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Abstract 
 

PREDICTING OXIDATIVE POTENTIAL OF VEHICULAR AIR POLLUTION IN 
METROPOLITAN ATLANTA USING MULTIVARIATE REGRESSION MODELING 

By Eric Yang 

 

 

Background: Oxidative potential (OP) has been considered to be the new, more novel method of 

evaluating air pollution exposure, because it takes into account various aspects of air pollution, 

such as particle size, chemical components, and meteorology. The method for evaluating 

oxidative potential in this study is with DTT oxidation (OPDTT), using different components of 

air quality as predictors, such as black carbon, organic carbon, and ozone.  

Aims: 1) The first aim of this study is to create a predictive model for OPDTT of air pollution in 

vehicular traffic of metropolitan Atlanta. The second aim is to use that model to estimate 

oxidative potential of particle pollution in another study. The third aim is to conduct preliminary 

analysis of the estimated oxidative potential data on predicting health response. 

Methods: All Data was provided by the Atlanta Commuter Studies (ACE-1 and ACE-2). ACE-2 

was used to create the predictive model, because it contained OPDTT data. The model was used to 

create OPDTT estimates for ACE-1. Those estimates were analyzed with changes and percent 

changes in exhaled nitric oxide (eNO) and forced expiratory volume in 1 second (FEV1) to 

evaluate the associations between OPDTT and corresponding health response.  

Results: The final predictive model for oxidative potential is: 

OPDTT = 7.76 - 2.45WSOC + 0.19WSOC2 + 0.019BC - 0.10NOISE + 0.033WSOC*NOISE - 0.0026WSOC2*NOISE.  

The adjusted R2 of 0.75 was one of the highest. The predictive model’s predictor p-values were 

all statistically significant except for BC (p=0.34). The ACE-1 OPDTT estimates (0.60±0.14 

nmol/minute/m3) created from the model did not appear to have a significant association with 

change in eNO and FEV1.  

Conclusion: In conclusion, the predictive model has reliable fit statistics. However, further 

analyses involving longitudinal data should be done in regards to evaluating the relationship 

between OPDTT and health response.  
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INTRODUCTION

 

An estimated 45 million people in the United States reside within 300 feet of a major 

road, airport, or railroad (EPA, 2015). The transportation sector is a major contributor to outdoor 

air pollution, consisting of fine particulate matter (PM2.5) and gaseous pollutants (e.g. nitrogen 

dioxide (NO2), ozone (O3), polycyclic aromatic hydrocarbons (PAHs)) (EPA, 2015). For these 

reasons, daily commuters are highly susceptible to various cardiorespiratory health consequences 

associated with oxidative stress, the steady state level of oxidative damage in cells, tissues, or 

organs caused by reactive oxygen species (ROS). To evaluate traffic-related, personal air 

pollution exposure, we analyzed data from the panel-based Atlanta Commuters Exposure (ACE) 

studies, which consists of two research protocols (ACE-1 and ACE-2). ACE-1 measured in-

vehicle air quality and health response related to 2-hour highway commutes in metropolitan 

Atlanta in order to examine the associations between pollutant mixtures during automobile 

commuting and corresponding oxidative stress-mediated pathways of cardiorespiratory injury 

(Sarnat et al., 2014). In addition to those same pollutant and health measurements, ACE-2 also 

included measurements targeted to characterized oxidative potential (OP) of within sampled 

PM2.5.  

 Numerous studies in the past have evaluated air pollution exposures using traditional, 

single-pollutant metrics, such as total PM2.5 mass concentration (expressed in µg/m3), and its 

corresponding associations with a variety of adverse health responses (Lin et al., 2002; Delfino et 

al., 2004). Recently, alternative metrics have emerged as potentially more sensitive and more 

biologically-relevant indicators of air pollution exposure. Particulate OP, specifically, has been 

proposed in recent years as means of assessing exposures to PM2.5 components directly 

responsible for many observed health effects attributed to air pollutant emissions (Boogaard et 
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al., 2012; Charrier et al., 2014; Daher et al., 2014; Delfino et al., 2013; Fang et al., 2015). In 

contrast to traditional indicators, such as elemental carbon (EC), black carbon (BC), and organic 

carbon (OC), OP may represent a means of accounting for potential health risk due to particle 

size, chemistry, and biology (Janssen et al., 2014; Szigeti et al., 2015; Steenhof et al., 

