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Abstract 
 

FREQUENCY OF PRICE ADJUSTMENTS: 
NEW FACTS ABOUT PRICES 

By Margarita Zabelina 
 

I examine frequency of price adjustments using aggregate and 
micro data. In the first part I examine stability of Calvo pricing. An 
increasing literature has been concerned that the dynamics of the 
economy keeps switching and that, in particular, it is important to 
allow time variation in the degree of Calvo stickiness. We 
investigate this with a Markov- switching Dynamic Stochastic 
General Equilibrium model and show that there is little gain when 
allowing for such time variation. As a result we recommend to use a 
constant Calvo stickiness parameter, even when allowing for regime 
shifts elsewhere. In the second part, using Mexican CPI data from 
1994 to 2002 covering the period of large peso devaluation, I 
document a number of novel facts: First, the duration of prices differs 
between categories of goods and across economic conditions. 
Frequency of price adjustments and rankings of categories of goods 
by these frequency in Mexico differs from those in U.S. Second, a 
large shock to the firms marginal cost increases the frequency of 
price adjustments for all goods. This increase is particularly large for 
goods with a very stable price history. Third, frequency of price 
adjustments of nondurables and services increases with increase in 
market and firm’s elasticity of demand. This relationship is opposite 
for durables. Standard ways of modeling frequency of price 
adjustments do not support these findings. 
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CHAPTER 1

On the stability of Calvo-style Price-Setting Behavior

Stéphane Lhuissier

Margarita Zabelina

Chapter Abstract

An increasing literature has been concerned that the dynamics of the economy keeps

switching and that, in particular, it is important to allow time variation in the degree

of Calvo stickiness. We investigate this with a Markov-switching Dynamic Stochas-

tic General Equilibrium model and show that there is little gain when allowing for

such time variation. As a result we recommend to use a constant Calvo stickiness

parameter, even when allowing for regime shifts elsewhere.

1

1Article published. Full bibliographic details: Journal of Economic Dynamics and Control (2015),
pp. 77-95; DOI information: 10.1016/j.jedc.2015.05.002
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I. Introduction

According to the Keynesian view, monetary shocks have short-run real effects be-

cause nominal prices and wages are rigid. These rigidities imply that nominal prices

and wages may take several periods to adjust to exogenous variation in monetary pol-

icy. Most of the standard medium Dynamic Stochastic General Equilibrium models

[Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007)] employ

a Calvo (1983) price-setting mechanism to model nominal rigidities. Featuring ex-

ogenous staggering of price changes across firms, the Calvo model allows a certain

fraction of firms to re-optimize their prices at any given period. This fraction, repre-

sented by the Calvo pricing parameter, is constant over time, making modeling very

tractable.

However, recent empirical research shows that the frequency of price changes

differ between low and high inflation episodes and/or changes in monetary policy

regimes. Ball, Mankiw, and Romer (1988) and Gagnon (2009) found a strong cor-

relation between the frequency of price changes and inflation. Their results follow a

simple intuition: increases in inflation-related costs lead firms to adjust prices more

frequently. Fernández-Villaverde and Rubio-Ramı́rez (2008) and Schorfheide (2007)

provide evidence that the Calvo pricing parameter is not invariant to policy changes,

meaning that the Calvo models are not structural in the sense of Lucas (1976). It

follows that the flexibility of prices may be a function of the current state of the

economy, as modeled in state-dependent pricing models [Caplin and Spulber (1987),

Dotsey, King, and Wolman (1999), Gertler and Leahy (2008), and Golosov and Lu-

cas (2007)]. In an endogenous staggering of price changes, exogenous shifts in policy
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typically generate more frequent changes in prices, diminishing the short-lived real

output effects and casting doubts on the real role played by monetary policy. Thus

by questioning the invariance of the Calvo pricing parameter, we essentially examine

the effectiveness of monetary policy as a tool for stabilizing the real economy.

Focusing on the post-World War II U.S. economy, we provide new statistical ev-

idence on the stability of the Calvo pricing parameter. We employ a large class of

DSGE models, based on a Calvo price-setting mechanism, allowing for several possible

patterns of time variation in the parameters determining the degree of nominal rigidi-

ties, as well as monetary policy and disturbance variances. The regime changes are

governed by first-order Markov-switching process(es). This methodology has many

advantages for capturing abrupt changes in the macroeconomy. It is flexible enough

to nest the setups that were previously used to find evidence of instability in the Calvo

parameter and general enough to allow persistent heteroscedasticity along the line of

Sims and Zha (2006). Further, the methodology provides the best way to establish

whether the Calvo model is structural in the sense of Lucas (1976) by letting the

Calvo pricing parameter and monetary policy coefficients switch jointly.

Using this methodology, we are able to reproduce previous results stating that the

frequency of price changes is strongly correlated with inflation while the stochastic

volatilities of shocks are modeled as constant over time. Firms adjust prices more

often during times of higher inflation—the repricing rate dramatically increases in the

high inflation period of te 1970s. This also confirms that our methodology is able to

detect changes discovered with other econometric techniques. However, while taking

synchronized time-varying variances in the structural disturbances into account, the
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instability of the Calvo parameter disappears and the model’s fit is dramatically

better than that of the model that only allows changes in the Calvo parameter. It

becomes crucial to control heteroscedasticity while allowing for changes in structural

parameters in order to avoid some significant spurious changes.

This paper also supports the idea that the Calvo pricing parameter is structural

in the sense of Lucas (1976). The model that fits the data best is one that allows

for independent changes in monetary policy and in the disturbance variances. The

addition of time variation in the frequency of price changes with monetary policy

switches does not improve the fit of the model and the repricing rate remains stable

across time. The stability of that parameter is a serviceable result in the sense that

central bankers can still analyze different policy scenarios using a DSGE model in any

state of the economy. The best-fit model identifies the following timeline: the pre-

Volcker period corresponds mainly to a weak adjustment of the nominal interest rate

to inflation and output gap— called the “passive policy” regime—while a nominal

interest rate response of more than one-to-one to inflation prevailed for the remaining

years, labeled the “active policy” regime. In addition, the disturbance variances

jump between “low-volatility” and “high-volatility” regimes across time. The latter

prevailed during the 1970s as well as at the beginning of the recent financial crisis.

Improved fit resulting from varying shock volatilities is consistent with findings from

Sims and Zha (2006), Justiniano and Primiceri (2008), and Liu, Waggoner, and Zha

(2011).

Despite finding no Bayesian evidence of time-variation in Calvo pricing when

controlling for heteroscedasticity, the model exhibiting changes only in the Calvo
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parameter offers interesting insights on the episode of high inflation in the 1970s.

Counterfactual analysis suggests that inflation dynamics differs dramatically across

the two regimes. If the frequency of price changes would have been low during the

Great Inflation era of the 1970s, inflation would have been largely moderated. The

mechanism through which the frequency of price changes affects the inflation dynam-

ics and the output-inflation tradeoff is the slope of the New Keynesian Phillips Curve

(NKPC). This change in the slope, however, does not affect the output dynamics.

In particular, the difference in the degree of nominal rigidities across regimes is not

drastic enough to capture changes in the real effects of nominal shocks.

There are a few strands of literature to which this paper is related. The debate

over the changes in the frequency with which prices change is large enough, both in

microeconomics and macroeoconomics, that we only discuss a few selected papers.

Klenow and Kryvstov (2008) provide some microeconomic evidence of the invariance

of the frequency of price changes. Using U.S. micro-price data from 1988 to 2004, they

found a small correlation (0.25) between the fraction of items with price changes and

inflation. However, their sample does not cover the Great Inflation of the 1970s. Using

Mexican micro data covering episodes of large and unstable inflation, Gagnon (2009)

reports that the co-movement between inflation and the average frequency of price

changes depends on the level of inflation. Specifically, a strong correlation appears to

be present only when the annual rate of inflation is above 10–15 percent. Nakamura

and Steinsson (2008a) show that only the frequency of price increases covaries strongly

with inflation. More recently, ? shows that the frequency of adjustment in micro
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data is countercyclical. Klenow and Malin (2011) deliver further discussions on the

microeconomic evidence of price-setting.

At the macroeconomic level, the evidence for substantial change in the Calvo pric-

ing parameter is also inconclusive. Fernández-Villaverde and Rubio-Ramı́rez (2008)

estimate a medium-scale DSGE model, based on a Calvo price staggering, in which

a “one-at-a-time” parameter from the private sector is allowed to change over time.

Combining the perturbation method and a particle filter, they find strong evidence

supporting the instability of the Calvo pricing parameter. However, this “one-at-a-

time-parameter” approach raises some doubts, as stressed by Sims (2001), Schorfheide

(2007), and Cogley (2007). First, it is crucial to capture the heteroscedasticy of U.S.

macroeconomic disturbances in order to avoid misleading results. Second, changes in

any structural parameters from the private sector may instead reflect changes in mon-

etary policy. We address both issues and find that a complex approach dramatically

changes results. Finally, Cogley and Sbordone (2005) reconcile a constant-parameter

NKPC with a time-variation parameter Vector Autoregressions (VAR), concluding

that the price-setting model is structurally invariant.

This paper also relates to the extensive literature on inference of macroeconomic

models with time-varying parameters. Cogley and Sargent (2005) and Primiceri

(2005) employ VAR models with time-varying parameters and disturbance shocks

using U.S. data. These authors find variations in the behavior of private sector, mon-

etary policy, as well as stochastic volatility. Sims and Zha (2006) develop a class of

Markov-switching Bayesian VAR models and find substantial changes only in the sto-

chastic volatility across time. More recently, Schorfheide (2005), Liu, Waggoner, and
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Zha (2011), Davig and Doh (2013), Bianchi (2013), and Bianchi and Ilut (2013) embed

this Markov-switching framework in DSGE models. These authors find strong evi-

dence supporting the idea that the behavior of the Federal Reserve has changed over

time. Alstadheim, Bjørnland, and Maih (2013) investigate the stability of monetary

policy in Norway, Sweden, the United Kingdom and Canada. Following this recent

literature, we exploit the idea that agents take the possibility of regime changes into

account when forming their expectations. The expectations-formation effects play a

crucial role in macroeconomic dynamics. In particular, Bianchi (2013) shows that

inflation would have been lowered during the Great Inflation if agents had taken into

account the possibility of a more anti-inflationary Fededral Reserve Chairman.

From a technical standpoint, we use the unconventional2 marginal likelihood com-

putation methods of Sims, Waggoner, and Zha (2008), the bridge sampling of Meng

and Wong (1996)’s, as well as the standard modified harmonic mean method of

Geweke (1999) to compare the models with different specifications. Multimodal dis-

tributions are inherent in multivariate equations with Markov-switching and, taking

this feature into account, these non-standard methods provide efficient approxima-

tions for the marginal data density (or marginal likelihood).

The paper proceeds as follows: Section II presents the model. The estimation

method is discussed in section III. Section IV contains descriptions of our main empiri-

cal findings. Section V reports the empirical evidence supporting the policy-invariance

of the Calvo model. Conclusions are in section VI.

2“Unconventional” here means that these methods are not widely used by Bayesian macroeconomic
practitioners for marginal likelihood inference.
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II. A Markov-switching rational expectations model

In this section we present the theoretical structure of our model, followed by a

discussion of the strategy employed to implement the Markov-switching framework,

and finally we describe the methods to solve and estimate the Markov-switching

DSGE (MS-DSGE) models.

II.1. The model. Following Rotemberg and Woodford (1997), Boivin and Gi-

annoni (2006) and Cogley, Primiceri, and Sargent (2010), we use a New-Keynesian

model consisting of four agents: an infinite-lived representative household, a finished

goods-producing firm, a continuum of intermediate goods-producing firms (each one

producing a distinct perishable good at each period), and a central bank. The model

is symmetric across each agent, thus allowing us to concentrate on an analysis of

representative agents. Five structural shocks are identified: technology shock, shock

to the household preferences, markup shock, inflation target shock, and monetary

policy shock. The model also considers many features that are commonly used in the

literature, such as habit formation in consumption, a price setting à la Calvo (1983),

and a time-varying inflation target.

We index each household by i ∈ (0, 1). Each household maximizes their expected

utility

Et

∞∑
s=0

βsbt+s

[
ln(Ct+s − hCt+s−1)−

∫ 1

0

Lt+s(i)
1+η

1 + η
di

]
(1)

where β ∈ (0, 1) is the discount factor, η ≥ 0 is the inverse Frisch elasticity of labor

supply, h measures the importance of habit formation, Lt denotes hours worked, Ct
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is a Dixit-Stiglitz aggregator of differentiated consumption goods as follows

Ct =

[∫ 1

0

Ct(i)
1

1+θt di

]1+θt

(2)

and the disturbance of the discount factor bt follows an autoregressive process

ln(bt) = ρbln(bt−1) + εat (3)

where the distribution for εbt is

normal(εbt|0, σ2
b ) (4)

θt is a markup shock following the exogenous process

ln(θt) = (1− ρθ)lnθ + ρθln(θt−1) + εθt (5)

where the distribution for εθt is

normal(εθt|0, σ2
θ) (6)

Households face the budget constraint

Rt−1Bt−1 + Πt +

∫ 1

0

Wt(i)Lt(i)di ≥
∫ 1

0

Pt(i)Ct(i)di+Bt + Tt (7)

where Bt denotes government bonds, Tt represents lump-sum taxes and transfers, Rt

is the gross nominal interest rate, Wt is the nominal wage, and Πt denotes the profits

that firms pay to the household.
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A monopolistically competitive firm produces a differentiated consumption good

by hiring Lt(i) units of labor given the constant return to scale technology Zt

ZtLt(i) ≥ Yt(i) (8)

where Yt(i) is the production of good i and Zt denotes the technology shock following

a unit root process with a growth rate zt ≡ ln(Zt/Zt−1), such as

zt = (1− ρz)γ + ρzzt−1 + εzt (9)

where the distribution for εzt is

normal(εzt|0, σ2
z) (10)

Following Calvo (1983), each firm sets prices according to a staggering mechanism.

