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Abstract 

 

Consensus clustering of subclone structure for multi-sample sequencing data 

By Hanyi Zheng 

 

Background: The tumor heterogeneity describes the heterogeneity in morphology and phenotype 

in tumor cells and is related to cancer therapeutics. The accurate assessment of tumor heterogeneity 

is an essential step for understanding how a tumor evolves and the determination of tumor 

subpopulation is a challenge. In this work, we present a combinatorial algorithm that can exploit 

samples from multiple time points over the development of the tumor within a single patient to 

determine the subclone cluster.  

 

Methods: We firstly estimated CCF (cancer cell fraction) and cluster information for each time 

point by implementing a hierarchical Bayes statistical model and MCMC process (Pyclone). After 

the imputation of co-clustering matrix, we used non-negative sparse coding to determine consensus 

cluster across all time points to avoid trivial cluster. Finally, we made adjustment to the covariance 

matrix and used BIC to decide the optimal number of clusters. 

 

Results: We use weighted CCF as the CCF for the cluster and observe the trend of each cluster. 

For PR42, k=5 is the optimal cluster number and every cluster has a unique trend. For PR44, the 

whole trend for mutations goes down then goes up, which implies that the therapy does well at 

first but then lost its effect. For PR240 we found that the therapy is ineffective for this patient at 

all since the trend of CCF for all clusters across all K increases with time. 

 

Conclusions: This study presents a combinatorial algorithm to decide the subclone cluster of 

multi-timepoints tumor gene data. The model works well when data does not have a high 

percentage of missing mutations. Besides, the purity of the sample and the trivial clusters generated 

by Pyclone can affect the results. We also found that missing mutations directly impact the co-

clustering matrix and covariance matrix in the BIC step. 
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1.Introduction 

Cancer is a dynamic disease that results from gene mutations. These mutations are caused by 

environmental factors like tobacco and accumulate during an individual’s lifetime[1]. The 

accumulation of mutations leads to heterogeneity among tumor cells. The tumor heterogeneity 

describes the heterogeneity in morphology and phenotype in tumor cells, such as variations in 

cellular morphology, gene expression, copy number, and other aberrations[2]. Tumor 

heterogeneity is related to cancer therapeutics, and causes difficulties in developing effective 

therapies[3, 4]. 

 

The accurate assessment of tumor heterogeneity is an essential step for understanding how a tumor 

evolves[5]. The clonal evolution model of the tumor was first postulated by Nowell in the 1970s. 

It points out that all tumor cells descend from a single mutated cell, accumulating other mutations 

in the progress. Some cells are more competitive than other cells for clonal expansion and therefore, 

can proliferate quicker to become dominant subclones[6]. This process is called “clonal 

expansion”. Tumor evolves into multiple subpopulations during the subsequent clonal expansion, 

with each subpopulation harboring specific mutations.  

 

Determine tumor subpopulation is a challenge. Nowadays, sequencing technology enables 

performing large-scale molecular profiling of tumors to comprehend cancer development and 

determine disease progression[1]. Theoretically, single-cell sequencing gives access to a more 

fine-scaled level of tumor heterogeneity than bulk sequencing data, however, this method is not 

widely used due to high cost[7]. Inferring the tumor’s subclone composition by analyzing 
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massively parallel DNA sequencing data is the most popular way[8]. In this way, Cancer Cell 

Fraction (CCF) of each subclone cluster can be calculated from read depth and variat information. 

 

Single-nucleotide variants (SNVs) and copy number aberrations (CNAs) are widely used variat 

types for the determination of tumor subpopulation. Recent studies reconstructing the subclone 

architecture of tumor focusing on either SNVs or CNAs or both. SNVs based method firstly 

estimates CCF from variant allele frequency (VAF) of SNPs, then clusters SNVs with similar 

CCF[9]. CNA-based get allelic imbalances from B-allele frequency (BAF). 