2011).Various a-cellular assays have been used to evaluate OP, including dithiothreitol (DTT), 

electron spin resonance (ESR), and ascorbate depletion (AA) (Janssen et al., 2014; Fang et al., 

2015; Liu et al., 2014; Jean-Jacques et al., 2015). Previous studies show that different air 

pollution components may elicit oxidative stress, such as carbon monoxide (CO) (Piantadosi et 

al., 2006), PAH, O3, NO2, PM2.5, EC, and OC (Risom et al., 2005; Yang et al., 2009; Delfino et 

al., 2013). Specific attention has been given to oxidative stress caused by bio-available transition 

metals such as copper (Cu), vanadium (V), chromium (Cr), nickel (Ni), cobalt (Co), and iron 

(Fe) (Romieu et al., 2008), or non-transition metals lead (Pb), manganese (Mn), and zinc (Zn) 

(Ntziachristos et al., 2007).  

To evaluate the OP of traffic-related air pollution exposure and corresponding health 

impact, we developed three aims for this analysis. The first aim consisted of examining the 

empirical relationship between traffic air pollution components and OPDTT through multivariate 

linear regression modeling (using samples collected as part of ACE-2). We used a DTT assay, 

which can be considered as a chemical surrogate of cellular reactants, reducing oxygen (O2) to 

superoxide anion (O2
-) and inducing oxidative stress (Kumagai et al., 2002). The antioxidant loss 

rate can be interpreted as the ability of PM2.5 to transfer electrons from DTT to O2 (Fang et al., 

2015). Previous studies have conducted simple linear regression models using single air 

pollution components to generate OPDTT estimate, typically transition metal species to PAH 
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(Ntziachristos et al., 2007; Charrier et al., 2014). Results from these earlier efforts support using 

multivariate approaches to assess OP of air pollution.  

As part of the second aim, we estimated OPDTT in ACE-1, where the DTT assay was not 

conducted, using the model results on the ACE-2 samples. As a final aim, we examined whether 

OPDTT was predictive of corresponding acute cardiorespiratory health response in ACE-1 

participants. Accurate measurements of OP can help draw connections to corresponding health 

response, which can be measured with sub-clinical cardiorespiratory biomarkers, such as exhaled 

nitric oxide (eNO) and forced expiratory volume in 1 second (FEV1) that may be indicative of 

oxidative stress processes. eNO is orally exhaled nitric oxide that originates from respiratory 

epithelium (Alving et al., 2010). FEV1 measures how much air an individual can exhale during a 

forced breath to test lung function (Young et al., 2007).   
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METHODS 

 

 Sampling methods have been described elsewhere in detail (Sarnat et al., 2014). Briefly, 

traffic exposure data were obtained from measurements conducted in ACE-1 and ACE-2. Both 

studies consisted of in-vehicle pollutant exposures and corresponding biomarker measurements 

prior to and following the commutes. Of the two protocols, only ACE-2 measured OP in the 

PM2.5 samples using the DTT assay method, which measures the rate at which DTT is oxidized 

when mixed with PM2.5. A semi-automated system was used to quantitate OPDTT values (Fang et 

al., 2014). Ambient air pollution data, consisting of O3, NO2, and CO, were taken from EPA 

monitoring stations in the counties of metropolitan Atlanta, consisting of Fulton, DeKalb, 

Gwinnett, Cobb, Clayton, Coweta, Douglas, Fayette, and Henry. O3 values were assessed on a 

24-hour lag when analyzing their predictive impact on OP, since O3 forms, secondarily, from 

photochemical reactions of NO2 and sunlight. O3, NO2, CO, and ACE-2 air pollutant components 

were used to construct a robust, predictive model for OPDTT. The model was then used to create 

OPDTT estimates in ACE-1. Using those values, initial semi-quantitative analyses were done to 

examine associations between estimated OPDTT and several relevant health endpoints. For this 

step, eNO and FEV1 were selected as primary biomarkers, following previous literature has 

shown them having strong associations with air pollution exposure (Sarnat et al., 2014; Strak et 

al., 2012). All statistical analyses were performed via the Statistical Analysis Software (SAS 

version 9.4). 