For each period, a fraction θp of firms cannot reset its price optimally and indexes

them according to the rule

Pt(i) = π1−γpπ
γp
t−1Pt−1(i) (11)

while the other remaining fraction of firms chooses its prices P̃t(i) by maximizing the

present value of futures profits

Et

∞∑
s=0

(βθp)
sλt+s

{
Πp
t,t+sP̃t(i)Yt+s(i)−Wt+s(i)Lt+s(i)

}
(12)

where Πp
t,t+s = Πs

ν=1π
1−γpπ

γp
t+ν−1 for s > 0 otherwise 1.
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Monetary authority responds to deviations in inflation and output gap according

to the following rule

Rt

R
=

(
Rt

R

)ρR [( π̄4,t

(π∗t )
4

)ψπ
4
(
Yt
Y ∗t

)ψy]1−ρR

eεR,t (13)

where π̄4,t denotes the annual inflation, π∗t is the time-varying inflation target, ρR

represents the interest-rate smoothing parameter, and Y ∗t is the potential output (i.e

economy with a flexible price level). The distribution for the monetary policy shock

εR,t is

normal(εR,t|0, σ2
R,t) (14)

Following Ireland (2007), the time-varying inflation target evolves as follows

logπ∗t = (1− ρπ∗)logπ + ρ∗logπ∗t−1 + επ∗,t (15)

where the distribution for επ∗,t is

normal(επ∗,t|0, σ2
∗,t) (16)

Primiceri (2006) and Sargent, Williams, and Zha (2006) provide a formal justification

of a time-varying inflation target. Because the Federal Reserve’s beliefs about the

economy change over time, policymakers adjust the inflation accordingly. Kozicki

and Tinsley (2005), Leigh (2005), Belaygorod and Dueker (2005), and Ireland (2007)

provide some empirical evidence of such an adjustment. Schorfheide (2005) and Liu,

Waggoner, and Zha (2011) prefer using a Markov-switching framework to capture

abrupt changes in the target.
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II.2. Solving MS-DSGE models. We proceed in several steps to implement

our regime-switching models. First, because the level of technology At has a unit

root, consumption, real wages and output grow at constant rates. These variables

are transformed to induce stationarity in the following way

Ỹt =
Yt
At
, C̃t =

Ct
At
, W̃t =

Wt

At
(17)

Second, we compute the steady state of the stationary model and then we log-

linearize it around its steady state. Appendix 1.A reports the details of the log-

linearization. It follows that the model can be put in a concise form as follows

Aft = Bft−1 + Ψεt + Πηt (18)

where ft is a vector of endogenous components stacking in yt and a predetermined

component consisting of lagged and exogenous variables stacking in zt. The vector ft

is f ′t = [y′t z′t Ety
′
t+1]. Finally, εt is a vector of exogenous shocks and ηt is vector of

expectational errors. This represents the GENSYS form of the model [see Sims (2001)].

Third, we add an index st, corresponding to the regime switches, that governs the

time-variation of parameters into the log-linearized model. The model becomes as

follows

A(st)ft = B(st)ft−1 + Ψ(st)εt + Π(st)ηt (19)

For 1 ≤ i, j ≤ h, the discrete and unobserved variable st is an exogenous first-order

Markov process with the following transition probabilities pij

pij = Pr(st = j|st−1 = i) (20)
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with pij ≥ 0 and
∑h

j=1 pij = 1.

The system of equations in (19) cannot be solved using the standard solution

method [Sims (2002)] because of the quasi-linearity of the model. We employ the solu-

tion algorithm based on the Mean Square Stable (MSS) concept3 proposed in Farmer,

Waggoner, and Zha (2009), Farmer, Waggoner, and Zha (2011) and Cho (2012).4 In

particular, we employ the algorithm solution of Farmer, Waggoner, and Zha (2011)

to obtain the solution of the Markov-switching rational expectations model. See

Appendix 1.A for further details.

III. Estimation Method

This section presents the general empirical strategy employed in this paper. Our

model contains nine variables. The number of variables rise to twenty-one when

adding the three lagged variables ỹt−1, π̃t−1, π̃t−2, and the variable characterizing the

flexible economy. All these state variables are stacked into the vector ft. The solution

of the model has the form of a regime-switching vector autoregression model, as

illustrated in Hamilton (1989), Sims and Zha (2006), and Sims, Waggoner, and Zha

(2008). In particular, the solution can be compacted to form the transition equation

following a VAR(1) process as follows

ft = F (st)ft−1 + C(st)εt. (21)

3The process ft is Mean Square Stable (MSS) if its first and second moments converge to limits as
the horizons tend to infinity:

• limt→∞ E0[ft] = µ,
• limt→∞ E0[ftf

′
t ] = Σ.

4The second concept used in the regime-switching DSGE literature is the “boundedness stability”.
See Davig and Leeper (2007) and Barthelemy and Marx (2011).



14

We use quarterly U.S. time-series from 1954:III–2009:II on three aggregate vari-

ables: real per capita GDP (Y Data
t ); the quarterly GDP-deflator inflation rate (πData

t );

and the (annualized) federal funds rate (FFRData
t ).5 A detailed description of the data

is provided in Appendix 1.B. The series are also reported in Figure 1. We stack this

data in the following vector of observable variables:

yt = [4lnYData
t , πData

t ,FFRData
t ]′ (22)

The measurement equations relate the evolution of observed time series yt to

unobserved variables ft:

yt = a+Hft (23)

where

a = [100γ, 100(π − 1), 100(π − 1) +Rss]′ (24)

It follows from (21) and (23) that only the transition equations depend on the

regime st. This nonlinearity prevents us from applying apply the standard Kalman

filter to evaluate the likelihood of the model. Hence, we exploit the Kim and Nelson

(1999) filter for constructing the likelihood. The priors are Appendix 1.A provides

this technique to evaluate the likelihood and, therefore the posterior distribution.

Our strategy of estimation is described in the following paragraph. We employ a

Bayesian approach to estimate the parameters of our MS-DSGE model. We start by

generating one hundred draws from the prior distribution of each parameter. We then

use each set of points as starting points to the CSMINWEL program, the optimization

routine developed by Christopher A. Sims. Starting the optimization process at

5We do not include the recent U.S. data in order to avoid the zero lower bound period.



15

different values allow us to correctly cover the parameter space and avoid getting

stuck in a “local” peak.

IV. Were there changes in the frequency of price adjustment?

In this section, we examine whether the frequency of price adjustments has evolved

over time. To do so, we first estimate and compare various versions of the DSGE

model to discriminate between them. We then select the best-fit model —if any —

to answer the question. We consider the following four specifications:

(1) Mconst: the parameters (structural parameters and shock variances) are time-

invariant.

(2) Mfreq: the Calvo pricing parameter follows a 2-states Markov process.

(3) Mvol: the variances of all structural disturbances follow the same 2-regimes

Markov process.

(4) Mfreq+vol: the Calvo pricing parameter and shock variances are allowed to

change independently according to 2-states Markov processes.

A few items deserve discussion. First, the specification Mfreq implies only a change

in the Phillips curve equation (28). Hence, the matrix F (st) is a function of st only

because of the Calvo pricing parameter, θp(st). Second, the specification Mvol takes

into account heteroskedasticity. Sims and Zha (2006) reveal that such a specification

is particularly adequate to U.S. macroeconomic time series. Third, the specification

Mfreq+vol implies that the model allows shock variances to vary independently of

changes in the Calvo pricing parameter. Such an independence is required to avoid

bias in estimates. See Sims (2001).
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The Bayesian priors are reported in Table 1. The priors are mostly the same.

Further details on the prior are provided in section IV.2.1. The results are based on

one million draws with the random-walk Metropolis–Hastings [An and Schorfheide

(2007)]. We discarded the first 100,000 draws as burn-in and keep every 500th draw.

IV.1. Model comparison. We compute the marginal data densities (MDDs),

known as a measure of fit, to discriminate between various versions of the model.

We employ three different methods to compute MDDs. The first method is the

standard new modified harmonic mean (MHM) method illustrated by Geweke (1999)

who proposes a multivariate normal distribution as a weighting function. Such a

function may produce unreasonable inference when approximating a non-Gaussian

posterior density as characterized by the posterior distribution of Markov-switching

models. The two other methods employed in this paper — the Sims, Waggoner, and

Zha (2008) method and the bridge sampling method developed by Meng and Wong

(1996) — overcome this difficulty by proposing new weighting functions. Appendix

1.C details each method.

The log values of marginal likelihood are reported in Table 3, which allows us

to draw two main conclusions. First, comparing the first and second rows, we see

that allowing the Calvo parameter to change over time does not improve the fit

significantly while parameter count increases. Indeed, the log values of MDD for

Mfreq and Mconst are statistically indistinguishable, with a difference less than 1.0 in

log terms. This suggests that the changing Calvo parameter does not add anything

to the fit of the model. This agrees somehwat with the findings of Del Negro and

Schorfheide (2008) that the data cannot discriminate among the low rigidities and
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high rigidities specifications. However, it must be noted that MDD does increase

slightly and does not decrease even though unnecessary increase in the number of

estimated parameters can be punished by methods employed. Thus the model with

a time-varying Calvo parameter does not worsen the fit and can be used.

Second, allowing for the volatilities of the shocks to be time-varying improves the

fit considerably by more than a 100 in log-terms with respect to Mfreq and Mconst. This

improvement corroborates with the previous findings [Sims and Zha (2006) and Liu,

Waggoner, and Zha (2011)]. Hence, there are two best-fit models; Mvol and Mfreq+vol.

Because their log-MDDs are extremely close, we cannot discriminate between both of

them. Since the results from these two models are quite similar, we report the results

from Mfreq+vol and provide some explanations for the similarities of both models.

Finally, it is apparent that all three methods for MDD computing deliver very

close numerical results, which reinforces our conclusions.

IV.2. The best-fit model, Mfreq+vol. As it was mentioned earlier or above, we

have incorporated two sources of time variation in the model called Mfreq+vol. First,

we allow the parameter that determines the degree of nominal rigidity in the economy

(θp) to evolve as a two-state, first-order Markov-switching process. It follows that (28)

becomes

π̃t =
β

1 + γpβ
Etπ̃t+1 +

γp
1 + γpβ

π̃t−1 +
(1− θp(st)β)(1− θp(st))

θp(st)(1 + γpβ)
w̃t + θ̃t (25)

where st = {0, 1} is an unobserved state variable.
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Second, all shocks variances, except the inflation target shock6, can change over

time according to an independent Markov-switching process svol
t = 1, 2 — “low-”

and “high-volatility” regimes. Liu, Waggoner and Zha (2011) have shown that it is

sufficient to only allow two states to account for changes in shocks variances in a

Markov-switching framework.

IV.2.1. The prior. Following closely Cogley, Primiceri, and Sargent (2010), we

have calibrated three parameters. Due to the fact that the inverse of the Frisch

elasticity of labor supply (η), steady-state price mark-up (θ), and Calvo parameter

(θp) are not identified separately, we set the inverse of the Frisch elasticity of labor

supply to two and the steady-state price mark-up to 0.10. This allows us to examine

the behavior of the frequency of price adjustment in the settings of these models. We

also calibrate the smoothing of the inflation target shock to 0.995. Since we estimate

the model with a drifting inflation target, we set the indexation to past inflation (γp)

to zero.

Most of the priors are rather dispersed. We report the specific distribution, the

mean, and the standard deviation for each parameter. The priors are summarized in

the column “Prior” of Table 1.

First, we begin with the prior distributions of preference h, β and technology pa-

rameter γ. The prior distributions for these parameters are closely following those in

Cogley, Primiceri, and Sargent (2010) and Justiniano, Primiceri, and Tambalotti

(2010). It may be worth noting that the discount factor has been transformed

100(β−1 − 1) to make the estimation easier. This prior is gamma distribution with

6We come to the same conclusion when allowing the inflation target to change with the other
disturbance shocks.
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the mean 0.25 and the standard deviation 0.10, implying a value of β equal to 0.9975

and corresponding to the value obtained in Smets and Wouters (2007) and in Altig,

Christiano, Eichenbaum, and Linde (2011). The transformed steady-state technol-

ogy growth-rate follows a Normal distribution, with the mean 0.50 and the standard

deviation 0.10. These values imply that the mean of γ is 1.005 corresponding to an

annual growth rate of 2 percent.

Second, we discuss the prior distributions for parameter determining the nominal

rigidities in the model–frequency of non-adjustment in pricing θp(st). The priors for

the Calvo parameter, θp(st) follows a Beta distribution. The means are set differently

between the two models: in Mfreq means are symmetric and centered at 0.66 for

both regimes. For Mfreq+vol we take a stand and push the change between regimes

which makes our conclusion of lack of change even stronger: the mean 0.75 and

the standard deviation 0.10 under Regime 1 (st = 1) and the mean 0.55 and the

standard deviation 0.10 under Regime 2 (st = 2). This implies the mean of the

nominal contract durations for Regime 1 and 2 are respectively equal to four and two

quarters. Logically, we label the former as the “low-frequency” regime and the latter

as the “high-frequency” regime. Note that we have experimented with symmetric

priors and our conclusions remain unchanged.

Third, we discuss the prior distributions of shock processes in the model. For the

smoothing parameters, ρz, ρp, ρb, and ρr, we impose weakly-informative beta priors

centered at 0.6 with the exception of ρz, which is centered at 0.4 due to the unit root in

labor productivity. Their standard deviations are set to 0.2. These hyperparameters

are in line with those used in most studies [Justiniano and Primiceri (2008) and
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Smets and Wouters (2007)]. Following Liu, Waggoner, and Zha (2011), we impose

the same priors for the shock variances across regimes. Specifically, monetary policy

shock and price markup shock variances follow an Inverse-gamma distribution with

the mean 0.15 and the standard deviation 1.00. The intertemporal preference shock

and technology shock variances also follow an Inverse-gamma distribution, but with

the mean 0.50 and the standard deviation 1.00. Finally, we discuss the prior duration

for each regime.

The prior on the transition matrix governing the Calvo pricing parameter follow a

Beta distribution with the mean 0.90 and the standard deviation 0.10, corresponding

to a prior duration of twelve quarters.

When the variances of shocks are allowed to change, we impose a Beta distribution

with the mean 0.90 and the standard deviation 0.10 for the transition probabilities pi,i.

This value implies a prior duration of a regime between six and seven quarters. Our

prior duration on the transition matrix governing disturbance variances is reasonably

based on findings in the previous literature [Sims and Zha (2006)].

IV.2.2. The posterior. Table 1 reports the posterior distribution for each param-

eter of the model Mfreq+vol. Prior to focusing on the estimate for the time-varying

parameters, we analyze some other key parameters.

The estimate for 100(π−1) is 0.4723, which implies an annual inflation rate of the

economy around 2 percent. The estimated steady-state technology growth rate (γ) is

0.4204, implying a growth rate of the economy of 1.68 percent per annum, which is

consistent with other macroeconomic studies.
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Among the monetary policy parameters, the estimate for the nominal interest rate

response to inflation is 1.4938 with the tight probability interval [1.1610; 1.9502]. its

response to an output gap is 0.5012 with relatively tight error bands [0.3624; 0.7855].

The estimate for the smoothing interest rate ρr is 0.5880, which is reasonably close

to Cogley, Primiceri, and Sargent (2010) but differs from the medium-scale DSGE

literature [Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007)].

