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Abstract 
 

Epigenome-Wide Patterns of DNA Methylation in Radiation Exposure  
and Gene Expression 

By Elizabeth Marie Kennedy 
 

DNA methylation is the most fundamental example of an epigenetic modification and is 
an integral epigenetic mechanism in humans. Through pathways that are not fully 
elucidated, DNA methylation can modulate gene transcription, and its patterns change 
readily over time in response to environmental or stochastic factors. For example, nearly 
identical methylation patterns among twins diverge over time, in a process known as 
epigenetic drift. Two natural questions that arise from this information are: how do DNA 
methylation patterns change in response to environment, and what are the downstream 
effects of those changes? Through my dissertation work, I have attempted to address both 
of these questions. First, I present a thorough review of extant literature in the 
epigenomics of radiation exposure. Second, I present a study that addresses acute and 
long-term changes to genome-wide CpG methylation patterns that occur following 
irradiation with varying qualities and quantities of radiation. We found that iron-ion, 
silicon-ion and X-ray irradiation induced rapid and stable changes in DNA methylation at 
distinct subsets of CpG sites. Importantly, we found that iron-irradiation-associated CpG 
sites could differentiate tumor and normal tissues for two human lung cancers. This study 
suggests that environmental exposures, like radiation, leave a lasting epigenetic imprint, 
and that these sites may be relevant to the development of complex diseases. Lastly, I 
present work that aimed to characterize and explore how DNA methylation patterns 
interact with gene expression, throughout the genome. Among CpGs at which 
methylation significantly associated with transcription (eCpGs), <50% fell within the 
canonical promoter region of the associated gene. Rather, we found that eCpGs were 
more common within enhancer and insulator elements and non-coding RNAs. We 
suggest that most changes in DNA methylation correlate negatively with transcription, 
and contrast our findings with the research that established opposing conventional 
wisdom. My dissertation work sheds new light on the interplay of the epigenome with the 
environment and with gene expression. Further, this work provides vital and biologically-
relevant context for the interpretation of many existing and future studies of DNA 
methylation. 
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 1 

CHAPTER I. Introduction 

DNA methylation is the cornerstone of epigenetics 

Epigenetics is the study of modifications to the genome that affect gene activity 

and expression, but do not change the underlying sequence of DNA. The most 

fundamental and well-known example of epigenetic modification is DNA methylation. 

DNA methylation is the addition of a methyl- group to the carbon 5 position on the 

deoxyribonucleotide, cytosine (5-methylcytsosine or 5mC). Across different organisms, 

this chemical modification occurs in three genomic contexts: at adjacent cytosine and 

guanine dinucleotides (CpG), CHG trinucleotides and CHH trinucleotides (where H is an 

adenine, thymine, or cytosine). CpG methylation, however, seems to be the primary 

context in the human genome among fully differentiated cells [1].  

CpG methylation is established and maintained through cell generations by the 

action of DNA methyltransferases. DNA methyltransferases are a group of enzymes that 

facilitate the transfer of a methyl group from the methyl donor, S-adenosyl methionine, to 

the DNA. In humans, the three known DNA methyltransferases are DNMT1, DNMT3A 

and DNMT3B. The most abundant methyltransferase in human cells is DNMT1, which 

methylates cytosines opposite a CpG on the other strand. Although DNMT1 can catalyze 

de novo methylation, it is primarily known as a maintenance enzyme, as it has higher 

catalytic activity for the hemimethylated DNA that results from the synthesis of a new 

DNA strand in the cell cycle. DNMT3A and DNMT3B also catalyze DNA methylation in 

the CpG context, but have no preference for hemimethylated DNA and so are primarily 

thought of as de novo methyltransferases (reviewed in [2]). 
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Approximately 70–80% of CpGs in the human genome are methylated and of 

those, more than 90% lie within the quiescent parts of the genome composed of tightly-

packed DNA, called heterochromatin [1, 3, 4]. Heterochromatin tends to be depleted of 

CpGs, because methylated cytosines are prone to spontaneous deamination, which results 

in the transition mutation from cytosine to thymine. The transition results in a T:G 

mismatch that, if not corrected, will be complemented with adenosine during the cell 

cycle. Over time, this process has led to the depletion of CpGs in areas of the genome 

that are typically methylated [4]. Unmethylated CpGs are generally found in GC-rich 

sequences termed CpG islands (CGI) that constitute promoter regions and transcription 

factor binding sites for more than half of mammalian genes, including nearly all 

housekeeping genes [3]. Because CpG islands are rarely methylated, they are precluded 

from deamination and have higher CpG frequencies than the rest of the genome [4].  

DNA methylation is an integral epigenetic mechanism in humans. DNA 

methylation can modulate gene transcription by physically inhibiting the binding of 

transcription factors to a gene’s promoter, as most commonly seen in stable repressed-

state genes (imprinted genes, X-inactivation and germline maintenance genes). DNA 

methylation may also recruit enzymes that modify the proteins that package DNA into 

structural units, called histones. By modifying the N-terminal tail of histone proteins, 

histone-modifying enzymes can increase or decrease the transcriptional potential of 

DNA. Through its modulation of gene expression, DNA methylation (along with other 

epigenetic modifications, like to histones), allows for morphologically distinct cell types 

to form from a single genome [2, 4].  
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DNA methylation is a dynamic mark in the genome 

Unlike DNA sequence, DNA methylation patterns change readily over time in 

response to intrinsic (i.e. genetic) or extrinsic (environmental or stochastic) factors. 

Methylation patterns at many CpG sites are more similar among related individuals than 

unrelated individuals, even when those families that do not share a living environment [5, 

6]. Additionally, many monozygotic twins acquire methylation at shared loci [7]. These 

findings suggest a genetic component in methylation patterning. However, at other CpGs, 

nearly identical methylation patterns among newborn monozygotic twins diverge over 

time. This difference is reflected in significantly different methylation and histone 

acetylation patterns later in life, with the greatest epigenetic differences being present in 

twins that spent more time apart [8, 9]. This age-related divergence in the methylation 

patterns of twins suggests that stochastic and environmental processes play a large role in 

DNA methylation changes. Such changes are frequently referred to as epigenetic drift 

[10].  

Radiation exposure as a model for environmental exposures. On Earth, we are exposed 

to ionizing radiation through diagnostic and therapeutic medical devices, background 

radiation, cosmic rays, radioactive waste, radon decay, nuclear tests, and nuclear 

accidents [11]. Astronauts are exposed to higher levels of radiation during space travel. 

For the most damaging forms of Galactic Cosmic Radiation (GCR), there are not 

currently effective means of shielding [12]. As space tourism and interplanetary travel 

become an impending reality, rather than a flight of fancy, it is imperative that we 

consider how environmental exposures affect the epigenome, as well as the genome [13]. 
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Ionizing radiation exists in different forms. First, there is photon radiation, like x- 

or γ-radiation, which has a lower linear energy transfer (LET) per dose of radiation; 

meaning that when it encounters matter (like human cells), it is sparsely ionizing [14]. 

Second, there is particle radiation. Particle radiation is made up of elements that have 

been stripped on their electron shells. Simple protons, and alpha particles (Hydrogen and 

Helium nuclei, respectively), along with simple electrons (beta particles), make up the 

most common types of GCR, which along with x- or γ-radiation, make up the most 

common types of terrestrial radiation [15, 16]. Particle radiation heavier than helium is 

termed HZE radiation, which denotes its high (H) atomic number (Z) and energy (E). 

HZE particles have a very high LET, meaning that they are densely ionizing [17]. 

Additionally, HZE radiation generates electrostatic secondary radiation, called δ- 

radiation, that extends laterally from its main track, increasing the area affected by 

radiation [18, 19].  

Ionizing radiation can cause damage to the genome in a number of ways. Direct 

damage is caused by a direct interaction of photon or particle radiation with the DNA 

strand. Indirect damage is caused by the reactive oxygen species (ROS). ROS include the 

highly reactive compounds, superoxide, hydroxyl radicals, and hydrogen peroxide 

(H2O2). Once generated, ROS will interact with the surrounding organic material 

including DNA, which can result in oxidative damage that contributes to lasting mutation 

and carcinogenesis [20]. Whereas low-LET radiation types will interact sparsely with 

cellular components, resulting primarily in oxidative damage and some single and double 

stranded DNA breaks, high-LET radiation ionizes densely along the particle track, 
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resulting in complex DNA breakages and high ROS production [11, 15]. Exposure to 

both high- and low-LET radiation can cause changes to the epigenome. 

 Both double stranded breaks and oxidative DNA damage cause transient changes 

to chromatin as part of the cellular DNA damage response. Through a combination of 

chromatin-level modifications, including repressive histone modifications (like 

methylation of histone H3 at lysine 27 and histone deacetylation) and DNA methylation 

by DNMTs, the area around the DNA damage undergoes transcriptional inhibition, to 

allow for the repair of DNA damage. Although the repair process typically resolves with 

the resetting of the original chromatin environment, in environments of chronic stress 

(like the continuous exposure to radiation experienced in space), these transient 

epigenetic changes have the potential to become permanent ([21], reviewed in [11]). The 

epigenetic responses to DNA damage are particularly relevant to human health because 

they are similar to the epigenetic changes observed in cancer cells [22].  

Functional role of DNA methylation in the genome 

DNA methylation blocks transcription factor binding. DNA methylation has the 

potential to regulate gene expression [2]. The effects of methylation are commonly 

studied at gene promoters. CpG islands found at the promoters of many housekeeping or 

developmentally regulated genes are constitutively hypomethylated. In these promoters, 

the presence of methyl groups from 5mC in the major groove of the DNA double helix 

are thought to exclude the binding of transcription factors that drive gene expression. 

However, the binding of transcription factors at promoters may also be essential to 

precluding DNMTs that initiate de novo methylation [2, 23].  
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DNA methylation promotes higher-level epigenetic transcriptional repression. In 

addition to directly inhibiting the binding of transcription factors, methylated CpGs at 

CGI also repress gene expression by attracting repressive chromatin modifications. 

Members of the methyl-CpG binding domain (MBD) family, MBD1, MBD2, and 

MeCP2, are implicated in methylation-dependent transcriptional repression through 

association with different co-repressor complexes [24]. For example, MBD1 associates 

with the histone 3 lysine 9 methyl- transferase SETDB1, ensuring stable silencing of 

MBD1-associated (and thus, 5mC-associated) genes [25]. Additionally, MBD2 and the 

NuRD co-repressor complex work in concert as part of the large multi-protein complex, 

MeCP1 [26]. The NuRD complex is comprised, in part, of histone deacetylases (HDAC), 

which inhibit transcription through the removal of transcriptional activation marks [27]. 

In fact, most MBD family proteins associate with HDACs, leading to the inverse 

correlation of DNA methylation and histone acetylation [24]. 

Interactions of DNA methylation and histone modifications. The exact relationship of 

all epigenetic modifications and transcriptional potential are not always clear and 

sometimes context specific. While the examples above suggest that DNA methylation 

informs higher-level epigenetic modifications, there are times when the inverse appears 

to be true. For example, trimethylation of histone 3 lysine 4 (H3K4me3) is a key feature 

of active gene promoters [28]. Setd1, an H3K4 methyltransferase, is recruited to CGIs 

through its interaction with the CpG binding protein Cfp1, which binds only 

unmethylated CGIs [29]. The enrichment of H3K4me3 in gene promoters is thought to 

prevent de novo methylation at CGI. In evidence of this finding, Dnmt3L, a catalytically 
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inactive DNMT that guides the action of de novo DNMTs Dnmt3a and Dnmt3b, 

selectively recognizes nucleosomes that lack H3K4 methylation [2]. 

Non-promoter targets of epigenetic transcriptional regulation. Although the role of 

CpG methylation at promoters has been intensively scrutinized, recent research indicates 

that gene expression can be affected distally by DNA methylation at enhancers and 

insulators, as well as within the gene itself [4, 30–41]. Further, non-coding RNAs 

(ncRNAs) function as important regulators of gene expression [34, 37, 40], have been 

associated with complex diseases and cancers [34, 42], and are sensitive to DNA 

methylation [43]. The roles of DNA methylation in these genomic features are active 

areas of debate and research.  

Enhancers. Enhancers, as distal regulatory elements, promote gene expression [4, 

31, 44]. Enhancers are typically several hundred base pairs long and contain clusters of 

recognition sequences for transcriptional co-activators or transcription factors [45]. 

Unlike promoter sequences, enhancers function independently of orientation and position 

relative to their target gene [46, 47]. They may function from distances ranging from a 

few kb to 1 Mb from their target. In human CD4+-T cells, the average distance is ~50 kb 

[48]. Multiple enhancers can control the activity of one or a group of genes [47]. 

Enhancer-dependent transcription requires functional contacts between enhancers and 

target promoters. The dominant ‘‘looping’’ model suggests that active enhancers form 

direct physical contacts with promoters, creating a loop of intervening DNA [49–51]. 

This looping model has been confirmed for various enhancers [51, 52]. Binding of 

transcription factors to enhancers leads to the activation of transcription through 
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recruitment of co-activators, releasing paused RNA polymerase 2 (RNAPII) and 

stimulating elongation [53].  

Enhancers contain CpG sites and are sensitive to DNA methylation [31, 32, 36, 

38, 54]. In addition to the traditionally defined enhancers that typically do not reside in 

CGI [4], new research has suggested that an additional class of strong enhancers exists 

within the >10% of CGI that are not located near known genes [44]. Further, in research 

focused on understanding how DNA methylation associates with gene expression 

(discussed below in “DNA methylation and gene expression”), enhancers are frequently 

enriched among the CpG sites at which methylation significantly correlates with gene 

expression. This has led to a proposed model of gene regulation wherein promoter 

methylation is relatively static, being either constitutively hypermethylated (silenced) or 

hypomethylated (permissive), and dynamic enhancer methylation modulates tissue-

specific gene expression levels [54].  

Although population studies of disease have revealed many loci that associate 

with various diseases in genome-wide association studies, a minority of them fall within 

coding regions of the genome. Many of them, however, do fall into annotated enhancer 

regions. This has led to the discovery of a wide range of diseases that are associated with 

enhancer mutations, or interruptions in enhancer-promoter interactions (reviewed in [53, 

55–58]). Aberrant DNA methylation at enhancers is also seen in various cancers [59–61]. 

These two points highlight the potential importance of enhancer CpG methylation in gene 

expression and disease. 

Insulators. Although past research interpreted the role of insulators as restricting 

enhancer-promoter interactions, more recent research suggests that the major role of 
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insulators in the genome is to facilitate the interaction between regulatory sequences [50, 

62]. As part of the “looping” model mentioned above, insulators are thought to promote 

gene expression by bringing enhancers and promoters into close proximity through the 

binding of the CCCTC-binding factor (CTCF). CTCF binds insulator elements, can 

dimerize to form stable chromatin loops, and associates with the ring protein, cohesin 

[50, 51]. These characteristics allow two insulators to come together, forming a loop of 

intervening DNA stabilized by cohesin, to bring a promoter and enhancer into relatively 

close proximity [49, 51]. In a high resolution study of Hi–C, a method to detect 

chromatin interactions in the 3D space of the mammalian nucleus, most chromatin loops 

were anchored by insulators, supporting the role of insulators as master regulators of 

chromatin organization [51]. Disruption of CTCF-mediated chromatin interactions can 

influence gene expression and are implicated in complex diseases, like cancer [61, 63–

65]. Lastly, the binding affinity of CTCF to insulator sequences is influenced by DNA 

methylation, which suggests that DNA methylation at insulators may facilitate functional, 

biological changes in a cell [64, 66].  

Non-coding RNAs. MicroRNAs (or miRNAs) are small non-coding RNA 

molecules about 22 bases in length. In humans, miRNA genes are translated and form 

large hairpin or stem-loop structures called a primary- or pri-miRNA. The pri-miRNA is 

cleaved to become a pre-miRNA, which is exported from the nucleus before being 

cleaved again by the enzyme Dicer and incorporated into the Argonaute containing RNA-

induced silencing complex (RISC). The miRISC (miRNA + RISC) complex binds by 

sequence complementarity of the miRNA to the 3’ UTR of a target gene. The miRISC 

complex the regulates mRNAs through one of three mechanisms: 1) through direct 
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cleavage of the mRNA by Argonaute, 2) recruiting deadenylation factors that remove the 

target mRNA’s poly(A)-tail, triggering degradation or 3) translational repression by 

interfering with translational machinery or direct proteolysis. MicroRNAs are thought to 

post-transcriptionally regulate more than 50% of human mRNAs [67]. This gene 

regulation pathway is involved in the development of complex disease [67–70].  

Evidence suggests that long intergenic non-coding RNAs (lincRNAs) play an 

important role in gene expression, particularly as a scaffold molecule that attracts either 

transcriptional or histone modifying machinery [71]. In the case of the former, long non-

coding RNAs (lncRNAs), called eRNAs (enhancer RNAs), are transcribed from enhancer 

sequences and may act as scaffolding for DNA looping or co-activator recruitment to a 

gene promoter [49]. Classic examples for the former case come from X-chromosome 

inactivation and the imprinted locus, KCNQ1. In X-chromosome inactivation, the 

lncRNA REPA recruits and directly interacts with the polycomb repressive group protein 

catalytic subunit, EZH2 in the earliest stages of X-inactivation. At the KCNQ1 locus, the 

lncRNA KCNQ1OT1, directly recruits polycomb repressive group protein, PRC2, both in 

cis and in trans, to repress six paternally imprinted genes at the locus through H3K27me3 

modification [71]. 

Transcription of both miRNAs and lncRNAs is sensitive to DNA methylation [34, 

37, 40, 68, 69]. Their methylation-sensitive activity suggests that non-coding RNAs 

represent another layer of control in which DNA methylation may function to modulate 

gene activity. 

Gene bodies. Although a great deal of research focuses on CpG sites located near 

gene promoters, they also exist within the bodies of genes. Though most gene bodies are 
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CpG-poor and methylated, they can include CpG islands and it is conventionally believed 

that methylation at intragenic CpGs positively correlates with gene expression [4, 54, 72]. 

Research outlined by Lister et al. (2009) and Zilberman et al. (2007) are commonly cited 

as proof of this phenomenon. Lister et al. assessed 5mC in various contexts in both a 

pluripotent stem cell line (H1) and in fully differentiated fetal lung fibroblasts (IMR90). 

They found that when looking across 5,644 different genes, gene body CpG methylation 

positively correlated with gene expression level. That is to say – highly expressed genes, 

on average, had a higher proportion of methylated intragenic CpGs [1, 73]. However, it is 

important to note that this method of analysis can only tell us the general trends across all 

genes; it does not tell us how changes to intragenic CpG methylation affect gene 

expression or how individual genes are epigenetically regulated.  

