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Abstract 
 

A Renormalization Group Study of the Ising Model on the Hierarchical Hanoi Networks 
 

By Clifton Trent Brunson 
 
 

Despite all the remarkable breakthroughs in the area of complex networks over the last 
two decades, there still lacks a complete and general understanding of effects that occur 
when long-range connections are present in a system. This thesis explores the Ising 
model using recursive hierarchical networks called Hanoi networks (HN) as a substrate. 
Hanoi networks are purely synthetic and are not found in nature, so it is important to 
establish and not lose sight of why they worth studying. In essence, we are not strictly 
interested in HNs themselves, but the generalized statements about phase transitions on 
complex networks that they provide via the renormalization group (RG).  
 
The RG framework on HNs is established in this study and the thermodynamic 
observables for statistical models are derived from it. Traditionally, the RG has given 
physicists insight into the critical exponents of a system or model, which leads to 
universal behavior; however, hyperbolic networks, like the ones currently under 
investigation, do not contain constant exponents and do not exhibit universality. Instead, 
it is found that the scaling exponents are functions of the temperature. We ultimately 
want to answer the questions: What is it about long-range connections that create a break 
in universal behavior and can complex networks be designed to produce predicted and 
intended effects in phase behavior? The current state of research is several years or 
perhaps decades away from fully comprehending the answers to these questions. The 
research presented here is motivated by these questions, and our contribution here is 
intended to show a generalized picture of phase transitions on networks. 
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CHAPTER I

INTRODUCTION

1.1 Phases of Matter

Our understanding of how the world works requires that we separate things we want to

know about into their elementary components, and then figure out how these components

interact. This approach applies to all areas of science, where we are essentially attempting

to reverse engineer nature. Physicists use statistical mechanics to study the nature of

collections of objects, or ensembles, according to different moments of the distribution of

observables. The interaction between individual particles and the rest of the system can

be modeled in one of three ways: each particle is considered to be independent, similar to

the ideal gas; interactions may occur between neighboring particles, as in lattice models; or

there may be long-range interactions between spatially-distant particles in the system, like

in complex networks. This brief introduction will cover some of the different models studied

with statistical mechanics, the different observables that are measured, and the canonical

framework used to learn about the statistical nature of a system.

Phases are the macroscopic properties used to describe a collection of object or systems.

Substances are typically described as being in their solid, liquid, or gas phase depending on

the environment in which they are observed. Quantitatively, these states of matter can be

determined by measuring different properties of the substance, such as its ability to shear,

its density or its diffraction pattern. These observables provide insight into the symmetry

properties of the system, which are used to define and classify the system.

Describing a system according to its phase extends far beyond the solid-liquid-gas model.
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Ferromagnets, for example, have non-zero magnetization when kept below their Curie tem-

perature, TC . Above this temperature, the coupling between the electron spins loosens, and

ferromagnets lose their overall magnetization. Thus, a magnet either operates as a magnet

or is simply behaves like an ordinary, unmagnetized piece of metal.

Another classic example of phases is the electrical resistivity of superconductors. A su-

perconductor can either exist in its superconducting state, in which the electrical resistance

goes to zero below TC , or it can exist in its non-superconducting form.

These examples show that a dynamical system can be characterized according to the

way certain observables of a system respond to external influences. More generally, if a

system’s dynamics are described according to its phase point G({qi} , {pi}) with general-

ized coordinates qi and generalized momenta pi, the system’s equations of motions and its

physical constraints determine the regions where different phases exist in its phase space

[30].

In statistical mechanics, the thermodynamics of a system is given by its free energy, F ,

and its derivatives, which come from the Gibbs’ formula

e−F/kBT =
∑
{qi,pi}

e−H({qi,pi})/kBT , (1)

where the sum on the right-hand side is the sum over all the possible energy states of the

system and is referred to as the partition function, often denoted by Z.

Z =
∑
{qi,pi}

e−H({qi,pi})/kBT (2)

The partition function is the sum over all degrees of freedom according to the system’s

Hamiltonian, H(qi, pi), and contains all the statistical information about a system. All

phases of matter that a system can occupy are described by the same Hamiltonian, which

leads to the discussion of how systems undergo phase transitions [16].



3

Figure 1: Phase diagram: This diagram, taken from Ref. [17], shows the different bound-
aries that separate the solid, liquid, and gas phases of a system. These types of boundaries
are present in every model that undergoes a phase transition. In this study, the primary
focus will be the phase diagram of the ferromagnetic behavior of complex networks.

1.2 Phase Transitions

This work examines the ferromagnetic phase transitions that occur when the Ising model is

applied to hierarchical, recursive, small-world networks called Hanoi networks. To explain

the motivation for studying purely synthetic networks and the dynamics of statistical models

on them, it is important to establish the basis for understanding phases transitions in

general.

Phase diagrams are plotted against the external parameters that can influence the sys-

tem. For example, the pressure-temperature phase diagram for water shows the values for

these external parameters in which water exists as a solid, liquid, and a gas.

The boundary at which the phase of a substance crosses over to another, shown in

Figure 1, carries a substantial amount of information about the system. The system is
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completely characterized according to the way it approaches these transition points from

both above and below the critical transition point, Tc. Typically, statistical models are

studied by varying the temperature while holding the pressure fixed, and Tc is the critical

temperature. Above Tc, the entropy, S, dominates the free energy (viz. the free energy is

minimized by maximizing the entropy), while below Tc, the free energy is dominated by the

internal energy, E, and is minimized by minimizing E. If two macrostates of the system

exist in these two different cases, a phase transition point exists [31].

The Ising model, a toy model for studying ferromagnetic phase transitions, is arguably

the simplest and most thoroughly-studied model for studying phase transitions and will be

the primary focus of this study. Figure 2 shows the phase diagram for the Ising model on a

two-dimensional lattice. In the lowest energy configuration below the critical temperature

Tc, the spins align with the external magnetic field, and the average magnetization per spin

approaches one (m ≈ ±1). Above Tc the entropy controls the free energy, and the coupling

between the spins becomes loose, which creates a random orientation for each spin and an

order parameter close to zero.

As the temperature approaches Tc from above or below, the dimensionality and the

symmetry properties of the order parameter dictate how the lattice’s universal behavior is

classified according to its critical exponents and dimensionality. Models that only account

for short-range interactions have been studied extensively and have constant critical ex-

ponents. It will be shown later that small-world networks possess critical exponents that

are functions of the temperature instead of single values. Small-world networks do not

strictly follow the definition a of universality class [16], and much of their critical behavior

is classified as non-universal.
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Figure 2: Ising model phase diagram: From Ref. [17], this shows the phase diagram for
the Ising model. The order parameter is the magnetization m, which undergoes a phase
transition at Tc. Below Tc all of the spins in the model are aligned in its lowest free energy
state. Above Tc the free energy is dominated by the entropy, and the total magnetization
falls to zero.



6

1.3 The Ising Model

The Ising model is comprised of a simple Hamiltonian, where ferromagnetic spins, σ, can

assume the discrete values of either +1 or −1 and are coupled with neighboring spins via

an exchange interaction, J , via the Hamiltonian

−βH = J
∑
<ij>

σiσj , (3)

where the sum < ij > is over the neighboring spins and β = 1
kbT

[31]. If the Ising spins are

considered to be non-interacting, then the sole term in the Hamiltonian is a Zeeman term

for the energy in a magnetic field,

−βH = µB
∑
i

σi. (4)

The right-hand sides of Eqs. (3) and (4) can be combined into a complete Hamiltonian for

the Ising model,

H = −J
∑
<ij>

σiσj − h
∑
i

σi, (5)

where βJ and βµB have been absorbed into the terms J and h respectively. For a system

of size N , the partition function is calculated by summing each site over the two possible

spin configurations,

Z =
∑

{σ1=±1}

∑
{σ2=±1}

· · ·
∑

{σN=±1}

exp

−J ∑
<ij>

σiσj − h
∑
i

σi

 . (6)

This is the expression with which all measurements of the system can be derived. The

first derivatives of the logarithm of the partition function (one-point functions) provide the

average values of a measured quantity, and the second derivatives (two-point functions) are

measurements of the correlations of the system, such as the magnetic susceptibility and
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specific heat. This quantities will be derived in detail for the partition functions on the

Hanoi networks.

Despite the simplicity of the Hamiltonian, the Ising model, as it will be shown, produces

a rich set of results that can be generalized and applied to more complex models. Several

decades ago, the Ising model helped physicists understand the concept of universality and

scaling laws. Today, these same principles are used to expand our understanding of the

consequences long-range interactions have on a system.

The idea of small-world behavior is not new. Graph theory has been around for centuries,

but only recently have physicists and mathematicians possessed the computational power

to model large, highly-connected systems. The next section will briefly highlight some of

the work considered by many to be the most influential and groundbreaking in today’s field

of complex network research.

1.4 Modern Complex Network Science

The study of complex networks is a common thread of interest in many different research

fields [4]. From cellular signaling pathways at the microscopic level to catastrophic power

outages at the macroscopic level, the scientific community has made considerable progress

over the past two decades in generalizing and classifying the properties of complex networks

[6, 13, 14]. The term “small-world” phenomenon was coined by Stanley Milgram as a way

to link people in a social sphere [26]. His results led to what is now commonly known as

six degrees of separation effect [15].

The Watts-Strogatz model, introduced in 1998, borrowed the term “small world” in

their paper that ignited the field of network science [34]. In this paper, the authors studied

a one-dimensional graph with periodic boundary conditions and edges connecting nearest

and next-nearest neighbors. A tunable probability parameter, p, was introduced, where any

given vertex might be reconnected to any other vertex in the graph determined by an equal
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probability distribution. In this way, the tunable parameter was interpreted as a way to

interpolate between ordered and random graphs. This paper pointed out several key points

that led to many innovations and realizations in the field of network science. They were,

• Real-world networks are neither completely random nor completely ordered, but some-

where in between.

• The clustering coefficient, C, was defined as a way to quantify local density.

• The average shortest path length, L, was introduced as a global measure of separation.

• Slight changes in network structure can have dramatic effects in its dynamical behav-

ior.

• Important characteristics of real-world networks can be captured by simple models

[35].

Shortly after the Watts-Strogatz model was developed, Barabasi and Albert introduced

the idea of scale-free networks [3]. In contrast to the Watts-Strogatz model, the Barabasi-

Albert model inserted new vertices into the network, which allowed network growth. They

also argued that in real-world networks, newly added vertices preferentially attach them-

selves to well-connected vertices. After taking these two points into consideration, the

distribution of edges in this model follows a scale-free power law,

P (k) ∼ k−γ , (7)

where P is the probability that a vertex interacts with k other vertices. The results of

this model showed that the edges of networks such as actor collaboration networks and the

Internet were scale-free networks with typical γ values of 2 < γ < 3. Despite the differences

in the two models, the Barabasi-Albert networks are also considered small-world networks,
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because they have clustering coefficients much larger than random networks, and their

average shortest distance between two vertices increases logarithmically with the number

of vertices.

One more breakthrough worth mentioning in the modeling of complex networks was

realized in 2000, where Amaral et al. found that several complex networks once thought to

be scale-free (i.e. power grids) had exponentially decaying tails leading to a single scale in

connectivity, k. This led them to classify complex networks into three categories:

• Scale-free networks, where the connectivity distribution decays as a power law.

• Broad-scale networks, where a power law decay in connectivity is followed by a sharp

cutoff.

• Single-scale networks, where the connectivity distribution has a fast decaying tail as

in Gaussian or exponential distributions [1].

From these observations, two additional constraints were added to the Barabasi-Albert

model. The first was the concept that vertices can “age.” In other words, after a certain

amount of time a given vertex will remain part of the network but will be inactive and not

receive additional links. The second constraint considered was that vertices can reach a

maximum number of connections and that creating additional connections comes at a cost.

The inclusion of aging and a cost function into the Barabasi-Albert model recreated the

three types of networks seen in different real-world scenarios.

There are generally two approaches of studying statistical models, like the Ising model,

on complex networks [32]. One approach is to take a real-world network constructed from

its structural data and simplify it with approximations. The results produced by such a

statistical model are useful specifically to the network under investigation, but even slight
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approximations can have detrimental effects due to the nonlinear nature of complex net-

works.

A second approach to studying complex networks is to model hierarchical lattices. Hi-

erarchical lattices begin as simple graphs with a small number of vertices and edges, so

that the exact partition function can be calculated. Then, the network is constructed us-

ing a generating rule that replaces some of the edges with additional vertices and edges

recursively. Because the construction of hierarchical lattices are exactly known through

generation rules, there are no approximations that need to be made when studying their

statistical properties. In other words, hierarchical models can be studied with an exact

renormalization group, which has been the framework by which we classify and understand

critical phenomena and scaling. It allows us to sort the wide variety of observed phase

transitions in materials into an enumerable set of universality classes [31, 36]. The trade-

off for having exact results is that hierarchical lattices lose some of their application to

real-world networks. However, the motivation for studying hierarchical lattices is to create

generalized statements on the dynamics of complex networks as a whole. Additionally, the

same approximations that are made on real-world networks can be made on hierarchical

networks to compare the effects of the approximations [32].

1.5 Hanoi Networks

The Hanoi networks (HN) are a group of recursive hierarchical networks that produce an

exact renormalization group (RG). Each network contains a one-dimensional backbone and

is uniquely defined by the way its small-world bonds are distributed. Altogether, there

are five different HNs, four of which can be studied with the RG: HN3, HN5, HNNP, and

HN6. (The decimation transformation for HN4 does not produce a closed set of recursion

equations [10]. The name HN4 belongs to another graph that will not be discussed in this

study and that preceded the discovery of HNNP.) The numbers in the HN names indicate
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Figure 3: HN3: All HNs begin with a one-dimensional Ising chain, and each is defined
according to the layout of its small-world bonds. In HN3, every node in the graph connects
to its two adjacent backbone neighbors and has exactly one small-world connection.

the average degree distribution of each node in the network as N →∞, and the non-planar

HNNP contains an average degree distribution of 4.

HN3 is a subgraph of HN5, and HNNP is a subgraph of HN6. This complimentary

relationship between these two sets of graphs will be used throughout, and a tunable pa-

rameter y will be introduced to interpolate between the two graphs. Interpolating between

graphs enriches the generalization, because it can be interpreted as adding more weight to

small-world bonds to the graph.

1.5.1 HN3

The backbone for each HN is a one-dimensional Ising chain with spins labeled n = {0, 1, . . . , N}.

The simplest of the Hanoi networks is the HN-3 graph (Figure 3), whose small-world con-

nections are determined by the formula,

n = 2i (2j + 1) , (8)

where the ith hierarchy level (i ≥ 0) of the small-world bonds for j ≥ 0 belong to node, n.