Among the shock processes, the persistence parameters for all shocks except the

preference shock (ρb) are small, with a persistence of markup shock equal to 0.3798

and a persistence of productivity shock equal to 0.2306. The estimate for the AR(1)

coefficient for the preference shock is 0.8534 and the corresponding error bands are

tight [0.7941; 0.9076].

Regarding the structural disturbance variances, the model Mfreq+vol clearly cap-

tures two distinct regimes. Estimates for the standard deviations of the shocks

under Regime 1, “high-volatility” regime, are larger than those under Regime 2,

“low-volatility” regime. More specifically, the estimated standard deviations for the

markup shock (σp) and the preference shock (σb) are about twice as high in the “high-

volatility” regime. However, most change occurs in the monetary policy shock (σr)

whitch is approximately seven times more volatile. The estimated standard devia-

tions of the productivity shock (σz) decreases from 1.0179 under Regime 1 to 0.7307

under Regime 2.

Figure 2a displays the (smoothed) probabilities—evaluated at the posterior mode—

of the “high-volatility” regime in the red line for the model Mfreq+vol. The probabil-

ity of the “high-volatility” regime starts to increase during the start of 1955, rapidly
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reaches its peak in 1956, and quickly decreases just prior to 1960. Whileremaining

low during the next decade, the probability skyrockets to 1.0 in 1970 and through the

beginning of the 1980s, covering a time in which two big oil shocks occured. One last

peak is observed around 2008, corresponding to the beginning of the Great Recession.

The following transition matrix

P vol =

 0.7652 0.0663

0.2348 0.9337

 (26)

shows that the “low-volatility” regime is more persistent than the “high-volatility”

regime. This timeframe is supported by existing literature [Davig and Doh (2013),

Bianchi (2013) and Liu, Waggoner, and Zha (2011)].

We now discuss the estimates for the Calvo pricing parameter [θp(st)] across the

two regimes. The estimates for θp(st = 1) is 0.8796, implying an average price dura-

tion of 4.5 quarters. The estimates for θp(st = 2) is 0.6065, which is close to the mean

of its prior, suggesting that Regime 2 (“high-frequency” regime) does not occur for

a long period of time, letting the prior dominate the posterior. The smoothed prob-

abilities, reported in Figure 2b, provide evidence supporting this intuition. Regime

1 (“low-frequency” regime) dominates throughout the sample period, although there

is a small probability of about 20 percent, that the “high-frequency” regime occurs

between the late 1970 and the early 1980. In other words, the “high-frequency”

regime never occurs. Such a result gives us the reason why we cannot discriminate

between Mfreq+vol and Mvol. Indeed, both models are strictly similar7 in the sense

7Results from Mvol are available upon request.
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that they allow time-variation in all shock variances while letting completely constant

the price-setting behavior over time.

IV.3. When keeping volatility of the shocks constant. In this section, we

examine the time variation in the frequency of price adjustment while the disturbance

shocks are constant across time, Mfreq. Although this version of the model does not

fit nearly as well as our best-fitting model, there are several reasons to examine its

implications. First, this model’s fit does is not worse than the constant-parameters

model. Hence, this setting can still be used for economic analysis. Second, the model

reflects the dominant view that firms adjust more frequently their prices in periods of

high-inflation, and its economic implications allow us to better understand the role

of such private-sector changes in the economy.

Table 1 reports the mode for each parameter with a 90 percent probability interval

for both the structural parameters and shock processes of the model Mfreq. The

estimates for most structural parameters are quite similar to those in M freq+vol .

There are, however, some noticeable differences. First, the estimate for the Taylor-rule

coefficient for inflation (ψπ) is equal to 1.3207, which is slightly lower than the estimate

of the model Mfreq+vol . The second notable difference concerns the persistence of the

markup and productivity shocks. The estimate for the persistence of the markup

shock (ρp) decreases from 0.3798 in Mfreq+vol to 0.1209 in Mfreq . The estimate for

the persistence of the productivity shock (ρz) increases to 0.3974 when the size of

shocks is not taken into account.

Regarding the estimate for shocks variances, the highest variance is the preference

shock (σb) with a mean of 2.8059. The estimate for other standard deviations of shocks



24

lie between 0.1583 and 0.6506. The 0.90 percent error bands for all the shock variances

indicate that uncertainty about them is extremely small, except for the preference

shock standard deviation with the probability interval [2.1092; 3.6600].

It is striking to observe that price setting behavior by firms has significantly

changed over time. Our estimates provide two distinct regimes of the Calvo pricing

parameter [γp(st)] with a value around 0.8720 under Regime 1—the “low-frequency”

regime, and 0.7162 under Regime 2—the “high-frequency” regime. Their tight 90

percent error bands do not overlap, suggesting that the estimates are robust.

The estimate for the Calvo parameter under the ”low frequency” regime, implying

a price duration around 9 quarters, is consistent with the previous macroeconomic

literature [Smets and Wouters (2007) and Justiniano and Primiceri (2008)], although

higher than those reported in the microeconomic studies [Bils and Klenow (2004)].

However, the ”high-frequency” regime corresponds to a price duration around 3 quar-

ters and corroborates with the finding of Bils and Klenow (2004).

Figure 3 depicts 400 independent draws from the prior distribution (on the left

panel) and every 2, 500th draw from the posterior distribution. The black line in

each panel indicates the posterior mode. The comparison between the prior and

posterior distributions allow us to assert the informative content of the data. The

posterior of the Calvo parameter under Regime 1, θ(st = 1), is tighter relative to the

prior distribution. There is also information about this parameter under Regime 2

[θ(st = 2)] although its posterior is larger relative to the posterior under Regime 1.

Figure 4 depicts the posterior at mode as a function of θ(st = 1) in dotted black

line, and a function of θ(st = 2) in red line. Once again, this Figure demonstrates how
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the Calvo parameter influences the posterior. Moreover, most of the draws generated

from the posterior distribution concentrate in the highest probability region. We also

examine the prevalence of regimes at each date. The smoothing algorithm of Kim

(1994) makes an inference on st using all the information in the sample, as opposed

to the Hamilton (1989) filtered algorithm that makes an inference on st using only

the information at date t.

Figure 5 displays the (smoothed) probabilities of the “high-frequency” regime

of price changes in red line. To highlight the connection between this regime and

inflation, we display the time series of U.S. inflation in the background. The shaded

grey areas denote U.S. NBER-defined recessions of the United States.

It is clearly illustrated that the probability of high frequency of price adjustments

is near one during periods of high inflation and near zero for the remaining years.

According to these estimates, firms do adjust prices more often in a high-inflation

environment. We interpret this result to mean that price reoptimizations become

more frequent to compensate their increasing costs due to high levels of inflation.

Interestingly, these findings are consistent with Ball, Mankiw, and Romer (1988),

who examine the relation between inflation and the size of real effects of nominal

shocks.

Further, Gagnon (2009) documents the relation between inflation and the fre-

quency of price changes by using microeconomic data in Mexico. He comes to the

same conclusion.
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IV.3.1. Economic implications. First, we examine and compare the dynamics

across the two regimes through impulse response analysis. Figure 6 shows the im-

pulse responses to three economic disturbances. The first column depicts the re-

sponses to a markup shock under the “low-frequency” regime (in grey area) and the

“high-frequency” regime (dotted red line). After a markup shock standard deviation,

inflation and output follow the opposite direction while the nominal interest rate

increases. The responses are remarkably similar across the two regimes.

The second column depicts responses to a preference shock under the “low-frequency”

regime (in grey area) and the “high-frequency” regime (dotted black line). The pat-

terns of each variable do not change dramatically across the regimes, except for in-

flation. The response of inflation is more pronounced and persistent under the ”low-

frequency” regime. As expected, inflation, output, and nominal interest rate increases

for both regimes.

Although there are small differences across the two regimes when analyzing mon-

etary policy shocks, the macroeconomic variables follow similar pattern under both

regimes. Therefore, the real effects of monetary policy shock stays the same. The

90 percent error bands overlap, which reinforce the results. Once again, the infla-

tion reaction is much weaker under the “low-frequency” regime, corresponding to

low-inflation environments.

Overall, the transmission mechanisms appear to remain stable across the two

regimes. The difference in the degree of nominal rigidities across regimes is not

drastic enough to capture changes in the real effects of nominal shocks. A closer

inspection is performed by looking the values of the slope of the NKPC, κ. This
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slope, describing the relationship between inflation and real marginal costs, is largely

influenced by the parameter θp, which determines the degree of nominal rigidity in

the economy.

A priori, the smaller the slope, the larger the nominal rigidity and the impact of

monetary policy on real activity. Table 2 reports the slope across the two regimes of

the model Mfreq. As is clearly visible from this Table 1, the slope is very different

across the two regimes of frequency of price adjustments. The estimated mode for

κ(st = 1), under the “low-frequency” regime, is 0.0190 with tight probability intervals

[0.0019; 0.0302]; whereas under the “high-frequency” regime, the estimated mode for

κ(st = 2) is 0.1129 with probability intervals [0.0955; 0.4621]. The fact that the

probability intervals do not overlap make results robust. However, in reference to the

impulse response analysis, the drastic change in the slope of NKPC across regimes

does not affect the real output impact of monetary policy shocks. What drastically

changes across the regimes is the inflation dynamics. The next and final exercise

confirms this finding.

The importance of variations in the frequency of price changes may be quantified

through a historical counterfactual exercise assessing the impact of changing the Calvo

parameter with regard to inflation dynamics: what would happen if these changes had

not occurred? In order to assess the results we impose the “low-frequency” regime

throughout the sample period. Figure 7 reports the actual path (black line) and the

counterfactual path (red line) of inflation. It is apparent that the variability and level

of inflation, during the 1970s, strongly decreases when there is a lower frequency of

price changes.
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Consequently, the frequency of price adjustment turns out to be an important

source of fluctuations in inflation. Interestingly, our counterfactual analysis also indi-

cates that a high frequency of price changes is associated with an upward movement

in the aggregate level of prices, suggesting that inflation covaries strongly with the

frequency of price increases. This corroborates with Nakamura and Steinsson (2008a),

who use U.S. micro level price data from 1988.

In summary, a researcher who investigates the stability of the frequency of price

adjustments would not come to the same conclusion than if the model employed takes

into account time variation in variance of the shocks.

IV.4. Why does the Calvo parameter remain constant when taking

heteroskedasticity into account? An important question we ponder is why the

Calvo pricing parameter remains invariant after controlling heteroscedasticity. One

explanation is that the one-parameter-at-a-time approach, characterizing the model

Mfreq, may not be able to identify the real source of time variation.

In our setup, we calibrate the indexation parameter (ιp) to zero in order to avoid

identification issues between the indexation parameter and the Calvo pricing param-

eter. In consequence, the parameter that determines the frequency of price changes

[θp(st)] may switch regimes to compensate for mispecification in the indexation, iden-

tifying the wrong source of time-varying inflation persistence. The change in ιp, if

there is any, would be captured by the markup shock (εp) as ιp is forced to remain

unchanged over time.

A second explanation results directly from the Calvo model. An exogenous and

constant staggering of price changes à la Calvo (1983) is not, a priori, incompatible
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with the New Keynesian theory, which predicts that an increase in the rate of inflation

causes firms to adjust prices more frequently. Indeed, an adjustment of prices by

firms does not necessary signify that this adjustment results from a complete re-

optimization.

Adjustment and re-optimization are two different concepts. The re-optimization

process implies that firms choose the price that maximizes their real profits, while the

adjustment process provides no information about how producers change their prices.

In consequence, the Calvo pricing parameter implies a complete re-optimization pro-

cess and may not be able to capture these changes.

V. Is the Calvo pricing parameter policy invariant?

Having documented the invariance of the Calvo pricing parameter while incor-

porating changing volatilities, we now examine its policy invariance. DSGE models

incorporate rational expectations of agents and describe agents’ preferences and tech-

nology using micro-founded parameters called “deep”. These parameters are thus

“structural” in the sense of Lucas (1976) when the approximating model is correctly

specified. This means that after a monetary policy change, the estimated preference

and technology parameters remain the same. In turn, misspecified approximating

DSGE models employed for policy analysis may be misleading in the sense that any

policy switches would lead to a change in reduced-form parameters. The best way

to evaluate the hypothesis that the Calvo pricing parameter is not structural in the

sense of Lucas (1976) is to show that this parameter changes jointly with monetary

policy switches. To be clear, we do not attempt to provide evidence on the empirical

significance of the Lucas critique as this goes beyond the scope of our paper. We only
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examine whether the Calvo pricing parameter is a structural parameter; i.e, whether

it remains stable across different monetary policy regimes.

We consider the following two models with time variation for parameters:

(1) Mmp+vol: The behavior of the Federal Reserve [ψπ and ψy] and stochastic

volatilities evolve independently over time according to two-states Markov-

switching processes, respectively smp
t and svol

t .

(2) M(freq+mp)+vol: The Calvo pricing parameter [θp] is allowed to change simul-

taneously with monetary policy switches [sfreq+mp
t ], while the variances of

structural disturbances change independently [svol
t ].

Before presenting the results, these two models deserve some comments. First, we

make the transitions of the standard deviations of shocks and monetary policy coef-

ficients independent because Davig and Doh (2013) and Bianchi (2013) have shown

that doing so highly improves the fit of the model. Second, we allow only for changes

in the nominal interest rate response to inflation (ψπ) and to output gap (ψy) in policy

changes. We impose the smoothing interest rate parameter ρR as constant across pol-

icy regimes. As highlighted in Bianchi (2013), this parameter is quite similar across

regimes.

V.1. Prior and posterior distributions. Table 4 reports prior and posterior

medians with a 90 percent probability interval for the structural parameters and shock

processes of the models Mmp+vol and M(freq+mp)+vol. The priors for constant param-

eters are similar to those reported in the previous section, as well as the standard

deviations of the shocks. We now discuss the prior distributions of the monetary
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policy rule. We impose an asymmetric prior for the interest rate response to infla-

tion across the two regimes. In particular, the prior for the second regime [s1
t = 2]

corresponds to a more aggressive response to inflation—with a Normal distribution,

the mean is 2.50 and the standard deviation is 0.20—than for the first regime with a

Gamma distribution, the mean at 1.00 and the standard deviation at 0.20. The prior

for the reaction to an output gap is symmetric across regimes. It follows a Gamma

distribution with the mean at 0.30 and the standard deviation at 0.10. Finally, the

interest rate smoothing parameter ρr follows the Beta distribution with 0.60 as the

mean and 0.20 as the standard deviation. Finally, the prior mean probabilities for

the process smp
t are equal to 0.95 and are associated with tight standard deviations,

implying that the regimes are very persistent. Therefore, we label the Regime 1 as

the “passive policy” regime and the Regime 2 as the “active policy” regime.