Zilberman et al. studied 5mC in the flowering plant model system, Arabidopsis 

thaliana. They also found a correlation between levels of intragenic CpG methylation and 

gene expression across all studied genes. A notable but often overlooked finding in this 

research is that changes to gene body methylation are most often negatively correlated 

with gene expression. Zilberman et al. conclude that gene body methylation impedes 

transcriptional elongations in A. thaliana [73]. Their conclusion supports earlier work in 

mammalian cells by Lorincz et al. (2004). Newer work assessing site-specific CpG 

methylation and gene expression also confirms the abundance of negative methylation-

expression correlations [30, 33, 35, 41, 74]. 

Research by Yang et al. (2014) finds both negative and positive correlations of 

CpG methylation and gene expression in human cells. However, they conclude that 

positive correlations of CpG methylation and gene expression are due to the role of CpG 
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methylation in promoting gene expression and that any negative correlations are the 

result of intragenic regulatory elements, like cryptic or alternative promoters and 

enhancers [72]. The idea that intragenic DNA methylation can serve to regulate tissue-

specific gene expression via alternative promoter methylation is fairly well supported. 

The primary example comes from Maunakea, et al. (2010). Using a robust combination 

of technologies, and confirming their results in both mouse and human, they show that 

intragenic CpG islands overlap alternative promoters and that this pattern is conserved 

across species [75]. To support their conclusion that intragenic methylation drives 

expression, Yang et al. provide evidence that the loss of expression that accompanies 

gene-body demethylation on treatment with 5-aza-2′-deoxycytidine is regained along 

with intragenic DNA methylation upon recovery. However, it is difficult to determine 

from these results if intragenic methylation is the driver or passenger of transcriptional 

control [72]. 

Jjingo et al. (2012) note that the relationship of intragenic DNA methylation and 

gene expression is not monotonic, but rather bell-shaped. They show that intragenic 

methylation increases with average transcription level, but decreases with the highest 

levels of transcriptional activity. This observation leads them to hypothesize that 

intragenic methylation can block transcription from alternate or cryptic promoters, but is 

largely is a passenger event of transcriptional activity. In their model, DNA 

methyltransferases are precluded from chromatin by the regular placement of 

nucleosomes in quiescent genes. The activity of RNA polymerase II (POL2) attracts 

DNMTs and disrupts nucleosome placement enough for methylation to occur in gene 

bodies. However, at very high levels of transcription, the processivity of POL2 itself 
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precludes DNMT binding [76]. This hypothesis is supported by molecular research 

performed by Baubec et al. (2015), showing that de novo methylation is set in the gene 

bodies of actively transcribed genes by DNMT3B and is precluded by regularly placed 

nucleosomes. They go on to show that SETD2-mediated H3K36me3, which is common 

in the gene bodies of transcribed genes, guides de novo methylation by DNMT3B [77].  

In all, gene body methylation is still a provocative topic. One might conclude 

from the evidence presented here that changes in intragenic DNA methylation primarily 

inhibit gene expression at alternate and cryptic regulatory elements. Further, it would 

appear that transcription may facilitate intragenic DNA methylation, which may lead to 

the false conclusion that DNA methylation fosters gene expression. 

DNA-methylation-based association studies 

In the above sections, I have described the pathways through which 5mC patterns 

are established and maintained, described the mechanisms by which 5mC influences gene 

expression and explored mechanisms under active research. I have presented evidence 

that the mark is dynamic throughout life, and also that DNA methylation patterns can and 

do associate with disease. In this section, I will explain how such associations are 

identified and interpreted, and some of the ways in which interpretation is currently 

limited. 

In 2007, the advent of high-throughput single nucleotide polymorphism (SNP) 

microarrays and a greater understanding of population-based linkage disequilibrium 

facilitated the first genome-wide association studies (GWAS) [78]. In these studies, 

variation in the phenotype under investigation was compared to variation at loci across 

the genome in a study cohort, in order to draw statistical associations between specific 



 14 

genomic variants and a wide range of biological processes and diseases. In the years 

since, thousands of common genetic variants and single-nucleotide polymorphisms 

(SNPs) have been found to have strong and replicable associations with a wide range of 

common diseases (http://www.genome.gov/gwastudies/) [78]. 

Assessment of genome-wide DNA methylation. Quantifying DNA methylation levels is 

not as straightforward as assessing genomic content, since the underlying sequence is, by 

definition, the same. A second limitation is that distinct tissue types have differing DNA 

methylation profiles, which can lead to spurious associations due to statistical 

confounding. Therefore, studies of DNA methylation, unlike genetic studies, must be 

performed in an isolated tissue type. There are three primary approaches to assessing 

DNA methylation, each with its own strengths and weaknesses. Earlier methods relied on 

pairs of restriction enzymes where one is methylation sensitive and the other is not, but 

both recognize the same sequence [79]. When paired with polymerase chain reaction 

(PCR), this method is useful for assessing one or a few CpG sites or assessing global 

changes in DNA methylation. The use of restriction enzymes has since been extended to 

use with microarrays and DNA sequencing, but the resolution of this method is restricted 

to only those CpG sites in the correct context for appropriate restriction enzymes [78, 80]. 

The second approach, often called Methylated DNA ImmunoPrecipitation (MeDIP), uses 

antibodies to methylated DNA or DNA bound to MBD family proteins in an 

immunoprecipitation to enrich samples for methylated DNA [81, 82]. This method has 

also been combined with microarrays and sequencing, and is most useful in regions of the 

genome that tend to be intermediately methylated [78]. The third approach had its 

beginnings in the early 1990s when Frommer and others found that sodium bisulfite 
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treatment converted cytosine bases, but not 5-methylcytosine bases, to uracil [83]. 

Bisulfite conversion has been one of the more popular approaches to studying the DNA 

methylome as it induces changes in sequence that then can be measured via conventional 

genotyping technologies. For example, it can be combined with PCR to study specific 

regions, or with microarrays or whole-genome sequencing to study site-specific patterns 

genome-wide [78, 80]. In recent years, the most widely-used application of bisulfite 

conversion employs a microarray, or beadchip, from Illumina to assay approximately 27k 

[84], 450k [85] or 850k CpG sites in the human genome quickly and in parallel. The 

introduction of this technology facilitated high-throughput analysis for larger, population-

based studies of DNA methylation. 

Epigenome-wide association studies. With the advent of high-throughput methylation 

analyses, agnostic screening of single-CpG-resolution methylation has become possible 

[84]. Epigenome-wide association studies (EWAS; analogous to GWAS) are a common 

tool for studying the role of DNA methylation in disease. The goal of EWAS is to 

identify CpG sites across the genome at which changes in methylation status associate 

with a trait of interest.  

Generally, tissue samples are collected from a study cohort or from cell culture. 

DNA is extracted from each sample, bisulfite converted, PCR amplified and then 

fragmented. Then, for every sample, at each assayed CpG site, the converted DNA is 

annealed to a pair of probes that complements and fluorescently reports either a CpG or a 

TpG. In this way, the sample-wide proportion of methylated to unmethylated CpG is 

assessed for each site. Methylation proportions at each CpG can then be statistically 

compared to the trait of interest, across samples [85, 86]. CpG sites showing statistically 
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significant associations with the trait after adjustment for the number of comparisons are 

typically followed up via downstream analyses including replication, validation, network 

analyses and enrichment tests.  Methylation changes have been implicated by EWAS in 

the development of complex, delayed-onset diseases including diabetes [87], 

inflammatory bowel disease [88–90], rheumatoid arthritis [91], systemic lupus 

erythematosus [92, 93] and many cancers [9, 93–95]. Unfortunately, despite a growing 

number of EWAS, we are still far from understanding how epigenetic changes contribute 

to the onset of complex diseases [4, 78].  

Limitations of EWAS. EWAS often return large sets of marginally significant or near-

significant results, many of which lie outside of defined genomic regions (i.e. genes) [88, 

89]. Inferring a functional consequence of such results is difficult because our 

understanding of the role of methylation in gene expression and disease is incomplete. 

Canonically, methylation in CpG island promoters inhibits the initiation of gene 

transcription [4]. Interpreting the effect of EWAS hits outside promoters is difficult, as 

the role of DNA methylation in these regions is not yet defined [4]. EWAS results are 

often interpreted based on proximity to gene or presence in gene promoters alone. Some 

research has already suggested that enhancer-promoter relationships are not solely based 

on proximity and that there can be more than one promoter between an associated 

enhancer-promoter pair [96]. Proximity-only interpretation disregards the role of distal 

CpG methylation in regulating gene expression, altogether, as well as other functional 

relationships [86, 97, 98]. The development of methods to facilitate interpretation of 

EWAS is warranted and new methods are on the horizon. 
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DNA methylation and gene expression  

Underscoring the importance of the previous section, recent research indicates 

that gene expression can be affected by DNA methylation at CpG sites distal (>50 kb or 

on a different chromosome) to the gene promoter [30, 33, 35, 41, 54]. Some of these 

studies tested only for expression-associated CpGs (eCpGs) within a set distance from 

each gene [35, 41, 54], while others sought to identify genome-wide eCpGs for each gene 

[30, 33]. These studies found that eCpGs are enriched in some cancer EWAS results and 

are likely associated with distal regulatory sequences (specifically, enhancers), which 

suggests that DNA methylation distal to gene promoters may play a role in disease by 

altering gene expression [54, 99].  

Unfortunately, these existing studies have been underpowered [30, 33, 41, 54], 

aimed at a sparse subset of the methylome [30, 33], or focused on only proximal CpGs 

[35, 41, 54]. Further, despite promising results indicating that eCpGs are enriched in 

enhancers, none of these studies have sought to address the role of other methylation-

sensitive regulatory machinery in gene expression (i.e., insulators and non-coding 

RNAs). Lastly, while many of these studies report enrichment of eCpGs within gene 

bodies, none have adequately addressed the problems discussed above regarding 

experimental design (methylation associations across all genes vs associations for one 

gene across samples), the role of intragenic regulatory sequences, or the presence of 

overlapping genes. 
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Genome-wide studies of DNA methylation provide insight into its environmental 

response and regulatory potential 

The following chapters introduce two studies: 1) an EWAS that assesses the 

effects of radiation on the epigenome and 2) a study that explores the myriad of ways that 

DNA methylation affects gene expression. The first study begins with a detailed review 

of the current state of research in acute and chronic epigenomic effects of ionizing 

radiation (Chapter II). It is followed by a research study that addresses gaps in 

understanding listed in the previous chapter and sheds new light on the subject (Chapter 

III). This research is important for its implications for space-travel and radio-therapy, as 

well as its ability to highlight the role of environment in epigenetic patterns. The second 

research study (Chapter IV) highlights the shortcomings of current EWAS interpretation, 

explores the roles of DNA methylation in various regulatory features in modulating gene 

expression, and provides a dataset to be utilized in the interpretation of existing and 

future EWAS in human blood cells. Finally, in Chapter V, I discuss common insights 

drawn from my two seemingly different studies and how these insights can be used to 

drive the continued success of epigenomics. 
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Manned interplanetary travel is imminent, but currently inhibited not only by 

factors such as technology and budget, but also by the uncertainty surrounding the health 

risks associated with galactic cosmic radiation (GCR) exposure, for which there is 

currently no effective means of shielding. Much research has focused on the influence of 

high energy and charge (HZE) nuclei, the most detrimental component of GCR, on the 

genome. Exposure to radiation, either terrestrially or in space, induces DNA damage that, 

if not accurately repaired, can give rise to genetic mutations with long-term biological 

implications including development of chronic diseases, such as cardiovascular disease 

and cancer. The radiation encountered on Earth is composed primarily of low linear 

energy transfer (low-LET) photons (eg. gamma rays or X-rays) that react only sparsely 

with cellular components, with DNA damage arising primarily from free radicals 

generated by the ionization of nearby water molecules.  In contrast, HZE ions have a high 

linear energy transfer (high-LET) and deposit energy linearly along the particle 

trajectory, interacting directly with macromolecules in addition to giving off high energy 

electrons (δ rays) that extend laterally for several microns. This creates a more dense 

ionization track as the particle moves through the cell and nucleus and results in a more 

complex DNA damage that involves mixtures of more than one type of DNA damage in 

close proximity (double strand breaks, single strand breaks, base damage, etc) [1, 2]. This 

clustering of multiple types of DNA damage is thought to pose a challenge for the DNA 

repair machinery, potentially accounting for the more deleterious biological effects of 

high-LET radiation than low-LET radiation at similar doses. High-LET radiation 

exposure can also have a lasting impact on cellular physiology without any DNA 

mutation, via alterations in DNA methylation, though the frequency and consequence of 
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these changes has not been well-documented.  

DNA methylation 

DNA methylation refers to a chemical modification of cytosine bases in DNA. In 

most cells this modification occurs at adjacent cytosine-guanine nucleotides called CpG 

sites. DNA methylation influences which genes are expressed and in what context, 

allowing for a diverse collection of cell types with distinct functions to arise from a single 

common genome. DNA methylation is thus considered an “epigenetic” modification, as it 

represents another level of information that sits “on top of” the genetic code (the DNA 

sequence) and influences how the genetic code is interpreted [3]. Most CpG sites in the 

genome are methylated, including the regions within and between genes. Methylation in 

these intergenic regions plays an important role in the silencing of mobile elements 

(transposons) and in maintaining chromosome structure and stability.  Also embedded 

within these methylated regions are ‘enhancers’, long-range regulatory elements that can 

influence the expression of genes from a great distance. In contrast, a small fraction of 

the genome is composed of areas dense with CpG sites, called CpG ‘islands’, that 

typically remain unmethylated in normal cells. More than half of human protein coding 

genes and many non-coding RNAs are regulated by promoters that lie within CpG 

islands. A small subset of CpG island promoters acquire methylation normally during 

development and cell-type specification as part of a program to ensure the long-term 

silencing of the neighboring gene (for example, during the programmed silencing of one 

X-chromosome in female mammals). Such epigenetic regulation of gene expression is 

critical to normal development and plays an important role in the maintenance of cellular 

identity. However, unlike DNA sequence, DNA methylation patterns change readily over 
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time and with normal aging, and represent an important feature of how organisms adapt 

to a changing environment [4].  

DNA methylation patterns can change in response to extrinsic environmental 

factors (e.g. nutrition, chemical pollutants) and with age [5–7]. Because DNA 

methylation patterns are copied along with the DNA sequence during cellular replication, 

induced changes to the epigenetic state will persist over multiple cell divisions, resulting 

in a lasting and mitotically heritable “memory” of prior exposures. Such induced 

alterations to DNA methylation have the potential to contribute to the long-term health 

risks associated with radiation exposure. The consequence of DNA methylation changes 

will depend on their genomic context. For example, loss of methylation outside of CpG 

islands occurs during aging and cancer progression and can lead to aberrant activation of 

transposons, chromosome instability, and (potentially) to the activation of cryptic 

enhancers [8]. Methylation in the transcribed regions of genes is positively correlated 

with gene expression, and depletion in these areas could result in the reduced expression 

of some genes [9].  Conversely, the aberrant gain of methylation in normally 

unmethylated CpG islands is associated with gene silencing and has been shown to 

contribute to cancer formation through the stable and heritable silencing of important 

growth suppressor genes [3].  

Effects of radiation on DNA methylation 

Most research to date assessing the impact of radiation exposure on the 

epigenome has focused on the effects of low-LET X-rays on global methylation trends. 

Nearly all of these studies report global hypomethylation in response to relatively high 

doses of X-rays (eg. up to 10 Gy) [10–15]. It has been proposed that the global 
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hypomethylation is a consequence of the inability of the maintenance DNA 

methyltransferase, DNMT1, to keep up with the newly synthesized DNA generated 

during the repair of massive DNA damage [15], although decreased expression of 

DNMT1 itself and increased expression of miR-29, which negatively regulates 

methyltransferase expression, have also been reported [10, 12].  

Considering the unique characteristics of the high-LET radiation track and the 

damage it elicits, there is the potential for unique effects on the epigenome. Indeed, 

current research indicates that exposure to high-LET radiation can also result in lasting 

changes in the total levels of DNA methylation in the genome, and that those changes 

may be different from the DNA methylation changes seen in response to equivalent doses 

of low-LET radiation [11, 13, 16, 17]. Although there is some disagreement among the 

few studies that have assessed the effects of high-LET and HZE radiation on the 

epigenome, the majority indicate a trend toward global hypermethylation [10, 13, 16, 17]. 

Outstanding questions  

Does radiation exposure cause DNA methylation changes at specific regions of 

the human genome, like genes or other genomic compartments? Are the methylation 

changes that occur with radiation exposure random, or are there regions that are more 

prone to radiation-induced methylation ‘damage’? Few studies have assessed the effect of 

high-LET radiation at specific CpG sites. While CpG sites in the promoters of a few 

select genes were tested in the above studies, no consistent alterations were observed. 

Methods are now in place to study methylation at essentially all 28 million CpG sites [9], 

allowing the complexity and target specificity of CpG methylation changes across the 

entire human genome to be explored.  
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Given that DNA damage can precipitate local changes in DNA methylation [3, 

18, 19] and DNA methylation changes are known to occur with aging, and to contribute 

to the progression of cancer and other diseases [20], it is tempting to speculate that such 

epigenetic ‘scars’ could contribute to the long-term effects of radiation exposure even if 

the initial damage to the DNA is ultimately repaired (Figure 2-1). Support for this idea 

stems from studies by O’Hagan [19] and Morano [18] who showed that DNA double 

stranded breaks, which are characteristic of high-LET radiation, can result in stable DNA 

methylation-mediated transgene silencing after successful break repair. Alternatively, the 

observed changes in DNA methylation may reflect an indirect consequence of the 

broader cellular stress response. Indeed, exposure to reactive oxygen species associated 

with chronic inflammatory states are known to contribute to cancer risk, and can 

precipitate lasting changes in DNA methylation and chromatin modifications [21, 22]. 

Elevated reactive oxygen species can persist for up to two weeks after high LET radiation 

exposure [23] and could at least in principle contribute to an altered epigenome (Figure 2-

1).  