OPDTT Model Creation 

  A subset of ACE-2 data was used to create the OPDTT model. Three extremely low 

OPDTT values, sampled during highway commutes, were excluded from model creation. These 

values were considerably lower than other data collected on highways, side-streets, and indoors, 
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and highly implausible, resulting from potential, unspecified sampling errors that may have 

occurred during the data collection process. Several major components of vehicular emissions 

were assessed (Table 1), initially in a Spearman’s rank correlation analysis, for their correlation 

with OPDTT. These components included PM2.5, BC, EC, OC, water-soluble organic carbon 

(WSOC), particle number count (PNC), and PAH. Ambient gaseous pollutants considered were 

O3, NO2, and CO. In-vehicle noise was also considered as a physical pollutant indicator that may 

also be associated with oxidative stress response (Demirel et al., 2009; Samson et al., 2007). 

Metals taken from previous literature were considered initially; those taken from ACE-2 

consisted of Cu, V, Cr, Ni, Co, Fe, Pb, Mn, and Zn. Statistically significant associations with 

OPDTT were determined at p-value<0.05. All of the metals had very weak correlations with 

corresponding OPDTT levels, indicated by the high p-values and low Spearman’s rank correlation 

coefficients; none were subsequently considered for inclusion in the predictive model. Before 

running any models, we excluded CO from model buildering, since it too was weakly correlated 

with OPDTT (ρ = -0.079, p-value = 0.54).  

With the remaining variables, we initially conducted a stepwise regression, which yielded 

WSOC as the sole significant predictor of OPDTT. Using stepwise backwards elimination 

methods as a complimentary approach, results showed that O3, OC, EC, PAH, and WSOC all 

remained in the model as significant predictors.  

Given these contrasting results, we assessed the variables in multivariate regression 

analyses without the use of SAS model building functions. We decided that total OC and WSOC 

should not be included simultaneously, since total OC includes WSOC. We chose WSOC over 

total OC due to its water solubility, and the likelihood that this OC fraction is both more 

biologically-available. NO2 was ultimately excluded given the collinearity with O3, resulting 
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from its role within photochemical smog production processes. Between NO2 and O3, O3 was 

shown to be a much stronger independent predictor of OPDTT and has been shown more closely 

associated with ROS generation in previous studies (Mustafa et al., 1978; Rietjens et al., 1986). 

PM2.5 was removed because BC, EC, and WSOC are more specific chemical components 

included with total PM2.5, and was each correlated with those components. EC and BC are 

equivalent measures of elemental carbon in literature (Ho et al., 2006); of the two, EC was 

removed because its correlation with OPDTT was much weaker than that of BC’s with OPDTT. 

With PNC, WSOC, BC, PAH, O3, and noise as the remaining predictors, each were entered in 

individual plots with OPDTT. Out of all the potential predictors, WSOC appeared to have the 

stronger, albeit non-linear relationship with OPDTT (Figure 1). Although the relationship between 

WSOC and OPDTT appears quadratic, a linear spline can be applied at WSOC = 10 µg/m3 to 

evaluate the variables with linear functions at different intervals. A linear spline and quadratic 

trend were applied to WSOC in separate analyses, both yielding improved model fit diagnostics; 

WSOCspline and WSOC2 variables were created to evaluate WSOC with a linear spline (Figure 

7) and a quadratic trend (Figure 8), respectively. Two-way interaction terms were created 

between each of the variables. We evaluated the models using the adjusted R2 values, as well as 

the statistical significance of the individual predictors in the model, as a collective measure of the 

model fit. The final model with the best combination of high adjusted R2 value and number of 

significant predictors included WSOC, WSOC2, noise, BC, an interaction term for WSOC and 

noise, and an interaction term for WSOC2 and noise. 