The estimates for structural parameters, other than monetary policy coefficients,

for the Mmp+vol and M(freq+mp)+vol models are close to those previously outlined. For

this reason, we focus our attention on the monetary policy parameters. For Mmp+vol,

the estimate for the interest rate response to inflation under the “passive policy”

regime, ψπ(s1
t = 2), is 0.8237 with the error bands [0.6412; 1.1755], covering the mode

of a similar parameter ψπ(s1
t = 2) = 0.8350 in M(freq+mp)+vol. This parameter is per-

mitted to go below 1—leading to the indeterminacy region in a constant parameters

model, but not necessary in a Markov-switching rational expectations model. The

estimated posterior mode accepts the idea that the Federal Reserve has raised the

nominal interest-rate less than one-for-one in response to higher inflation since post-

World War II. In the “active policy” regime, both models imply that the estimate
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for ψπ(s1
t = 2) is about 2.45. The probability intervals of these parameters are very

similar and clearly cover the estimates from the previous studies in DSGE literature

[Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007)]. Over-

all, our estimate for these coefficients [ψπ(st) for st = {1, 2}] lay within a 90 percent

posterior probabilities interval found by Bianchi (2013). The estimate for the interest

rate response to the output gap has changed slightly between the two regimes with

ψx(s
1
t = 1) = 0.5089 and ψx(s

1
t = 2) = 0.3685 for Mmp+vol, and ψx(s

1
t = 1) = 0.5108

and ψx(s
1
t = 2) = 0.3777 for M(freq+mp)+vol. Although not imposed by the prior,

monetary policy responds differently to the output gap across regimes with a more

aggressive response in the “active policy” regime. Finally, the mode of the estimated

smoothed interest rate parameter is ψρR = 0.5804, with a tight probability interval

[0.5253; 0.7289]. Overall, the estimates for coefficients of the monetary policy equation

are roughly the same in both models.

Regarding the parameter determining the degree of nominal price rigidities in

M(freq+mp)+vol, the estimate for ξp(s
1
t = 1) is about 0.7542 for the “passive policy”

regime and ξp(s
1
t = 2) = 0.7719 for the “active policy” regime. As the difference

in this parameter across regimes is very small, a conclusion cannot be reached that

the “passive policy” regime is associated with a low frequency of nonadjustment of

prices, whereas the “active policy” regime characterized by a high frequency of non-

adjustment of prices. Furthermore, the 90 percent posterior probability intervals

overlap, we fail to make a distinction between the estimates for two regimes. Thus,

this parameter is essentially the same regardless of time period or policy. So it is

not surprising to observe that the mode of this estimated parameter in Mmp+vol lies
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within the probability intervals of those estimated in M(freq+mp)+vol, with a value equal

to 0.7685. It then follows that in the aggregate level in U.S. economy, the average

duration of prices is about 4 quarters which is consistent with the microeconomic

literature [Bils and Klenow (2004)].

Figures 8a and 8b show the (smoothed) probabilities of both Markov-switching

processes, smp
t and svol

t , over time for the model smp+vol
t . We do not report the

smoothed probabilities in the s
(mp+freq)+vol
t model because the graph is nearly the

same as that for the model smp+vol
t . The top panel depicts the smoothed probabili-

ties (at the posterior mode of the parameters) of being in the “active policy” regime

at any date. This panel also displays the evolution of the federal funds rate. It is

apparent that the behavior of the Federal Reserve can be divided into a pre- versus

post-Volcker era. Indeed, the probability of the ”active policy” regime starts to in-

crease slightly after Paul Volcker assumed chairmanship of the Federal Reserve, and

rapidly reaches 1.0 and stays near this value until the end of the sample. This finding

is consistent with Bianchi (2013) that the appointment of Paul Volcker in the mid

1970s is interpreted as a dramatic shock rather than a deliberate change in the con-

duct of monetary policy. Moreover, the long period of sustained “passive policy” is

consistent with the widely thought that the predecessors of Paul Volcker, in particular

Arthur F. Burns and G. William Miller, were not deliberately committed to a fight

high-inflation [Meltzer (2009)]. Finally, estimated probabilities provide empirical ev-

idence that it is judicious to divide the post-World War II American economy into

pre- versus post-Volcker eras [see among others, Lubik and Schorfheide (2004) and

Clarida, Gali, and Gertler (2000)].
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The estimated probabilities of the transition matrix governing the monetary policy

changes, smp
t , and the shocks variance, svol

t , are as follows

Pmp =

 0.9914 0.0029

0.0086 0.9971

 and P vol =

 0.7652 0.0663

0.2348 0.9337

 (27)

The estimated probabilities in the transition matrix Pmp are quite similar and very

high, implying a highly persistent duration for each regime. The skewed 0.90 proba-

bility intervals, reported in the Table 4, reinforce the idea that both regimes are very

sustainable. The estimated transition matrix P vol is very similar to the one in the

svol
t with a larger persistence of the “low-volatility” regime.

V.2. Assessing fit. The final two rows of Table 3 report the log-values of MDD

for Mmp+vol and M(freq+mp)+vol. When comparing the model with independent changes

in monetary policy behavior and shocks variances, [Mmp+vol] with Mvol allowing only

drifts in variance shocks, the former delivers the best-fit with a log-value difference

of 3.0 for the Bridge method and 2.0 for the other two methods, implying important

changes in the behavior of the Federal Reserve over time.

Furthermore, the addition of time variation in the frequency of price changes in

conjunction with monetary policy switches, M(freq+mp)+vol, does not improve the fit.

This may be explained simply by the fact that the estimates for θp(st) are clearly the

same across the two regimes, and in consequence, the data cannot favor one model

over another.

Once again, the three marginal likelihood computation methods draw the same

conclusion, reinforcing our previous results. We conclude that the Calvo model is a
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well-specified approximating model, guaranteeing the invariance of the Calvo pric-

ing parameter while suggesting that it is not particularly harmful to model a Calvo

parameter as time-varying if one is interested in examining economic implications

possibly arising from this variation.

VI. Conclusion

We have examined the structural nature of the Calvo (1983) parameter, which

determines the frequency of price adjustment in a class of Markov-switching medium-

scale DSGE models that fit the U.S. macroeconomic data from 1954 to 2009. In this

setup, we allow agents to adjust their expectations based on the belief that certain

features of the economy and policy are stochastic and nonpermanent.

We have solved and estimated the models under these conditions and were able to

address a widely discussed question on which features of modeling aggregate prices

can be considered structural. Previous research has found that the Calvo parameter

is unstable and varies across high and low inflation episodes and/or a monetary policy

regime. We reproduce this evidence and show that such instability largely disappears

when one models heteroscedasticity in a Markov-switching Dynamic Stochastic Gen-

eral Equilibrium model. Our second main empirical finding indicates that the Calvo

parameter is also invariant to changes in the monetary policy regime.

Although statistically dominated, the model that allows the frequency of price

changes to vary across two regimes, offers interesting insights about the price-setting

behavior of firms over time. When the economy is pushed into a high inflation en-

vironment, firms change their behavior and reoptimize their prices more frequently.

Our results suggest that if this regime change in the firms’ behavior would not have
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occured, then U.S. inflation would not have reached exceptional levels in the 1970s;

thus implying that time variations in private sector behavior as a source of macroe-

conomic fluctuations played an important role.

1.A. Markov-switching DSGE model: Solution and Estimation

1.A.1. Log-linearization. The log-deviations of the stationary variable ζt from

its steady state value is denoted ζ̂t and defined as ζ̂t = logζt − logζ, except for

ẑ ≡ zt − γ.

A log-linear approximation of the solution to the firms’ price-setting problem (12)

is expressed as follows

π̂t =
β

1 + γpβ
Etπ̂t+1 +

γp
1 + γpβ

π̂t−1 +
(1− θpβ)(1− θp)
θp(1 + γpβ)

ŵt + θ̂t (28)

This above equation, known as the New-Keynesian Phillips Curve (NKPC), relates

the current inflation to the lagged inflation π̃t−1, the expected inflation rate Etπ̃t+1,

and the real marginal cost s̃t. The last block of parameters κ = (1−θpβ)(1−θp)

θp(1+γpβ)
is widely

interpreted as the slope of the Phillips curve; i.e., a measure of nominal rigidity. It is

worth noting that this slope is inversely correlated with the parameter that determines

the frequency of price changes, θp.

The other log-linearized equilibrium conditions are as follows

λ̂t =
hβeγ

(eγ − hβ)(eγ − h)
Etŷt+1 −

eγ2 + h2β

(eγ − hβ)(eγ − h)
ŷt +

heγ

(eγ − hβ)(eγ − h)
ŷt−1

+
hβeγρz − heγ

(eγ − hβ)(eγ − h)
ẑt +

eγ − hβρb
(eγ − hβ)

b̂t (29)

λ̂t =R̂t + Et

(
λ̂t+1 − π̂t+1

)
− ρz ẑt (30)
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ŵt =ηŷt + b̂t − λ̂t (31)

where (29) is the marginal utility equation with λ̂t denoting the marginal utility of

consumption; (30) is the Euler equation; and (31) is the labor supply equation. The

monetary policy rule is given by

R̃t = ρRR̃t−1 + (1− ρR) [ψπ(π̃4,t − π̃∗t ) + ψy (ỹt − ỹ∗t )] + εR,t (32)

where ỹ∗t denotes the output of the economy with flexible prices. The equations

(28), (29), (30), (31), and (32) describe the evolution of the economy conditional on

the stochastic processes for the shocks x̂t = ρxx̂t + εx,t, with x ∈ {z, θ, b, π∗}. The

stochastic process for monetary policy has already been specified in (32).

1.A.2. Solution method. The solution proposed by Cho (2011) exploits the

idea of the forward method for solving MS-DSGE models whereas the method by

Farmer, Waggoner, and Zha (2009) and Farmer, Waggoner, and Zha (2011) exploit

Newton’s method to find all possible Minimum State Variable (MSV) solutions. When

the model is determinate, both methods return the same solution. Using the algorithm

solution of Farmer, Waggoner, and Zha (2011), we obtain the solution of the Markov-

switching rational expectations model in the following way

ft = V (st)F1(st)ft−1 + V (st)G1(st)εt (33)
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where

[
A(i)V (i) Π

] F1(i)

F2(i)

 = B(i)

[
A(i)V (i) Π

] G1(i)

G2(i)

 = Ψ(i) (34)

and (
h∑
i=1

pi,jF2(i)

)
V (j) = 0 (35)

We find an MSV equilibrium by finding the matrices Vi, then the matrices F1,i, F2,i,

G1,i, and G2,i. If equation (35) is satisfied, we obtain a MSV equilibrium.

1.A.3. Constructing the posterior distribution. To form the posterior den-

sity, denoted p(θ|YT ), we combine the overall likelihood function p(YT |θ) with the

prior p(θ)

p(θ|YT ) ∝ p(YT |θ)p(θ) (36)

where θ contains all the parameters. The evaluation of the overall likelihood function

is obtained using the Kim and Nelson (1999) filter, which is a combination of the

Kalman filter and the Hamilton (1989) filter. Let p(yt|st, st−1, ψt−1, θ) the conditional

likelihood function given st, st−1 and the past information ψt−1. By integrating st and

st−1 out, the likelihood function at date ] t is as follows

p(yt|ψt−1, θ) =
∑
st

∑
st−1

p(yt|st, st−1, ψt−1, θ)Pr[st, st−1|ψt−1] (37)

with

Pr[st, st−1|ψt−1] = Pr[st|st−1]Pr[st−1|ψt−1] (38)
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where Pr[st|st−1] is the transition probability described previously. We then update

the joint probability term in the following way

Pr[st, st−1|ψt] =
f(yt, st, st−1|ψt−1)

f(yt|ψt−1)
=
f(yt|st, st−1, ψt−1)Pr(st, st−1|ψt−1)

f(yt|ψt−1)
(39)

and finally obtain the probability term given the information at date t

Pr[st|ψt] =
∑
st−1

Pr[st, st−1|ψt−1] (40)

The conditional likelihood function, p(yt|st, st−1, ψt−1), cannot be evaluated with the

standard Kalman filter. If in the constant case, the updated forecasts of the unob-

served state vector, βt, and the updated mean squared error of forecast Pt depend

only on the information set ψt, in a case with Markov switching elements, these fore-

casts are also conditioned on the unobserved state st = j and st−1 = i. It follows

that, at each iteration, the number of βt and Pt to consider increases, which makes

the Kalman filter unfeasible. In each step, we then collapse these h2 terms in order

to make the evaluation feasible. This approximation allows to make inference on βt

based on information ψt−1, given only st−1. See Kim and Nelson (1999) for more

details. The overall likelihood is

p(YT |θ) =
T∏
t=1

p(yt|ψt−1, θ) (41)

Once the parameters of the model are estimated, we follow Kim (1994) and Kim

and Nelson (1999) and make inference on sT , (t = 1, ..., T ), the smoothed probabilities,
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in the following way

Pr[st = j|ψT ] =
M∑
k=1

Pr[st = j, st+1 = i|ψT ] (42)

where

Pr[st = j, st+1 = i|ψT ] =
Pr[st+1 = i|ψt].Pr[st = j|ψt].Pr[st+1 = i|st = j]

Pr[st+1 = i|ψt]
(43)

The advantage of such a method is that it allows us to infer the unobservable variable

st using all the information in the sample.

1.B. Data

The data used for estimation includes quarterly data from the third quarter of

1954 to the second quarter of 2009. Inflation πt is the first log-difference of the

GDP deflator; the nominal interest rate Rt is the Federal Funds rate; and the output

growth ∆yt is the first log-difference of real per capita GDP. This latter is obtained

by dividing real GDP (GDPC96) by population (LF and LH). All data comes from

the St. Louis Federal Reserve Bank database (FRED). The series are reported in

Figure 1.

1.C. Marginal Data Densities

In Bayesian analysis, Marginal Data Density (MDD) is a tool commonly used for

comparison between models. The general idea behind this is as follows: We know
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that posterior density can be written as

P (θ|Y ) =
P (Y |θ)P (θ)

P (Y )
(44)

We know that true posterior is

∫
P (θ|Y )dθ = 1 (45)

which makes ∫
P (Y |θ)P (θ)dθ = P (Y ) (46)

and if we use some proposal density Pprop(θ) which integrates to 1 we can deduce that

∫
Pprop(θ)

P (Y |θ)P (θ)

P (Y |θ)P (θ)

P (Y )
dθ =

1

P (Y )
(47)

we can define m(θ) = Pprop(θ)

P (Y |θ)P (θ)
and since we know that P (Y |θ)P (θ)

P (Y )
dθ = P (θ|Y ) and is

true density integrating to 1 we can conclude that

1

P (Y )
=
∞∑
i=0

m(θi) (48)

The closer proposed density is to posterior kernel, more accurate results are obtained.

