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Abstract

Some Mathematical Problems in Design of Free-Form Mirrors and Lenses
By Hasan Palta

In this dissertation, we investigate several optics-related problems. The
problems discussed in Chapters 1, 2 and 3 are concerned with the determina-
tion of surfaces reshaping collimated beams of light to obtain a priori given
intensities on prescribed target sets. In optics, such transformations are per-
formed by lenses and/or mirrors whose shapes need to be determined in order
to satisfy the application requirements. These are inverse problems, which
in analytical formulations lead to nonlinear partial differential equations of
Monge-Ampère type. In Chapter 4, we present several different designs of
radiant energy concentrators. Our goal in these designs is to obtain a device
that can capture solar rays with maximal efficiency.
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Chapter 1

The Design of a Free-Form Lens

1.1 Introduction to the Problem

The lens design problem consists in determining a pair of refractive sur-

faces transforming an input plane wave of light with a given intensity

distribution into a coherent plane wave of the same direction illuminating

a given target set with a prescribed in advance output intensity. Many

important practical applications of solutions to this problem and its exten-

sions are possible. These include design of corrective lenses in ophthal-

mology (contact lenses and eyeglasses), imaging systems such as monocu-

lars, binoculars, telescopes, microscopes, cameras and projectors, dielectric

lenses, used in radio astronomy and radar systems and commonly called

lens antennas, which are required to refract electromagnetic radiation into

a collector antenna. The use of relatively large lenses to concentrate solar

energy on small photovoltaic cells, harvesting more energy without the

need to use larger and more expensive cells, is another important applica-

tion.

Lens design problems have been extensively studied by many scientists

in the past century. However, most of these studies treat this problem

under the apriori assumption of rotational or some other symmetry of the

data and solution. This assumption limits severely the flexibility of design
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and excludes important applications in which such symmetries are not

available. Consequently, in recent years there has been a huge surge in

research in the field of design of free-form lenses and mirrors with the

focus on the development of methods capable of designing lenses and

mirrors without any apriori assumptions of symmetry of the data and

solution. The two-lens problem discussed in this chapter is one of the

central problems in this area.

Even in the rotationally symmetric case this problem is not simple and

has been studied by many researchers. Pioneering work on this case

was carried out by Frieden [5] and Kreuzer [13]. More recently, a special

case leading to nonconvex free-form lenses was studied by Rubistein and

Wolansky [24, 25]. These researchers developed a “weighted least action”

principle based on a dynamic interpretation of the problem. In [20, 21]

Oliker developed a geometric approach and, by combining it with meth-

ods of mass transport theory, he succeeded in building a comprehensive

variational theory of weak solutions in all practically important cases.

In this chapter, we investigate an alternative approach in which the mass

transport theory component in Oliker’s work is replaced by a minimization

method discovered earlier also by Oliker and applied by him and his

research collaborators to various antenna and mirror design problems (see

[1], [11], [12]). It was also used widely in the optics community (see [2],

[3], [4], [14], [15], [17]). We show that this approach can also be used

to investigate existence and uniqueness of solutions. Furthermore, this

approach is constructive and we use it to develop a computational method

for solving the problem numerically. The results of this chapter related to

the existence of solutions in Section 1.5.2 and the method of constructing

their numerical approximation in Section 1.6 are obtained jointly with Prof.

V. Oliker.

We describe the problem as follows. Let us consider the Cartesian coor-
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dinate system in RN+1 and let (x, z) = (x1, . . . , xN, z), where z is the vertical

axis perpendicular to the hyperplane α := {z = 0}. Let B1 be a beam of

light rays propagating parallel to the z-axis in the positive direction ~k. Let

us denote the intersection of the light beam with the plane α by D̄, which

is the closure of the bounded domain D ⊂ RN. These rays refract at two

different surfaces in the following manner.

Figure 1.1: The lens design problem

Let n > 0 be the relative refractive index between two different media.

That is, if medium I and medium II have refractive indices of n1 > 0 and

n2 > 0, then n = n1/n2 (see Figure 1.1). This normalization permits us to

think of medium I as having refractive index of n and medium II as having

refractive index of 1. Define the first refractive surface R1 by (x, z(x)), x ∈ D,

where z is a smooth function. The rays in medium I refract at the surface

R1 and reach a second surface R2. Then, they refract once again so as to



10

propagate parallel to the ~k direction again until they reach the hyperplane

αd, located at a distance d > 0 above the hyperplane α. The intersection of

the light beam and the hyperplane αd is denoted by T̄d, and the projection

of the latter onto α by T. Note that the refractive index in the medium

between R2 and αd is also equal to n. We can therefore label all the rays in

the last medium as (p,w(p)), p ∈ T̄, where w is a function defined on T̄.

It is possible to track each ray by tracing the ray at x ∈ D̄ reaching the

point (p, d) ∈ T̄d. This would define a mapping Pd : D̄→ T̄d, which can be

rewritten as Pd(x) = P(x) + d~k.

Definition 1.1. The mapping P : D̄→ T̄ is called the refractor map.

The following physical quantities will be crucial in our work.

The optical path length (OPL) is defined by

l(x) := n · z(x) + |(x, z(x)) − (P(x),w(P(x)))| + n · (d − w(P(x)) (1.1)

where the absolute value stands for the length of the vector. It is a fact that

the OPL, l(x) = l, is constant. Also, the input light intensity I(x), x ∈ D̄, will

be the intensity of light entering the system through the hyperplane α. The

output light intensity L(p), p ∈ T̄, will be the intensity of the light reaching the

hyperplane αd = {z = d}. We assume that the system is perfectly energy-

preserving; i.e. no light (or energy) is lost during refraction. Therefore, the

following equality holds: ∫
D

I(x)dx =

∫
T

L(p)dp. (1.2)

We consider a two-lens system where R1 is the outer boundary to the top of

a lens with the bottom side planar and perpendicular to the z-axis (which

is actually inactive) and R2 is the outer boundary to the bottom of another

lens with the upper side of the lens planar and perpendicular to the z-axis

(and thus inactive as well). Actually, without loss of generality, we can
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consider the first lens as the region between α and R1 and the second lens

as the region between R2 and αd. Now, we can state the two-lens problem.

Let d, l > 0 and n > 1 be constants so that l − nd , 0. Let the compact

regions D̄ ⊂ α and T̄d ⊂ αd also be given and accompanied by the input

intensity I ∈ L1(D̄), I ≥ 0, I . 0 and supp(I) ∈ D̄. Let the output intensity

be given by a Radon measure µ defined on T̄. We are required to find the

two surfaces R1 and R2 such that:

1. The beam of light penetrating into the system at the hyperplane α

travels through medium I with index of refraction n in direction ~k

and refracts at the surface R1 and then moves through medium II

with refractive index 1 until it reaches the second refracting surface

R2, where the rays will refract once again and enter the last medium

with refractive index n again and continue their trajectories also in

direction ~k until they finally reach the target set T̄d.

2. The input intensity I(x) on D̄ is transformed by the mapping Pd into

the intensity distributionµ on T̄d. (Writeµ(U) for any Borel set U ∈ T̄).

3. The OPL is set as a constant:

l(x) = l,∀x ∈ D̄

4. In order to make physical sense, the surfaces R1 and R2 are required

not to intersect; that is,

z(x) < w(p),∀(x, p) ∈ D̄ × T̄

1.2 The PDE Describing the Two-Lens Problem

We apply two fundamental principles of geometrical optics to derive the

differential equation:
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1. Snell’s Law of Refraction

2. The conservation of energy law for energy transfer along infinitesi-

mally small tubes of rays throughout the system.

The constancy of the OPL is a corollary of Snell’s Law of Refraction and

the requirement that the input and output fronts are parallel and both

orthogonal to the z-axis [20].

Snell’s Law also implies that the refracted ray at R1 has the direction

~y = n ·~k +
M − n√
1 + |∇z|2

~n (1.3)

where ~n is the unit normal vector field on R1 and

M =

√
1 + (1 − n2) |∇z|2. (1.4)

A necessary physical condition is that
〈
~n,~k

〉
> 0. Introduce the reduced

optical path length (ROPL) β = l−nd. Note here that the ROPL could be either

positive or negative depending on the way the problem is constructed.

The domains D̄ and T̄ are connected via the mapping

P(x) = x −
β

M
∇z, x ∈ D̄. (1.5)

In order for P to make physical sense, we need to have 1 + (1− n2) |∇z|2 > 0

or

|∇z|2 <
1

n2 − 1
.

Recall that the lenses are considered to be energy-preserving. So, the input

energy ∫
W

I(x)dx (1.6)

is redirected and redistributed over Pd(W) for any subset W ⊂ D. The

expansion (or contraction ratio) is given by 1
J(Pd) where J is the Jacobian
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operator. As a result, the Radon measure µ = L(p)dp on T̄ for L ∈ L1(T̄),L ≥

0, together with the input density I(x)dx are connected via the PDE

L(P(x)) |J(P(x))| = I(x),∀x ∈ D̄. (1.7)

In summary, the two-lens design problem for smooth solutions is as fol-

lows:

Suppose we are given bounded open domains D,T ⊂ α = {z = 0} with

smooth boundaries, non-negative functions I ∈ L1(D̄), L ∈ L1(T̄) and num-

bers n > 1, l and d > 0 such that

β = l − nd , 0. (1.8)

The class of smooth solutions to the lens problem requires:

1. The determination of z ∈ C2(D) ∩ C1(D̄) such that P : D̄ → T̄ is

surjective (onto).

2. The relation I(x) = |J(P(x))| · L(P(x)) be satisfied in D.

The graph of a function z describes the surface R1. The second refracting

surface R2 is given by the function:

w(P(x)) = z(x) +
β

1 − n2

(
n +

1
M

)
, x ∈ D̄, (1.9)

where M =

√
1 + (1 − n2) |∇z|2. The requirement that w(p) > z(x),∀(x, p) ∈

D̄ × T̄ implies the condition β
1−n2 > 0 or β < 0⇔ n > 1.

1.3 Geometry of Refractors

1.3.1 Refracting Hyperboloids

Let n > 1 and β < 0 be given constants. For a quadruple
(
x, p, ξ, η

)
∈ α2
×R2,

put

l̂(x) =

√∣∣∣x − p
∣∣∣2 + (ξ − η)2 − n · (η − ξ).
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Now, set c(x, p) =

√
β2 + (n2 − 1)

∣∣∣x − p
∣∣∣2. Note that since β < 0 and n > 1,

this quantity is well-defined. Also define

C(x, p) =
nβ − c(x, p)

n2 − 1
. (1.10)

Lemma 1.2. If n > 1, then for any arbitrary fixed (p, η) ∈ α ×R, the equation

l̂(x, p, ξ, η) = β (1.11)

uniquely defines the function

ξl
p,η(x) = C(x, p) + η, x ∈ α, (1.12)

whose graph is the lower branch of a two-sheeted hyperboloid of revolution about

the z-axis with foci at

Fl
p,η =

(
p, η +

2nβ
n2 − 1

)
and Fu

p,η =
(
p, η

)
.

The center of the hyperboloid is located at
(
p, η +

nβ
n2−1

)
, and the eccentricity is

equal to n.

Similarly, for any arbitrary fixed (x, ξ) ∈ α × R, the equation l̂(x, p, ξ, η) = β

uniquely defines the function

ηu
x,ξ(p) = −C(x, p) + ξ, p ∈ α, (1.13)

whose graph is the upper branch of a two-sheeted hyperboloid of revolution about

the z-axis with foci at

Fl
x,ξ = (x, ξ) and Fu

x,ξ =

(
x, ξ −

2nβ
n2 − 1

)
.

The center of the hyperboloid is located at
(
x, ξ − nβ

n2−1

)
, and the eccentricity is

equal to n.
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Proof. First, by multiplying the expression l̂(x, p, ξ, η) − β = 0 with the

conjugate
√∣∣∣x − p

∣∣∣2 + (ξ − η)2 +n · (η−ξ)+β and using some simple algebra

techniques, we obtain the following{
ξ −

(
η +

nβ
n2−1

)}2

β2

(n2−1)2

−
(x − p)2

β2

n2−1

= 1. (1.14)

This is a quadric of revolution with the semi-axes |β|

|n2−1|
and |β|

√

n2−1
. Now,

for fixed (x, ξ) and (p, η), we can solve for y := η − ξ and get the following

pair of solutions:

y1(x, p) =
−nβ + c(x, p)

n2 − 1
and y2(x, p) =

−nβ − c(x, p)
n2 − 1

(1.15)

Since n > 1, we see that y1 solves the equation l̂(x, p, ξ, η)− β = 0. The other

statements follow immediately from elementary properties of conics. �

Lemma 1.3. Let n > 1 and (p, η) ∈ α × R be fixed. Then, for each x ∈ α, the

ray in direction~k through x below the graph of ξl
p,η will refract at

(
x, ξl

p,η(x)
)

with

refraction index n > 1 and β < 0. All such rays will pass through the focus

Fu
p,η =

(
p, η

)
.

Proof. By Lemma 1.2, we have that the upper focus is Fu
p,η = (p, η). A ray

originating at the point (x, ξl
p,η(x)) and passing through Fu

p,η can be given by

~y′(x) =

(
p − x, η − ξl

p,η(x)
)

√∣∣∣p − x
∣∣∣2 + (η − ξl

p,η(x))2

. (1.16)

We need to show that ~y′(x) = ~y(x) where ~y(x) is given in (1.3) with z = ξl
p,η.

Let the projections of y and y′ on the surface z = 0 be y0 and y′0, respectively.

Using Lemma 1.2, we have√∣∣∣p − x
∣∣∣2 + (η − ξl

p,η(x))2 = β − n
(
ξl

p,η(x) − η
)

= β − nC(x, p) =
n · (x, p) − β

n2 − 1
.