 

Computational tools are developed according to different data types. Clonality inference in tumors 

using phylogeny (CITUP) is a typical SNVs based method. It is based on an exact Quadratic 

Integer Programming (QIP) formulation[10], with a model assuming that the copy number is two. 

Many methods such as PhyloSub and PyClone add CNAs into the model to relax this assumption. 

Monte Carlo Markov chain (MCMC) sampling is widely used in this category of methods[11]. 

PhyloSub is based on Bayesian inference and MCMC sampling paradigm to infer a distribution 

over all possible phylogenies. PyClone is another clonal inference approach that is also based on 

MCMC and Bayes statistics, but this method generates many trivial clusters (cluster that only 

contain 1 mutation)[12]. 

 

In this article, we present a combinatorial algorithm that can exploit samples from multiple time 

points over the development of the tumor within a single patient to determine the subclone cluster. 

Our framework also includes MCMC to estimate CCF and cluster information for each time point, 

but unlike the previous approaches mentioned earlier, non-negative sparse coding and BIC test are 
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used to determine consensus cluster across all time points to avoid trivial cluster. In the event that 

one mutation is often missing at more than one timepoints, our method considers the linear 

relationship between each time point and takes low read depth data into consideration, treat those 

mutations differently according to the different scenarios. The method performs well for the 

sequencing data from the biopsy sample, which has lower purity than the tumor sample.  
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2 Methods 

2.1 Data Collection and Cleaning 

Prostate cancer is the most commonly diagnosed non-cutaneous cancer and the second leading 

cause of cancer death is in the United State[13]. The data are plasma genome sequencing data of 

prostate cancer from The University of Texas MD Anderson Cancer Center. The dataset includes 

10 patients with prostate cancer, among those patients, 1 have data recorded at 5 time points, 2 

have data at 4 time points, 1 have 3 time points’ data and 6 of them have recorded at 2 time points. 

We focus on 4 patients that have data collected at more than 2 time points since this project aims 

to determine multiple time subclone clustering.  

For each mutation, the related information was recorded: Mutation position, gene name, read depth 

for reference, read depth for variation and copy number. Some mutations only had read depth = 1 

or 2 at some time points, and they were too small to be considered as reliable.  We treated the 

mutation that with low read depth as missing: 

𝑥 = {
0, 𝑥 < 3
𝑥, 𝑥 ≥ 3

    , x: read depth  

And for mutations that only occurred at first time point but missing in all time points followed, we 

treated them as outliers and delete them. 

 

2.2 Pyclone 

Pyclone is a statistical method for inferring cancer clonal population structures. Based on reading 

depth (reference allele and variation allele) and copy number (normal, minor and major copy 

number) information, Pyclone can estimate CCF of each mutation by implementing a hierarchical 

Bayes statistical model, also clustering structure can be imputed at the same time. The framework 

of Pyclone includes four parts: 
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(1) Beta-binomial emission densities.  

Pyclone uses beta-binomial emission densities instead of binomial models that previous methods 

use. It is shown that the beta-binomial emission densities is more effective and accurately because 

it models data sets with more variance in allelic prevalence measurements. The clustering result 

by Pyclone is more credible according to the account of higher accuracy of allele prevalence 

variance modeling. The overdispersion problem can be addressed by the beta-binomial model. 

 

(2) Flexible prior.  

Sometimes the available information is not enough and causes low confidence in reconstruction. 

Pyclone takes this situation into consideration and uses flexible prior probability to estimate 

possible mutant genotypes, reflecting how the allele prevalence measure is linked to zygosity and 

copy number variants. 

 

(3) Bayesian nonparametric clustering.  

Pyclone uses Bayesian nonparametric clustering to find the mutation groups and group numbers  

at the same time. This avoids determining the number of groups a priori and allows estimation of 

cell prevalence to reflect the uncertainty of this parameter[13].  

 

(4) Section sequencing.  

