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Abstract 
 

A Hierarchical Bayesian Approach to  

Detect Differentially Methylated Loci from  

Bisulfite Sequencing Data 

By Hao Feng 

 

 

DNA methylation is a central epigenetic modification that has essential roles in cellular 

processes including genome regulation, development and disease. In studies of DNA 

methylation, one key task is to identify methylation differences under distinct biological 

contexts. Recently, as bisulfite sequencing technology (BS-seq) has made it possible to 

detect methylation in CG loci level, more and more datasets are becoming available to 

study DNA methylation. A common drawback of datasets in these studies; however, is 

that the number of sample replicates is usually limited. This can lead to unstable 

estimation of within group variance, and may subsequently yield unsatisfactory results in 

differentially methylated loci (DML) detection. Here we propose a new method to apply 

shrinkage to the variance estimation in an empirical Bayes model. We show that the 

variance shrinkage in these data can be done by shrinking a dispersion parameter. 

Simulation results demonstrate the favorable performance of the new methods. 
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Introduction 

DNA methylation is an epigenetic modification that plays an important role in normal 

development and gene regulation[1-3]. It is a biochemical process that mainly occurs on 

CpG dinucleotides, with very rare cases that happen in CHG and CHH (H= A, T or C)[4]. 

Typically, by adding a methyl group to the 5-position of a cytosine pyrimidine ring (C), 

the chemical structure is altered. It has been proposed that the methyl group could 

physically protect the associated target gene and prevent the transcription process from 

starting [5, 6]. Consequently, methylation of a cytosine within a gene or its promoter 

region may affect gene expression.  

To understand the biological consequences of DNA methylation status, methylation has 

traditionally been studied at the gene level. However, methods for assessing whole-

genome methylation have improved substantially in the past few years in terms of 

accuracy, genome coverage, resolution and reduced cost. Current sequencing-based 

methods for methylation analysis can be classified into two categories: bisulfite 

conversion–based[7] and enrichment-based methods[8]. The latter category includes 

MeDIP-seq[9], MBD-seq[10, 11] and methylCap-seq[12], which use different methyl-

binding proteins or domains for methyl capture at specific level concentrations of 

genomic DNA. For example, MeDIP-seq involves antibodies directed against mC or 

mCG to precipitate methylated DNA fragments, followed by the application of next-

generation sequencing to the fragments [8, 9]. On the other hand, bisulfite conversion–

based methods include whole-genome bisulfite sequencing (BS-seq or MethylC-seq) [4, 

13-19] and reduced representation bisulfite sequencing (RRBS)[20, 21]. To be specific, 

in the RRBS method, after genomic DNA digestion and size-selection, PCR products are 
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cloned and sequenced. Sequences generated from RRBS libraries are then projected onto 

genome [20, 22]. Although RRBS provides limited genome coverage (5–10%) and both 

RRBS and whole-genome bisulfite sequencing can be expensive for large samples, they 

have become popular because they allow detection at a single-base resolution. 

Specifically, after treating DNA with sodium bisulfite, unmethylated cytosine is 

deaminated and changed to uracil, which will be amplified as thymine; while 5-

methylcytosine residues are protected by the methyl group and remain unchanged. For a 

specific CpG site in the genome, using replicates in BS-seq after PCR, we can easily 

calculate the counts for this specific CpG that is either a thymine or a cytosine. The count 

of thymine represents the number of sequenced DNA strands that are unmethylated (U) 

and the count of cytosine represents the number of DNA strands that are methylated (M) 

at this CpG site. By taking the ratio of methylated number (M) to the total reading 

number (M+U), the methylation level of a CpG site is calculated as M/(M+U), which is a 

proportion number that lies strictly between 0 and 1. By this process, genome-wide DNA 

methylation measurement is achieved at single-base resolution [13]. 

As quick expansion and rapid increase of data generated by BS-seq techniques becomes 

available, BS-seq data can be applied to a variety of analyses. Since methylation can 

influence gene expression, and differences in gene expression can lead to differences in 

functionality among cells in each kind of tissue, it is possible that reported cell-specific 

methylation patterns [23] may underlie differences in cell function. Consistent with this, 

DNA methylation displays distinct signatures for different cell types [24]. For example, 

in the same region on the genome, malignant tissues could present a hypo-methylated 

pattern while normal tissues present a hyper-methylated pattern [24-27]. As differential 
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methylation patterns are frequently reported in disease states, one of the key tasks in 

DNA methylation analyses is to identify and elucidate the role of Differentially 

Methylated Loci (DML) or Regions (DMR).  