For example, the first hierarchy of bonds are the odd-labeled vertices, where
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n = 20 (2j + 1) = {1, 3, 5, ...}. (9)

The second level of the hierarchy are all integers that are once evenly-divisible by 2,

n = 21 (2j + 1) = {2, 6, 10, ...}. (10)

It is quickly realized that each small-world bond has a backbone length, L = 2i+1 + 1.

The value of j determines whether the small-world neighbor of a node is ahead or behind

it along the backbone. Small-world bonds move in the positive direction if the value of

j mod 2 = 0 and in the negative direction if j mod 2 = 1. For example, the vertex n = 16

belongs to the fourth level of the small-world hierarchy. Solving for j gives

16 = 24 (2j + 1)→ j = 0, (11)

so the small-world bond moves in the positive direction. The vertex n = 24, which belongs

to the third hierarchical level, has a j value of

24 = 23 (2j + 1)→ j = 1, (12)

therefore its small-world neighbor is in the negative direction along the lattice.

1.5.2 HN5

HN5 is generated using the same protocol as HN3 except that all nodes belonging to the

ith hierarchy are connected to the ±2i neighboring nodes for all i > 0. For instance, the

set of neighbors for n = 8 on HN3 are {7,9,24}, and because n = 8 is located in the third

hierarchical level (viz. 8 is thrice evenly-divisible by 2), it contains six additional small

world neighbors, HN5n=8 = {8 ± 23, 8 ± 22, 8 ± 21, 7, 9, 24}, for a total of nine neighbors.

Figure 4 shows the similarity between HN3 and HN5, where HN3 bonds are shown in black,

and HN5 edges are shown in green. Later, a continuous parameter, y, will be multiplied by
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Figure 4: HN5: The HN5 graph contains all the elements of the HN3 graph, but with the
additional small-world bonds shown in green. As N → ∞, the average degree distribution
per node, < d >≈ 5.

the HN5 couplings in the Hamiltonian to provide the ability to interpolate between the two

networks.

1.5.3 HNNP

The HNNP (NP, meaning non-planar) also contains a one-dimensional backbone of NL =

2L + 1 nodes. If the combination of (0 ≤ i ≤ NL − 1) and
(
0 ≤ j ≤ 2L−i−2 − 2

)
node pairs

is considered, nodes (4j) 2i and (4j + 1) 2i are connected to (4j + 3) 2i and (4j + 4) 2i re-

spectively [18]. Figure 5 shows an example of HNNP with NL = 25 + 1 = 32 nodes. For

HNNP in the limit N →∞, each node in the graph contains an average degree distribution

of 4.

1.5.4 HN6

HN6 and HNNP small-world bonds are generated the same way, but HN6 contains additional

bonds that are generated according to the HN5 procedure described in Sec. 1.5.2. That is,

for each node in the nth hierarchy, small-world bonds are added connecting it to the ±2i

neighbors for all 0 < i ≤ n. An example of the differences between HNNP and HN6 are

shown in Figure 6, where the blue bonds are those that also make up HNNP and the green
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Figure 5: HNNP: The HNNP is uniquely defined by its non-planar small-world bonds.
Although the name HN4 belongs to a graph that preceded it, HNNP has an average degree
distribution of 4, < d >≈ 4, as N →∞.

Figure 6: HN6: HN6 contains all the elements of HNNP (blue) but with additional small-
world bonds (green) that are distributed according to the same protocol that makes HN5
unique from HN3. The terms in the Hamiltonian that account for the green bonds are
multiplied by a continuous scaling factor y, which allows for the interpolation between
HNNP and HN6.
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bonds are the additional HN6 bonds.

To conclude the description of how HNs are generated, it is worth noting that most

of the RG results of this work focus on the HN3 and HN5 networks and the interpolation

between them. A common theme throughout is that three different phase transitions are

proven to exist in recursive hierarchical networks. The interpolation from HN3 to HN5

exhibits all three, whereas the interpolation between HNNP and HN6 only show two. To

keep the discussion on a more direct path, HNNP and HN6 will not be discussed in any

further detail.

1.5.5 Previous applications of Hanoi networks

The HNs and other similar hierarchical lattices have already been used as a substrates to

investigate different types of problems and models. In the bond percolation model, for

instance, the one-dimensional version of the Migdal-Kadanoff lattice with a small-world

bond showed that at a non-trivial critical point, an explosive cluster growth occurs [12].

At the critical probability point, pc, the probability that a node belongs to the extensive

percolating cluster instantaneously jumps to a finite value. This proved that only small

number of small-world bonds are needed to transform a finitely ramified network into an

infinitely ramified network. It was also discovered that there are two transition points pl

(lower probability) and pu (upper probability). Below pl, the network contains finite-sized

clusters with no possible end-to-end path. Above pu an extensive cluster exists connecting

the two ends. For pl < p < pu, however, there are sub-extensive clusters, which means that a

combination of finite clusters may provide an end-to-end path with a certain probability. A

similar study on HNNP was performed by Takehisa Hasegawa and Tomoaki Nogawa, where

they studied the critical exponents in the three phase regimes [18]. There, they found that

a non-percolating phase for HNNP does not exist.

Beyond percolation, the HNs have also been applied to the optimal vertex cover problem
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[11], anomalous diffusion [9], and for studying spatial quantum search algorithms [24]. In

the vertex cover problem, it was shown that optimal coverages are not related by any simple

symmetry. Instead, for each system size, there exists a complex solution space structure,

and for N → ∞, the solution landscape is controlled by a large set of similar solutions.

The study of anomalous diffusion on HNs revealed that “the golden ratio” appeared in the

anomalous exponent for the mean-square displacement of random walks in time. The origin

of the golden ratio still remains unknown and is present in the critical temperature of the

Ising model for HN5. Finally, the spatial quantum search algorithm, when applied to the

HNs, was shown find vertices with degree 4 faster than classical search algorithms.

Applying HNs as a substrate to classical lattice problems has produced a wide variety

of rich and complex phenomena, and there remains much to be explored through the exact

real-space RG for different models. In essence, this area of study has only scratched the

surface for discovering new and interesting phenomena for complex networks. Classifying

the effects that long-range bonds have on different models is sure to continue for years to

come.
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CHAPTER II

THE RENORMALIZATION GROUP AND PHASE

DIAGRAMS FOR HANOI NETWORKS

This chapter investigates the phase diagrams that are produced by the Ising model Hamil-

tonian without an external field parameter. Without the added complexity of an external

magnetic field, this provides the simplest introduction for setting up the RG, solving for

the recursion equations, and gathering meaningful results about HN behavior.

Sec. 2.1 will discuss the different variables involved in the HN Ising model Hamiltonian

and calculate the partition function for the three- and five-spin HN graphlets. This will set

the stage for calculating the recursion equations and setting up the RG. In Sec. 2.2, the

discussion will go through the recursion equations of the RG in detail and highlight the

aspects of critical phenomena that come from them. Finally, Sec. 2.3 will investigate the

HN phase diagrams and provide the foundation for understanding the fixed point stabil-

ity analysis discussed in Chapter 3. There, it will be shown that in general, hierarchical

networks can be classified according to three types of behavior near the critical point.

2.1 The Renormalization Group on Hanoi Networks

The RG for hierarchical lattices, which undergoes a decimation transformation, is an easy-

to-understand procedure. Starting with an elementary graphlet, like the five-spin graphlet

of HN3 in Figure 7, the partition function is calculated, and the internal spins xn−1 and

xn+1 are traced. Then, the partition function is written down for the rescaled, three-spin

graphlet shown in Figure 8 using primed variables. Finally, the two partition functions

are equated, and solving for the primed variables gives the recursion equations for the RG.
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Figure 7: HN3 five-spin graphlet: This graphlet shows the short- and long-range cou-
pling constants that make up the HN3 network. K0 couplings are those along the backbone,
K1 is a small-world bond connecting spins xn−1 and xn+1, and the L coupling are small-
world bonds that emerge from a previous RG step. They are necessary for creating a closed
set of recursion equations.

Figure 8: HN three-spin graphlet: For the RG, all HNs rescale to identical three-spin
graphlets. The primed variables L′ and K ′0 are solved for in the recursion equations. Since
K ′1 does not depend on any parameters other than temperature, there is no K ′1 recursion
equation, and is instead used as a temperature scale throughout this study.
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Figure 9: HN5 five-spin graphlet: The elementary five-spin graphlet for HN5 contains
an extra coupling compared to HN3—the L1 bond. A tunable parameter y is multiplied by
L1 in the Hamiltonian, which will allow for analysis on interpolative graphs between HN3
and HN5.

The non-trivial fixed points of the recursion equations point to phase transitions, where the

system loses its scale length and the correlation length diverges [36].

The principle elements of the RG lie within the properties of the recursion equations and

how quickly they flow to a fixed value. The partition functions of the unprimed and primed

variables contain all relevant statistical information of the two pictures of the system, and by

equating the partition functions, no information is lost after the system is rescaled. Because

no approximations are made, the renormalization group for recursive hierarchical networks

is exact. This effectively gives the advantage for studying synthetic, recursive networks over

real-world networks; it allows for generalized conclusions to be made about networks as a

whole with exact solutions.

2.1.1 The HN3 and HN5 Ising Hamiltonian (no external field)

The Ising model Hamiltonian can be separated into hierarchies,

−βH =
k−2∑
n=1

(−βHn) +R (K2,K3, . . .) , (13)
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where R contains the couplings of higher-level hierarchies. The variables for the couplings

are shown in Figure 9. If K0 is assigned to the backbone couplings and L0, L1, and K1 are

the long-range couplings, each section of the Hamiltonian is

−βHn = 4I +K0(xn−2xn−1 + xn−1xn + xnxn+1 + xn+1xn+2)

+K1(xn−1xn+1) + L0(xn−2xn + xnxn+2) + yL1(xn−2xn+2),
(14)

where I is a constant that fixes the energy scale per spin.

Eq. (14) is the interpolative Hamiltonian between the HN3 and HN5 graphs. The

Hamiltonians for HN3 and HN5 only differ by a factor of L1 (compare Figures 7 and 9), and

they both rescale to identical three-spin graphlets (Figure 8) after a spin-decimation step.

This allows for there to be a Hamiltonian for HN3, HN5, and the continuous interpolation

between them. The interpolating factor y may vary continuously along the interval 0 ≤ y ≤

1, where y = 0 is HN3 and y = 1 is HN5. (Note: y is allowed to take on values greater than

1, which is reserved for a later discussion. For now, 0 ≤ y ≤ 1 will give the results needed

to interpolate between HN3 and HN5.)

Writing down the Hamiltonian for the rescaled graphlet (Figure 8) in terms of the

corresponding primed variables gives,

−βH′ = 2I ′ +K ′0(xn−2xn + xnxn+2) + L′0(xn−2xn+2). (15)

Deriving the Hamiltonians is as simple as observing the couplings in the elementary

graphlets and connecting them to the relevant spins. Both Hamiltonians are then exponen-

tiated in the next step to give the partition functions.

2.2 The partition functions and recursion equations for
HN3 and HN5

The partition function contains all the statistical information about a system in equilibrium

and is calculated for the five- and three-spin HN graphlets. To simplify the interpretation
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of the phase diagrams and the recursion equations, the HN partition function variables are

expressed in terms of activities,

C = e−4I , κ = e−4K0 , λ = e−4L0 , µ = e−2K1 = e−2L1 . (16)

The activities are confined to the interval [0, 1] for the Ising model as opposed to the

[0,∞) interval if the coupling constants were used. Activity values near 0 indicate the

strong-coupling, ordered regime often associated with low-temperatures, and activities with

values near 1 are associated with high-temperature regimes. The partition functions for the

unprimed and primed Hamiltonians are,

Z(0) = e−βH
′
n =

(
C ′
) 1

2
(
λ′
)− 1

4
xn−2xn+2

(
κ′
)− 1

4
xn−2xn+xnxn+2 (17)

and

Z(1) = e−βHn =
∑

{xn−1=±1}

∑
{xn+1=±1}

(
C−1

)
(κ)−

1
4

(xn−2xn−1+xn−1xn+xnxn+1+xn+1xn+2)

× (λ)−
1
4

(xn−2xn+xnxn+2) (µ)−
1
2

(xn−1xn+1)− y
2

(xn−2xn+2) .

(18)

Carrying out the summations decimates the xn−1 and xn+1 spins, and the two partition

functions are equated. Solving for C ′, κ′, andλ′ gives the final version of the recursion

equations.

κ′ = κλ
2(1 + µ)

κ2 + 2µκ+ 1
(19)

λ′ = µ2y (1 + κ)2(1 + µ)
2(κ2 + 2µκ+ 1)

(20)

C ′ = C2 κµ
√

2(1 + κ)(1 + µ)
3
2

√
κ2 + 2µκ+ 1

(21)
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This completes the initialization of the RG; the recursion equations can be written in a

succinct form to emphasize the remapping or rescaling of the system.

κn+1 = Rκ(κn, λn, µ)

λn+1 = Rλ(κn, µ)

Cn+1 = RC(κn, µ)

(22)

Our analysis will be centered mostly around the κn+1 equation and its dependence on the

temperature activity parameter, µ.

Once again, HN3 and HN5 only differ by a single factor, which is the µ2y factor in the

λ′ equation. Setting y = 0 gives the recursion equations for HN3, and y = 1 are those of

HN5.

The conditions used for investigating the trivial and non-trivial fixed points of the recur-

sion equations will be consistent throughout this study. The first condition is that all of the

coupling parameters in the Hamiltonian start off on the same footing (i.e. all bonds have

equal strength). Second, since there is no renormalized quantity for µ, this will effectively

act as the temperature scale. The variable β = 1
kBT

has been combined into the couplings

(βJK1 → K1), and the activity

µ = e−2βJK1 = e−2K1 (23)

is µ ≈ 0 in the low-temperature regime and is µ ≈ 1 as T →∞. This provides a consistent,

independent parameter for plotting the HN phase diagrams.

2.3 Phase Diagrams for HN3 and HN5

All fixed points of the RG occur under the conditions where κ = κ′ = κ∗ and λ = λ′ = λ∗.

An obvious solution to Eqs. (19, 20) is the trivial low-temperature fixed point, where

κ∗ = 0, λ∗ =
µ2y

2
(1 + µ). (24)
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Interestingly, HN3 (i.e. y = 0) yields a line of unstable fixed points, and Eq. (24) reduces

to

κ∗ = 0, λ∗ =
1 + µ

2
. (25)

In the low-temperature regime, the initial conditions are κ = µ2 and λ = 1, since the L1 does

not appear in the HN3 Hamiltonian. By solving Eq. (20) for the variable κ and substituting

it into Eq. (19), we eliminate the κ dependence on the right-hand side of Eq. (19).