(1.17)



16

Here, n > 1 and β < 0 implies that n · (x, p) − β ≥ n
∣∣∣β∣∣∣ − β = −β(n + 1) > 0

for all x and p. Then,

y′0 =
p − x√∣∣∣p − x

∣∣∣2 + (η − ξl
p,η(x))2

=
(n2
− 1)(p − x)

n · c(x, p) − β
. (1.18)

On the other hand, by the definition of ξl
p,η,

∇xξ
l
p,η = −

∇c(x, p)
n2 − 1

= −
x − p
c(x, p)

(1.19)

where ∇x is the gradient operator with respect to the variable x. By the

definition (1.4) of M, we also have that M =
|β|

c(x,p) . The unit normal field on

the graph of z = ξp,η is

~n(x) =

(
∇ξl

p,η(x), 1
)

√
1 +

∣∣∣∇ξl
p,η(x)

∣∣∣2 (1.20)

Therefore,

y0 = −
M(x) − n

1 +
∣∣∣∇ξp,η(x)

∣∣∣2∇ξp,η(x) = −
β + n · c(x, p)

β2 + n2
∣∣∣x − p

∣∣∣2 (x − p) (1.21)

It follows that y′0 = y0 from the fact that

(β − n · c(x, p))(β + n · c(x, p)) = −(n2
− 1)(β2 + n2(x − p)2).

The equality y′z = yz where the subscript describes the projection onto the

z-axis can be shown similarly. �

Remark 1.4. An analogous restatement of Lemma 1.3 can be derived for the other

branch of the hyperboloid of revolution given by (1.13).

Lemma 1.5. Suppose n > 1 and β < 0. If
(
p̄, η̄

)
∈ α × R is fixed and ξl

p̄,η̄ is

the lower branch of a hyperboloid of revolution defined as in the previous lemma.
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Then, for each x ∈ α, the graph of the branch ηu
x,ξl

p̄,η̄(x)
(p), p ∈ α passes through(

p̄, η̄
)
. The ray originated from

(
x, ξl

p̄,η̄

)
and passing through

(
p̄, η̄

)
is refracted by

the branch ηr
x,ξl

p̄,η̄(x)
with refraction index n and direction ~k.

Proof. First, pick a point x̄ ∈ α. It follows from Lemma 1.2 that ξ̄ := ξl
p̄,η̄(x̄) =

C(x̄, p̄) + η̄ and ηu
x̄,ξ̄

(p̄) = −C(x̄, p̄) + ξ̄. Then, ηr
x̄,ξ̄

(p̄) = η̄.

Now, the ray can be tracked as follows. Let ~V be the directed ray from

(x̄, ξ̄) to (p̄, η̄). Consider the vertical ray in the negative vertical direction

propagating down from +∞ and hitting the sheet ηu
x̄,ξ̄

at the point (p̄, η̄) =

(p̄, ηu
x̄,ξ̄

(p̄)). By Lemma 1.3, the refracted ray will pass through the point

(x̄, ξ̄) which is equivalent to the directed ray −~V. This proves the claim. �

1.4 General Refracting Surfaces

The lemmas above can be summarized in the following theorem:

Theorem 1.6. Let R1 and R2 be the two refracting surfaces of a lens system

with refraction index n > 1, separation d > 0 and reduced optical path length

β = l − nd < 0. Let R1 and R2 be the graphs of the functions z ∈ C1(D̄) and

w ∈ C1(T̄), respectively. Assume that the mapping P : D̄→ T̄ is a diffeomorphism.

Fix some point (x̄, z(x̄)) ∈ R1 and let
(
p̄ = P(x̄),w(p̄)

)
∈ R2.

Then z(x̄) = ξl
p̄,η̄(x̄), whereξl

p̄,η̄ is the lower branch of the hyperboloid of revolution

defined by

ξl
p̄,η̄(x) = C(x, p̄) + η̄, x ∈ α (1.22)

with upper focus at Fu
p̄ =

(
p̄,w(p̄)

)
. In addition, the tangent hyperplanes to R1 at

(x̄, z(x̄)) and to the graph of ξl
p̄,η̄(x) at x̄ coincide.

Similarly, w(p̄) = ηu
x̄,z(x̄)(p̄) where ηu

x̄,z(x̄) is the upper branch of the two-sheeted

surface of revolution defined by

ηu
x̄,z(x̄)(p) = −C(x̄, p) + z(x̄), p ∈ α (1.23)
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and Fl
x̄ = (x̄, z(x̄)) is the lower focus. In addition, the tangent hyperplanes to R2

at
(
p̄,w(p̄)

)
and to the graph of ηu

x̄,z(x̄)(x) at p̄ coincide.

Moreover, the tangent hyperplanes to R1 at (x̄, z(x̄)) and to R2 at
(
p̄,w(p̄)

)
are

parallel.

Proof. Let x ∈ D and set p = P(x). Then the functions z(x) and w(p) = w(P(x))

satisfy the relation (1.11) as

l̂(x, p, z,w) = β. (1.24)

Let x̄ and p̄ = P(x̄) be defined as in the hypothesis. Put p = p̂ and w = w(p̂)

in (1.24). Since the mapping P is a diffeomorphism from D to T, by Lemma

1.2, we have that the graph of the lower branch is given by z(x̄) = ξl
p̄,w(p̄)(x̄)

whose upper focus is located at Fu
p̂ = (p̄,w(p̄)). We can combine (1.5) and

the equality (1.19) derived in the proof of Lemma 1.3 and get:

p̄ − x̄ = ∇ξl
p̄,w(p̄)(x̄)c(x̄, p̄) = −

β

M
∇z(x̄). (1.25)

In other words, since β < 0, the gradients of ξl
p̄,w(p̄) and z have the same

direction at the point x̄. Therefore, the normal vectors to the surface R1

and the graph of ξl
p̄,w(p̄) at (x̄, z(x̄)) coincide. So, for each point (x, z(x)) ∈ R1

and its corresponding point (p,w(p)) ∈ R2 where p = P(x), there is only one

hyperboloid of revolution whose lower branch is tangent to the surface R1

at the point (x, z(x)) and having the upper focus at (p,w(p)) ∈ R2.

More generally, the surface R1 is an envelope of the family of lower

sheets of hyperboloids of revolution whose upper foci are located on the

surface R2. Reverting the statements for R1 and R2, we can also say that

the surface R2 is an envelope of the family of upper sheets of hyperboloids

of revolution whose lower foci are located on the surface R1. By similar

arguments as above, the surface R2 and the graph of ηu
x,z(x) have a common

normal vector at the point (p,w(p)) when x = P−1(p). Indeed, using the
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definition of ηu
x,z(x) in (1.23), we have

x − p = ∇ηu
x,z(x)(p)c(x, p). (1.26)

Now, considering the expressions (1.25) and (1.26) together, we can con-

clude that the tangent hyperplanes to R1 at (x, z(x)) and to R2 at (p,w(p))

will be parallel, provided that p = P(x). This completes the proof of the

theorem. �

The formal definition of a lens is given below.

Definition 1.7. Let n > 1 and β < 0. A pair (z,w) ∈ C(D̄) × C(T̄) is called a

lens if

z(x) = inf
p∈T̄

{
C(x, p) + w(p)

}
,∀x ∈ D̄ (1.27)

and

w(p) = sup
x∈D̄

{
−C(x, p) + z(x)

}
,∀p ∈ T̄. (1.28)

In a lens, the refractor map and its inverse, the visibility map, are defined by:

Pz,w(x) =
{
p ∈ T̄ : z(x) = C(x, p) + w(p)

}
, x ∈ D̄ (1.29)

and

P−1
z,w(p) =

{
x ∈ D̄ : w(p) = −C(x, p) + z(x)

}
, p ∈ T̄. (1.30)

1.5 The Existence of a Solution

1.5.1 Preliminaries

Although the construction of the problem is valid for any finite dimension

N, it would be convenient to consider the 3-dimensional case where the

refractor surfaces are given by graphs over domains in the 2-dimensional

plane α =
{
(x, y, z) ∈ R2 : z = 0

}
. From now on, we assume that light is
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emitted through a domain D =
{
x ∈ R2 : I(x) > 0

}
where I : R2

→ R+ is the

input density function. Let T ⊂ R2 be a compact set, which is the target

domain of the problem. Let

ξp,η(x) =
nβ −

√
β2 + (n2 − 1)

∣∣∣x − p
∣∣∣2

n2 − 1
+ η (1.31)

be the graph of the lower branch of a two-sheeted hyperboloid of revolution

about the z-axis with foci at

Fl
p,η =

(
p, η +

2nβ
n2 − 1

)
and Fu

p,η =
(
p, η

)
. (1.32)

The solid convex body bounded by ξp,η(x) is denoted by Bp,η(x) and let

Bp,η =
⋂
x∈D

Bp,η(x) and Rp,η = ∂Bp,η.

Assume that for any p ∈ T, we have η so large that Bp,η ⊃ D ∪ T.

Definition 1.8. Rp,η or shortly R, is called a (convex) refractor constructed from

the family of hyperboloids ξp,η(x).

Let R be a (convex) refractor and ξp,η(x) be a hyperboloid of revolution

bounding the body B that contains D.

Definition 1.9. If ξp,η(x) ∩ R , ∅, that is, ∃q ∈ ξp,η(x) ∩ R, then we say that

ξp,η(x) is a supporting hyperboloid to R at q.

In our constructions, the domains D and T remain fixed. From the last

definition, it follows that for every r ∈ R, there is at least one hyperboloid

of revolution from the family
{
ξp,η(x), p ∈ T

}
.

Definition 1.10. If there exist more than one supporting hyperboloid at some

point r ∈ R, the point r is singular .
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Note that any tangent plane to a supporting hyperboloid at a point of

contact with R is also a supporting plane to R. Therefore, any singular

point onR is also singular in the sense of convexity theory. In other words,

at such a point there is more than one supporting hyperplane to R. Recall

also that by Reidemeister’s theorem, the set of singular points on R has

measure 0 (zero).

Let U ⊂ T be a subset and define the set

M(U) =
{
q ∈ R : ∃x ∈ U such that ξp,η(x) is supporting to R at z

}
. (1.33)

By convexity ofR and the assumption that ξp,η(x) > 0 for all x ∈ D, we can

consider the orthogonal projection of R onto α along vertical rays through

D.

Definition 1.11. The image set of M(U) under orthogonal projection on D is

called the visibility set of U and is identical to P−1
z,w(U) where P−1

z,w : T → D is the

inverse of the refractor map. The visibility set of U will be denoted by V(U).

In other words, the visibility set V(U) = P−1
z,w(U) is the set of all points

x ∈ D ⊂ R2 being a preimage of a point in the target domain T.

The following chain of lemmas will be used to show that if U ⊂ T is a

Borel set, then V(U) is a measurable set on D.

Lemma 1.12. If U ⊂ T̄ is closed, then V(U) is also closed.

Proof. Assume that U is a closed subset of T. Let {xi}
∞

i=1 be a sequence con-

verging to some point x̄ in D. Also, let pi ∈ Pz,w(xi) and select a converging

subsequence
{
pik

}
of

{
pi
}
. Now, let Hpik

be the corresponding hyperboloid of

revolution which is supporting to the refractor R at the point z(xik). Note

that each Hpik
is determined by pik and z(xik). Then, the sequence

{
Hpik

}
will

converge to some hyperboloid Hp̄ and we will have z(x̄) ∈ Hp̄. In the mean-

time, since each hyperboloid Hpik
is supporting to R, so is Hp̄. Therefore,

z(x̄) ∈M(U) and x̄ ∈ V(U). As a result, V(U) is closed. �
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Lemma 1.13. Let U1,U2 ⊂ T̄ and U1 ∩ U2 = ∅. Then µ (V(U1) ∩ V(U2)) = 0

where µ is the standard Lebesgue measure on α.

Proof. Assume that x ∈ V(U1) ∩ V(U2). Then there are at least two hyper-

boloids of revolution that are supporting to the refractor R at the point

z(x). Therefore, z(x) is a singular point of the refractor. By Reidemeister’s

theorem, the set of singular point of a set has zero volume. So, the lemma

follows. �

Lemma 1.14. Let Ui ⊂ T̄; i = 1, 2, . . . and U =
⋃
∞

i=1 Ui. Then, V(U) =⋃
∞

i=1 V(Ui). Also, if each V(Ui) is measurable, so is V(U).

Proof. Suppose that x ∈ V(U). Then there exists a supporting hyperboloid

of revolution at (x, z(x)) with focus at
(
p,w(p)

)
where p ∈ U. So, p = Pz,w(x) ∈

Ui for some i. Then, x ∈ V(Ui) fore some i. Therefore, x ∈
⋃
∞

i=1 Ui. The

converse is obvious. �

Lemma 1.15. If U ⊂ T̄ and V(U) is measurable, then so is V(T̄\U).

Proof. Consider the disjoint union

V
(
T̄\U

)
=

(
V(T̄)\V(U)

)
∪

(
V(T̄\U) ∩ V(U)

)
.

Here, by Lemma 1.13, we have µ
(
V(T̄\U) ∩ V(U)

)
= 0. Also, by assump-

tion, V(U) is measurable and since V(T̄) is closed and measurable, then

V(T̄\U) is also measurable. �

Lemma 1.16. Let U =
⋂
∞

i=1 Ui and suppose V(Ui) is measurable for each i. Then

V(U) is also measurable.

Proof. We can rewrite this intersection as

U = T̄\
∞⋃

i=1

(T̄\Ui).