Several existing methods including Fisher’s exact tests and t-tests have been applied to 

detect DML/DMR in comparisons between two groups. If there is only one sample per 

group, Fisher’s exact test can be applied to each single CpG site to identify DML [4, 28, 

29]. The Fisher’s exact test here compares the fraction of methylated Cs in sample 1 and 

sample 2 in the absence of replicates. When replicates exist, Fisher’s exact test would not 

be appropriate due to the nature of the 2-by-2 contingency table test. When there is more 

than one sample per group, derivations of a t-test could be applied to compare the 

proportions in each sample [28, 30]. After computing test statistics, the selected cutoff 

threshold for identifying DML can be determined using the empirical distribution of test 

statistics as in [30]. Regions that contain DML can then be claimed as DMR. 

The problem and challenge of DML/DMR detection is that it typically lacks enough 

replicates, which could make the estimated values and test results unstable. For example, 

in one dataset of DNA methylation of early mammalian embryo, only 2-5 replicates were 

included [31]. When performing a two-sample t-test in each of the CpG site, low number 

of replicates in each sample would violate the assumption of sufficiently large number of 

replicates in central limit theorem, making the asymptotic distribution do not hold 

anymore. Moreover, we also need to correctly account for the variation in our 

measurements of methylation. When measuring methylation levels, there are two sources 

of variation: technical variation, which reflects the measurement error resulting from the 

technology, and biological variation, which reflects the heterogeneity among samples we 
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get from the same group or population [23, 32, 33]. Since the methylation process can be 

interpreted as a stochastic process, replicates in the same group generally will not have 

exactly the same methylation level. Existing methods can capture the overall variation, 

but we want to distinguish biological variation and technical variation in our result, 

because our goal is to identify CpG sites and regions that exhibit consistent differences 

even when taking biological variation into account.  

To solve this problem, it is natural to think about borrowing information from other CpG 

sites to achieve better estimation of variation and subsequently improve our test results. 

Previous studies in microarray and RNA sequencing showed better estimation and 

significant improvement after using shrinkage estimators [32, 34-36]. These methods 

proposed to use the negative binomial (NB) model, which is a gamma-Poisson mixture, 

to fit the gene expression data and correctly capture biological variance. Here, we 

propose a beta-binomial hierarchical Bayesian model to capture the biological variation 

and apply shrinkage in estimating it. This model can be interpreted as follows: the beta 

distribution models the unobserved true methylation levels in each CpG site across 

replicates in each group; and conditioning on the true methylation level as the probability, 

the counts of the methylated cytosine follow a binomial distribution.  Here, the biological 

variation is captured by the beta distribution and the technical variation is captured by the 

binomial distribution. The biological variation is captured in the beta model by mean   

and dispersion  : 

     (   )                                                            (1.1) 



 | 5 P a g e

 

Note that dispersion   represents the variation of a CpG site’s methylation level relative 

to its mean. Each CpG site within a single condition (e.g. within cases, or within controls) 

will have its own dispersion under our model. After verifying with real data, a prior is 

established that   follows a log-normal distribution across the whole genome. Then 

estimating and shrinking can be done for each    using a Bayesian approach.  

After correctly accounting for dispersion and improving our estimator of within-group 

biological variance, a simple two-condition comparison can be framed as a Wald test or 

likelihood ratio test. Using simulations based on real data, we demonstrate that the 

proposed method yields improved DML detection in the top discovery rate (TDR). The 

rest of the paper is organized as follows. In the Methods Section, we present the 

hierarchical model, estimation, and testing procedure. In the Results Section, we present 

the results from our simulations comparing DML detection using our proposed method 

versus alternative ones. In the Discussion Section, we discuss the interpretation of the 

dispersion, the connection with other studies, and future directions.   

 

 

Methods 

 

Here, we denote that at the ith CpG site, jth group and kth replicate,      is the number of 

reads that show methylation,      is the total number of reads that cover this position, and  

    is the underlying methylation level. At the ith CpG site, the overall methylation level 
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is denoted by     and the dispersion is   . Then the following beta-binomial hierarchical 

model is proposed: 

 

                        (         ) 

         (       ) 

                      (        
 ) 

 

           
  are parameters from a common prior which can be estimated from the data. 

