . . . . . . . . . . . . . . . . 83

6.7 Total Solve Times for CSP4J at n = 6 . . . . . . . . . . . . . . . . . 86

viii



1

Chapter 1

Introduction

1.1 Motivation

Techniques for solving constraint satisfaction problems (CSP) have progressed inde-

pendently of work on relational databases (RDB) even though intuitively, the benefits

of integrating these two fundamental areas have always been apparent. As opposed

to just using the RDB as a data storage back end, an integrated approach enables

a user to specify, solve, and present CSP solutions within the database environment.

Important advantages include: 1) The user works within a single programming lan-

guage. There is no need to switch programming environment and to confront the

impedance mismatch associated with embedded database programming. 2) There is

a strong integration between constraint modeling and data definition. A database de-

sign also serves as its constraint specification. 3) There are well-established practices

and tools for relational databases that can further support the process of constraint
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modeling. Examples are Entity-Relationship Diagrams for specifying constraints,

and Query-By-Example for developing SQL queries.

Early attempts to marry CSP and RDB include deductive databases which reuse

important ideas from logic programming. The limited success of deductive databases

in industrial applications reveals an important lesson: it is not easy to supplant a

popular language such as the Structured Query Language (SQL) regardless of the

attributes of the contender.

Given this lesson, a natural question is to ask if SQL, and database techniques

in general, can be leveraged for modeling and solving constraints. Recent work by

Cadoli and Mancini shows that SQL is sufficiently expressive for constraint specifica-

tion, but leaves unanswered the following questions. (1) How can such a specification

be efficiently solved? (2) What extensions to the language best suit the large and

varied SQL user base present in industry today? Thus there remains a large gap in

bringing SQL CSPs to the RDB community. Our research attempts to narrow this

gap by proposing RDB extensions and techniques that enable typical RDB practi-

tioners to solve CSPs over relational data in an intuitive and efficient manner. We

begin by formally defining the related concepts.

1.2 Constraint Satisfaction Problem

Definition 1. A constraint satisfaction problem [26, 2] (CSP) is a pair (V , C) where
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1. V = {V1, . . . , Vn} is a finite set of variables. For each variable Vi ∈ V a finite

domain of values, Dom(X) = {x1, . . . , xj}

2. C = {C1, . . . , Ck} is a finite set of constraints. Each constraint Ci is a a pair

(Pi, ri), where Pi is a list of variables of length mi and ri is a mi-ary relation

over Pi. The tuples of ri indicate the allowed or forbidden combinations of

values for the variables Pi.

Definition 2. A solution to a CSP is a set of assignments to all n variables that

satisfies all k constraints.

1.3 Relational Database

Assume a finite set U of attributes, where an attribute A ∈ U has an associated

finite set of values, ∆(A), called A’s domain.

Definition 3. A relation schema R = {A1, . . . , An} is a subset of attributes in U .

Definition 4. A relation r over a relation schema R is a finite set of R-tuples, where

each R-tuple is a mapping from each element A of R to a value in ∆(A).

Definition 5. A relational database is a pair (D, d) where

1. D is a database schema consisting of a finite set of relation schemas,

2. d is a database consisting of a set of relations, one for each relation schema R

of D.

Sometimes we use the familiar notation R(A1, ..., An) to represent the relation

schema R = {A1, ..., An}. We denote the domain of an R-tuple as ∆(R) = ∆(A1)×

. . .×∆(An). The size, |∆(R)|, of ∆(R) is |∆(A1)| × . . .× |∆(An)|, where |∆(Ai)| is
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the size of ∆(Ai). Given a relation r, α(r) denotes the relation schema of r. If t is

an X-tuple, and Z ⊆ X, then t[Z] indicates the restriction of t to the attributes Z.

Definition 6. Given sets of attributes X, Y ∈ R, X → Y specifies a functional

dependency of Y on X over R. The dependency requires that for any relation r over

R, whenever t1[X] = t2[X] for R-tuples t1 and t2 in r, then t1.Y = t2.Y . Clearly,

if Y contains all attributes of R, then X → Y implies that t1[X] 6= t2[X], for any

t1 6= t2. The set X is known as a key of R.

1.4 Relational Algebra

The Relational Algebra (RA) is the mathematical foundation for relational database

querying. We describe the notation for relational algebra from ref[Kanellakis].

A relational algebra expression E over a database schema D = {R1, ..., Rm} is

defined as follows.

Definition 7. ΠX(r) is the projection of relation r onto relation schema X.

1. X ⊆ α(r) and α(ΠX(r)) = X

2. ΠX(r) = {t[X]|t ∈ R}

Definition 8. r1 ./ r2 is the (natural) join of r1 and r2.

1. α(r1 ./ r2) = α(r1) ∪ α(r2)

2. r1 ./ r2 = {t|t is an α(r1) ∪ α(r2)-tuple,

such that t[α(r1)] ∈ r1 and t[α(r2)] ∈ r2

Definition 9. σA=B(r) is the selection on r by A = B.

1. A,B ∈ α(r) and α(σA=B(r)) = α(r)
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2. σA=B(r) = {t|t ∈ R and t[A] = t[B]}

Definition 10. ρB|A(r) is the renaming in r of A into B.

1. A ∈ α(r), B /∈ α(r) and α(ρB|A(r)) = (α(r)− {A}) ∪ {B}

2. ρB|A(r) = {t| for some t′ ∈ r, t[B] = t′[A] and t[C] = t′[C] when C 6= B}

The schema of E, α(E), can be determined from the schema restrictions of the

operations. Given an expression E and a database d, E(d), or simply E() when d is

understood, is the relation obtained by evaluating E on d.

1.5 Relational CSP

A relational constraint satisfaction problem (RCSP) is a CSP defined over a relational

database where constraints are expressions of the form E = ∅ or E 6= ∅ where E is a

relational algebra expression. A constraint C of type E = ∅ or E 6= ∅ is said to hold

on a database d if E(d) = ∅ or E(d) 6= ∅ respectively.

Definition 11. A RCSP Ξ over a database schema D is a pair (S, C) such that

1. S = {S1, . . . , Sm}, is a finite set of relation schemas1,

2. C is a finite collection of constraints over S ∪D.

Definition 12. A solution to Ξ on a database d of D, is a database s of S such that

each constraint in C holds on the database d ∪ s.

1Note that S are the guess relations of [4]
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We call elements of S constraint relation schema (or simply constraint schema)

and relations over constraint schemas constraint relations.

Note that unlike traditional CSP (of Definition 1), RCSP does not have an ex-

plicit notion of variables; variables can be interpreted as the possible tuples of the

constraint relations in S. For each S ∈ S, an S-tuple corresponds to an element in

∆(S), the domain of S. The constraints in C limit which combinations of S-tuples

may be simultaneously present in the solution database s. Once s is found, we can

interpret a variable as true or false depending on whether or not the corresponding

S-tuple is present in s. As s corresponds to a set of assignments to all variables that

is consistent with all constraints, s is a solution to the CSP.

We give a few more useful notations. Let E be a relational algebra expression.

• φ(E) is the set of constraint schemas that appear in E.

• µ(E) are the the set of attributes that appear in E.

• µ(E|X) is µ(E) ∩X, where X ⊆ U .

• E{M ′
1/M1, ...,M

′
k/Mk} is the expression obtained by replacing M ′

i for Mi, 1 ≤

i ≤ k, wherever Mi occurs in E. Mi,M
′
i are RA-expressions.
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1.6 SQL CSP

In general, the SQL CSP is a CSP expressed in SQL which matches the RCSP def-

inition Ξ = (S, C) over some database schema D, where S is a database schema,

and C is a set of constraints. As SQL is based on Relational Algebra, it includes

a Data Definition Language (DDL) capable of expressing relational schema S and

D. Each schema is composed of attributes with specified domains. Each constraint

in C can be expressed using SQL’s EXIST (i.e. E 6= ∅) or NOT EXIST (i.e. E = ∅)

operators preceding a select query of the form SELECT...FROM...WHERE... which

evaluates to a set of tuples from S that are either allowed or forbidden to be simulta-

neously present in the final solution. Other SQL patterns can also be used to express

collections of constraints succinctly.

1.7 Example Use Case

We give the graph coloring problem as an example RCSP specification. The problem

requires each element of a set of nodes N = {N1, . . . , Nn} to be assigned to a

color in a set of colors K = {K1, . . . , Kk}, with the constraint that no two adjacent

nodes (nodes linked by an edge) be assigned the same color. The RCSP is given as

Ξ = (S, C) over database schema D where:

• D is a set of three relation schemas Colors(cid), Nodes(nid),
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and Edges(n1,n2) describing the colors, nodes, and edges of the problem.

• S contains the single relational schema Coloring(nid, cid).

• and C contains the constraints necessary to enforce that:

– each node is assigned exactly 1 color:

σnid=i(Coloring) 6= ∅ for all i ∈ ∆(nid),

σc1.nid=c2.nid∧c1.cid 6=c2.cid(ρc1(Coloring)× ρc2(Coloring)) = ∅

– nodes connected by an edge do not get mapped to the same color:

σc1.nid=e.n1∧c2.nid=e.n2∧c1.cid=c2.cid(

ρc1(Coloring)× ρc2(Coloring)× ρe(Edges)) = ∅

Intuitively, a constraint Ci ∈ C is represented by a query returning allowed or

forbidden simultaneous combinations of tuples in S. For example such a query might

return the set of tuples {n1 : red, n2 : red} representing that nodes 1 and 2 may not

both be colored red (assuming they share an edge). As a result, the relation s is only

a valid solution if it dose not contain both tuples simultaneously. In practice, RCSP

systems allow expressive constraint queries enabling problems like graph coloring to

be specified in 1-2 SQL statements.
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Chapter 2

Related Work

In this chapter we discuss related work. We begin by describing research specifi-

cally related to SQL CSPs, then we discuss Deductive Databases to highlight previous

work that attempted to merge database and constraint programming outside of the

relational model.

2.1 CONSQL

CONSQL [4] is a research effort recently proposed by Cadoli and Mancini, in which

SQL and its relational algebraic foundation are adopted as the basis for expressing

constraints over relational data. The key concept is the non-deterministic GUESS

operator that declares a set of relations to have an arbitrary extension. A set of

constraints, written in usual SQL syntax over both existing and guess relations,

specifies conditions that extensions to the guess relations must satisfy. The work lays

down the theoretical foundation for leveraging SQL as a CSP specification language.

Below is an example encoding of the graph coloring problem described in Section 1.7.
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CREATE SPECIFICATION Graph_Coloring (

GUESS TABLE COLORING AS

SELECT n, color FROM TOTAL FUNCTION_TO(COLORS) AS color OF NODES

CHECK ( NOT EXISTS (

SELECT * FROM COLORING C1, COLORING C2, EDGES

WHERE C1.n <> C2.n AND C1.color = C2.color

AND C1.n = EDGES.f AND C2.n = EDGES.t ))

RETURN TABLE SOLUTION AS SELECT COLORING.n, COLORS.name

FROM COLORING, COLORS WHERE COLORING.color = COLORS.id

)

The SPECIFICATION keyword signals a CSP, whose GUESS table is the relation

COLORING(node,color), where node and color are values taken from two given

relations, NODES and COLOR, respectively. A valid instance of COLORING must be a

total function from NODES to COLORS. The only constraint of the problem is described

by the CHECK NOT EXISTS statement, which assumes a third relation, EDGE, and

asserts that there must not be two adjacent nodes colored by the color. Finally, the

returned solution is a view over the COLORING and COLORS relations that displays,

for each node, the associated color name.

Cadoli and Mancini also propose a prototype solver which employs various local

(i.e., incomplete) search techniques to generate candidate solutions. Each candidate

is checked independently by the RDB engine for consistency with the constraints.
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2.2 D-Wave

Dwave [5] is a company that researches adiabatic quantum computing in the context

of solving complex search and optimization problems. They have created a SQL

extension for CSPs called SirQL [6] which, according to a brief conversation with

their engineers in August 2009, relies on traditional CSP solvers for constraint solv-

ing. With little information available, we can only surmise that they have a similar

translation system to SCDE, and we cite this reference mainly to support the notion

that industry is interested in SQL CSPs. Below is an example encoding in SirQL of

the graph coloring problem described in Section 1.7.

FIND Coloring (vtx UNIQUE COMPLETE, col)

FROM Vertex, Color

WHERE NOT EXISTS (SELECT *

FROM Coloring cg1, Coloring cg2, Edge e

WHERE cg1.vtx = e.vtx1 AND cg2.vtx = e.vtx2

AND cg1.col = cg2.col)

This encoding is very similar to CONSQL.

2.3 Deductive Databases

Deductive databases [7] are databases that support declarative rule-based queries

which can be used to infer (or deduce) new facts based on existing facts and rules
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stored in the database. The reasoning power of deductive databases is based on logic

programming semantics, and usually combines both forward and backward chain-

ing techniques. Deductive databases have grown out of the desire to overcome the

“impedance mismatch” of using procedural languages with relational database lan-

guages like SQL. Below is an example encoding for (disjunctive) deductive databases

[8] of the graph coloring problem described in Section 1.7.

col(X, r) ∨ col(X, g) ∨ col(X, b)← node(X).

← edge(X, Y ), col(X,C), col(Y,C).

The first rule references a set of facts (node(X)) in the database representing the

nodes of the graph. It uses the ‘←’ (implication) operator to enforce that each node

receive a color (’r’, ’g’, ’b’). The second rule references a set of facts (edge(X,Y))

representing the edges of the graph. It implies that no two nodes sharing an edge

may have the same color.

Aside from the language obstacles mentioned in the introduction, deductive

databases have also been hampered by efficiency issues in their implementations,

which have mostly relied on resolution-based inference systems that do not scale

well. Promising recent work on answer-set programming adopt techniques closer to

SAT solvers.
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2.4 Open Research Quesions

To summarize, the main weaknesses of existing systems are:

1. Usability. Languages that are expressive and succinct, such as Deductive

Databases, have failed to receive widespread acceptance due to intimidating

mathematical prerequisites and lack of cohesion with existing RDB techniques.

2. Scalability. Efforts more closely aligned with RDB have so far not been able to

scale effectively, especially for problems with many variables and large variable

domains.

Our research aims to address parts of these issues by focusing on the following

two questions in the context of bringing constraint solving capabilities to RDBs.

• How can we simplify the task of specifying constraint programs in relational

databases?

• How can the performance of solving SQL-based constraints be improved to

extend the practical reaches of such systems?
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Chapter 3

Proposed Solution

Consider the problem of creating a teaching schedule over the database schema

described by the ER diagram in Figure 3.1. The constraint schema is the shaded

relationship schedule. The diagram is annotated with several constraints. First,

the total participation (represented by the thick line between course and schedule)

along with the cardinality constraint indicates that each course must be taught ex-

actly once. Second, the functional dependency professor, time→course specifies

that no one may teach two courses at the same time. Other cardinality constraints

of note: n represents the number of courses a professor must teach (specified by the

professor.num field), while m represents the number of courses that can be taught

during one time slot (i.e. the number of rooms available).