By Lemma 1.15, V(T̄\U) is measurable and by Lemma 1.14,
⋃
∞

i=1(T̄\Ui) is

measurable. Therefore,
⋂
∞

i=1 Ui is measurable. �
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Lemma 1.17. If U ⊂ T̄ is an open subset, then V(U) is a measurable subset of D̄.

Proof. Clearly, we have that T̄\U is closed. Set ω := µ
(
V(T̄\U) ∩ V(U)

)
.

Now, since (T̄\U)∩U = ∅, it follows from Lemma 1.13 that µ(ω) = 0. Note

also that we can write the domain D as the following disjoint union of its

subsets:

D = ω
⋃(

V(T̄\U)\ω
)⋃

(V(U)\ω) .

Here, the sets D, ω, V(T̄\U)\ω are all measurable sets. Then, V(U)\ω is

measurable, and thus, V(U) is measurable. �

Lemma 1.18. If Ui ⊂ T̄ for each i = 1, 2, . . . , and∩∞i=1Ui = ∅ then limi→∞ µ(V(Ui)) =

0.

Proof. We here have two cases:

1. If ∩∞i=1V(Ui) = ∅, then obviously, we have limi→∞ µ(V(Ui)) = 0.

2. If ∩∞i=1V(Ui) , ∅, choose some point x ∈ ∩∞i=1V(Ui). Then Pz,w(x) ∈ Ui

for all i = 1, 2, . . . . Then z(x) is a singular point and thenµ
(
∩
∞

i=1V(Ui)
)

=

0, so finally, limi→∞ µ (V(Ui)) = 0.

�

Theorem 1.19. If U ⊂ T is a Borel set, then the visibility set V(U) is measurable.

Proof. The proof is a result of the Lemmas 1.12-1.18 �

1.5.2 The Existence Theorem

Let the intensity on the closed simply connected set D be a non-negative

continuous function I(x) and let I ≡ 0 outside the set D. Consider a Borel

subset U ∈ B(T) of T̄, a two-lens represented by the pair (z,w), a refractor
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map P = Pz,w : D → T and the set V(U) = P−1
z,w(U), which is Lebesgue

measurable due to Teorem 1.5.1. Define the following measure:

Gz,w(U) =

∫
V(U)

I(x)dx. (1.34)

Here, Gz,w may not be absolutely continuous but it can be shown to be a

non-negative additive and finite measure on the σ-algebra of B(T̄). The

function Gz,w(U), describes the total amount of energy that is transferred

from the set V(U) to U ⊂ T via the refractor R.

On the other hand, for any Borel set U ⊂ T̄, define a measure on T with

L : T̄→ R+,L ∈ L1(T̄) by

F(U) =

∫
U

L(p)dp. (1.35)

where dp will be the measure on the set T.

Definition 1.20. We say that a (convex) refractor R is a weak solution of the

refractor problem if

Gz,w(U) = F(U) (1.36)

for any Borel set U ⊂ T̄.

Before stating the existence theorem, we introduce another couple of

lemmas:

Lemma 1.21. Let Rk, k = 1, 2, . . . be a sequence of refractors given by the pairs

(zk,wk) with a common initial domain D converging to a refractor R. Assume

also that Pzk,wk(D) = T for each k. Then, for any point z(x) ∈ R, there is a

hyperboloid of revolution H(x) supporting to the refractor R at z(x) with focus at(
p = P(x),w(p)

)
.

Proof. Let r ∈ R be fixed and choose a sequence of points {rk}
∞

k=1 ⊂ R such

that rk → r as k → ∞. Let Hk(pk) be a hyperboloid of revolution that is
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supporting to Rk at rk. Then, there is a subsequence
{
Hk j

}
of hyperboloids

that converge to H and is supporting to R at r. In addition, we have that

pk ∈ T for each k and the subsequence
{
pk j

}
converges to p ∈ T. Then, the

required supporting hyperboloid is constructed and the lemma is proved.

�

Lemma 1.22. With the same hypothesis of Lemma 1.21, the sequence of measures

Gzk,wk corresponding to the refractors Rk converges weakly to the measure Gz,w

corresponding to the refractor R.

Proof. By Lemmas 1.12-1.18 and 1.21, we can define the measure Gz,w on T

by

Gz,w(U) =

∫
V(U)

I(x)dµx. (1.37)

Let p = P(x) and pk = P(xk) be the points on T corresponding to the foci

points of the hyperboloids of revolution H(p) and Hk(pk) that are supporting

to the refractors R and Rk, respectively. Then, if f is a continuous function

on T, we can write∫
T

f dGzk,wk =

∫
D

f (pk(x))I(x)dµx and
∫

T
f dGz,w =

∫
D

f (p(x))I(x)dµx. (1.38)

Now, consider the sets U and Uk of points in D such that the images Pz,w(x)

and Pzk,wk(xk) are multi-valued, i.e. contains more than one point. Then,

the corresponding points r, rk of the refractorsR andRk are singular points,

and by Reidemeister’s theorem, µ(U) = µ(Uk) = 0. Setting Ū = U∪
⋃
∞

k=1 Uk,

then, we also have µ(Ū) = 0. Therefore, the integrals in (1.38) are defined

almost everywhere. Now, given any point x ∈ Ū, the sequence
{
Hk(pk)

}
of

hyperboloids converges to the hyperboloid H(p). So we have pk(x)→ p(x),

and then f (pk(x)) → f (p(x)) almost everywhere. Consequently, since the

point x and the function f are arbitrary, we deduce∫
T

f dGzk,wk →

∫
T

f dGz,w. (1.39)
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�

The following existence theorem, obtained jointly with Prof. V. Oliker, is

the main result of this chapter:

Theorem 1.23. Let T be a compact subset in R2. Let I ∈ L1(D̄) and L ∈ L1(T̄)

with I,L ≥ 0. Assuming that the total energy condition (1.2) holds, there is a

(convex) refractor R satisfying (1.36) for any Borel set U ⊂ T̄.

Proof. To prove the theorem, we first consider the measure F as being con-

centrated at a finite number of points, i.e. we can write T =
{
p1, p2, . . . , pN

}
.

So F would be a sum of Dirac measures Fk. In this case, the refractor prob-

lem can be solved using a finite number of hyperboloids of revolution with

foci at the points pk, k = 1, . . . ,N. Next, we use the weak continuity of the

measures to establish a weak solution to the refractor problem satisfying

(1.36) by letting N→∞.

Let ε > 0. Given any integer N ∈ N+, we divide the set T into disjoint

Borel sets UN
1 , . . . ,U

N
N in the following manner. For any ε > 0, there is a

number K such that if N > K, we have diam(UN
i ) < ε for each i = 1, . . . ,N.

Now, from each set UN
i , pick any point pN

i . We set the following measure

FN
i =

∫
UN

i

L(p)dµp. (1.40)

So, if U ∈ B(T) is a Borel set in T, the following finite measure can be

defined

FN(U) =
∑

pN
i ∈U

N
i

FN
i . (1.41)

If we let N→∞, then the measure FN will converge weakly to the measure

F defined in (1.35). On the other hand, by Theorem 1.26 (proved below),

there exists a refractor RN such that for each i = 1, . . . ,N, we have

G(pN
i )) = FN

i . (1.42)
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Defining the measure GN for any Borel set U ∈ B(T) by

GN(U) =
∑

pN
i ∈U

N
i

G(pN
i )), (1.43)

we see that the equality GN = FN holds for any N ∈N.

For each N ∈ N, by Theorem 1.29 proved in Section 1.7 and by fixing

only one of the supporting hyperboloids, the set of all hyperboloids that

are supporting to RN is bounded on D. Then, the sequence of refractors{
R

N}
must be bounded. By the Blaschke selection theorem, there is a

subsequence
{
R

Nk
}

of
{
R

N}
which is convergent to a convex surface R. This

completes the proof. �

1.5.3 Refractors Defined by a Finite Number of Hyper-

boloids

Assume that

M = sup
x∈D,p∈T

∣∣∣x − p
∣∣∣ (1.44)

Also, denote byH the set of all hyperboloids of revolution H(η) with axes

of symmetry passing through (p, η). In order to make physical sense, the

parameter η needs to be large enough so that the whole hyperboloid of

revolution lies above both sets D and T.

Let K ≥ 2 be an integer and the set T be a discrete set. So we can write

T =
{
p1, . . . , pK

}
. (1.45)

Let ηi be K real numbers and Hi be hyperboloids of revolution from the set

H .

As in Section 1.5.1, denote by Bi the convex body bounded by the hyper-

boloid Hi and put

B =

K⋂
i=1

Bi. (1.46)
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As a result of the fact that each η is large, we have for each i = 1, . . . ,K that

T ⊂ Bi and thus T ⊂ B.

From now on, given a set of points
{
p1, . . . , pK

}
, the surface R = ∂B will be

convex (since each branch of hyperboloid is convex). As the refractor R can

be totally determined by those numbers, it will be convenient to denote

it by the K-tuple
(
η1, . . . , ηK

)
. Then the visibility sets V(pi) corresponding

to each point pi together with the corresponding measures Gi := G(pi)

can be defined accordingly as in Section 1.5.2. We will use the notation

G = (G1, . . . ,GK) to denote the vector of intensities on the entire refractor

R corresponding to the points p1, . . . , pK. In particular, a hyperboloid of

revolution Hi0 in the familyH that is not supporting to the refractor Rwill

collect no energy sent through the initial domain D. In this case, we will

have simply Gi0 = 0.

We now need the following result:

Lemma 1.24. Consider the two refractors
(
η1, . . . , η j, . . . , ηK

)
and

(
η1, . . . , η̄ j, . . . , ηK

)
with respective measure function G and Ḡ. In this case,

η j ≤ η̄ j ⇒ G j ≥ Ḡ j and Gi ≤ Ḡi if i , j. (1.47)

Proof. Let V(pk) be the visibility set of the first refractor given by

V(pk) =

{
x ∈ D :

nβ − c(x, pk)
n2 − 1

+ ηk ≤
nβ − c(x, p j)

n2 − 1
+ η j, k , j

}
(1.48)

where c(x, p) =

√
β2 + (n2 − 1)

∣∣∣x − p
∣∣∣2 as in Section 1.3. Here, by setting

k = j, we have that if η̄ j ≤ η j then V(p j) ⊂ V̄(p j) where V̄ is the visibility

set of the second refractor. This implies that G j ≤ Ḡ j. For all other indices

i , j, similarly, we have again by (1.48) that V(pi) ⊃ V̄(pi) and then Gi ≥ Ḡi,

which completes the proof. �

The following is a result of Lemma 1.24



29

Lemma 1.25. Let
(
η̄1, . . . , η̄K

)
and

(
η̂1, . . . , η̂K

)
represent two refractors with

respective measures Ḡ and Ĝ. Set a new refractor by ηi = min
(
η̄i, η̂i

)
and define

its measure to be G. Then, for each i = 1, . . . ,K, we will have

Gi ≤ max
(
Ḡi, Ĝi

)
. (1.49)

Proof. It is easy to see here that only two cases are possible. Either we have

ηi = η̄i, which implies Gi ≤ Ḡi or ηi = η̂i, which implies Gi ≤ Ĝi. The result

follows. �

The existence theorem for the refractor constructed by a finite number of

hyperboloids can be given as follows.

Theorem 1.26. Assume that I ∈ L1(D) is a non-negative integrable function.

Let T =
{
p1, . . . , pK

}
where K ≥ 2. Also, let f1, . . . , fK be non-negative numbers

satisfying ∫
D

I(x)dx =

K∑
i=1

fi. (1.50)

Then, there is a refractor R constructed using a finite number of hyperboloids of

revolution H1 = H(p1), . . . ,HK = H(pK) for some corresponding η1, . . . , ηK. The

corresponding visibility sets V1, . . . ,VK will be covering the initial domain D in

such a way that for each i = 1, . . . ,K,

µ(Vα ∩ Vβ) = 0 for any α , β and Pz,w(Vi) = pi. (1.51)

Gi = fi. (1.52)

Proof. Assume that f j , 0 for some 1 ≤ j ≤ K (Otherwise, the integral is

zero and there is nothing to prove). Set η j = h for some level h in such a

way that Gi = G(pi) ≤ fi for all i , j. This means that all hyperboloids Hi

with indices i , j are collecting at most the amount of energy prescribed

for each target point pi ∈ T. Let us denote the set of all such refractors by

REF .
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Clearly, it is easy to see that the setREF is non-empty. To prove it, we can

simply construct a refractorR0 by setting η j = h and setting ηi = h+S for all

parameters with indices i , j where h > 0 and S = 2L
√

n2−1
(see Section 1.7).

In this case, none of the hyperboloids of revolution Hi will be collecting

any energy, except for H j which will be the only supporting hyperboloid

of the refractor R0. Therefore, we will have

G j =

∫
D

I(x)dµx and Gi = 0,∀i , j. (1.53)

Then, R0 ∈ REF . Note also that the family of all visibility sets V1, . . . ,VK

defined in (1.51) forms a cover of the initial domain D.

Next, define a refractor R̄ ∈ REF by setting

η̄ j = η j and η̄i = inf
R∈REF

ηi,∀i , j. (1.54)

Our claim is that R̄ is solving the refractor problem and satisfies the con-

ditions (1.51) and (1.52). Let us now verify these properties.

By Lemma 1.22, the following holds: If the refractors (ηε1, . . . , η
ε
K) →

(η1, . . . , ηK) as ε→ 0, then for the corresponding measures, we have Gε
i → Gi

for each i = 1, . . . ,K. Since the refractor R̄ is in the set REF , it is true that

Gi ≤ fi. (1.55)

We are claiming that the equality holds. Assume conversely that fome some

index i0, the strict inequality Gi0 < fi0 holds. In this case, by the continuity

of the measures, there would be some ε > 0 such that Gi0 < Gε
i0
< fi0 .