κ′ =
λ
(
1 + µ− 2λµ−2y

)
µ− 1

(26)

Setting y = 0 and applying the initial condition λ = 1 gives,

κ′ =
(1 + µ− 2)
µ− 1

= 1 (27)

From this result, we conclude that even near κ = µ = 0, the recursion equations eventu-

ally lead to (viz. the RG flows toward) κ = 1, thus HN3 does not have a critical temperature,

or rather, its critical temperature is T = 0. This is similar to the one-dimensional Ising

model. Although, we have just seen that HN3 has a critical temperature at T = 0, another

example is shown in Figure 10. The initial conditions begin at λ = 1 for different values

of κ, and the lines connect the new values of κ and λ when the system is rescaled with

the RG. Regardless of the starting value of κ, the RG flow always migrates to the high-

temperature fixed point for HN3. Throughout, we concentrate mostly on κ’s dependency

on µ. Figure 10 is meant to show that even though there lacks a presence of the L1 in the

initial Hamiltonian, it temporarily emerges as a result of rescaling the system through the

RG.

For any value of y > 0, we consider the initial conditions to κ = µ2 and λ = µ2y. To

find the non-trivial fixed point for HN5 (κ′ = κ = κ∗; λ′ = λ = λ∗; y = 1), Eqs. (19) and
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Figure 10: HN3 phase diagram: The HN3 phase diagram shows that all initial tem-
peratures lead to the disordered phase. Since there is no L1 bond in the Hamiltonian for
HN3, all initial values for λ are 1. The lines drawn in the phase diagram are connected
generations of the recursion equations. All lines flow to the upper-right of the diagram,
which is the disordered phase.

(20) are expressed in terms of µ. Eq. (19) becomes

1 = λ∗
2(1 + µ)

1 + κ∗2 + 2κ∗µ
, (28)

and substituting Eq. (20) for λ and solving for κ gives

κ∗ =
1
2

(
µ2 − µ+

√
(1 + µ) (−4 + 8µ− 3µ2 + µ3)

)
. (29)

It will be shown that the discriminant of the square root in the fixed-point equations is

pivotal for shaping the critical behavior of the system. For simplification, we refer to the

discriminants, which are dependent upon y, as Dy(µ). Thus, Eq. (29) can be written as,

κ∗ =
1
2

(
µ2 − µ+

√
Dy(µ)

)
. (30)

Also, solving Eq. (19) for κ and substituting the solution into Eq. (20) yields,

λ∗ =
µ

4

(
µ2 − µ+ 2 +

√
(1 + µ) (−4 + 8µ− 3µ2 + µ3)

)
. (31)
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Figure 11: HN5 phase diagram: The initial conditions of the HN5 phase diagram shown
is along the diagonal κ = µ. As the system is rescaled, new values of κ follow the trajectories
indicated by the arrows. The black line indicates the initial conditions, the blue line is the
stable line of fixed points, and the red line is the line of unstable fixed points.

Eliminating µ from Eqs. (29) and (31) provides the closed form of the equations,

λ∗ =
1
4

(
κ∗ − 1 +

√
5 + 2κ∗ + 5κ∗2 + 4κ∗3

)
. (32)

Eq. (32) demonstrates that µ can be eliminated for the purpose of studying the κ-λ de-

pendency of the fixed-point recursion equations. For consistency, the focus of our study of

phase diagrams and general behavior of the network will instead be centered around the

way κ (i.e. the backbone couplings) changes with µ (i.e. the effective temperature) like the

form in Eq. (29).

Let us turn our attention to Eq. (29) for the moment to interpret its meaning. The first

distinguishing property is that instead of a single RG fixed point, there is a µ dependency

on κ∗ that creates a line of stable fixed points.

The physical meaning is made clearer through comparison of the two-dimensional Ising

model. For the square 2-D lattice under the initial conditions κ = µ2, there is an interval
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µ = [0, µc), where the recursion equations flow toward the trivial, low-temperature fixed

point. At µ = (µc, 1], the recursion equations flow toward the trivial, high-temperature

fixed point. At a single critical temperature Tc (µc), the Ising system loses its sense of scale

and the RG flow sits at the non-trivial fixed point. This is the single point of the phase

transition.

A line of stable fixed points means that given different initial conditions, the RG flow for

HN5 will flow to different non-trivial fixed points. The line of fixed points and the behavior

of the correlation length near Tc is the characteristic that led [20] to label this type of

behavior as an inverted-Berezinskii-Kosterlitz-Thouless (BKT) phase transition similar to

what is seen in the XY model, where Ising spins are placed on a two-dimensional lattice

with an angular rotational degree of freedom [31].

The phase diagram in Figure 11 contains the initial conditions κ = µ, which is along

the diagonal indicated in black. The stable line of fixed points for HN5 is the blue line, and

the unstable line is indicated in red. The square root in Eq. (29) shapes the line, and it is

worth noting that the branch point singularity (i.e. Dy(µ) = 0) is positioned at a µ-value

below the κ = 0,

µ(Dy(µ) = 0) < µ(κ = 0). (33)

Later in the discussion we will see that the location of the branch point singularity dictates

whether the system will undergo one of three types of phase transition. One of these

transitions occurs (as in the case of HN5) when the branch point lies below the x-axis. The

other two type of phase transitions occur when it lies above the x-axis and when it lies

directly on the x-axis.

Now consider what the line of fixed points in HN5 entails. Rather than there being a

single point at which a phase transition occurs, there is a series of temperatures where the

RG condenses onto the line of fixed points. Each point on the line is neither a fully ordered
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nor disordered state, instead the system exists in what we have called a “patchy” phase,

which is a quasi-ordered state containing sub-extensive clusters [8]. Another intriguing

observation about the system is that even as µ → 1 (T → ∞), the RG flow always moves

to a more ordered state.

The location for Tc for a system that exhibits this type of phase behavior is defined as

the µ-intercept of the recursion equations, because this is where the RG flows shows the

most dramatic change in behavior.

For HN5, Tc is calculated by setting the left-hand side of Eq. (29) to zero and solving

for µ. The result is:

µc =
√

5− 1
2

Tc = − 2
ln µc

= 4.15617 . . .

(34)

The algebraic expression for µc = 1
φ , where φ is the Golden Ratio. It is not known whether

this anecdotal result contains any significance and is not investigated any further.

This concludes the discussion of the specifics of HN3 and HN5. The next section will

highlight the phase behavior of the interpolation between these two graphs. Specifically,

we will focus on the square root behavior of the fixed point equations and track the branch

point singularity as a function of y.
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CHAPTER III

FIXED POINT STABILITY ANALYSIS

3.1 Interpolating Between HN3 and HN5

Eq. (20) is substituted into Eq. (19) giving an expression for κ′ that depends on both µ and

y.

κ′ = µ2y κ (1 + κ)2 (1 + µ)2

(1 + κ2 + 2κµ)2 (35)

At the fixed point κ′ = κ = κ∗, the non-trivial solution is,

1 = µ2y (1 + κ∗)2 (1 + µ)2

(1 + κ∗2 + 2κ∗µ)2

κ∗ =
1
2

(
−2µ+ µy + µ1+y ±

√
Dy(µ)

)
,

(36)

where Dy(µ) = 4
(
−1 + µy + µ1+y

)
+
(
−2µ+ µy + µ1+y

)2. This line of stable fixed points

is obviously dependent upon µ and y, and the root term dominates the characterization of

the phase behavior. The positive square root solution, also referred to as the upper branch,

forms the line of stable fixed points. The lower branch containing the negative square root

solution is unstable. We will characterize the phase behavior of the interpolation between

HN3 and HN5 by tracking the position of the branch point (i.e. Dy(µ) = 0) as y is changed.

If the expression for κ∗ in Eq. (36) is substituted back into Eq. (31), then we also have

a similar expression for λ(µ),

λ∗ =
1
4
µy
(

2− 2µ+ µy + µ1+y +
√
Dy(µ)

)
. (37)
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Analysis on the fixed-point stability of the recursion equations provides insight into

the correlation length near the critical temperature. It is here where we will discover three

types of phase behavior that are present in hierarchical networks with the interpolation from

HN3 to HN5 exhibiting all three. (The interpolation from HNNP to HN6 and the Migdal-

Kadanoff diamond lattice with a small-world bond see only two of the three phases.)

3.2 The branch point as a function of y

We begin by returning to Eqs. (29), (31), and (32) from Chapter 2 and plotting the phase

diagrams for a few selected values of y.

Figure 12 combines four phase diagrams to show how the upper branch of stable fixed

points and the square root singularity sunset into the µ-axis as y is increased. Similar to the

phase diagrams in Chapter 2, the initial conditions are once again κ = µ, which lies along

the diagonal of the phase diagram. The arrows indicate the flow of the RG, and it is obvious

that for small values of y (close to HN3: Figure 12, upper-left), there lacks an ordered phase,

but the beginnings of the stable line of fixed points begins to emerge. The ordered phase

becomes more prominent at y = 0.2 (Figure 12, upper-right), and the “patchy” behavior is

more evident, where above Tc the RG never reaches a completely unstable state.

The branch point singularity intersects with the µ-axis at an analytically-solvable value

of y = log 3/2
log 2 . This is easily determined by setting the discriminant in Eqs. (36) and (37) to

zero and finding the roots of the results. Conveniently, there is a Mathematica command

for this, but another way to look at it is as if the critical point couplings were expressed as, κ∗ (µc)

λ∗ (µc)

 =

 −µc + µyc
2 (1 + µc)

µyc
2 (1− µc) + µyc

4 (1 + µc)

 , (38)

then the solution to the simultaneous equations for κ∗ = 0 is

y =
log 3/2
log 2

at µc =
1
2
. (39)
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Figure 12: Phase diagrams for interpolation between HN3 and HN5: As y is
increased, a stable line of fixed points becomes present in the phase diagrams. The arrows
in these plots originate from the diagonal, which represents the initial conditions κ = µ,
and point in the direction of the RG flow. It is obvious from the figures that a square root
term dominates the phase behavior with the branch point sunsetting into the µ-axis. The
µ-intercept for the branch point is analytically y = log 3/2

log 2 , and it continues to move below
κ = 0 as y → 1.
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Beyond this point, the branch point dips below the µ axis (Figure 12, lower-right).

Figure 12 gives a rough sketch of the behavior of the line of fixed points that emerge

from the recursion equations; however, there is no particular reason why y can’t become

greater than 1. In fact, the y value is just an indicator of the ratio of the relative strengths

of the backbone and long-range couplings. y = 2 for instance would indicate that the L1

bonds in the Hamiltonian are twice as strong as those in the backbone. As y continues to

increase, the backbone bonds are overshadowed by the long-range connections.

As for the branch point, Figure 13 shows that it asymptotically approaches µ = 1. It

appears that the branch point migrates logarithmically, but upon examining the Figure 13

inset, we see that there is a slight elbow between 0 < y < 0.1. This sigmoidal shape is

more prominent when we take the logarithm of y and plot the corresponding µ for the zero

discriminant in the recursion equations as in Figure 14. In this figure, the left axis is the

HN3 case and the vertical line at log(y) = 0 is HN5.

Next, we track where the branch point lies on the κ-axis as y is increased. The black

line in Figure 15 shows the rate at which the branch point approaches, then passes the

µ-axis. As was shown earlier, the vertical red dashed line indicates yc = log 3/2
log 2 where κ = 0.

The blue line is the derivative of the black line to show the rate of change; the red point at

the trough indicates the value of y where the branch point decreases or “sunsets” into the

κ = 0 line.

Figures 13, 14, and 15 display exactly how the branch point changes as the strength of

the long-range couplings of L1 increase. As y → ∞, the system eventually reaches a state

where all RG flow moves to the low-temperature ordered state.

3.3 Fixed point stability and correlation length

Carrying out the steps described in Ref. [30], the scaling of the divergence of the correlation

length can be determined near the transition point. At µc, the recursion equations at the
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Figure 13: Movement of the branch point along the µ-axis: This shows the horizontal
movement of the branch point along the µ-axis from Fig. 12 for 0 < y < 100 (inset:
0 < y < 1).

Figure 14: Log scale of movement of the branch point along the µ-axis: Similar to
Figure 13, this plot shows the horizontal movement of the branch point as y moves along
eight orders of magnitude in e.
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Figure 15: Movement of the branch point along the κ-axis: Shown is the position of
the branch point along the κ-axis. The black line indicates the branch point position, and
the blue line is the velocity of the branch point, dκ

dy . It is not know whether the minimum
value holds any particular significance. The red dashed line shows the point where the
branch point intersection with the κ = 0 line at yc = log 3/2

log 2 .
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fixed points follow

κ∗ = Rκ (κ∗, λ∗, µc)

λ∗ = Rλ (κ∗, λ∗, µc) ,
(40)

which can be condensed into,

K∗ = ~R(K∗). (41)

At a small step εn away from κ∗ and a small step δn away from λ∗, we examine the RG flow

by substituting,

K = K∗ + k (42)

into the recursion equations. (εn and δn are combined into a vector, k.) The substitution

produces

K′ = ~R (K∗ + k) = K∗ + k′, (43)

and solving for k′, which is the vector containing the elements εn+1 and δn+1, and linearizing

the results gives us the set of equations,

k′ ≈ d ~R
dK

∣∣∣∣∣
K=K∗

k. (44)

Expanding the largest eigenvalue of this matrix reveals how the correlation length diverges

near the chosen fixed points at µc.

For HN5, Eq. (44) can be expressed in matrix form,

δR(κ∗, λ∗) =

A εn B δn

C εn 0

 , (45)

where the coefficients A, B, and C are the expressions accompanying the εn and δn terms.

The eigenvalues of this matrix, plotted in Figure 16, are |α±| < 1 for µ > µc.

α± = − ( 2− µ− 2µ2 + µ3 −
√
Dy=1(µ) + µ

√
Dy=1(µ)±

√
2
√

( − ( − 1 + µ2 )

( 12µ− 11µ2 − 8µ3 − 5µ4 − 4µ5 − 2
√
Dy=1(µ)− µ

√
Dy=1(µ) + 7µ2

√
Dy=1(µ)

+ 4µ3
√
Dy=1(µ) ) ) ) / (4(−1 + µ)µ(1 + µ))

(46)
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Figure 16: HN5 eigenvalues from fixed-point stability analysis: The eigenvalues for
HN5 are plotted for 0.6 < µ < 1.0. The dominant eigenvalue α+ is plotted in purple, while
α− is blue.