Analysis of Model OPDTT Estimates on Health Response 

Using the final predictive model, ACE1 predictor values were inputted to create OPDTT estimates 

for the ACE1 dataset. Descriptive analysis of the predicted OPDTT values showed a low extreme 
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outlier (0.0088 nmol/minute/m3) and high extreme outlier (6.78 nmol/minute/m3). These extreme 

values were highly unlikely to be accurate and were, thus, excluded from further analysis. Table 

4 shows the descriptive statistics of the remaining OPDTT estimates. These estimates were 

categorized into three groups, based on their 33.33% (at 0.51 nmol/minute/m3) and 66.67% (at 

0.64 nmol/minute/m3) cut points. Box-and-whisker plots were created to graphically display 

differences in absolute eNO levels, percent change in eNO levels, absolute change in FEV1 

change, and percent change in FEV1, by the three OPDTT categories. Category one consists of 

OPDTT estimates less than 0.51 nmol/minute/m3. Category two consists of OPDTT estimates 

between 0.51 and 0.64 nmol/minute/m3. Category three consists of OPDTT estimates greater than 

0.64 nmol/minute/m3. Regarding changes in the eNO and FEV1, the values represent the 

difference between measurements taken immediately before a given commute compared to 

measurements immediately following the commute.  
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RESULTS 

 Using ACE-2 data, we created various regression models and compared their adjusted R2 

values and individual predictor p-values. Weighing these factors, we selected a model with the 

best combination of fit statistics and statistical significance of predictors. After selecting a 

predictive model, we created OPDTT estimates by inputting values of the corresponding ACE-1 

pollutant variables into the model. After categorizing ACE-1 OPDTT values into tertiles, we 

compared the changes and percent changes in eNO and FEV1 before and right after the 

commutes to evaluate the predictive ability of OPDTT on health response. 

OPDTT Model Justification 

The final predictive model in table 2, also showing its adjusted R2 value and individual 

predictor p-values, was: 

OPDTT = 7.76 - 2.45WSOC + 0.19WSOC2 + 0.019BC - 0.10NOISE + 0.033WSOC*NOISE - 0.0026WSOC2*NOISE. 

Although the model is difficult to interpret given the quadratic and interaction terms, there are 

several significant relationships. The results show that there was a significant interaction 

between WSOC and NOISE in predicting corresponding variability in OPDTT (p=0.0015 for 

WSOC*NOISE and p=0.0003 for WSOC2*NOISE). The adjusted R2 of 0.75 was one of the 

highest. Table 2 shows that all of its predictors, with the exception of BC (p=0.34), were 

statistically significant. Omitting BC however, led to a decrease in the overall model fit. The 

adjusted R2 without BC, for example, dropped to 0.62. The sample size of 38 for the final model 

is fairly low, but it is not considerably lower than other models tested.  

When adding other variables such as BC and noise in a model with WSOC2, a higher 

number of predictors was statistically significant compared to adding those same variables in a 

model with WSOCspline; the adjusted R2 values comparing models with WSOC2 and those with 
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WSOCspline, however, were fairly close. Other predictors were also analyzed for nonlinear 

relationships OPDTT, shown in Figures 2 to 6, although there did not appear to be any clear 

nonlinear relationships beyond those observed for WSOC and OPDTT. Importantly, the plots 

clearly exhibit non-linear associations between WSOC and OPDTT, justifying our use of quadratic 

terms in the final model (Figures 7 and 8).  

PAH, O3, and PNC were not included in the final model because including them in any 

form, whether as individual predictors or interaction terms with each other or with BC, WSOC, 

and/or noise, did not improve the adjusted R2 and yielded mostly predictors that were not 

statistically significant. Any combination with those three variables in the model did not appear 

beneficial to the model from a statistical standpoint.   

Preliminary Analysis of Predicted OPDTT Estimates on Health Response  

The OPDTT estimates created for ACE-1 using the final predictive model ranged from 

0.35 to 1.06 nmol/minute/m3. The average OPDTT was 0.60±0.14 nmol/minute/m3. Comparing 

eNO change, eNO percent change, FEV1 change, and FEV1 percent change over the three 

OPDTT tertile strata (strata 1 average=0.47±0.048; strata 2 average=0.58±0.036; strata 3 

average=0.75±0.11), ANOVA tests indicated no statistical difference between the tertile groups. 