Here Gε
i0

is the measure corresponding to the refractor with parameters(
η̄1, . . . , η̄i0 − ε, . . . , η̄K

)
. Here we have Gε

i ≤ fi for each i , i0 and i , j.

Therefore, by Lemma (1.25), we have here that Gε
j ≥ f j > 0. Then, the

hyperboloids of revolution H j and Hi0 are both supporting to the refractor

R̄
ε. Therefore, R̄ε ∈ REF . This contradicts the way the refractor R̄ was

constructed. As a result the equality Gi = fi must be true for each i , j.
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Since the sum of the measures must add up to the total energy through the

domain D, we must also have G j = f j. So the refractor
(
η̄1, . . . , η̄K

)
satisfies

the condition (1.52). �

1.5.4 A Uniqueness Theorem

Note that the refractor satisfying the condition (1.52) is unique in the sense

described in the following theorem.

Theorem 1.27. Let the density function I(x) > 0 almost everywhere on D and

suppose that there are two refractors
(
η̄1, . . . , η̄K

)
and

(
η̂1, . . . , η̂K

)
satisfying (1.52).

Then,

if η̄ j ≤ η̂ j for some j⇒ η̄i ≤ η̂i,∀i = 1, . . . ,K. (1.56)

In particular,

if η̄ j = η̂ j for some j⇒ η̄i = η̂i,∀i = 1, . . . ,K. (1.57)

Proof. Let both of the refractors
(
η̄1, . . . , η̄K

)
and

(
η̂1, . . . , η̂K

)
satisfy (1.52).

Consider the set of indices J =
{
j|µ̄ > µ̂, 1 ≤ j ≤ K

}
.

Assume that J , ∅. Define a set
{
p j| j ∈ J

}
. Choose a point x from the

visibility set V̄ = V̄
({

p j| j ∈ J
})

. Then there is an index j0 ∈ J such that

C(x, p j0) + η̄ j0 ≤ C(x, pi) + η̄i for any i < J. (1.58)

In addition, we have

C(x, p j) + η̂ j < C(x, p j) + η̄ j, for any j ∈ J (1.59)

and

C(x, pi) + η̂i ≥ C(x, pi) + η̄i, for any i < J. (1.60)

Combining (1.58), (1.59) and (1.60), we obtain

C(x, p j0) + η̂ j0 < C(x, pi) + η̄i for any i < J. (1.61)
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As a result, for the corresponding intensities, we get the following strict

inequality

fi = Ḡi(pi) < Ĝi(pi) = fi. (1.62)

This contradiction implies that J must be empty. So the result (1.56) follows.

The result in (1.57) can be shown by combining the statement in (1.56)

together with the same argument with the inequalities reversed. �

1.6 The Method of Supporting Hyperboloids and

the Algorithm

In this section, we describe the method of supporting hyperboloids and

present an algorithm that can be implemented using any programming

tool to solve the discrete version of the refractor problem. This is a joint

work with Prof. V. Oliker.

Consider the same domain D with density function I ∈ L1(D̄) as before.

Let the set T consist of a finite set of points p1, . . . , pK and let the density L

on T be replaced by the discrete measure

FK =

K∑
k=1

fk · δ(pk) (1.63)

concentrated at the points p1, . . . , pK. The discrete version of the problem

requires us to construct a refractor RK that refracts light to the points

p1, . . . , pK in such a way that the total energy sent to each point pk is equal

to fk.

It is natural to construct this refractor RK by hyperboloids of revolution

with axes passing through the points p1, . . . , pK and parameters η1, . . . , ηK

such that

zpk,ηk(x) =
nβ −

√
β2 + (n2 − 1)

∣∣∣x − pk

∣∣∣2
n2 − 1

+ ηk := C(x, pk) + ηk. (1.64)
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The graph of the function in (1.64) gives the lower branch of the required

hyperboloid. The corresponding upper branch to refract the rays in posi-

tive direction ~k will be

wx,zpk ,ηk (x)(pk) = −C(x, pk) + zpk,ηk(x). (1.65)

Definition 1.28. The refractor RK defined by a finite number of hyperboloids of

revolution H1, . . . ,HK is given by

RK = ∂

 K⋂
k=1

Bk

 (1.66)

where Bk is the convex body bounded by Hk and ∂ stands for the boundary.

Note here that when the points p1, . . . , pK are fixed, we can completely

identify the refractor RK with the K-tuple (η1, . . . , ηK). Define the measure

Gi(RK) for each point pi by:

Gi(RK) =

∫
P−1

z,w(pi)
I(x)dx. (1.67)

The discrete version of the problem would then be to find a refractor R̄K

such that for each i = 1, . . . ,K, we have

Gi

(
R̄K

)
= fi. (1.68)

The energy conservation law requires that

T :=
∫

D
I =

K∑
i=1

fi. (1.69)

Therefore, for any ε > 0, we can construct a solution refractor RN, where

N = N(ε) such that
K∑

i=1

(
Gi(RN) − fi

)2 < ε2. (1.70)
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We can now describe the algorithm. The aim is to find an approximate

solution RN to (1.68) such that ‖G − F‖2 < ε where G = (G1, . . . ,GK) and

F = ( f1, . . . , fK). Here, ‖·‖2 is the usual Euclidean 2-norm. We now fix

ε > 0, and one of the parameters, say η1 = η̄. Choose all other parameters

ηi, i = 2, . . . ,K large enough so that for those indices i = 2, . . . ,K, we have

Gi(η̄, η2, . . . , ηK) ≤ fi. Let us call A the set of all admissible refractors

satisfying this condition. The implementation can be initialized with any

refractor in A. Then, the algorithm generates a sequence of refractors in

A that is monotonically convergent to the solution of the problem. The

algorithm is as follows:

Initialize:

1. the precision ε > 0,

2. the domain D and the target set
{
p1, . . . , pK

}
,

3. the initial density I : D→ R+,

4. the prescribed densities F = ( f1, . . . , fK),

5. the first guess refractor Z = (η̄, η2, . . . , ηK),

6. the initial step vector S = (0, 1, . . . , 1).

The main iteration is as follows:
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Algorithm 1 The Method of Supporting Hyperboloids: The Algorithm

while
∥∥∥G − f

∥∥∥
2
≥ ε do

Z̃← Z − S.

Update G for temporary vector Z̃.

if Z̃ ∈ A, i.e. fi > Gi,∀i = 2, . . . ,K then

Z← Z̃.

else {Z̃ < A, i.e. ∃J ⊂ {2, . . . ,K} such that f j < G j,∀ j ∈ J.}

while (Z − S) < A do

if j ∈ J then

S( j)← S( j)/2.

end if

end while

end if

end while

Evidently, for the initial guess refractor, we can choose the parameters

η2, . . . , ηK so large that the initial density is G(0) = (T , 0, . . . , 0), where T =∫
D

I(x)dx; that is, the first hyperboloid is closest to the plane α and captures

all the light emitted through D.

1.7 An Estimate of the Parameters ηi

Theorem 1.29. For any pair of indices i , j, we have the estimate∣∣∣ηi − η j

∣∣∣ ≤ L
√

n2 − 1
(1.71)

where

L = max
x∈D,pi∈T

∣∣∣x − pi

∣∣∣ . (1.72)
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Proof. Consider two different hyperboloids of revolution Hi and H j defined

on the same domain D and whose graphs are given by the equations zi(x) =

C(x, pi) + ηi and z j(x) = C(x, p j) + η j, respectively. Here the function C(x, p)

is given by (1.10). For abbreviation, we can denote these hyperboloids in

terms of their parameters ηi and η j. We need to satisfy two conditions in

order for both hyperboloids to be supporting to the refractor:

1. max
x∈D

{
C(x, p j) + η j

}
≥ min

x∈D

{
C(x, pi) + ηi

}
(1.73)

2. min
x∈D

{
C(x, p j) + η j

}
≤ max

x∈D

{
C(x, pi) + ηi

}
(1.74)

We set

min
x∈D,p∈T

∣∣∣x − p
∣∣∣ = 0 and max

x∈D,p∈T

∣∣∣x − p
∣∣∣ = L. (1.75)

Since the sets D and T are compact, the min and max are attained on D×T.

Doind some simple algebraic manipulations, and considering the fact that

β < 0 and n > 1, from (1.73), we get

η j − ηi ≥

∣∣∣β∣∣∣ − √
β2 + (n2 − 1)L2

n2 − 1
(1.76)

and from (1.74), we get

η j − ηi ≤
−

∣∣∣β∣∣∣ +
√
β2 + (n2 − 1)L2

n2 − 1
. (1.77)

Combining the results in (1.76) and (1.77), we can write

∣∣∣η j − ηi

∣∣∣ ≤ − ∣∣∣β∣∣∣ +
√
β2 + (n2 − 1)L2

n2 − 1
. (1.78)

If a, b > 0, we have the inequality
√

a2 + b2 − a ≤ b. Then we can further

simplify the estimate (1.78) and write∣∣∣η j − ηi

∣∣∣ ≤ L
√

n2 − 1
. (1.79)

�
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1.8 Examples

In this section, we present several examples that were computed using

the algorithm described in Section 1.6. We suppose that both D = T =

[−1, 1]× [−1, 1]. We initialize the parameter η1 located at the center (0, 0) as

η1 = 3.

In the first example, we take K = 5 points with I ≡ 1 and ε = 0.01. Our

algorithm requires only 6 iterations to obtain the solution (η1, η2, η3, η4, η5).

Table 1.1 below shows the values of the prescribed and obtained data.

Recall that the vector f = ( f1, . . . , fK) stands for the required distribution

and G = (G1, . . . ,GK) for the resulting distribution over the target points in

T. The generated pair of surfaces representing the solution to the problem

with 5 points is given in Figure 1.2.

Table 1.1: K = 5 points (Example 1)

i pi ηi fi Gi

1 (0,0) 3.0000 0.8080 0.8385

2 (-1,-1) 4.1015 0.8080 0.8004

3 (-1,1) 4.1015 0.8080 0.8004

4 (1,-1) 4.1015 0.8080 0.8004

5 (1,1) 4.1015 0.8080 0.8004

Apparently, when K is small, the result can be obtained very quickly.

The following examples show how fast the number of iterations required

to solve the problem increases as we discretize the target T by a larger

number of points.

For Example 2, let K = 17. To compare with the first example, we take

again I ≡ 1 and ε = 0.01. In this case, the solution is obtained in 60

iterations. Table 1.2 shows the resulting data. The surfaces of the lens
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Figure 1.2: Lens design with 5 target points

solving this problem with 17 target points is given in Figure 1.3.

Table 1.2: K = 17 points (Example 2)

i pi ηi fi Gi

1 ( 0,0) 3.0000 0.2377 0.2777

2 (-1 , -1) 4.1138 0.2377 0.2373

3 (-1 , 1) 4.1138 0.2377 0.2373

4 (1 , -1) 4.1138 0.2377 0.2373

5 (1 , 1) 4.1138 0.2377 0.2373

6 (-1 , -1/3) 3.8049 0.2377 0.2297

7 (-1/3 , -1) 3.8049 0.2377 0.2297

8 (-1/3 , 1) 3.8049 0.2377 0.2297

Continued on next page
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Table 1.2 – Continued from previous page

i pi ηi fi Gi

9 (1 , -1/3) 3.8049 0.2377 0.2297

10 (-1 , 1/3) 3.8049 0.2377 0.2360

11 ( 1/3 , -1) 3.8049 0.2377 0.2360

12 ( 1/3 , 1) 3.8049 0.2377 0.2360

13 (1 , 1/3) 3.8049 0.2377 0.2360

14 (-1/3 , -1/3) 3.3002 0.2377 0.2376

15 (-1/3 , 1/3) 3.3002 0.2377 0.2376

16 ( 1/3 ,-1/3) 3.3002 0.2377 0.2376

17 (1/3 , 1/3) 3.3002 0.2377 0.2376

Figure 1.3: Lens design with 17 target points
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We finish this section by giving a last example using now K = 37 points for

the target set T. Again we take I ≡ 1 and ε = 0.01. In this case, the algorithm

needs 371 iterations to reach the solution. The resulting data obtained is

presented in Table 1.3. The graph representing the corresponding lens is

given in Figure 1.4.