Pyclone can perform joint analysis on multiple samples at the same time to take advantage of the 

scenario where cloned populations are shared between samples.  
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Based on the framework and MCMC process, Pyclone outputs the clustering and CCF (or cellular 

frequency) with high confidence but remains shortcomings since many trivial clusters are 

generated. For example, for a sample with 76 mutations, Pyclone divides those mutations into 47 

clusters, with 44 clusters only have 1 mutation.  

 

We use the CCF and cluster information that Pyclone inferred for further analysis. However some 

mutations may miss at some time points, this leads to the mutation number differ at each time point 

for the same patient and causes difficulties in building the consensus co-clustering matrix for 

deciding the clustering structure. 

 

 

 

 

2.3 Co-Clustering matrix imputation 

In order to fix the problem of inconsistent mutation data at different time point, we find ways to 

deal with the imputation work. Based on the result from Pyclone, we build XTX co-clustering 

matrix at each time point, where X is the mutation number across all time points. The below is an 

example of the co-clustering matrix. 

 
mtt_1 mtt_2 mtt_3 mtt_4 mtt_5 mtt_6 

mtt_1 1 1 0.5 0.7889 0 0 

mtt_2 1 1 0 0 0 0 

mtt_3 0.5 0 1 0.5 0 0 

mtt_4 0.7889 0 0.5 1 0 0 

mtt_5 0 0 0 0 1 1 

mtt_6 0 0 0 0 1 1 

mtt_5 0 0 0 0 1 1 

mtt_6 0 0 0 0 1 1 
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For each time point: 

(1) If two mutations both exist at this time point: 1 means two mutations are in the same cluster, 

like mutation_1 and mutation_2 in the example, and 0 means they are in different clusters such 

mutation_1 and mutation_5. 

(2) If at least one of the pair is missing, which means we don’t have the clustering information 

between these two mutations, we would refer to the matrix at the nearest neighboring time that 

both mutations exist. There are two cases here:  

a. This time point is the edge; For example, if this is the first time point, then we would use the 

value at the second time point in the same cell of matrix (if the cell of second time point is still 

missing then use the third).  

b. This time point is in the middle, the mean of the same cells for neighboring matrix would be 

taken. Such as mutation_1 and mutation_3, one of them is missing at this time point, but they are 

in the same cluster at one of the neighboring time points and not cluster together at the other. 

(3) If two mutations never exist together across all time points. In the situation that always at least 

one of the mutations is missing at all time points, which means we cannot take advantage of the 

neighboring matrix. The off-diagnose mean of the matrix would be used, like what happened to 

mutation_1 and mutation_4 in the example. 

 

We have K equal rank matrixes after all imputation work are finished, then non-negative sparse 

coding is used to determine the consensus clustering structure. 
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2.4 Non-negative sparse coding 

Non-negative sparse coding is a method to decompose multivariate data into non-negative sparse 

components. It is a combination of sparse coding and non-negative matrix factorization[14]. 

 

2.5 Deciding optimal number of clusters  

Bayesian information criterion (BIC) is originally used in model selection, the smaller the BIC the 

better the model. In this project, we use BIC in deciding the optimal cluster number.  

Assume in each cluster, the CCF of mutation follows normal distribution: 

 

Where 𝑖 is mutation, 𝑘 is cluster and 𝑡 is time point. 𝑥𝑖𝑘 denotes to the CCF of 𝑖𝑡ℎ mutation in 

cluster 𝑘. 𝜇𝑘  means the mean of CCF for cluster 𝑘 and 𝛴𝑘is the covariance matrix for cluster 𝑘 

However, for some clusters, all the mutations inside are missing at some timepoints and causes 

𝜎𝑘𝑡
2 = 0 for cluster k and time t. In this regard,  𝛴𝑖 becomes rank-deficient and makes the trouble 

in subsequent calculations for BIC. Therefore, we find a way to fix this problem by adjust the 

covariance matrix. 
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2.5.1 Covariance matrix adjustment 

For clusters that all mutations inside are missing in at least one time point, which means for cluster 