Future perspectives 

While much has been learned about the functions and significance of DNA 

methylation over the last several decades, our current understanding is undergoing rapid 

revision. The recent discovery that endogenous methylated cytosine residues in 

mammalian DNA are naturally subject to  enzyme-driven oxidation and detection of the 

oxidized methylcytosine derivatives (hydroxymethylcytosine (hmC), formylcytosine 

(fC), and carboxycytosine (caC)) in human and mouse DNA has prompted considerable 

effort to decipher the relative roles of these modified residues in gene expression and 
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genome function [24].  The fC and caC forms serve as substrates for the DNA repair 

machinery, which removes the oxidized base and replaces it with unmodified cytosine, 

resulting in a net “demethylation” event, suggesting that DNA methylation patterns may 

be far more dynamic than previously anticipated. How radiation exposure of any type 

influences the formation or removal of these modified methylcytosine bases has not yet 

been explored. Furthermore, DNA methylation patterns are only one component of a 

broader epigenetic ‘code’ that includes posttranslational modifications to the histone 

proteins on which the DNA is wound into chromatin. Together, the pattern of DNA 

methylation and histone modifications helps to organize the genome into domains of 

different transcriptional potential. While local changes in histone modification status at 

the site of radiation-induced double strand breaks is known to play an important role in 

alerting the DNA repair machinery and cell cycle to the presence of DNA damage [25], 

recent work has suggested that radiation exposure (X-ray) can also influence global levels 

of various modified histones, suggesting a broader reprogramming of the epigenomic 

landscape [26]. Methods exist to map the genome-wide patterns of histone modifications 

as well, and have not yet been applied to high LET radiation exposure. Indeed, it has 

been argued that an assessment of DNA methylation and other epigenetic modifications 

should be considered in environmental toxicity and risk assessment, and that an 

understanding of the specific epigenetic “footprint” left by various chemical or physical 

toxins could one day be used to monitor a person’s exposure history [7]. The 

identification of specific and unique DNA methylation changes associated with high-LET 

radiation and known to be associated with diseases such as cancer, could in principle be 

used by NASA for ‘biodosimetry’; monitoring the biological impact of cumulative high-
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LET radiation exposure and the associated health risks encountered by astronauts in deep 

space [27]. 

The technology and informatics to address our unanswered questions are available 

and affordable. Array-based platforms capable of analyzing  >480,000 CpG sites 

(Illumina Human Methylation 450K array) have been available for several years now and 

have been applied to the study of DNA methylation during aging and in various disease 

states including cancer [28–31]. DNA methylation profiles are now available for 

thousands of human tumors from more than 25 different tumor types as part of the NIH-

funded the Cancer Genome Atlas (TCGA) Project (https://tcga-data.nci.nih.gov/tcga/) 

and other similar international consortia (the International Cancer Genome Consortium; 

https://dcc.icgc.org/) and a wealth of information exists in the public domain for 

comparative studies. Next-generation sequencing-based methods allow for the analysis of 

DNA methylation at single base pair resolution, allowing for even greater genome 

coverage. For all of these approaches, robust statistical methods are necessary and are 

continuously being developed to address potential issues such as  proper normalization 

strategies [32], cell type or tissue heterogeneity [33], adjustment for other confounding 

factors such as age or population stratification [34, 35], or the low number of replicates 

typically available in sequencing studies [36] . The questions we seek to answer about the 

effects of GCR involve larger questions about the functions of methylation in our 

genome. As we move forward to answer these questions we will not only step toward a 

future of space travel, but toward a greater understanding of our own biology. 
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Figure 

 

Figure 2-1 – Epigenetic alterations provide a long-term memory of prior space 

radiation exposure. Alterations in DNA methylation resulting from acute radiation 

exposure and ensuing DNA damage or persistent reactive oxygen species (ROS) have the 

potential to become “fixed” if they are subsequently replicated, leading to heritable 

epigenetic re-programming. DNA methylation (gold dots) occurs primarily at CG 

residues in the genome. The pattern of DNA methylation is copied during DNA 

replication by DNA methyltransferase 1 (DNMT1) that recognizes the methylated CG on 

the parental strand and transfers a methylgroup to the cytosine on the newly-synthesized 

strand, thereby preserving the methylation patterns in daughter cells. Gains or losses in 

DNA methylation induced by acute radiation exposure will likewise be copied to 

subsequent cell generations in the next mitosis. DNA damage, such as double strand 

breaks, can serve as a stimulus for a new methylation mark (red dot), and could leave an 

epigenetic “scar” even if the break is successfully repaired.   
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Introduction 

The potential for human interplanetary travel and deep space excursion are 

currently limited by concerns surrounding the long–term human health risks associated 

with galactic cosmic ray (GCR) exposure [1–4]. These risks include degenerative effects 

on the cardiovascular and central nervous systems and the risk of cancer at sites such as 

the lung, colon, breast, and stomach [5].  Given the absence of direct epidemiologic data, 

GCR exposure risk estimates currently rely on modeling based on data from ground-

based experiments with cells and animals.  

Terrestrial radiation is composed primarily of low linear energy transfer (low-

LET) photons (e.g. γ-rays or X rays) that are sparsely ionizing and deposit energy in a 

dispersed manner in tissue. In contrast, the GCR spectrum is composed of hydrogen, 

helium and heavier atomic nuclei with high charge and energy (HZE), including 28Si, 

56Fe, and other ions.  Though a low fraction overall, these heavy particles are of particular 

concern as they have high linear energy transfer (high-LET) values and leave a 

concentrated track composed of a densely ionizing, nanometer-scale core and a penumbra 

of high-energy secondary electrons (δ rays) that can extend laterally for several microns 

as they traverse tissue [3, 6]. This creates a tightly clustered and complex mixture of 

DNA damage (double strand breaks, single strand breaks, base damage, etc.), which is a 

challenge to repair [4–7]. GCR also generates non-targeted effects in cells not directly 

traversed by radiation tracks (bystander effects), which may account for as much as half 

of the cancer risk at doses relevant to human exposure [8]. The unique biophysical 

properties of high-LET ions are also being exploited as a novel modality for cancer 

radiotherapy where the opportunity to deliver dense ionization selectively within the 
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tumor volume has the potential to increase the efficacy for tumor control while 

minimizing normal tissue toxicity. Indeed, carbon-ion beam therapy is currently being 

evaluated for the treatment of brain tumors and other cancer types in Europe and Asia [9].  

A better understanding of the biological effects of HZE particle exposure therefore has 

important implications for cancer causation and its treatment.  

The different heavy ions that make up the GCR spectrum each have distinct 

effects on the gene expression patterns in cultured cells, via mechanisms that remain 

poorly understood [10]. These differences in gene expression may reflect modifications 

to the epigenome. Unlike the underlying DNA sequence, the epigenome, collectively 

represented in the local patterns of DNA cytosine methylation, posttranslational 

modifications of histones, nucleosome positioning, and long-range chromatin 

organization, can change readily over time and may represent an important feature of 

how organisms adapt to a changing environment [11, 12]. In particular, DNA 

methylation, which occurs primarily at cytosines in the context CG (CpG), is propagated 

at each cell division by the action of the DNMT1-UHRF1 complex, which copies the 

methylation status of CpGs on the parental DNA strand to the newly-synthesized strand, 

a specificity imparted by a preference for hemi-methylated CpG dinucleotides [13]. 

Therefore, induced changes in the DNA methylation patterns have the potential to persist 

over multiple cell divisions, resulting in a lasting and mitotically heritable “memory” of 

prior exposures. Such induced alterations to the epigenome, in addition to changes to the 

genome, have the potential to contribute to altered gene expression programs and the 

long-term consequences of radiation exposure. 
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To date, most of the research addressing the effects of radiation exposure on the 

epigenome has focused on the impact of low-LET X rays. In general, these studies have 

reported a trend towards global hypomethylation in response to relatively high doses of X 

rays (i.e. up to 10 Gy) [14–17] which may result from a decrease in DNA 

methyltransferase levels [17–19]. A few studies have assessed the effects of HZE particle 

radiation on the epigenome, and have focused on overall DNA methylation levels, 

repetitive element DNA methylation, or the analysis of a limited number of sites in 

selected gene loci. The majority indicate a global trend toward hypermethylation  There 

are currently no studies to directly compare the effects of site-specific DNA methylation 

changes between low-LET terrestrial radiation (X ray) or among high-LET HZE particle 

radiation species on a genome-wide scale.  

Here we examined the effects of 56Fe and 28Si, two ions found in GCR, on the 

methylation status of over 485,000 CpG sites across the human genome. We assessed the 

acute impact (48 hr. post irradiation) and long-term persistence of DNA methylation 

changes induced by each exposure and compared that to the effects of X rays.  We find 

that dose-dependent changes in DNA methylation are observed early and persist over 

time, with each insult having unique characteristics with regards to the direction, 

distribution, and underlying chromatin compartment affected, suggesting that these 

changes arise through distinct mechanisms and may have distinct biological 

consequences. Further, we find that the 56Fe ion-induced methylation signature uniquely 

reflects a cancer-specific methylation pattern observed in human primary lung cancers. 

Together these results speak to an epigenetic ‘memory’ of space radiation exposure.  
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Materials and methods 

Cell Line and Culture conditions. The immortalized human bronchial epithelial cell line 

(HBEC3- KT) was established by introducing mouse Cdk4 and hTERT into normal 

human bronchial epithelial cells (HBECs) [20] and were a kind gift from Dr. J.D. Minna 

of the University of Texas Southwestern Medical Center. Throughout this study the 

HBEC3-KT immortalized line was cultured in Serum-Free Keratinocyte Medium (K-

SFM) supplemented with human recombinant Epithelial Growth Factor and Bovine 

Pituitary Extract (Life Technologies #17005-042). Triplicate biological replicates were 

irradiated and maintained independently. Cells were continually grown in a 5% CO2 

environment at 37°C and passaged (1:4) twice per week for three months. Cell pellets 

(1e6) were collected at each passage, flash frozen, and stored at -80°C for subsequent 

DNA extraction.  

Irradiation. High-energy HZE particle irradiations were performed in Brookhaven, NY 

at the NASA Space Radiation Laboratory (NSRL). The X- ray (low-LET) exposures 

were conducted at Emory University using an X-RAD 320 biological irradiator 

(Precision X-Ray, North Branford, CT). 

Three biological replicate cultures containing either 1x10e6 cells (for acute time point) or 

2x10e5 cells (for continuous culture) in T-25 flasks were irradiated independently with 0, 

0.1, 0.3 or 1.0 Gy 56Fe ions (Beam energy: 600 MeV/u; dose rate for the 0.1 Gy dose was 

0.1Gy/min, for the 0.3 Gy dose, 0.3 Gy/min, and for the 1.0 Gy dose, 1Gy/min.) or with 

0.0, 0.3, 1.0 Gy 28Si ions (Beam energy: 300 MeV/u; dose rate for the 0.3 Gy dose was 

0.28 Gy/min, and for the 1.0 Gy dose, 0.63 Gy/min).. Culture flasks were positioned 

orthogonally to the beam using an automated flipper provided at the NSRL. X ray 
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irradiations were performed using identical plating conditions and exposed to doses of 0 

Gy and 1.0 Gy (beam energy 320 kV; dose rate ~1 Gy/min). Immediately following 

irradiation, all cultures were returned to a 37°C incubator for forty-eight hours before cell 

pellets were collected from one set of flasks (triplicates, 2 day time point), while the 

remaining cultures were returned to the home laboratory at Emory University and 

maintained in continuous culture for an additional 3 months, with biweekly subculturing 

and DNA collection. For each experiment, mock-irradiated controls (triplicate cultures) 

were seeded and handled identically, including travel to and from the NRSL facility. All 

triplicate cultures were maintained independently from the start of the experiment.  

DNA methylation profiling. Genomic DNA isolation was conducted at the time of 

sample processing for subsequent methylation analysis. Triplicate cell pellets, previously 

held at -80°C, were processed using the All Prep DNA/RNA kit (Qiagen #80204) 

according to the manufacturer’s instructions. The methylation status of 485,577 CpG 

sites was then interrogated using the Illumina Human Methylation450K platform 

(Illumina, San Diego, CA). DNA (1 µg) was bisulfite modified using the EZ DNA 

Methylation-Direct kit (Zymo Research #D5020), fragmented, amplified and hybridized 

to the HumanMethylation450 BeadChip array according to the manufacturer’s 

instructions by the Emory Integrated Genomics Core Facility. All samples from a given 

exposure experiment were processed in parallel and on parallel chips with replicate 

samples randomized with respect to chip position.  

Differential DNA methylation analyses. CpGassoc [21] was used to perform quality 

control and differential DNA methylation analyses. The 56Fe ion, 28Si ion, and X ray 

exposed cohorts were considered separately in the analyses, and each included 3 
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biological replicate samples for each of 24 doses and 4 time points per exposure type 

(56Fe ions, 4 doses x 4 time points = 48 samples; 28Si ions = 3 doses x 4 time points = 27 

samples; X ray, 2 doses x 4 time points = 24 samples). For each CpG site, the signals 

from methylated (M) and unmethylated (U) bead types were quantile normalized together 

(using the R-package limma; [22] and then used to calculate β-values [β = M/(U + M)], 

which approximate the proportion of DNA methylated at each CpG. Data points with 

detection p-values >0.001 were set to missing, and CpG sites with missing data for >10% 

of samples were excluded from the analysis. Samples with a probe detection call rate 

<95%, or an average signal intensity <2,000 AU or <50% of the experiment-wide sample 

median were also excluded. This resulted in a total of 484,434 (56Fe ion); 484,765 (28Si 

ion) and 484,384 (X ray) CpGs considered in the subsequent analysis. A linear mixed 

effects model was applied to identify DNA methylation changes significantly associated 

with dose and time-after-exposure. Intra-experiment β-values were modeled as a linear 

function of radiation dose, with covariates adjusting for time-after-exposure, row on chip, 

and a random effect for chip number. The Holm (step-down Bonferroni) method was 

applied to correct for multiple comparisons [23]. CpG sites with a corrected p-value<0.05 

were considered nominally significant and CpGs with an uncorrected p-value< 0.001 

were considered moderately significant. To identify methylation changes associated with 

time-after-exposure independent of dose, the same strategy was used to model β-values 

as a function of time-after-exposure, with covariates adjusting for radiation dose, and 

assay variables.  

Genomic annotation and meta-analyses. CpGs were annotated to the nearest UCSC 

CpG Island (CGI) and RefSeq (v.75) transcription start site (TSS) using custom 
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R/Bioconductor scripts [24]. CpGs were categorized into those overlapping a CGI, or 

those within 2kb upstream (5’ Shore), 2kb downstream (3’Shore), or between the 

downstream shore and the transcription termination site (Gene Body). CpG sites not 

falling into one of these classes were considered as ‘other/intergenic.’ The distribution of 

all CpGs covered by the assay versus those determined to be hypermethylated or 

hypomethylated were plotted relative to the nearest CGI or TSS using the density 

function in R/Bioconductor, where the width of the CGI was scaled to the average width 

of UCSC CGIs. 

ENCODE [25] ChIP-seq data sets derived from A549 lung cancer cells 

(H3K27Ac, ENCSR000AUI; H3K4me3 ENCSR000ASH; DNaseI, ENCSR136DNA) 

were downloaded as mapped bam files from the ENCODE project website ( 

https://www.encodeproject.org) . The average tag densities surrounding each set of CpG 

sites were calculated in 20 bp bins using the GenomicRanges R package [26], and 

normalized to the total number of mapped reads.  

ChromHMM [27] chromatin state maps derived from normal human mammary 

epithelial cells (ENCFF687QKV) were used to annotate each CpG site to a chromatin 

compartment. For clarity, both ‘Strong Enhancer’ (states 4 and 5) and both ‘Weak 

Enhancer’ (states 6 and 7) were merged. States 9, 10, and 11 (‘Transcriptional 

Transition’, ‘Transcriptional Elongation’, and ‘Weak Transcription’) were merged and 

referred to as ‘Transcribed Regions’. Odds ratios were calculated based on the number of 

affected sites in each compartment vs. the distribution of the CpGs on the array as a 

whole using Fisher’s Exact test.  
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Analysis of lung cancer TCGA data. Illumina Infinium HumanMethylation 450K 

methylation data for the 56Fe ion- (n=935), 28Si ion- (n=300) and X ray- (n=1150) 

affected CpG sites was extracted for 25 matched tumor normal pairs of lung 

adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) from patients 

identified through the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). CpG probes 

with a detection p-value> 0.05 across the sample set were excluded, leaving 784, 938, 

and 237 CpG sites from the 56Fe ion-, 28Si ion-, and X ray-affected sites, respectively. 

The methylation levels (beta values) from these sites were then used in an unsupervised, 

hierarchical cluster analysis based on the Manhattan distance and agglomerative complete 

linkage. The statistical significance of each set of exposure associated CpG sites in 

separating lung tumors from normal was assessed versus a randomly selected set of CpG 

sites of the same number using a bootstrap approach. Specifically, we randomly sampled 

M=1,000 times the same number of CpG sites in each exposure set from among a total of 

391,954 (LUAD) or 395,241 (LUSC) CpG sites on the array that remained after 

exclusion of low quality probes (detection p-value across all samples >0.05). For each 

resampling, dendrograms were constructed using the same unsupervised clustering 

approach and cut based on a fixed number of k=2 clusters. An association analysis was 

performed based on a Chi-Square test for each resampling and p-values obtained. A 

Monte Carlo p-value was used to compare the ability of randomly-sampled CpG sites to 

separate tumor and normal samples into two clusters versus the p-value obtained from the 

CpG sites defined by each group (56Fe, 28Si, X ray).  
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Results 

The goals of this study were to define the acute impact (48 hrs.) and long-term 

persistence of radiation exposure on the epigenome, and to directly compare the effects of 

high-LET GCR components (56Fe ion, 170keV/µm; 28Si ion, 70keV/µm) and low-LET X 

rays (2keV/µm). We hypothesized that induced changes to the DNA methylation pattern 

would provide a lasting imprint of the acute radiation exposure with the potential to 

contribute to the long-term health risks, including cancer.  To test this hypothesis, 

triplicate cultures of immortalized human bronchial epithelial cells (HBEC-3KT) [20] 

were exposed to high-LET radiation (56Fe ion: 600 MeV/u at 0, 0.1, 0.3, 1.0 Gy; 28Si ion: 

300 MeV/u at 0, 0.3, 1.0 Gy) at the Brookhaven National Laboratory NASA Space 

Radiation Laboratory (NSRL) or to low-LET radiation (X ray: 0, 1.0 Gy) at Emory 

University. Samples were collected from a fraction of the exposed population after 48 

hrs. and the remaining cells were maintained in continuous culture for an additional ~35 

population doublings (~2.5 months). Cells were collected for genomic DNA extraction at 

48 hrs., and thereafter at ~1 week intervals. Non-irradiated control cultures underwent the 

same handling procedures and were maintained in parallel. Triplicate cultures were kept 

as independent biological replicates throughout the course of the experiment. While 

irradiation elicited some acute cell death (~40% at the highest doses of 56Fe), the majority 

of cells survived to the next passage and onward. 

Radiation-induced changes to the epigenome are LET dependent and ion specific. The 

methylation status of 485,577 CpG sites was assessed for each DNA isolate (triplicate 

samples for each treatment dose and time-in-culture) using the Illumina Infinium 

HumanMethylation 450K Platform. DNA methylation levels at each CpG site are 
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represented as a β-value that estimate the percent of methylated alleles in the DNA 

sample at that position. For each radiation type, we applied a linear mixed effects model 

to identify CpG sites where the methylation status changed significantly with the dose. 