In a two group comparison setting, j is equal to 1 or 2. A method of moment estimator 

(MME) is used to estimate the prior parameters.  
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Fig. 1. Histogram of the logarithm of estimated CpG-specific dispersion (   , estimated by MME) from 

mouse embryogenesis data [31] for one chromosome. The solid line is the density for normal distribution 

with parameters estimated from log(   ).     can be approximately modeled as a log-normal distribution. 

 

Using data on DNA methylation from mouse embryogenesis [31], the distribution of the 

logarithm of estimated dispersion, i.e.    ( ), is approximately Gaussian as shown in 

Figure 1. From the histogram we can see that the dispersion can be approximated as a 

log-normal distribution. This Gaussian-like data structure in Figure 1 confirms that it is 

appropriate to use the log-normal assumption as we proposed.  

     represents the underlying true methylation proportion which is restricted in [0,1]. It 

can vary across replicates even for the same CpG site (same i) and same group (same j). 

However, within the same CpG site i and same group j, our model assumes that       

comes from the same beta distribution for all replicates. The beta distribution can be re-

parameterized as a function of the mean     and dispersion parameter    . Compared with 

the traditional form of the beta (   ) distribution, the parameters have the following 

relationship: 

  
 

   
 

  
 

     
 

Thus,  
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   ( )  (
 

   
) (  

 

   
) (

 

     
)   (   )  

After re-parametrization,   captures the underlying true methylation level and   captures 

the dispersion or biological variation in our model. 

Also, if we combine the two pieces of the hierarchical model together, we can see that the 

biological variation is captured by the beta distribution and the remaining variation is 

captured by the binomial distribution.   

Previous studies have shown that the methylation levels for consecutive CpG sites are 

autocorrelated across the genome [37, 38], suggesting that     may vary smoothly along 

the genome [30]. Therefore, the package BSmooth [30] can be implemented in 

estimating     . In this situation,      is assumed to be a smooth function with respect to 

genomic location    : 

       (  ) 

  (  ) can be estimated with a local-likelihood smoother [39]. To do this, the data from all 

replicates is collapsed and combined to improve the coverage depth and estimation. The 

estimated methylation level  ̂   for the ith CpG site is then obtained as estimated profile 

 ̂ (  ). Notably, since smoothing is highly dependent on the assumption of strong 

autocorrelation of methylation levels across the genome, it is possible that in situations 

where this assumption is violated, smoothing could yield imprecise estimation. In this 

case, a more powerful strategy may be to simply use the maximum likelihood estimator 

(MLE) of the beta distribution to get the point estimate of     in each ith CpG site and jth 

group.  



 | 9 P a g e

 

Our next goal is to estimate    in our model and apply an empirical Bayes method to our 

estimation. When putting the prior and distribution together as follows: 

 (   |             )   (   )∏ (     |            )

 

 

 

 The posterior point estimate of   then satisfies:  

 

log( (   |             ))    

∑  (     (   
    )   )  + ∑  (          (   

    )(     ))    

  ∑  (     (   
    ))      ((   

    )   )     ((   
    )(     ))  

   (   
    )     (   )     (   )  

(    (   )    )
 

    
  

 

In practice, we can get the point estimate of   by maximizing the above equation using 

the Newton-Raphson method after plugging in the hyper-parameters (prior)     and    
  . 

We also plugged in the estimated     with or without smoothing as described. We 

maximized the likelihood using the “optimize” function in R (2.15.2). Because we use a 

prior with estimated            
 , the estimated     is therefore an empirical Bayes 

estimate shrunken toward the common prior. Also notable is that the last line of the above 
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equation includes the penalty function      (   )     (   )  
(   (   )    )

 

    
   , which 

will penalize large extreme     in our estimation.  

After finishing the parameters estimation described above for each jth group, hypothesis 

tests can be done at each ith CG loci to compare methylation at group j=1 and group j=2. 