The example illustrates how existing industry tools and techniques can serve as a

strong starting point for CSP specification. To leverage existing standards optimally,

a SQL CSP tool should strive to deviate minimally from existing constraint language

syntax. As RDB practitioners have experience with implementing ER diagrams in



15

!"#$%&&#"'

(#)"&%'

*+%'&(,%-).%'

!"#$%&&#"/'*+%'!'(#)"&%'

0'

1' +'

1)+'

2-'

13+%'

2-
'

&.
#
4'

2-'

*4.%'

Figure 3.1: Course Scheduling ER Diagram

SQL’s Data Definition Language (DDL), this language is a natural choice for RCSP

specification. The main challenge our research addresses is how to efficiently solve

RCSP specified in SQL’s DDL. To this end, we offer the following contributions:

• A specific subset of SQL’s DDL useful for RCSP specification

• A set of algorithms for translating RCSP into Boolean Satisfiability problems

• An algorithm for automated problem decomposition

• A technique for enabling varied back-end boolean solving algorithms

3.1 Leveraging SQL’s Data Definition Language

One of the complexities of most CSP specification languages is the need to come up

with a set of variables, and corresponding domains to model the problem. Previous
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CSP SQL efforts have dealt with these requirements in different ways. For exam-

ple, in CONSQL and DWave users explicitly consider these notions through keyword

expressions such as TOTAL FUNCTION TO and COMPLETE. Both of these ex-

pressions (seen in Chapter 2) serve to differentiate variable attributes from domain

attributes allowing the solver to automatically enforce that each CSP variable be

assigned exactly one value. In contrast, we bypass explicit keywords for traditional

CSP concepts and adhere to commonly occurring notions of relational database.

This potentially lowers the learning costs for SQL practitioners, and allows them

to focus on constraints in the database sense: as requirements on the relationships

between attributes of entities. To accomplish this we use several features of SQL’s

Data Definition Language.

SQL’s Data Definition Language (DDL) is an imperative language that uses

statements to modify a database schema via adding, changing, or removing ele-

ments of relations and other objects. As SQL’s DDL is not truly separate from

it’s query sublanguage; they can be mixed in data definition statements. More im-

portantly, data integrity constraints can be added to any relation schema via the

“CONSTRAINT CHECK(e)” statement, where e is any boolean SQL expression. Given

a SQL DDL schema, we interpret relation schemas augmented with integrity con-

straints as the schema of constraint relations mentioned in Section 1.5. Unlike tradi-
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tional database implementations, we allow e to be a complex expression, which may

reference any set of relations in the database including other constraint relations.

This enables the complete specification of RCSPs within the existing syntax of SQL.

Assuming that a database system designed to process such RCSPs contains the

database and its schema, the user need only specify the names of the relations to

solve. The system can interpret the schema as an RCSP Ξ = (S, C) over D, where

S is the set of relation schemas specified by the user, C is the set of data integrity

constraints belonging to the relation schemas in S, and D is all other relation schemas

in the database schema. The system can then attempt to solve the problem and, if

feasible, automatically populate a constraint relation for each schema in S with with

the corresponding solution tuples.

3.2 Translating RCSP to Boolean Satisfiability

As RCSP do not necessarily specify variables and domains in the traditional CSP

sense, it is difficult to directly apply many solving algorithms that have been previ-

ously developed. One approach to addressing this issue is to translate a RCSP into a

more traditional CSP encoding. As mentioned in Section 1.5 the variables of a RCSP

can be thought of as the possible tuples of the relations over S. Each S-tuple can

either be present in the solution or not, representable as true or false respectively.
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Thus, boolean satisfiability (SAT) is a natural CSP target encoding for RCSP trans-

lation. Furthermore, as a well studied CSP language, boolean satisfiability allows us

to take advantage of the substantial progress that has been made in the last decade

in the sophistication and performance of SAT solvers.

Assume we are given a RCSP Ξ = (S, C) over database schema D where each

constraint C ∈ C imposes either allowed or forbidden sets of S-tuples via SQL DDL

statements of the form “CHECK EXISTS(e)” or “CHECK NOT EXISTS(e)” respectively

(see Section 1.6). As these constraints are originally written as data integrity con-

straints, e is typically a SQL SELECT query which references one or more relation

schemas S ∈ S and zero or more relation schemas in D. The schema of e, α(e), is

the set of attributes from S ∪D that results from executing e. In order to translate

the constraints into boolean formulae, two steps are necessary.

Step 1. Since e references constraint schemas in S that do not yet have associated

relations, it must be converted to e′ such that the result of executing e′ is a set

of boolean variables which can be mapped to possible S-tuples.

Step 2. The boolean variables must be organized into boolean clauses enforcing the

allowed or forbidden relationships established by the original constraint C.

In order to accomplish the first step, we impose some limitations on the structure

of e and introduce variable maps. The second step is accomplished by recognizing
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the SQL DDL pattern within which e is found, and applying a pattern specific

translation algorithm. The output of these algorithms is a boolean formula adhering

to an encoding form we call Extended Conjunctive Normal Form (eCNF).

The solution to the eCNF formula is an assignment to all variables for which the

formula evaluates to true. The solution to the original RCSP is a database s of S

created by selecting the tuples for which the corresponding variables are assigned to

true in the eCNF solution.

3.2.1 Variable Map

Variable maps (VBmaps) are temporary relations defined outside of D or S that

map all possible tuples of S to unique variable identifiers. For each S ∈ S a VBmap

ν(S) is created and populated with ∆(S). The schema α(ν(S)) is S ∪ {vbid}, where

vbid is a unique integer identifying a potential S-tuple.

As mentioned above in step 1, e must be converted to e′ before its execution can

return useful values. In order to simplify the process, we restrict e to be a query in

which relations schemas in S appear in the FROM clause, but not in any nested queries.

Note that e may be a nested query. The algorithm vb(e), given in Figure 3.2, uses

VBmaps to enable the execution of e′ to return a set of variable ids corresponding

to possible tuples in S. These variable ids are then interpreted as boolean variables

forming clauses in eCNF.
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Algorithm vb(e)

1. Input: e is an expression (query) referencing constraint schemas

φ(e) = {S1, . . . , Sk}.
2. e′ ← e{α(ν(S1))/S1, . . . , α(ν(Sk))/Sk}
3. α(e′) = {α(ν(S1)).vbid, . . . , α(ν(Sk)).vbid}
4. return e′

Figure 3.2: VBmap Swap Algorithm

3.2.2 Extended Conjunctive Normal Form

Conjunctive Normal Form (CNF) is the form for boolean satisfiability formulae ex-

pected by most solvers. For many interesting constraints, the corresponding CNF

boolean encoding is impractically long. For this reason, we propose an Extended

Conjunctive Normal Form (eCNF) which generalize CNF by allowing 1)conjunctions

of literals to occur in place of literals and 2), a cardinality constraint. Each clause in

eCNF has the form F @ k where F = {F1, F2, . . . , Fn} is a set of formulae composed

of conjunctions of literals, k is a non-negative integer 0 ≤ k ≤ n, and @ is an integer

comparison from the set {>,≥, <,≤,=}. Such a clause is true if @k formulae among

F1, ..., Fn are true. For example {(v1 ∧ v2 ∧ v3), (¬v4), (¬v5 ∧ v6)} ≥ 2 is true if at

least two of (v1∧v2∧v3), (¬v4) and (¬v5∧v6) are true. Like CNF, an eCNF sentence

is a conjunction of these clauses, and thus is only satisfied if all clauses are satisfied.

The eCNF notation succinctly captures some important concepts including car-
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dinality constraints, grouping and disjunctive normal form. Lastly, eCNF facilitates

easy translation to common constraint representations such as: CNF for SAT solvers,

pseudo-boolean constraints [10, 13], and MPS for integer programming solvers.

3.2.3 SQL Constraint Patterns

As mentioned in Chapter 1, RCSP constraints limit constraint relations by specifying

combinations of allowed or forbidden S-tuples. This can be accomplished in SQL

with the CHECK EXISTS(e) and CHECK NOT EXISTS(e) constraint patterns mentioned

above. For example, consider the constraint of the graph coloring problem that no

two nodes connected by an edge may have the same color. This constraint can be

specified as a CHECK NOT EXISTS constraint where e is the query

SELECT *

FROM Coloring cg1, Coloring cg2, Edge e

WHERE cg1.node = e.node1 AND cg2.node = e.node2

AND cg1.col = cg2.col

In order to be processed as a SAT problem, this constraint must be translated into a

set of boolean clauses of the form (¬vi ∨¬vj) where the boolean variables vi, vj rep-

resent a pair of possible tuples in the constraint relation Coloring that corresponds

to adjacent nodes assigned to the same color. This is accomplished in two steps as

follows. First, the query e is converted into the query e′ given below.

SELECT cg1.vbid, cg2.vbid
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FROM Vbmap_Coloring cg1, Vbmap_Coloring cg2, Edge e

WHERE cg1.node = e.node1 AND cg2.node = e.node2

AND cg1.col = cg2.col

Second, the query e′ is executed and the resulting tuple set T is used to create a set

of eCNF clauses of the form (¬t[cg1.vbid],¬t[cg2.vbid]) > 0 for each tuple t ∈ T .

Although the two SQL patterns, CHECK EXISTS(e) and CHECK NOT EXISTS(e),

are syntactically sufficient for expressing CSPs, they often lead to impractically long

problem specifications. Other patterns exist which enable much more succinct ex-

pression of complex constraints. These higher level patterns also enable solvers to

detect important structural properties[11] of the problem, which can reduce solve

time. This is a well studied concept and typical CSP languages incorporate a variety

of custom operators and functions[33] to enable these efficiencies. As relational alge-

bra and SQL provide a powerful set of operators that allow complex constraints to

be expressed in a wide variety of ways, we do not need to introduce custom syntax.

Instead, we face the complement of the problem: how to translate an arbitrary SQL

constraint into an ”optimal” CSP constraint. This is an open problem. As a starting

pint, we choose to limit our SQL constraints to a set of four patterns that we have

found to be sufficient for expressing most finite CSPs naturally and, for each pattern,

describe a translation algorithm that produces an eCNF encoding.
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In each of these patterns there exists a main query, e, which is converted into

a query e′ by the substitution algorithm vb(e) described in Section 3.2.1. The four

constraint patterns; CHECK EXISTS, CHECK NOT EXISTS, CHECK COUNT, and

CHECK NOT EXISTS COUNT are abbreviated with the acronyms CE, CNE, CC, and

CNEC respectively.

Note that, given an original SQL constraint C, the validity of the eCNF formula

generated by an algorithm can be demonstrated by verifying that:

1. every satisfying variable assignment represents S-tuples of a database s for

which C holds, and

2. every non-satisfying variable assignment represents S-tuples of a database s for

which C does not hold.

In other words, the solutions to the eCNF formula must map exactly to all possible

databases s which satisfy the original constraint.

Check Exists Pattern

The most basic constraint in a CSP lists combinations of simultaneous values (tu-

ples) that are allowed in the solution. At least one combination must be present

in the solution for the constraint to be satisfied. For example, the graph col-

oring problem might be augmented with a constraint forcing nodes 1 and 2 to
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have the same color. This would be represented by the tuple combination list:

{{(1,red),(2,red)},{(1,greed),(2,green)},{(1,blue),(2,blue)},...}. The corresponding

SQL constraint would be

CHECK EXISTS ( SELECT *

FROM Coloring cg1, Coloring cg2

WHERE cg1.node = 1 AND cg2.node = 2 AND cg1.col = cg2.col)

where e is the SELECT query.

The general pattern of the constraint is CHECK EXISTS(e) where e is the main

query. The algorithm for translating this constraint into eCNF is given in Figure

3.3.

Algorithm checkE(C)

1. Input: C is a CE constraint, e is the main query of C

2. e′ ← vb(e)

3. Return one eCNF clause F > 0

where for each tuple t ∈ e′() there is an Fi ∈ F such that

Fi = (∧S∈φ(e)t[ν(S).vbid])

Figure 3.3: Algorithm for CE constraints

The correctness of the algorithm can be explained as follows. In order for a CE

SQL constraint C to hold, the query e must return at least one tuple when executed

against the solution database s ∪ d. Note that the algorithm creates a conjunction

Fi for each combination of possible S-tuples from S ∈ φ(e) matched by e. As F > 0
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requires at least one Fi to be true, every satisfying variable assignment to the eCNF

formula maps to a unique database s for which C holds. A non-satisfying assignment

implies that corresponding to each Fi, some S-tuple combination is absent in s and

thus C does not hold.

Check Not Exists Pattern

The Check Not Exist constraint is the dual of the CE constraint. In a traditional

CSP it lists combinations of simultaneous values (tuples) that are forbidden in the

solution. The constraint is satisfied only if the solution contains none of the combi-

nations listed. The example given at the top of Section 3.2.3 would generate a tuple

combination list: {{(x,red),(y,red)},{(x,green),(y,green)},{(x,blue),(y,blue)},...} for

every pair of adjacent nodes x and y.

The general pattern of the constraint is CHECK NOT EXISTS(e) where e is the

main query. The algorithm for translating this constraint into eCNF is given in

Figure 3.4.

The correctness of the algorithm can be explained as follows. In order for a CNE

constraint C to hold, the query e must return 0 tuples when executed against the

solution database s ∪ d. Note that an eCNF clause is created for each combination

of S-tuples for S ∈ φ(e) matched by e. As each eCNF clause requires the absence of

at least one S-tuple from each combination, a satisfying variable assignment ensures
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Algorithm checkNE(C)

1. Input: C is a CNE constraint, e is the main query of C

2. e′ ← vb(e)

3. Return a set of eCNF clauses such that

for each t ∈ e′() there is an eCNF clause F > 0

with one Fi ∈ F for each S ∈ φ(e) such that

Fi = (¬t[ν(S).vbid])

Figure 3.4: Algorithm for CNE constraints

such combinations will not be returned by e. Furthermore, there exists a satisfying

variable assignment for every S-tuple combination that does not match e, and by

extension, every possible database s for which C holds.

Check Count Constraint

The CC constraint is a generalization of the CE and CNE constraints. Combinations

of simultaneous values (tuples) are given a cardinality comparison constraint, @k,

where k is a non-negative integer, and @ is an integer comparison from the set

{>,≥, <,≤,=}. For example, the graph coloring problem might be augmented with

a constraint forcing at least three nodes to be the color ’red’. The corresponding

SQL constraint would be

CHECK ( 3 <= ( SELECT COUNT(*)

FROM Coloring cg1 WHERE cg1.col=’red’))
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where k = 3, @ is ‘=’, and e is the SELECT query.

The general pattern of the constraint is CHECK (k @ e) where e is the main query

and returns a count of the result set. The algorithm for translating this constraint

into eCNF is given in Figure 3.5.

Algorithm checkC(C)

1. Input: C is a CC constraint, e is the main query of C

2. e′ ← vb(e)

3. @′ ← translate @ from left hand side to right hand side.

4. Return one eCNF clause F@′k

where for each each tuple t ∈ e′() there is an Fi ∈ F such that

Fi = (∧S∈φ(e)t[ν(S).vbid])

Figure 3.5: Algorithm for CC constraints

We demonstrate the validity of the CC algorithm for the two boundary cases

F > 0 and F = 0 by showing how the resulting eCNF is equivalent to the CE and

CNE algorithms respectively.

Proposition 1. A CE constraint is logically equivalent to a CC constraint

with @ =‘ >’ and k = 0.