Table 1.3: K = 37 points (Example 3)

i pi ηi fi Gi

1 ( 0 , 0 ) 3.0000 0.1086 0.1487

2 ( -1 , -1 ) 4.1071 0.1086 0.1077

3 ( -1 , 1 ) 4.1071 0.1086 0.1077

4 ( 1 , -1 ) 4.1071 0.1086 0.1077

5 ( 1 , 1 ) 4.1071 0.1086 0.1077

6 ( -1 , -0.6 ) 3.8909 0.1086 0.1086

7 ( -1 , 0.6 ) 3.8909 0.1086 0.1086

8 ( -0.6 , -1 ) 3.8909 0.1086 0.1086

9 ( -0.6 , 1 ) 3.8909 0.1086 0.1086

10 ( 0.6 , -1 ) 3.8909 0.1086 0.1086

11 ( 0.6 , 1 ) 3.8909 0.1086 0.1086

12 ( 1 , -0.6 ) 3.8909 0.1086 0.1086

13 ( 1 , 0.6 ) 3.8909 0.1086 0.1086

14 ( -1 , 0.2 ) 3.7626 0.1086 0.1085

15 ( 0.2 , -1 ) 3.7626 0.1086 0.1085

16 ( 0.2 , 1 ) 3.7626 0.1086 0.1085

17 ( 1 , 0.2 ) 3.7626 0.1086 0.1085

18 ( -1 , -0.2 ) 3.7626 0.1086 0.1058

19 ( -0.2 , -1 ) 3.7626 0.1086 0.1058

20 ( -0.2 , 1 ) 3.7626 0.1086 0.1058

Continued on next page
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Table 1.3 – Continued from previous page

i pi ηi fi Gi

21 ( 1 , -0.2 ) 3.7626 0.1086 0.1058

22 ( -0.6 , -0.6 ) 3.6126 0.1086 0.1080

23 ( -0.6 , 0.6 ) 3.6126 0.1086 0.1080

24 ( 0.6 , -0.6 ) 3.6126 0.1086 0.1080

25 ( 0.6 , 0.6 ) 3.6126 0.1086 0.1080

26 ( -0.6 , -0.2 ) 3.4300 0.1086 0.1057

27 ( -0.2 , -0.6 ) 3.4300 0.1086 0.1057

28 ( -0.2 , 0.6 ) 3.4300 0.1086 0.1057

29 ( 0.6 , -0.2 ) 3.4300 0.1086 0.1057

30 ( -0.6 , 0.2 ) 3.4300 0.1086 0.1065

31 ( 0.2 , -0.6 ) 3.4300 0.1086 0.1065

32 ( 0.2 , 0.6 ) 3.4300 0.1086 0.1065

33 ( 0.6 , 0.2 ) 3.4300 0.1086 0.1065

34 ( -0.2 , -0.2 ) 3.1456 0.1086 0.1085

35 ( -0.2 , 0.2 ) 3.1456 0.1086 0.1085

36 ( 0.2 , -0.2 ) 3.1456 0.1086 0.1085

37 ( 0.2 , 0.2 ) 3.1456 0.1086 0.1085

1.9 Conclusion

In this chapter, we introduced the problem of designing a lens by ap-

proaching the solution numerically using geometric and optical properties

of hyperboloids of revolution. The existence of a weak solution together

with a numerical method of solving the problem is also presented. We also

describe the uniqueness of the solution for the case of a finite number of

hyperboloids. Oliker [21] proved existence and uniqueness of weak solu-
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Figure 1.4: Lens design with 37 target points

tions in Lipschitz classes to problems requiring single- and two-refracting

lenses. His method uses the framework of optimal mass transportation

theory. The important concepts in Oliker’s solution are those of a weak

solution and refractor map.

The method of finitely many supporting hyperboloids is a method simi-

lar to that in [12]. It is based on formulating a finite-dimensional analogue

of the problem for a special class of quadrics and solving first the corre-

sponding discrete version.

As we see from our results, the algorithm associated to this method works

very efficiently when looking for a solution in case that K is not too large

(say, for up to K u 20 points). However, as K increases, the algorithm

slows down dramatically. Theoretically, we know that the convergence is
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at least linear. Methods requiring the derivative such as Newton’s method

could not be used in our algorithm since the derivative of the approxi-

mated error function is not obvious in our investigation. On the other

hand, other procedures that do not need the derivative could speed up

the convergence such as applying Nelder-Mead algorithm [18], Powell’s

method [22], Rosenbrock’s method [23] or some other simplex algorithm.
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Chapter 2

A Light Beam Reshaping XR

System

2.1 Introduction

Optical systems studied so far are generally based on either reflectors (see

for example [11], [19], [26]) or refractors (see for example [5], [7], [20] and

[21]). In this chapter, a structure involving both a reflector and a refractor

will be studied. In optical science, this type of construction is denoted by

XR, where X stands for the reflector and R for the refractor. This problem

was inspired by the design of a solar energy concentrator by the authors of

the book in [29]. These scientists use optical tools and computing software

to develop various types of optical devices. To the best of our knowledge,

no previous work using our approach to this specific problem has been

established so far.

In this chapter, we derive a partial differential equation satisfied by the

functions describing the XR system and outline a geometric approach to

obtain a possible alternate solution. Although such an equation is obtained

in our study, the problem might be approached using other strategies so

that one can present more general solutions. One of these strategies, a
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geometric approach to the solution using surfaces defined by quadrics, is

introduced as well. The reader should keep in mind that this part is a work

in progress.

2.2 Description of the System

Let Γ be a plane inR3 with D and T being two compact subsets of Γ. Without

loss of generality, we can consider Γ to be the plane
{
(x1, x2, x3) ∈ R3 : x3 = 0

}
.

The ray of light initially travels in a medium (Medium I in Figure 2.2)

with refractive index n1 in a vertical upward direction such that it crosses

the initial domain D ⊂ Γ. The ray reflects off the first surface R at some

point z ∈ R and reaches the second surface L. The ray is now refracted

parallel to the initial ray in a different medium II with refractive index n2,

and it finally reaches the target domain at some point p ∈ T.

Figure 2.1: Design of the XR system
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Given the densities I and L on the domains D and T respectively, the

balance condition ∫
D

I(x)dx =

∫
T

L(p)dp (2.1)

is imposed. This system would then define a mapping P : D→ T such that

P(x) = p. Therefore, the problem is to construct a reflector-refractor (XR)

system so that the equation

I(x) = |J(P(x))| · L(P(x)) (2.2)

is satisfied where J(·) stands for the Jacobian matrix operator. Based on

these constraints, we would like to describe a system satisfying (2.2).

2.3 Derivation of the PDE

Our goal is to obtain an expression that would describe the map P : D→ T.

For simplicity and without loss of generality, we consider the relative

refractive index n between the two media (Medium I and Medium II) and

define it as n = n2
n1

. The actual optical path length is

l̃(x) = n1 · z(x) + n1 · t(x) + n2 · s(x). (2.3)

Then, by dividing both sides by n1, one gets:

l(x) = z(x) + t(x) + n · s(x). (2.4)

Now, let r1(x) = (x, z(x)) be the position vector on R where z ∈ C1(D̄). The

normal vector field on the reflector is

~n =
(−∇z, 1)√
1 + |∇z|2

(2.5)

where ∇z =
(
∂z
∂x1
, ∂z
∂x2

)
. Next, the mapping p = P(x) can be defined as a sum

of vectors as follows:

P(x) = x + z(x) ·~k + t(x) · ~m + s(x) ·
(
−~k

)
(2.6)
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where ~m is the direction of the reflected ray and ~k is the vertical upward

direction. We can determine the reflected direction ~m using the vector form

of the law of reflection ~m = ~k − 2
〈
~k, ~n

〉
~n. Then

~m =

(
2∇z, |∇z|2 − 1

)
1 + |∇z|2

(2.7)

Once the reflected direction ~m is acquired, we know that the refraction will

be in the negative vertical direction, that is, in direction −~k = (0, 0,−1).

First, recall that Snell’s Law of Refraction implies that a ray obeys the

following rule:

sinθ1 = n · sinθ2, (2.8)

where θ1 is the angle of incidence and θ2 is the angle of refraction. Snell’s

Law also implies that the vector n1 · ~m − n2 ·
(
−~k

)
has the same direction as

the normal vector ~N to the refracting surface L. Therefore, we can write:

α · ~N = ~m + n ·~k (2.9)

for some α ∈ R. Since ~N is a unit vector, it will turn out that

α =
〈
~m, ~N

〉
+ n ·

〈
~k, ~N

〉
(2.10)

= cosθ1 − n · cosθ2. (2.11)

From this, we can get an expression for the second normal vector field on

L:

~N =
~m + n ·~k

cosθ1 − n · cosθ2
=

(
2∇z, (n + 1) |∇z|2 + n − 1

)(
1 + |∇z|2

)
(cosθ1 − n · cosθ2)

. (2.12)

After some simple manipulations, we obtain

(cosθ1 − n · cosθ2)2 = (1 + n2) + 2n
|∇z|2 − 1

|∇z|2 + 1
. (2.13)
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Then, the unit normal vector field on L can be rewritten as

~N =

(
2∇z, (n + 1) |∇z|2 + n − 1

)
√

(n2 + 1)
(
|∇z|2 + 1

)2
+ 2n

(
|∇z|4 − 1

) . (2.14)

Remark 2.1. Unlike the case in Chapter 1 for the hyperboloids of revolution

(see Theorem 1.6), the unit normal vectors ~n and ~N to the surfaces R and L

(respectively) corresponding to the same ray are not parallel.

Let us now go back to the image map p = P(x). We can write it as

P(x) = x + t(x) · ~m0(x) where ~m0(x) is the projection of the vector ~m(x) onto

the plane z = 0. Since ~m0(x) = ~m(x) −
〈
~m(x),~k

〉
~k = 2∇z

1+|∇z|2
,

P(x) = x + 2t(x)
∇z

1 + |∇z|2
. (2.15)

From our construction, it is easy to see that z(x) = t(x) ·
〈
−~k, ~m(x)

〉
+ s(x).

Let us also impose the constancy of the optical path length by putting

L = z(x) + t(x) + n · s(x). Then we get

L = (n + 1)z(x) +
(n + 1) |∇z|2 − (n − 1)

1 + |∇z|2
t(x). (2.16)

Solving for t, we obtain

t(x) =
(L − (n + 1)z(x))

(
1 + |∇z|2

)
(n + 1) |∇z|2 − (n − 1)

. (2.17)

Then the mapping P(x) becomes

P(x) = x + 2
L − (n + 1)z(x)

(n + 1) |∇z|2 − (n − 1)
∇z. (2.18)

Let us introduce some notation by setting

K := 2 (L − (n + 1)z) and Q := (n + 1) |∇z|2 − (n − 1). (2.19)
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This allows us to write the mapping shortly as follows:

P(x) = x +
K
Q
∇z. (2.20)

In addition, the refractive surface given by the graph of the function s = s(p)

is completely determined by the reflective surface given by the graph of

the funciton z = z(x) together with the mapping p = P(x). Since (p, s) =

(x, z) + t(x) · ~m,

s(P(x)) = z(x) +
K

2Q

(
|∇z|2 − 1

)
. (2.21)

We finish this discussion by computing the Jacobian J(P) in the equation

(2.2). First, let x = (x1, x2) denote a 2-dimensional independent variable.

In addition, we want the subscript i to denote the partial derivative with

respect to the variable xi. For example, zi := ∂z
∂xi and zi j = ∂2z

∂xi∂x j . Then the

mapping P can be expressed in the following way:

P(x1, x2) := (p1, p2) =

(
x1 +

K
Q

z1, x2 +
K
Q

z2

)
. (2.22)

Therefore, we need to compute

|J(P(x))| = det

 A B

C D

 = A ·D − B · C, (2.23)

where A =
∂p1

∂x1 , B =
∂p1

∂x2 , C =
∂p2

∂x1 , D =
∂p2

∂x2 . Then we obtain the following

expressions:

A = 1 +
K1

Q
z1 +

K
Q

z11 −
K
Q2 z1Q1

B =
K2

Q
z1 +

K
Q

z12 −
K
Q2 z1Q2 (2.24)

C =
K1

Q
z2 +

K
Q

z12 −
K
Q2 z2Q1

D = 1 +
K2

Q
z2 +

K
Q

z22 −
K
Q2 z2Q2
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Here we have that

Ki = −2(n + 1)zi and Qi = 2(n + 1)(z1z1i + z2zi2), i = 1, 2. (2.25)

Combining the expressions (2.23), (2.24) and (2.25), lengthy but straight-

forward calculations lead us to the following expression:

|J(P(x))| = 1 −
2(n + 1)

Q
|∇z|2 +

K
Q
4z −

2(n + 1)K
Q2 |∇z|2 4z +

K2

Q2 det(zi j) −
2(n + 1)K2

Q3 |∇z|2 det(zi j)

= 1 −
2(n + 1)

Q
|∇z|2 +

K
Q
4z

(
1 −

2(n + 1)
Q

|∇z|2
)

+ (2.26)

K2

Q2 det(zi j)
(
1 −

2(n + 1)
Q

|∇z|2
)

=

(
1 −

2(n + 1)
Q

|∇z|2
) (

1 +
K
Q
4z +

K2

Q2 det(zi j)
)
,

where det(zi j) stands for the determinant of the matrix of second-order

partial derivatives of the function z = z(x), x ∈ D. To permit further

simplifications, let ξ = Q
K so that the expression in (2.26) can be written as:

|J(P)| =
1
ξ2

(n − 1) + (n + 1) |∇z|2

(n − 1) − (n + 1) |∇z|2
(
ξ2 + ξ4z + det(zi j)

)
. (2.27)

After final rearrangements of terms and by putting γ = n−1
n+1 , the PDE (2.2)

can be established as follows:

I(x) =
1
ξ2

γ + |∇z|2

γ − |∇z|2
det

(
zi j + δi jξ

)
· L (P(x)) , (2.28)

where P(x) is given in (2.20), ξ = (n−1)−(n+1)|∇z|2

2[(n+1)z−(n−1)] and δi j is the Kronecker delta.
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2.4 A Geometric Approach to the XR Problem

2.4.1 Introduction

In the previous section, we derived explicit expressions for both the map-

ping P : D → T and the PDE of the XR problem. In this section, we

formulate expressions describing surfaces z and s in the XR system by

looking at the problem from a geometric point of view.

In our construction, we use the definition of convex bodies in R3 that is

based on the idea of the intersection of families of half-spaces. In our case,

instead of half-spaces, we use branches of hyperboloids of revolution and

ellipsoids of revolution.

Our approach is similar to that used in [6], [9] and [21]. The requirement

that the optical path length be constant defines families of quadrics. These

quadrics have special reflecting and refracting properties that make the

connection between the two surfaces in the XR system. Next, applying

the inf and sup operators, we obtain the required surfaces solving the

problem. Note that the surfaces obtained need not be smooth. However,

this particular approach permits the definition of a geometric variant of the

mapping P : D→ T given in (2.20). Future plans on this problem involve

the establishment of weak solutions of the XR problem, together with the

proofs of the existence and uniqueness of the solution.