In order to detect DML in a Wald test framework, it is necessary to correctly account for 

the variance of each CpG site of each group.  Here our point estimate for   in the ith CpG 

site and jth group is  ̂   
∑      

∑      
 by combining data from all replicates together. Since we 

have assumed the following distribution: 

                 (              ) 

The variance of      should be: 

   (    )         (     )   (      )     

Then we can get: 

   ( ̂  )     (
∑      

∑      
) 

 (
 

∑      
) ∑{       (     )   (      )    }              (   )

 

 

After estimating the dispersion parameter     and methylation level     for each CpG site 

i and group j, we can calculate the estimated variance in each CpG site i of each group j 

by plugging in estimated values to the equation (1.2). For two-group comparisons, we can 

estimate variances for each group by plugging in the corresponding estimates of the 
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dispersion parameter     and methylation level     for each group. If we have 

methylation data from both cancer patients and control subjects, then we can denote the 

cancer patient group as group # 1 and the control group as group # 2. For a specific CpG 

site, the estimated variance of methylation for the cancer group 1 is    ̂   and the 

estimated variance for the control group is    ̂   .  

Hypothesis tests for the comparison of two groups can then be performed in the Wald test 

framework. To be specific, the Wald test for the two-group comparison of the ith CpG 

site is constructed as: 

   
 ̂    ̂  

√   ̂      ̂  
 

where    ̂   (     ) is the estimated variance for group 1 or 2 as described above.  

Likewise, a likelihood ratio test (LRT) can also be constructed using the estimated 

parameters.  If the probability mass function (PMF) of a beta-binomial distribution is 

 ( )  then the LRT at the ith CpG site is: 

       (∑∑    (  (         ))

  

 ∑∑    (  (         ))

  

) 

Here    is the PMF of the beta-binomial distribution under the null hypothesis and    and 

   are the PMF under the alternative hypothesis for group 1 and group 2.   ,    and 

   are obtained by plugging in the corresponding estimated  ̂ and  ̂ to the PMF of beta-

binomial distribution under the null and alternative models. The test statistics of the 

likelihood ratio test follow a    distribution with two degrees of freedom. 
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Results 

Simulation 

We used simulation data to test our proposed method and compare the results with 

existing methods. All simulations are based on the original distribution of RBBS data 

from a study on mouse embryogenesis [31]. For each simulation data, a number of 

20,000 CpG sites were simulated. The true methylation levels are drawn from a pool of 

hundreds of pieces of smoothed methylated curves, generated by applying BSmooth [30] 

to the original data. The number of replicates per CpG site is usually 2-5 as is typical due 

to the expense of collecting BS-seq data. The underlying percentage of true differentially 

methylated CGs among all CGs is set to be within 5%-10%, as it best represents the 

proportion of DML across different stages of development. In some cases, each of the 

dispersion parameters     is drawn from a log-normal distribution with parameters based 

on published data [31]. In other cases, each of the dispersion parameters      is drawn 

from a Gamma distribution for comparison. 

By applying shrinkage to the data, we obtained got the shrunken estimated value of 

dispersions. The scatterplots of true dispersions versus the estimated dispersions are 

shown in Figure 2. From the plot we see some over-shrinkage due to small number of 

coverage, where the prior will dominate in that case. Figure 2 also shows a boxplot 

comparison of the biases of the shrinkage method vs. naïve method. Our proposed 

method successfully avoids extreme values and thus obtains improved precision.  
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Fig. 2. Scatterplot of true dispersion vs. estimated shrunken dispersion from a naïve method (left) and 

shrinkage method (middle). Boxplot of the bias for multiple CG sites (right). Our method showed improved 

precision by avoiding extreme values. Some over-shrinkage estimations are observed because of the small 

coverage. All plots are for 20,000 CpG sites. 

 

When comparing the MSE of point estimation of dispersion     our method has 

consistently lower MSE than the naïve method of moment estimator (MME) (Figure 3).  
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Fig. 3. Boxplots comparing the distribution of MSE for dispersion    estimators from our proposed method 

and naïve method of moment estimators (MME) over 30 simulations. Dispersion    is randomly generated 

from the log-normal distribution (top row) and Gamma distribution (bottom row). Each group contains 

either 3 replicates (left column) or 5 replicates (right column). All simulations are for 20,000 CpG sites. 

 

 

After estimating all parameters, we applied our proposed Wald test method with both 

shrinkage dispersion and naïve dispersion to identify DML between groups 1 and 2 in the 

simulated data. For comparison, we implemented classic t-tests and Fisher’s exact tests, 
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as they are also very popular existing methods. We also implemented a newly developed 

adjusted Chi-square based method[40] to compare the performance.  