Proof. Let e′() = {Q1, Q2, . . . , Qn} denote the tuple set returned by executing a

VBMap query e′, where Qi = {vi1, vi2, . . . , vim}, m is the size of φ(e), and vij is a

boolean variable. Given e′(), the CE, and CC algorithms generate identical eCNF
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clauses given below.

{(v11 ∧ v12,∧ . . . ∧ v1m), (v21 ∧ v22,∧ . . . ∧ v2m), . . . (vn1 ∧ vn2,∧ . . . ∧ vnm)} > 0

Therefore, the CE constraint is logically equivalent to a CC constraint

with @ =‘ >’ and k = 0.

Proposition 2. A CNE constraint is logically equivalent to a CC constraint

with @ =‘ =’ and k = 0.

Proof. Let e′() = {Q1, Q2, . . . , Qn} denote the tuple set returned by executing a

VBMap query e′, where Qi = {vi1, vi2, . . . , vim}, m is the size of φ(e), and vij is a

boolean variable. Given e′(), the CNE algorithm generates the eCNF clauses given

below.

{(¬v11), (¬v12), . . . (¬v1m)} > 0

{(¬v21), (¬v22), . . . (¬v2m)} > 0

. . .

{(¬vn1), (¬vn2), . . . (¬vnm)} > 0

The CC algorithm generates the single eCNF clause given below.

{(v11 ∧ v12,∧ . . . ∧ v1m), (v21 ∧ v22,∧ . . . ∧ v2m), . . . (vn1 ∧ vn2,∧ . . . ∧ vnm)} = 0
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This is equivalent to the following set of eCNF clauses because in order for F = 0,

each Fi ∈ F must be false.

{(v11 ∧ v12 ∧ . . . ∧ v1m)} = 0

{(v21 ∧ v22 ∧ . . . ∧ v2m)} = 0

. . .

{(vn1 ∧ vn2 ∧ . . . ∧ vnm)} = 0

Using De Morgan’s law, we see that each conjunction of positive literals is logically

equivalent to a disjunction of negative literals.

((v11 ∧ v12 ∧ . . . ∧ v1m) = false) ≡ ((¬v11 ∨ ¬v12 ∨ . . . ∨ ¬v1m) = true)

When represented in eCNF these disjunctions are identical to the clauses generated

by the CNE algorithm.

((¬v11 ∨ ¬v12 ∨ . . . ∨ ¬v1m) = true) ≡ {(¬v11), (¬v12), . . . (¬v1m)} > 0

Therefore, the CNE constraint is logically equivalent to a CC constraint

with @ =‘ =’ and k = 0.



30

Check Not Exist Count

The CNEC constraint uses double negation to succinctly express a parameterized

set of CC constraints. This mimics a “for all” constraint without introducing new

keywords or syntax to the language. The general pattern of the constraint is

CHECK NOT EXIST g(k @ (e)) where g is a query which contains the expression

(k@e) as a correlated subquery, k is a SQL integer expression, @ is an integer com-

parison from the set {>,≥, <,≤, 6=}, and e is the main query which returns a count

of the result set. As k and e are both correlated to g, references to attributes from

α(g) are replaced by values from the tuples returned by executing g.

As an example, consider the graph coloring problem augmented with a constraint

forcing each color to be present a specific number of times via the relation Color-

Num(col, num). The corresponding SQL constraint would be

CHECK NOT EXIST(

SELECT cn.col, cn.num FROM ColorNum WHERE (cn.num <>

(SELECT COUNT(*) FROM Coloring cg1 WHERE cg1.col=cn.col)))

where g is the outer SELECT query, k is cn.num, @ = ‘ 6=’, and e is the inner SELECT

query.

This constraint decomposes into one CC constraint for each color similar to the

constraint described for the CC example above. The following algorithm converts a

CNEC constraint into a set of CC constraints.
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Algorithm checkNEC(C)

1. Input: C is a CNEC constraint, with top-level query g, main query e,

and integer expression k.

2. g′ ← remove the expression (k @ e) from g.

3. f ← a set of eCNF clauses, initially empty.

4. for each tuple t ∈ g′()
- kg ← k{t[A1]/A1, . . . , t[An]/An} where Ai ∈ µ(k|α(g))

- k′g ← evaluate kg

- eg ← e{t[A1]/A1, . . . , t[An]/An} where Ai ∈ µ(e|α(g))

- C ′ ← Create constraint “CHECK (k′g @ eg)”

- f = f ∪ {checkC(C ′)}
5. Return f

Figure 3.6: Algorithm for CNEC constraints

3.2.4 Translation Summary

In summary, we have described an RCSP specification language consisting of a sub-

set of SQL’s DDL conforming to a set of constraint patterns. We have provided

algorithms for converting this input into a boolean satisfiability formula allowing us

to take advantage of the efficiency of modern SAT solvers. In the rest of this chapter

we discuss improvements that can be made to reduce overall solve time.



32

3.3 Problem Decomposition

A general notion in all problem solving is that of divide and conquer. It is often the

case that large problems can be broken up into smaller and simpler problems whose

solutions may be combined to provide a solution to the original problem. Although

this technique is well studied in CSP [26], RCSP decomposition is, to our knowledge,

an unexplored problem. One approach to reducing the size of an RCSP is to reduce

the number of attributes in a constraint schema S, thereby reducing the number of

possible S-tuples, and corresponding variables.

Definition 13. A decomposition of an RCSP Ξ = (S, C) is an RCSP Ξ′ = (S ′, C ′)
such that for each S ∈ S, there is a designated set ψ(S) ⊆ S ′ such that S = ∪ψ(S).

Definition 14. A decomposition Ξ′ of an RCSP Ξ is valid if for each solution s′ of

Ξ′, there is a solution s of Ξ such that r ∈ s iff ./ r′ = r where r′ ⊆ s′ is the set of

relations over the schemas of ψ(α(r)) (the designated schemas of α(r)).

The set of schemas ψ(S) is a set of smaller relation schemas for replacing S. How

the set is computed along with how constraints need to be modified to ensure validity

determines the decomposition algorithm.

Proposition 3. Suppose Ξ = (S, C) is an RCSP and A an attribute that appears

in S but not referenced by any constraint C ∈ C. Then the RCSP Ξ′ = (S ′, C ′) is a

valid decomposition, where S ′ and C ′ are given as follows.
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1. S ′ = {S ′ | S − {A}, S ∈ S} ∪ {R}, where R is the singleton schema {A}, and

ψ(S ′) = {S} if A /∈ S
= {S − {A}, R} otherwise

2. C ′ are the constraints of C, but with constraint schemas appropriately replaced

by those in S ′:
{C ′| C ′ = C{S ′1/S1, ..., S

′
k/Sk} for C ∈ C,

φ(C) = {S1, ..., Sk}, S ′i = Si − {A}, 1 ≤ i ≤ k}
∪{CR}

where CR ≡ (ρR1(R) ./R1.A 6=R2.A ρR2(R)) = ∅.

Proof. Note the constraint CR is satisfied by any relation r of R that contains a

single value from ∆(A).

Suppose s′ is a solution of Ξ′ and r ∈ s′ is the relation for R. We define a solution

s of Ξ. First, for each s′ ∈ s′, if α(s′) = S for some S ∈ S, then put s′ in s. If

α(s′)∪ {A} = S for some S ∈ S, then put s′ ./ r in s. Observe that s′ ./ r will have

exactly the same number of tuples as s′. Clearly, there is a relation in s for each

schema in S.

Second, to show that s is a solution of Ξ, for each C ∈ C, either C = C ′ for some

C ′ ∈ C ′ (i.e., no relation appearing in C contains A), or C contains a a schema S ∈ S

that contains A. In the first case C trivially holds on s since s restricted to those

relation schemas that do not contain A is identical to s′. In the second case, since

A is not referenced (does not participate in any condition of the constraint), C also



34

holds on s.

Remark. The proposition tells us that without loss of generality, we may assume

that each attribute appearing in S is referenced by at least one constraint in C.

Different strategies for computing ψ(S) exist. We adopt an approach based on

the following observation. A constraint that references only a subset of the attributes

of a constraint relation schema can be more efficiently represented as a constraint

over a smaller constraint relation schema consisting of only the referenced attributes.

Consider the RCSP Ξ0:

({S1(W1, X1, Y1, Z1), S2(W2, X2, Y2, Z1)}, {C1, C2})

over D. Suppose C1 references attributes S1.W1, S1.X1 and S2.W2, S2.X2, and C2

references attributes S1.Y1, S1.Z1 and S2.X2, S2.Y2, S2.Z1. Then a reasonable decom-

position Ξ1 is to use the set of constraint relations

{S3(W1, X1), S4(Y1, Z1), S5(W2, X2), S6(X2, Y2, Z1)}

where ψ(S1) = {S3, S4}, ψ(S2) = {S5, S6}, and constraints C ′1 = C1{S3/S1, S5/S2},

C ′2 = C2{S4/S1, S6/S2}.

Remark. As in database normalization, additional constraints may be necessary to

ensure the lossless join decomposition property, which is implied in the definition of
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validity. As an example, if constraint C1 above is a cardinality constraint that limits

the number of occurrences of each value of ∆(X1) to two, then a constraint must be

placed on the join of S1 and S4 to ensure that C1 will continue to hold over s3 ./ s4,

for relations s3 over S3 and S4 over R4 of a solution of Ξ1.

To address this we turn to the notion of key, more generally functional depen-

dency. Functional dependencies represent some of the most common constraints in

CSPs. An example is “a node can be assigned at most one color”. A simple condition

for ensuring lossless join decomposition is, for each S ∈ S, to require that all relation

schemas in ψ(S) share a key of S. Combining this with our discussion above, we

arrive at an approach for computing decomposition, which we call Constraint-Based

decomposition (CB).

First, given an RCSP Ξ = (S, C), if C ∈ C and S ∈ φ(C), then µ(C|S), the set of

attributes in S referenced by C, is a good candidate for establishing a new relation

in the decomposition. If KS is the set of attributes that form the designated key of

S, then the replacement schema for S in C is µ+(C|S) = µ(C|S) ∪KS. The set of

all replacement schemas of S is ω(S) = {S ′|S ′ = µ+(C|S), C ∈ C}.

Definition 15. Let Ξ = (S, C), a CB-decomposition of Ξ is the decomposition Ξ′ =

(S ′, C ′) given as follows.

1. S ′ = ∪S∈Sω(S), and for each S ∈ S, ψ(S) = ω(S).

2. C ′ are the constraints in C with constraint schemas replaced by their replace-
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ment schemas:

{C ′| C ′ = C{S ′1/S1, ..., S
′
k/Sk} for C ∈ C,

φ(C) = {S1, ..., Sk}, S ′i = µ+(C|Si), 1 ≤ i ≤ k}
∪ β

where β is the set of constraints that ensures solution consistency across ele-

ments of ω(S):

β = {C | C ≡ πY (S ′1) = πY (S ′2), Y = S ′1 ∩ S ′2,
for S ′1 6= S ′2 ∈ ω(S), S ∈ S}

Proposition 4. CB-decomposition is valid.

Proof. Given the original RCSP Ξ = (S, C), and the corresponding CB-decomposition

Ξ′ = (S ′, C ′) with solution database s′, we build the solution database s for Ξ.

1. For each constraint C ∈ C, let C ′ be the corresponding constraint in Ξ′, and

φ(C ′) be the set of relation schemas in S ′ that appear C ′. By definition, a set

of solution relations h over φ(C ′) satisfies constraint C ′. As µ(C|S) = µ(C ′|S)

for all S ∈ S, h also satisfies constraint C.

2. No relation in s′ violates a constraint C ∈ C. For each s′ ∈ s′

- If µ(C|α(s′)) ⊂ µ(C|S) for all S ∈ S, then α(s′) does not have contain a set

of attributes constrained by C, and thus C is not violated.

- If µ(C|α(s′)) = µ(C|S) for a S ∈ S, then α(s′) is the S ′ ∈ S ′ used as a

replacement for S in C ′ and holds by 1.
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- If µ(C|α(s′)) ⊃ µ(C|S) for a S ∈ S, then s′ is restricted by the β constraints

in Definition 3.1 to the exact tuple combination obtained by the solution

relations for C ′, where C ′ is the corresponding constraint for C in Ξ′.

3. By proposition 1, for each S ∈ S the union ∪S′∈ω(S)S
′ = S.

4. If r′ is the set of relations over ω(S) for each S ∈ S, then add ./ r′, the natural

join of the relations in r′, to s.

By 1 and 2, ./ r′ does not violate any constraint in C.

By 3, α(./ r′) = S, therefore all s ∈ s are constructed.

In summary, as CB-decomposition is a generic approach for any finite RCSP with

at least one constraint schema containing 3 or more attributes. Although it does not

guarantee performance improvement, empirical results in Section 6.x demonstrate

important potential speed up. Finally, the algorithm is automatable via SQL parse

tree analysis and manipulation, and thus highly useful for SQL CSP solvers.

3.4 Solver Selection

There are many approaches to solving finite CSP. Three common ones are backtrack

based propositional logic inference, local search, and combinatorial search. Although

there are many different algorithms for these approaches, few support the conjunction
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of variables inside constraints. Hence, eCNF requires an important simplification step

before CSP algorithms can be applied.

The eCNF simplification algorithm removes all conjunctions inside a clause. The

algorithm is given in Figure 3.7. Note that the @ = ‘=’ case is the most expensive

Algorithm simplify(c)

1. Input: c = F@k is an eCNF clause, where F = {F1, . . . , Fn},
and Fi is a conjunction of boolean literals (li1 ∧ . . . ∧ lim).

2. for each Fi ∈ F where |Fi| > 1

- introduce a new boolean variable ui,

- replace the Fi in F with ui.

- if @ ∈ {>,≥,=}, impose constraint ui ⇒ (li1 ∧ . . . ∧ lim)

with eCNF clauses: {(¬ui), (lij)} > 0 for 1 ≤ j ≤ m

- if @ ∈ {<,≤,=}, impose constraint ui ⇐ (li1 ∧ . . . ∧ lim)

with eCNF clause: {(ui), (¬li1), . . . , (¬lim)} > 0

Figure 3.7: Algorithm for eCNF simplification

as the implication must be imposed in both directions. The idea, known as variable

substitution, is to introduce a new variable for each conjunction.

Proposition 5. Formulas c and simplify(c) are logically equivalent modulo the sub-

stitution variables.

Proof. Let L represent all solutions to an original eCNF clause c, and L′ represent

all solutions to simplify(c). For each solution in L there exists at least one solution in

L′ with identical assignments for all the original variables. Such a solution in L′ can
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be found by extending the original solution with new assignments for each variable

ui such that ui = (li1 ∧ . . . ∧ lim) where (li1 ∧ . . . ∧ lim) is the original conjunction

ui replaced in F . Similarly, each solution in L′ has a corresponding solution in L

retrieved by simply removing all substitution variables ui.

With the simplification algorithm, eCNF translates easily to input forms com-

monly used for several major algorithms. Examples are the Davis Putnam Logemann

Loveland (DPLL) algorithm for propositional clauses, the WalkSAT algorithm for

randomized local search, and the Branch and Bound algorithm for Integer Linear

Programming. The ability to leverage a variety of solvers is key to providing efficient

solve times for a wide variety of problems.
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Chapter 4

Implementation Details

In this chapter we describe the SQL Constraint Data Engine (SCDE) prototype

for testing general concepts and techniques related to RCSP processing. We focus on

concrete engineering design decisions made in order to realize the concepts described

in Chapter 3.