This means that as the RG is evolved in proximity to the fixed point, the values for

ε and δ converge to the line of fixed points instead of diverging to infinity, and the fixed

points are stable. If a closer look at the the eigenvalues near µc is taken, like in Figure 17,

it is easier to see to that the positive eigenvalue is unstable for µ < µc, where the κ∗ = 0

solution dominates.

The dominant eigenvalue is α+ ≈ 1 near µc. To see how it behaves, the eigenvalue is

shifted along the µ-axis so that α+ is presented as a function of µ − µc. Fitting this to a

polynomial equation gives the form,

α+ ≈ 1− a0(µ− µc) + a1(µ− µc)2 − a2(µ− µc)3 + · · · , (47)

where a0, a1, a2, · · · are constants. α+ carries the signature of an exponential decay, which

allows us to write,

εn ∼ (α+)nε0 ∼ e−
n
n∗ , (48)

where n∗ is a defined cutoff scale.
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Figure 17: HN5 eigenvalue near µc: Upon closer inspection near µc, the eigenvalue α+ is
unstable (α+ > 1) below µc. It is here where the κ∗ = 0 solution takes over and dominates
the RG flow to the low-temperature stable fixed point.

A series expansion of α+ in the neighborhood of µc = 2
1+
√

5
from above (µ+ > µc) gives,

α+ ∼ 1− 2
√

5(µ− µc) +O(µ− µc)2. (49)

Approaching µc from below requires calculating the eigenvalues for the κ∗ = 0 and λ∗ =

µ2

2 (1 + µ) equations. The dominant eigenvalue for this is

α+ = µ2(1 + µc)2. (50)

Expanding this in the neighborhood of µc (that is, µ− < µc) gives a very similar result to

Eq. (49),

α+ ∼ 1− 2
√

5(µc − µ) +O(µc − µ)2. (51)

Combining this result with Eq. (49), we write

α+ ∼ 1− 2
√

5 |µ− µc|+O |µ− µc|2 (52)

Now, for larger systems n > n∗, the divergence of the correlation length near µc goes as the

rescaling of the RG,

ξ(µ) ∼ 2n
∗

= e
− log 2

logα+ , (53)
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and we conclude that

ξ(µ) ∼ e−
log 2

2
√

5|µ−µc| ∼ e−
const
|µ−µc| . (54)

This is neither power law nor BKT behavior, but rather a third type of phase transition.

If we carry through these steps for y < yc, a slightly different result is produced giving the

BKT transition, ξ ∼ e
− const.√

|µc−µ| . At even smaller y values, say y = 0.05 the correlation length

takes the form of power law scaling, ξ ∼ |µc − µ|−ν(µ). In the next section, it will be shown

that with increasing y, the HN3-HN5 interpolation networks go through all three types of

phase transitions, which will be shown to be a generic result for hierarchical networks.

3.4 A generalized theory for parameter-dependent renor-
malization

The recursion equations presented thus far in this chapter contain a square root expression,√
D(µ). Upon closer inspection, the RG flow and the type of phase transition depends on

where the branch point of
√
D(µ), and its corresponding value for κ lies in the κ—µ plane

as well as the shape of the square root [7].

We argue that this is a general characteristic of parameter-dependent networks like the

HNs and the Migdal-Kadanoff lattice. That is, for networks whose RG is expressed by

~κ∞ = R (~κ∞;µ) , (55)

there is some branch point at (µB, κB). In the neighborhood of µB, a generic expression

for the RG can be constructed,

R (κ;µ) ∼ a (µ)κ+ b (µ)κ2 + c (µ)κ3. (56)

Normally, one might expect a constant to appear in this type of setting; however, there

must be a strong-coupling solution κ0
∞ = 0, and a constant would prevent this. For this

same reason, there must at least be a cubic-ordered term.
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Near µB we can assume (µ− µB)3 < (µ− µB)2 � 1 and only consider the first-order

term (µ− µB). This leaves us with the following analytical coefficients for µ→ µB:

a (µ) ∼ a0 + a1 (µ− µB)

b (µ) ∼ b0

c (µ) ∼ c0.

(57)

Next, Eqs. (56) and (57) are combined and the BP is located at (µB, κB). Solving for the

fixed point κ′ = κ = κ∗ and replacing the expressions in Eq. (57) gives,

κ∗ = 0

κ∗ =
−b0 ±

√
b20 + 4(1− a0 − µa1 + µBa1)c0

2c0

(58)

This gives the square root in terms of the generic analytic coefficients. If a1 is eliminated

in the limit µ→ µB, solving for a0 for the case when the discriminant is zero yields,

a0 =
b20 + 4c0

4c0
. (59)

The branch point at κB is therefore located at

a0 = 1 + c0κ
2
B

b0 = −2c0κB

c0 = −1

(60)

c0 is set to −1, since the branch point needs to be on the low-temperature side of the

parabola. Next, we reintroduce a1 into Eq. (58), and recognize that orienting the branch

point correctly demands that a1/c0 < 0. Thus, we can set a1 = −c0A
2 with A > 0.

Putting it all together, we are left with a minimal model for the parameter-dependent

RG,

κn+1 − κn ∼
∆κ
∆n
∼
[
−κ2

B +A2 (µ− µB)
]
κn + 2κBκ2

n − κ3
n. (61)
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The non-trivial fixed point equation produces a branch point at (µB, κB):

κ±∞ = κB ±A
√
µ− µB. (62)

This equation can generically describe all parameter-dependent renormalization groups near

the critical point µc. The values of κB and µB characterize the location of the branch point

in the µ—κ plane (see Figure 12), and A determines the shape that the line of stable fixed

points takes. It is worth emphasizing that because higher-order terms were not taken into

consideration, this minimal model does not apply to µ values further away from µc.

Local expansion around the branch point is carried out in the same manner as in the

previous section. First, we solve for the fixed point in Eq. (61) for the case κn+1 = κn = κ∗.

[
−κ2

B +A2 (µ− µB)
]
κ∗ + 2κBκ∗2n − κ∗3n = 0

κ∗ = 0; κ∗ = κB ±
√
A2 (µ− µB)

(63)

Applying Eq. (44), substituting κ+ ε where appropriate, and expanding to first order gives

λ0 = 1− κ2
B +A2 (µ− µB)

λ± = 1∓ 2AκB
√
µ− µB − 2A2 (µ− µB) .

(64)

These eigenvalues are plotted in Figure 18 for κB = 1
2 and A = 1 and show that below µB

the λ0 dominates, which corresponds to the κ0
∞ solution. At µ = µB, the λ± eigenvalues

emerge simultaneously with marginal stability, and λ− remains unstable (λ− > 1) until it

drops below κ0
∞ at µ − µB = 1/4 = 0.25. At this point, setting κB → −κB simply swaps

λ± → λ∓, and a marginally stable intersection occurs at µc > µB with the intersection of

λ0(µc) = λ+(µc) = 1.

When the same techniques from the previous section for studying the correlation length

are applied to our generic RG model, we get the same results for the three different types

of phase transitions for different values of κB and A.
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Figure 18: Generic model eigenvalues: Substituting the values κB = 1/2 and A = 1
gives the following eigenvalues that correspond to the three solutions to the fixed point
equation.

Figure 19: HN5 eigenvalues for fixed-point equations: Solving for the solutions for
the fixed point equations for HN5 gives three solutions. The low-temperature fixed-point
solution has an eigenvalue of λ0, and the line of fixed points gives two solutions due to the
square root. This figure can be compared with Figure 18 to show that the generic model
for the RG agrees with the results of HN5. At µc, shown with a vertical dashed line, an
instability occurs as a result of the intersection of the κ∗ = 0 solution and the line of fixed
points.
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Figure 19 is shown as an example of how well this generic model fits with the results of

HN5. It is clear to see that µc derived from the recursion equations is not the branch point,

which may not be obvious from the lower right plot in Figure 12.

This concludes our examination of the RG behavior without an external magnetic field

present. In the next chapter, we will introduce three additional variables to the Ising

Hamiltonian and derive expressions for calculating one- and two-point operator functions

as well as calculate critical exponents and the most fundamental quantities for characterizing

criticality, yt and yh.
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CHAPTER IV

DERIVATION OF HANOI NETWORK

THERMODYNAMIC DENSITIES FROM THE RG

4.1 Hanoi Network Hamiltonian with an External Mag-
netic Field

Up to this point, the external magnetic field has been omitted from the Hamiltonian for

simplicity. Despite the omission, a remarkable result became evident when studying the

phase behavior near our defined temperature activity µc. The interpolation between the

HN3 and HN5 graphs creates three different types of divergence of the correlation length:

a power law divergence dependent upon temperature, ξ ∼ |µc − µ|−ν(µ); an inverted BKT

divergence, ξ ∼ e
const.√
|µc−µ| ; and an exponential divergence slightly different from the inverted

BKT transition, ξ ∼ e
const.
|µc−µc| .

To calculate the magnetic moment of the Ising model on HNs as well as the magnetic

susceptibility, we begin with a slightly different Hamiltonian and use the same procedure

discussed in Chapter 2,

−βHn = 4I +K0 (xn−2xn−1 + xn−1xn + xnxn+1 + xn+1xn+2)

+K1xn−1xn+1 + L0 (xn−2xn + xnxn+2) + y L1xn−2xn+1

+
HK

2
(xn−2 + 2xn−1 + 2xn + 2xn+1 + xn+2) +

HL

2
(xn−2 + 2xn + xn+2)

+
T

2
(xn−2xn−1xn + xnxn+1xn+2) ,

(65)

where BK and BL are the external magnetic field elements applied to the K and L bonds.

(Note: Because there are triangles formed in the five-spin graph, Ref. [37] states that the

Hamiltonian requires a three-point operator.) The five-spin partition function expressed in
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terms of its activities is then,

Z(1) = e−βHn = C−1κ−
1
4

(xn−2xn−1+xn−1xn+xnxn+1+xn+1xn+2)

µ−
1
2

(xn−1xn+1+yxn−2xn+2)λ−
1
4

(xn−2xn+xnxn+1)

θ−
1
4

(xn−2+2xn−1+2xn+2xn+1+xn+2)ϑ−
1
4

(xn−2+2xn+xn+2)

τ−
1
2

(xn−2xn−1xn+xnxn+1xn+2).

(66)

Once again, there is a y parameter that allows for the interpolation between HN3 and HN5

to occur. There are two activities to describe the magnetic field in addition to those defined

in Chapter 2,

θ = e−2BK and ϑ = e−2BL . (67)

In addition to the temperature control parameter µ, there is also the control parameter η

to represent the magnetic field for this Hamiltonian,

η = e−2H . (68)

Once again, it is evident that µ and η restrict the results to values between 0 and 1. As for

the temperature parameter, µ, the couplings K1 and L1 do not renormalize, so

µ2 = e−2K1 and µ2y = e−2L1 . (69)

After tracing over the odd-labeled spins in Eq. (66), we must solve for the primed activities,∑
xn−1=±1

∑
xn+1=±1

e−βHn =
(
C ′
)− 1

2
(
κ′
)− 1

4
(xn−2xn+xnxn+2) (

λ′
)− 1

4
(xn−2xn+2)

(
θ′
)− 1

4
(xn−2+2xn+xn+2) (

ϑ′
)− 1

4
(xn−2+xn+2)

(
τ ′
)− 1

4
(xn−2xnxn+1)

.

(70)

Of particular interest is the behavior of the Ising model as H → 0 in the thermodynamic

limit N →∞. Therefore, the initial conditions to be invoked for the RG are,

C0 = 1, κ0 = µ2, λ0 = µ2y, and θ = ϑ = η = 1. (71)
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After a considerable amount of algebra and simplification, the RG recursion equations are,

κ′ =
κλ
(
1 + θ2 + 2θµ

)√
(θ2 + κ2 + 2θκµ) (1 + θ2κ2 + 2θκµ)

λ′ =
µ2y

(
θ2 + κ+ θµ+ θκµ

) (
1 + θ2κ+ θµ+ θκµ

)
(1 + θ2 + 2θµ)

√
(θ2 + κ2 + 2θκµ) (1 + θ2κ2 + 2θκµ)

θ′ = θ ϑ

(
θ2 + κ2 + 2θκµ
1 + θκ(θκ+ 2µ)

)1/4
√

κ+ θ(θ + µ+ κµ)
1 + θ(µ+ κ(θ + µ))

ϑ′ =
(
θ2 + κ2 + 2θκµ
1 + θκ(θκ+ 2µ)

)1/4
√

1 + θ(µ+ κ(θ + µ))
κ+ θ(θ + µ+ κµ)

τ ′ =
(
θ2 + κ2 + 2θκµ
1 + θκ(θκ+ 2µ)

)1/4
√

1 + θ(µ+ κ(θ + µ))
κ+ θ(θ + µ+ κµ)

(72)

The recursion equation for the free energy activity C requires a bit more attention to detail

when solving for C ′ with Mathematica. If the activity C and C ′ are inserted directly into

the partition function at the onset of the script, Mathematic encounters a complex infinity

error. To resolve this, the variables I and I ′ are preserved and appear in the partition

function as e−I and e−I/2 respectively. (The division by 2 in the exponent is there as a

normalization factor.) The result of solving for the I ′ variable gives,

I ′ = 2I− 1
4

log
[

1
θ8κ4µ4

(
1 + θ2 + 2θµ

)2 (
θ2 + κ2 + 2θκµ

)
(1 + θκ(θκ+ 2µ))(κ+ θ(θ + µ+ κµ))2

(1 + θ(µ+ κ(θ + µ)))2
]

(73)

Since C = e−4I , the previous equation is multiplied by −4 and exponentiated giving,

C ′ =
C2

θ8κ4µ4

(
1 + θ2 + 2θµ

)2 (
θ2 + κ2 + 2θκµ

)
(1 + θκ(θκ+ 2µ))

(κ+ θ(θ + µ+ κµ))2(1 + θ(µ+ κ(θ + µ)))2

(74)
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4.2 The Derivation of One-Point Functions

By definition, the magnetization’s relationship to the partition function is,

〈mi〉 =
1
β

∂ logZ
∂Hi

, (75)

which can easily be expressed in term of activities for simplification. There is a mixing

of variables in the rescaling of the system in the RG, so we must construct a Jacobian

matrix derived from the recursion equations. Before deriving the Jacobian though, it helps

to express the series of derivatives as a first rank tensor and separate the couplings, ~K(i),

and the parameters, ~p, upon which the partition function depends,

←→
V
(
~K(i); ~p

)
=
∂ ~K(i+1)

∂ ~K(i)
=
∂ ~R
∂ ~K

(
~K(i); ~p

)
=
∂
(
C(i+1), κ(i+1), λ(i+1), θ(i+1), ϑ(i+1)

)
∂
(
C(i), κ(i), λ(i), θ(i), ϑ(i)

) . (76)

This provides a distinction between the parameters that are renormalized and those that

are simply remapped to themselves in the RG. These are combined and rewritten in the

form,

~A(i) =
(
~K(i); ~p

)
, (77)

to give an even simpler representation for the tensor equations to come. The derivative of

a first rank tensor, of course, requires a Jacobian matrix,

←→
W (i) =

∂ ~A(i)

∂ ~A(i−1)
=
∂R
∂ ~A

(
~A(i−1)

)
=

 ←→V
(
~K(i−1); ~p

)
∂R
∂~p

(
~K(i−1); ~p

)
∂~p

∂ ~K(i−1)
(= 0) ∂~p

∂~p

(
=
←→
I
)

 , (78)

which is initialized to

W
(1)
αβ =

∂Rβ
∂Aα

(
~A(0)

)
, (79)

so after i steps of the RG, we must evaluate A(i) at its realization, W i+1. (The arrows above

W have been removed for aesthetic purposes.) For the Hamiltonian currently under inves-

tigation, there are five parameters that are renormalized ( ~K(i) = [C(i), κ(i), λ(i), θ(i), ϑ(i)])

and two that are not (~p = [µ, η]). Therefore, we are left with a 7 × 7 matrix. This can be
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generalized for other cases, where for any n number of renormalized parameters and m the

W Jacobian matrix must have dimensions of (n+m)× (n+m).