𝑘 at time 𝑡, 𝜇𝑘𝑡=0 and 𝜎𝑘𝑡
2 = 0, we use the variance of the neighboring time point which has the 

most represented mutations for that cluster as the reference. The way for determining the reference 

time point 𝑡∗ for variance is shown below: 

(1) If 𝑡 = 1  or 𝑡 = 𝑇, then the reference time point should be the nearest time point that has 

𝑝𝑘𝑡∗ >0.5, where 𝑇  is the number of time point for data, 𝑝𝑘𝑡∗  is the frequency of the existing 

mutations in cluster 𝑘 at time 𝑡,  𝑝𝑘𝑡 =  𝑛𝑒𝑥𝑖𝑠𝑡/𝑛𝑘.  

(2) If  1 < 𝑡 < 𝑇, same as the previous case, reference time point is the nearest time point that has 

𝑝𝑘𝑡∗>0.5. However, if  𝑝𝑘(𝑡+1) > 0.5 and 𝑝𝑘(𝑡−1) > 0.5, we are going to compare 𝑝𝑘(𝑡+1) 𝑝𝑘(𝑡−1) 

and use the time that has larger 𝑝 as the reference. 

(3) If for all time points the 𝑝𝑘𝑡 ≤ 0.5, then the 𝑡∗ should be the time point that has the largest 𝑝𝑘𝑡 

 

Once the reference time point 𝑡∗, the modification of the covariance matrix would be straight 

forward. 𝜎𝑘𝑡
2 = 𝜎𝑘𝑡∗

2  and 𝜎𝑘𝑡𝑡 ∗ = 0.95 𝜎𝑘𝑡∗,  𝜎𝑘𝑡𝑡1
=  𝜎𝑘𝑡∗𝑡1

, where 𝑡1 is the time point other than 𝑡 

and 𝑡∗. For example, below is a covariance matrix where 𝑡 = 𝑇𝑖𝑚𝑒3 and 𝑡∗ = 𝑇𝑖𝑚𝑒1 

 

 

 Time1 Time2 Time3 

Time1 0.014688 0.001307 0.013954 

Time2 0.001307 0.003847 0.001307 

Time3 0.013954 0.001307 0.014688 
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2.5.2 likelihood function 

Based on this, the likelihood function for cluster k is: 

  

Where 𝑧𝑖 = {
1,   assigned cluster 
0, otherwise             

 

 

Then the log-likelihood can be calculated as below:   

 

BIC for cluster number = 𝐾 is: 

𝐵𝐼𝐶 = −2 × 𝑙𝑙 + 𝑇(𝐾 − 1)𝑙𝑜𝑔(𝑛) 

Where 𝐾: cluster number; 𝑇: number of time points for the sample; 𝑛: mutation number for the 

sample. 𝑇(𝐾 − 1)𝑙𝑜𝑔(𝑛) is the penalty for BIC 

 

By comparing BIC for each  𝐾, the optimal number of clusters can be decided 
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3. Result  

3.1 Data summary 

For 4 samples that have more than 2 time points: PR42, PR44, PR240 and PR246, after the data 

cleaning step in 2.1, the data summary is shown below: 

Table 1 Data summary 

Sample Type Time point Purity Mutation num Total mutation num 

PR42 

Castration resistant Time1 (therapy) 0.185 43 86 

 Time2 0.737 76  

 Time3 (12 months after T1) 0.705 83  

PR44 

Castration resistant Time1 (therapy) 0.338 111 

131 

 Time2 (20 days after T1) 0.131 85 

 Time3 (13 months after T1) 0.349 125 

 Time4 (14 months after T1) 0.236 129 

PR240 

Castration sensitive Time1 (therapy)  0.461 7 

83 

 Time2 (3 weeks after T1) 0.091 7 

 Time3 (6 weeks after T1) 0.039 19 

 Time4 (18 weeks after T1) 0.058 41 

Castration resistant Time5 (24 weeks after T1) 0.139 72 

PR246 

Castration sensitive Time1 (therapy)  0.049 73 

142 

 Time2 (3 weeks after T1) 0.051 80 

 Time3 (12 weeks after T1) 0.147 129 

Castration resistant Time4 (24 weeks after T1) 0.247 141 

 