The SCDE is a system designed as a combination of modules enabling flexible

modification and clean separation of functionality. Figure 4.1 shows the architecture

of the system. Like traditional RDB systems, SCDE has an Application Program

Interface (API) that allows for a variety of user interfaces. Although at this time we

have only implemented a file interface for processing SQL directly, other interfaces

such as an interactive command line, or graphical query tool could be easily imple-

mented. The SCDE kernel, shaded in grey, is responsible for all the RCSP related

work. It receives specifications through the API in the SCDE Command Language

(SCL), which is a slight extension to SQL’s DDL. These specifications are parsed and

built into problem models which can then be optimized and converted into boolean
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SAT problems in eCNF. Finally, the eCNF is then converted to a solver specific

format, and an external solver is used to solve the CSP. As oppose to writing our

own relational database implementation, SCDE use SQLite, an “in-process library

that implements a self-contained, serverless, zero-configuration, transactional SQL

database engine.”,1 The rest of this chapter describes in detail the SCL, the RCSP

processor, the eCNF solver, and the various backend SAT solvers used.

4.1 The SCDE Command Language

Mostly overlooked in other CSP tools but central to the design of SCDE’s Command

Language (SCL) is enabling intuitive and frequent user interactions with metadata

objects. Frequent user interaction is a basic premise of dynamic CSPs. Furthermore,

there is growing recognition that the ability to incrementally fine-tune constraints is

important to fully exploit the power of intelligent tools in solving real-world problems

[32]. Table 4.1 shows the basic SQL extensions to support the specification of RCSPs

in SCDE. This syntax is aimed at flexible user interaction and aligns well with

the standard SQL model for administering metadata objects. Although Section 3.1

demonstrates that no extension to SQL is strictly necessary, we choose to make a

few extensions to distinguish RCSP commands from traditional SQL commands.

1http://www.sqlite.org/; Sqlite has been adopted as the back-end of major software tools in-
cluding Adobe Photoshop Lightroom, Mac OS-X, and the Firefox Web-Browser.
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Figure 4.1: SCDE Architecture



43

1 CREATE CONSTRAINT TABLE <Q> (
{<col> <type> FOREIGN KEY REFERENCES <ftable>(<fcol>),}
[KEY (<col>[,<col>]),]
{CONSTRAINT <c> <constraint>,}

2 ALTER CONSTRAINT TABLE <Q> (
ADD CONSTRAINT <c> <constraint>);

3 ALTER CONSTRAINT TABLE <Q> (
DROP CONSTRAINT <c>);

4 TRACE CONSTRAINT TABLE <Q> CONSTRAINT <c>;
5 SOLVE TABLE <Q>;
6 COMMIT SOLUTION;
7 DROP CONSTRAINT TABLE <Q>;

Table 4.1: SCDE Command Language

The CREATE CONSTRAINT TABLE command declares the associated table to be a

constraint relation (see Section 1.5) or constraint table. Each column (or attribute)

of the constraint table must be a foreign key, i.e. a key belonging to a different

table. We refer to this set of foreign tables as base tables. Note that the domain

of any attribute in a constraint table is simply the projection of the corresponding

base table onto the foreign key, and thus easy to calculate. Base tables comprise the

database D in the RCSP definition given by Section 1.5, and can be either regular

tables or previously solved constraint tables.

Constraints can be specified in two different ways. First, one key may be included

as part of the specification. This key is the designated key used by the decomposition

algorithm in Section 3.3. Second, a set of constraints adhering to one of the pat-

terns described in Section 3.2.3 may be included as part of the specification via the
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CONSTRAINT <c> syntax where <c> is an arbitrary name assigned to the constraint.

Although the CREATE CONSTRAINT TABLE command is sufficient for specifying

RCSP, other commands enable important features for user interaction with the prob-

lem. The ALTER TABLE statement allows these constraints to be added or removed in

subsequent commands. The TRACE command reports constraint metrics to the user

described Sections 5.2 and 5.3. These allow a user to get some feedback on constraints

before initiating the solving process. The SOLVE command triggers the compiling,

solving, and populating of the constraint table. Finally, the COMMIT SOLUTION com-

mand writes the current results (of all active constraint tables) to disk.

4.2 The RCSP Processor

The RCSP Processor is responsible for extracting RCSPs from parse trees generated

by the SCL Parser and creating logically equivalent boolean SAT problems in eCNF.

It’s functionality is divided into the four modules shown in Figure 4.2.

4.2.1 Problem Modeler

The Problem Modeler organizes the parse tree into a model which facilitates anal-

ysis of attributes, constraint tables, and constraints. This process organizes the

constraints according to their pattern types, and creates the constraint relations

where the solution, once found, will be stored. Depending on configuration pa-
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Figure 4.2: The RCSP Processor

rameters, the model is either sent to the the Problem Decomposer to undergo the

CB-Decomposition process described in Section 3.3, or to the Variable Map Proces-

sor.

4.2.2 Variable Map Processor

The Variable Map Processor is responsible for creating, populating and filtering

variable maps. For each constraint table schema S ∈ S, a variable map is created

with the schema {vbid∪S}. Furthermore, each variable map is assigned a unique id

allowing variables from different maps to be distinguished.

A variable map is initially populated with ∆(S) and then filtered by filter con-
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straints. A filter constraint is a CNE constraint which contains a single constraint

schema reference to S. As the CNE algorithm dictates, this results in a set of eCNF

clauses which force selected variables to false. Rather than forwarding these clauses

to the solver, it is much more efficient to simply remove these variables from the cor-

responding map. This is accomplished by the algorithm in Figure 4.3. As detailed in

Section 5.2, the algorithm reduces the total number of variables used to process the

rest of the RCSP. Therefore, SCDE processes all filter constraints before any others.

Algorithm filter(C)

1. Input: C is a CNE constraint with φ(C) = {S},
e is the main query of C

2. e′ ← vb(e)

3. Delete all tuples in e′() from ν(S)

Figure 4.3: Algorithm for filter constraints

4.2.3 Constraint Processor

The Constraint Processor is responsible for processing two genres of constraints.

The first consists of CHECK constraints adhering to one of the four patterns CE,

CNE, CC, or CNEC. The algorithms for processing these constraints are detailed

in Section 3.2.3. The second genere consists of functional dependency constraints

specified as keys.
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Key constraints play a very important role in decomposition. They are en-

forced by cardinality constraints that require, for all variables mapped to the same

key value, at most one is assigned to true. As an example, consider the course

scheduling example in Section 3. Assuming {cid}is the key in the constraint schema

schedule(cid, pid, tid), if there are two professors ∆(pid) = {‘bob’, ‘lisa’} and two time

slots ∆(tid) = {‘10am’, ‘11am’}, then for each course, there are four possible tuples,

and therefore four variables. If v1 = {‘cs1’, ‘bob’, ‘10am’}, v2 = {‘cs1’, ‘bob’, ‘11am’},

v3 = {‘cs1’, ‘lisa’, ‘10am’}, v4 = {‘cs1’, ‘lisa’, ‘11am’} then the eCNF clause {v1, v2, v3, v4} ≤

1 enforces the key constraint for the ‘cs1’ value in ∆(cid).

We use the notation uni(S,K) to represent the set of eCNF clauses enforcing the

uniqueness constraint t1[K] 6= t2[K] for all distinct tuple pairs t1, t2 of a relation over

the constraint schema S with key K.

Algorithm uni(S,K)

1. Input: S is a constraint schema with key K = {k1, . . . , kn}
and ∆(K) = ∆(k1)× . . .×∆(kn).

2. for each tuple t = {x1, . . . , xn} ∈ ∆(K):

- create the eCNF clause: {πvbid(σK=tν(S))} ≤ 1

where K = t is is short for k1 = x1 ∧ . . . ∧ kn = xn

Figure 4.4: Algorithm for unique key enforcement

If several constraint schemas share the same key, as is the case for replacement
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schemas in CB-decomposition, then the Constraint Processor enforces that the key

values chosen across all such schemas are identical. For example, assume constraint

schemas in set H = {H1, . . . , Hn} all share the same key K. The algorithm requires

that if a key value occurs in one relation over schema H in H, then that same key

value must be present in all other relations over schemas in H. Since key values are

unique in each relation, this effectively enforces that key values across all relations

over schemas in H are identical. The algorithm for enforcing this constraint with

eCNF clauses is given in Figure 4.5.

Algorithm equi(H, K)

1. Input: H a set of constraint schemas sharing key K = {k1, . . . , kn}
and ∆(K) = ∆(k1)× . . .×∆(kn).

2. H ′ ← a schema in H with the minimum number of attributes.

3. for each H ∈ H, H 6= H ′:

- for each tuple t = {x1, . . . , xn} ∈ ∆(K):

- impose the constraint: ∨{πvbid(σK=tν(H ′))} ⇔ ∨{πvbid(σK=tν(H))}
- for each vbid ∈ {πvbid(σK=tν(H ′))}

- create eCNF clause: {¬vbid} ∪ {πvbid(σK=tν(H))} > 0

- for each vbid ∈ {πvbid(σK=tν(H))}
- create eCNF clause: {¬vbid} ∪ {πvbid(σK=tν(H ′))} > 0

where K = t is is short for k1 = x1 ∧ . . . ∧ kn = xn

Figure 4.5: Algorithm for key tuple equality amongst multiple relations

All constraint algorithms implemented by the constraint processor generate eCNF



49

clauses that are combined, via conjunction, into one eCNF sentence. As there can be

multiple constraint schemas referenced in a single constraint, every literal is composed

of a VBmap id and a (possibly negated) variable id. Once generated, eCNF clauses

are sent to the eCNF Solver.

4.2.4 Problem Decomposer

The Problem Decomposer implements the CB-Decomposition defined in Section 3.3.

It receives a problem model corresponding to an RCSP Ξ = (S, C), and returns a

decomposed model representing a new RCSP Ξ′ = (S ′, C ′). We incorporate certain

design/implementation choices to improve efficiency. The current implementation

assumes a single constraint schema, S0, in the input RCSP. We denote by KS0 the

designated key of S0.

The set S ′ is derived from dividing S0 according to Definition 15.1. To ensure

a reduction in the size of the problem representation, we add the restriction that

all resulting schemas of S ′ are strict subsets of S0. This avoids the generation of

the same VBmap in Ξ′ as in Ξ which, in practice, significantly reduces the total

number of boolean variables represented in the eCNF. The tradeoff for this design

choice is that full constraints, which are constraints that references all attributes

of S0 (i.e., µ+(C|S0) = S0), need special handling since S0 will not be present in

S ′. Furthermore, since a decomposition must satisfy ∪S ′ = S0, problems that have
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full constraints may need the addition of a pseudo constraint schema to ensure that

solutions to S0 may be recovered from solutions of S ′.

In order to compute the solution to Ξ from the solution to Ξ′ and to translate

full constraints to eCNF, a set of constraint schemas which covers all the attributes

of S0 must be joined. Although ∪S ′ = S0, any subset J ⊆ S ′ for which ∪J = S0 is

sufficient. By selecting J to be the minimum set cover of S ′ over S0, we reduce the

time of the required join operations. This is especially relevant for full constraints,

as the constraint translation algorithms use VBmaps in place of constraint schemas,

and the join of the VBmaps of J can be significantly less expensive than the join of

the VBMaps of S ′. Note that when multiple minimum set covers exist, we prioritize

schemas in S ′ with the fewest attributes. This leads us to our algorithm for CB-

decomposition shown in Figure 4.6.

The algorithm references two other constraints, uni and equi which are detailed

in Section 4.2.3. When combined, these two constraints serve as a simplified version

of the β constraints described in Definition 15.2, enabling the key-based join of the

relations over S ′ to form a solution to the original RCSP. Unfortunately, uni and

equi do not form a complete implementation of the β constraints because a distinct

pair of constraint schemas S ′i, S
′
j, may have an overlapping set of attributes S ′i ∩ S ′j

that contains more attributes than just the designated key. As a result, all possi-
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Algorithm decomp(Ξ)

1. Input: an RCSP Ξ = ({S0}, C) with designated key KS0

2. initialize S ′ = ∅ and C ′ = ∅
3. for each C ∈ C that is not a full constraint (i.e. µ+(C|S0) ⊂ S0) :

- S ′ ← {µ+(C|S0)} ∪ S ′
- C ′ ← {C{S ′/S0}} ∪ C ′
- C ′ ← {uni(S ′, KS0)} ∪ C ′

4. J ← minimal subset of S ′ covering S0

5. for each C ∈ C that is a full constraint (i.e. µ+(C|S0) = S0) :

- C ′ ← {C{(./ J)/S0}} ∪ C ′

6. C ′ ← {equi(S ′, KS0)} ∪ C ′

Figure 4.6: Algorithm for CB-Decomposition

ble decompositions are not covered by our algorithm. Fortunately, for most RCSP,

choosing the best designated key typically circumvents the need for the computa-

tionally expensive β constraints.

4.3 The eCNF Solver

The eCNF solver is responsible for solving boolean satisfiability problems in eCNF

form. It is composed of the three modules shown in Figure 4.7. The purpose of

each module is to reduce the eCNF into a form more closely aligned with a back-end

solver’s expected input.
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Figure 4.7: The eCNF Solver
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4.3.1 Unifier

Solvers typically require the set of all variable ids to be a contiguous set of integers.

The Unifier maps the composited ids of eCNF, each consisting of a VBMap id and

variable id, into a contiguous set of integers. This mapping is done via a hash table,

called the global map, that correctly compensates for positive and negative literals.

The global map is also used to translate a computed solution back to composite

ids, allowing the SCDE system to populate the constraint relations with tuples from

VBMaps that correspond to the solution.

4.3.2 Simplifer

The Simplifier module implements the variable substitution algorithm discussed in

Section 3.7. The new variables that are created throughout this process serve only to

impose restrictions on original variables. Although these variables are entered into

the global map, any assignments made by the solver to these variables are ignored.

4.3.3 Translator

Once unified and simplified, an eCNF sentence is a conjunction of clauses F @ k

where F is a set of literals, @ is a comparison operator from the set {>,≥, <,≤,=},

and k is an integer. The Translator module is responsible for making the final

conversion to a solver input format. Currently, it supports two formats, Boolean
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Cardinality (BC), and Pseudo Boolean (PB).

The BC format for each clause is
∑

i li ≥ k for 1 ≤ i ≤ n, where each li is a literal,

and k is an integer > 0. The algorithm in Figure 4.8 implements the translation.

We note that if the resulting BC clause has k ≤ 0, then it is trivially false.

Algorithm toBC(c)

1. Input: c is a simplified eCNF clause of the form F @ k

F = {F1, . . . , Fn}
2. if @ = ‘=’, then return toBC(F ≤ k) ∧ toBC(F ≥ k)

3. if @ = ‘<’, then k = k − 1 and @ = ‘≤‘

4. if @ = ‘>’, then k = k + 1 and @ = ‘≥‘

5. if @ = ‘≤’, then k = n− k, @ = ‘≥‘, and Fi = ¬Fi for all Fi ∈ F
6. return BC clause:

∑
1≤i≤n Fi ≥ k

Figure 4.8: Algorithm for translating eCNF to BC

The PB format is
∑

iwi ∗ vi ≥ k for 1 ≤ i ≤ n, where wi is an integer weight,

and vi is a boolean variable. The algorithm for the translation is given in Figure

4.9. Note that there is no concept of negated variables in this format. Instead, we

replace ¬v with 1 − v. As a result, k can be meaningful when zero or negative.