This approach allows for an independent assessment of methylation changes significantly 

associated with radiation dose by accounting for other covariates such as time-after-

exposure. We identified 935 CpG sites where the methylation status was moderately 

associated with dose of 56Fe ions (849 hypermethylated; 86 hypomethylated, p<0.001); 

300 sites where the methylation status was associated with 28Si ion dose (158 

hypermethylated, 142 hypomethylated, p<0.001) and 1,150 where the methylation status 

was associated with X ray dose (252 hypermethylated; 898 hypomethylated, p<0.001).  

 The effects of radiation on both global and site-specific CpG methylation patterns 

were dependent on radiation type (56Fe ions, 28Si ions, X rays; Figure 3-1). 56Fe ion 

exposure tended to affect CpG sites that are normally less methylated (mean=21.9%) and 

to induce their hypermethylation (Figure 3-1 A, B). 28Si ion exposure primarily affected 

CpG sites that start with intermediate DNA methylation levels and had a roughly 

equivalent tendency to promote their hyper or hypomethylation (Figure 3-1 C, D). X ray 

exposure primarily affected more highly methylated CpG sites (median = 61.9%) and led 

to their hypomethylation (Figure 3-1 E, F). These radiation-type specific genome-wide 

trends were further reflected in an average dose-dependent trend towards 

hypermethylation in response to 56Fe ion exposure, no average change in response to28Si 

ion exposure, and an average trend towards hypomethylation in response to X ray 

exposure (Figure 3-1 G-I). These results are consistent with previous findings regarding 

DNA methylation content in high-LET radiation exposed cells [15, 28–30] and highlight 
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the additional information provided by site-specific CpG methylation analyses versus 

bulk genomic measurements of DNA methylation. 

The same trends were also evident in the analysis of the individual affected sites. 

A heat map representation of individual CpG sites again showed the preponderance of 

hypermethylation events for 56Fe ion-exposed cells, nearly equivalent hyper and 

hypomethylation observed for 28Si ion-exposed cells, and hypomethylation among X ray 

exposed cells (Figure 3-2). As implied by the genome-wide trends, the sites affected by 

each radiation source showed distinct patterns. Indeed, there was little or no overlap in 

the specific CpG sites affected by each radiation type (two or fewer CpG sites shared in 

total between any two radiation types). Taken together, these data are consistent with a 

graded methylation response with regards to LET (56Fe, 170keV/µm; 28Si, 70keV/µm; X 

rays, 2 keV/µm) rather than a sharp distinction between high-LET heavy ions and low-

LET photon (X ray) radiation. 

Radiation-induced changes to the epigenome occur early and persist over time. We 

next considered the fate of radiation-induced DNA methylation changes over time. To 

focus specifically on the fate of radiation-induced methylation changes, we selected those 

CpG sites where the change in methylation was moderately associated with radiation 

dose, but was not independently associated with time-dependent methylation ‘drift’ (see 

below). This left 844 56Fe ion-affected CpG sites (768 hyper; 76 hypo), 280 28Si ion-

affected sites (153 hyper, 128 hypo) and 1120 X ray-affected sites (243 hyper, 877 hypo). 

We determined the change in mean β-value over time, relative to non-irradiated control 

cells at 48 hr (the earliest time point) (Figure 3-3). Although there was some variation in 

methylation with time among non-irradiated cells (note that the distribution of 
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methylation levels at the 0 Gy dose broadens over time in each panel of Figure 3-3), the 

dose-dependent change in DNA methylation induced by each radiation source evident 

two days after radiation exposure was largely retained more than 50 days later (28-34 

population doublings) (Figure 3-3). These data suggest that in general the radiation-

induced methylation changes occur early and persist over time, resulting in a stable and 

heritable change in the epigenome.  

Methylation “drift” over time. As noted by others [18], we observed considerable 

methylation “drift” over time in cell culture, independent of radiation exposure 

(Supplemental Figure S3-1A). Indeed, application of the linear mixed effects model 

identified thousands of sites significantly associated with time-after-exposure, 

independent of dose (i.e., when dose was considered as a covariate).  For each exposure 

type, >2,900 sites were significant after Bonferroni (Holm) adjustment (p<1e-7) and 

>77,000 CpG sites were significant according to an FDR criterion (FDR<0.05; p<0.01). 

The average rate of change was consistent across the different experimental series 

performed over two years at different times, and was estimated to be 0.001% methylation 

per day, or the equivalent of a shift in methylation status of 1 in 1,000 DNA molecules 

per day. A comparison of those sites significantly associated with time from each 

experiment indicated that, whereas there was significant overlap in the sites affected from 

one series to the next, the direction of change was not always the same. Indeed, the two 

series that were performed in parallel and in the same time-frame (28Si ion, X ray) 

showed the greatest concordance with respect to both the sites affected and direction of 

change, but were less concordant when either was compared to the 56Fe ion series which 

occurred at a later date (Supplemental Figure S3-1B,C). Our results suggest that although 



 58 

many CpG sites are prone to methylation drift in cell culture, other factors appear to 

impact the direction of drift (i.e., hyper- vs. hypo-methylation). A comparison of those 

sites whose methylation state was significantly associated with both radiation dose and 

time (n=91 for 56Fe ion; 19 for 28Si ion; and 30 for X ray) showed that the effects of 

radiation and intrinsic drift were largely independent in that once imposed, the effect of 

radiation dose on individual CpGs had little impact on the rate or direction of drift over 

time (Supplemental Figure S3-1D). Thus, the effects of radiation appear to be 

superimposed upon an intrinsic tendency for methylation drift with cell division. 

HZE ions of different charge and energies affect different genomic compartments. 

Given the largely independent subsets of CpGs affected by the different radiation types, 

we next sought to determine the relationship between source-specific DNA methylation 

changes and other genomic and epigenomic features. We examined the distribution of 

CpG sites significantly associated with 56Fe ion, 28Si ion, or X ray dose relative to genetic 

features, including the distribution in and around CpG islands and genes (Figure 3-4). 

Relative to the distribution of all probes on the array, 56Fe ion-affected CpG sites, most of 

which were hypermethylated, tended to lie within CpG islands (which generally lack 

DNA methylation) and around transcription start sites (TSS). These hypermethylated 

sites were particularly enriched in CpG island “shore” regions (defined here as 2 kb from 

the 5’ or 3’ edge of the CpG island domain), while the few sites that became 

hypomethylated arise from outside these regions and away from CpG islands. In contrast, 

28Si ion-affected sites tended to be depleted in CpG islands and shores and instead were 

enriched among gene bodies and other distal regions. Overall, X ray-affected sites were 

distributed similarly to the probes on the array. The majority of sites that were 
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hypomethylated were located in genomic regions outside of CpG islands, which are 

typically methylated; the few sites that were hypermethylated were enriched in CpG 

islands, which are typically unmethylated.  

 To further investigate the genomic compartments affected by radiation-induced 

methylation changes, we examined the relationship to chromatin features. Using genome-

wide ChIP-seq data for histone modifications, RNA polymerase occupancy, and other 

chromatin features, Ernst, et al. (2011) used a hidden Markov model to partition the 

genome into functional domains, termed ChromHMM. We analyzed the ChromHMM 

states and existing genome-wide datasets to evaluate the chromatin structure surrounding 

the radiation-sensitive CpG sites. This analysis revealed that the 56Fe ion-affected sites 

were more likely to occur in areas with a more “open” chromatin structure, including 

promoters and enhancers (Odds Ratio=1.3-1.5 fold; p<0.004), but were depleted from the 

transcribed regions of genes (Odds Ratio=0.47, p=2.8E-13; see Figure 3-5). Consistent 

with a propensity for enhancers, 56Fe ion-affected sites were enriched in regions that are 

accessible to DNase I and marked by acetylated histone H3 lysine 27 (H3K27ac), a mark 

of active enhancers, relative to all sites on the array and as compared to the 28Si ion- or X 

ray-affected sites, which were depleted in these features. In contrast, 28Si ion-affected 

sites were depleted in genes and features of active/accessible chromatin (i.e. H3K27Ac, 

DNaseI accessibility, H3K4me3) and were more likely to occur in repressed chromatin 

environments (i.e. sites marked by heterochromatin and polycomb; Odds Ratio=1.5-1.6, 

p<0.02; Figure 3-5). X ray-affected sites were enriched in transcribed regions (Odds 

Ratio=1.3, p<0.001) (consistent with an enrichment in gene bodies shown above), but 

relatively depleted in features of active/accessible promoters and enhancers. Taken 
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together, these data suggest that different sources of radiation preferentially affect sites in 

different chromatin contexts (e.g. enhancer, promoters, condensed chromatin), which 

could underlie their distinct biological consequences. 

Methylation status of 56Fe ion-affected CpG sites distinguishes primary lung tumor 

from normal tissue. The above data indicate that particles of different qualities and 

energies have unique impacts on the epigenome, which may ultimately manifest in 

distinct biological consequences. We next sought to determine the relevance of these 

radiation-induced CpG methylation changes to human lung cancer. We leveraged the 

human epigenome information available from hundreds of primary lung tumors that have 

been analyzed on the HumanMethylation450K platform as part of the Cancer Genome 

Atlas (TCGA) Project. Level 3 DNA methylation data (β-values) were extracted for the 

56Fe ion- (n=935), 28Si ion- (n=300) and X ray- (n=1150) sensitive CpG sites for a set of 

18 tumor-normal pairs of human lung adenocarcinoma (LUAC) and 7 tumor-normal pairs 

of squamous cell carcinoma of the lung (LUSC). The methylation status of these sites 

was then used in an unsupervised cluster analysis (complete linkage clustering, 

Manhattan distance). Interestingly, the methylation status of the 56Fe ion sites, in 

particular, cleanly separated primary tumor specimens from normal tissue among the 

LUAC samples (p= 1.46e-08) as well as the LUSC samples (p=0.0013), whereas neither 

the 28Si ion-affected CpG sites nor the X ray- affected CpG sites showed any significant 

association (Figure 3-6). To test the robustness of the separation achieved by the 

methylation at the 56Fe ion-affected sites, the clustering approach was repeated 1,000 

times using an equivalent number of CpG sites (n=777, LUAD; n=782, LUSC) chosen at 

random from a total of ~390,000 CpG sites with a detection p-value across all TCGA 
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samples of <0.05. None achieved significance greater than the 56Fe ion signature sites for 

either LUAD (random sampling p-value range 0.0005-0.0850; median = 0.009) or LUSC 

(random sampling p-value range 0.0590-0.1069; median 0.0885). Thus, the methylation 

status of CpG sites sensitive to 56Fe ion exposure in human bronchial epithelial cells is 

uniquely characteristic of human lung cancer.  

Discussion 

Ionizing radiation (IR), such as γ- or X rays, increases the age-related risk of 

many common human cancers, with lung cancers representing about a third of cases 

linked to prior radiation exposure among atomic bomb survivors and occupational 

exposures in nuclear reactor workers [5, 31, 32]. In the absence of epidemiologic data on 

humans exposed to GCR, current estimates of cancer risk are based primarily on animal 

models, which have shown that exposure to high-LET radiation sources results in a 

greater tumorigenic potential and a more aggressive phenotype (e.g. shorter latency, 

accelerated progression, and increased metastatic potential) as compared to low-LET 

sources [33–37]. However, the degree to which these cancer risk estimates can be directly 

extrapolated to astronauts and space radiation exposure is fraught with uncertainties, due 

in part to incomplete understanding of the biological impact of high-LET radiation 

exposure and how it differs from terrestrial radiation sources as well as other 

confounding factors such as smoking status [33, 38]. Thus, biomarkers that can be used 

to monitor exposures and reliably predict disease risk are sorely needed.  

Here we show that HZE particles induce a unique imprint on the epigenome. 

Significantly, we found that radiation-induced methylation changes occur early and 

persist over time, reflecting a stable and heritable change to the epigenome. The 
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radiation-induced changes to DNA methylation patterns were source-dependent, and 

impact DNA in different chromatin contexts, implying that they arise through distinct 

mechanisms and may have distinct biological consequences. Although limited by the 

representation of CpG sites on the Illumina array, which is biased towards genic regions 

and excludes repetitive DNA and other regions of constitutive heterochromatin, each 

radiation source affected the epigenome in distinct ways. For example, 56Fe ions have a 

propensity to affect regions of accessible chromatin such as gene promoters and distal 

regulatory elements (‘enhancers’) whereas 28Si ions preferentially affected DNA in more 

repressed, heterochromatic regions. Whether these differences in DNA methylation are a 

reflection of a difference in the susceptibilities of different chromatin regions to 

radiation-induced DNA damage or to its repair is unknown, but DNA damage (double 

strand breaks (DSB), oxidative damage) has been suggested to promote the recruitment 

of DNA methyltransferases and other histone modifiers (e.g. PRC1/2; SIRT1) to mediate 

local chromatin repression that persist in subsequent cell divisions [39–43]. Interestingly, 

an electron microscopic study of high-LET (carbon-ion) induced DNA damage showed 

that unlike X-irradiation, which induced DSBs distributed throughout the nucleus that 

were efficiently cleared, high-LET radiation induced clustered lesions along the particle 

trajectory that localized primarily to electron dense heterochromatic regions [44]. These 

phosphor-Ku70-bound clusters grew larger over time, suggesting inefficient repair. While 

there is no way to directly relate our nucleotide level analysis with these broader scale 

observations, it is intriguing to speculate that a persistence radiation-induced lesions in 

heterochromatin might underlie the differences in tumor-promoting activities between 
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high-LET and low-LET radiation [45, 46] or even that between different HZE ions [34, 

36].  

To probe the significance of our findings with respect to human lung cancer, we 

leveraged the human epigenome information available from hundreds of primary lung 

tumors that have been analyzed as part of the Cancer Genome Atlas (TCGA) project. We 

found that the methylation status of high-LET radiation sensitive CpG sites, particularly 

those impacted by 56Fe ion exposure, could discriminate tumor from normal tissue for 

both lung adenocarcinomas and squamous cell lung carcinomas. No such relationship 

existed for the sites affected by 28Si ion or low-LET radiation exposure. Thus, our results 

suggest that HZE particle exposure creates a DNA methylation ‘signature’ that uniquely 

reflects cancer-specific methylation patterns observed in human primary lung cancers. 

That it is the 56Fe ion-affected signature in particular that is capable of segregating tumor 

from normal is perhaps not surprising given that the 56Fe ion-affected sites are enriched in 

the regions surrounding CpG islands (the ‘shores’) and in accessible regions with 

chromatin features indicative of weak/poised promoters and enhancers; regions of the 

genome that exhibit the most variable levels of methylation across tissues/cell types and 

between individuals [47–49]. In contrast, CpGs within the CpG dense regions that 

encompass most promoters (CpG ‘islands’) typically remain unmethylated, and with few 

exceptions, maintain an open and permissive chromatin state (marked by H3K4me3; 

DNaseI hypersensitive) across tissues and cell types allowing for a wide-range of 

potential gene expression levels. Indeed, methylation of such regions is a relatively poor 

correlate of gene expression [50, 51]. In contrast, the regions immediately adjacent to 

CpG islands (the ‘shores’) and enhancer elements exhibit the greatest variation in DNA 
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methylation, and thus are better able to stratify normal tissues, cellular phenotypes, or 

patient outcomes [50–52]. While hypermethylation of normally unmethylated CpG island 

containing promoters is a well-described mechanism for the inactivation of tumor 

suppressor genes in cancer, recent studies underscore the contribution of altered 

methylation at enhancer elements as an important contributor to the aberrant gene 

expression programs that define human cancers [51, 53, 54]. Taken together, our data 

suggest that the stable imprint of a prior high-LET radiation exposure is reflected in the 

DNA methylation pattern, and may prove useful as a biomarker for long-term, individual 

cancer risk. 
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Figures 

 

Figure 3-1. Global impact of High- vs. Low- LET radiation on DNA methylation.  

a-f) Density plots showing the impact of the indicated dose of each radiation source on 

the distribution of DNA methylation (β values) across all sites (a,c,e) or the subset of 

0.
5

1.
5

2.
5

0.0 0.2 0.4 0.6 0.8 1.0
Methylation Level (β-value)

D
en

si
ty

n = 935 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

n = 484434 
D

en
si

ty

Methylation Level (β-value)

0.0 Gy
0.1 Gy
0.3 Gy
1.0 Gy

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
Methylation Level (β-value)

n = 484384 

0.0 Gy
0.1 Gy
0.3 Gy
1.0 Gy

0.0 0.2 0.4 0.6 0.8 1.0

n = 1150 0.0 Gy
1.0 Gy

0.0 Gy
1.0 Gy

Methylation Level (β-value)

D
en

si
ty

n = 484765 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0 0.0 Gy

0.3 Gy
1.0 Gy

Methylation Level (β-value)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
Methylation Level (β-value)

0.
4

0.
6

0.
8

1.
0

1.
2 0.0 Gy

0.3 Gy
1.0 Gy

0.
5

1.
5

2.
5

0.
4

0.
8

1.
2

1.
6

D
en

si
ty

n = 300 

a. 

c. 

e. 

g. 
p= 0.026 

0.
45

0.
47

0.
46

0.0 1.0
X-ray Dose (Gy)

Av
er

ag
e 

M
et

hy
la

tio
n 

(β
-v

al
ue

)

●

●
●

28Si Dose (Gy) 

0.
44

0.
46

0.
45

p= 0.5 

0.0 0.3 1.0

Av
er

ag
e 

M
et

hy
la

tio
n 

(β
-v

al
ue

)

56Fe Dose (Gy)

0.
45

0.
47

0.
46

p= 0.04 

0.0 0.1 0.3 1.0

Av
er

ag
e 

M
et

hy
la

tio
n 

(β
-v

al
ue

)

b. 

d.

f. 

h. i. 

Figure 1



 66 

sites whose methylation status was found to be significantly associated with dose of 56Fe, 

28Si or X ray (b, d, f). g-i) Box plot distribution of the average methylation level across 

all >484,000 CpG sites for probes passing QC. Line represents the median, boxes the first 

and third quartiles, whiskers represent the interquantile distance. Note the trend towards 

hypermethylation with increasing 56Fe ion dose (p=0.04, Mann-Whitney) and towards 

hypomethylation with X ray dose (p=0.026, Mann-Whitney). No significant directional 

trend was observed with 28Si exposure. 
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Figure 3-2. Differential effects of High- (56Fe, 28Si) or low-LET radiation dose on the 

methylation status of individual CpG sites.  