2.4.2 The XR Surfaces

First, let us recall the OPL of the system:

L = z(x) +

√∣∣∣x − p
∣∣∣2 + (z(x) − s(p))2 + n · s(p) where x ∈ D, p ∈ T. (2.29)

Solving for the variables z and s separately, we can express z in terms of s

and vice versa.
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Let us begin with the surface z = F(x, p, s(p)). The terms of the equation

in (2.29) can be rearranged to get:

(L − (n − 1)s − 2z) (L − (n + 1)s) =
∣∣∣x − p

∣∣∣2 . (2.30)

This in turn leads us to the formulation:

z =
1
2

L − (n − 1)s −

∣∣∣x − p
∣∣∣2

L − (n + 1)s

 . (2.31)

Lemma 2.2. For any fixed (p, s), the surface z = Pp,s(x) given by the equation

(2.31) is a paraboloid of revolution with vertex at
(
p, L−(n−1)s

2

)
and focus located at

the point Fp = (p, s). The focal parameter will be p f = (n + 1)s − L.

Proof. We simply need to write (2.31) in the quadric form |x − x0|
2 = 4a(z −

z0): ∣∣∣x − p
∣∣∣2 = 4

(
(n + 1)s − L

2

) (
z −

L − (n − 1)s
2

)
. (2.32)

This is the equation for the paraboloid of revolution with vertical axis

through
(
p, L−(n−1)s

2

)
, which is the vertex of the paraboloid. The focus is

located at Fp =
(
p, L−(n−1)s

2 − |a|
)

where a = (n+1)s−L
2 . The focal parameter is

p f = 2 |a| = (n + 1)s − L. �

On the other hand, solving the equation (2.29) for the variable s, we obtain

an equation s = G(x, p, z(x)) given by the following pair of surfaces:

s =
1

n2 − 1

(
nL − (n + 1)z ±

√
(L − (n + 1)z)2 + (n2 − 1)

∣∣∣x − p
∣∣∣2) . (2.33)

Lemma 2.3. Let (x, z) be fixed.

• If n > 1, the surface given by the equation (2.33) is a two-sheeted hyperboloid

of revolution centered at
(
x, nL−(n+1)z

n2−1

)
with upper focus F+ = (x, z) and lower

focus F− =
(
x, 2nL−(n+1)2z

n2−1

)
, and with eccentricity e = n.
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• If 0 < n < 1, the surface given by the equation (2.33) is an ellipsoid of

revolution centered at
(
x, nL−(n+1)z

n2−1

)
with upper focus F+ = (x, z) and lower

focus F− =
(
x, 2nL−(n+1)2z

n2−1

)
, and with eccentricity e = n.

Remark 2.4. In both cases, only the lower halves of these surfaces will be con-

sidered in our constructions. Therefore, we will denote by s = Hx,z(p) the lower

branch of the two-sheeted hyperboloid of revolution for the case n > 1 and by

s = Ex,z(p) the lower half of the ellipsoid of revolution when 0 < n < 1.

Proof. We need to rewrite the equation (2.33) in the following form:(
s − β+(n−1)L

n2−1

)2

β2

(n2−1)2

−

∣∣∣p − x
∣∣∣2

β2

n2−1

= 1 (2.34)

where β = L − (n + 1)z. This is obviously the general equation for the

two-sheeted hyperboloid of revolution with center at
(
x, nL−(n+1)z

n2−1

)
. The

eccentricity can easily be computed using the formula e =
√

1 + b2

a2 where

a =
β

n2−1 and b =
β

√

n2−1
. �

The following lemma is a statement of the well-known fact that any ray

of light parallel to the axis of a paraboloid is reflected so as to pass through

the focus.

Lemma 2.5. Fix the point (p, s) ∈ T × R. Then for each x ∈ D, the ray through

x in positive vertical direction reflects at (x,Pp,s(x)). All such reflected rays pass

through the focus Fp = (p, s).

The following lemma is based on Snell’s Law of Refraction and is due to

Descartes. It can be verified using simple properties of conics. The proof

will be omitted here and the reader should refer to the discussion in [16]

for details.
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Lemma 2.6. • Let n > 1 and the point (x, z) ∈ D × R be fixed. Then if the

lower branch of the hyperboloid s(p) = Hx,z(p) with eccentricity e = n is

constructed of material of refractive index n, rays of light parallel to the

major axis (vertical upwards) will be refracted so as to pass through the

upper focus F+ = (x, z). The opposite direction holds true as well. That is,

rays passing through the upper focus F+ = (x, z) and hitting the surface of

the lower branch of the hyperboloid will be refracted so as to have a direction

parallel to the major axis of the hyperboloid (vertical downwards).

• Let 0 < n < 1 and the point (x, z) ∈ D × R be fixed. Then if the lower

half of the ellipsoid of revolution s(p) = Ex,z(p) with eccentricity e = n is

constructed of material of refractive index n, rays of light parallel to the

major axis (vertical upwards) will be refracted so as to pass through the

upper focus F+ = (x, z). The opposite direction holds true as well. That is,

rays passing through the upper focus F+ = (x, z) and hitting the surface of

the lower branch of the ellipsoid of revolution will be refracted so as to have

a direction parallel to the major axis of the ellipsoid (vertical downwards).

Lemmas 2.5 and 2.6 have been combined and illustrated in Figures 2.2

and 2.3 for the two cases when n > 1 and 0 < n < 1, respectively. In

both cases, the ray initiated at the point x ∈ D and moving in the vertical

direction up to the surface s = Px,z (reflector) reaches the point (x, z), which

is in the meantime the focus associated to the lower half of the refractor.

Here, the ray is reflected off towards the focus of the paraboloid, which in

turn is located on the surface of the refractor (either z = Hp,s(x) if n > 1 or

z = Ep,s(x) if 0 < n < 1). At this point, the ray is refracted and continues its

trajectory in the negative vertical direction and finally reaches the target

point p ∈ T.

The discussion above can be summarized in the following corollary. This

is the main key to defining the XR system as envelopes of families of
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Figure 2.2: Case I: n > 1. Here, the ray issued at x in the vertical up-

ward direction is reflected off at F+ = (x, z) in direction of the focus of the

paraboloid. The ray then reaches the point Fp = (p, s), where it is refracted

in the negative vertical direction, since it reflected off at F+, which is the

upper focus of the hyperboloid associated to the lower branch.
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Figure 2.3: Case II: 0 < n < 1. This time, the ray issued at x in the vertical

upward direction is reflected off at F+ = (x, z) in direction of the focus Fp

of the paraboloid. Again, the ray reaches the point Fp = (p, s), where it is

refracted in the negative vertical direction since it reflected off at F+, which

is the upper focus of the ellipsoid of revolution.
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quadrics. These quadrics will be either a paraboloid with a branch of a

hyperboloid of revolution if n > 1 or a paraboloid with an ellipsoid of

revolution if 0 < n < 1. Recall that R (reflector) and L (refractor) are the

two surfaces of the XR optical system as in Section 2.3.

Corollary 2.7. Let R and L be the graphs defined by two functions z ∈ C1(D̄)

and s ∈ C1(T̄), respectively. Assume also that the XR mapping P : D̄ → T̄ is a

diffeomorphism. In addition, fix some point (x0, z(x0)) ∈ R and let (p0, s(p0)) ∈ L

where p0 = P(x0).

1. z(x0) = Pp0,s(p0)(x0), where Pp0,s(p0) is the paraboloid of revolution with

vertical axis of symmetry and focus at Fp = (p0, s(p0)). Moreover, the

hyperplanes tangent to R at (x0, z(x0)) and to the graph of z = Pp0,s(p0) at x0

coincide.

2. (a) If n > 1, s(p0) = Hx0,z(x0)(x0), where Hx0,z(x0) is the lower branch of a

hyperboloid of revolution with vertical major axis and corresponding

focus F+ = (x0, z(x0)). Moreover, the hyperplanes tangent to L at

(p0, s(p0)) and to the graph of s = Hx0,z(x0) at p0 coincide.

(b) If 0 < n < 1, s(p0) = Ex0,z(x0)(x0), where Ex0,z0 is the lower half of an

ellipsoid of revolution with vertical major axis and corresponding focus

F+ = (x0, z(x0)). Moreover, the hyperplanes tangent toL at (p0, s(p0))

and to the graph of s = Ex0,z(x0) at p0 coincide.

2.5 Conclusion

In this chapter, we introduced an XR system that involves both a mirror

and a lens. Clearly, our work is still in progress and the achievements

in this problem are far for complete. Our future work plans include, but

are not restricted to the derivation of the theorems for the existence and
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uniqueness of the solution to the XR problem together with the formation of

weak and variational solutions to the XR problem. The method presented

in this chapter should be applicable to RX systems as well, where light rays

first refract through a lens and then reflect off a mirror. In addition, we

claim that the XR problem could be studied for the case of light issued at a

point source instead of a collimated beam. We also believe that an analogue

of the numerical method presented in Chapter 1 would be interesting to

investigate.
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Chapter 3

A Collimated Source Problem

3.1 Introduction

In this chapter, we discuss a reflector problem previously introduced in

[11]. This section has great importance in our whole dissertation as it

involves detailed derivations of equations. Similar methods are used in

Chapter 2 where some of the details are skipped there.

We first describe the problem, then derive the partial differential equation

(PDE) related to this problem. It was shown in [11] that this PDE is

of Monge-Ampère type. Next we consider the rotationally symmetric

case of the setup and give the equation related to it, which is an ordinary

differential equation (ODE). Finally we illustrate the discussion by defining

a numerical example.

3.2 Description of the Problem

The problem can be presented as follows. Consider a collimated beam of

light emitted in the vertical upward direction. Let D ⊂ R2 be the inter-

section of this beam with the plane R2 =
{
(x, y, z : z = 0)

}
in 3-dimensional

space. Let T be another domain on the same planeR2. Let I = I(x, y), (x, y) ∈
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D be the intensity of the light over the domain D and L = L(α, β) be the

intensity of the light on T. Now consider a reflector R (some surface inR3)

lying above the domain D. The rays passing through D will hit and reflect

off the reflector R and reach the target domain T (See Figure 3.1). Both I

and L are considered to be integrable functions.

Figure 3.1: Design of the problem

Then, we can say that the reflector R actually defines a map γ : D −→ T

with

γ(x, y) = (α(x, y), β(x, y)).

The problem is to construct such a surface that satisfies the following PDE:

I(x, y) =
∣∣∣J(γ(x, y))

∣∣∣ · L(γ(x, y)) (3.1)

where J stands for the Jacobian.

We want to describe an explicit form of:

1. the map γ

2. its Jacobian J(γ(·, ·))
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3. the equation (3.1)

with no assumption regarding the symmetry of D, T, I and L.

3.3 The Derivation of the PDE

Let z = z(x, y) be a function defined over the domain D and giving the

vertical distance between the point (x, y) ∈ D and (x, y, z) ∈ R. The two

vectors (
1, 0,

∂z
∂x

)
and

(
0, 1,

∂z
∂y

)
(3.2)

are orthogonal and tangent to the surface R at (x, y, z). Then, the unit

normal vector will be

~n =

(
1, 0, ∂z

∂x

)
×

(
0, 1, ∂z

∂y

)∣∣∣∣(1, 0, ∂z
∂x

)
×

(
0, 1, ∂z

∂y

)∣∣∣∣ =

(
−
∂z
∂x ,−

∂z
∂y , 1

)
√(

∂z
∂x

)2
+

(
∂z
∂y

)2
+ 1

=
(−∇z, 1)√
|∇z|2 + 1

(3.3)

where ∇z =
(
∂z
∂x ,

∂z
∂y

)
. Let ~m = (0, 0, 1) be the direction of the emitted light.

We can find the direction ~b of the reflected light using the formula

~b = ~m − 2
〈
~m, ~n

〉
~n.

Therefore, the reflected direction will be:

~b =

(
2∇z, |∇z|2 − 1

)
|∇z|2 + 1

. (3.4)

Note that
∣∣∣∣~b∣∣∣∣ = 1.

Suppose that t(x, y) is the distance between the points (x, y, z) ∈ R and

(α, β, 0) ∈ T. Then we have:

t(x, y) =
z(x, y)
〈−m, b〉

=
1 + |∇z|2

1 − |∇z|2
z(x, y). (3.5)
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Therefore, we can deduce the mapping γ = γ(x, y) as follows:

(α, β, 0) = γ(x, y) = (x, y, 0) + z(x, y) · ~m + t(x, y) ·~b

= (x, y, 0) + z · (0, 0, 1) +
1 + |∇z|2

1 − |∇z|2
z ·

(
2 ∂z
∂x , 2

∂z
∂y , |∇z|2 − 1

)
|∇z|2 + 1

= (x, y, 0) + (0, 0, z) + z ·

 2 ∂z
∂x

1 − |∇z|2
,

2 ∂z
∂y

1 − |∇z|2
,−1

 (3.6)

= (x, y, 0) +

 2z ∂z
∂x

1 − |∇z|2
,

2z ∂z
∂y

1 − |∇z|2
, 0

 .
As a result, we can write this in a shorter form:

γ(x, y) = (α, β) = (x, y) +
2z(x, y)

1 − |∇z|2
∇z. (3.7)

Next, we can compute the Jacobian of γ. We have that

α(x, y) = x +
2z

1 − |∇z|2
∂z
∂x

and β(x, y) = y +
2z

1 − |∇z|2
∂z
∂y
. (3.8)

So,

A :=
∂α
∂x

= 1 +
∂
∂x

(
2z

1 − |∇z|2
∂z
∂x

)
B :=

∂α
∂y

=
∂
∂y

(
2z

1 − |∇z|2
∂z
∂x

)
C :=

∂β

∂x
=
∂
∂x

(
2z

1 − |∇z|2
∂z
∂y

)
(3.9)

D :=
∂β

∂y
= 1 +

∂
∂y

(
2z

1 − |∇z|2
∂z
∂y

)
.