In addition when one looks at the formulas, it is clear that the higher marginal data

density, the closer estimated posterior is to the “true” posterior. Thus it allows us to

compare models in a most efficient way.

1.C.1. Geweke (1999) method. We follow Geweke method for our first cal-

culation and choose Pprop(θ) to be truncated Normal. First, we run a random-walk
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Metropolis-Hastings algorithm and generate a significant number of posterior draws

θt. Using twenty percent of these draws, we compute certain statistics, such as mode

θ̂ for each estimated parameter and the analogue of the variance-covariance matrix,

we center it around θ̂ instead of the mean.

V =
1

T

T∑
t=1

(θt − θ̂)(θt − θ̂)′ (49)

The reason for this choice of centering is the fact that in the Markov-switching

world mean is often located in a low probability region. It stands to reason that if

everything is centered around the mean truncation used for this method, it would cut

“too much” of the distribution when creating proposal distribution. Thus most of the

posterior draws would fall within the zero-probability region of posterior distribution.

After we obtain these statistics, we create proposal density using truncated Nor-

mal centered around θ̂ and scaled by V (−1) Using the rest of the posterior draws,

we evaluate posterior and proposal densities at these draws, obtaining Ppost(θ) and

Pprop(θ). Using these values, we proceed by computing

MDD =
1

T

T∑
t=1

(
Pprop(θt)

Ppost(θt)
) (50)

1.C.2. Waggoner and Zha (2008) method. Since in practice posteriors esti-

mated for the parameters in a Markov-switching framework are often highly non-

Gaussian, we are using a new modified harmonic mean method for proposed by

Sims, Waggoner, and Zha (2008)calculations of MDD. We first proceed by generating

posterior draws from the posterior distribution using the Random-Walk Metropolis-

Hastings algorithm. We then make proposal draws from normal distribution as our



43

model is fairly small and Gaussian approximation may give accurate results, even

though in the original Sims, Waggoner, and Zha (2008) method elliptical distribution

is used (it includes Gaussian density as a special case). The following procedure could

be used for elliptical distribution:

g(θ) =
Γ(k/2)

2πk/2|det(Ŝ)|
f(r)

rk−1
(51)

where Γ is a standard gamma function and f(r) is a one-dimensional density defined

on the positive reals. Calculations can be done in the following way:

(1) Calculate the statistics of posterior draws from a Metropolis-Hastings algo-

rithm using 20percent of all draws (all other calculations are done using the

remaining 80 percent of draws). For centering, we used posterior mode θ̂.

Calculate scale Ŝ =
√

Ω̂, where Ω̂ is a variance-covariance matrix and radius

is

r(i) =

√
(θ(i) − θ̂)′Ω̂−1(θ(i) − θ̂) (52)

Using this radius, calculate other statistics:

• c1 such that 1 percent of ri ≤c1

• c10 such that 10 percent of ri ≤ c10 and

• c90 such that 90percent of ri ≤ c10

From these statistics calculate parameters a, b and v

a = c1 b =
c90

0.9
1
v

v =
ln(1/9)

ln(c10/c90)
(53)
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(2) Using these values, evaluate function g(θ) at posterior draws. It is calculated

as:

f(r) =


vr(i)(v−1)

bv−av

0

if r(i) ∈ (a, b)

elsewhere

(54)

(3) Calculate proposal draws from elliptical density and evaluate them at poste-

rior density. First, simulate draws x from the standard normal distribution.

Second, generate draw u identically and independently from the uniform

distribution between [0, 1]. Then we form

r = (u(bv − av) + av)
1
v (55)

Using these x and r we calculate proposal draws

θproposal =
r

||x||
Ŝx+ θ̂ (56)

where x is the random normal and evaluate posterior at these draws.

(4) One can calvulate the weighting function in the same way for any proposal

dencity used.

h(θ) =
χΘL(θ)

qL
g(θ) (57)

is a truncated proposal distribution. Truncation is done using q̂L, which is

estimated as probability that the posterior evaluated at proposal draws falls

within the region:

ΘL = {θ : p(Yt|θ)p(θ) ≥ L} (58)
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χΘL(θ) is an indicator function, which is equal to 1 when posterior density

evaluated at posterior draw falls within ΘL and 0 otherwise. From here we

can assess the overlap between posterior density and weighting function and

calculate the marginal likelihood:

p(YT )−1 =

∫
Θ

h(θ)

p(Yt|θ)p(θ)
p(θ|YT )d(θ) (59)

Defining m(θ)= h(θ)
p(Yt|θ)p(θ) and using the Monte Carlo integration, we get

p̂(YT )−1 =
1

N

N∑
i=1

m(θ(1)) (60)

In order to check the robustness of our conclusions based on this methodology, we

also use the truncated normal method proposed by Geweke (1999) and find that even

though magnitudes of MDD are different, the rankings of the models stay the same.

We are using the procedure described above for truncation; however instead of an

eliptical distribution, we are using a normal distribution.

1.C.3. Bridge method. Meng and Wong (1996) propose a generalization of the

importance sampling method; the so-called “bridge sampling”. This technique com-

bines the Markov Chain Monte Carlo (MCMC) draws from the posterior probability

density function (pdf) with the draws from the weighting function (or importance

density) through a bridge function α(.) that reweighs both functions. Their method

is based on the following result:

p(YT ) =
Eq(α(θ)p∗(θ))

Ep(α(θ)h(θ))
(61)
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where α(θ) is an arbitrary function and p∗(θ) the posterior kernel such that p∗(θ|Yt) =

p(YT |θ)p(θ).

It follows that the estimator [p̂(YT )] is called the general bridge sampling estimator

p̂(YT ) =

1
Np

∑Np
j=1 α(θj)p∗(θ(j))

1
Nh

∑Np
i=1 α(θi)h(θ(i))

(62)

where Nh is the number of draws from the weighting density and Np is the number

of draws from the posterior distribution.

Once all draws from the importance density h(θ) and MCMC draws from the

posterior density p(θ|YT ) have been made, one can easily calculate p̂(YT ). Meng and

Wong (1996) proposes the following bridge function:

α(θ) ∝ 1

Nhh(θ) +Npp(θ|YT )
(63)

1.D. Tables
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Table 1. Prior and posterior of the models Mfreq, Mfreq+vol and Mvol. N stands for Normal, B Beta, G for
Gamma, I-G for Inverted-Gamma and U for Uniform distributions. The 5 percent and 95 percent demarcate the
bounds of the 90 percent probability interval.

Prior Posterior

Mfreq Mfreq+vol Mvol

description density mean std mode 5 % 95 % mode 5 % 95 % mode 5 % 95 %

100(β−1 − 1) N 0.25 0.10 0.1759 0.0874 0.3000 0.1506 0.0769 0.2714 0.1473 0.0790 0.2696

100(π − 1) N 0.50 0.10 0.5037 0.3256 0.6413 0.4723 0.3267 0.6457 0.4801 0.3357 0.6603

100log(γ) G 0.42 0.03 0.4174 0.3765 0.4537 0.4204 0.3834 0.4610 0.4201 0.3820 0.4580

h B 0.50 0.10 0.3970 0.2784 0.5120 0.4449 0.3681 0.5434 0.4483 0.3692 0.5400

θp B 0.66 0.10 - - - - - - 0.8017 0.7304 0.8766

θp(s
freq
t = 1) B 0.66 0.10 0.8720 0.8410 0.9585 - - - - - -

θp(s
freq
t = 2) B 0.66 0.10 0.7162 0.5132 0.7360 - - - - - -

θp(s
vol
t = 1) B 0.75 0.10 - - - 0.8796 0.7795 0.9444 - - -

θp(s
vol
t = 2) B 0.55 0.10 - - - 0.6065 0.4482 0.7486 - - -

ψπ N 1.70 0.30 1.2546 1.0387 1.8039 1.4938 1.1610 1.9502 1.4742 1.1593 1.9537

ψy G 0.30 0.20 0.4891 0.3612 0.9054 0.5012 0.3624 0.7855 0.4934 0.3859 0.8177

ρb B 0.60 0.20 0.8576 0.7806 0.9182 0.8534 0.7941 0.9076 0.8556 0.8029 0.9156
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ρr B 0.60 0.20 0.5087 0.2758 0.6836 0.5880 0.5077 0.7256 0.5817 0.5074 0.7298

ρp B 0.60 0.20 0.1209 0.0396 0.2974 0.3798 0.1799 0.5411 0.4131 0.1987 0.5558

ρz B 0.40 0.20 0.3974 0.1052 0.5895 0.2306 0.1077 0.3962 0.2301 0.1095 0.3973

σp(st = 1) I-G 0.15 1.00 0.1917 0.1590 0.2170 0.1078 0.0819 0.1407 0.2401 0.1828 0.3451

σp(st = 2) I-G 0.15 1.00 - - - 0.2464 0.1891 0.3445 0.1031 0.0783 0.1372

σb(st = 1) I-G 1.00 1.00 2.8059 2.1092 3.6600 1.9472 1.5329 2.6639 4.6598 3.4406 6.6821

σb(st = 2) I-G 1.00 1.00 - - - 4.5599 3.2067 6.4847 1.9502 1.5319 2.6738

σz(st = 1) I-G 1.00 1.00 0.6441 0.4929 0.9804 0.7307 0.5734 0.8799 1.0090 0.7439 1.3916

σz(st = 2) I-G 1.00 1.00 - - - 1.0179 0.7585 1.4254 0.7454 0.5846 0.8943

σr(st = 1) I-G 0.15 0.10 0.1588 0.1037 0.1895 0.0407 0.0333 0.0534 0.2751 0.2382 0.3564

σr(st = 2) I-G 0.15 0.10 - - - 0.2787 0.2362 0.3530 0.0411 0.0326 0.0525

σπ,t U 0.07 0.04 0.0868 0.0606 0.1755 0.0662 0.0353 0.1047 0.0544 0.0353 0.1006

pfreq1,1 B 0.90 0.10 0.9985 0.9881 0.9997 0.9959 0.9318 1.0000 - - -

pfreq2,2 B 0.90 0.10 0.9949 0.8629 0.9994 0.9631 0.6993 0.9997 - - -

pvol1,1 B 0.90 0.10 - - - 0.9677 0.9273 0.9851 0.9394 0.8312 0.9787

pvol2,2 B 0.90 0.10 - - - 0.9365 0.8267 0.9785 0.9681 0.9301 0.9876
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posterior
model specifications mode 5% 95%

Mfreq κ(sfreq
t = 1) 0.0190 0.0019 0.0302

κ(sfreq
t = 2) 0.1129 0.0955 0.4621

Table 2. The slope of the New Keynesian Philips Curve. The 5 per-
cent and 95 percent demarcate the bounds of the 90 percent probability

interval. The parameter κ(st) = (1−θp(st)β)(1−θp(st))

θp(st)(1+γpβ)
is widely interpreted

as the slope of the New Keynesian Phillips curve.

specifications marginal data densities
model Pricing Policy Shocks MHM Bridge SWZ
Mconst X X X -923.24 -923.20 -923.58

Mfreq sfreq
t X X -921.29 -920.48 -920.22

Mfreq+vol sfreq
t X svol

t -815.31 -814.41 -814.08
Mvol X X svol

t -815.51 -815.27 -815.40
Mmp+vol X smp

t svol
t -813.68 -812.61 -813.80

M(mp+freq)+vol smp
t smp

t svol
t -815.50 -814.39 -814.36

Table 3. This Table reports the marginal data densities of each model
using three different methods: (1) MHM: Modified Harmonic Mean
[Geweke (1999)]; (2) The Bridge sampling [Meng and Wong (1996)];
and (3) The Sims, Waggoner, and Zha (2008) method. The index sht
indicates whether the “pricing” parameter (θp), the ”Policy” param-
eters (ψπ and ψπ) or the “shocks” variances (σ) follow a two-states
Markov-switching process h. The Xs indicate the parameters that re-
main constant over time.
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Prior Posterior
Mmp+vol M(freq+mp)+vol

description density mean std mode 5 % 95 % mode 5 % 95 %
100(β−1 − 1) N 0.25 0.10 0.1382 0.0742 0.2529 0.1400 0.0710 0.2570
100(π − 1) N 0.50 0.10 0.4521 0.3537 0.6605 0.4525 0.3369 0.6562
100log(γ) G 0.42 0.10 0.4208 0.3349 0.5172 0.4193 0.3397 0.5137
h B 0.50 0.10 0.4397 0.3888 0.5716 0.4385 0.3753 0.5518
θp(s

mp
t = 1) B 0.66 0.10 0.7685 0.7442 0.8864 0.7719 0.7398 0.8907

θp(s
mp
t = 2) B 0.66 0.10 - - - 0.7542 0.6861 0.8354

ψπ(smp
t = 1) N 2.50 0.20 2.4514 2.0907 2.7481 2.4515 2.1275 2.7615

ψπ(smp
t = 2) N 1.00 0.10 0.8237 0.6412 1.1755 0.8350 0.6715 1.1967

ψy(s
mp
t = 1) G 0.40 0.10 0.5089 0.4192 0.7422 0.5108 0.3635 0.7245

ψy(s
mp
t = 2) G 0.40 0.10 0.3685 0.1878 0.4386 0.3777 0.2275 0.5317

ρr B 0.60 0.20 0.5804 0.5253 0.7289 0.5813 0.5147 0.7013
ρb B 0.60 0.20 0.8568 0.7951 0.9097 0.8552 0.7988 0.9101
ρp B 0.60 0.20 0.3174 0.1972 0.5662 0.3197 0.1728 0.5251
ρz B 0.40 0.20 0.2612 0.1058 0.4959 0.2610 0.1065 0.4603
σp(s

vol
t = 1) I-G 0.15 1.00 0.2600 0.1877 0.3494 0.2608 0.1974 0.3572

σp(s
vol
t = 2) I-G 0.15 1.00 0.1156 0.0797 0.1410 0.1155 0.0864 0.1458

σb(s
vol
t = 1) I-G 1.00 1.00 4.3733 3.4189 6.6622 4.3391 3.5572 6.3813

σb(s
vol
t = 2) I-G 1.00 1.00 1.9530 1.7170 2.9398 1.9324 1.6213 2.6956

σz(s
vol
t = 1) I-G 1.00 1.00 0.9394 0.6585 1.4210 0.9393 0.6940 1.3763

σz(s
vol
t = 2) I-G 1.00 1.00 0.6747 0.3932 0.8263 0.6791 0.4927 0.8716

σr(s
vol
t = 1) I-G 0.15 0.10 0.2658 0.2250 0.3619 0.2654 0.2188 0.3524

σr(s
vol
t = 2) I-G 0.15 0.10 0.0438 0.0351 0.0565 0.0437 0.0355 0.0563

σπ,t U 0.075 0.0433 0.0341 0.0283 0.0895 0.0322 0.0210 0.0684
pmp

1,1 B 0.95 0.03 0.9950 0.9399 0.9993 0.9947 0.9227 0.9998
pmp

2,2 B 0.95 0.03 0.9932 0.9340 0.9961 0.9925 0.9315 0.9980
pvol

1,1 B 0.90 0.10 0.9404 0.8202 0.9815 0.9396 0.8270 0.9792
pvol

2,2 B 0.90 0.10 0.9671 0.9301 0.9874 0.9669 0.9294 0.9877

Table 4. Prior and posterior of the models Mmp+vol and
M(freq+mp)+vol. N stands for Normal, B Beta, G for Gamma, I-G for
Inverted-Gamma and U for Uniform distributions. The 5 percent and
95 percent demarcate the bounds of the 90 percent probability interval.
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Figure 1. Sample period: 1954.Q3-2009.Q2. The shaded grey
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Figure 2a. Sample period: 1954.Q3–2009.Q2. Posterior probabilities
of the “high-volatility” regime of the model Mfreq+vol (on the left scale,
solid line) and actual inflation data (on the right scale, dotted line).
The shaded grey area represents the NBER recessions.
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Figure 2b. Sample period: 1954.Q3–2009.Q2. Posterior probabilities
of the “low frequency” regime of price changes for the model Mfreq+vol