A linear mixed effects model was used to identify DNA methylation changes 

significantly associated with dose, source, or time-after-exposure. This analysis identified 

934 CpG sites whose methylation status was moderately (p<0.001) associated with 56Fe 

dose (849 hyper; 86 hypo); 300 CpG sites associated with 28Si dose (158 hyper, 142 

hypo) and 1150 CpG sites associated with X ray dose (252 hyper; 898 hypo). Heatmap 

showing the methylation status (low, green to high, red) of the 56Fe, 28Si or X ray 

significant CpG sites (rows) methylation across all samples analyzed (columns). Columns 

are grouped according to dose, and arranged by increasing time after exposure (Gray 

bar).  
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Figure 3-3. Fate of Radiation-induced changes in DNA methylation over time.  

CpG sites exhibiting a change in methylation level significantly associated with radiation 

dose were normalized to their individual initial methylation levels as extrapolated from 

the 48h, unexposed cultures. Shown is the distribution of the change in methylation of 

CpG sites undergoing hyper- or hypo-methylation in response to the indicated radiation 

source relative to the internal control (unexposed) cultures at 48h. Line represents the 

median, boxes the first and third quartile, and whiskers extend to maximum value that is 

1.5 times the interquartile range. For clarity, CpG sites whose methylation level was also 
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independently associated with time-after-culture were excluded. Note that radiation-

induced methylation changes occur early (within 48h) and largely persist over time.   
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Figure 3-4. Genomic location of CpG sites significantly associated with radiation 

dose. 

a) Average distance of all CpGs on the array (gray), or the subset that underwent hyper 

(red) or hypo (green) methylation in response to increasing 56Fe, 28Si or X ray dose 

relative to the transcription start site (TSS) of the nearest gene oriented to the direction of 

transcription. b) Average distance of all CpGs on the array (gray), or the subset that 

underwent hyper (red) or hypo (green) methylation in response to increasing 56Fe, 28Si or 

X ray dose relative to the nearest CpG island. The distribution within the CpG island is 
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scaled to size (dotted gray lines), and includes a fixed distance of +/-2.5 kb in either 

direction from the CpG island edge. c) Fraction of 56Fe, 28Si or X ray affected CpG sites 

that lie within the indicated gene compartment relative to that of All CpG sites 

interrogated on the array. CpG sites were annotated to the nearest CpG island associated 

RefSeq gene. CpG islands defined by UCSC criteria, 5’ and 3’ shores are 2,000 bp from 

the 5’ and 3’ CpG island edge. Gene bodies were considered the region from the 3’ edge 

of the CpG island +2 kb, to the transcription end site (TES). CpG sites not overlapping 

one of these features were considered to be intergenic/other. d) A schematic of the 

genomic compartments described in C. Shown is a hypothetical gene (exons-green boxes) 

for which the TSS (black arrow) is embedded in a CpG island promoter. Blue ticks 

represent CpG sites, blue balls as methylated CpG sites. The TES would be the end of 

exon 3.  
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Figure 3-5. HZE-particles of distinct LETs affect methylation of CpG sites in 

different genomic chromatin compartments. CpG sites were annotated to a chromatin-

based functional genomics annotation, ChromHMM, established by Ernst et al. [27] using 

14 different chromatin features from ENCODE data from human epithelial cells 
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(HMEC). Shown is the fraction (a) and relative enrichment (b) of 56Fe, 28Si or X ray 

affected CpG sites that overlap in the indicated compartment, relative to that of ‘All’ 

CpG sites on the array. Data represent the odds ratios determined by Fishers exact +/- the 

95th confidence interval. (C) Normalized average tag densities of H3K27 acetylation 

ChIP-seq (Top), DNaseI-seq (Middle) or H3K4me3 ChIP-seq (Bottom) surrounding all 

assayed CpGs (All), or the subset of CpGs whose change in methylation was significantly 

associated with 56Fe, 28Si or X ray dose. Data are derived from ENCODE CHIP-seq and 

DNAse-I seq data from A549 lung cancer cells [25]. Note the over-representation of 

H3K4me3, H3K27ac, and DNaseI accessibility at 56Fe-affected sites. 
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Figure 3-6. The 56Fe-specific methylation ‘signature’ discriminates lung tumor from 

normal tissue in primary tissue samples.  

a) DNA methylation status of the CpG sites significantly associated with Fe dose (n=777) 

in normal bronchial epithelial cells was extracted for 25 lung tumor-normal pairs (18 

adenocarcinomas, 7 squamous cell carcinomas) available in the TCGA project and used 

in unsupervised hierarchical cluster analysis (complete linkage, Manhattan distance 

metric). b) An equivalent number of CpGs were chosen at random and used to group 

tissue samples using the same approach, and the process was repeated 1,000 times to 

estimate significance. The 56Fe-sensitive CpGs outperformed any random set by several 

orders of magnitude. The methylation status of the 28Si or the X ray affected sites had no 

significant association with tumor-specific differences in methylation (see Methods). 
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Supplemental Figure S3-1. Time-dependent methylation drift 

a) Comparison of the average methylation (β-value) of each CpG site in the X ray-

exposed cohort at the indicated time-after-exposure relative to that on Day 2. Red 

indicates those CpGs that are significantly hypermethylated with time (n=2,294); green 

are those sites significantly hypomethylated with time (n=647; p<1e-7). b) A linear 

mixed effects model was applied to identify DNA methylation changes significantly 

associated with time-after-exposure for each exposure type. Shown are scatter plots 

comparing the significance and direction of change (t-statistics) for CpG sites at which 

methylation changed significantly with time-after-exposure in the 28Si exposed series, the 

56Fe exposed series, and the X ray exposed series. A positive t-statistic indicates a gain in 
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methylation (hypermethylated) and a negative t-statistic indicates a loss of methylation 

(hypomethylation). Light green indicates sites reaching an FDR<0.05 (Benjamini-

Hochberg) and blue are those reaching Holm significance (p<1e-7). c) Venn diagrams 

comparing the overlap of CpG sites whose methylation change was significantly 

associated with time in culture [FDR<0.05 (Benjamini-Hochberg)] in the 28Si exposed 

series, the 56Fe exposed series, and the X ray exposed series. d) Average methylation 

level (β) over time among CpG sites negatively (left) or positively (right) associated with 

time stratified by 56Fe-ion dose. Analysis was restricted to those CpG sites found to be 

independently associated with both dose and time in the 56Fe-ion exposed series (n=91). 
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Introduction 

DNA methylation occurs at CG dinucleotides (CpGs) and is an essential 

epigenetic mechanism for many organisms. Regions of CpG-rich sequences, termed CpG 

islands, are found throughout the human genome. These CpG islands overlap with 

promoter regions or transcription factor binding sites for approximately half of 

mammalian genes, including nearly all housekeeping genes [1]. Canonically, methylation 

in promoter CpG islands inhibits the initiation of gene transcription [2]. Through 

modulation of gene transcription and expression, epigenetic modifications allow for 

morphologically distinct cell types to form from a single genome [3, 4]. Epigenome-wide 

association studies (EWAS) have also linked certain DNA methylation patterns to 

environmental factors, aging, and disease [5–14].  

Unfortunately, despite a growing number of EWAS, we are still far from 

understanding how epigenetic changes contribute to the onset of complex diseases [2, 

15]. EWAS often return large sets of marginally significant or near-significant results, 

many of which lie outside of defined genomic regions (i.e. genes) [16, 17]. Inferring a 

functional consequence of such results is difficult because our understanding of the role 

of methylation in gene expression is incomplete. This is especially true for EWAS hits 

outside promoters, as the role of DNA methylation in these regions is not fully defined 

[2]. 

Recent studies have set out to clarify the role of DNA methylation in gene 

expression by investigating associations between gene expression and the methylation of 

nearby CpGs. CpGs with methylation changes that associate with expression changes are 

called expression-associated CpGs, or eCpGs. The results of these studies suggest that 
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gene transcription can be influenced by DNA methylation at CpGs that are distal (>50 kb 

or on a different chromosome) to the gene promoter [18–22]. Additionally, many of these 

studies report that changes to CpG methylation in enhancers may be central to epigenetic 

gene regulation. However, most of these studies tested only for eCpGs within a limited 

distance from each gene [18, 21–23], with few seeking to identify genome-wide eCpGs 

for each gene [19, 20]. In this study, we define genome-wide epigenetic signatures for 

more than 13k transcripts, based on methylation at over 420k individual CpGs in two 

human studies. We find evidence that CpG methylation changes associate with gene 

expression at great distances throughout the genome. Our results broaden the 

understanding of epigenetics and gene regulation and have the potential to provide 

critical biological insight for new and existing EWAS. 

Materials and methods 

Data preprocessing and QC. The Grady Trauma Project (GTP) is a cross-sectional study 

of stress-related outcomes. Participants were recruited from the waiting rooms of Grady 

Memorial Hospital’s General Practice or Obstetrics and Gynecology departments in 

Atlanta, GA. Participants are from an inner-city population with higher than average rates 

of trauma exposure, but are representative of this population as they are not specifically 

ascertained for presence of disease or trauma. Genome-wide DNA methylation and gene 

expression measurements were generated for 333 human blood samples. GTP 

participants included in this study range between 18 and 78 years old, are 76% female 

and all are African-American. 

 The Multi-Ethnic Study of Atherosclerosis (MESA) is a study designed to 

examine cardiovascular disease. The MESA Epigenomics and Transcriptomics Study 
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specifically investigates the association between CpG methylation and gene expression in 

purified human monocytes collected from the MESA population. For this study, 1,202 

participants were chosen randomly from samples collected between April 2010 and 

February 2012 from MESA field centers in Baltimore, MD; Forsyth County, NC; New 

York, NY; and St Paul, MN. Participants range in age from 55 – 94 years old, are 51% 

female, and self identified as Caucasian (47%), African American (21%), or Hispanic 

(32%) [23]. 

For both GTP and MESA, methylation data for >480K individual CpGs were 

generated from the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, 

CA), and RNA transcript levels for >25,000 annotated genes were quantified via Illumina 

HumanHT-12 v3.0 and v4.0 Expression BeadChip. We have provided a detailed 

description of both datasets, including sample information, data processing, QC, and 

normalization, in the supplemental methods. We excluded CpGs and transcripts that did 

not pass QC, were on the X or Y chromosomes or were poor quality. After QC, 13,933 

expression probes (transcripts) and 483,399 CpG probes (CpGs) remained for GTP, and 

19,445 transcripts and 422,016 CpGs remained for MESA.  

Association analysis. To model the associations between gene expression and CpG 

methylation at specific sites while adjusting for global expression and methylation 

differences between individuals, we used a linear mixed model framework developed to 

account for inter-individual correlation structure in expression data due to unknown 

confounders (inter-sample correlation emended or ICE; [24]. For all transcripts and CpGs 

in each study, we regressed log expression signals for one transcript on methylation β-

values for a single CpG, while controlling for fixed effects (age and sex for GTP and age 
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and composite age/gender/study-site for MESA) and unknown random effect covariates 

using ICE (equation 1). We implemented this framework in the python program pyLMM 

(http://genetics.cs.ucla.edu/pylmm/) to test for association between methylation at CpG j 

and the expression level of transcript k, by fitting the model: 

yk = µk + Mj αjk + x βjk + uk + ϵjk (1) 

Letting n be the number of individuals, yk is a vector of log expression levels at gene k 

with length n, µk is a size n vector denoting the mean of log expression levels over n 

individuals, Mj is a size n vector of methylation proportions at CpG j, x is an n✕2 matrix 

of covariates (age and sex), uk ~ N(0, σ2
gH) is a multivariate normally distributed term 

representing effects due to other unmeasured confounders such as cellular heterogeneity, 

and ϵjk ~N(0, σ2
eI) are residual errors. I is an n✕n identity matrix and H is the n✕n 

intersample correlation matrix, described below. 

Intersample correlation matrix. The global intersample correlation matrix H is estimated 

from the expression data. Let Y be an m✕n expression matrix for m genes and n 

individuals. Then let Z be an m✕n matrix where each element from the kth transcript and 

lth individual Zkl= (ykl-µk)/σk; µk is the mean and σk is the standard deviation of log 

expression values of the kth transcripts. The estimated intersample correlation matrix Ĥ, is 

defined as the covariance of Z, and is in equation (1) to correct for unmeasured 

confounding factors. 

Analysis of results. In the association analysis, we analyzed all combinations of 

transcripts and CpGs, for a total of 6.6 billion comparisons for GTP and 8.2 billion 

comparisons for MESA. For each transcript, pyLMM generated summary statistics for 

the association of all CpGs. Based on these statistics, genomic inflation factors (GIF) 
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were calculated as median (T-statistic)2/0.4549 for each transcript. We removed 

transcripts with a GIF >2 from further analysis. We also removed CpG-transcript pairs in 

which the associated transcript was annotated as bad quality or as having no matching 

sequence in the genome [25].  

A re-annotation of the Illumina HumanHT-12 v3.0 and v4.0 Expression BeadChip 

arrays by Barbosa-Morais and others (2010) indicates that many probes have the potential 

to anneal to multiple regions in the genome, by sequence homology (determined via 

BLAST and BLAT searches; [25]. This non-specific binding could potentially lead to an 

inaccurate picture of eCpG-transcript associations, especially when the potential binding 

locations for an expression probe are located on multiple chromosomes. To avoid this 

issue, we allowed each expression probe to have multiple locations, based on the new 

annotation. Using the refseq and ensembl databases [26, 27], we assigned each 

expression probe location to a gene by overlap with an exon. We chose the location of the 

expression probe for each eCpG-transcript association, prioritizing expression probe 

locations that were closer in proximity to the eCpG, could be annotated to a gene and 

were listed by Barbosa-Morais as the primary>secondary> other genomic match (see 

supplemental methods).  

To establish a similar cutoff for significance across GTP and MESA, we considered 

CpG-transcript pairs with p<10-5 as suggestive and p<10-11 as significant. This value 

corresponds to Bonferroni adjustment for 5 billion independent tests, so is quite 

conservative given the high levels of correlation between tests. We defined CpGs that 

significantly associate with transcript expression as eCpGs.  
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We classified eCpGs, broadly, as cis (within 50kb of associated probe), distal 

(greater than 50kb from associated gene, but on the same chromosome) or trans (on a 

different chromosome from the associated gene). Within those broad categories, we 

established the following detailed classifications to describe each eCpG-transcript pair 

with respect to the gene the associated transcript is annotated to, as well as other nearby 

genes (by average refseq and ensembl gene locations (see transcript annotation in 

supplemental methods)): trans (the eCpG was on a different chromosome than the 

transcript), distal (the eCpG was >50kb from the transcript, but on the same 

chromosome), in gene body (the eCpG was >2,500bp downstream of the associated 

gene’s TSS and upstream of the associated gene’s TES), near promoter (the eCpG was 

within 2,500bp upstream or downstream of the associated gene’s TSS), closest upstream 

gene (the TES of the associated gene was closer to the eCpG than the next closest gene), 

closest downstream gene (the eCpG was not within 2,500bp of the associated gene, but 

the TSS of the associated gene was closer to the eCpG than the next closest gene), closer 

5’ (the eCpG was farther from the associated gene’s TSS than from another gene’s TSS 

on the opposite side of the eCpG), closer 3’ (the eCpG was closer to the TES of another 

gene than the associated gene than to either the TSS or TES of the associated gene), gene 

between (there was another gene’s TSS between the eCpG and the associated gene’s 

TSS), eCpG in different gene (the eCpG was not near the promoter of the associated 

gene and was between the TSS and TES of another gene), multiple closer/between (the 

eCpG-transcript pair falls into multiple of the aforementioned cis categories; Figure 4-1).  

Between study corroboration. Next we sought to find out how often GTP eCpG-

transcript pairs were consistent in MESA results among the cis, distal and trans 
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categories. To compare results between studies, we found eCpG-transcript pairs in the 

GTP results that were consistent in the MESA results by CpG ID, expression probe ID, 

expression probe location, and direction of correlation.  

 To compare the number of eCpG-transcript pairs found consistent across studies 

within the distal and trans categories to the number achieved by random chance, we re-

analyzed the results 10,000 times. For each permutation, we randomly shuffled the 

expression probe IDs within each study and category.  

Within study corroboration. For each eCpG found in both GTP and MESA, we 

interrogated neighboring eCpGs within five windows extending 100, 500, 1,000, 1,500 

and 2,000 bp to each side of the query eCpG. For each window, we compared the genes 

associated (see transcript annotation in supplemental methods) with the query eCpG to 

the genes associated with the neighboring eCpGs. We computed the percentage of eCpGs 

sharing an associated gene with a neighboring eCpG as the number of eCpGs that share 

at least one associated gene with at least one neighboring eCpG divided by the total 

number of eCpGs within the window. We then computed the percentage of eCpGs 

sharing at least one associated gene with the same direction of correlation with at least 

one neighboring eCpG. Lastly we computed the percentage of eCpGs at which all 

neighboring eCpGs shared both genes and direction of correlation with the query eCpG. 

This analysis was conducted for all eCpGs and then separately for trans eCpGs. 

Functional analysis of eCpGs. We downloaded the following datasets from the UCSC 

table browser for GRCh37/hg19 [28]: 

1) CpG Islands 

2) Broad ChromHMM for GM12878 [29] 



 92 

3) Transcription factor ChIP V3 (transcription factor binding sites) 

We functionally annotated eCpGs based on overlap of the CpG location with the intervals 

provided by UCSC for the features listed above. Additionally, CpG island shores were 

defined as regions extending 1.5kb out from CpG islands and CpG island shelves were 

defined as regions extending 1.5kb out from shores. Intervals for all 15 genomic states 

provided with the ChromHMM dataset were utilized in this annotation. We assessed 

these annotations, using Fisher’s exact tests, in two different ways. First we considered 

all CpGs tested for each study. Each CpG was only represented once (for each study) and 

was tested for enrichment in a functional category (e.g. CpG island, ChromHMM 

category) and significant eCpG status (i.e. significant vs not significant). Second, among 

only significant eCpG-transcript pairs, eCpG-transcript classifications (e.g. “in gene”, 

“closest upstream gene”; described above and in Figure 4-1) were tested for enrichment 

among the various functional categories (e.g. CpG island, ChromHMM category). 

Because many CpGs associated with multiple transcripts, and vice versa, CpGs or 

transcripts could fall into more than one category and be present more than once in the 

test. However, each unique CpG-transcript pair falls into a single category and is present 

only once in the test.  

Genomic interaction distance decay. In this analysis we used the GM12878 Hi-C dataset 

of Rao et. al 2014 accessed from GSE63525 [30]. The average number of interactions 

between each 1 kb bin was taken from the expected values for unnormalized interaction 

counts on Chromosome 1 at 1 kb. We next calculated the distance (rounded to the nearest 

1 kb) between eCpGs and the transcription start sites (TSS) annotated to their associated 

expression probes for each of the 4,799 significant cis and distal eCpG-transcript pairs. 
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To plot the distance decay of both datasets, the logarithmic space between 103 and 108 

was divided into 30 equally spaced bins. Means and 0.95 confidence intervals were 

computed for each bin using the .regplot function in the python package, Seaborn (DOI 

10.5281/zenodo.592845). 