Now we examine the rescaling of the partition function and the role that the W matrix

plays in measuring thermodynamic observables. The partition function of an unrenormal-

ized network of size N = 2k is denoted as Z(k), which is evaluated as the three-spin graphlet,

Z(1), after rescaling.

Z(k)
[
~K(0) (~p) ; ~p

]
= Z(1)

[
~K(k−1) (~p) ; ~p

]
(80)

From here, the one-point functions can now be derived from the derivatives of the partition

functions.

d

dA
(0)
α

logZ(k)
(
~A(0)
)

=
d

dA
(0)
α

logZ(1)
(

~A(k−1)
)

=
dA

(k−1)
β

dA
(0)
α

∂β logZ(1)
(

~A(k−1)
) (81)

To put this equation into words, a network of size N = 2k + 1 has a partition function Z(k).

The derivative evaluated at the initial conditions ( ~A(0)) is the same as the derivative of the

rescaled partition function Z(1) evaluated after being rescaled k − 1 times, where ~A(k−1)

represents the rescaled values of the couplings.

An example of the generalized form of Eq. (81) will show how the chain rule is applied

to networks that are rescaled. Suppose k = 3, and Eq. (81) requires that we evaluate,

d

dA
(0)
α

logZ(3)
(
~A(0)
)

=
d

dA
(0)
α

logZ(1)
(
~A(2)
)

=
dA

(2)
β

dA
(0)
α

d

dA
(2)
β

logZ(1)
(
~A(2)
) (82)

The derivative,
dA

(2)
β

dA
(0)
α

is achieved through rescaling and applying the chain rule.

d

dA
(0)
α

logZ(1)
(
~A(2)
)

=
dA

(1)
β

dA
(0)
γ

dA
(2)
α

dA
(1)
β

d

dA
(2)
α

logZ(1)
(
~A(2)
)

(83)
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This is just the same as the W matrix—the Jacobian calculated earlier, so for any number

of k rescalings, the chain rule produces

d

dA
(0)
α

logZ(k)
(
~A(0)
)

= W (1)
α,γW

(2)
γ,δ · · ·W

(k−1)
δ,β ∂β logZ(1)

(
~A(k−1)

)
. (84)

And simplifying even further, we can write,

W (1)
α,γW

(2)
γ,δ · · ·W

(k−1)
ξ,ω = Υ(k−1)

α,β , (85)

where for l > 0,

Υ(l)
α,β = Υ(l−1)

α,γ W
(l)
γ,β. (86)

In its reduced, generalized form, the expression for the one-point operators becomes,

∂β logZ(k)
(
~A(0)

)
= Υ(k−1)

α,β ∂β logZ(1)
(
~A(0)

)
, (87)

where Υ(0)
α,β is initialized to the identity matrix, I. From this result, expressions for one-point

observables like the internal energy and the magnetization can be derived. The internal

energy per spin is

〈e〉 = − 1
N

d

dβ
logZ(k)

(
~A0

)∣∣∣∣
η=1

= − 1
N

dµ

dβ

~A
(0)
α

dµ
Υ(k−1)
α,β ∂β logZ(1)

(
~A(k−1)

)∣∣∣∣∣
η=1

(88)

Remembering that µ = e−2β and that the vector ~A contains the coupling activities and the

dependent parameters, ~A = [C, κ, λ, · · · ;µ, η], the derivatives in Eq. (88) evaluate to

dµ

dβ

~A
(0)
α

dµ
= −2µ

[
dC

dµ
,
dκ

dµ
,
dλ

dµ
, · · · ;

dµ

dµ
,
dη

dµ

]
= −2µ [0, 0, 0, · · · ; 1, 0] . (89)

Similarly, the magnetization per spin is,

〈m〉 = − 1
Nβ

d

dH
logZ(1)

(
~A0

)∣∣∣∣
η=1

= − 1
Nβ

dη

dH

~A
(0)
α

dη
Υ(k−1)
α,β ∂β logZ(1)

(
~A(k−1)

)∣∣∣∣∣
η=1

.

(90)
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In this case, the derivatives are

dη

dH

d ~A
(0)
α

dη
= −2η

[
dC

dη
,
dκ

dη
,
dλ

dη
, · · · ;

dµ

dη

dη

dη

]
= −2η [0, 0, 0, · · · ; 0, 1] (91)

Now that the equations for the one-point thermodynamic observables have been established,

we will move on to deriving expressions for two-point functions before analyzing how the

observables behave on HNs.

4.3 Derivation of Two-Point Functions

The two-point operator expressions are move involved and require careful attention to an

additional rank in the tensors. Adding another derivative to the results from the previous

section gives

d2

dA
(0)
b dA

(0)
a

logZ(k)
(
~A(0)

)
=

d2

dA
(0)
b dA

(0)
a

logZ(1)
(
~A(k−1)

)

=
d

dA
(0)
b

[
Υ(k−1)
a,α ∂α logZ(1)

(
~A(k−1)

)]
.

(92)

Applying the chain rule expands the previous equation into two terms,

d

dA
(0)
b

[
Υ(k−1)
a,α ∂α logZ(1)

(
~A(k−1)

)]
=

(
d

dA
(0)
b

Υ(k−1)
a,α

)
∂α logZ(1) ~A(k−1)

+ Υ(k−1)
a,α

(
d

dA
(0)
b

∂α logZ(1) ~A(k−1)

) (93)

The parenthetical expression in the last term is easily evaluated using the steps in the

previous section.

d

dA
(0)
b

∂α logZ(1) ~A(k−1) = Υ(k−1)
b,β ∂β∂α logZ(1)

(
~A(k−1)

)

= ∂α∂β logZ(1)
(
~A(k−1)

)
Υ(k−1)
β,b

(94)

Thus, the last term in Eq. (93) is

Υ(k−1)
a,α

(
d

dA
(0)
b

∂α logZ(1) ~A(k−1)

)
= Υ(k−1)

b,α

{
∂α∂β logZ(1)

(
~A(k−1)

)}
Υ(k−1)
β,a (95)
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The derivative of Υ requires another application of the chain rule, since it represents the

product of multiple W matrices.

d

dA
(0)
b

Υ(l)
a,α =

{
d

dA
(0)
b

Υ(l−1)
a,β

}
W

(l)
β,α + Υ(l−1)

α,β

{
d

dA
(0)
b

W
(l)
β,α

}
(96)

Similar to the construction of the W Jacobian matrix in Eq. (78), a new term, Ω, will be

used to represent the Hessian matrix or the mixing of the second derivatives of the partition

function (which is also the first derivative of the W matrix).

Ω(l)
ν,β,α ≡

∂2Rβ
∂Aν∂Aα

(
~A(l−1)

)
(97)

With this, the derivative of the W matrix can be expressed as,

d

dA
(0)
b

{
W

(l)
β,α

}
=

{
dA

(l−1)
ν

dA
(0)
b

}{
∂2Rβ

∂Aν∂Aα

(
~A(l−1)

)}
= Υ(l−1)

β,ν Ω(l)
ν,β,α. (98)

Next, we define the derivative of Υ for all l ≥ 0,

Λ(l)
b,a,β ≡

d

dA
(0)
b

Υ(l)
a,β. (99)

Here, Λ is initially zero (Λ(0) ≡ 0), and for l > 0,

Λ(l)
b,a,β = Λ(l−1)

b,a,αW
(l)
α,β + Υ(l−1)

ν,β,αΩ(l)
ν,β,αΥ̃(l−1)

α,a (100)

Eq. (92), with its new defined terms, now becomes,

d2

dA
(0)
b dA

(0)
a

logZ(k)
(
~A(0)

)
= Λ(k−1)

b,a,α

{
∂α logZ(1)

(
~Ak−1

)}
+

Υ(k−1)
b,α

{
∂α∂β logZ(1)

(
~A(k−1)

)}
Υ̃(k−1)
β,a

(101)

This is the final expression used to calculate the two-point functions such as the magnetic

susceptibility and the specific heat. To provide an example of how these are calculated
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explicitly, the specific heat evaluated at H = 0 (η = 1) is,

c (β) = − 1
N

d2

dβ2
logZ(k)

(
~A(0)

)
= − 1

N

d

dβ

[
dµ

dβ

dA
(0)
α

dµ

d

dA
(0)
α

logZ(k)
(
~A(0)

)]

= − 1
N

(
d2µ

dβ2

dA
(0)
α

dµ
+
(
dµ

dβ

)2 d2A
(0)
α

dµ2

){
d

dA
(0)
α

logZ(k)
(
~A(0)

)}

− 1
N

(
dµ

dβ

)2 dA
(0)
α

dµ

dA
(0)
β

dµ

 d2

dA
(0)
α dA

(0)
β

logZ(k)
(
~A(0)

)

(102)

Applying the result of Eq. (101), the specific heat takes the form that is used to generate

numerical values in the Mathematica scripts.

c (β) =− 1
N

(
d2µ

dβ2

dA
(0)
α

dµ
+
(
dµ

dβ

)2 d2A
(0)
α

dµ2

){
Υ(k−1)
α,β

[
∂β logZ(1)

(
~A(k−1)

)]}

− 1
N

(
dµ

dβ

)2 dA
(0)
α

dµ

dA
(0)
β

dµ

{
Λ(k−1)
α,β,γ

[
∂γ logZ(1)

(
~A(k−1)

)]}

− 1
N

(
dµ

dβ

)2 dA
(0)
α

dµ

dA
(0)
β

dµ

{
Υ(k−1)
α,γ

[
∂γ∂δ logZ(1)

(
~A(k−1)

)]
Υ̃(k−1)
δ,β

}
(103)

This concludes the derivations for the one- and two-point operators for hierarchical net-

works. Although this approach is similar to that of Hinczewski and Berker in Ref. [19], there

is one distinct advantage for using the approach just described: the ability to study finite-

sized networks. The steps for calculating thermodynamic observables using the technique

of Hinczewski and Berker are described in detail in Appendix A. Rather than beginning

with the elementary partition function and rescaling the network to size N = 2k + 1, the

Hinczewski and Berker method examines networks at the thermodynamic limit, N → ∞,

by taking the limit of the partition function derivatives for J → 0 and J → ∞, where J

is the backbone coupling parameter. In other words, this method studies the behavior of

thermodynamic observables in relation to the fixed points of the RG.
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4.4 The temperature and magnetic exponents

We are now equipped with the necessary framework to study to calculate the values of

the critical characterization quantities yt and yh. These quantities lead to the critical

exponents for the power-law singularity in systems where the volume N goes as L ∝ N1/d,

where d is the dimension. HNs and other small-world networks are considered to be “infinite

dimensional” where L ∝ logN , and standard scaling theories cannot be applied.

Using the recursion equations from Eq. (72), the corresponding
←→
W Jacobian matrix is

constructed for the interpolative HN3-HN5 system containing the y parameter.

When investigating the eigenvalues that make up the recursion equations for the external

magnetic field parameters, the
←→
W matrix can be decoupled from the coupling parameter

section. Taking the quadrant containing the derivatives with respect to θ, ϑ, and τ , the

magnetic field is initialized to H = 0 (η = 1), and the resulting eigenvalues for this matrix

are:

λ(0) = 0

λ(1) =
(−1 + κ)(−1 + µ)

(1 + κ)(1 + µ)

λ(2) =
2 + 2κµ

1 + κ2 + 2κµ

(104)

The eigenvalue λ(2) corresponds to the λh eigenvalue, which yields an RG flow of ηn+1 ∼

ηyhn . Notice that yh ≤ 2, and in particular, yh = 2 for the fixed point κ+ (µc) = 0. Expanding

this into a series to first order produces yh ∼ 2 − Cκ+
∞ (µc) with the constant C > 0 near

the critical point µc. The conclusion of Ref. [29] states that for the case where the reduced

critical temperature t is not singular, then yh = log λ+. Therefore, the magnetic exponent

needed to satisfy λh ≤ 2 is

yh = log2 λh (µc) ≤ 2. (105)

If we take the entire matrix into account and apply the same strategy, we reach a similar
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Figure 20: Phase diagrams for different y values: This figure is shows the phase
diagrams for the different values of y that are plotted in Figures 23, 24, 26, 27, and 28. The
values of y were chosen to give examples of the three different types of phase transitions
found in HNs. They are y = 0.05, 0.4, yc, and 1.0

result for yt.

yt = log2 λ+ (µc) (106)

The scaling theory developed in Ref. [29] explains the relationship that the magnetic

exponent yh has with the order parameter m for the BKT transition. For yt → 0,

m ∼ ξ−1 ∼ exp
{
−const. (1− yh)

(µc − µ)−xt

}
, (107)

and the exponent xt appears to hold a universal value of xt = 1
2 .

Of course, for the case where hierarchical networks follow a power law singularity (yt >

0), we can extract the β magnetization exponent with,

m ∼ (µc − µ)β , β =
1− yh
yt

. (108)
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For the remaining sections of this chapter, results for the interpolation between HN3 and

HN5 will be shown for the y values in Figure 20. These values were chosen as representative

of the three types of phase transitions discussed earlier. y = 0.05 is squarely in the regime of

a power law singularity, y = 0.4 is comfortably in the BKT transition, yc is the value where

the branch point meets the κ = 0 line, and y = 1.0 produces a transition of ξ ∼ e−
const.
|µc−µ| .