(on the left scale, solid line) and actual inflation data (on the right scale,
dotted line). The shaded grey area represents the NBER recessions.
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Figure 5. Sample period: 1954.Q3–2009.Q2. Posterior probabilities
of the “high-frequency” regime of price changes of the model Mfreq (on
the left scale, solid line) and actual inflation data (on the right scale,
dotted line). The shaded grey area represents the NBER recessions.
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Figure 7. Sample period: 1954.Q3–2009.Q2. “Low-frequency”
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Figure 8a. Sample period: 1954.Q3–2009.Q2. Posterior probabilities
of the ”active policy” regime of the model Mmp+vol (on the left scale,
solid line) and actual FFR data (on the right scale, dotted line). The
shaded grey area represents the NBER recessions.
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Figure 8b. Sample period: 1954.Q3–2009.Q2. Posterior probabilities
of the ”high-volatility” of the model Mmp+vol (on the left scale, solid
line) and actual inflation data (on the right scale, dotted line). The
shaded grey area represents the NBER recessions.
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CHAPTER 2

Market power and the Frequency of Price Adjustments:

New Facts from Mexico

Margarita Zabelina

Chapter Abstract

Using Mexican CPI data from 1994 to 2002, I document a number of novel facts.

First, the duration of prices differs between categories of goods and across economic

conditions while relative change in size of adjustments stays the same. Frequency of

price adjustments and rankings of categories of goods by these frequencies in Mexico

differ from those in U.S. Second, a large shock to the firms marginal cost increases

the frequency of price adjustments for all goods. This increase is particularly large

for goods with a very stable price history. Third, frequency of price adjustments

of nondurables and services increases with increase in market and firm’s elasticity

of demand. This relationship is opposite for durables. Standard ways of modeling

frequency of price adjustments do not support these findings.
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I. Introduction

The frequency of price adjustments is one of the key factors driving changes in the

overall price level and defining the degree of nominal rigidities. Nominal rigidities,

in turn, are largely responsible for the incomplete pass-through of various shocks,

movements in the real exchange rates, and inflation rates. Establishing the facts

about frequency of price adjustments and understanding the mechanisms behind the

price-setting behavior of the firms is crucial for the analysis of optimal monetary

policy as well as of the welfare implications. It is also important to understand the

differences in such behavior among the firms operating in different industries and in

different economic circumstances. I use disaggregated monthly Mexican product-level

CPI data from 1994-2002 to record, analyze, and contrast facts about the frequency

of price adjustments in different economic conditions and among different categories

of goods.

This data set is unique in covering the periods of time associated with high cur-

rency devaluation, large movements in real exchange rates, and high inflation as well

as periods of time when the economy was relatively stable. It is important to note

that the U.S. data that is usually used for the analysis of the frequency of price ad-

justments does not contain information on price-setting during and after the shocks

to an economy as large as the shocks associated with Mexican tequila crisis of 1994.

This data set has been used by Gagnon (2009) to show that the frequency of price

adjustments is correlated with inflation at high levels of inflation. Atkin, Faber, and

Gonzalez-Navarro (2015) examine effects of foreign direct investment using the same
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data set. It has also been used to evaluate the impact of large exchange rate deval-

uations on the cost of living at different points of the income distribution (Cravino

and Levchenko (2015)). I use the data to further explore the nature of changes in the

price-setting behavior of firms. This analysis does not only look at the frequency of

price adjustments across time, but also establishes mechanisms that influence these

adjustments.

A number of facts concerning the frequency of price adjustments is recorded and

the connection of these facts with existing theories of price-setting are investigated.

First, the data suggests that the frequency of price adjustments differs between

various categories of goods. There are major differences between durables, non-

durables and services across an entire sample with prices of the services adjusting

less frequently (price duration of around 6 months) than those of durable goods (me-

dian price duration of around 5 months) and non-durable goods (price duration of 3

months). This is in line with Burstein, Eichenbaum, and Rebelo (2005a) and Burstein,

Eichenbaum, and Rebelo (2005b) who examine differences in price adjustments be-

tween tradable and non-tradable goods. There are also differences in the frequencies

of price adjustments among different categories of goods with apparel and food goods

adjusting prices more often (at around 0.3, which corresponds to a price duration of

3 months) than those in the entertainment, medical expenses, transportation, and

household supplies categories (around 0.15-0.2; price duration of around 6 months).

It is worth mentioning that price duration for different categories of goods in

Mexico is different from duration established for the same categories in U.S. (Klenow
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and Malin (2010)). Rankings of the goods by price duration are also different. For

example in U.S. nondurable goods adjust prices less frequently than durable goods.

Second, when the peso underwent a period of high devaluation in 1994, which

was considered a sizable shock to the marginal cost of firms, the frequency of price

adjustments increases for all categories of goods. Frequency of price adjustments for

services increased by 150 percent, for durables by 110 percent and for nondurables by

85 percent. There are also differences in reaction to devaluation among goods divided

using different classification. Goods in the apparel and food categories (the frequent

adjusters) increase their frequency by about 50-60 percent while other categories (low

frequency adjusters) increase it by 100-150 percent. Overall, the lower the frequency

of adjustments during times when economy is stable, the stronger the reaction to a

shock to marginal cost.

Third, these observed differences in the frequency of price adjustments are strongly

connected to the market elasticity of demand as well as the firms’ elasticity of de-

mand as measured by price markups (Jaimovich and Floetotto (2008), Feenstra and

Weinstein (2010). Analysis shows that on the aggregate, firms adjust prices more

frequently if they face lower market elasticity and lower firms elasticity of demand.

Thus, the firms that lose the fewest customers as a result of price change adjust their

prices more frequently.

On per-category level, this relationship holds for nondurable goods and services

(associated with lower firms’ elasticity of demand) and is reversed for the durables

(associated with highest firms’ elasticity of demand). This could be explained in

the framework of industrial organization literature. Akerlof and Yellen (1985) and
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Arbatskaya and Bayel (2004) argue that keeping prices stable is more costly for the

firms operating in markets with higher level of competition. This finding suggests that

there is a non-monotonicity: relationship between duration of prices and elasticity of

demand change depending on the level of elasticity of demand the firm is facing.

Fourth, currently nominal rigidities are often modeled either using time-dependent

pricing or state-dependent pricing. In time-dependent pricing approach (Calvo (1983))

frequency of price adjustments is exogenous and, thus, does not match the facts dis-

cussed above. The standard menu cost model representing state-dependent approach

to modeling price rigidities (Sheshinski and Weiss (1977), Golosov and Lucas (2007),

and Nakamura and Steinsson (2008b)) also cannot reproduce the facts stated above.

A standard Dixit-Stiglitz aggregator assumes that one firm is producing one good and

changes in price do not affect future demand. In this setting, the curvature of the

profit function is defined by the elasticity of demand: a higher elasticity of demand

is reflected in a higher frequency of price adjustments. This relationship does not

change regardless of magnitude of the shock to the marginal cost.

I also examine the sizes of price adjustments between goods and across time. I

find that percent changes in size of adjustment stay relatively stable across time and

do not vary significantly among the goods.

Pricing decisions made by firms including the decision on whether or not to change

the price at each point in time is a widely discussed topic. It is being examined in

both theoretical and empirical literature.

A number of papers establish and examine facts about prices and different aspects

of the frequency of price adjustments. Bils and Klenow (2004) establish the frequency



63

of price changes for 350 categories of goods in the U.S. at approximately 4.3 months

and find differences in the frequency among goods. Nakamura and Steinsson (2008b)

further this discussion and find differences between the frequency of price increases

and decreases as well as the covariance of price increases with inflation in the U.S..

Gagnon (2009) establishes that the frequency of price adjustments is connected to

inflation at high levels of inflation. I combine analysis across time, across goods, and

across different economic conditions and further explore the factors that can explain

observed differences.

Another branch of literature examines the potential mechanisms behind price ad-

justments. Burstein, Eichenbaum, and Rebelo (2005a) and Burstein, Eichenbaum,

and Rebelo (2005b) examine the role of tradable and non-tradable goods as well as

non-tradable portion of tradable goods in movements of real exchange rates. Gopinath

and Itskhoki (2010) discuss how primitives of the profit function define the frequency

of price adjustments and examine the effects these have on incomplete exchange

rate pass-through. A number of theoretical papers Rotemberg (2005); Chevalier

and Scharfstein (1996) , Vincent and Kleshchelski (2009), Sim, Schoenle, Zakrajsek,

and Gilchrist (2014) explain differences in pricing decisions across firms and between

industries by differences in demand these firms are facing. Model developed by Vin-

cent and Kleshchelski (2009) suggests non-monotonicity in relationship between pass-

through and level of switching costs. This could be a potential explanation for the

non-monotonicity in the Mexican data.

Industrial organization literature displays ambiguous findings on the relationship

between the frequency of price adjustments and the market power. For example,
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Klemperer (1987) suggests that monopolies that compete for the same customer base

could be worse off than oligopolies. On the contrary, Shy (2002) empirically shows

that larger banks face higher switching costs and yet they charge higher prices. Fisher

and Konieczny (1995) find that monopolistic newspapers prices are less rigid than

oligopolistic newspapers, while Carlton (1986) finds a positive relationship between

price rigidity and industry concentration for certain products used in manufacturing.

In macro literature, Bils and Klenow (2004) find that goods sold in more concentrated

markets (measured by the markups) adjust prices more frequently – a finding that,

however, disappears when energy-related goods or fresh foods are controlled for.This

paper empirically establishes connection between the market power of the firm and

the frequency of price adjustments.

The frequency of price adjustments is also an important part of the mechanism

generating price rigidities and as such is often used to examine various macroeconomic

aspects as well as policy implications. A fourth branch of literature uses this factor

for such analyses. It is adopted by different types of models – from time-dependent

models like Calvo (1983), (Christiano, Eichenbaum, and Evans 2005), and Smets and

Wouters (2007) to state-dependent models (Caplin and Spulber (1987), Dotsey, King,

and Wolman (1999), Gertler and Leahy (2008), and Golosov and Lucas (2007)).

The paper proceeds as follows: Section I discusses the data. The facts about

the frequency of price adjustments among goods and across time are established in

Section II. Section III contains the conclusions on factors affecting the frequency of

price adjustments. The match of the facts to the standard models is discussed in

Section IV. Section V concludes.
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II. Data

I use monthly pricing data on goods used for computation of CPI in Mexico from

January 1994 to July 2002. The data covers period of time in the history of Mexico

that includes significant devaluation of peso vis-a-vis U.S. dollar. By December of

1994 Mexican Tesobonos (dollar-indexed short-term government debt) was around 2

billions USD, international reserves were inadequate to support Mexico’s obligations,

the country had to move to floating exchange rate from a previously sustained fixed-

exchange-rate system which led to significant devaluation of the peso and a collapse

of the Tesobono market - investors chose not to roll over their holdings. The situation

continued through beginning of 1995 when the Mexican government was on a verge

of default. At this point U.S. government offered Mexico substantial financial aid

(Braun, Mukherji, and Runkle (1996)). This economic situation was characterized

a collapse in the peso by more than 40% in one week in December of 1994. This

devaluation was accompanied by significant movements in inflation and real interest

rates. In 1995 inflation reached 92% (Gagnon (2009)) and real interest rate from

September 1994 to March 1995 changed by 43%. The data for inflation and exchange

rates are shown in 1.

The data used in this paper is aggregated over 6.5 million price quotes collected

by Banco de Mxico(Banxico). Details about composition of the data set can be found

in Gagnon (2009).

Data is monthly and after adjustments for substitution of goods across the years

the data contains over 230 goods. The goods are divided into 6 broad categories:

Food and beverage; Housing; Apparel and Upkeep; Transportation; Medical Care;
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Entertainment. Goods are also divided into nondurables, durables and services, as

well as into regulated and non-regulated.

The frequency of price adjustments for each good in the sample is computed

following Gagnon (2009).

III. Facts about frequency of price adjustments: data

I proceed to examine dynamics of the frequency of price adjustments in entire

sample - from 1994 to 2002. This period covers both: the time of peso devaluation

and the time when exchange rate in Mexico as well as inflation rate got back to stable

state.

First, the size of price adjustments and frequency of price adjustments among dif-

ferent categories of goods were examined. Rapid changes in the overall price level, like

the ones observed in Mexico, could happen through changes in the size of individual

price adjustments or through change in frequency of such adjustments. As it is visible

from the time-series of inflation Figure 1, inflation in Mexico was rapidly changing

during the period under consideration. This exercise (results shown in Table 1 shows

that there are in fact differences in frequency of price adjustments among different

categories of goods: with nondurable goods being high-frequency adjusters changing

prices with 0.33 probability in a month (corresponding to price duration of 3 months),

durables adjusting prices every 5 months and services with price duration of around

8 months. There are no notable differences between the sizes of adjustments between

these categories.
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This motivates further examination of frequency. The analysis is establishing the

fact that frequency of price adjustments is potentially an important economic phe-

nomenon closely related to inflation dynamics. Differences in frequency with which

firms change prices depending on a category of consumer good require further exam-

ination.