Gene ontology analyses. We used the R library GOstats [31] to assess enrichment of 

molecular function gene ontology terms among eCpGs. eCpGs that associated with a 

transcript with p-values <10-5 were included in the analysis. We applied the 

hypergeometric test to calculate odds ratios and p-values, and estimated the false 

discovery rate by the Benjamini & Hochberg method [32]. For this analysis, eCpGs that 

did not fall within a gene were assigned the Entrez gene ID of the gene with the closest 

downstream TSS. We assessed eCpGs in the following scenarios: all eCpGs, cis and 

distal eCpGs and trans eCpGs. Additionally, we assessed gene ontology among 

transcripts associated with trans eCpG methylation. 

Gene body eCpG analysis. We calculated the number of eCpGs that were negatively 

correlated with their cognate genes in the following categories: gene body (TSS+/-

2,500bp to TES for positive/negative strand genes), intronic, exonic, in first exon, in last 

exon (as determined by the average exon locations; see supplemental methods). 

 We next address two hypotheses that aim to explain the presence of negatively 

and positively correlated eCpGs within gene bodies. The first hypothesis is that 

negatively correlated gene body eCpGs are the result of intragenic gene regulators (e.g., 

promoters and enhancers). The second hypothesis posits that positively correlated gene 

body eCpGs result from the regulation of overlapping genes.  
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To test the hypothesis that negatively correlated genes are the result of intragenic 

regulatory elements, we looked for enrichment of negatively correlated vs. positively 

correlated gene body eCpGs among ChromHMM annotated promoters (states 1-3) or 

enhancers (states 4-8). 

 To test the hypothesis that positively correlated gene body eCpGs reside in the 

promoters of overlapping genes, we first identified eCpGs within our results that were 

associated with expression transcripts that annotated to overlapping genes. Read-through 

genes and low-confidence (i.e., LOC, orf, KIAA, FLJ) annotations were excluded. We 

compared the refseq and ensembl annotations separately. From these eCpGs we were 

able to compare the numbers of negative and positive eCpG-gene body correlations. 

Results  

Summary of cohorts and data. We analyzed genome-wide DNA methylomic and 

transcriptomic data from two cohorts. In the Grady Trauma Project (GTP), whole blood 

samples were collected from 333 participants (76% female) aged 18 – 78 years (GEO 

accession numbers GSE72680, GSE58137). In the Multi-Ethnic Study of Atherosclerosis 

(MESA), relevant data were available for purified monocytes from 1,202 participants 

(51% female) aged 55 – 94 years (GEO accession number GSE56047, Table 4-1). 

For both GTP and MESA, methylation data for >480K individual CpGs were 

generated from the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, 

CA), and RNA transcript levels for >25,000 annotated genes were quantified via Illumina 

HumanHT-12 v3.0 and v4.0 Expression BeadChip (see “Materials and Methods” for 

details). 
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Although both studies derive data from blood cells, GTP derives data from whole 

blood samples, while MESA derives data from purified monocytes (a small component of 

whole blood cells; see Materials and Methods). As such, we analyze both studies in 

parallel and make comparisons between the two, but they are not meant to be biological 

replicates. 

General landscape of DNA methylomic profile. We identified 1,687 and 16,327 eCpGs 

in GTP and MESA respectively (GTP: -53<T<70, 9.7e-197<p<1e-11; MESA: -70<T<54, 

1e-321<p<1e-11).  These eCpGs associate with 533 and 3,269 transcripts, making a total 

of 2,466 and 34,518 unique eCpG-transcript pairs for GTP and MESA, respectively 

(Table 4-2). The discrepancy in the number of findings between GTP and MESA is likely 

due to power differences; with n=333 for GTP and n=1,202 for MESA and an α-level of 

1e-11, the studies have 80% power to detect associations where the eCpG explains as 

little as 16% (GTP) or 4.7% (MESA) of variation in expression. Another factor that may 

contribute to the discrepancy is that monocytes have a slightly larger dynamic 

methylation range than the predominant cell type in whole blood [33]. The average 

number of eCpGs per transcript was 4.6 and 11 for GTP and MESA, respectively. The 

median number of eCpGs per transcript was two for both GTP and MESA.  

Correlations between methylation and expression were predominantly negative in 

both GTP (70%, n=2,466) and MESA (53%, n=34,518; Figure 4-2, 4-3A; Table 4-2). For 

both GTP and MESA, there are more negatively than positively correlated eCpGs among 

both cis and distal eCpG-transcript pairs. However, while GTP trans eCpGs are enriched 

for negative correlations (OR=1.6, P=3.9e-7), MESA trans eCpGs are enriched for 

positive eCpG-transcript pair correlations (OR=1.6, P<2.2e-16; Table 4-2). 
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Sets of assayed CpGs within GTP and MESA displayed the expected bimodal 

distribution of average methylation values, suggesting that most CpGs were either fully 

methylated or unmethylated. In contrast, eCpGs were more likely to be intermediately 

methylated, with average β-values between 0.2 and 0.8 (OR=3.6 (MESA), 3.04 (GTP), 

Fisher’s exact P<2.2e-16 for both MESA and GTP; Figure S4-1). This relationship may 

simply reflect increased power due to increased variability among intermediately 

methylated CpGs. Consistent with this, variability in β-values is greater in eCpGs than 

non-eCpGs in both GTP and MESA (Figure S4-2). 

Distribution of eCpGs relative to the 450K array. When on the same 

chromosome (cis and distal), eCpGs were located in the associated gene or within 

2,500bp of its TSS 49% (n=1,508) and 41% (n=10,706) of the time, for GTP and MESA, 

respectively. However, we find that the relative proportion of eCpGs ([number eCpGs per 

bin/total number eCpGs] / [number CpGs per bin/total number CpGs]) increases with 

proximity to the associated transcript, but drops dramatically very near and in the 

transcript (Figure 4-3B). Accordingly, the proportion of eCpGs distal to their associated 

(or cognate) gene exceeds the proportion of CpGs on the array that are distal to the 

closest transcript (for CpGs and transcripts passing QC in each study; Figure 4-3C).  

There also appears to be a predominance of eCpGs located upstream of their associated 

gene (Figure 4-2, third column); however, this imbalance reflects the composition of the 

Human-Methylation450 array (Figure S4-3).  

Distribution of eCpGs relative to associated genes. In GTP and MESA, distal and 

trans eCpGs constitute 53% (n=2,466) and 79% (n=34,518) of eCpGs, respectively 

(Figure 4-4, Table 4-2, S4-1), indicating that eCpGs are not primarily near associated 
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genes. Figure 4-1 defines the possible eCpG-transcript pair scenarios, relative to the gene 

annotated to the transcript and other nearby genes, described further in Materials and 

Methods. In short, we consider canonical eCpG-transcript pairs to be those in which the 

eCpG is within the gene or within 2,500 bp of the gene’s TSS, or the associated gene is 

the closest gene to the eCpG. Among cis eCpGs, nearly 35% do not conform to a 

canonical methylation-expression role where the eCpG associates with the nearest gene 

(GTP n=1,167; MESA n=7,246; Figure 4-4). Canonical eCpG-transcript pairs are 

captured in the remaining 65% of cis eCpGs (GTP n=1,167; MESA n=7,246; 21 to 48% 

of all eCpGs; GTP n=2,466; MESA n=34,518; see Figure 4-4).  

Corroboration of eCpG results 

Between study comparison. To corroborate the eCpGs identified here, we 

compared eCpG-transcript pairs across studies. Among eCpG-transcript pairs significant 

in GTP, 44% (n=1,260) of cis pairs (53% of promoter eCpG-transcript pairs, n=383), and 

30% of distal (n=341) and 27% trans (n=958) pairs are significant in MESA. Randomly 

permuting the transcript IDs among the significant eCpG-transcript pairs from both 

studies and repeating the calculation 10,000 times yielded no higher than 3% of GTP 

distal- and trans- pairs occurring in MESA distal- and trans- pairs.  

Within study comparison. To corroborate our eCpGs within each study, we 

examined associated gene congruence among neighboring eCpGs. Among eCpGs having 

a neighbor within 500bp, 97% (GTP) and 90% (MESA) have a neighbor significantly 

associated with at least one of the same cognate genes, 86% (GTP) and 89% (MESA) 

have at least one neighbor that is consistent with regard to direction of correlation and 

82% (GTP) and 87% (MESA) have completely congruent neighbors (GTP n=738, MESA 
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n=6,290; Figure 4-5). Trans eCpGs have a slightly lower proportion of neighbors 

significantly associated with the same cognate gene (GTP=91%, MESA=88%), but 85% 

of GTP and 88% of MESA eCpGs have all neighbors of congruent direction (GTP 

n=109, MESA n= 3,074). The proportion of proximal CpG neighbors with matching 

associated gene and sign predictably declines with increasing window size (Figure 4-5).  

Functional analysis of eCpGs 

Functional trends among all eCpGs. Next we used publicly available data to 

assess functional trends among eCpGs [28, 29, 34]. As part of the ENCODE project [28] 

Ernst, et al. (2011) used a hidden Markov model to partition the genome into functional 

domains based on ChIP-seq data for histone modifications, RNA polymerase occupancy, 

and other chromatin features. We used the resulting data set, called ChromHMM, along 

with CpG island, long intergenic non-coding RNA (lincRNA), transcription factor 

binding site (TFBS) and small nucleolar and microRNA (sno/microRNA) genomic 

intervals to evaluate the chromatin structure surrounding eCpGs [28, 29, 34]. When 

considering all CpGs tested in MESA, genome-wide significant eCpGs are depleted 

among CpG islands (CGI; OR=0.60, P=7.5e-170) and promoters (ChromHMM states 1-

3; OR=0.55, P=1.4e-168), but enriched among the more variable CpG shore (1,500bp out 

from CGI; OR=1.2, P=2.1e-22) and shelf (1,500bp out from CG shores; OR=1.2, P=2.6e-

12) regions (Figure 4-6A). We also find that eCpGs are enriched among transcription 

factor binding sites (TFBS) and highly enriched among annotated enhancer regions 

(ChromHMM states 4-7; Figure 4-6A; OR>1.9 and P<2.2e-16). GTP shows a similar 

enrichment for enhancer regions (Figure S4-4, top row). This result is consistent with 



 99 

other studies that have found a significant enrichment of eCpGs among enhancers [18, 

23]. 

Functional trends among Trans eCpGs. When assessing the enrichment of 

chromatin states among the various categories of significant eCpGs, we find that trans 

eCpGs are enriched among both strong (ChromHMM states 4 and 5; OR=1.8, P=2.2e-72) 

and weak (ChromHMM states 6 and 7; OR=1.4, P=5.4e-18) enhancer annotations (Figure 

4-6B). Like the overall pattern, we see that trans eCpGs are depleted among CGI 

(OR=0.83, P=3.6e-10) and promoters (OR=0.45, P=5.5e-168), and enriched among 

TFBS (OR=1.3, P=2.8e-21). Interestingly, we also observe trans eCpGs to be enriched 

among regions of the genome that are annotated as sno and microRNAs (OR=2.4, 

P=9.8e-3; Figure 4-6B). 

Functional trends among Cis and distal eCpGs. Unlike trans eCpGs, we see that 

enhancers are primarily depleted among the various cis and distal eCpG categories 

described in Materials and methods and Figure 4-1. Additionally, insulators 

(ChromHMM state 8) are enriched among cis and distal eCpGs (1.4<OR<8.2, P<0.03). 

Promoter (1.1<OR<6.6, P<0.04) and CpG islands 1.3<OR<1.8, P<0.03, shores 

(1.6<OR<3.2, P<4.8e-07) and shelves (1.4<OR<1.6, P<0.01) are more often enriched 

among cis eCpG categories. We also see a strong enrichment of cis (1.7<OR<2.5, 

P<0.05) and distal (OR=1.4, P=5e-4) eCpGs among regions of the genome annotated as 

lincRNAs. We note a depletion of enhancers in the cis categories in which lincRNA 

eCpGs are enriched (OR=0.5, P=5.9e-05; Figure 4-6B).  

eCpG-transcript distances suggest possible DNA looping. To interrogate the 

nature of the connection between eCpGs and their associated transcripts, we assessed the 
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distribution of distances between them. We compared the distribution of eCpG-transcript 

distances to the distribution of DNA looping interaction distances, as captured by HiC. 

We considered eCpG-transcript frequencies that decrease as a function of distance to be 

consistent with the DNA looping frequencies seen in HiC data [30]. We find a strong 

negative correlation between the number of eCpG-transcript pairs and the distance 

separating them (Figure 4-7, green). A similar decay is seen in the distribution of DNA 

looping interactions captured by HiC (Figure 4-7, blue).  

Gene Ontology analysis. We used GO to assess molecular function terms among 

all eCpGs, cis and distal eCpGs and trans eCpGs, as well as among transcripts associated 

with trans eCpG methylation. We found that eCpGs are enriched for nucleotide binding 

molecular functions, like sequence specific DNA binding (OR=2.6, P=1.2e-04) and 

transcription factor binding (OR=4.3, P=2.6e-04). DNA-binding and transcription factor 

molecular functions are also enriched in cis/distal and trans eCpGs (1.5<OR<4.2, P<1.8e-

04). Finally, transcripts that associate with trans eCpG methylation were enriched for 

chromatin readers, writers (1.7<OR<3.8, P<6.3e-04) and transcription co-activator genes 

(Ligand-dependent nuclear receptor transcription coactivator activity OR=2.9, P=1.2e-03; 

Tables S4-2-S4-5). All p-values listed above correspond with a false discovery rate 

(FDR)<0.05 

Analysis of gene body eCpGs. It has been frequently reported that DNA methylation is 

negatively correlated with gene expression in promoters, but positively correlated with 

gene expression within gene bodies [2, 18, 21]. Here, we observe that DNA methylation 

is negatively correlated with transcript expression the majority of the time, in any 

location (Figure 4-8). Among significant eCpGs in MESA, negative correlations are 
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enriched among gene body eCpGs (OR=1.5, P=2.6e-16). Among significant eCpG-

transcript associations where the CpG was located within the gene body of its associated 

transcript, 1) the correlation was negative 71% (n=356) and 62% (n=1,919) of the time, 

for GTP and MESA, respectively, 2) the direction of correlation was consistent across 

multiple eCpGs within a single transcript 85% (n=87; GTP) and 72% (n=601; MESA) of 

the time, and 3) among transcripts with consistent associations across multiple eCpGs, 

the correlations were negative 81% (n=74; GTP) and 76% (n=434; MESA) of the time. 

Among CpGs within the first and last exon of their associated transcript, we note that 

although still primarily negative, fewer eCpGs are negatively correlated with transcript 

expression in the last exon (59% in MESA, 73% in GTP), in comparison to the first exon 

(77% in MESA, 87% in GTP) (Figure 4-8).  

Functional trends among gene body eCpGs that negatively correlate with 

expression. One hypothesis that attempts to account for an excess of negative 

correlations among gene body eCpGs posits that these eCpGs are found in intragenic 

regulatory elements like promoters and enhancers located within the gene they control 

[35, 36]. We observe a slight enrichment of annotated promoters among negatively 

correlated gene body eCpGs (OR=1.8, P=0.002). An even stronger enrichment of 

negatively correlated gene body eCpGs among annotated enhancer regions (OR=2.2, 

P<2.2e-16) suggests that transcriptional regulators within gene bodies may be important 

to gene regulation. 

Competing promoters among gene body eCpGs that positively correlate with 

expression. A separate hypothesis states that the presence of positively correlated gene 

body eCpGs may result from the regulation of an overlapping gene [37, 38]. To test this 
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hypothesis, we found eCpGs that are within the promoter of one gene and the gene body 

of another. We found five eCpGs that fit these criteria.  In three of five cases, the eCpG 

correlated negatively with the transcript when the eCpG was near the promoter and 

positively with the transcript when the eCpG was in the gene body. In the remaining 

cases, the eCpG correlated negatively with both transcripts (Table S4-6).  

Discussion  

EWAS often identify CpGs that lie outside of defined genomic regions like 

promoters, which are typically considered the canonical target for epigenetic gene 

repression [2, 16, 17]. Inferring a functional consequence for these CpGs is difficult 

because our understanding of the role of methylation in regulation of gene expression and 

disease is incomplete. We find that the majority of eCpGs do not conform to canonical 

methylation-expression roles. Our results highlight a shortcoming of current CpG 

functional annotation, as these non-canonical methylation-expression relationships would 

be incorrectly assigned to the nearest gene in EWAS interpretation.  

 We find that many eCpG-transcript pairs are consistent between studies and that 

neighboring eCpGs within studies tend to correlate with the same gene. Although it is 

encouraging to find matching pairs between studies, it is unsurprising that there is not 

complete overlap given differences in both power and cell type and ethnic background 

across studies. GTP is a relatively small study, whose data were derived from whole 

blood in an African American cohort. MESA, a much larger study from a cohort of 

mixed ethnicity, derived data from monocytes, which only account for a small proportion 

of whole blood cells, on average. As such, MESA and GTP are not intended to be 

replicates but a comparison across whole blood and monocytes. In a study of cis CpG-
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transcript associations, Liu et al. (2013) found that few observed expression-associated 

methylation sites were specific to any ethnic category, so it is unlikely that differences 

between eCpGs found in GTP and MESA are driven by ethnic composition. Our results 

suggest that our eCpGs represent robust associations that are consistent between 

neighboring CpGs and across datasets.  

 Among transcripts passing QC (GTP: 13,933, MESA: 19,445), only 3.8% of GTP 

transcripts and 17% of MESA transcripts significantly correlated with CpG methylation. 

Because the two studies are powered to detect associations explaining >16% or >4.7% of 

variance in expression, respectively, eCpG-transcript associations with subtler 

correlations would not have been detected. It is possible that in many cases either the 

transcripts or the CpGs passing QC were not variable enough in the tissues studied to 

detect associations, or that some of the genes are not epigenetically regulated in blood. 

This hypothesis is supported by the observation that in MESA, which is powered to 

detect subtler associations than GTP, the average variance in methylation β-values for 

identified eCpGs was lower (3.6e-03) than for eCpGs identified in GTP (6.4e-03), while 

variation in non-eCpGs was similar across both datasets (Figure S4-2). Finally, the 

variance in some genes could be due to factors other than CpG methylation, for instance, 

regulation by other genes or higher-level chromatin mark (i.e. histone modifications). 

Our enrichment and gene ontology results make the case for a complex network of 

epigenetic control. In addition to the more canonical promoter eCpGs that associate with 

proximal gene expression, we also see that eCpGs associate with gene expression 

distally, through enhancers, insulators and long intergenic non-coding RNAs (lincRNAs). 