There are two sample types: castration sensitive and castration resistant. Castration sensitive/ 

resistant is a sign of treatment effectiveness. PR42 has 3 time points, PR44 and PR246 have 4 and 

PR240 has 5 time points. Time intervals between each time point are described in brackets. Purity 

denotes to the cancer cell fraction of the plasma sample. Mutation num is the number of mutations 

that exist at that time point and the total mutation num is the total mutation number of the sample. 
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For example, PR42 includes 86 mutations, but at time 1 half of them are missing, and 10 of these 

86 mutations are missing at time2. 

From the summary table above, for the same patient the purity can be much different between each 

time point. Take PR240 as an example, the minimum purity is 0.039 and the maximum is 0.461, 

also the missing mutation numbers across time points are unbalancing for PR240. 

 

3.2 Result of Pyclone 

For 4 samples (PR42, PR44, PR240, PR246), the output of Pyclone of each time point are all have 

many trivial clusters (cluster size >1), in fact, most of clusters are trivial clusters (Table 2).  

Table 2 Pyclone output summary 

Timepoint K 
Number of trivial 

clusters 

Nontrivial 

cluster size 
Purity 

Number of 

mutations 

Number of 

missing 

pr42 

T1 21 17 11; 8; 5; 2 0.186 43 43 

T2 47 44 16; 10; 6 0.737 76 10 

T3 30 27 29; 21; 6 0.705 83 3 

pr44 

T1 7 6 105 0.13 111 20 

T2 7 4 77; 2; 2 0.35 85 46 

T3 4 1 115; 5; 4 0.24 125 6 

T4 16 15 114 0.32 129 2 

pr240 

T1 6 5 2 0.461 7 76 

T2 5 4 3 0.091 7 76 

T3 5 4 15 0.039 19 64 

T4 4 3 38 0.058 41 42 

T5 2 1 71 0.139 72 11 

pr246 

T1 9 8 65 0.049 73 69 

T2 15 14 67 0.051 80 62 

T3 24 22 105; 2 0.147 129 13 

T4 5 4 137 0.247 141 1 
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For each sample in every time point, K is the number of clusters. At time 1 PR42 has 21 clusters 

but 17 of them only have 1 mutation inside, and 4 nontrivial clusters include 11/8/5/2 mutations 

respectively. Trivial cluster indicates that the mutation in that cluster has CCF that much different 

from others. However, if most of the clusters are trivial cluster then little information can be 

gathered from them since if every mutation assigned to different then it doesn’t imply anything.  

 

 

3.3 Consensus cluster  

3.3.1 weighted CCF 

We use weighted CCF as the CCF for the cluster, where the CCF weighted by the total read depth 

of the mutation is used as the CCF of the cluster, the formula is shown below: 

𝐶𝐶𝐹𝑘𝑡 = ∑
𝑅𝑖𝑘𝑡

𝑅𝑘𝑡

𝐼

𝑖=1

× 𝐶𝐶𝐹𝑖𝑘𝑡 

Where 𝑖 is the mutation, 𝑡 is time point and 𝑘 is the cluster. 𝐶𝐶𝐹𝑘𝑡  is the weighted CCF for cluster 

𝑘 at time 𝑡. 𝑅𝑖𝑘𝑡 denotes to Total Reads of mutation 𝑖;  𝑅𝑘𝑡   = ∑ 𝑅𝑖𝑘𝑡
𝐼
𝑖=1  
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3.3.2 PR42 result 

After co-clustering matrix imputation, non-negative sparse coding and covariance matrix 

adjustment step, BIC is calculated for different cluster numbers (Table 3). Log-likelihood and 

penalty are all increases with K, which is consistent with the theoretical definition of Log-

likelihood.  