Now we compute these components. We know that∣∣∣J(γ(x, y))
∣∣∣ = A ·D − B · C (3.10)
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For simplicity, let us introduce the following notation:

z1 = ∂z
∂x ; z2 = ∂z

∂y ;

z11 = ∂2z
∂x2 ; z22 = ∂2z

∂y2 ;

z12 = z21 = ∂2z
∂x∂y .

(3.11)

We will need:

∂
∂x

(
|∇z|2

)
=
∂
∂x

(
(z1)2 + (z2)2

)
= 2z1z11 + 2z2z12

and
∂
∂y

(
|∇z|2

)
=
∂
∂y

(
(z1)2 + (z2)2

)
= 2z1z12 + 2z2z22.

So, we get:

A =
∂α
∂x

= 1 +
∂
∂x

(
2z

1 − |∇z|2
∂z
∂x

)
= 1 +

2
1 − |∇z|2

(z1)2 +
2z

1 − |∇z|2
z11 + 2zz1

∂
∂x

(
1

1 − |∇z|2

)
(3.12)

= 1 +
2

1 − |∇z|2
(z1)2 +

2z
1 − |∇z|2

z11 +
4z

(1 − |∇z|2)2
z1(z1z11 + z2z12).

Similarly, we arrive at:

D = 1 +
2

1 − |∇z|2
(z2)2 +

2z
1 − |∇z|2

z22 +
4z

(1 − |∇z|2)2
z2(z1z12 + z2z22). (3.13)

Also, we have:

B =
∂α
∂y

=
∂
∂y

(
2z

1 − |∇z|2
∂z
∂x

)
=

2
1 − |∇z|2

z1z2 +
2z

1 − |∇z|2
z12 + 2zz1

∂
∂y

(
1

1 − |∇z|2

)
(3.14)

=
2

1 − |∇z|2
z1z2 +

2z
1 − |∇z|2

z12 +
4z

(1 − |∇z|2)2
z1(z1z12 + z2z22).

In a similar manner, we write:

C =
2

1 − |∇z|2
z1z2 +

2z
1 − |∇z|2

z12 +
4z

(1 − |∇z|2)2
z2(z1z11 + z2z12). (3.15)
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Therefore,∣∣∣J(γ)
∣∣∣ = A ·D − B · C

= 1 +
2

1 − |∇z|2
(
(z1)2 + (z2)2

)
+

2z
1 − |∇z|2

(z11 + z22)

+
4z

(1 − |∇z|2)2

(
(z1)2z22 + (z1)2z11 + (z2)2z11 + (z2)2z22

)
+

4z2

(1 − |∇z|2)2

(
z11z22 − (z12)2

)
+

8z2

(1 − |∇z|2)3

(
(z1)2z11z22 + (z2)2z11z22 − (z1)2(z12)2

− (z2)2(z12)2
)

(3.16)

= 1 +
2 |∇z|2

1 − |∇z|2
+

2z
1 − |∇z|2

4z +
4z

(1 − |∇z|2)2
|∇z|2 4z

+
4z2

(1 − |∇z|2)2
det(zi j) +

8z2

(1 − |∇z|2)3
|∇z|2 det(zi j)

=
1 + |∇z|2

1 − |∇z|2
+

2z(1 + |∇z|2)

(1 − |∇z|2)2
4z +

4z2(1 + |∇z|2)

(1 − |∇z|2)3
det(zi j).

Now, putting η := 1−|∇z|2

2z , we can write this Jacobian in a simpler form:

J(γ) =
1 + |∇z|2

1 − |∇z|2
+

(1 + |∇z|2)

η(1 − |∇z|2)
4z +

1 + |∇z|2

η2(1 − |∇z|2)
det(zi j)

=
1
η2

1 + |∇z|2

1 − |∇z|2
(
η2 + η4z + det(zi j)

)
=

1
η2

1 + |∇z|2

1 − |∇z|2
(
η2 + ηz11 + ηz22 + z11z22 − (z12)2

)
=

1
η2

1 + |∇z|2

1 − |∇z|2
(
(z11 + η)(z22 + η) − (z12)2

)
(3.17)

=
1
η2

1 + |∇z|2

1 − |∇z|2
det

 z11 + η z12

z21 z22 + η


=

1
η2

1 + |∇z|2

1 − |∇z|2
det(zi j + δi jη)



65

where δi j is the Kronecker delta.

As a result, we can write the PDE (3.1) as follows:

I(x, y) =

∣∣∣∣∣∣det(zi j + δi jη)
1 + |∇z|2

1 − |∇z|2
1
η2

∣∣∣∣∣∣ L(α, β). (3.18)

3.4 The Rotationally Symmetric Case

Given the PDE (3.18) with η = 1−|∇|2

2z and |∇z| < 1, let us assume that L ≡ 1

on the set T =
{
(α, β) ∈ R2

|(α, β) = Γ(x, y)
}
. Set z = z(r) = z

(√
x2 + y2

)
. So,

r2 = x2 + y2 and
∂r
∂x

=
x
r

and
∂r
∂y

=
y
r
. (3.19)

We need the following first and second order partial derivatives:

zx = zrrx =
x
r

zr

zy = zrry =
y
r

zr

zxx =
1
r

zr −
x2

r3 zr +
x2

r2 zrr (3.20)

zyy =
1
r

zr −
y2

r3 zr +
y2

r2 zrr

zxy = zyx =
xy
r2 zrr −

xy
r3 zr.

Then, we can compute |∇z|2 and 4z.

|∇z|2 =

(
∂r
∂x

)2

+

(
∂r
∂y

)2

=
(x

r
zr

)2

+
( y

r
zr

)2

(3.21)

=
x2 + y2

r2 (zr)2.

Then,

|∇z|2 = (zr)2. (3.22)
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Also,

4z = zxx + zyy

=
1
r

zr −
x2

r3 zr +
x2

r2 zrr +
1
r

zr −
y2

r3 zr +
y2

r2 zrr (3.23)

=
2
r

zr −
x2 + y2

r3 zr +
x2 + y2

r2 zrr.

Then, we have the Laplacian:

4z =
1
r

zr + zrr. (3.24)

We can now compute the determinant det(zi j + δi jη).

det(zi j + δi jη) =

∣∣∣∣∣∣∣ z11 + η z12

z21 z22 + η

∣∣∣∣∣∣∣
= zxxzyy + η(zxx + zyy) + η2

− (zxy)2

=

(
1
r

zr −
x2

r3 zr +
x2

r2 zrr

) (
1
r

zr −
y2

r3 zr +
y2

r2 zrr

)
+η

(1
r

zr + zrr

)
+ η2
−

(xy
r2 zrr −

xy
r3 zr

)2

(3.25)

=

(
1
r2 −

x2

r4 −
y2

r4

)
z2

r +

(
x2

r3 +
y2

r3

)
zrzrr

+
1 − z2

r

2z

(1
r

zr + zrr

)
+

(
1 − z2

r

2z

)2

.

Therefore,

det zi j + δi jη =
1
r

zrzrr +
1 − z2

r

2z

(1
r

zr + zrr

)
+

(
1 − z2

r

2z

)2

. (3.26)

Together with the remaining piece of the Jacobian in equation (3.18),

1 + |∇z|2

1 − |∇z|2
1
η2 =

4z2(1 + z2
r )

(1 − z2
r )3
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we get the following second-order nonlinear ODE:

I(r) =

1
r

zrzrr +
1 − z2

r

2z

(1
r

zr + zrr

)
+

(
1 − z2

r

2z

)2 4z2(1 + z2
r )

(1 − z2
r )3

. (3.27)

Since ∇z = zr, we can also obtain the map γ = γ(r) from (3.7):

γ(r) = r +
2z

1 − z2
r
zr (3.28)

We want to solve the ODE (3.27) numerically using MATLAB. To do that,

we have to write it as a system of first-order ODE’s so that we can use the

ODE solver ode45 in MATLAB. Let us put Z1 := z

Z2 := zr
(3.29)

Then, we can transform (3.27) into a system of ODE’s of the following

form:  Z′1 = Z2

Z′2 = F(r,Z1,Z2).
(3.30)

Therefore, the ODE (3.27) can be rewritten as follows:

Z′1 = Z2

Z′2 =
I(r)

(1−Z2
2)3

1+Z2
2
− (1 − Z2

2)2
−

2
r Z1Z2(1 − Z2

2)

4
r Z2

1Z2 + 2Z1(1 − Z2
2)

(3.31)

3.5 An Example

Consider the following density function on D:

I(x, y) = c · exp
(
−

x2 + y2

2σ2

)
(3.32)
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where σ is a parameter and c is a balancing constant (to be determined)

enforcing the energy conservation. We define the domains D and T as:

D =
{
(x, y) ∈ R : x2 + y2

≤ (3σ)2
}

(3.33)

and

T =
{
(α, β) ∈ R : α2 + β2

≤ (2σ)2
}
. (3.34)

We have already assumed the uniform density over T as L ≡ 1. Let us now

determine the balancing constant c. We need to have:"
D

I(x, y)dxdy =

"
T

L(α, β)dαdβ. (3.35)

Clearly,
!

T
LdA = 4πσ2. Using the method of cylindrical shells,

J :=
"

D
Idxdy = c

∫ 3σ

0
2πre−

r2

2σ2 dr (3.36)

= c2
√

2σπ
(
1 −

1
e9/4

)
.

Due to the conservation of energy (3.35), we must have J = 4πσ2. Thus,

the constant c turns out to be:

c = c(σ) =

√
2σ

1 − 1
e9/4

. (3.37)

Therefore, the density that satisfies the energy conservation must be

Iσ(x, y) =

√
2σ

1 − 1
e9/4

exp
(
−

x2 + y2

2σ2

)
. (3.38)

Let the value z0 refer to the initial condition of the problem. Below we illus-

trate the numerical solution, which gives parabola-like shaped surfaces.

In Figure 3.2, we use several different values for the parameter σ; namely

σ = 0.125, σ = 0.25 and σ = 0.375. This changes the radius of the initial

domain as well as the shape of the distribution although the total intensity

remains constant. We keep the initial value z0 = 2.0 fixed in order to

compare the different surfaces generated for different parameters. The

superposition of all these three surfaces is presented in Figure 3.5.
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(c) Paramter value: σ = 0.375

Figure 3.2: Resulting surfaces for various parameter values σ.
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Figure 3.3: Resulting surfaces with z0 = 2 and parameters: σ = 0.125,

σ = 0.25, σ = 0.375
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In Figure 3.4, we generate a family of surfaces for a fixed parameter σ,

namely σ = 0.25, but this time, using different initial conditions such as

z0 = 1, z0 = 1.2 and z0 = 1.4 in order to see the dependence of the solution

on the initial value. In Figure 3.5, we combine all these surfeces in one to

visualize all three at one place. We can see from the shape of these graphs

that the larger the initial condition the steeper the surface of the reflector

gets.
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Figure 3.4: Resulting surfaces for various initial values z0.
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Figure 3.5: Surfaces with σ = 0.25 and different initial values: z0 = 1.0,

z0 = 1.2 and z0 = 1.4

In Figure 3.5 below, we have the deviations of the map γ for each of

the parameters σ = 0.125, σ = 0.25 and σ = 0.375 with the same initial

condition z0 = 2. This set of graphs gives the amount of displacement of

each ray of light over the surface z = 0.

Error analysis

When solving the ODE (3.27), the MATLAB code generates some data

involving a vector ~r and the corresponding vectors containing values for z

and zr. Using them, we can test the consistency of the data.

Notice that we already have from (3.28)

ρ(r) =
1 + (zr)2

1 − (zr)2 z (3.39)

which gives the distance between the point (r, z) where the ray is reflected

and the image point γ(r).

On the other hand, using the Pythagorean rule, we also have the follow-
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Figure 3.6: Deviations of the map γ for σ = 0.125, σ = 0.25, σ = 0.375 and

initial value: z0 = 2
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ing:

ρ(r) =
√

(r − γ(r))2 + z2. (3.40)

Then, requiring the equality of the equations (3.39) and (3.40), we can

define an error function δ(r) as follows:

δ(r) =
1 + (zr)2

1 − (zr)2 z −
√

(r − γ(r))2 + z2. (3.41)

We would like the function γ to have values very close to 0. Figure 3.5 is

a graph showing the r-δ(r) relation with the data generated by the ODE

solver ode45.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−4

−2
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4

x 10
−15

r: Radius

δ(
r)

Figure 3.7: Error with parameter σ = 2.5 and initial value z0 = 2

3.6 Conclusion

The problem of a collimated source was introduced and formulated in

[11]. What we did was to redevelop the formula that is a nonlinear partial
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differential equation of Monge-Ampère type. Then, we considered the

rotationally symmetric case and deduced the formula applying to this

particular case. Next, to illustrate the concept of rotational symmetry, we

used our new formula and applied it to a specific example where a bell-

shaped density was transformed into a uniform density. We generated

surfaces giving the solution for several different cases, namely for the case

when we have the same density parameter for different initial values of

the problem and for the case when the same initial condition applies to

different parameters.

We then observed that either changing the initial condition or changing

the parameter clearly affects the shape of the resulting surface. We can

easily conclude that increasing the parameter σ steepens the shape of the

reflector, while increasing the initial condition z0 flattens it.