Importantly, we find that enhancer elements, micro and small nucleolar RNAs are 
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prominent among eCpGs that correlate with the expression of genes on different 

chromosomes (trans). The GO analysis suggests that for each gene, we have likely 

constructed a regulatory profile that encompasses the indirect, trans effects (which could 

include regulatory networks) as well as direct, cis effects (including cis and distal DNA 

methylation). Because we find many eCpGs, genome-wide, that associate with 

transcription factor genes and chromatin modifiers, our results may include scenarios in 

which gene expression influences DNA methylation patterns, as well as vice-versa [39]. 

Although these findings represent associations and do not provide information on 

causality; they could prove useful in annotating EWAS results for CpGs with potential 

roles in regulatory networks. 

Overall, our results indicate that CpG methylation interacts with gene expression 

primarily through enhancer CpGs, rather than promoter CpGs. Enhancers, as distal 

regulatory elements, are methylation sensitive transcription factor binding sites that 

promote tissue-specific gene expression [2, 3]. Other studies have also noted an 

enrichment of enhancer regions among eCpGs [18, 23]. One proposed model of gene 

regulation suggests that promoter methylation is relatively static, having either a 

restrictive (hypermethylated) state, or permissive (hypomethylated) state at which 

dynamic enhancer methylation modulates gene expression levels [18]. In this scenario, 

promoter eCpGs are far less likely than enhancer eCpGs to be identified due to their low 

variability [23]. Our results support the important role of enhancer CpG methylation in 

epigenetic gene regulation, but expand on this model to suggest that enhancer 

methylation can correlate with gene expression changes on other chromosomes. 
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We also find that insulator eCpG methylation plays a prominent role in cis and distal 

gene expression. Insulators are thought to promote gene expression by bringing 

enhancers and promoters into close proximity through the binding of the CCCTC-binding 

factor (CTCF), which can dimerize to form stable chromatin loops [30, 40]. The binding 

affinity of CTCF to insulator sequences is influenced by DNA methylation [41]. Here we 

see that insulators are enriched among cis and distal eCpGs. We also see that the 

frequency of eCpG-transcript interactions decreases with distance, as seen in the DNA 

looping interaction frequency captured by HiC [30].  Overall, our results support the role 

of insulators in regulation of gene expression, potentially through the formation of 

functional DNA loops involving enhancer and insulator elements. 

MicroRNAs regulate more than 50% of mRNAs [42] and are in turn regulated by 

DNA methylation [43, 44]. We see a strong enrichment of trans eCpGs among 

micro/snoRNAs, so it is intriguing to speculate that trans eCpG-transcript associations are 

due, at least in part, to post-transcriptional regulation by microRNAs. We also see that cis 

and distal eCpGs are enriched among lincRNAs. Evidence suggests that lincRNAs play 

an important role in gene expression, particularly as eRNAs (enhancer RNAs), which are 

RNAs transcribed from enhancer sequences and may act as scaffolding for DNA looping 

or co-activator recruitment to a gene promoter [40]. Interestingly, the enhancers that give 

rise to eRNAs are distinct from enhancers that act as transcription factor binding 

sequences [45]. In our results, we also see a depletion of enhancers in the cis categories in 

which lincRNA eCpGs are enriched. From our results, we propose that DNA methylation 

may be a key player in cis, distal and trans transcriptional control through the action of 

non-coding RNAs. 
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Our study finds that most eCpG-transcript correlations are negative, even among 

gene bodies. Our findings are in line with other studies that report the predominance of 

negative correlations [19, 20, 22, 23]. The primary difference between studies that find 

mostly negative methylation-expression correlations and those that find negative 

correlations in promoters and positive correlations in gene bodies is study design. Most 

studies finding positive gene body correlations were considering the correlation of 

expression and methylation across all genes in a single genome [18, 46, 47]. In contrast, 

the majority of studies finding negative correlations in gene bodies were considering 

correlation of expression and methylation across individuals, separately for each CpG 

[21, 23]. A within-genome comparison observing that more highly expressed genes tend 

to show hypermethylation within gene bodies is simply a comparison of different genes 

and does not speak to the effect of changes in DNA methylation at any particular gene. In 

general, studies that assess DNA methylation in gene bodies across individuals find that, 

most of the time, increases in DNA methylation are associated with decreases in gene 

expression [19, 20, 22, 23]. 

We provide evidence here that negatively correlated gene-body eCpGs are often 

the result of intragenic regulatory elements (e.g. promoters and enhancers). We also 

provide support for the hypothesis that positive correlations between CpG methylation 

and gene expression are the result of overlapping genes/variants [37, 38]. Neither of these 

hypotheses fully explain the occurrence of either positive or negative eCpG correlations 

within gene bodies. Rather, they suggest that there is no all-encompassing biological truth 

to these associations. 

Conclusions 



 107 

We have characterized the genome-wide DNA methylomic profile for gene 

expression in human blood cells. Many of our results are reproducible between whole 

blood and monocytes and are spatially correlated within studies. Unlike similar studies, 

we found that most eCpGs were very distal and trans to their associated genes. These 

results highlight the shortcomings of proximity based CpG annotations, as even cis 

eCpG-transcript associations often do not involve the closest downstream TSS. In fact, 

the majority of associations were distal or trans, representing a serious gap in functional 

annotation for epigenome-wide association studies.  

Like others, we find an overabundance of enhancer eCpGs, highlighting the 

importance of enhancers, possibly over promoters, in gene expression variation [18, 23]. 

We also note enrichments of insulators and non-coding RNAs, like microRNAs and 

lincRNAs among eCpGs. Our results point to DNA methylation as a possible link 

between gene expression and higher-order chromatin organization, as well as another 

layer in post-transcriptional regulation.  

Like studies of similar design, we find an abundance of negative CpG-transcript 

associations [19, 20, 22, 23], which conflicts with earlier reports that gene body 

methylation positively correlates with gene expression [18, 36, 46, 48, 49]. We find some 

support for the hypothesis that negatively-correlated gene-body eCpGs are in annotated 

promoters and enhancers [36], which suggests an important role for alternate gene-body 

promoters and intragenic enhancers in gene expression. However, we do not find support 

for the presence of negative gene-body methylation associations as a result of 

overlapping gene expression.  
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Finally, our gene ontology results, like our enrichment results, portray a complex, 

multi-dimensional picture of epigenetic interactions in the genome. eCpGs are enriched 

in molecular functions like transcription factor binding and sequence specific DNA 

binding. Among transcripts that associate with trans eCpG methylation, we find an 

enrichment of chromatin readers, writers and transcription co-activator genes.  

Our findings suggest that limiting our interpretation of EWAS results to the 

nearest gene might be short-sighted, as DNA methylation may have many indirect 

interactions (e.g. modulating the expression of a transcription factor) that influence gene 

expression or vice-versa. Overall, our results broaden our understanding of the ways that 

CpG methylation interacts with gene expression, genome-wide, and provide data that 

may be useful for mining meaningful biological insights from EWAS. 
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Tables 

 

  

Table 4-1. Cohorts and Data for GTP and MESA 
 GTP MESA 

Participants 333 1,202 
Tissue Whole blood Monocytes 

Original study phenotype Post traumatic stress disorder Atherosclerosis 
Methylation technology Infinium HumanMethylation450 BeadChip 
Expression technology Illumina HumanHT-12 Expression BeadChip 

Methylation probes 
included 

472,199 422,016 

Expression probes 
included 

13,933 19,445 

*p ≤10-11 
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Table 4-2. eCpG results for GTP and MESA 
Study GTP  MESA 

Number of eCpGs 1,692  16,356 
Number of transcripts 537  3,277 
eCpG-transcript pairs 2,466  34,518 
Transcript pair status Cis Distal Trans  Cis Distal  Trans 

Total pairs 1,167 341 958  7,246 3,460 23,812 
Positively correlated 389 114 228  2,560 1,578 11,985 

Negatively correlated 778 227 730  4,686 1,882 11,827 
*p ≤10-11 
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Figures

 

Figure 4-1. Graphical examples of each functional category. Examples are shown for 

positive strand eCpG (stick with open circle) and transcript (blue arrow) pair 

associations. Blue arrows represent the gene transcription area (TSS-TES) that was 

annotated to the expression probe in the eCpG-transcript pair by overlap with a refseq or 

ensemble exon. Orange arrows represent examples of other annotated genes that are near 

the eCpG-transcript pair. DS is downstream, US is upstream, TSS is transcription start 

site, and TES is transcription end site. * indicates canonical methylation-expression roles. 

  

* 

  * 

* 

* 

* 
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Figure 4-2. Scatter plot of T-statistic vs. distance from associated transcript, among 

suggestively significant eCpGs (P<1e-5). The top row is from MESA and the bottom 

from GTP. The leftmost column is for all cis and distal eCpGs. The middle and right 

columns contain only eCpGs within 200kb and 1kb from their cognate transcript, 

respectively. 
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Figure 4-3. Distribution of genome-wide significant eCpGs (P<1e-11). More negative 

than positive associations are seen in both studies (A). The proportion of CpGs that are 

eCpGs rises near genes, but drops very near and in their associated genes (B). eCpGs are 

found distal to their associated genes (C). 
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Figure 4-4. Genome-wide significant (P<1e-11) eCpG-transcript relationship 

proportions in GTP (inner; n=2,466) and MESA (outer; n=34,518). The green 

sections represent eCpGs that are <50kb from their associated transcript (cis); yellow 

represents eCpGs that fall within the gene body of their associated transcript; dark blue 

represents eCpGs that were <50kb, but on the same chromosome (distal) as the associated 

transcript; and light blue represents eCpGs that were on a different chromosome from the 

associated transcript (trans). Definitions of each category are given in Figure 4-1 and 

Materials and methods section. 
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Figure 4-5. Shared gene associations among neighboring eCpGs. Proportion of 

proximal eCpGs (neighbors) in GTP and MESA with the same associated gene or same 

associated gene and direction of association as the query CpG. Neighbors were located 

within the specified window size on either side of the query CpG. Associated gene 

overlap among proximal eCpGs appears to be a function of distance. The majority of 

neighboring eCpGs sharing an associated gene, associate with the gene in the same 

direction. 
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Figure 4-6. Enrichment of chromatin features among eCpGs. A) Enrichment of 

eCpGs (odds ratios and 95% confidence intervals) for the listed chromatin features, 

among all CpGs tested in MESA (N=422,016). B) Enrichment of eCpGs for the listed 

chromatin features, among genome-wide significant eCpGs in MESA (N=34,518). 

Shaded categories are cis. Blue indicates significant depletion and red, significant 

enrichment (P<0.05). Bracketed numbers in the chromatin features indicate the 

ChromHMM state. Numbers in parentheses indicate the number of eCpGs in the 

category. Definitions: Left: Given in Figure 4-1 and Materials and Methods Bottom. 

“CGI” are CpG islands. “TFBS” is transcription factor binding site.  
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Figure 4-7. eCpG-transcript distance vs. HiC interaction frequency. Distribution of 

interactions over distance for MESA cis and distal eCpG-transcript pairs (green) and Hi-

C interaction data from a lymphoblastoid cell line (GM12878; blue). Mean interaction 

frequency between each 1 kb bin (blue dots) were calculated for unnormalized  Hi-C 

interaction counts on Chromosome 1. Number of eCpG-transcript pairs (green dots) per 1 

kb were calculated by rounded distance between eCpG and TSS for cis and distal eCpG-

transcript pairs. Bars represent 0.95 confidence intervals for each bin. The decay curve of 

eCpG-transcript pair distances within 106 bp is consistent with the chromatin looping 

interaction curve seen in HiC.  
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Figure 4-8. Negative eCpG-transcript correlations in GTP and MESA. The fraction 

of negative eCpG-transcript associations is greater than 50% in promoters and gene 

bodies. More negative associations are found in the first exon than the last.  
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Supplemental tables 

Table S4-1. Breakdown of eCpG-transcript status 
MESA 

eCpG-transcript status Counts Percent 
Cis 7,246 20.99 

In gene body 1,919 26.48  
± 2,500bp of TSS 2,516 34.72  
Closest upstream gene 106 1.46  
Closest downstream gene 187 2.58  
Multiple genes closer/between 1,622 22.38  
eCpG in different gene 482 6.65  
Gene between 68 0.94  
Closer 5’ 301 4.15  
Closer 3’ 45 0.62  

Distal 3,460 10.02 
Trans 23,812 68.98 
Total 34,518 

 GTP 
eCpG-transcript status Counts Percent 
Cis 1,167 47.32 

In gene body 356 30.51  
± 2,500bp of TSS 383 32.82  
Closest upstream gene 17 1.46  
Closest downstream gene 18 1.54  
Multiple genes closer/between 243 20.82  
eCpG in different gene 81 6.94  
Gene between 7 0.60  
Closer 5’ 49 4.20  
Closer 3’ 13 1.11  

Distal 341 13.83 
Trans 958 38.85 
Total 2,466 
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Table S4-2. Gene Ontology enrichment among all eCpGs 
Term (MF) Odds Ratio P-value FDR 
Sequence-specific DNA binding 2.64 1.16E-04 3.23E-02 
Ribonucleoside binding 1.45 1.17E-04 3.23E-02 
Purine nucleoside binding 1.45 1.21E-04 3.23E-02 
Purine ribonucleotide binding 1.43 1.72E-04 3.46E-02 
Binding 1.51 1.94E-04 3.46E-02 
Transcription factor binding 4.31 2.56E-04 3.92E-02 
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Table S4-3. Gene Ontology enrichment among cis and distal eCpGs 
Term (MF) Odds Ratio P-value FDR 
Actin binding 1.66 2.57E-05 1.94E-02 
Actin filament binding 2.37 5.15E-05 1.94E-02 
Ankyrin binding 10.35 5.26E-05 1.94E-02 
HMG box domain binding 16.33 1.41E-04 3.91E-02 
Sequence-specific DNA binding 1.48 1.80E-04 3.98E-02 
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Table S4-4. Gene Ontology enrichment among trans eCpGs 
Term (MF) Odds Ratio P-value FDR 
Sequence-specific DNA binding 2.99 4.56E-06 2.45E-03 
Ribonucleoside binding 1.46 2.12E-05 5.75E-03 
Purine nucleoside binding 1.46 2.19E-05 5.75E-03 
Purine ribonucleotide binding 1.45 2.68E-05 5.75E-03 
Transcription factor binding 4.22 6.37E-05 1.14E-02 
Ligase activity 2.88 1.08E-04 1.66E-02 
Double-stranded DNA binding Inf 1.35E-04 1.71E-02 
Protein homodimerization activity 1.79 1.43E-04 1.71E-02 
Adenyl nucleotide binding 1.43 1.96E-04 2.11E-02 
Rab GTPase binding Inf 2.28E-04 2.22E-02 
Protein domain specific binding 3.81 2.79E-04 2.32E-02 
ATP binding 1.42 2.81E-04 2.32E-02 
Sequence-specific DNA binding transcription 
factor activity 1.70 3.32E-04 2.55E-02 

Binding 1.43 4.08E-04 2.92E-02 
Protein kinase binding 2.23 5.58E-04 3.74E-02 
RNA polymerase II core promoter proximal region 
sequence-specific DNA binding 3.58 5.99E-04 3.78E-02 
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Table S4-5. Gene Ontology enrichment among trans eCpG associated transcripts 
Term (MF) Odds Ratio P-value FDR 
DNA binding 1.39 1.08E-06 1.17E-04 
Single-stranded DNA binding 3.33 3.02E-06 2.94E-04 
Hydrolase activity, acting on acid anhydrides 1.50 4.22E-06 3.74E-04 
Structural constituent of ribosome 2.52 6.54E-06 5.32E-04 
Ubiquitin-protein transferase activity 1.82 1.34E-05 9.50E-04 
Chromatin binding 1.71 1.36E-05 9.50E-04 
Ligase activity 1.73 6.21E-05 4.03E-03 
Ubiquitin binding 3.73 1.43E-04 8.70E-03 
ATP-dependent helicase activity 3.86 1.60E-04 9.16E-03 
Helicase activity 2.47 2.31E-04 1.25E-02 
Histone acetyltransferase activity 3.78 3.92E-04 2.01E-02 
RNA binding 1.68 5.66E-04 2.66E-02 
Nucleosomal DNA binding 4.32 5.72E-04 2.66E-02 
Protein transporter activity 2.48 6.15E-04 2.66E-02 
Histone deacetylase binding 2.39 6.27E-04 2.66E-02 
Protein C-terminus binding 1.74 1.07E-03 4.35E-02 
Ligand-dependent nuclear receptor transcription 
coactivator activity 2.85 1.17E-03 4.57E-02 
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Table S4-6. Overlapping gene regulation 

First gene eCpG 
location Strand Corr Second 

gene 
eCpG 

location Strand Corr 

TYMP 
Gene 
body - + SCO2 Promoter - - 

TMIGD3 
Gene 
body - + ADORA3 Promoter - - 

HLA-DPA1 
Gene 
body - + HLA-DPB1 Promoter + - 

KRT10 
Gene 
body + - TMEM99 Promoter + - 

GFM1 
Gene 
body + - LXN Promoter - - 
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Supplemental figures 

Figure S4-1. Distribution of DNA methylation in GTP and MESA. The expected 

bimodal distribution of DNA methylation β values is seen for all CpGs included in each 

study (broken lines). Genome-wide significant eCpGs from both studies tended to be 

intermediately methylated. eCpGs in GTP (light grey), were more heavily methylated and 

eCpG in MESA (dark grey) were more sparsely methylated, although both methylated 

and unmethylated fractions were present. 
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Figure S4-2. Distribution of methylation beta-value variances, plotted on a log scale. 

Variances for either expression-associated or not-expression-associated CpGs were 

calculated across samples for GTP and MESA. The results indicate that eCpGs have 

more variable beta-values across samples. 
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Figure S4-3. Distances between each CpG and the closest TSS for all CpG probes 

and expression probes included in GTP and MESA. Each panel contains the same 

data, focused on three different ranges of distances. The distribution of CpG-TSS 

distances for each array is similar to the distribution seen for eCpGs found in each study 
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Figure S4-4. Odds ratios for enrichment of chromatin features among CpGs. A) 

Enrichment of eCpGs in the listed chromatin features, among all CpGs tested in GTP 

(N=472,199). B) Enrichment of eCpGs in the listed chromatin features, among genome-

wide significant eCpGs in GTP (N=2,466). Blue indicates significant depletion and red, 

significant enrichment. Light gray cells were not significant and ORs in dark gray cells 

could not be estimated due to low counts. Bracketed numbers in the chromatin features 

indicate the ChromHMM state. Numbers in parentheses indicate the number of eCpGs in 

the category. Definitions: Bottom. “CGI” are CpG islands. “TFBS” is transcription 

factor binding site.  
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Supplemental methods 

Study Populations 

The Grady Trauma Project (GTP). GTP is a prospective study of stress-related 

outcomes in which participants were recruited from the waiting rooms of Grady 

Memorial Hospital’s General Practice or Obstetrics and Gynecology departments. 