For example, consider the eCNF expression {v1,¬v2,¬v3} ≥ 1. When we apply the

toPB algorithm we arrive at the expression 1 ∗ v1 − 1 ∗ v2 − 1 ∗ v3 ≥ −1.
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Algorithm toPB(c)

1. Input: c is a simplified eCNF clause of the form F @ k

F = {F1, . . . , Fn}
2. if @ = ‘=’, then return toPB(F ≤ k) ∧ toPB(F ≥ k)

3. for each Fi ∈ F :

- if Fi is a negated literal: wi = −1 and k = k − 1

- else: wi = 1

- vi is the variable id in Fi

4. if @ = ‘<’, then k = k − 1 and @ = ‘≤‘

5. if @ = ‘>’, then k = k + 1 and @ = ‘≥‘

6. if @ = ‘≤’, then k = −k, @ = ‘≥‘, and wi = −1 ∗ wi for 1 ≤ i ≤ n

7. return PB clause:
∑

1≤i≤nwi ∗ vi ≥ k

Figure 4.9: Algorithm for translating eCNF to PB

4.3.4 Back-End Solvers

The SCDE system currently supports 3 back-end solvers. The first solver, MiniSat+

[13], is a Pseudo Boolean solver that uses a variety of algorithms to translate PB

clauses into CNF clauses. MiniSat[12] is a state of the art, DPLL based, SAT solver

which incorporates many modern heuristics including watched literals, conflict driven

back tracking, and dynamic variable ordering.

The other two solvers are our own implementations of existing algorithms. The

KWSAT solver is an implementation of the WalkSAT algorithm[14] adapted for
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the BC format. The KDPLL solver is an implementation of the DPLL algorithm

adapted for the BC format based on [11]. Together these algorithms allow us to gain

perspectives on SCDE’s compilation strategy and test the relative strengths of local

vs complete search algorithms for RCSPs.
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Chapter 5

Theoretical Analysis

This chapter shows some theoretical properties of SCDE and the algorithms we

have developed. We begin by demonstrating that our supported syntax allows us

to express NP-complete problems. We then give some size metrics on our generated

boolean satisfiability problems. These metrics can help predict the amount of time

required to solve certain problems and give insight on what types of SQL constraints

to avoid in the problem specification process.

5.1 On the Expressiveness of SCL

In this section we demonstrate how to express any 3-SAT problem in the SCL. The

purpose of this is to verify that our subset of SQL DDL is indeed capable of expressing

NP-complete problems, and to highlight some of the advantages of our count based

SQL constraint patterns.
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CREATE TABLE v a r i a b l e s ( id ) ;
INSERT INTO v a r i a b l e s VALUES( 1 ) ;
INSERT INTO v a r i a b l e s VALUES( 2 ) ;
INSERT INTO v a r i a b l e s VALUES( 3 ) ;
INSERT INTO v a r i a b l e s VALUES( 4 ) ;

CREATE TABLE boolean ( val , name ) ;
INSERT INTO boolean VALUES(0 , ’ f a l s e ’ ) ;
INSERT INTO boolean VALUES(1 , ’ t rue ’ ) ;

Figure 5.1: SQL for 3-SAT base tables.

5.1.1 3-SAT

The 3-SAT problem is a subset of the boolean satisfiability problem which is limited

to a conjunction of clauses where each clause consists of a disjunction of 3 literals.

For example, consider a problem with 4 boolean variables: v1..v4 and the implication

constraint v1 ∧ v2 =⇒ v3 ∧ ¬v4. The problem can be expressed with the 3-SAT

sentence (¬v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ ¬v4). An example satisfying assignment is

v1 = 1, v2 = 1, v3 = 1, v4 = 0.

Before we can specify the 3-SAT problem above in SQL, we need to create and

populate tables representing the list of variables and domain. This can be accom-

plished with the SQL statements in figure 5.1. Given this set of base tables, we

can specify the problem, given in Figure 5.2, by creating a constraint schema which

maps the variables.id attribute to the boolean.val attribute and adding an integrity

constraint for each 3-SAT clause.

Constraints C1, C2 use the CE constraint type to express the two clauses of the
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CREATE CONSTRAINT TABLE s o l (
v id INTEGER FOREIGN KEY REFERENCES v a r i a b l e s ( id ) ,
asg INTEGER FOREIGN KEY REFERENCES boolean ( va l ) ,

CONSTRAINT C1 CHECK (EXISTS
(SELECT ∗ FROM s o l s WHERE
( s . v id=1 AND s . asg=0) OR
( s . v id=2 AND s . asg=0) OR
( s . v id=3 AND s . asg =1))) ,

CONSTRAINT C2 CHECK (EXISTS
(SELECT ∗ FROM s o l s WHERE
( s . v id=1 AND s . asg=0) OR
( s . v id=2 AND s . asg=0) OR
( s . v id=4 AND s . asg =0))) ,

CONSTRAINT C3 CHECK (NOT EXISTS
(SELECT ∗ FROM s o l s1 , s o l s2 WHERE
s1 . v id=s2 . vid AND s1 . asg<>s2 . asg ) ) ) ;

Figure 5.2: SQL specification for 3-SAT problem.

3SAT sentence. The final constraint (C3) uses the CNE constraint type to enforce

that no variable be given two values. This constraint enforces a traditional notion

of variables that is implicitly understood by typical CSP solvers. As a typical RDB

has no notion of CSP variables, it is sometimes necessary to explicitly state such

constraints. Note that this rule could be replaced with the declaration that vid is a

key.

5.1.2 Count Constraints

Although any NP-complete problem can be encoded in 3-SAT some simple con-

straints are prohibitively large to encode manually. One case is the cardinality con-

straint, where a specific number of variables are required to be true. For example,

given the boolean variables v1..v4, the following 3-SAT sentence (set of clauses) is
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required to ensure that exactly 2 variables are set to true.

(v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v2 ∨ v4) ∧ (v1 ∨ v3 ∨ v4) ∧ (v2 ∨ v3 ∨ v4)∧

(¬v1 ∨ ¬v2 ∨ ¬v3) ∧ (¬v1 ∨ ¬v2 ∨ ¬v4) ∧ (¬v1 ∨ ¬v3 ∨ ¬v4) ∧ (¬v2 ∨ ¬v3 ∨ ¬v4)

In this section we describe how the count constraint patterns CC and CNEC patterns

can succinctly encode certain problems. For example, the CC pattern allows us to

express cardinality constraints like the one above with the following syntax.

CONSTRAINT C1 CHECK

(2 = (SELECT COUNT(∗ ) FROM s o l s WHERE s . asg =1))

One of the disadvantages of our 3-SAT encoding so far is the need to express

each 3SAT clause as a separate SQL constraint. To eliminate this requirement,

we can create a new base table that stores the data representing all of the clauses

(see figure 5.3). This table can then be used in conjunction with the CNEC con-

straint pattern to create one SQL constraint which enforces all 3-SAT clauses in

the problem. The CNEC constraint, given in Figure 5.4, essentially creates a set

of CC constraints from the subquery with parameters passed in from the column

result set of the parent query. Note the double negative nature of this pattern us-

ing the NOT to negate the comparison ‘>’, resulting in CC constraints of the form

CHECK (1 <= (SELECT COUNT(*) ...)) which are identical (see Section 3.2.3) to

the original CE constraints in Figure 5.2.
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CREATE TABLE c l a u s e s ( id , vid1 , asg1 , vid2 , asg2 , vid3 , asg3 ) ;
INSERT INTO c l a u s e s VALUES(1 , 1 , 0 , 2 , 0 , 3 , 1 ) ;
INSERT INTO c l a u s e s VALUES(2 , 1 , 0 , 2 , 0 , 4 , 0 ) ;

Figure 5.3: SQL for base table describing (¬v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ ¬v4).

CONSTRAINT C1 CHECK (NOT EXISTS
(SELECT c . vid1 , c . asg1 , c . vid2 , c . asg2 , c . vid3 , c . asg3

FROM c l a u s e s c WHERE
1 > (SELECT COUNT(∗ ) FROM s o l s WHERE

( s . v id=c . vid1 AND s . asg=c . asg1 ) OR
( s . v id=c . vid2 AND s . asg=c . asg2 ) OR
( s . v id=c . vid3 AND s . asg=c . asg3 ) ) ) )

Figure 5.4: The CNEC SQL constraint for 3-SAT.

In summary, the CNEC constraint is our most expressive constraint pattern. It’s

syntax is sufficient for expressing many NP-complete problems succinctly and it is

used widely in our SQL CSP specifications.

5.2 Variable Maps

In this section we analyze the size of variable maps, and the total number of boolean

variables generated for a problem. This is impacted by the size of each attribute’s

domain, |∆(A)|, filter constraints, and problem decomposition.

Given a constraint schema S = {A1 . . . An}, the corresponding variable map,

ν(S), contains every possible S-tuple, along with a unique identifier for each tuple

representing the boolean variable id. Thus the total number of variables generated

for the constraint relation S is vbsize(S) = |ν(S)| =
∏

1≤i≤n |∆(Ai)|. This can be

further reduced by filter constraints (see Section 4.2.2).



62

Given a single filter constraint FC with φ(FC) = S and main query e, the size

of the filter is |FC| = |e()|. Recall e() is the set of tuples returned by e. Each filter

reduces |ν(S)| by |FC|. Thus, given a set of filter constraints FC1 . . . FCm with

φ(FCj) = S, the vbsize(S) = |ν(S)| = ∏1≤i≤n |∆(Ai)| −
∑

1≤j≤m |FCj|.

For some situations, filter constraints can have a powerful impact on total variable

size. In many situations, however, the total number of variables is dominated by

the domain size of attributes, and the large cross product resulting from constraint

schemas with many attributes. This can be mitigated by the CB-Decomposition

algorithm.

Given a constraint schema S = {A1 . . . An}, the CB-Decomposition algorithm

produces a set of constraint schemas ψ(S) = {S ′1, . . . , S ′p}, where each S ′i ⊂ S. If

Bi = {Bi1, . . . , Biq} is the set of attributes in S not present in S ′i, then |ν(S ′i)| =

|ν(S)|Q
1≤j≤q |∆(Bij)| and the vbsize(S) =

∑
1≤i≤p

ν(S)Q
1≤j≤q |∆(Bij)| . As we will see in the exper-

imental results section, this can lead to a substantial reduction in the total number

of boolean variables.

In summary, an RCSP with S = {S1 . . . Sn} has a total number of variables given

by vbsize(S) =
∑

1≤i≤n |vbsize(Si)|. The total number of variables plays a role in

determining the size of the search space, 2vbsize(S), and provides an upper bound on

the worst case solving time. For the many situations, however, the number and type
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of boolean clauses are a better predictor of solving time.

5.3 Boolean Clauses

The size and type of boolean clauses generated by a constraint C depends on the

constraint pattern used, the number of constraint schemas referenced (|φ(C)|), and

the number of tuples returned by the main query (|e()|).

5.3.1 Check Exists

As the algorithm in Figure 3.3 describes, a CE constraint generates a single eCNF

clause with |e()| conjunctions. Each conjunction has one literal from each S ∈

φ(C). If |φ(C)| = 1, then there is only one literal in place of each conjunction, and

the final encoding is a eCNF clause consisting of a disjunction of |e()| literals. If

|φ(C)| > 1 then the simplify algorithm described in Section 3.4 is used to replace

each conjunction by a substitution variable and |φ(C)| additional clauses of size 2.

The total number of clauses is therefore 1 + (|φ(C)| × |e()|), where the first clause

has |e()| literals, and the rest have 2.

5.3.2 Check Count

As stated in Section 3.2.3, the CC constraint is processed similarly to a CE constraint.

There are two important differences. First, the comparison can be one of {>,≥, <
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,≤,=}. In the most expensive case, ‘=’, the variable substitution scheme requires

(|φ(C)|×|e()|) clauses of size 2, and |e()| extra clauses of size (1+|φ(C)|). This results

in a total number of clauses equal to 1 + |e()|+ (|φ(C)| × |e()|). The other difference

is that the constraint can have high cardinality. Although eCNF can capture this in

one clause, the same encoding in CNF can be very expensive. For example, consider

the eCNF clause {(v1) . . . (vn)} = k. In CNF, this expands to
(
n
k−1

)
disjunctions

containing n−k+1 positive literals, and
(
n
k+1

)
disjunctions containing k+1 negative

literals for a total of n!
(n−k+1)!(k−1)!

+ n!
(n−k−1)!(k+1)!

clauses. Although we choose SAT

solvers capable of handling cardinality constraints, for some solvers the size of k can

have a large impact on the solve time.

5.3.3 Check Not Exist

The CNE constraint is the simplest in terms of clause size, and translation to CNF.

It produces |e()| CNF clauses of size |φ(C)|.

5.3.4 Check Not Exist Count

The CNEC constraint produces a set of CC constraints, each in turn producing eCNF

clauses. The total number of CC constraints produces is |e()|, the number of tuples

returned by the query g in the pattern CHECK NOT EXIST g (k @ (e)).
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Chapter 6

Experiments and Results

This chapter analyzes the performance of SCDE on several CSP problems. Our

goal in this analysis is not to demonstrate a faster approach to solving CSPs over

existing CSP solvers, but to validate the feasibility of our approach and SQL CSP

systems in general. In order to make comparisons to other traditional solvers, we

separate SCDE’s run time into translation time, solve time, and total time. The

translation time encompasses the SQL query and file processing necessary to create

the boolean encoding fed to the backend SAT solver. The solve time is the amount

of time the backend SAT solver takes to find a satisfying solution or discover that the

problem is infeasible. The total time, or run time is the the sum of the translation

and solve times. Notice that the time to reverse translate the boolean solution into a

set of S-tuples and populate the s-relations is not accounted for. This time is almost

always insignificant as most solutions are very small in comparison to their search

spaces.
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The first solver used for comparison is the IBM ILOG CPLEX Optimizer. It is an

industry standard tool for solving combinatorial problems and provides a wide variety

of functionality. Although CPLEX supports multiple input formats, we restrict our

experiments to the Optimization Programming Language (OPL) [15], and CPLEX’s

OPL solver.

The second solver used is CSP4J [16]. This solver, which competed in the In-

ternational CSP Solver Competition in 2008 [17], uses XCSP, an XML format used

to express constraint networks, as its input format. In comparison to OPL, XCSP

is a low level CSP specification language that requires each constraint be defined

individually either in extension or in intension. As a result, its encoding length can

be very large.

Table 6.1 shows the hardware specification of our test system. More importantly,

all experiments are run with data files located on a ramdisk (in memory file system)

helping to reduce the cost of I/O. This is relevant because, unlike the other solvers,

SCDE requires substantial of interaction with a SqlLite, a lightweight file based

database. SCDE also creates pseudo boolean files for the MiniSat+ solver. All of

this I/O is expensive even on a ramdisk, but is not done by traditional solvers for

which the data extraction and encoding have been done ahead of time.
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CPU Name Intel(R) Xeon(R) CPU X5680
CPU Speed 3.33GHz

Number of Cores 24
Memory 64Gb

Table 6.1: Solve And Translation Times in milliseconds

Figure 6.1: The 5-Queens Problem

6.1 NQueens

In this section we analyze the classic n-Queens problem. The problem requires the

placement n queens on a chess board according to the following 4 constraints.