4.5 Breaking the Z2 Symmetry of the Ising Model

It is expected that magnetization plots should align with the results from the discussions

in Chapters 2 and 3. That is to say, the phase transitions should occur at the same tem-

peratures indicated by the fixed point of the RG recursion equations. Before examining the

magnetization scaling in detail, it must be recognized that because the derivations in the

previous section are for finite systems, an external magnetic field must be present to break

the Z2 symmetry. η cannot simply be set equal to one (H = 0). What’s more, smaller

networks require a stronger external field to break the symmetry. This raises the ques-

tions: How is the magnetic field determined, and is there a systematic way to determine

it? Previous studies, such as the one conducted by Hinczewski and Berker [19], had no

need to negotiate this issue, since all of their studies inherently investigated the thermody-

namic limit. Nogawa, Hasegawa, and Nemoto were able to achieve a scheme for studying

finite system sizes via a scaling theory. Their work provided an exploration into the critical

behavior of the magnetization and susceptibility on what is referred to as the hierarchical

small world network, also called the one-dimensional Migdal-Kadanoff small world network

[29, 28]. Our technique for measuring thermodynamic observables on HNs may be consid-

ered a variation on the theme they published—a different approach for producing the same

expected results.

To determine the strength of the magnetic field needed to break the Z2 symmetry, a

Mathematica script for numerically calculating the magnetization per spin is run for a large
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system size (N = 21024) at a low temperature µ = 0.01 (T ≈ 0.43) with varying values of H.

If the magnetic field is strong enough to break the symmetry, the magnetization per spin

should be close to 1. The script produces the following results:

HN5 (y = 1), N = 21024, µ = 0.01

Magnetic Field, H Magnetization per spin, < m >

10−309 ≈ 0.177857

10−308 ≈ 0.946565

10−307 ≈ 0.999999

From this, we see that the magnetic field, when increased to H = 10−307, is sufficient

enough to produce a magnetization value close to 1 for small µ. Unfortunately, the numer-

ical accuracy of Mathematica cannot distinguish a difference in results for values between

10−308 < H < 10−307. Carrying out this procedure for system sizes ranging from 216 to

21024 produces the plot in Figure 21 with which the magnetic field needed to break the Z2 for

HN5 can be estimated. For networks larger than 21024, Mathematica throws a division by

zero exception error due to numerical inaccuracy. From Figure ??, we see that as N →∞,

the field needed to break the Z2 symmetry approaches zero.

4.6 Magnetization of Hanoi Networks according to the RG

With the theoretical framework in place and the means for determining the external mag-

netic field value, the order parameter for the Ising model, or magnetization, will be examined

for the interpolation between HN3 and HN5 for the y values indicated in Figure 20. In-

tuitively, we expect to the same type of behavior as was seen with the correlation length.

Starting with a small value for y, there should be a clear discontinuity in the order param-

eter, which would indicate power law scaling. As y → yc = log 3/2
log 2 ≈ 0.585, we expect the

BKT transition to emerge and eventually work toward a smooth transition of m ∼ e−
const.
|µc−µ| .

The panels in Figure 23 show the magnetization for y = 0.05, 0.4, yc, and 1 for systems of

size N = 28, 216, 232, and 264. The values for µc that are non-analytical (y = 0.05 and 0.4)
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Figure 21: External magnetic field needed to break the Z2 symmetry of the Ising
model:Critical temperatures were identified for varying external magnetic fields by locating
the sharpest drop in magnetization. The value at which this sudden drop occurs is indicated
on the y-axis. The magnetic field required to break the Z2 symmetry for HN5 scales as
N ∼ H.
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(a) (b)

(c)

Figure 22: Breaking the Z2 symmetry for small system sizes: For each of the plots
shown, the RG was initialized to a low temperature, µ = 0.01, and the external field
was allowed to vary. As the field weakens, it no longer has the strength to break the Z2

symmetry, and the magnetization drops to zero. To determine the minimal H field needed
to break the symmetry, a line was extrapolated, and the vertical red dashed line indicates
the lowest possible H field needed to study the model.
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(a) (b)

(c) (d)

Figure 23: Magnetization for the interpolation between HN3 and HN5: The
magnetization is plotted for system sizes N = 28, 216, 232 and 264 for y = 0.05, 0.4, yc and
1. The vertical dashed lines indicate the µc for each corresponding y value.
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were obtained using a “shooting” method for finding the fixed point of the RG recursion

equations. As a first check to see that these are accurate depictions of the magnetization, the

location of µc in the plots was verified with the µc calculated from the recursion equations.

What is immediately obvious from these plots is the speed of convergence to toward µc

each time N is squared. The magnetization plots for smaller values of y are spread wider

and quickly converge to µc, where there the phase transition can be described by a power

law with a magnetization exponent of β > 0. As y increases, this convergence toward µc

becomes much slower with increased system sizes.

Figure 24 gives a closer look at the magnetization near µc for the same values of y used

in Figure 23. Panel (a) is at y = 0.05, near HN3, and appears to be a second-order phase

transition in which the β exponent is 0 < β < 1. We can provide a better estimate and

prove that it is a first-order phase transition by plotting

m ∼ |µc − µ|β

logm ∼ β log |µc − µ| .
(109)

Figure 25 shows that approaching the critical temperature from below for a system size

of N = 21024, β has a value between 0.15 < β < 0.20. As y is increased, the transition point

becomes smooth indicating higher-order phase transitions, where there is no longer a single

β exponent, but rather m ∼ e
− A√

µc−µ . The smooth infinite-order phase transition can be

seen clearly where even the system size of 21024 in panel (d) is still continuous.

4.7 Magnetic susceptibility and specific heat of Hanoi Net-
works according to the RG

The two-point functions describe the fluctuations in the system. The magnetic susceptibility

is simply the second moment of the magnetization, which is obtained by taking the second
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(a) (b)

(c) (d)

Figure 24: Magnetization near µc for HN3 to HN5: For the y values in Figure 23,
the magnetization is plotted in the vicinity of µc. Vertical dashed lines indicate the critical
temperature for the corresponding value of y. The magnetization was calculated for all
possible temperatures 0 < µ < 1. (Panel (a) has been cropped for space.) For each value
of y, the RG calculations were carried out for system sizes N = 28, 216, 232, and 264.
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Figure 25: An estimate for the exponent β at y = 0.05: The magnetization was
derived from the RG for y = 0.05 for a system size of N = 21024 near µc. The slope of the
extrapolated line indicates that the value for the exponent β ≈ 0.197.

derivative of the free energy. If the average magnetic moment of the system is described by

〈M〉 =
1
β

∂ logZ
∂H

= − ∂F
∂H

, (110)

then the fluctuations follow

χ =
1
β

∂2F

∂H2
=

1
β

β 〈M〉
∂H

=
〈
M2
〉
− 〈M〉2 . (111)

The procedure for calculating this seemingly simple quantity via the RG for the HN Ising

model Hamiltonian is derived in detail in the previous chapter, and here, we provide the

results for the y values from Figure 20.

Figure 26 shows the total magnetic susceptibility for the HN3-HN5 interpolation in the

different phase transition regimes. We have chosen to plot the logarithm of the suscepti-

bility to view the susceptibility for all system sizes better. Additionally, T is plotted on

the abscissa for the purpose of accentuating the susceptibility peaks. As the system size

increases, the case for y = 0.05 in panel (a) is similar to that of the one-dimensional Ising
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(a) (b)

(c) (d)

Figure 26: Total magnetic susceptibility near µc for HN3 to HN5: The total mag-
netic susceptibility of the system is shown for each y value at different system sizes. From
this, it can be easily seen that small y values correspond to the typical behavior found in
first-order phase transitions, and as the BKT regime is met, the curvature of the peaks
decreases.
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(a) (b)

(c) (d)

Figure 27: Magnetic susceptibility per spin near µc for HN3 to HN5: The magnetic
susceptibility per spin shows that below Tc, the scaling behaves as χ

N ∼ N
Ψ with Ψ = 1. In

the BKT transition, the splaying of the plots occurs below Tc, which indicates that Ψ takes
a different form than for the case of power law scaling.

model, where the peak rises and migrates toward µc (Tc). As y is increased and brought into

the BKT regime and beyond, the curvature of these peaks decreases, and the convergence

toward µc is slower each time N is squared.

A more common and perhaps a more insightful measurement is the susceptibility per

spin, which is given by the formula

χ

N
=

β

N

(〈
M2
〉
− 〈M〉2

)
= βN

(〈
m2
〉
− 〈m〉2

)
. (112)

Once again, in Figure 27 we have plotted the logarithm of χ
N versus the temperature instead



63

(a) (b)

(c) (d)

Figure 28: Specific heat per spin near µc for HN3 to HN5: The specific heat per
spin is shown for system sizes N = 22, 24, and 216. Although larger system sizes are not
displayed in this figure, their plots overlap with the N = 216 plot exactly.

of µ to show how the change in shape occurs at the peaks in the plots. For y = 0.05, it

is clear that if the susceptibility follows χ ∼ NΨ, then below Tc, Ψ = 1 and the plot lines

collapse. Above Tc, the plot lines splay and Ψ takes on a different value.

This is not quite the case for the BKT regime. Panels (b), (c), and (d) all show that

the exponent Ψ = 1, but changes well below the Tc. Therefore, for the BKT regime, the

exponent Ψ is in the form of a function that is dependent upon both y and µ.

The other two-point operator we will discuss is the specific heat, which is shown in
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Figure 28. The specific heat is given by the equation

CV = kβ2
(〈
E2
〉
− 〈E〉2

)
, (113)

which describes the thermal fluctuations in the system at a given temperature. Because we

are interested in how this quantity scales with the size of the system, we have chosen to

plot the specific heat per spin, where the previous equation is simply divided by N .

The system sizes for this series of plots may appear small relative to the preceding

figures; however, the numerical results from the RG for N > 216 produce the exact same

results. Thus, the plots for N = 22 and 24 are cases where finite-size effect occur.

This concludes our discussion of the thermodynamic observables that are seen from

the HN3-HN5 interpolation. Upon further analysis and after performing more numerical

calculations, we can begin to start understanding the variable-dependent critical exponents

that dictate the behavior of the BKT transition.
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CHAPTER V

APPLYING MONTE CARLO METHODS TO HANOI

NETWORKS

The preceding chapters focused exclusively on the technology developed for studying HNs

using the RG. With the RG, we are able to achieve results for system sizes near the thermo-

dynamic limit; however, Monte Carlo approaches have the potential for providing insight

into much smaller system sizes and can be easily adjusted to fit various models without

having to wade through a sea of complex algebraic expressions. While computational time

limits Monte Carlo simulations to system sizes N ≈ 217 in their current state, they can be

used as simple prototypes to verify statistical models on complex networks. Furthermore,

Monte Carlo simulations are not required to have a Hamiltonian symmetry needed to close

the recursion equations in the RG. This chapter will explain the development of Monte

Carlo simulations using the Metropolis and the Wolff algorithms in the chosen language

C++.

5.1 The Hanoi Network Data Structure

The Ising model provides the luxury of having only two possible binary states of ±1, and be-

cause the HNs are simply a one-dimensional backbone with long-range edges, the Ising spins

can be implemented as a one-dimensional array with values ±1 for our initial conditions.

The simulation can be initialized in a high- or low-temperature state. The low-temperature

state is simply the ground state of the Ising model, where all spins are given the same

value either +1 or −1. (+1 was chosen for convenience and code readability.) The high-

temperature disordered state can be set by iterating through the array and generating a
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floating point random number between 0 and 1. If the random number generator (RNG)

returns a value less than 0.5, the array element is assigned a value of -1 and is assigned +1

for returned RNG values greater than 0.5.

As a side note, an alternative data structure was examined, where the HN was stored

in an N × (M + 1) two-dimensional array—N being the number of Ising spins and M being

the number of bonds of the most connected spin. The first column held the Ising spin

values, while the remaining M columns held the nearest-neighbor indices. This turned out

to be inefficient due to the overhead of dereferencing pointers and array elements from the

data structure and was ultimately abandoned. Instead, we chose to apply a technique that

exploits the recursive nature of HNs and its long-range bond structure based on powers of

2.

In both the Metropolis and Wolff algorithms, the first step is to choose a random Ising

spin from the one-dimensional array and locate its backbone and long-range neighbors. To

maintain a geometric equivalence to the networks constructed by the RG, periodic boundary

conditions were not used, and the neighbors of backbone edges that extended beyond the

lattice were ignored. For all other spins, the backbone neighbors of spin n are located in

array a at a[ n ± 1 ].

The long-range neighbors can be found using the formula in Section 1.5.1, n = 2i (2j + 1).

As before, i ≥ 0 and denotes the hierarchy level and j denotes the consecutive sites within

the hierarchy. This formula constructs the HN3, and recalling that HN5 contains additional

long-range neighbors at ±2, they too must be taken into account. In fact, a scheme can

be constructed that allows us interpolate between HN3 and HN5 if we consider the inter-

polation parameter y to be the probability that the extra HN5 bonds are present. When

connecting the spins n = ±2i, a random number along the interval [0, 1] is generated and

compared with the assigned value of y.

For a spin of index n, its highest hierarchical level is found by counting the number of
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times n is evenly divisible by zero. Machine division by 2 is simply a bit shift, which makes

this data structure far more efficient than the 2D array. Once the highest hierarchical level,

imax, is found, the long-distance neighbors, l, for index n are

l = n± 2i for imax ≤ i < 1. (114)

This same strategy can be applied to the HNNP-HN6 network models by connecting

the (4j) 2i and (4j + 1) 2i nodes to the (4j + 3) 2i and (4j + 4) 2i nodes respectively [18].

5.2 The Metropolis and Wolff Algorithms

The Metropolis algorithm, the oldest of the two algorithms, starts with the basic assumption

that observables for canonical ensemble distributions are given by their thermal average [22],

〈O〉 =
1
Z
∑
s

O (s) e−H(s)/kT =
∑

sO (s) e−H(s)/kT∑
s e
−H(s)/kT

(115)

We can sample from different energy states from the Boltzmann distribution with proba-

bility P(s), and include this in the equation above as∑
s

[
O (s) e−H(s)/kT /P(s)

]
P(s)∑

s

[
e−H(s)/kT /P(s)

]
P(s)

(116)

If P(s) is the Boltzmann distribution, then the factors cancel and we are left with

〈O〉 =
1
M

∑
i

O(si) (117)

and the states can be selected from the Boltzmann distribution.