Separate analyses were done comparing eNO and FEV1 over dichotomized OPDTT groups, also 

yielded statistically insignificant differences, based on two-tailed t-tests.  
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DISCUSSION 

The final predictive model for OPDTT was selected based on adjusted R2 values and 

individual predictor p-values. Throughout the model selection process, there were few 

combinations of variables that produced higher adjusted R2 values than those selected for 

inclusion in the final, but most of the parameter estimate p-values were also very high, indicating  

very little association between the parameters and corresponding OPDTT. Although the final 

model included the best combination of independent predictors, it is difficult to interpret the 

parameter estimates, given the quadratic terms in the hierarchical model. Using a linear spline 

instead would have afforded greater interpretability because there would not be any downward 

trends to interpret at different predictor intervals; the linear spline model would show varying, 

consistent linear trends at the different spline cut points. However, using a spline WSOC 

predictor yielded a greater number of pollutant predictor estimates that are not statistically 

significant. Additionally, we did not observe any additional improvement in the model fit 

diagnostics, in particular the adjusted R2 value, when using the splines. Regarding the final 

predictive model used to create estimated OPDTT values for ACE-1, not every possible modeling 

method was used. A linear function could have been applied from WSOC = 3 to 10 µg/m3, 

followed by a quadratic spline from WSOC = 10 to 16 µg/m3. 

Regarding interpretation of the parameter estimates of the final predictive model, it 

would have been preferable if the results yielded only positive values for all the variables. 

However, the current data did not include WSOC values within a 3 to 4 µg/m3 range, leading to 

the creation of parabolic association. If ACE-2 had WSOC values within a 3 to 4 µg/m3 range, 

we expect corresponding OPDTT estimates to yield a flatter initial trend for the quadratic function, 

as opposed to a parabola. However, without data points for those values, regression analysis fit a 
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trend that led to the initial downward trend. The parameter estimate of NOISE was also negative 

to compensate for the negative curve at WSOC within the 3 to 4 µg/m3 range; the curve created 

for WSOC influenced the NOISE parameter estimate, making it also negative at certain intervals. 

With a greater sample size of measurements, presumably covering a wider range of WSOC 

values, the quadratic relationship may yield all positive parameter estimates, as we expected a 

priori. A greater number of observations may be also able to influence the final variables that are 

kept in the model, along with their parameter estimates. It would have allowed us to evaluate 

more predictors and interaction terms without concern over model oversaturation. Other air 

pollutants measured such as PAH might have been in the model if a larger sample size was 

available for analysis (Ntziachristos et al., 2007).  

Previous studies have shown that O3 and CO are strong predictors of oxidative stress 

(Kelly 2003), which suggests that they should correspondingly be associated with OPDTT. These 

variables, however, were not directly measured in the ACE studies. Ambient O3 and CO data 

were retrieved from the EPA air monitoring sites, which may not be representative of the 

personal exposure levels within the vehicles. Future personal air pollution exposure studies 

conducted in vehicle traffic should target the measurements of gaseous pollutants in addition to 

particles in order to evaluate the degree to which O3, NO2, and CO contribute to OP formation 

and exposures. Our results, which show a lack of association between OP and any of the 

measured transition metals, are not consistent with reported findings showing Mn, Fe, Cu, and 

Zn to be strongly associated with OP (Ntziachristos et al., 2007; Fang et al., 2015; Hellack et al., 

2015). In these studies, transition metals were only evaluated in a simple linear regression 

setting. Future research should look to include the metals within multivariate linear regression 

models with OP to assess potential interactions between different metals.  
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This study was conducted as preliminary analysis of in-vehicle OPDTT as a component of 

vehicular air pollution. Further analysis should be done for assessing the relationship between 