1. All queens must be placed on the board.

2. No two queens can share a column.

3. No two queens can share a row.

4. No two queens can share a diagonal.
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Figure 6.1 shows example solution to the n = 5 problem.

In a traditional CSP solver, the first constraint can be captured automatically,

assuming each variable represents the location of a queen, by the notion that all

variables must be assigned a value. SQL, however, has no notion of CSP variables

and thus this constraint needs to be expressed explicitly. Constraints 2 and 3 can

be rewritten as each row and column must have 1 queen due to the fact that there

are n queens on an n × n board. This can allow for several optimizations both in

how the solution table is designed and what constraints must be expressed. The last

constraint can be enforced by checking that the difference between two queens’ row

indexes is not equal to the difference between their column indexes.

6.1.1 SCL Specification

In this specification we take advantage of the fact that fixing each queen to a column

satisfies constraint 2 automatically and simplifies our solution table. With this in

mind we create the two base tables specified in Figure 6.2. The queens.id attribute

represents both the identity of a queen and the column it is bound to. The b rows.id

attribute represents the row index.

The constraint schema for this problem is specified in figure 6.3. It creates the

relation board, and maps the queens:id attribute to the b rows:id attribute. It also

specifies constraint 1 as C1 and constraints 3,4 as C2. We note that C2’s query is
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CREATE TABLE queens ( id ) ;
INSERT INTO queens VALUES( 1 ) ;
INSERT INTO queens VALUES( 2 ) ;
. . .
INSERT INTO queens VALUES( 8 ) ;

CREATE TABLE b rows ( id ) ;
INSERT INTO b rows VALUES( 1 ) ;
INSERT INTO b rows VALUES( 2 ) ;
. . .
INSERT INTO b rows VALUES( 8 ) ;

Figure 6.2: Encoding 1: SQL for N-Queens base tables.

CREATE SOLUTION TABLE board (
qid INTEGER FOREIGN KEY REFERENCES queens ( id ) ,
r i d INTEGER FOREIGN KEY REFERENCES b rows ( id ) ,

−−Each queen p laced once .
CONSTRAINT C1 CHECK (NOT EXISTS

(SELECT q . id FROM queens q WHERE
1 <> (SELECT COUNT(∗ ) FROM board b WHERE b . qid=q . id ) ) ) ,

−−No two queens can a t t a c k each other
CONSTRAINT C2 CHECK (NOT EXISTS

(SELECT ∗ FROM board b1 , board b2 WHERE
−−d i s t i n c t pa i r o f queens .
b1 . qid > b2 . qid AND
−−No two queens share a row .
( b1 . r i d = b2 . r i d OR
−−No two queens share a d iagona l .
( b1 . qid − b2 . qid ) = ABS( b1 . r i d − b2 . r i d ) ) ) )

) ;

Figure 6.3: Encoding 1: SCL for N-Queens problem

expensive, with respect to translation, as it requires a join of 2 copies of the constraint

schema. As constraint schemas are replaced by variable maps at execution time, and

variable maps are typically large, this can result in a large SQL query run time. On

the other hand, the encoding for the problem is relatively succinct, and thus leads

credence to SCL as a viable CSP specification language.

Constraint C1 is an efficient encoding of the constraint “All queens must be placed



70

on the board.” For each queen i an eCNF expression is generated which has the form

{vi,1, . . . , vi,j, . . . , vi,n} = 1 where j is the row index of the queen. If we target a SAT

solver that requires CNF form, then this eCNF expression must be expanded to a

set of clauses of the form (¬va∨¬vb) where a, b represent all unique pairs of variables

from the original eCNF clause, and 1 clause of the form (vi,1 ∨ . . . ∨ vi,n). Thus, for

all n queens, we end up with n×(
(
n
2

)
+1) CNF clauses. As an alternative, constraint

C1 could be encoded by the SQL below.

−−n queens on the board .

CONSTRAINT C1 CHECK

(8 = (SELECT COUNT(∗ ) FROM board b ) ) ,

This encoding may be appealing to an RDB practitioner as it directly expresses the

goal of putting n queens on the board. Furthermore, with a slight modification to

constraint C2 which forbids the same queen from being placed twice, this encoding

can work. An analysis of this encoding, however, reveals an important negative im-

pact on the resulting CNF encoding and overall solve time. The constraint generates

only 1 eCNF expression which has the form {v1,1, . . . , vi,j, . . . , vn,n = n} where vij

represents queen i in row j. Thus this clause has n2 variables. In CNF form the

constraint expands to
(

n2

(n+1)

)
clauses of the form (¬v1 ∨ . . . ∨ ¬vn+1) and

(
n2

(n−1)

)
clauses of the form (v1 ∨ . . . ∨ vn−1). Thus the total amount of clauses needed is(

n2

(n+1)

)
+
(

n2

(n−1)

)
, which, as an example, when n = 80 is over 2× 10187 clauses. Thus

this constraint encoding is unscalable for CNF based SAT solvers. For example, at
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us ing CP ;
int n = 8 ;
range Queen Ids = 1 . . n ;
range Row Ids = 1 . . n ;

// Decis ion Var iab le
dvar int queens [ Queen Ids ] in Row Ids ;

// So l v ing
s ub j e c t to {

f o r a l l ( i , j in Queen Ids : j > i ) { // d i s t i n c t pa i r o f queens .
// No two queens share a row .

queens [ i ] != queens [ j ] ;
// No two queens share a d iagona l .
abs ( queens [ j ] − queens [ i ] ) != ( j − i ) ;

} ;
} ;

Figure 6.4: OPL specification for N-Queens problem.

n = 80, MiniSat+’s solve time for the first encoding is about 1 second, compared to

4 seconds for the second encoding.

6.1.2 OPL and XCSP Specification

In Figure 6.4 we give an OPL specification for the n-Queens problem. Note that

there may be more effective specifications in OPL, but we strive to mimic the SCL

specification’s constraints as closely as possible.

In Figure 6.5 we give the same specification in XCSP. Note that a separate con-

straint must be specified for each pair of queens, but all of these constraints leverage

the same predicate, P0, enforcing the diagonal condition.
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<i n s t ance>
<p r e s e n t a t i o n name=”NQueens” maxConstraintArity=”2” format=”XCSP 2 .0 ”/>
<domains nbDomains=”1”>

<domain name=”D0” nbValues=”8”>1 . . 8</domain>
</domains>
<v a r i a b l e s nbVar iab les=”8”>

<v a r i a b l e name=”V0” domain=”D0”/>
. . .
<v a r i a b l e name=”V7” domain=”D0”/>

</ v a r i a b l e s>
<p r e d i c a t e s nbPred icates=”1”>

<p r e d i c a t e name=”P0”>
<parameters> i n t X0 i n t X1 i n t X2</ parameters>
<exp r e s s i on>

<f u n c t i o n a l>
and ( ne (X0 , X1) , ne ( abs ( sub (X0 , X1) ) ,X2) )

</ f u n c t i o n a l>
</ exp r e s s i on>

</ p r e d i c a t e>
</ p r e d i c a t e s>
<c o n s t r a i n t s nbConstra ints=”28”>

<c o n s t r a i n t name=”C0” a r i t y=”2” scope=”V0 V1” r e f e r e n c e=”P0”>
<parameters>V0 V1 1</ parameters>

</ c o n s t r a i n t>
. . .

<c o n s t r a i n t name=”C27” a r i t y=”2” scope=”V6 V7” r e f e r e n c e=”P0”>
<parameters>V6 V7 1</ parameters>

</ c o n s t r a i n t>
</ c o n s t r a i n t s>

</ in s t ance>

Figure 6.5: XCSP specification for N-Queens problem.
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n SCDE: Translation SCDE:MiniSat+ Total CPLEX Total CSP4J Total

8 152 153 14 262
40 1864 1965 81 1149
80 18379 19122 351 3224

120 86716 89233 2441 9862

Table 6.2: Translation and Total Solve Times in milliseconds

6.1.3 Results

Table 6.2 gives the translation and total solve times in milliseconds for N-Queens

problem for SCDE with the default MiniSat+ engine, as well as the solve times for

CPLEX and CSP4J. The bulk of SCDE’s work is in translation. The large translation

time results from I/O based database operations for data access that other solvers

are absent in. Furthermore, the need for expensive operations like joins does not

arise in OLP and XCSP due to their explicit definitions of variables, domains, and

predicates over them. These advantages typically come at the cost of having to do

manual data extraction and preprocessing to generate the mathematical encoding.

The solve times for SCDE’s three supported cardinality SAT solvers is given in

table 6.3. This table reveals that the boolean encoding generated by SCDE is very

effective for a variety of SAT solving approaches. We note that KWSAT shows erratic

solve times and assume it is related to it’s random variable selection strategy.

In conclusion we note that SCDE shows usable total response times (a few sec-

onds) for n < 80, but suffers a large translation penalty for higher n. We also note
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n SCDE: MiniSat+ SCDE: KWSAT SCDE: KDPLL

8 1 6 3
40 101 67 47
80 743 716 239

120 2517 294 323

Table 6.3: SCDE’s SAT Solver Times in milliseconds

that the boolean encoding generated by SCDE can be solved very effectively even

for large n, with the n = 120 solve time ≈ 0.3 seconds, compared to CPLEX’s 2.4

seconds and CSP4J’s 9.9 seconds. We believe that some database optimization in

the form of indexes could significantly improve our translation time, but have not

verified this postulate.



75

week 1 week 2 week 3 week 4 week 5 week 6 week 7

period 1 1 v 2 1 v 3 5 v 8 4 v 7 4 v 8 2 v 6 3 v 5
period 2 3 v 4 2 v 8 1 v 4 6 v 8 2 v 5 1 v 7 6 v 7
period 3 5 v 6 4 v 6 2 v 7 1 v 5 3 v 7 3 v 8 1 v 8
period 4 7 v 8 5 v 7 3 v 6 2 v 3 1 v 6 4 v 5 2 v 4

Table 6.4: RoundRobin solution for n = 8

6.2 Round Robin Tournament

In this section we analyze the RoundRobin problem. The problem is to schedule a

tournament of n teams over n − 1 weeks, with each week divided into n/2 periods,

and each period has one game divided into two slots. The first slot is for the team

playing at home, while the second is for the team playing away. A tournament must

satisfy the constraints listed below.

1. Every team plays once a week.

2. Every team plays every other team once.

3. Every team plays at most twice in the same period over the tournament.

A solution to the n = 8 problem is given in Table 6.4.

Note that swapping the home and away teams is harmless because no constraint

directly references home or away. This allows us to add the extra constraint that

the home team id (hid) must always be less (or greater) than the away team id (aid)
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for any game without altering the problem. This extra constraint drastically reduces

the search space. We note that the total number of games required such that each

team plays every other team will be:

(
n

2

)
=
n ∗ (n− 1)

2

This is exactly the total number of periods in our schedule, so a solution to the

problem will require all periods be filled with a unique combination of teams, and all

unique combinations (with hid < aid) be used. Even though there is no theoretical

difference between using the constraint hid < aid or hid > aid, both solvers tested

(SCDE and CPLEX OPL) showed significantly different runtimes. This is most likely

due to internal variable ordering. As a result, the best performing option was taken

for each solver.

6.2.1 SCL Encoding

The encoding for this problem begins with a set of base tables, given in Figure 6.6,

that provide the domains for the attributes in the constraint schema. The constraint

schema combines the weeks.id, periods.id, teams.id, and teams.id attributes as foreign

keys mapped to week, period, home, and away respectively. For decomposition pur-

poses, we designate the key {home, away}, which is valid due to constraint 2. The

SCL specification is given in Figure 6.7.
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CREATE TABLE teams ( id ) ;
INSERT INTO ”teams” VALUES( 1 ) ;
INSERT INTO ”teams” VALUES( 2 ) ;
. . .
INSERT INTO ”teams” VALUES( 8 ) ;

CREATE TABLE weeks ( id ) ;
INSERT INTO ”weeks” VALUES( 1 ) ;
INSERT INTO ”weeks” VALUES( 2 ) ;
. . .
INSERT INTO ”weeks” VALUES( 7 ) ;

CREATE TABLE pe r i od s ( id ) ;
INSERT INTO ” pe r i od s ” VALUES( 1 ) ;
INSERT INTO ” pe r i od s ” VALUES( 2 ) ;
INSERT INTO ” pe r i od s ” VALUES( 3 ) ;
INSERT INTO ” pe r i od s ” VALUES( 4 ) ;

Figure 6.6: SQL RoundRobin base tables.

6.2.2 CB-Decomposition

Our automated decomposition searches for constraints that reference a subset of

the constraint schema attribute set and creates new constraint schemas for those

subsets. Each new schema must contain the designated key {home, away}. The

algorithm creates the following three constraint schemas.

• Sub1 containing attributes home, away.

• Sub2 containing attributes week, home, away.

• Sub3 containing attributes period, home, away.
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CREATE CONSTRAINT TABLE schedu le (
week INTEGER FOREIGN KEY REFERENCES weeks ( id ) ,
per iod INTEGER FOREIGN KEY REFERENCES per i od s ( id ) ,
home INTEGER FOREIGN KEY REFERENCES teams ( id ) ,
away INTEGER FOREIGN KEY REFERENCES teams ( id ) ,

KEY (home , away ) ,

−−no team can p lay i t s e l f .
CONSTRAINT C0 CHECK ( NOT EXISTS

(SELECT ∗ FROM schedu le s WHERE s . home <= s . away ) ) ,

−−Each per iod must happen once a week .
CONSTRAINT C1 CHECK ( NOT EXISTS

(SELECT w. id , p . id FROM weeks w, pe r i od s p WHERE
1 <> (SELECT COUNT(∗ ) FROM schedu le s

WHERE s . week = w. id AND s . per iod=p . id ) ) ) ,

−−every team p lay s once a week .
CONSTRAINT C2 CHECK ( NOT EXISTS

(SELECT w. id , t . id FROM weeks w, teams t WHERE
1 <> (SELECT COUNT(∗ ) FROM schedu le s

WHERE s . week = w. id AND
( s . home = t . id OR s . away = t . id ) ) ) ) ,

−−every team p lay s at most tw ice in the same per iod .
CONSTRAINT C3 CHECK ( NOT EXISTS

(SELECT p . id , t . id FROM teams t , pe r i od s p WHERE
2 < (SELECT COUNT(∗ ) FROM schedu le s

WHERE s . per iod = p . id AND
( s . home = t . id OR s . away = t . id ) ) ) ) ,

−−every team p lay s every other team once .
CONSTRAINT C4 CHECK ( NOT EXISTS

(SELECT t1 . id , t2 . id FROM teams t1 , teams t2
WHERE t2 . id < t1 . id AND
1 <> (SELECT COUNT(∗ ) FROM schedu le s

WHERE s . home = t1 . id AND s . away = t2 . id ) ) )
) ;

Figure 6.7: SCL for RoundRobin problem



79

The constraints are then remapped to new schemas as follows.