I also look at differences in duration of prices between different categories of

goods and compare those to duration found in U.S. data from 1998 through 2009

by Klenow and Malin (2011) (Table 2). Price durations reported in the table are

based on posted prices and include sales. It is clear that overall there are significant

differences in duration of prices between categories, between countries, and between

different periods in Mexican history. Price durations for nondurables and services

as well as for food and medical care are higher in U.S. Durable goods and other

categories of goods show duration that is higher in Mexico. It is also worth mentioning

that rankings of the goods by durations differ between the two countries. Durable

goods have lowest duration of prices in U.S., in Mexico the duration is lowest for

non-durables. In a CPI classification household goods and transportation goods are

the highest frequency adjusters in U.S.. In Mexico food and apparel categories are

changing prices most often. This could be explained by differences in the structure

of demand between the countries with different per-capita GDP and different shares

of income spend by a household for different goods.

Also, for all categories of goods in Mexico, price durations during 1995 (a year

associated with high inflation) for all categories of goods is significantly lower than

in other years of the sample.
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As a second step to examining facts about frequency of price adjustments, different

categories of goods were examined across time. Monthly frequencies for each good

over each year in the sample were aggregated, thus obtaining yearly values for every

good.

Figure 2 shows evolution of the frequency over the years for the three broad goods

categories. It is apparent that nondurable goods adjust prices more frequently than

durable goods, which, in turn, adjust prices more often than services. Right after peso

had devalued, the goods in all categories increase frequency of price changes. Thus

devaluation of the currency significantly changes behavior of price setters regardless

of the category. In the years following large currency devaluation the frequency is

decreasing. Median duration of price adjustments for non-durable goods in 1995 is

around 2 months, for durables is around 3.4 months, and for services is around 3.8

months. It is clear that frequency of price adjustments between durables and services

gets very close in the year of high inflation. Later in the sample period, median

duration of goods is around 3 months for nondurables, 5 months for durables and 6

onths for services.

Figure 3 depicts changes in price-setting behavior of the firms selling three broad

categories of goods. As it is clearly visible, the reaction to 1994 peso devaluation is

much stronger for services (low frequency adjusters) - the change is about 150 per-

cent. Second strongest reaction is recorded for durables (around 110 percent), and

the smallest reaction of about 80 percent is shown for nondurables (high frequency

adjusters). This shows that on average slow adjusters have stronger reaction to a large

shock than high frequency adjusters. This could be in-line with theories discussing
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variable markups and investments into the market share. In these theories firms often

prefer to keep prices stable and absorb some costs in order to keep their market share,

however, after a large enough shock, they pass everything onto the customers (Rotem-

berg (2005); Chevalier and Scharfstein (1996) , Vincent and Kleshchelski (2009), Sim,

Schoenle, Zakrajsek, and Gilchrist (2014)).

The above exercise was repeated for the 6 categories of goods following Banxico

CPI classification: Food and beverage; Household supplies; Apparel and Upkeep;

Transportation; Medical Care; Entertainment. I compute median frequencies of price

adjustments across goods in each category.

As it is reflected in Figure 4, highest adjusters among the categories are the Food

category fluctuating around 0.3 and the Apparel category at around 0.25 through

the sample, all other goods adjust prices less frequently ranging from 0.10 to 0.20.

Thus, clearly, there are differences among these categories of goods which should be

examined further. As in previous section, changes in frequency among six categories

of goods are examined.

Following Figure 4 it is clear that frequency of price adjustments among all goods

went up during 1995 following the exchange rate shock. However, ranking of the

levels of price adjustments stay the same – Food and Apparel still adjust prices more

frequently than all other goods increasing to around 0.50 and 0.40 respectively while

frequencies of most other categories are around 0.30. In the following years frequency

decreases for all categories of goods. However, Figure 5 depicting growth rates of the

frequency of price adjustments for all categories indicates that reactions to the large

devaluation of 1994 differs significantly among the categories. Food and Apparel,
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the goods that have very high levels of price adjustments, increase these levels by

around 50% - much less than other categories like transportation and entertainment

which increase the frequency by 100-150%. Thus again, there are some differences

among these categories of goods that result in different reactions to the cost shock

and require additional examination.

IV. Facts about frequency of price adjustments: relationships

Previous section describes differences in frequency of price adjustments between

different categories of goods. In this section I look closer at reasons that may enplane

such differences. I also map goods using Classification of individual consumption by

purpose (COICOP) classifications into industries (Statistical classification of products

by activity (CPA)) in order to explore price setting behavior of the firms selling these

goods.

In literature, differences in frequency of price adjustment are sometimes attributed

to such elements of profit function as own price elasticity of demand as in Gopinath

and Itskhoki (2010). In the micro literature, elasticity of demand for the firm is

proportional to the degree of competitiveness of the market as well as to own price

elasticity of the good (market elasticity of demand) Pindyck (2013). For example, in

a simple case of Cournot competition with firms of the same size

Ed = nED (64)

Where Ed is elasticity of demand for the firm, n is number of firms and ED is market

elasticity of demand. It is straightforward to compute Ed for the market where firms
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sizes differ. Number of firms producing the good is inverse of Herfindahl-Hirschman

index (HHI) for the market

HHI =
m∑
i=1

S2
i

Ed =
ED
HHI

In addition, Lerners index measuring market power: L = P−MC
P

= −1
Ed

where Ed

is firm’s elasticity of demand. The formula for Lerners index is also a definition of

markup.

IV.1. Market elasticity of demand. In order to examine this connection,

market elasticities of demand computed for different categories of goods by Seale,

Jr., and Bernstein (2003) are used. These values are estimated from expenditure and

consumption volume data for 114 countries including Mexico from the 1996 Interna-

tional Comparison Project (ICP) for nine broad categories of goods that correspond

to the categories in Mexican CPI data. These categories are aggregated from product-

level data. The data contains information on budget shares for each category of goods

and own price elasticities are computed from estimated parameters of an aggregate

demand system. Authors report three types of elasticities: Frisch elasticity (own price

changes but marginal utility of income stays constant), Slutsky elasticity (changes in

demand due to own price changes while holding real income constant), and Cournot

elasticity (changes in demand due to own price changes while real income changes).

Resulting numbers are reported in the Table 3. All three ways to compute elasticities
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produce the same rankings among categories of goods and in general are very close

to each other numerically.

IV.2. Firms elasticity of demand. The second element I will use for my anal-

ysis is firm’s elasticity of demand. As it has been mentioned above, this elasticity can

be approximated by an inverse of price markups.

Markups for different industries were computed using OECD STAN Input-Output

tables for Mexico. Markups are defined as Gross Operating Surplus divided by Gross

Output (price minus cost over price) similar to Bloom, Blundell, Griffith, and Howitt

(2005). Results are shown in the Table 4.

IV.3. Analysis of relationship between elasticities of demand and fre-

quency of price adjustments. The Table 5 below summarizes differences in elastic-

ities of market demand and firm’s demand as well as in frequency of price adjustments

between broad categories of goods. It is clear that market elasticity of demand is high

for nondurables and services, while firm’s elasticity of demand is highest for durables.

This fact suggests different structure of demand for the three categories of goods.

Thus differences in price setting behavior of the firms could be explained by dif-

ferences of demand they are facing. Overall elasticity of demand could be used as a

proxy for measuring how price changes of the firms can change the size of the cus-

tomer base. A number of theories attributes price stickiness and willingness of the

firms to absorb cost shocks, (e.g.: exchange rate shock), to their care for customer

base (Rotemberg (2005) and Vincent and Kleshchelski (2009))).

First, in order to understand the nature of relationship between market elasticity,

firm’s elasticity and frequency of price adjustments, I compute correlations between
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these three factors for different categories of goods. Results are presented in the Table

6.

Correlations computed for entire sample indicate negative relationship between

frequency of price adjustments and both: market elasticity and firm’s elasticity of

demand. This suggests that firms exploit the market power they have - the less

elastic is the demand, the more frequently the firm would adjust prices. This rela-

tionship, however, is much stronger for market elasticity of demand (correlation of

-0.477)than for firm’s elasticity of demand (correlation of -0.21). This suggests that

overall, firm selling bread can change prices more often (and pass through any costs on

the consumers), than firms selling caviar. It is also important to note that correlation

between firms and market elasticity is not high.

However, once correlations are computed for three broad categories of goods, this

negative relationship only holds for non-durables and services and is reversed for

durables. It appears that for durable goods the more elastic is the demand, the more

frequently firms adjust prices. A correlation coefficient between frequency and firms

elasticity is still negative, however this coefficient is only significant at 68 percent.

Also, correlation between market and firms elasticity for durable goods is low and

also is only significant at 68 percent. Positive relationship between frequency and

elasticities is in line with findings of the industrial organization literature: firms

operating competitive markets have to adjust prices as soon as other firms adjust

their prices (Carlton (1986)).

As a second step after computing correlations, I perform regression analysis. In

the model where frequency of each good is θi, absolute value of market elasticity is
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|ED,i| and absolute value of firms elasticity is |Ed,i|:

θi = α + β1|ED,i|+ β2|Ed,i|+ ui

Results of regression analysis are shown in Table 7. These results confirm findings

of correlation analysis: for the sample of goods as a whole, higher market elasticity

and firms elasticity of demand result in decreases in frequency of price adjustments.

All coefficients are significant at 99 significance level, however, again, the coefficient

for firm’s elasticity of demand is low compared to the coefficient for the market elas-

ticity. This relationship holds for nondurables and services, however, for the services

coefficient for the market elasticity decreases compared to other goods. In addition,

same as for correlations, higher frequency of price adjustments for the durables is as-

sociated with higher market elasticity of demand, but still has negative relationship

with firm’s elasticity of demand. These differences in behavior among firms could

possibly be attributed to the overall level of firm’s elasticity of demand: firms selling

non-durable goods and services face less elastic demand ( Ed is 3.30 and 2.77 respec-

tively), while durables face a more elastic demand (Ed is 5.00). Again, this confirms

that among firms operating in very concentrated markets, higher elasticity means

more adjustments, while at the lower levels of market concentration this relationship

can be opposite.
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V. Model

This section demonstrates how standard models can not explain the facts discussed

above. There are two major types of models that model price rigidities using frequency

of price adjustments: time-dependent and state-dependent models.

V.1. Time-dependent models. First type of models assume that a fraction of

firms can re-optimize its profit and change the price to the optimal one, while the

remaining fraction of firms can not re-optimize (Calvo (1983)). A standard firms

problem in this setting is as following.

Monopolistically competitive firm produces differentiated consumption good by

hiring Lt(i) units of labor given the constant return to scale technology Zt

ZtLt(i) = Yt(i)

where Yt(i) is the production of good i.

The technology shock Zt follows a unit root process with a growth rate zt ≡

ln(Zt/Zt−1) such that

zt = (1− ρz)γ + ρzzt−1 + εzt

where the distribution for εzt is normal(0, σ2
z). Following Calvo (1983), each firm sets

prices according to a staggering mechanism. For each period, a fraction θp,t of firms

cannot re-optimize its price optimally and indexes them according to the rule

Pt(i) = π1−γpπ
γp
t−1Pt−1(i)
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while other remaining fraction of firms chooses its prices P̃t(i) by maximizing the

present value of future profits

Et

∞∑
s=0

(βθp,t)
sλt+s

{
Πp
t,t+sP̃t(i)Yt+s(i)−Wt+s(i)Lt+s(i)

}

where Πp
t,t+s = Πs

ν=1π
1−γpπ

γp
t+ν−1 for s > 0 otherwise 1. In this setting, frequency of

price adjustments is purely exogenous and non of the facts described above can be

reconciled within this model.

V.2. Menu cost models. For this analysis partial equilibrium menu cost model

similar to Sheshinski and Weiss (1977), Golosov and Lucas (2007), and Nakamura and

Steinsson (2008) was used.

Each firm uses the following technology for production:

yt(z) = At(z)Lt(z)

where production yt(z) at time t depends on productivity shock At(z) and quantity

of hired labor Lt(z). Each firm faces demand:

ct(z) = C

(
pt(z)

Pt

)−θ

where Pt(z) is the price level at period t, C is the market demand for the good, pt(z)

is the nominal price that firm charges for the good and ct(z) is demand for the firm’s

good. In order to simplify analysis following Nakamura and Steinsson (2008) I assume

Wt

Pt
=
θ − 1

θ
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Where Wt is the wage level in economy. Combining above equations firm’s profit

function becomes:

Πt = C

(
pt(z)

Pt

)−θ (
pt(z)

Pt
− θ − 1

θ

1

At(z)

)

Firm would choose to adjust the price in the presence of some menu cost only in

the case when the profit received from adjustment Π(a) exceeds profit from non-

adjustment Π(p0|a) by more than the menu cost.

L(a) = Π(a)− Π(p0|a) > k

where k is some menu cost. Frequency of price adjustment thus is defined as

Ψ = PrL(a) > k

I assume k = WtKIt(z) - if the firm decides to adjust it’s price it would have to hire

additional workers. Productivity At(z) is assumed to follow AR(1) process:

log(At(z)) = ρlog(At−1(z)) + εt(z)

Also, assume that level of prices Pt follows

log(Pt) = µp + log(Pt−1) + νt

First,comparison between different values of elasticity of demand θ on frequency of

price adjustments is conducted using one period profit function. This illustrates
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how curvature of the profit function is defined by benchmark elasticity of demand.

The model is calibrated to US data, however for the exercise at hand these values are

acceptable. This exercise demonstrates how elasticity of demand affects the curvature

of the profit function. Figure ?? shows two profit function - in blue for elasticity of

demand equaling 7, red one for elasticity of demand equaling 3. These values are

within the ranges used in the literature for similar models (Nakamura and Steinsson

(2008b). It is logical that higher elasticity of demand results in overall lower levels of

profit. Dotted lines of corresponding colors represent profit functions shifted down as

a result of negative shock to marginal cost. Label Max1 represents the point at which

firms were maximizing their profits in a no shock environment. In case if after the

shocks firms would not be willing to adjust their prices and move to a new maximum

point labeled as Max2 they would lose the corresponding increase in profit. From

this simple numerical example it is clear that firms facing higher elasticity of demand

would forgo larger increase in profit (0.076) than firms with lower elasticity of demand

(0.032). Thus firms facing less elastic demand are less likely to adjust their prices

irrespective of the size of the menu cost. Figure 7 confirms that this relationship

holds for every value of elasticity: higher elasticity of demand is associated with

higher increase in profit from adjustment. Thus higher elasticity of demand always

results in higher probability of adjusting the price. This Figure also indicates that

increase in the shock results in higher differences among firms facing different demand.