OPDTT and health response. The box plots in Figures 3 to 6 showed no discernable or statistically 

significant differences among the OPDTT categories, which only displayed changes in the 

biomarkers measured immediately before and following the 2-hour commute protocol. Data are 

currently available for eNO and FEV1 1, 2, and 3 hours post commute as well, which may 

include more biologically-relevant exposure windows to accurately reflect true exposure-

response relationships.  
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CONCLUSION 

 In conclusion, the final predictive model for OPDTT using ACE-2 data demonstrated 

reliable model fit statistics expressed as a strong adjusted R2 value. The p-values for the 

individual predictors, with the exception of BC, indicate significant associations with OPDTT. The 

preliminary testing of the model done with using the predicted OPDTT estimates for ACE-1 to 

evaluate eNO and FEV1 change revealed no significant relationship. However, further research 

should be conducted to account for the biomarker concentrations at various time points after the 

commutes. Finally, the air quality data used was all from vehicular traffic. Future studies that 

involve creating a predictive model for oxidative potential can be done for other settings, such as 

occupational ones. The goal should be to make a generalizable model for the general population 

while using directly measured personal air pollution exposure as opposed to modeling personal 

exposure using ambient air quality data from more distant ambient site monitors.  
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Table 1. Correlation analysis between OPDTT and all the potential predictors.  

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 OPDTT 

 In-Vehicle 
Pollutant 

Spearman’s Rank 
Correlation 
Coefficient (ρ) 

P-Value 

OC (µg/m3)  0.34 0.001 

Particle Number 
Count (n/cm3) 

0.47 0.0001 

EC (µg/cm3) 0.29 0.13 

WSOC (µg/m3) 0.59 <.0001 

PM (µg/m3) 0.47 0.0001 

BC (µg/m3)  0.49 <.0001 

NOISE (dB) 0.31 0.02 

PAH (ng/m3) 0.41 0.006 

Gases from EPA Monitoring Sites  

O3 (ppm) 0.23 0.07 

NO2 (ppb) 0.18 0.16 

CO (ppm) -0.01 0.94 

Metals (ng/m3) 

Chromium -0.08 0.61 

Copper 0.09 0.48 

Iron -0.002 0.99 

Manganese -0.02 0.88 

Nickel -0.03 0.86 

Lead -0.03 0.85 

Vanadium  0.11 0.38 

Zinc 0.09 0.55 

Cobalt  -0.20 0.19 
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Table 2. Statistics of the Final Predictive Model.   

 
Final Model Variable Parameter 

Estimate 
P-Value Confidence 

Interval 

Adjusted R2 = 0.75 
n=38 

Intercept 7.76 0.0017 (3.17, 12.35) 

WSOC -2.45 0.0005 (-3.74, -1.16) 

WSOC2 0.19 0.0001 (0.10, 0.27) 

NOISE -0.10 0.0074 (-0.17, -0.029) 

BC 0.019 0.34 (-0.021, 0.058) 

WSOC*NOISE 0.033 0.0015 (0.014, 0.054) 

WSOC2*NOISE -0.0026 0.0003 (-0.0039, -0.0013) 
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Table 3. Descriptive statistics for the ACE-1 predicted OPDTT estimates attained from the ACE-2 

final predictive model. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predicted OPDTT Estimates (n=59) 

Mean ± Standard Deviation 0.60 ±  0.14 

Minimum 0.35 

Maximum 1.06 
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Figure 1. Graph of OPDTT and WSOC  
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Figure 2. Graph of OPDTT and BC  
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Figure 3. Graph of OPDTT and Noise  
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Figure 4. Graph of OPDTT and PAH  
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Figure 5. Graph of OPDTT and PNC  
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Figure 6. Graph of OPDTT and O3  
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Figure 7. Graph of OPDTT and WSOC Fit with Linear Spline  
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Figure 8. Graph of OPDTT and WSOC Fit with Quadratic Trend 
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Figure 9. Box Plots of Change in eNO Stratified by OPDTT Tertile Categories 
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Figure 10. Box Plots of Percent Change in eNO Stratified by OPDTT Tertile Categories 
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Figure 11. Box Plots of Change in FEV1 Stratified by OPDTT Tertile Categories 
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Figure 12. Box Plots of Percent Change in FEV1 Stratified by OPDTT Tertile Categories 
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