• C0, C4 mapped to Sub1.

• C2 mapped to Sub2.

• C3 mapped to Sub3.

• C1 mapped to join of Sub2 and Sub3.

Each of the new constraint schemas have significantly smaller VBMaps than the

original schema. This decreases the search space for satisfying each constraint, which

in turn saves on solve time.

Note the choice of key is important. For example, {week,period} is also a valid

key. Unfortunately it does not work for our implementation because constraints

C0, C2, C3, C4 would generate new constraint schemas based on µ(C|schedule) ∪

{week,period} which contains all the attributes of the original schema schedule. Our

implementation requires any new constraint schemas to be strict subsets of the orig-

inal constraint schema in order to force a reduction in VBMap sizes.

6.2.3 OPL and XCSP Encodings

In this section we begin by exploring an OPL specification for the RoundRobin prob-

lem similar to the SCL specification given in Figure 6.7. The OPL encoding, given in
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Figure 6.8, creates one decision variable for every combination of {week, home, away}

with corresponding domain {0..nbPeriods} where 0 specifies that the given match-

up is not played for the given week. Given this, some constraints are more easily

expressed as duals. For example the constraint “No team can play twice in the same

week” forces all but one of the variables for a given team on a given week to the

value of 0.

The XCSP encoding for the RoundRobin problem is much more challenging due

to the fact that CSP4J does not support a “count” type constraint. Below we discuss

two different XCSP specifications for the n = 6 problem for which CSP4J fails to

find a solution in a reasonable amount of time.

XCSP Specification 1

In our first approach, we create one variable Gwp for each combination of week, period.

There are n∗(n−1)
2

= 15 G variables for n = 6, and each has a domain ∆(G) with

size
(
n
2

)
= 15. Each value in ∆(G) corresponds to a unique pair of teams {hid,aid}

with hid < aid as seen in table 6.5. Given this, the constraint “Every team plays

every other team” simply requires all variables to be assigned to unique values. This

constraint is commonly referred to as the “AllDifferent” constraint.

The constraint “Every team plays once a week” can be modeled as ”No team can

play twice in one week” because each team must play n − 1 games and there are
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us ing CP ;

int nbTeams = 8 ;
int nbWeeks = nbTeams−1;
int nbPeriods = nbTeams div 2 ;
int nbGames = nbWeeks∗nbPeriods ;

range Teams = 1 . . nbTeams ;
range Weeks = 1 . . nbWeeks ;
range Per iods = 0 . . nbPeriods ; //where 0 i s no game played .

dvar int schedu le [ Weeks , Teams , Teams ] in Per iods ;

s ub j e c t to {
//home team always sma l l e s t team / no team can p lay i t s e l f
f o r a l l (h , a in Teams : h>=a ) {

f o r a l l (w in Weeks ) schedu le [w, h , a ]==0;
} ;

//Each per iod happens once a week .
f o r a l l (p in Per iods : p>0, w in Weeks ){

count ( a l l (h , a in Teams : h<a ) schedu le [w, h , a ] , p)==1;
} ;

//No team can p lay twice in the same week .
f o r a l l ( t in Teams , w in Weeks ) {

// ( per iod must be 0 in a l l o the r s ) .
count ( a l l (h , a in Teams : h<a && (h==t | | a==t ) )

schedu le [w, h , a ] , 0)==nbWeeks−1;
} ;

//No team can p lay more than 2 times in the same per iod .
f o r a l l ( t in Teams , p in Per iods : p>0) {

count ( a l l (h , a in Teams : h<a && (h==t | | a==t ) , w in Weeks )
schedu le [w, h , a ] , p)<=2;

} ;

//Each team must p lay every other team once .
f o r a l l (h , a in Teams : h<a ) {

// ( per iod must be 0 in a l l o ther cases ) .
count ( a l l (w in Weeks ) schedu le [w, h , a ] , 0)==nbWeeks−1;

} ;
} ;

Figure 6.8: OPL for RoundRobin problem
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n−1 weeks. One way to express this constraint is via “extension” by listing all pairs

of values in ∆(G) representing two matches with the same team, and then requiring

that no two variables Gwa, Gwb for the week w may be simultaneously assigned to

these pairs of values. Table 6.6 gives an example relation for team id = 2 in the n = 6

problem. Since each team has n − 1 possible matches, there are n × ((n−1)
2

)
= 60

tuples in the complete version of the relation. As there are n−1 weeks, n/2 variables

per week, and all pairs (regardless of order) must be considered, the total number of

clauses of the form Gwa 6= X ∨ Gwb 6= Y is (n− 1)× ((n/2)P2) = 30 (where P is the

permutation operator) for each tuple in the relation. The final amount of clauses for

this constraint is given below.

n×
(

(n− 1)

2

)
× (n− 1)× (n/2)P2 = 1800

The constraint “Every team plays at most twice in the same period over the

tournament” can be modeled similarly to the second constraint. A relation is formed

listing all triples of G−values representing 3 matches with the same team, and then

requiring that no three variables for the same period may simultaneously be assigned

to these triplets of values. Given that there are n/2 periods and n− 1 variables for

each period, the total number of clauses of the form Gi 6= vx ∨Gj 6= vy ∨Gk 6= vk is

given by the formula below.
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n×
(

(n− 1)

3

)
× (n/2)× (n−1)P2 = 10800

∆(G) home away

1 1 2
2 1 3
3 1 4
4 1 5
5 1 6
6 2 3
7 2 4
8 2 5
9 2 6
10 3 4
11 3 5
12 3 6
13 4 5
14 4 6
15 5 6

Table 6.5: Domain of G variables

Gwa Gwb

1 6
1 7
1 8
1 9
6 7
6 8
6 9
7 8
7 9
8 9

Table 6.6: Illegal combinations for team 2

XCSP Specification 2

In our second approach, we create one variable for each combination of

{week,home,away} called Vwha. There are (n− 1)× (n
2

)
= 75 variables for n = 6, and

the domain of these variables is the periods {0..n/2} where 0 specifies that the given

match up is not played for the given week.

This model requires a few extra constraints imposing the correct periods per

week. The first of these constraints requires that the
∑n

h=1

∑n
a=h+1 Vwha =

∑n/2
p=1 p
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for any week w, where p represents the periods. The second constraint forbids any

period (besides 0) from occurring twice in the same week and is expressed by the

clause (V1 == 0 ∨ V2 == 0 ∨ V1! = V2) where V1, V2 represent all pairs of variables

Vwha for week w. Given that there are
(
n
2

)
variables for any week w, the formula

below gives the total number of clauses of this form.

(n− 1)×
(

(
(
n
2

)
)

2

)
= 5 ∗

(
15

2

)
= 525

The constraint “Every team plays once a week” can be modeled as “No team can

play twice in one week” because each team must play n − 1 games and there are

n− 1 weeks. We model this constraint with the clause (V1 == 0 ∨ V2 == 0) for all

pairs of variables Vwha where h == t∨ a == t and t, w represent a specific team and

week. For a specific week w and team t there are n− 1 variables Vwha. The formula

below gives the total number of clauses of this form.

(n− 1)× n×
(

(n− 1)

2

)
= 300

The constraint “Every team plays every other team” is expressed with a clause

of the form (V1 ∨ V2 ∨ ...Vi...V(n−1)×(n/2)) where Vi are variables representing every

week and period a specific combination of home, away teams can play in. As there

are
(
n
2

)
team combinations, the total number of clauses of this form is given by the
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formula below. (
n

2

)
= 15

The constraint “Every team plays at most twice in the same period over the

tournament” is expressed with a clause of the form (V1 == 0∨ V2 == 0∨ V3 == 0∨

V1! = V2∨V1! = V3∨V2! = V3) for all triplets of variables Vwha where h == t∨a == t

and t represents a specific team. As there are n−1 opponents and n−1 weeks, there

are (n − 1) × (n − 1) variables Vwha for each team. Given this, the total number of

clauses of this form is calculated by the formula below. Luckily we can safely remove

any combinations that refers to games in the same week, reducing this number to

7500 for n = 6.

n×
(

(n− 1)2

3

)
= 13800

Neither of the two encodings presented here are efficient. They highlight some

of the complexities in modeling such a problem manually, which contrasts with the

SCDE’s approach of not using explicit variables or domains. Furthermore, with our

decomposition approach, SCDE’s underlying variable selection can be difficult to

manually duplicate due to the designated key joining mechanism described in Section

4.2.4. In summary, Table 6.7 shows the resulting run times of these specifications

for n = 6 problem with the CSP4J engine. As these times are much larger than the

run times of OPL and SCDE, the XCSP specification is not used in the final results
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XCSP Spec 1 XCSP Spec 2 SCDE:Regular

>2400 sec 488.47 sec 0.45 sec

Table 6.7: Total Solve Times for CSP4J at n = 6

Translation Time Solve Time
n Regular Decompose Regular Decompose

10 0.78 sec 1.71 sec 0.21 sec 0.97 sec
12 1.01 sec 3.69 sec 57.24 sec 7.62 sec
14 1.72 sec 8.89 sec 588.76 sec 10.99 sec
16 2.2 sec 20.85 sec >144000 sec 140.21 sec

Figure 6.9: Experiment 2 Translation/Solve Times

section.

6.2.4 Results

Figure 6.9 shows the SCDE translation and solve times for the problem. As the

run time is dominated by the exponentially growing solve time for n > 10, the

translation time is usually insignificant. As many problems have this property, we

expect SCDE’s translation time to be a non-issue in the general case.

Figure 6.10 compares the SCDE run times to the CPLEX run times based on

the OPL specification of Figure 6.8. As the OPL specification does not decompose

the problem, it provides a basis for comparison to our automated decomposition

approach. The results highlight the value of the CB-Decomposition algorithm in

improving simple specifications. We note that the manual decomposition used in



87

n SCDE:Regular SCDE:Decomposed CPLEX

10 0.99 sec 2.68 sec 0.107 sec
12 58.25 sec 11.31 sec 3.18 sec
14 590.48 sec 19.88 sec 51.26 sec
16 >144000 sec 161 sec 130392 sec

Figure 6.10: Experiment 2 Run Times

the OPL specification in [15] achieves sub minute runtimes for the RoundRobin

problem through n = 30. This specification leverages arc-consistency and other

sophisticated techniques which are, in our opinion, outside the expertise of the typical

RDB practitioner.
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6.3 Course Scheduling

In this section we analyze a more complex version of the university course scheduling

problem described in Figure 3.1. The constraint schema creates a schedule that re-

lates courses, professors, teaching times, and rooms/facilities. Experimental results

show averages from 24 separate data instances with some randomized elements. Each

instance has 7 time slots, 4 rooms, 28 sections of 10 different courses, and 15 profes-

sors. The number of sections a professor is contracted to teach is randomly assigned

and must be met in the solution, balanced by the requirement that all sections must

be taught. Other random elements include matching qualifications of professors to

courses, what rooms/facilities meet the needs of each course, preferences for time

slots, and whether a professor will teach in adjacent time slots (if more than one

section is contracted).

6.3.1 SCL Specification

Two variations of the problem are used. Experiment A has 10 constraints, each

referencing 3 or less of the 4 attributes in the constraint schema schedule. The SCL

for experiment A is given in Figure 6.11. Experiment B adds an 11th constraint

which requires professors to remain in the same room if they teach in adjacent time

slots. This constraint, given in Figure 6.12, references both attributes outside of
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CREATE CONSTRAINT TABLE schedu le (
c id INTEGER FOREIGN KEY REFERENCES cour s e s ( id ) ,
pid INTEGER FOREIGN KEY REFERENCES p r o f e s s o r s ( id ) ,
r i d INTEGER FOREIGN KEY REFERENCES rooms ( id ) ,
t i d INTEGER FOREIGN KEY REFERENCES t i m e s l o t s ( id ) ,
KEY( c id , t i d ) ,

−−No pro f e s so r can teach ou t s i d e o f h i s course l i s t .
CONSTRAINT F1 CHECK (NOT EXISTS

(SELECT ∗ FROM schedu le s , c ou r s e s c WHERE s . c id=c . id AND c . name NOT IN (
SELECT pc . cname FROM p r o f c o u r s e s pc WHERE pc . pid = s . pid ) ) ) ,

−−No pro f e s so r can teach be f o r e or a f t e r h i s ea r l y / l a t e t imes .
CONSTRAINT F2 CHECK (NOT EXISTS

(SELECT ∗ FROM schedu le s , p r o f e s s o r s p WHERE
s . pid = p . id AND ( s . t id<p . e a r l y s l o t OR s . t id>p . l a t e s l o t ) ) ) ,

−−Each pro f t eaches num times . ( p )
CONSTRAINT C3 CHECK (NOT EXISTS

(SELECT p . id , p .num FROM p r o f e s s o r s p WHERE
p .num <> (SELECT COUNT(∗ ) FROM schedu le s WHERE s . pid=p . id ) ) ) ,

−−No pro f e s so r can teach mu l t i p l e t imes during the same time s l o t .
CONSTRAINT C4 CHECK (NOT EXISTS

(SELECT p . id , t . id FROM p r o f e s s o r s p , t i m e s l o t s t WHERE
1 < (SELECT COUNT(∗ ) FROM schedu le s WHERE s . pid = p . id AND s . t i d=t . id ) ) ) ,

−−Some pro f e s s o r s can NOT teach Back to Back (BB=no ) .
CONSTRAINT C5 CHECK (NOT EXISTS

(SELECT ∗ FROM schedu le s1 , s chedu le s2 , p r o f e s s o r s p WHERE
s1 . pid=s2 . pid AND p . id=s1 . pid AND s1 . t id>s2 . t i d AND
p . back to back=’No ’ AND ( s1 . t i d − s2 . t i d )=1)) ,

−−Each course must be taugh t e x a c t l y once .
CONSTRAINT C6 CHECK (NOT EXISTS

(SELECT c . id FROM cour s e s c WHERE
1 <> (SELECT COUNT(∗ ) FROM schedu le s WHERE s . c id = c . id ) ) ) ,

−−No room can be booked more than once per time s l o t .
CONSTRAINT C7 CHECK (NOT EXISTS

(SELECT r . id , t . id FROM rooms r , t i m e s l o t s t WHERE
1 < (SELECT COUNT(∗ ) FROM schedu le s WHERE s . r i d=r . id AND s . t i d=t . id ) ) ) ,

−−Each course must be in room b i g enough
CONSTRAINT F8 CHECK (NOT EXISTS

(SELECT ∗ FROM schedu le s , rooms r , cou r s e s c WHERE
s . r i d = r . id AND s . c id = c . id AND c . size>r . s ize ) ) ,

−−Course with p ro j e c t o r requirements must be in appropr ia te rooms .
CONSTRAINT F9 CHECK (NOT EXISTS

(SELECT ∗ FROM schedu le s , rooms r , cou r s e s c WHERE
s . r i d = r . id AND s . c id = c . id AND c . p r o j e c t o r=’ Yes ’ AND r . p r o j e c t o r=’No ’ ) ) ,

−−Course Pairs may not be taugh t at the same time .
CONSTRAINT C10 CHECK (NOT EXISTS

(SELECT ∗ FROM schedu le s1 , s chedu le s2 , c o u r s e p a i r s cp WHERE
s1 . c id=cp . c id1 AND s2 . c id=cp . c id2 AND s1 . t i d=s2 . t i d ) )

) ;

Figure 6.11: SCL for Course Scheduling Problem
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the designated key. As a result, the automated decomposition must join several

constraint schemas to process the constraint (see Section 4.2.4).