Size of the shock increases frequency of price adjustments for the firms with higher

elasticity by more than for the firm facing less elastic demand.
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This analysis shows that standard menu cost models can not reproduce the facts

found in the data. The relationship between frequency of price adjustments and

elasticity of demand is positive. In the data, this corresponds only to behavior of

the firms selling durable goods, which, on average, face very high elasticity of firm’s

demand and thus operating in the very concentrated markets.

In addition, increase in frequency of price adjustments after a larger shock to mar-

ginal cost is higher for high frequency adjusters than for lower frequency adjustments

which contradicts the data facts.

VI. Conclusion

This paper establishes a number of facts regarding frequency of price adjustments

using disaggregated data from Mexico 1994-2002. Since this data covers period of time

that includes large peso devaluation in December of 1994, it provides valuable insights

into price-setting mechanism of firms in different economic circumstances. The data

suggests that there are differences in frequency of price adjustments between times of

relatively stable economic conditions and times of instability - on average all goods

start to adjust prices more after a large cost shock.

There are also differences between frequency of price adjustments between non-

durables, durables and services, with the latter adjusting prices less frequently through-

out the sample. Differences also exist between six different categories of goods adopted

from the Mexican CPI classification with food and apparel adjusting prices most fre-

quently. Comparison between duration of prices for various categories in Mexico and

USA also revealed differences in both: frequency and rankings of the goods by the

duration.
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Following large devaluation, low frequency adjusters show a stronger reaction than

high frequency adjusters.

The results of analysis suggest that firms facing higher market elasticity of de-

mand are adjusting prices less frequently than those with lower elasticity consistently

throughout the sample. Same relationship is true for firms elasticity of demand as

measured by markups. When similar analysis is done for the goods in different cat-

egories, the relationship holds for durables and services and is reversed for durable

goods.

These facts can not be reconciled with a standard benchmark menu cost model.

In benchmark setting frequency of price adjustments is positively related to elasticity

of demand.
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2.A. Tables

Frequency Percent change in price
25% Median 75% 25% Median 75%

All goods 0.16 0.26 0.45 -0.00 0.01 0.02
Non-Durable (60%) 0.22 0.33 0.63 -0.00 0.01 0.02
Durable (5%) 0.13 0.20 0.29 0.00 0.01 0.02
Services (17%) 0.12 0.17 0.24 0.00 0.01 0.02

Table 1. Frequency of price adjustments and percent change in price
for the different categories of goods

Classification Median duration (USA) Median duration (Mexico)
Klenow and Malin (2011)

Entire sample 1995 Not including 1995
Non-durable goods 3.4 2.9 2.14 3.10
Durable goods 1.8 4.8 3.44 5.00
Services 7.6 5.7 3.82 5.93

Food 3.4 2.5 1.89 2.66
Household goods 1.9 5.2 3.61 5.46
Apparel 2.8 3.7 2.67 3.88
Transportation 1.8 7.1 4.10 7.47
Medical Care 10.0 5.2 3.62 5.38
Recreation 6.3 6.3 3.97 6.54

Table 2. Durations of prices in Mexico and USA

Elasticity
Product Frisch Cournot Slutsky
Food and beverage -0.479 -0.581 -0.385
Housing -0.96 -0.963 -0.890
Apparel and Upkeep -0.739 -0.755 -0.694
Transportation -0.972 -0.975 -0.849
Medical Care -1.072 -1.065 -0.967
Entertainment -1.147 -1.137 -1.069

Table 3. Own-price elasticities of demand (Seale, Regmi, and Bern-
stein (2003))
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Code Sector Markups
C01T05 Agriculture, hunting, forestry and fishing 0.51
C15T16 Food products, beverages and tobacco 0.30
C17T19 Textiles, textile products, leather and footwear 0.19
C20 Wood and products of wood and cork 0.28
C21T22 Pulp, paper, paper products, printing and publishing 0.21
C23 Coke, refined petroleum products and nuclear fuel 0.10
C24 Chemicals and chemical products 0.21
C25 Rubber and plastics products 0.17
C26 Other non-metallic mineral products 0.38
C27 Basic metals 0.27
C28 Fabricated metal products except machinery and equipment 0.19
C29 Machinery and equipment n.e.c 0.10
C30 Office, accounting and computing machinery 0.09
C31 Electrical machinery and apparatus n.e.c 0.14
C34 Motor vehicles, trailers and semi-trailers 0.20
C36T37 Manufacturing n.e.c; recycling 0.20
C40T41 Electricity, gas and water supply 0.24
C50T52 Wholesale and retail trade; repairs 0.55
C55 Hotels and restaurants 0.52
C60T63 Transport and storage 0.41
C70 Real estate activities 0.88
C71 Renting of machinery and equipment 0.81
C72 Computer and related activities 0.17
C80 Education 0.21
C85 Health and social work 0.32

Table 4. Markups: Gross Operating Surplus divided by Gross Output

Medians
Nondurables Durables Services

ED 0.48 0.96 0.97
Ed 3.30 5.00 2.77
Frequency 0.33 0.20 0.17

Table 5. Market elasticity of demand, firms elasticity of demand and
frequencies for different categories of goods



83

Entire sample
Frequency Market Elasticity Firms Elasticity

Frequency 1
Market Elasticity −0.4729∗∗∗ 1
Firms Elasticity −0.2105∗∗∗ −0.3589∗∗∗ 1

Nondurables
Frequency 1

Market Elasticity −0.3500∗∗∗ 1
Firms Elasticity −0.3486∗∗∗ 0.8603∗∗∗ 1

Durables
Frequency 1

Market Elasticity 0.3340∗∗∗ 1
Firms Elasticity −0.0720∗ −0.0330∗ 1

Services
Frequency 1

Market Elasticity −0.1337∗∗∗ 1
Firms Elasticity −0.1069∗∗∗ 0.1533∗∗∗ 1

Table 6. Correlations between frequency of price adjustments, market
elasticity of demand, and firms elasticity of demand.

Category of goods Market Elasticity Firms Elasticity Intercept
All −.46∗∗∗ −.007∗∗∗ .67∗∗∗

0.006 0.001 0.005

Nondurable −.43∗∗ −.019∗∗∗ .69∗∗∗

0.02 0.008 0.02

Durable .79∗∗∗ −.007∗∗∗ −.51∗∗∗

0.07 0.003 0.07

Services −.091∗∗∗ −.004∗∗ .18∗∗∗

0.014 0.003 0.015

Table 7. Regression results
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2.B. Figures
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Figure 1. Left sub-plot represents monthly inflation in Mexico in
1994-2002, right sub-plot shows real effective exchange rate in 1994-
2002: both data series are retreived from the federal Reserve Bank of
St. Louis FRED database
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Figure 2. Frequncy of price adjustments is reflected on y-axis. Blue
solid line is median values of the frequency of price adjustments of the
nondurables, red dotted line plots median values of the frequency of
price adjustments of the durables, black like with crosses plots median
values of the frequency of price adjustments of the services respectively
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Figure 3. Percent change in frequncy of price adjustments is reflected
on y-axis. Blue solid line is median values of the percent change in
frequency of price adjustments of the nondurables, red dotted line plots
percent change in frequency of price adjustments of the durables, black
like with crosses plotspercent change in frequency of price adjustments
of the services respectively
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Figure 4. Each sub-plot shows frequency of price adjustments for
different categories of goods from 1994 to 2001
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1994 to 2001



89

0 50 100 150
−2

−1.5

−1

−0.5

0

0.5

Price

P
ro

fit

Profit function

 

 

← Max
1

 ← Max
2
 

← Max
1

 ← Max
2
 

Profit is increased by 0.076 for θ=7

Profit is increased by 0.032 for θ=3

 θ=7 negative A
 θ=7 no A
 θ=3 negative A
 θ=3 no A

Figure 6. Solid lines on the plot represent profit function of the firm
with no shock to marginal cost. Dotted lines represent shifts of the
profit functions after one standard deviation shock to the marginal
cost. Red lines are for θ = 3, blue lines are for θ = 7



90

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Elasticity

In
cr

ea
se

 in
 p

ro
fit

Increase in Profit

 

 
shock
double shock

Figure 7. Solid blue line represents increases in profit from adjust-
ment of prices after a shock associated with different values of elastici-
ties of demand, red blue line shows increases in profit after two standard
deviations shock



91

Bibliography

Akerlof, G., and J. L. Yellen (1985): “A Near-Rational Model of the Business Cycle, With

Wage and Price Inertia,” Quarterly Journal of Economics, 100, 23838.

Alstadheim, R., H. C. Bjørnland, and J. Maih (2013): “Do Central Banks Respond to

Exchange Rate Movements? A Markov-switching Structural Investigation,” Norges Bank Working

Paper.

Altig, D., L. Christiano, M. Eichenbaum, and J. Linde (2011): “Firm-specific Capital,

Nominal Rigidities, and the Business Cycle,” Review of Economic Dynamics, 14(2), 225–247.

An, S., and F. Schorfheide (2007): “Bayesian Analysis of DSGE Models,” Econometric Review,

26(2-4), 113–172.

Arbatskaya, M., and M. R. Bayel (2004): “Are Prices Sticky Online? Market Structure Effects

and Asymmetric Responses to Cost Shocks in Online Mortgage Markets,” International Journal of

Industrial Organization, 22(10), 1443–1462.

Atkin, D., B. Faber, and M. Gonzalez-Navarro (2015): “Retail Globalization and Household

Welfare: Evidence from Mexico,” NBER Working Paper, pp. 71–87.

Ball, L., G. N. Mankiw, and D. Romer (1988): “The New Keynesian Economics and the

Output-inflation Trade-off,” Brookings Papers on Economic Activity, (1), 1–82.

Barthelemy, J., and M. Marx (2011): “State-dependent Probability Distributions in Non-linear

Rational Expectations Models,” Banque de France Working Paper.

Belaygorod, A., and M. Dueker (2005): “Discrete Monetary Policy Changes and Changing

Inflation Targets in Estimated Dynamics Stochastic General Equilibrium Models,” Federal Reserve

Bank of St. Louis Review, 87(6), 719–33.

Bianchi, F. (2013): “Regimes Switches, Agents’ Beliefs, and Post-World War II U.S. Macroeco-

nomic Dynamics,” Review of Economic Studies, 80(2), 463–490.



92

Bianchi, F., and C. Ilut (2013): “Monetary/Fiscal Policy Mix and Agents’ Beliefs,” Working

Paper.

Bils, M., and P. J. Klenow (2004): “Some Evidence on the Importance of Sticky Prices,”

Journal of Political Economy, 112, 947–985.

Bloom, N., R. Blundell, R. Griffith, and P. Howitt (2005): “Competition and Innovation:

An Inverted-U Relationship,” The Quarterly Journal of Economics., 120(2), 701–728.

Boivin, J., and M. P. Giannoni (2006): “Has Monetary Policy Become More Effective?,” Review

of Economics and Statistics, 88(3), 445–62.

Braun, A. R., A. Mukherji, and D. E. Runkle (1996): “Delayed Financial Disclosure: Mex-

ico’s Recent Experience,” Federal Reserve Bank of Minneapolis Quarterly Review.

Burstein, A., M. Eichenbaum, and S. Rebelo (2005a): “Large Devaluations and the Real

Exchange Rate,” Journal Of Political Economy, 113(4), 742–784.

(2005b): “Modeling exchange rate passthrough after large devaluations,” Journal of Mon-

etary Economics, 54(2), 346–368.

Calvo, G. A. (1983): “Staggered Prices in a Utility-maximizing Framework,” Journal of Monetary

Economics, 12(3), 383–98.

Caplin, A. S., and D. F. Spulber (1987): “Menu Costs and the Neutrality of Money,” The

Quarterly Journal of Economics, 102(4), 703–726.

Carlton, D. W. (1986): “The Rigidity of Prices,” American Economic Association, 76(4), 637–

658.

Chevalier, J. A., and D. S. Scharfstein (1996): “Capital-Market Imperfections and Counter-

cyclical Markups: Theory and. Evidence,” American Economic Review, 86(4), 703–725.

Cho, S. (2011): “Characterizing Markov-switching Rational Expectations Models,” Working paper.

Christiano, L. J., M. Eichenbaum, and C. L. Evans (2005): “Nominal Rigidities and the

Dynamic Effects of a Shock to Monetary Policy,” Journal of Political Economy, 113(1), 1–45.

Clarida, R., J. Gali, and M. Gertler (2000): “Monetary Policy Rules and Macroeconomic

Stability: Evidence and Some Theory,” The Quarterly Journal of Economics, (2), 147–180.



93

Cogley, T. (2007): “Comment on ”How Structural are Structural Parameters?”,” NBER Macroe-

conomics Annual, 22, 139–147.

Cogley, T., G. E. Primiceri, and T. J. Sargent (2010): “Inflation-Gap Persistence in the

U.S.,” American Economic Journal: Macroeconomics, 2(1), 43–69.

Cogley, T., and T. J. Sargent (2005): “Drift and Volatilities: Monetary Policies and Outcomes

in the Post WWII U.S.,” Review of Economic Dynamics, 8, 262–302.

Cogley, T., and A. M. Sbordone (2005): “A Search for a Structural Phillips Curve,” Staff

reports. Federal Reserve Bank of New York, (203).

Cravino, J., and A. Levchenko (2015): “The Distributional Consequences of Exchange Rate

Devaluations,” Society for Economic Dynamics 2015 Meeting Papersr.

Davig, T., and T. Doh (2013): “Monetary Policy Regime Shifts and Inflation Persistence,” Review

of Economics and Statistics, forthcoming.

Davig, T., and E. M. Leeper (2007): “Generalizing the Taylor Principle,” American Economic

Review, 97(3), 607–635.

Del Negro, M., and F. Schorfheide (2008): “Forming Priors for DSGE Models (and How It

Affects the Assessment of Nominal Rigidities),” Journal of Monetary Economics, 55(7), 1191–1208.

Dotsey, M., R. G. King, and A. L. Wolman (1999): “State-dependent Pricing and the General

Equilibrium Dynamics of Money and Output,” The Quarterly Journal of Economics, 114(2), 655–

690.

Farmer, R. E. A., D. F. Waggoner, and T. Zha (2009): “Understanding Regime-switching

Rational Expectations Models,” Journal of Economic Theory, 144, 1849–1867.

(2011): “Minimal State Variable Solutions to Markov-switching Rational Expectation

Models,” Journal of Economic and Dynamic Control, 35(12), 2150–2166.

Feenstra, R. C., and D. E. Weinstein (2010): “Modeling exchange rate passthrough after

large devaluationsGlobalization, Markups and U.S. Welfare,” NBER Working Papers.

Fernández-Villaverde, J., and J. F. Rubio-Raḿırez (2008): “How Structural are Structural
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