 

                                          Table 3 PR42 BIC info 

K Log-likelihood Penalty BIC 

2 76.45191 13.36304 -139.54077 

3 95.61794 26.72608 -164.50979 

4 134.25475 40.08913 -228.42037 

5 167.43204 53.45217 -281.4119 

6 165.79089 66.81521 -264.76657 

 

 

                                   Figure 1 PR42 BIC for different clusters 

 

BIC has the smallest value when K=5 (Figure 1), thus we choose 5 as the optimal number of 

clusters for PR42 
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    Figure 2 PR42 CCF trend 

 

Mutations in this sample are split into two at CCF=0.5 (Figure 2. PR42 k=2). The two clusters in 

k=2 divided into 2 or 3 as k increase and BIC has the largest value at cluster number equal to 5. 

When k=5 every cluster has a unique trend. Cluster 0 (red line) and Cluster 2 (green line) have 

high frequency (CCF>0.5) but one goes up and one goes down. The rest three cluster have lower 

CCF and among them, Cluster 3 (blue line) goes down over time. This means the therapy at time 

1 is effective for cluster 0 and cluster 3 but does not work well for the other 3 clusters. 
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3.3.3 PR44 result 

PR44 is the one with the least missing mutations. The BIC is small at k=2, k=3 and k=5 

 

                                             Table 4 PR44 BIC info 

K Log likelihood Penalty BIC 

2 750.61491 19.50079 -1481.73 

3 630.08244 39.00158 -1221.16 

4 619.1102 58.50237 -1179.72 

5 630.98579 78.00316 -1183.97 

6 509.92691 97.50395 -922.35 

 

 

 

                             Figure 3 PR44 BIC for different clusters 
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Figure 4 PR44 CCF trend 

 

The whole trend for mutations in PR44 goes down then goes up, which implies that the therapy 

does well at first but then lost its effect. When k=2, two clusters have a similar trend that CCF 

decrease during Time1 and Time2 then goes up after that. Cluster 0 and Cluster 1 almost have the 

same CCF at Time1/3/4 and only differ at Time2. When k=3/5 the situation is similar to k=2 with 

the same trend. 
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3.3.4 PR240 result 

PR240 is a special case that only has 7 mutations at time 1 and time 2, 19 mutations at time 3 

(Table 1), with a total number of mutations = 83, which means most of the mutations come up 

after the therapy. This indicates that the therapy at Time1 is ineffective for this patient. A large 

amount of missing data also causes trouble in clustering. The co-clustering matrix at Time1 and 

Time2 are not reliable with more than 90% of mutation are missing since the imputation of the 

missing would highly depend on the other time point, and the trivial cluster problem increases the 

uncertainty of the imputation.  

                                              Table 5 PR240 BIC info 

K Log likelihood Penalty BIC 

2 214.5095 22.0942 -406.9247 

3 Special case 

4 182.18561 66.28261 -298.08861 

5 162.31066 66.28261 -258.33871 

6 201.03878 66.28261 -335.79495 

 

 

                                     Figure 5 PR240 BIC for different clusters 

BIC cannot be calculated at k=3 because of the big percentage of missing data. We got small BIC 

at k=2. 
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Figure 6 PR240 CCF trend 

The trend of CCF for all clusters across all K increases with time. When k=2, two clusters differ 

in the time that CCF goes up.  

 

3.3.5 PR246 

PR246 is castration sensitive at the beginning but becomes resistant later. It is abnormal that the 

log-likelihood decreased as K increases. in this regard, it seems 2 is the best selection of cluster 

numbers. 