CONSTRAINT C11 CHECK (NOT EXISTS
(SELECT ∗ FROM schedu le s1 , s chedu le s2 WHERE
s1 . pid=s2 . pid AND s1 . t id>s2 . t i d AND ( s1 . t i d − s2 . t i d )=1 AND s1 . r id<>s2 . r i d ) )

Figure 6.12: SCL for Constraint 11 - Experiment B

6.3.2 Results

We begin by examining the impact of CB-decomposition on the final boolean encod-

ing metrics. Figure 6.13 compares the number of variables, the number of clauses,

and the total size of the encoding (reflecting more globally the size of the clauses).

These properties give useful insights into the potential speed up for both the trans-

lation time from SQL to SAT, and the solve time for the boolean solver.

We note that the number of boolean variables for both experiments is identical,

as the tuples associated with the relations courses, professors, times and rooms are

identical. The decomposed version of the problem has fewer variables as not all

Metric Exp Original Decomposition

Num of Variables A 2786 1710
B 2786 1710

Num of Clauses A 108223 7728
B 193226 92731

Encoding Size A 2693 KB 216 KB
B 4746 KB 3633 KB

Figure 6.13: Encoding Metrics for Course Scheduling
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combinations of the four attributes are associated with a boolean variable. Only

certain subsets, for instance professors.id and courses.id have unique boolean variables.

Experiment A shows significantly fewer boolean clauses generated for the decom-

posed problem than the original. This is expected as constraints reference smaller

variable maps. In experiment B, the 11th constraint alone, which must reference the

entire schedule schema, accounts for 85,003 of the 92,731 clauses.

Figures 6.14 and 6.15 show the run times in seconds for the translation and

solving steps for the two experiments. As experiment A has no constraints across

all attributes of the solution table, it’s decomposition produces more independent

sub-problems which are easily translated and solved. The result is a dramatic (≈

4.5x) improvement in total run time. Experiment B, on the other hand, contains

a constraint that requires a join of sub-solution tables when decomposed. This

constraint has a much larger translation time than the time it takes to translate the

original problem. Furthermore, the sub-solutions are not independent. This results

in a weaker decomposition with a modest performance improvement. We anticipate

that, for problems of this type, CB-decomposition will reduce the solve time but will

incur a higher translation time. Hence the overall value of the decomposition will

increase as the average solve time becomes the dominant factor in the total time to

solution.
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Figure 6.14: Experiment A Run Times (sec)

Figure 6.15: Experiment B Run Times (sec)
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6.4 Oxford College Freshman Partitioning

In this section we analyze a partition style problem posed to us by Oxford College

for their incoming freshman class in 2009. The problem requires 400 students to

be split into 25 groups, of size 16 each, while maximizing the even distribution of 3

dimensions; gender, geographic origin, and ethnic diversity. More precisely the min-

imum and maximum number of students in any one group belonging to a particular

category within a dimension should be maximized and minimized respectively. For

example, if there are 26 students with a geographic origin of Latin America, then

the ideal solution would have 2 of these students in 1 group, and 1 student in each

of the remaining 24 groups.

Mathematically, let set G = {H1, . . . , Hn} be the set of all students where each

student entry H consists of a vector of dimension 3, H = {H[d1], H[d2], H[d3]},

representing a value in each of the three dimensions {d1, d2, d3} with corresponding

domains {∆(d1),∆(d2),∆(d3)}. Let |Y [di] = x| be the number of students in set

Y with H[di] = x. The problem is to partitioned G into sets G1, . . . , Gm of equal

size such that the min1≤k≤m |Gk[di] = x| is maximized and max1≤k≤m |Gk[di] = x| is

minimized for all di ∈ {d1, d2, d3}, x ∈ ∆(di). Note in our problem n = 400,m =

25, |∆(d1)| = 2, |∆(d2)| = 8, |∆(d3)| = 7 where d1 is gender, d2 is geographic loca-

tion, and d3 is ethnic diversity.
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6.4.1 SCL Specification

As SCDE does not directly support optimization, we replace the optimization con-

straints with satisfaction constraints:

|Gk[di] = x| ≤ d|G[di] = x|/me

|Gk[di] = x| ≥ b|G[di] = x|/mc

where |G[di] = x| is the total number of students with H[di] = x and dze, bzc are

the ceiling and floor functions respectively. We note that for our particular data set

there exists an optimal solution where every constraint can be satisfied.

The SCL specification references a database comprised of 5 tables including

geocode, diversity, and gender, containing the domains ∆(d1),∆(d2) and ∆(d3) re-

spectively, the group table containing the id of each of the 25 groups {G1, . . . , G25},

and the people(id, geocode, diversity, gender) table containing all 400 students in G.

The constraint schema maps the people.id to the group.id attribute. The SCL is given

in Figure 6.16. Note that the constraint right-hand-side values are pre-calculated and

stored in the geocode.max/min, diversity.max/min, and gender.max/min attributes.
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CREATE CONSTRAINT TABLE studgroups (
pid INTEGER FOREIGN KEY REFERENCES PEOPLE( id ) ,
g id INTEGER FOREIGN KEY REFERENCES GROUPS( id ) ,

−−Each s tudent must be in e x a c t l y 1 group .
CONSTRAINT C0 CHECK (NOT EXISTS
(SELECT p . id FROM people p WHERE

1 <> (SELECT COUNT(∗ ) FROM studgroups s WHERE s . pid = p . id ) ) ) ,

−−Each group must have 16 peop le t o t a l
CONSTRAINT C1 CHECK (NOT EXISTS
(SELECT g . id FROM groups g WHERE

16 <> (SELECT COUNT(∗ ) FROM studgroups s WHERE s . g id = g . id ) ) ) ,

−−Each group shou ld have gender ba lance .
CONSTRAINT C GENDER MAX CHECK ( NOT EXISTS
(SELECT grp . id , gen . type , gen .max FROM groups grp , gender gen

WHERE gen .max < (SELECT COUNT(∗ ) FROM studgroups s , people p
WHERE s . pid = p . id AND s . g id = grp . id AND p . gender = gen . type ) ) ) ,

CONSTRAINT C GENDER MIN CHECK ( NOT EXISTS
(SELECT grp . id , gen . type , gen .min FROM groups grp , gender gen

WHERE gen .min > (SELECT COUNT(∗ ) FROM studgroups s , people p
WHERE s . pid = p . id AND s . g id = grp . id AND p . gender = gen . type ) ) ) ,

−−Each group shou ld have geocode ba lance .
CONSTRAINT C GEOCODE MAX CHECK ( NOT EXISTS
(SELECT grp . id , g . type , g .max FROM groups grp , geocode g

WHERE g .max < (SELECT COUNT(∗ ) FROM studgroups s , people p
WHERE s . pid = p . id AND s . g id = grp . id AND p . geocode = g . type ) ) ) ,

CONSTRAINT C GEOCODE MIN CHECK ( NOT EXISTS
(SELECT grp . id , g . type , g .min FROM groups grp , geocode g

WHERE g .min > (SELECT COUNT(∗ ) FROM studgroups s , people p
WHERE s . pid = p . id AND s . g id = grp . id AND p . geocode = g . type ) ) ) ,

−−Each group shou ld have d i v e r s i t y ba lance .
CONSTRAINT C DIVERSITY MAX CHECK ( NOT EXISTS
(SELECT grp . id , g . type , g .max FROM groups grp , d i v e r s i t y g

WHERE g .max < (SELECT COUNT(∗ ) FROM studgroups s , people p
WHERE s . pid = p . id AND s . g id = grp . id AND p . d i v e r s i t y = g . type ) ) ) ,

CONSTRAINT C DIVERSITY MIN CHECK ( NOT EXISTS
(SELECT grp . id , g . type , g .min FROM groups grp , d i v e r s i t y g

WHERE g .min > (SELECT COUNT(∗ ) FROM studgroups s , people p
WHERE s . pid = p . id AND s . g id = grp . id AND p . d i v e r s i t y = g . type ) ) )

) ;

Figure 6.16: SCL for Oxford Freshman Partitioning problem
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6.4.2 OPL Specification

In this section we give an OPL specification for the Oxford freshman partitioning

problem. The specification, given in Figure 6.17, is similar to the SCL specification.

The data arrays gender, geocode, and diversity contain a copy (abbreviated in the

figure for readability) of the original database. The decision variable array assigns

each student to 1 group, implicitly enforcing the first SCL constraint. The remaining

constraints are similar to the SCL specification.

6.4.3 Results

Figure 6.18 shows the total run times of the problem for SCDE with all 3 backend

solvers, and the CPLEX solver. The results demonstrate the importance of support-

ing a variety of backend solvers and provides more evidence for the feasibility of our

approach.

Solver Run Time

SCDE with MiniSat+ > 900 sec

SCDE with KDPLL > 900 sec

SCDE with KWSAT 23.6 sec

CPLEX 293.0 sec

Figure 6.18: Run Times for Oxford Freshman Partitioning problem
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us ing CP ;

int nbStudents = 400 ;
int nbGroups = 25 ;
int nbGrpSize = nbStudents div nbGroups ;
int nbGenders = 2 ;
int nbGeoCodes = 8 ;
int nbDiver s i ty = 7 ;

range rStud = 1 . . nbStudents ;
range rGrp = 1 . . nbGroups ;
range rGen = 1 . . nbGenders ;
range rGeo = 1 . . nbGeoCodes ;
range rDiv = 1 . . nbDiver s i ty ;

int gender [ rStud ] = [ 2 , 2 , 2 , 1 , 2 , 2 , 1 , 1 , 2 , 1 , 1 , 2 , 1 , 2 , 2 , 1 , 2 , 1 , 1 , 1 . . .
int genderMax [ rGen ] = [ 7 , 1 0 ] ;
int genderMin [ rGen ] = [ 6 , 9 ] ;

int geocode [ rStud ] = [ 1 , 4 , 2 , 2 , 1 , 8 , 2 , 1 , 7 , 1 , 1 , 1 , 2 , 4 , 1 , 2 , 2 , 1 , 1 , 1 , . . .
int geocodeMax [ rGeo ] = [ 8 , 4 , 2 , 1 , 1 , 1 , 1 , 1 ] ;
int geocodeMin [ rGeo ] = [ 7 , 3 , 1 , 0 , 0 , 0 , 0 , 1 ] ;

int d i v e r s i t y [ rStud ] = [ 6 , 6 , 6 , 2 , 3 , 3 , 5 , 6 , 6 , 6 , 3 , 6 , 2 , 4 , 6 , 6 , 2 , 5 , 5 , 3 , . . .
int divers i tyMax [ rDiv ] = [ 1 , 5 , 3 , 1 , 2 , 7 , 1 ] ;
int d ive r s i tyMin [ rDiv ] = [ 0 , 4 , 2 , 0 , 1 , 6 , 0 ] ;

// Decis ion Var iab le
dvar int studgroups [ rStud ] in rGrp ;

// So l v ing
s ub j e c t to {

f o r a l l ( g in rGrp ){
count ( a l l ( s in rStud ) studgroups [ s ] , g ) == nbGrpSize ;
f o r a l l ( x in rGen ){

count ( a l l ( s in rStud : gender [ s]==x ) studgroups [ s ] , g ) <= genderMax [ x ] ;
count ( a l l ( s in rStud : gender [ s]==x ) studgroups [ s ] , g ) >= genderMin [ x ] ;

} ;
f o r a l l ( x in rGeo ){

count ( a l l ( s in rStud : geocode [ s]==x ) studgroups [ s ] , g ) <= geocodeMax [ x ] ;
count ( a l l ( s in rStud : geocode [ s]==x ) studgroups [ s ] , g ) >= geocodeMin [ x ] ;

} ;
f o r a l l ( x in rDiv ){

count ( a l l ( s in rStud : d i v e r s i t y [ s]==x ) studgroups [ s ] , g ) <= divers i tyMax [ x ] ;
count ( a l l ( s in rStud : d i v e r s i t y [ s]==x ) studgroups [ s ] , g ) >= diver s i tyMin [ x ] ;

} ;
} ;

} ;

Figure 6.17: OPL for Oxford Freshman Partitioning problem
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Chapter 7

Conclusion

We have described a research effort towards the integration RDB and CSP sys-

tems. Our theoretical contributions include a formalization of the RCSP, a scheme

for leveraging SQL’s DDL for RCSP specification, a set of algorithms for compiling

RCSP defined in SQL to boolean satisfiability formulae, and an automated RCSP

decomposition technique for reducing solve times. We have created a prototype for

testing these techniques and described several implementation-level optimizations

which improve overall performance. Finally, we have provided both theoretical and

empirical analyses demonstrating the practical value of our efforts.

7.1 Future Work

As this is relatively new research, there remains many unexplored areas worthy of

investigation. We list a few key areas that our research has touched on in the past,

but never fully addressed.
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7.1.1 Optimization Problems

Many practical industry constraint problems require optimization as oppose to satis-

faction. In general, optimization problems generalize satisfaction problems by adding

cost functions which must be maximized or minimized while maintaining the satis-

faction of a set of constraints. A brute force approach, which databases are naturally

poised to pursue, is to collect all solutions to the underlying satisfaction problem,

and search through them for optimal cost function values. For a majority of prob-

lems, this approach is not scalable. Instead, a more complete approach is to develop

a flexible technique for cost function specification in relational algebra along with an

algorithm for translating these functions into traditional formulae useable by existing

optimization systems.

7.1.2 Interactive CSP Solving

Frequent user interaction is a basic premise of dynamic CSPs. Furthermore, there is

growing recognition that the ability to incrementally fine-tune constraints is impor-

tant to fully exploit the power of intelligent tools in solving real-world problems [32].

Although the SCL supports some commands for user interaction, including TRACE

and ALTER CONSTRAINT, these commands are based on static analysis of constraints

outside of the solver. An intriguing approach to enabling dynamic CSP interaction is
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to more closely integrate the solver and RDB such that changes to relational schema

and data dynamically impact active solver work, and feedback from these changes

can be viewed in real time.

7.1.3 Other Decomposition Approaches

We have demonstrated a decomposition approach based on attribute partitions de-

termined through constraint analysis. Although this technique has shown promise,

many other strategies exist. Preliminary work by [35, 20] shows that domains be-

longing to certain attributes can be divided into smaller domains creating more easily

solved sub-problems. These types of approaches, based on domain decomposition,

require further study. In general, automated decomposition is particularly promis-

ing for RCSP as rich semantic information is incorporated as part of the problem

specification.

7.2 Summary

The benefits of integrating relational databases with constraint satisfaction solvers

have always been apparent. A strong integration of these two technologies can be

accomplished by specifying CSPs in current RDB languages and tools, and solving

these problems via translation to SAT –what Bacchus calls the assembly language

of CSPs [38]. Benchmarking reveals this approach is feasible and initial comparison
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on a range of test problems shows that even a straightforward encoding, when used

in conjunction with an appropriate constraint solver, yields very good performance.

Furthermore, performance can be drastically improved for certain problems via auto-

mated decomposition. The end result is a viable foundation for a RCSP system that

enables typical RDB practitioners to solve CSPs over relational data in an intuitive

and efficient manner.
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