Participants are from an inner city population with higher than average rates of trauma 

exposure and post-traumatic stress disorder, but are representative of this population in 

that they are not specifically ascertained for presence of disease or trauma. Exclusion 

criteria included mental retardation, active psychosis, or the inability to give written and 

verbal informed consent. The Institutional Review Boards of Emory University School of 

Medicine and Grady Memorial Hospital approved all procedures in this study. Genome-

wide DNA methylation and gene expression measurements were generated for 333 

human blood samples collected in Atlanta, Georgia as part of the Grady Trauma Project 

[50]. GTP participants included in this study range between 18 and 78 years old. 76% are 

female and all are African-American, based on self report and confirmation via principal 

component analysis of genotype data [51]. 

For gene expression analysis, whole blood was collected in Tempus RNA tubes. 

All whole genome expression profiles were generated at the Max-Planck Institute. RNA 

was isolated using the Versagene kit (Gentra Systems, Minneapolis, U.S.A.) and 

quantified using the Nanophotometer (Implen, München, Germany). Quality checks were 

performed on the Agilent Bioanalyzer. 250 nanograms of RNA were reverse transcribed 

to cDNA, converted to cRNA and biotin-labeled using the Ambion kit (AMIL1791, 

Applied Biosystems). 750 nanograms of cRNA were hybridized to Illumina HT-12 v3.0 
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or v4.0 arrays (Illumina, San Diego, California, U.S.A) and incubated for 16 hours at 

55ºC. Arrays were then washed, stained with Cy3 labeled streptavidin, dried and scanned 

on the Illumina BeadScan confocal laser scanner. Expression values were normalized 

using the variance stabilizing transformation. 13,933 transcripts from the v3.0 and v4.0 

arrays and were significantly expressed above background levels (detection P<0.01) in at 

least 5% of subjects, and were used in further analysis.  

DNA was extracted from whole blood at the Max-Planck Institute in Munich using 

the Gentra Puregene Kit (Qiagen), to assay CpG methylation. Genomic DNA was 

bisulfite converted using the Zymo EZ-96 DNA Methylation Kit (Zymo Research) and 

applied to the Illumina HumanMethylation450 BeadChip, with hybridization and 

processing performed according to the instructions of the manufacturer. Methylated (M) 

and unmethylated (U) signals were collected for all CpG sites on the array and quantile 

normalized across all samples. β-values for each individual at each CpG site were 

calculated as the total methylated signal divided by the total signal (M/M+U). Data points 

with 1) a detection p-value greater than 0.001 or 2) a combined signal less than 25% of 

the total median signal and less than both the median unmethylated and median 

methylated signal were set to missing. CpG sites with a missingness rate above 10% were 

removed from analysis. Individual samples were removed from analysis if they were 

outliers in a hierarchical clustering analysis or had 1) a mean total signal less than half of 

the median overall mean signal or 2000 arbitrary units, or 2) a missingness rate above 

5%.  
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Multi-ethnic Study of Atherosclerosis (MESA). MESA DNA methylation and gene 

expression data were collected from the Gene Expression Omnibus (GSE56047). The 

following summarizes the methods detailed in Liu et al. (2013).  

MESA is a study designed to examine cardiovascular disease. The MESA 

Epigenomics and Transcriptomics Study investigates gene expression regulatory 

methylation sites in humans by examining the association between CpG methylation and 

gene expression in purified human monocytes from a large study population. Genome-

wide DNA methylation and gene expression measurements were generated for purified 

monocytes from 1,202 MESA participants. These MESA participants were chosen 

randomly from samples collected between April 2010 and February 2012 from MESA 

field centers in Baltimore, MD; Forsyth County, NC; New York, NY; and St Paul, MN. 

Participants range in age from 55 – 94 years old, are 51% female, and self identified as 

Caucasian (47%), African American (21%), or Hispanic (32%). 

Monocytes were isolated from PBMCs with anti-CD14 coated magnetic beads. 

DNA and RNA were isolated from monocyte samples simultaneously. DNA and RNA 

purity were assessed spectrophotometrically and RNA QC testing was performed using 

the Agilent 2100 Bioanalyzer with RNA 6000 Nano chips (Agilent Techonology, Inc., 

Santa Clara, CA) according to the manufacturer’s instructions. Samples with RIN (RNA 

Integrity) scores > 9.0 were applied to global gene expression microarrays.  

Genome-wide expression analysis was performed via the Illumina HumanHT-12 

v4 Expression BeadChip and the Illumina Bead Array Reader, following the Illumina 

expression protocol. RNA was reverse transcribed and amplified with the Illumina 
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TotalPrep-96 RNA Amplification Kit (Ambion/Applied Biosystems, Darmstadt, 

Germany). The resulting cRNA was hybridized to a BeadChip (CITATION). 

 Expression data were corrected for local background in Illumina’s proprietary 

software GenomeStudio and negative controls were used to compute detection P-values. 

Normal-exponential convolution model analysis was used to estimate non-negative 

signal. All probes and samples were quantile normalized, offset and log2 transformed 

[23]. Expression probes with detection p-values >0.01 in at least 5% of samples were 

removed. 

Bead-level methylation data were summarized in and collected from 

GenomeStudio. Methylation data were smooth quantile normalization (to adjust for color 

bias) normalized, background corrected (by subtracting the median intensity of the 

negative control probes), and quantile normalized across all samples with the R package, 

lumi. [23]. The final methylation value for each methylation probe was computed as the 

M-value [M is logit(beta-value)]. We collected these values from GEO, transformed the 

M-values to β-values and performed additional QC (concerning missingness and low 

signal intensity; as in the GTP methylation data).  

Transcript annotation. The Illumina HT12 probe locations were provided a re-

annotation of the array (Bioconductor packages illuminaHumanv3.db and 

illuminaHumanv4.db; Barbosa-Morais et al., 2010). Probes annotated as “bad” or “’no 

match” were removed from analysis. Each probe was assigned multiple genomic 

locations, based on the “GenomicLocation”, “SecondMatches”, and 

“OtherGenomicMatches” listed in the re-annotation. Refseq and Ensembl transcript and 

exon intervals for the HG19 build were collected from the UCSC table browser. When 
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exons for the same gene overlapped, the start and end points yielding the largest interval 

were taken to make a representative or average exon. Refseq and Ensembl gene 

information was annotated to each expression probe ID (using R Bioconductor package 

GenomicRanges; [52] if the probe interval overlapped the exon interval by more than 25 

bp. Where more than one gene exon overlapped the expression probe, poorly 

characterized genes (gene names beginning with KIAA, FLJ or LOC and those 

containing “orf”) and read-through transcripts were removed from the duplicates. The 

remaining duplicate gene names were compiled for that probe ID and the transcript area 

taken as the largest interval formed by the overlapping transcripts. Similarly, if 

overlapping transcript areas (transcription start site to transcription end site, including 

introns) existed for the same gene name in the Refseq or Ensembl tables, the minimum 

TSS and maximum TES were taken for the gene entry. Refseq or Ensembl tables with 

representative transcript intervals are referred to as average Refseq and  average Ensembl 

gene locations in the Materials and Methods section. 

Assignment of probe location. For each eCpG-transcript pair, all probe locations (for one 

Probe ID) were compared to the eCpG location. Probe locations were prioritized in the 

following order:  

1) The eCpG location fell within the gene annotated to one of the probe locations or 

up to 2,500 bp upstream of that gene’s TSS.  

2) The eCpG was within 1 megabase of the TSS of the gene annotated to one the 

probe locations. 

3) The eCpG was on the same chromosome as one the probe locations. 
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If more than one probe location fell into the highest priority group, they were further 

filtered by the following criteria until one probe location was chosen: locations annotated 

to a gene are preferred, locations marked as GenomicLocation > SecondMatches > 

OtherGenomicMatches, locations in which the eCpG was closest to the TSS of the 

annotated gene were preferred. If all probe locations were on different chromosomes than 

the eCpG, probe locations were chosen as follows: locations annotated to a gene are 

preferred, locations marked as GenomicLocation > SecondMatches > 

OtherGenomicMatches.  
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CHAPTER V. Discussion 

Common challenges emerge from different epigenetic studies 

DNA methylation is central in the study of human epigenetics. This work 

addresses two key aspects of DNA methylation: how patterns change in response to 

environment and how those changes have downstream biological effects. Chapters II and 

III provide evidence that environmental exposures and time play an important role in the 

dynamics of DNA methylation over a person’s lifetime. The results presented in Chapter 

III suggest that exposures, like irradiation, can leave a lasting imprint on the DNA 

methylome, and that imprint in turn may account for some of the risk associated with 

radiation exposure. While this information is surely important to keep in mind as humans 

set a course for space, it also has terrestrial applications in radiation oncology and other 

modes of radiation exposure. Chapter IV proposes that DNA methylation can have far-

reaching associations in gene expression, potentially through previously undescribed 

channels such as non-coding RNAs. The results of this study suggest that the role of 

DNA methylation in the genome might not be as straightforward as previously thought.  

However different these two studies of DNA methylation might be, common 

themes emerge and highlight key areas where progress can be made in epigenomics, both 

in methodology for analysis and in interpretation of results. As is representative of all 

epigenomic studies, the conclusions that could be drawn in Chapters III and IV were 

limited by potential confounding due to cell type heterogeneity and other unmeasured 

factors, but this was partially addressable through the use of appropriate statistical 

methodologies. In terms of results, both studies yielded large sets of associated CpG sites 

to be interpreted, and the leveraging of several sources of –omics data broadened the 
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interpretability of results in both studies. Results like those presented in Chapter IV have 

the potential to similarly enhance interpretation of results in future studies, and represent 

a resource to the field and a source of novel insights into the regulatory role of DNA 

methylation. Lastly, in addition to new insights into the human epigenome, both studies 

provide a wealth of new hypotheses that can and should be corroborated, ex silico. The 

remaining sections discuss each of the issues raised above, in turn, followed by a brief 

reflection on how my doctoral work fits within the field of epigenomics. 

Overcoming statistical confounding 

 Statistical confounding in EWAS is a daunting hurdle. Common sources of 

confounding are cell-type proportion and age [1]. Although the ICE framework [2] was 

effective in correcting for unknown confounding in Chapter IV, controlling statistical 

inflation was more far more challenging in GTP than in MESA. The Houseman method 

[3], which is currently a gold-standard bioinformatic approach for inferring and 

accounting for cell-type proportion differences between samples, could not ameliorate the 

confounding in the model of GTP associations. While one can never be certain of the 

sources of confounding, it is tempting to postulate that the root of the problem was the 

mixed cell type in GTP’s whole blood samples. For EWAS to be successful, samples that 

are of a single cell type are ideal. However, while this ideal is difficult to meet in any 

study of human subjects due to the heterogeneity of non-invasively collectible tissues 

(such as whole blood) and the costs involved in flow sorting, it seems nearly impossible 

in cancer studies, where tumors can be highly heterogeneous [4]. It is precisely because 

sources of statistical confounding can be difficult to identify, that regression frameworks 
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that account for unknown confounding, like ICE, should be considered for use in EWAS 

studies.  

Although it is generally accepted that DNA methylation patterns can and do 

change with time in individuals, Chapter III also shows that methylation patterns in 

cultured cells change drastically over time. This sort of confounding is relatively easy to 

control in one experiment or laboratory, as time in culture and passage number are known 

values. The harder, and perhaps more important question to answer is how comparable 

cell cultures from different studies or laboratories are, epigenetically. Genomics and 

epigenomics researchers often rely on publicly available data, which is often derived 

from cell cultures. Care must be taken to ensure that those data are appropriate to 

extrapolate to samples from other studies of a similar cell type. 

Combining –omics for improved interpretation 

 Chapters III and IV both combined results from other genome-wide, -omics 

studies. Both studies used the ChromHMM data from ENCODE [5] to assess annotated 

chromatin features (e.g., promoter, enhancer, heterochromatin) among CpGs associated 

with radiation exposure and among eCpGs of various type. They both also used a map of 

CpG islands available through the UCSC genome browser. DNA methylation data for 

two lung cancer studies, available through The Cancer Genome Atlas (TCGA; 

http://cancergenome.nih.gov/), were leveraged in Chapter III to reveal parallels between 

radiation-associated CpGs and epigenetic patterns in human lung cancer. Finally, Chapter 

IV utilized gene annotations [6, 7], transcription factor binding site maps, non-coding 

RNA maps [8, 9] (http://genome.ucsc.edu/) and HiC interaction maps [10] to reveal both 

direct and indirect ways that DNA methylation can associate with gene expression, 
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genome-wide. These resources are all publicly available and have the potential to vastly 

improve functional interpretation for many types of studies.  

While irradiation resulted in interesting epigenetic patterns in annotated 

functional categories at the chromatin-level, no clear gene-level associations could be 

inferred between radiation treatment and DNA methylation in Chapter III. As discussed 

in Chapter IV, it is not uncommon for EWAS to report genome-wide, moderately 

significant results. The DNA methylation patterns associated with the expression of each 

transcript in Chapter IV were often not near the TSS or gene body (non-canonical) and 

contained a mix of cis, distal and trans associations. Unfortunately, the epigenetic 

patterns of irradiation and gene expression identified in the two studies originated from 

two different tissues (lung vs. blood cells), making them incomparable across studies. 

However, had the two studies been conducted in similar cell types, the epigenomic 

patterns of transcription for each gene (Chapter IV) could have been compared to the 

EWAS results for irradiation (Chapter III) and could have potentially provided more 

gene-level insight. Going forward, studies of eCpGs in varying tissues could provide the 

epigenomics field with an invaluable tool for EWAS interpretation. 

As the field of epigenomics moves forward, studies and analytical methods will 

continue to employ larger sample sizes and more refined analytical methods, increasing 

statistical power. However, larger sample sizes are often balanced by a larger multiple 

testing burden, as technology allows for the collection of methylation data at increasing 

density. Where researchers were once assaying 27k [11] and then 450k CpGs [12], they 

are now assaying closer to 850k CpGs or utilizing whole genome bisulfite sequencing. 

While increasingly dense studies of the epigenome require an increasingly stringent 
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multiple testing burden, they also provide greater opportunities to understand the role of 

DNA methylation in health and disease. However, as revealed in Chapter IV, the 

regulatory role of specific CpG sites is not always straightforward, and asking more 

questions without the means for relevant interpretation is unlikely to advance current 

understanding. Resources like those listed above will be key to meaningful interpretation 

of results.  

Combining bench and population science  

Statistical and bioinformatic tools will continue to be fundamental tools for 

finding and interpreting associations of DNA methylation and a phenotype of interest, but 

they are currently (and will likely continue to be) hampered by reverse causation [1]. 

Because DNA methylation can change in response to environment, cross sectional and 

case-control studies of disease cannot easily differentiate between a CpG at which 

methylation plays a causal role in disease and a CpG at which methylation is a byproduct 

of processes related to disease.  

In order to fully understand the role of DNA methylation in the genome, in silico 

observations should be confirmed experimentally. This has proven more difficult for 

studies of epigenetics than genetics, where protocols exist for experimentally modifying 

DNA sequence. Listed below is a brief evaluation of a few experimental tools available 

to confirm the suspected roles of DNA methylation.  

The DNA demethylating drug, 5-aza-2′-deoxycytidine, is a cytidine analog that is 

incorporated into replicating DNA and will covalently bind to the catalytic sites of all 

three biologically active DNMTs, triggering their degradation. Treatment with 5-aza-2′-

deoxycytidine results in genome-wide loss of DNA methylation and has been shown to 
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activate transcription of epigenetically silenced genes in cancer (reviewed in [13]). 

However, this approach is non-specific and only targets a subset of genes [14–16]. 

Chapter IV evidences a phenomenon in which CpG methylation from multiple locations 

of the epigenome can influence gene expression. Treatment with a non-specific 

demethylating drug, like 5-aza-2′-deoxycytidine would not allow researchers to 

determine which specific methylation changes were driving changes in gene expression 

or which were responsible for the phenotype of interest. 

A more specific approach to testing bioinformatic findings in situ is through a 

reporter assay. Proposed regulatory elements can be inserted into vectors containing a 

CpG-free promoter and reporter gene (like luciferase [17–19]). Methylation can be 

induced in only the inserted element and the complete plasmid transfected into cultured 

human cells for assessment of luciferase activity. This assay is far more specific than 

drug treatment, but disregards native context, which may or may not be important. For 

instance, CTCF-bound insulator sequences can be vital for promoter-enhancer 

interactions [20], but would not be present in a reporter assay. 

Finally, in recent years, genome-editing tools like zinc-finger nucleases [21], 

transcription activator-like effector nucleases (TALENs) [22] and the CRISPR-Cas9 

system [23] have allowed researchers unparalleled ability to modify the genetic code. 

More recently, these same systems have been exploited to combine sequence specificity 

with the catalytic activity of epigenome-modifying enzymes, like histone 

methyltransferases and deacetylases, DNA methyltransferases and Ten-Eleven 

Translocation 2 [24–30]. Fusion proteins have allowed these systems to be used for 

epigenome editing. Although these approaches are still in their infancy, they represent a 
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promising leap in epigenetics. These systems have the potential to be far more specific 

than epigenetic drugs, while also allowing researchers to test epigenetic hypotheses in the 

native context of the genome.  

Conclusion 

DNA methylation is a dynamic mark in the epigenome with links to regulation of 

gene expression, age, environmental exposures and various diseases. This body of work 

has shed light on some of the ways in which epigenetic modifications bridge the gap 

between the genetic code and the phenotypic variation seen in every individual. It has 

shown that an individual’s environment can induce lasting epigenetic changes. It has also 

shown that these epigenetic changes can associate with changes to gene expression in 

unexpected ways. The conclusions drawn from this work are broad. Clearly, epigenetic 

changes must be considered, in addition to genetic mutations, with regard to space-travel 

and more broadly, radiation exposure. Environmental exposures will likely prove an 

important stochastic source of epigenetic variation, in general. Moreover, the function 

and role of DNA methylation in gene expression has been too narrowly defined. To draw 

accurate and meaningful conclusions from epigenomic studies, it is imperative that we 

understand the regulatory effects of changes to the epigenome. Finally, this work has 

highlighted key areas in which epigenomic studies will have to improve as the field 

moves forward. Epigenomics is key to understanding how the genetic code is translated 

into life and to understanding how each life is shaped. Perhaps the key to elucidating the 

results generated by epigenomic studies will be to work smarter, as well as larger. 
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