Finally, we also produced a sketch of the error of the radial function

at each γ(r) depending on the distance r from the origin. We obtained

a very satisfying result, as Figure 3.5 shows, our error function satisfies

|δ(r)| ≤ 2 × 10−15.



76

Chapter 4

A Problem in Non-Imaging Optics

4.1 Introduction

Energy concentrators have played a significant role in energy production,

especially since fossil fuels have become more challenging to acquire in

most industrialized countries.

Concentrators have the goal of capturing radiant (solar) energy and trans-

forming it into some other form of energy (like heat or electricity). Imaging

the sun may be useful in solar astronomy or in the study of sun spots, but it

has no obvious advantage in solar energy conversion systems. Thus, even

if we take a more empirical optimization approach, it is plausible that relax-

ing the imaging requirement has the potential of improving concentration

performance. Approaching the subject this way leads to incremental im-

provements over various classical imaging designs such as parabolic (or

more generally convex) reflectors. In this chapter, our goal is to demon-

strate methods of obtaining various models of concentrators. Note that

these methods still resemble classical imaging approaches.

Consider an imaging problem, taking the simplest example of points on

a line. An imaging system is required to map these points on another

line, called the image, without scrambling the points −that is, to send the
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rays issuing from every object point to their corresponding image points−.

Each ray issuing from a point is represented by a straight line in the phase

space, and the system is required to faithfully map line onto line. Now

suppose we consider only the boundary of the beam of all rays. Then all

we require that the boundary be transported from the source to the target.

Due to the edge-ray principle, the interior rays will come along as seen

in Figure 4.1. The interior rays cannot ”leak out” because otherwise, by

Figure 4.1: Light beam transmitted to target.

crossing the boundary, they would first become the boundary, and it is the

boundary that is being transported. This looks pretty much like carrying a

liquid inside a certain container. The fact that elements of the liquid inside

the container mix or that the container itself is deformed has no importance

as long as the content is transported. This is the key idea of nonimaging

optics.

Nonimaging optics is mainly based on the fundamental studies of Welford

and Winston ([27], [28]) and has recently been studied by the authors in

[29] and many others.
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In this chapter, we present several different types of concentrators. Dif-

ferent combinations of reflectors and refractors are considered. This leads

to different levels of transmission, that is, percentages of light entering the

concentrator that are absorbed by a target photocell.

4.2 Description of the Problem

We consider a system of two mirrors designed in such a way that the ray

through any point x ∈ Ω, where Ω is the initial domain on the plane z = 0,

is carried after a couple of reflections to some point p in a target domain

Td located on the plane z = d > 0. We can think of Ω as the cross section of

a collimated light beam B0 in the direction parallel to the z-axis. The light

beam B0 reflects off the first and the second mirrors and takes its final form

B f , also parallel to the z-axis, and attains the target domain Td.

Let us denote the intensity of the initial light beam as I(x), x ∈ Ω and

the intensity of B f as L(p), p ∈ Td. Consequently, assuming preservation of

total energy, we require the following balance condition:"
Ω

I(x)dSx =

"
Td

L(p)dSp. (4.1)

Once this setup is constructed, it has been shown in [19] that the surface

z = z(x) of the first reflector is given by the solution of the following

nonlinear PDE:

L(x + β · Oz)
∣∣∣det(Id + β · O2z)

∣∣∣ = I(x), x ∈ Ω (4.2)

where β is a parameter.

The problem can now be described as following: Given the densities I

on Ω and L on Td, one is required to design a set of reflectors R1 and R2.

Here, we want most of the total intensity hitting the first mirror R1 to be
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Figure 4.2: Two-mirror design (2-dimensional representation)

transmitted through the two-mirror reflector set and to reach the target

domain Td. We also want the collimated beam to have an incoming ray

angle (angle of incidence) differing from the direction of the vertical z-axis

as much as possible. A 2-dimensional representation of the setup is given

in Figure 4.2. So, according to the figure, we want the green ray to make the

greatest possible angle with the red ray for “almost” all points (x, z) ∈ R1.

Here are a couple of definitions that will let us restate the problem in

physical terms.

Definition 4.1. The transmission (of light) is the percentage entering a cer-

tain optical system captured by the target set (receiver). It is sometimes called

efficiency.

Definition 4.2. The angle of acceptance, usually denoted by ∆, is the maximum

angle of incidence hitting the (first) surface of an optical system and satisfying a

certain level of transmission.



80

In general, the minimum transmission level required is considered to

be 90%. The angle corresponding to this transmission level is called the

real acceptance angle. Then, we can now restate the problem as designing

an optical system that maximizes the acceptance angle for this specific

transmission level.

The concentrator shown in Figure 4.2 is made up of a pair of reflecting

surfaces. The rays initiated on the domain Ω are to be collected on the

target (concentrator) set Td located at a vertical distance of d units above

the plane containing the light source Ω. The red rays are initially vertical

and all those red rays are completely collected by the target. The solution to

this problem is given in [19]. However, in the case of comatic wavefronts,

that is, when the light rays do not have the initial vertical direction, the

double-reflected rays will deviate from their initial image point in the target

set Td, and some of them (maybe most of them) will already be off-target.

Our goal is to collect the majority of these rays for the largest possible

angle of incidence. In this chapter, we discuss several different types of

concentrators based on the idea described in the construction represented

in Figure 4.2.

4.3 A Particular Design

We consider now a particular version of the problem above, namely, the

rotationally symmetric case. In this case, the PDE (4.2) turns into a second

order non-linear ODE. Without loss of generality, the density of the initial

beam is uniformly assigned to be I ≡ 1, as we can assume that the sun’s rays

have a uniform distribution on any given surface. The solution to (4.2) is

considered on a rectangular domain around the origin. The main difference

in our setup is that we will use only the first mirror as the concentrator. In

addition, the receiver cell will be placed at the very location of the second
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surface as seen in Figure 4.3. The single-mirror setup provides us more

control over the light that enters the system. In other words, it would be

much more difficult for the light to hit the target cell after reflecting off

two non-planar reflectors. The cell is modeled as a square of dimension

1cm×1cm while the mirror will be a surface lying above a domain of

dimension 20cm×20cm in the plane z = 0. In the following example, we

give the results for two different intensities pre-assigned for the target cell.

Figure 4.3: Single-mirror design

4.3.1 Example

In our first example, the reflecting surface is set to be lying above the

domain [−10, 10] × [−10, 10] centered at the origin. We then present in

Figure 4.4 some results for different pre-assignments of the parameter l in
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the uniform density function L(p) given by:

L(p) =

 c if
∣∣∣p∣∣∣ < l

0 otherwise
(4.3)

where c is a constant to be determined and that satisfies the total energy

balance condition. Next, we can work on the same construction, now using

(a) Parameter l = 0.25 (b) Parameter l = 0.20

(c) Parameter l = 0.15 (d) Parameter l = 0.10

Figure 4.4: Results for an initially uniformly distributed intensity

a different density function L for the target set, defined as:

L(p) =

 c · e
l2

l2−p2 if
∣∣∣p∣∣∣ < l

0 otherwise.
(4.4)
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This density provides a smoothly shaped distribution, as it is differentiable

at all points on the target. We see in Figure 4.5 that the rays will fall off the

target cell in a different manner compared to the case when the intensity is

uniformly distributed. As a matter of fact, our main concern in nonimaging

optics is to capture the maximum amount of light for the 90% transmission

level. In this situation, it turns out that the density function given in 4.4

does not perform as well as the uniform density given in 4.3.

(a) Parameter l = 0.25 (b) Parameter l = 0.20

(c) Parameter l = 0.15 (d) Parameter l = 0.10

Figure 4.5: Results for the intensity function (4.4)
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4.4 A Mixed Design

The following construction, called the double medium-mirror design, is

closely related to the previous one except for the mirror being located in

a different medium. As seen in Figure 4.6, the rays first travel in Medium

1 with some refractive index n1 and reach the edge of another medium

(Medium 2) with refractive index n2, where the incoming rays are refracted

according to Snell’s Law. In this design, we want Medium 2 to have a larger

refractive index compared to that of Medium 1 (n1 < n2). For example,

Medium 1 could be air with refractive index n1 practically equal to 1, and

Medium 2 could be the so-called soda-lime glass, whose refractive index

is close to 1.5.

Figure 4.6: Double medium-mirror design

As we can see in Figure 4.6, the blue ray hits the refracting surface in

the direction of the normal (i.e. perpendicularly), so no refraction occurs
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in this case. If the purple ray has an angle of incidence θ1 > 0 with the

normal to the surface of refraction, according to Snell’s Law of Refraction

n1 · sinθ1 = n2 · sinθ2 (4.5)

the angle of refraction θ2 will be less than θ1.

After the refraction, the light will travel in Medium 2, reflect back from

the mirror and hopefully hit the Photovoltaic Cell (PVC), shown as a small

red line segment in Figure 4.6. The advantage this construction provides

is that the effect of the coma is reduced after the refraction because the

refraction makes the rays bend towards the normal.

In this setup, the intensity on the target cell is the one given in 4.3 as:

L(p) =

 c if
∣∣∣p∣∣∣ < l

0 otherwise
(4.6)

where l is a parameter and c is the equilibrium constant satisfying the

balancing condition (4.1). The parameter was chosen as l = 1.2 for this

example.

The graph in Figure 4.7 shows the resulting transmission with a plain

system (when there is no Medium II). We can see that the acceptance angle

is 1.5 degrees.

Now, the following graph in Figure 4.8 gives the transmission of the

system when Medium 1 is air (n1 = 1.000293) and Medium 2 is soda-lime

glass (n2 = 1.520), which is the glass used for such objects as bottles and

jars.

We can surely proceed further and make use of other materials with

even higher refractive indices, for example, if we use Arsenic Trisulfide

Glass, which has a refractive index higher than 2.3 [30], we obtain the

angle-transmission graph presented in Figure 4.9.

The authors in [8] designed a concentrator using a method called the

Simultaneous Multiple Surface (SMS), which involves both a refracting
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Figure 4.7: Resulting transmission using a single-mirror design

Figure 4.8: Resulting transmission when the mirror lies in Soda-Lime Glass
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Figure 4.9: Resulting transmission when the mirror lies in Arsenic Trisul-

fide Glass

surface and a reflecting surface. In that system, the rays first hit a mirror

and then a lens before reaching the photovoltaic cell. In our designs, the

dimensions of the reflector measure 20cm × 20cm while the target cell is

only 1cm × 1cm. This provides a concentration level of 400. According

to previous results, also shown in [8], the acceptance angles of classical

photovoltaic systems at this level of concentration do not exceed 1.5 de-

grees, which is approximately the level we actually obtained with the plain

system shown in Figure 4.3.

As seen in the graphs in Figures 4.8 and 4.9, when the mirror and the

concentrator are placed into different media, the acceptance angle that was

initially as low as 1.5 degrees rose up to 2.2 degrees when that medium was

the Soda-Lime Glass and to 3.2 degrees when we used Arsenic Trisulfide

Glass. Theoretically, it is possible to use some material with an even higher

refractive index and obtain better results.
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4.5 A Refractive Surface

We now set up the problem above for the refractive surface case. That

is, we reconsider the problem above and construct the surface of a lens

instead of a mirror. So the design of the problem would be as described

in Figure 4.10. In this construction, incoming rays first reach the lower

side of the lens, which is planar. This side has no effect when incoming

rays are perpendicular to the lower side of the lens, which is the case for

the green ray in the figure. This green ray is refracted at the second side

and is redirected toward the Photovoltaic Cell (PVC). The solution to the

problem of determining the surfaces of a lens for pre-given incoming and

outgoing collimated light intensities is given by Oliker [20]. We can make

use of the solution given in [20] to construct the non-planar side of the

lens. As a matter of fact, the solution to that problem is described as a

pair of refracting surfaces that are called a two-lens by the author. This

solution is given by a second order nonlinear partial differential equation

of Monge-Ampère type.

In our design, we consider the rotationally symmetric case. This lets us

work on solving a second order non-linear ODE instead of a non-linear

PDE of Monge-Ampère type. So we obtain a pair of surfaces of which we

use only the first side (that is, the side of the lens that is reached first by the

light rays). The PVC will then be placed right at the location of the second

surface. Therefore, any collimated beam of light will be captured by the

PVC, as the latter lies on the regular trajectory of the light rays. As seen in

Figure 4.10, the green ray from a non-comatic radiation enters the lens and

is refracted at the second surface in such a way that it is perfectly captured

by the PVC. The blue ray, from the comatic beam of light, is refracted at

both sides of the lens (as it does not have the direction of the normal to the

first surface any more) and may or may not reach the target. To compare to
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Figure 4.10: Single-lens design
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previous designs, we set the dimensions as before to be 20cm×20cm for the

lens and 1cm×1cm for the PVC. This also provides a concentration level of

400. The density used on the target set is initially set as uniform and the

initial parameter used on the target set is l = 0.15.

Figure 4.11: Angle transmission graph when n=1.5

For our first example, whose results are given in Figure 4.11, we have the

angle-transmission graph for the case when the material used is the usual

Soda-Lime Glass with refractive index set to n = 1.5.

Our next example gives the result of the same design only when we

make a change in the material used for the construction of the lens and use

Potassium Niobate (KNbO3) instead of the regular glass. The correspond-

ing results are given in Figure 4.12.

To emphasize the dependency on the refractive index of the material, we

also verified the setup with material of even larger index of refraction. The
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use of silicon whose index of refraction is n = 3.96 generates the results in

Figure 4.13.

Figure 4.12: Angle transmission graph when n=2.28
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Figure 4.13: Angle transmission graph when n=3.96
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