At thermal equilibrium the system moves to a new state according to the probability

Peq(s) = Z−1e−H(s)/kT . To preserve the condition of detailed balance, moving from state

s→ s′ requires that

P(s)P(s→ s′) = P(s′)P(s′ → s). (118)

Here, P(s) and P(s′) are the probabilities that the system can be found in states s and s′

respectively. P(s → s′) and P(s′ → s) are the transition probabilities that the state will

move from s→ s′ and from s′ → s respectively [27].
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Rearranging Eq. 118 and applying the Boltzmann distribution gives

P(s→ s′)
P(s′ → s)

=
A(s→ s′)
A(s′ → s)

= e−β(Es′−Es), (119)

where we have introduced A as the acceptance probability. The optimal algorithm for this

case is one where the acceptance ratio is

A(s→ s′) =


e−β(Es′−Es), if Es′ − Es > 0

1, otherwise.
(120)

Specifically for the Ising model, the Metropolis algorithm executes the following steps

after the lattice is initialized.

Metropolis algorithm for the Ising model:

1. Choose a random spin.

2. Calculate ∆E that would occur from flipping the spin.

3. Generate a random number 0 < r < 1.

4. If ∆E < 0, flip the spin. Else if r < e−β∆E , flip the spin. Else, goto 1.

To measure the magnetization per spin, we sum the values of the lattice upon initial-

ization and divide by N . Each time a spin s is flipped the magnetization changes as

m′ (s∓ → s±) = m± 2s
N
. (121)

Of course, magnetization measurements must be taken in intervals where consecutive

measurements are from two uncorrelated states. The magnetization autocorrelation func-

tion falls exponentially as χauto(t) ∼ e−t/τ , where t is one Monte Carlo step and τ is the

characteristic time used to determine the number of Monte Carlo steps needed to transition

to an uncorrelated state. Near Tc, the divergence of the correlation length and critical fluc-

tuations form domains that are difficult for the Metropolis algorithm to flip, because it must

do so one spin at a time and spins within the domain are rejected with a high probability.
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The Wolff algorithm and other cluster-flipping algorithms address this issue by picking

a random spin and forming a cluster from other spins in its domain. These spins are added

with a probability Padd = 1 − e−2βJ , and we simply set J = 1. Then, the entire cluster is

flipped. More formally, the Wolff algorithm executes the following steps:
Wolff algorithm for the Ising model:

1. Choose a random spin, and push its index n to stack s and to the cluster stack c.

2. While s is not empty:

(a) Pop n from s and locate its neighbors nn.

(b) For each neighbor nn:

• array[ n ] = array[ nn ] ? (r ← rand() between 0 and 1) : null.

(c) r < 1− e−2βJ ? (push nn to s and c) : null

3. Flip the cluster.

To account for the interpolation between HN3 and HN5, the variable y is set globally.

Then, when considering the HN5 bonds for the Wolff cluster, the probability that it is added

to the cluster is simply, Padd = 1− e−2βJ

After applying both algorithms to the Hanoi networks in C++, it was evident that

the Metropolis algorithm would not be sufficient for studying HNs. At and around the

expected critical temperature, the most connected spins in the network had an unreasonably

high probability of being rejected, because ∆E = Es′ − Es was so large. This created

characteristic times that were on the order of τ ∼ 108 near Tc, and the Metropolis algorithm

was abandoned altogether. All of the results discussed below were obtained using the Wolff

algorithm, which proved to be robust enough to explore the configuration space of the HNs.
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5.3 Comparison between Monte Carlo and RG results

Before running the Monte Carlo simulations and recording the results, equilibrium tests

were performed for determining whether the lattice should be initialized to < m >= +1

or if spins should be randomly assigned with < m >≈ 0. To test how quickly each initial

condition took to reach equilibrium, the temperature for HN5 was set to T = 2.0, where we

expect the magnetization per spin to be close to 1.0. Figure 29 shows that after ≈ 12, 000

Monte Carlo steps for a lattice size of 211, the high-temperature initial condition equilibrated

to the same state as the low-temperature initial condition. As the size of the lattice was

increased to 213, however, the initial condition with randomly assigned spins never reached

its correct equilibrium state for T = 2.0. (See Figure 30.)

Moving on from the initialization of the Monte Carlo simulations, the order parameter

used to compare the numerical results with the RG is the magnetization per spin, < m >=

<M>
N . As stated before, Monte Carlo simulations cannot reach large enough system sizes

to pull much meaning out of the general scaling behavior of HNs. Numerical simulations,

however, can provide us with an integrity check to ensure that the RG results are well-

defined and behave properly.

Figure 31 shows a comparison of the order parameter, < m >, between the numerical

simulation and the RG for HN5. The solid lines represent RG results for different values of

the magnetic field, and the crosses are results from the numerical simulation. It is clear to see

that they don’t agree. All three RG measurements overshoot the Monte Carlo simulation up

to a crossing point temperature, where they then undershoot the simulation. It is surmised

that this happens, because the magnetic field needed to break the Z2 symmetry is not well-

defined for the RG. A possible solution would be to replace the external magnetic field with

a temperature dependent function in the RG Hamiltonian, H(T ).

Neither the specific heat nor the magnetic susceptibility are dependent on an external
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Figure 29: Equilibration of Monte Carlo simulations (L = 2048): Two Monte Carlo
simulations were held at a fixed low temperature, T < Tc, with different initial conditions.
The green plot indicates the magnetization of a lattice where all spins were initially oriented
in the same direction. The red plot is the lattice where spins are initially assigned random
values ±1. For L = 2048, the Wolff algorithm eventually brings both initial conditions to
the same state after ∼ 104 Monte Carlo lattice sweeps.
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Figure 30: Equilibration of Monte Carlo simulations (L = 8192): Initializing the
lattices the same as in Figure 29, the high-temperature lattice shown in red never reaches
its proper low-temperature state for L = 8192 even after 105 Monte Carlo lattice sweeps.
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Figure 31: Comparison of Monte Carlo and RG results for the HN5 magnetiza-
tion: A Monte Carlo simulation was carried out for HN5 for N = 28+1 between 0 < T < 10,
and its magnetization results are indicated with red crosses. As a comparison, the RG was
carried out for various external magnetic field strengths needed to break the Z2 symmetry.
The RG calculations do not agree exactly with the Monte Carlo simulation, which is likely
be attributed to the field introduced the break the symmetry in the RG equations.
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Figure 32: Magnetic susceptibility comparison between Monte Carlo and the
RG on HN5: For the same Monte Carlo experiment in Figure 31, the fluctuations of the
magnetization agree exactly with the results derived from the RG.
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magnetic field, and we see much more satisfactory results in the Monte Carlo comparison

with the RG. The magnetic susceptibility tells us physically how the system reacts to an

external magnetic field. To understand the physical meaning of the units, recall that the

magnetic susceptibility is simply a ratio of M
H . A large susceptibility value indicates that

the entire system can respond to or feel the effect of an extremely small magnetic field

(H << 1).

Another way to view the magnetic susceptibility is to examine the formula

χ =
1
kT

[〈
M2
〉
− 〈M〉2

]
. (122)

From this we see that the susceptibility is simply the fluctuations of the magnetization

M =
∑

i σi. Plotted as a function of temperature, the susceptibility of our small system

size N = 256 peaks around T ≈ 2.5 in Figure 32, and the Monte Carlo results agree with

the RG susceptibility.

The specific heat measures the energy fluctuations within the system.

CV =
1
kT 2

[〈
H2
〉
− 〈H〉2

]
(123)

These thermal fluctuations are what allow the system to move between energy states. Fig-

ure 33 once again shows that the results from the Monte Carlo simulation match the specific

heat measurement from the RG.

5.4 Other Monte Carlo results and measurements

One specific measurement that can be obtained from Monte Carlo simulations and not with

the RG (currently) is the fourth-order cumulant [5, 23], which is the kurtosis of the order

parameter.

g =
1
2

[
3−

〈
m4
〉

〈m2〉2

]
(124)

Traditionally, this cumulant, also referred to as the Binder parameter or Binder ratio, is

used in numerical simulations to locate Tc. Since we can derive Tc for various values of the
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Figure 33: Specific heat comparison between Monte Carlo and the RG on HN5:
Using the same Monte Carlo results from Figure 31, the specific heat was measured and
compared with the RG predictions. Although there is a strong agreement in the majority
of temperature values, near the peak, the Monte Carlo results overshoot the RG values.
This is likely attributed to an overestimate in energy fluctuations introduced by the Wolff
algorithm.
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interpolation parameter y in the HNs, this doesn’t provide any additional insight that we

do not already get from the RG. Example plots of the Binder parameter are shown for the

interpolation between HNNP and HN6 in Figure 34. Unfortunately, the Binder parameter

crossing points in these graphs are not in agreement with the RG results because of an

incorrect interpretation and translation of the y parameter to the Monte Carlo simulation.

This is an example of how the Monte Carlo simulations can be coupled with the RG as an

integrity check.

Finally, Monte Carlo simulations provide the means to study the largest cluster in the

system. We can track individual spins in the system and locate the largest cluster in the

system using a similar technique as was used in the Wolff algorithm. The following algo-

rithm was used to identify the largest cluster in the system during simulations.

1. Initialize largest cluster large ← zero.

2. Create list list containing the integer indices 0 to N

3. While list is not empty:

(a) Pick any element n from list and find the corresponding Ising spin value in

array a[ n ]. Remove n from list, and push n to temporary cluster list temp.

(b) Find nearest neighbors nn for spin n.

(c) For each nn:

• (a[ n ] = a[ nn ]) ? (push nn to temp. Remove nn from list) : (null).

4. (temp > large) ? (large ← temp) : (Goto 3.).

This series of steps will return a list containing the indices of the largest cluster. For

this algorithm, it is recommended that the <list> data structure from the C++ standard

library be used, since removing elements from the middle of the list is computationally faster
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Figure 34: HNNP-HN6 Binder parameter measurements: The Binder parameter,
which is the kurtosis of the magnetic moment distribution, was calculated for the inter-
polation between the non-planar HNNP graph and its complimentary graph HN6. The
cross-over point for different system sizes occurs at Tc. The results shown here do not agree
with the analytical value of Tc derived from the RG, but are simply shown as an example
of the behavior of the Binder parameter. The discrepancy is due to a misinterpretation of
the y parameter that occurred in the Monte Carlo simulation source code.
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Figure 35: Distribution of the largest cluster members for HN5: For a system
size N = 64, the largest cluster was calculated for temperatures 0 < T < 25. From this,
we see that in the high-temperature regime, the hierarchical nature decomposes, and the
probability that highly-connected spins are part of the largest cluster is much higher than
lesser-connected spins.

[21] than say a <vector>, <queue>, or <deque>. An example of how the largest cluster can

be tracked is shown in Figure 35. At low temperatures, the largest cluster is made up of all

spins in the system. As the temperature is increased to T = 25.0, the highly-connected spins

are far more likely to be part of the largest cluster than the spins with fewer connections.

Although the Monte Carlo simulations aren’t able to provide us with the rich results

given by the RG, they do offer an insight into smaller system sizes that would be difficult

to extract from the RG. The technology developed from this research provides the starting

framework for a software package in which statistical physical models can be studied for
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HNs and other complex networks. Future development will involve a redesign that utilizes

the C++ Boost Graph Library to create a developer- and user-friendly platform.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

After wading through a considerable amount of technical detail and derivations, it is im-

portant to reevaluate the motivation behind studying HNs and summarize the results in a

succinct and clear picture as well as discuss the avenues for future research. It is more useful

to think of the preceding pages not as a study in Hanoi networks, but as a generalized study

of the nature of phase transitions on complex networks, which is the primary objective. The

complexity and change in thermodynamic properties that arise when long-range bonds are

considered in statistical models is not fully understood, and our study of an exact RG along

with the Monte Carlo algorithms provides an arsenal of tools to begin peeling back the

layers of complexity.

The most compelling result that was found was that of the three different types of phase

transitions that occur on hierarchical networks. Their phase behavior can either exhibit a

power law singularity ξ ∼ |T − Tc|−ν , a BKT-like transition ξ ∼ e
− const.√

|T−Tc| , or another

form of an infinite order transition with an even slower divergence of the correlation length

ξ ∼ e
− const.
|T−Tc| . These three types of phase transitions remained a theme throughout. The

magnetization plots show that for the interpolation between HN3 and HN5 at y = 0.05, there

is a first-order phase transition following the scaling law m ∼ |T − Tc|β, where 0 < β < 1.

As y is increased the magnetization near Tc becomes smooth indicating higher-order phase

transitions and eventually ones that follow an exponential scaling m ∼ e
− const.
|T−Tc| at HN5.

This magnetic susceptibility and specific heat plots follow this same pattern, but what’s

more important is that this behavior is not exclusively a by-product of HN3-HN5. It has
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also been seen to hold true with HNNP-HN6 and with the one- and two-dimensional Migdal-

Kadanoff diamond hierarchical lattices. This ultimately led us to form a generic model for

the RG for parameter-dependent hierarchical networks.

To play devil’s advocate for a brief moment, we ask, “What experiments need to be

conducted to verify and study the HN results in a lab setting?” The goal in basic physics

research is to combine theoretical models with experiments. In truth, the HNs are not

present in nature, but the research presented here does offer a physical interpretation to

experiments in which critical exponents are measured and appear to behave as temperature-

dependent functions instead of single values. In other words, for experiments exhibiting

non-universal behavior, we provided the theoretical foundation for determining whether the

system under experiment is hierarchically structured.

This thesis focuses solely on the two-state Ising Hamiltonian, but our immediate future

work will concentrate on the q-state Potts model, where the spins in the Ising Hamiltonian

are replaced with Kronecker deltas of the form δKr (α, β) = 1
q

[
1 + (q − 1) eα · eβ

]
from

Ref. [37]. Studying this Hamiltonian for the q = 2 case will yield the same results presented

in this work, but the goal is to explore all the symmetries the Hamiltonian can take (all

possible values of q) and their behavior as the interpolation parameter y is allowed to vary.

It would be remiss to not discuss the clever work of Tomoaki Nogawa, Takehisa Hasegawa,

and Koji Nemoto in their formulation of a generic scaling theory for hierarchical networks.

Their work in Ref. [29] considers the scaling formula

g
(
ξ (t)−1 , h,N−1

)
= bg

(
ξ (t)−1 b, hbyh , N−1b

)
(125)

and from it, derives the complete behavior of the critical exponents for the one-dimensional

Migdal-Kadanoff lattice for the q-state Potts model. Our future work looks to incorporate

this scaling theory into an in-depth analysis of the scaling exponents for the HNs. From it,

we anticipate that the β exponent for the magnetization can be decomposed for interpolated
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values between HN3 and HN5.

The study of complex networks must be handled delicately, and physicists must be

meticulous in both the measurements they take and the theoretical models they formulate.