                                           Table 6 PR246 BIC info 

K Log likelihood Penalty BIC 

2 640.99834 19.82331 -1262.17338 

3 540.71928 39.64662 -1041.79195 

4 500.80353 59.46992 -942.13713 

5 432.8657 79.29323 -786.43817 

6 478.16194 99.11654 -857.20734 
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                                 Figure 7 PR246 BIC for different clusters 

 

              

                          Figure 8 PR246 CCF trend 
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 4 Discussion 

This article aims to present a combinatorial algorithm to decide the subclone cluster of multi-

timepoints tumor gene data. This model works well when data does not have a high percentage of 

missing mutations. Besides, the purity of the sample and the trivial clusters generated by Pyclone 

can affect the results. 

 

Missing mutations directly impact the co-clustering matrix and covariance matrix in the BIC step. 

For the co-clustering matrix part, cells for missing mutations borrows information from 

neighboring time points and the off-diagonal mean of the matrix. In this circumstance, the 

information that the original matrix has may not enough for deducing the value of “missing cell” 

with more missing mutations. For example, PR240 only has 7 mutations at both Time1 and Time2, 

19 at Time3, thus the co-clustering matrixes for Time1/2/3 refer to Time4 and Time5. However, 

in Time5 almost all mutations belong to one cluster (Time5 have 2 clusters and one of them is a 

trivial cluster), so the information provided is insufficient to infer the missing cell in Time1/2/3. 

Similarly, the missing mutations also influence the covariance matrix. 

 

The method is based on the Pyclone process, therefore the trivial clusters from Pyclone could affect 

the consensus cluster determination and all processes followed. All samples have trivial clusters 

generated by Pyclone and lead to the inaccuracy of the co-clustering matrix. 

 

 

 

 



22 

 

Reference 

1. Tai, A.-S., et al., Decomposing the subclonal structure of tumors with two-way mixture 

models on copy number aberrations. PLOS ONE, 2018. 13: p. e0206579. 

2. Beerenwinkel, N., et al., Cancer Evolution: Mathematical Models and Computational 

Inference. Systematic biology, 2014. 64. 

3. Dagogo-Jack, I. and A.T. Shaw, Tumour heterogeneity and resistance to cancer therapies. 

Nature Reviews Clinical Oncology, 2018. 15(2): p. 81-94. 

4. Fittall, M.W. and P. Van Loo, Translating insights into tumor evolution to clinical practice: 

promises and challenges. Genome Medicine, 2019. 11(1): p. 20. 

5. Deshwar, A.G., et al., PhyloWGS: Reconstructing subclonal composition and evolution 

from whole-genome sequencing of tumors. Genome Biology, 2015. 16(1): p. 35. 

6. Bolli, N., et al., Heterogeneity of genomic evolution and mutational profiles in multiple 

myeloma. Nature Communications, 2014. 5(1): p. 2997. 

7. Dentro, S., D. Wedge, and P. Loo, Principles of Reconstructing the Subclonal Architecture 

of Cancers. Cold Spring Harbor Perspectives in Medicine, 2017. 7: p. a026625. 

8. McGranahan, N. and C. Swanton, Clonal Heterogeneity and Tumor Evolution: Past, 

Present, and the Future. Cell, 2017. 168: p. 613-628. 

9. Jiao, W., et al., Inferring clonal evolution of tumors from single nucleotide somatic 

mutations. BMC Bioinformatics, 2014. 15(1): p. 35. 

10. Malikic, S., et al., Clonality inference in multiple tumor samples using phylogeny. 

Bioinformatics, 2015. 31(9): p. 1349-1356. 

11. Qiao, Y., et al., SubcloneSeeker: a computational framework for reconstructing tumor 

clone structure for cancer variant interpretation and prioritization. Genome Biology, 2014. 

15(8): p. 443. 

12. Roth, A., et al., PyClone: statistical inference of clonal population structure in cancer. 

Nature Methods, 2014. 11(4): p. 396-398. 

13. Fraser, M., et al., Genomic hallmarks of localized, non-indolent prostate cancer. Nature, 

2017. 541(7637): p. 359-364. 

14. Yuan, L., W. Liu, and Y. Li, Non-negative dictionary based sparse representation 

classification for ear recognition with occlusion. Neurocomputing, 2015. 171. 

 