Since DML detection is often used as a hypothesis generating tool, and the goal is to have 

as many true positives as possible in the top-ranked CpG sites, we compute the 

proportion of true DML (i.e. 1 − false discovery proportion) in the top-ranked CpGs up to 

the top 1000. In these 5 methods, top CpG sites are ranked either based on the increasing 

order of p-values. In the true discovery rate (TDR) plot, our method shows a high 

proportion of true positives among the top ranked CpG sites [Figure 4]. The proposed 

Wald test outperformed the classic t-test and Fisher’s exact test as the Wald tests 

consistently have higher true positive rates. We tried our method using different prior 

distribution for the dispersion parameter  , including the log-normal distribution, Gamma 

distribution and empirical distribution from real data. The TDR plot showed consistent 

better performance for the Wald test with shrunk variance compared to other approaches. 

Under different prior distributions for the dispersion, our method showed consistently 

better performance, which demonstrates the robustness of our method. In cases where the 

replicate numbers are small, the improvement of Wald test over other approaches in 

greatest; this is partly because the variance is difficult to estimate based on 2 replicates in 

each group using the naïve method. When the replicate number is large, the naïve 

dispersion estimates are closer to those of the shrinkage method. In this case the Wald 

test with a naïve dispersion estimator is also a good choice since it is computationally less 

intensive.        
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Fig. 4. The True Discovery Rate (TDR) plot of DML detection accuracy from our proposed method for top 

1000 CpG sites. CpG sites are ranked by p-values from low to high. The proportion of true discovery 

among top-ranked CpG sites is plotted against the number of top-ranked CpG sites. The dispersion 

parameter    comes from the log-normal distribution (top row), Gamma distribution (middle row), or 

empirical distribution from real data (bottom row). In situations where replicate numbers are low (left 

column), our method improved the most since it solved the difficulty of estimating variance from 2 

replicates per group. Our proposed Wald test method showed consistent improvement.     

 

Since the Wald test and likelihood ratio test (LRT) are asymptotically equivalent, we also 

implemented our estimated shrunk dispersion parameter into the likelihood ratio test. 

Figure 5 shows that the performance of these two tests is comparable. It is thus 

justifiable to use either the Wald test or the LRT for a two group comparison. To explore 

more details, the test statistics and quantile-quantile plot (QQ plot) of Wald test are 

shown in Figure 6. The Wald test statistics showed good normality; and QQ plot showed 

good combination of the existence of null and alternative hypothesis.  
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Fig. 5. True Discovery Rate (TDR) plot of DML detection accuracy using Wald test and likelihood ratio 

test (LRT) for top 1000 detected CG loci. Detected CG loci are ranked by p-values from low to high. The 

proportion of true discovery among top-ranked CpG sites is plotted against the number of top-ranked CpG 

sites. In cases where that the replicates number is small (left) vs. large (right), the two methods still have 

comparable similar performance.  
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Fig. 6. The histogram (left) of test statistics from Wald test and the quantile-quantile (QQ) plot (right) of 

Wald test statistics.   

 

Although it is justifiable to use either the Wald test or the likelihood ratio test, the Wald 

test can be applied to more situations where the researcher want to choose their own 

alternative hypothesis. To be specific, according the nature of the variance in the beta-

binomial distribution, when the methylation levels are close to the boundaries of 0 or 1, 

the estimated variances are smaller than those near the middle. Consequently, after we 

plug in the variance to the Wald test, it would lead to a more anti-conservative p-value 

when the underlying methylation levels are close the boundaries [Figure 7]. For example, 

for a methylation level change of 0.04 at a fixed dispersion, the methylation level change 

from 0.95 to 0.99 is much more significant than the change from 0.48 to 0.52. For this 

scenario we propose an alternative approach to handle the issue similar to MATS in RNA-

seq data [41]. We test the hypothesis that the difference in the methylation level for a 
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given CpG site between group 1 and group 2 is above a user-defined cutoff c, i.e. 

          [Figure 7]. The cutoff c is a user-defined parameter that represents the 

extent of methylation change that the researcher wants to identify. By implementing this 

method, we can avoid the discrepancy of p-values of same amount methylation change 

under different methylation level.  

 

 

Fig. 7. (left) For a same level of difference (4 possible showed here), within the same level of change in 

methylation level, test results tend to be more significant as the p-values get smaller near the boundary. 