With no intention of discrediting any of the remarkable work he was accomplished, Alberto

Barabasi’s work in Ref. [2] is an example of how easy it is to misinterpret the results from

complex networks. In this paper, he incorrectly fit the time it takes for a single person to

write consecutive emails to a power law P(τ) ∼ τ−α with an exponent of α ' 1. His result

has been called into question by Ref. [33] (unpublished) and may be an artifact of the data

set. This is a simple example of how interpretations of noisy or unconventional data sets

can lead to misleading or wrong results and emboldens the claim that exact RG models

should be studied.

Finally, as stated in Chapter 1, there are two different approaches to studying complex

networks. One approach takes data given by real world networks and builds models based

on assumptions, while the other prefers exact results from artificial hierarchical networks.

These are two distinct islands of complex network research that must, and will, eventually

be bridged, and it is likely that this bridge will take the form of Monte Carlo simulations.

We have established the technology with which to perform numerical simulations on HNs

and have successfully implemented the Wolff algorithm, where the results align exactly with

the magnetic susceptibility and specific heat. Because the RG results are exact, they can

be used as a benchmark to explore other Monte Carlo sampling methods and expose the

deficiencies in various algorithms.
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APPENDIX I

THE MCKAY-HINCZEWSKI-BERKER APPROACH TO

CALCULATING THERMODYNAMIC DENSITIES ON

HIERARCHICAL LATTICES

The method calculating thermodynamic observables using the RG was first introduced by

McKay and Berker [25] and visited more recently by Hinczewski and Berker [20]. The

formalism of the calculation starts by writing the Hamiltonian for the Ising model for the

original graphlet

−βH = G+ J
∑
<ij>

σiσj +HB

∑
<ij>

(σi + σj) +HS

∑
i

σi (126)

and the rescaled graphlet

−βH ′ = G′ + J ′
∑
<ij>

σiσj +H ′B
∑
<ij>

(σi + σj) +H ′S
∑
i

σi (127)

The recursion equations are derived by equating the two partition functions and solving for

the primed variables.

G′ = fG(G, J,HB, HS)

J ′ = fJ(G, J,HB, HS)

H ′B = fHB (G, J,HB, HS)

H ′S = fHS (G, J,HB, HS)

(128)

Then, using the standard definition of finding the average energy, magnetization, and mag-

netic susceptibility from the partition function [30],

U =
1
N

∑
<ij>

〈σiσj〉 (129)
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M =
1
N

∂

∂H
logZ (130)

and

χ = lim
H→0

(
∂M

∂H

)
(131)

we construct a density-response vector, V, containing all the associated observables.

V = (1, U, MB, MS , χBB, χBS , χSS) (132)

The subscript, B, in the preceding equation refers to the magnetization and susceptibility

of the bonds, and the S subscript is that of the spins. A recursion relation for the density-

response vector is then constructed connecting the first and second derivatives of the rescaled

and original variables via a Jacobian recursion matrix, W,

Vα = b−d
∑
β

V′βWβα (133)

where b−d is the scaling factor and W contains the derivatives of the recursion equations,

W =



bd ∂G′

∂J 0 0 ∂2G′

∂H2
B

µ ∂2G′

∂HB∂HS
µ2 ∂2G′

∂H2
S

0 ∂J ′

∂J 0 0 ∂2J ′

∂H2
B

µ ∂2J ′

∂HB∂HS
µ2 ∂2J ′

∂H2
S

0 0 ∂H
′
B

∂HB

∂H
′
B

∂HS
0 0 0

0 0 0 ∂H
′
S

∂HS
0 0 0

0 0 0 0
(
∂H
′
B

∂HB

)2

µ
∂H
′
B

∂HB

∂H
′
B

∂HS
µ2

(
∂H
′
B

∂HS

)2

0 0 0 0 0 ∂H
′
B

∂HB

∂H
′
S

∂HS
µ
∂H
′
B

∂HS

∂H
′
S

∂HS

0 0 0 0 0 0
(
∂H
′
S

∂HS

)2



. (134)

In this matrix, µ =
√

Nnn
Nn

is the square root of the ratio of the number of nearest neighbor

bonds, Nnn, to the number of sites, Nn. Using the initial conditions where HB, HS , and

G are zero, the W matrix depends only on the nearest-neighbor coupling constant J .

When carrying out Ising model calculations, J is usually set equal to a constant while the
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temperature is allowed to vary. The inverse of this–where J is allowed to vary–can also be

applied producing the same results in phase behavior. In this case J → 0 corresponds to

loose coupling, which is associated with the high-temperature regime, and J → ∞ is tight

coupling associated with the low-temperature regime. There is also a non-trivial critical

value, JC , which is related to the critical temperature, TC , by

JC =
1
TC

. (135)

For n number of recursion steps Eq. 133 becomes

V = b−ndV(n) ·W(n) ·W(n−1) · ... ·W(1) (136)

After evolving Eq. 136 many times and a fixed point is reached, V ≈ V′ and the

thermodynamic densities at the trivial fixed points are the solution to the left eigenvector

problem

V∗ = b−dV∗ ·W (137)

The left eigenvector for the Migdal-Kadanoff lattice will now be calculated to illustrate how

this is carried out. The W recursion matrix for the diamond lattice is,

W =



4 2u 0 0 4v
√

6v 3
2v

0 2u 0 0 −4u2 −
√

6u2 −3
2u

2

0 2 + 2u 3
2u 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 (2 + 2u)2
√

6u(1 + u) 3
2u

2

0 0 0 0 0 2 + 2u
√

3
2u

0 0 0 0 0 0 1



(138)

where u = tanh(2J) and v = 1 + sech(2J)2. By transposing the matrix, the left eigenvalue

problem is converted to the more common right eigenvector problem.(
WT − bdI

)
VT = 0 (139)
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(
WT − 4I

)
VT = 0 (140)

If the limit as J →∞ is taken Eq. 139 is then,

0 0 0 0 0 0 0

2 −2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −3
2 3 0 0 0

4 −4 0 0 12 0 0
√

6 −
√

6 0 0 2
√

6 0 0

3
2 −3

2 0 0 3
2

√
3
2 −3





1

U

MB

MS

χBB

χBS

χSS



= 0 (141)

After a row reduction operation, Eq. 141 is then,

1 −1 0 0 0 0 0

0 0 1 −2 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 −
√

6

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





1

U

MB

MS

χBB

χBS

χSS



= 0 (142)

And from this it can be easily seen that,

V =
(

1, U = 1, MB = ±2, MS = ±1; χBB = 0, χBS = 0, χSS = 0

)
(143)

Applying the same technique in the limit J → 0, the eigenvector is,

V =
(

1, U = 0, MB = 0, MS = 0; χBB =∞, χBS =
√

6, χSS = 1

)
(144)

As a consequence of the mixing of derivatives and the infinity in χBB, all susceptibilities

are infinite above the critical temperature for the Migdal-Kadanoff lattice. This, however,



88

is not the case for the Hanoi networks, which make them a more physically realistic class

of hierarchical networks than the Migdal-Kadanoff lattice. The Hanoi networks can have

as many as four types of bonds involved in the RG equations, which makes the W more

complex, but the same practice is put into place when solving the left eigenvector problem

as the Migdal-Kadanoff lattice.

WHanoi =



bd ∂G′

∂J
∂G′

∂L 0 0 0 0

0 ∂J ′

∂J
∂J ′

∂L 0 0 0 0

0 ∂L′

∂J
∂L′

∂L 0 0 0 0

0 0 0 ∂H
′
B

∂HB

∂H
′
B

∂HS

∂H
′
B

∂HL

∂H
′
B

∂T

0 0 0 ∂H
′
S

∂HB

∂H
′
S

∂HS

∂H
′
S

∂HL

∂H
′
S

∂T

0 0 0 ∂H
′
L

∂HB

∂H
′
L

∂HS

∂H
′
L

∂HL

∂H
′
L

∂T

0 0 0 ∂T
′

∂HB
∂T
′

∂HS
∂T
′

∂HL
∂T
′

∂T



(145)

To conserve space, the reader is referred to Ref. [20] for the matrix containing the first

and second derivatives of the recursion equations.

For Hanoi networks bd = 2, and the ratio of Nnn to Nnn for each parameter is 1. Finally

the K1 bonds come in untouched during each RG step. Although they contribute to the

primed variables, they are not present in the W matrix. As before the transpose of this

matrix is taken, and we solve for the left eigenvector.

(
WT − 2I

)
VT = 0

Using HNNP as an example, we take the limit as J → ∞ and reduce the rows giving the
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result. 

1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 −4 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 −2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


which corresponds to the eigenvector of the ordered state:

V = (1, UJ = 2, UL = 1, MB = ±4, MS = ±2, ML = ±2, T = ±1,

χBB = 0, χBS = 0, χBL = 0, χSB = 0, χSS = 0, χSL = 0, χLB = 0, χLS = 0, χLL = 0)

The disordered eigenvector is

V = (1, UJ = 0, UL = 0, MB = 0, MS = 0, ML = 0, T = 0,

χBB = 8, χBS = 4, χBL = 4, χSB = 4, χSS = 2, χSL = 2, χLB = 4, χLS = 2, χLL = 4)

Once the eigenvectors have been determined for the cases J →∞ and J → 0, a temperature,

T , is chosen and J = 1/T is inserted into the recursion equations. The equations are then
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evolved i number of times until a fixed point is reached, and each calculated value of Ji is

stored into a vector. Starting with the fixed point eigenvector VJ→0, the ith value of Ji is

plugged into the W matrix, and a new thermodynamic density vector is calculated from

the recursion relation in Eq. 133.

V(i−1) = b−dV(i)W(i) (146)

This process is continued i times, and the value of V(0) will containing the original (unscaled)

values of the thermodynamic densities for each temperature, T , chosen.

A pseudocode for calculating the thermodynamic densities follows:
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Write down partition function for original graphlet;

Write down partition function for rescaled graphlet;

Sum over odd spins;

Solve for primed variables creating the recursion equations;

Calculate 1st and 2nd derivatives for W matix elements;

Fill in elements of W matrix and take limits, G→ 0, HS → 0, HB → 0;

Lim
J→∞

[
(TransposeW)−

(
bd × IdentityMatrix

)]
;

RowReduce %;

Eigenvector %;

V = (Determined from Eigenvector result);

Set beginning temperature, T;

While ( Temperature < Final Temperature ) {

Mathematica RecurrenceTable[

G[n+ 1] = fG (G[n], J [n], HB[n], HS [n])

J [n+ 1] = fJ (G[n], J [n], HB[n], HS [n])

HB[n+ 1] = fHB (G[n], J [n], HB[n], HS [n])

HS [n+ 1] = fHS (G[n], J [n], HB[n], HS [n])

];

For ( i = 0; i < n; i++ ) { V = b−dV ·W(J [i]); }

Print V;

Temperature++;

}

The result of implementing this pseudocode in Mathematica is a vector, V, that contains

the values of the thermodynamic observables, and the script is iterated over a temperature

range.



92

Figure 36: Reproduction of magnetization results from Ref. [19]: The left panel
shows the magnetization for the long-range diamond hierarchical lattice from Ref. [19]. The
steps described in this appendix section were carried out and confirmed the results from
their paper.

Figure 37: Reproduction of susceptibility results from Ref. [19]:

Figure 38: Reproduction of specific heat results from Ref. [19].
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APPENDIX II

USEFUL MATHEMATICA COMMANDS

This section provides the reader a point from which to start analyzing the RG equations

using Mathematica. For readability, commands are indicated with the prompt symbol, >.

B.1 Solving for HN3/HN5 fixed points:

> Together [ FullSimplify [ Solve [ {κ==κ ∗ λ ∗ 2 ∗ (1 + µ)
κ2 + 2 ∗ µ ∗ κ+ 1

,

λ == µ2∗y ∗ (1 + κ)2(1 + µ)
2 ∗ (1 + 2 ∗ µ ∗ κ+ κ2)

} , {κ, λ} ] ,

Assumptions→ µ > 0 && y > 0 && λ > 0 && κ > 0 ] ]

B.2 Eliminating µ to derive closed-form expression:

> Solve
[
λ == µ2∗y ∗ (1 + κ)2(1 + µ)

2 ∗ (1 + 2 ∗ µ ∗ κ+ κ2)
, κ

]

> Solve
[
κ==κ ∗ λ ∗ 2 ∗ (1 + µ)

κ2 + 2 ∗ µ ∗ κ+ 1
, κ

]

After extracting the correct solutions, µ is eliminated with:

> Eliminate [ {λ==
1
4
µ
(

2 + (−1 + µ)µ+
√

(1 + µ)(−4 + µ(8 + (−3 + µ)µ))
)
,

κ==
1
2

(
−µ+ µ2 +

√
−4 + 4µ(1 + µ) + (−2µ+ µ(1 + µ))2

)
} ,

µ]
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Solving the result for λ gives the closed-form expression of the fixed-point equations:

λ∗ =
1
4

(
−1 + κ∗ +

√
5 + 2κ∗ + 5κ∗2 + 4κ∗3

)
(147)

B.3 Plotting the κ dependency on µ for HN5

> Plot [ {µ, 1
2

(
−µ+ µ2 +

√
−4 + 4µ(1 + µ) + (−2µ+ µ(1 + µ))2

)
} , {µ, 0, 1 },

Frame→ True,PlotRange→ {{0, 1}, {0, 1}},PlotStyle→ Thickness[0.0075],

FrameLabel→ {Style[µ,FontSize→ 24],Style[κ,FontSize→ 24]},

Epilog→ {Arrow[{{0.1, 0.1}, {0.1, 0}}],

Arrow[{{0.2, 0.2}, {0.2, 0}}],Arrow[{{0.3, 0.3}, {0.3, 0}}],

Arrow[{{0.4, 0.4}, {0.4, 0}}],Arrow[{{0.5, 0.5}, {0.5, 0}}],

Arrow[0.6, 0.6, 0.6, 0],

Arrow [ { {0.7, 0.7}, { 0.7,
1
2

(
−µ+ µ2 +

√
−4 + 4µ(1 + µ) + (−2µ+ µ(1 + µ))2

)
/.µ→ 0.7 } } ] ,

Arrow [ { {0.8, 0.8}, { 0.8,
1
2

(
−µ+ µ2 +

√
−4 + 4µ(1 + µ) + (−2µ+ µ(1 + µ))2

)
/.µ→ 0.8 } } ] ,

Arrow [ { {0.9, 0.9}, { 0.9,
1
2

(
−µ+ µ2 +

√
−4 + 4µ(1 + µ) + (−2µ+ µ(1 + µ))2

)
/.µ→ 0.9 } } ] ,

B.4 Calculating yc

> FindRoot [ {0 ==
1
2

( µy + µ ( − 2 + µy ) ) ,
µ2y

2
(1 + µ) ==

µy

2
(1− µ) +

µ2y

4
(1 + µ) } ,

{{µ, 0.001}, {y, 0.001}} ]
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