(right)  Our proposed null and alternative hypotheses. The    null hypothesis is that the difference in 

methylation levels between two groups is below the user-defined cutoff c (the gray area). The    

alternative hypothesis is that the difference is above the user-defined cutoff c (the white area). 

 

For example, if a researcher is interested in identifying DML with at least 0.1 changes in 

methylation level, the cutoff c should be set to 0.1. If we calculate the probability of 
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          from the BS-seq counts, i.e.  (                ) , we can rank CpG 

sites based on the probability for each CpG site i to improve DML detection. Simulation 

results show our method has higher or equal TDR in the top ranked CpG sites [Figure 8].  



 | 22 P a g e

 

Fig. 8. The True Discovery Rate (TDR) plot of DML detection accuracy from our proposed method for top 

1000 CpG sites using user-defined methylation level change cutoff at 0.1. CpG sites are ranked by p-values 

from low to high. The proportion of true discovery among top-ranked CpG sites is plotted against the 

number of top-ranked CpG sites. The dispersion parameter    comes from the log-normal distribution (top 

row), Gamma distribution (middle row), or empirical distribution from real data (bottom row). In situations 

where replicate numbers are low (left column), our method improved the most since it solved the difficulty 

of estimating variance from 2 replicates per group. By using the Wald test we can easily convert test into 

testing  (  
  

  
  
        )  form, which avoid discrepancy p-values for a same amount of 
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methylation change under different methylation level. Here c is the user-defined cutoff that user desire to 

detect. 

    

 

Discussion 

In this study, we presented a method of estimating the dispersion parameter in a beta-

binomial model for DNA methylation data. We showed that the new model could capture 

the biological variance in a CpG-specific manner and, as a result, lead to better detection 

of DML compared to existing methods. Therefore, we showed that a good estimation of 

dispersion     is important to DML detection when a small number of biological 

replicates are used. Accounting for biological variance has turned out to be very 

successful in other fields. For example, our approach is similar to the negative-binomial 

model, i.e. the Gamma-Poisson mixture, that is widely used in RNA-seq data [32, 34, 42, 

43]. In that case, the Gamma distribution models the biological variation and the Poisson 

distribution models the variation due to the counting process in sequencing.  

It is widely accepted that CpG sites have different biological variance, and thus we 

should not expect a constant   for all CpG sites. In experiments with a small number of 

replicates, an empirical Bayes method that combines the information from the observed 

sample and shrinks toward a common prior of     helps stabilize the estimate of    . Also, 

without any assumptions on the relationship of dispersion     with methylation level    , 

we estimated dispersion     independently of methylation level    .  
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As previous studies have shown that the methylation levels     are autocorrelated across 

the genome [37, 38], implementing smoothing in estimating methylation level is 

increasing popular. However, we should notice that if the assumption is violated, using 

smoothing could hurt the result and lead to bias in point estimation and detection [Figure 

9]. For example, if the differentially methylated CpG sites are sparsely distributed, or if 

detecting DML rather than DMR is desired, or Reduced Representation Bisulfite 

Sequencing (RRBS) data is being used in certain case, researchers should carefully 

consider choose whether or not to use smoothing.  

 

Fig. 9. TDR plot showing that smoothing can reduce TDR if the assumption of autocorrelation is violated.  

Here all the differentially methylated CGs are sparsely distributed across the genome and do not cluster in 

specific regions. In this case using smoothing (indigo) would smooth out the true point difference and lead 

to reduced power compared to direct point estimation. Here the indigo color line represents the TDR 

achieved when smoothing. In this case it is the least powerful method. 20,000 CpG sites were simulated, 10% 

of then are true DML.  
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Future work could include detecting differentially methylated loci in region level rather 

than in CpG site level. This would be more meaningful since DMR could be connected to 

functional DNA regions that either regulate genes or are genes themselves. In most cases 

using smoothing could improve the point value estimation and shrinkage could improve 

the variance estimation. Use a combination of smoothing and shrinkage in the test is also 

a study that deserves to be further explored. It would also be possible to extend our 

method to a more complex experimental design setting such as multiple groups’ 

comparison in a GLM framework, or studies with continuous outcome variables. Finally, 

this method could be applied not only towards estimating the dispersion of DNA 

methylation data but also other beta-binomial family problems like estimating 

heritabilities of binary traits or spatial heterogeneity of disease in pathology studies [44].  
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