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Abstract

Probabilistic Zero-Knowledge Proofs for Neural Network Robustness
By Xu Han

As machine learning (ML) models are increasingly deployed in high-stakes domains,
ensuring their robustness has become critical. However, verifying these properties
often requires access to models’ secrets, which poses a privacy risk. This thesis
proposes a novel cryptographic approach that uses Zero-Knowledge Succinct Non-
Interactive Arguments of Knowledge (zk-SNARKs) to certify the robustness of neural
networks without revealing their internal parameters. Building on prior work such
as FairProof and GeoCert, we present a scalable and privacy-preserving method that
uses verifiable randomness and circuit-based forward propagation to simulate and
prove neural network behavior. Our approach introduces a probabilistic strategy that
avoids the computational complexity of exact robustness verification and supports
real-world scenarios. Experiments on synthetic multilayer perceptrons demonstrate
that our zk-SNARK-based system can distinguish between fair and unfair models
while maintaining constant-time verification and manageable proof sizes. This work
achieves a practical and scalable method for zero-knowledge verification of machine
learning models, enabling secure and privacy-preserving model validation.
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Chapter 1

Introduction

Machine Learning is becoming increasingly popular, making it more important than

ever to ensure the models used by millions of people across different industries are

robust to prevent discrimination. Robustness refers to a model’s ability to perform

consistently on similar inputs, which is critical to preventing discrimination and

ensuring model’s reliability[5]. Ensuring robustness comes with significant challenges.

Due to privacy concerns, it is often impossible to require companies to publicly release

their model weights, which could expose proprietary information or sensitive data.

Therefore, it is necessary to develop methods that allow the robustness of machine

learning models to be proven while maintaining the confidentiality of their internal

structure and preserving the privacy of sensitive information. To address this issue,

Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge (ZK-SNARK)

offer a promising solution. ZK-SNARK is a cryptographic proof that allow one party

(the prover) to convince another party (the verifier) that a computation was carried

out correctly, without revealing any details about the computation itself.

Building upon the paper FairProof: Confidential and Certifiable Fairness for

Neural Networks, which calculates the exact fairness properties of neural networks

using Zero-Knowledge proofs, this research presented a simpler approach by randomly

1
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sampling adjacent and non-adjacent data-points to simulate the behavior of a multi-

layer perceptron [12].

This paper introduces the background and motivation for this thesis, presents the

methods used to simulate the real-world scenario, and demonstrates the results of the

model. Throughout the research, we have addressed several key challenges, including

the randomness in the input generation process, difficulties related to rounding and

modular arithmetic in field elements, and the simulation of forward-propagation

steps in a multi-layer perceptron. Despite these challenges, we have shown that the

proposed model is not only feasible but also capable of offering real-world applications,

particularly in ensuring the fairness of machine learning models while maintaining

their confidentiality. Furthermore, while the current work demonstrates promising

results, there are future studies that can be done to make improvements. These include

improving the random number generator, extending the model to more complex neural

network architectures, and test with real large language models.



Chapter 2

Background

2.1 zk-SNARK

zk-SNARK (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) are

a class of cryptographic proofs that enable a prover to convince a verifier that a

computation was executed correctly, without revealing any information about the

computation itself. These proofs are both succinct, meaning they are small and efficient

to verify, and non-interactive, requiring no back-and-forth communication between

the prover and verifier [4]. zk-SNARK guarantee the following critical properties:

• Completeness: If the statement is true, the verifier accepts the proof.

• Soundness: If the statement is false, no malicious prover can generate a valid

proof.

• Zero-Knowledge: The proof reveals no information beyond the statement’s

validity.

zk-SNARK build upon the foundational concept of Zero-Knowledge Proofs (ZKPs),

as introduced by Goldwasser [6]. Suppose there is a public circuit Γ that describes

the neural-network N, the ZKP allows the owner (prover) of the model convince the

3
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users (verifier) that the model satisfies specific fairness criteria without revealing any

information about the model. If there exist an input ω that the output of the model

N(ω) = 1, the prover can construct a proof demonstrating this claim while preserving

the confidentiality of ω both and the internal details of N.

Formally, it can be expressed in the following three steps:

1. Trusted Setup: A multi-party computation (MPC) protocol is used to generate

the proving key (pk) and the verification key (vk) based on the circuit Γ.

Formally:

(pk, vk) = TrustedSetup(Γ)

The keys contain information about the circuit and are used for proof generation

and verification.

2. Proof Generation: The prover uses the proving key (pk), the public input (x),

and the secret input (w) to generate a proof (π). For specific proof generation

protocols like Groth16, it is able to achieve constant proof sizes and verification

time. Formally:

π = Prove(pk, x, w)

3. Proof Verification: The verifier uses the verification key (vk), the public input

(x), and the proof (π) to check the proof’s validity. Formally:

Verify(vk, x, π) → {True, False}

2.2 Things Behind the Scenes

In this experiment, we use the Gnark library in Golang. Since Go is a high-level

programming language, we do not need to manually compile the circuits, generate the

constraints system, and do the trusted setups. However, in order to convince others



5

that the algorithm is trustable, it is necessary to mention some calculations happened

behind the proof generation process [2].

2.2.1 Writing the Circuit

To define a circuit in Gnark, we must describe our computation as a system of

constraints. This is done by implementing a circuit structure and defining the

constraint relationships. In Gnark, we define the circuit as follows:

type MyCircuit struct {

X1 frontend.Variable

X2 frontend.Variable

X3 frontend.Variable

}

func (circuit *MyCircuit) Define(api frontend.API) error {

api.AssertIsEqual(api.Mul(circuit.X1, circuit.X2), circuit.X3)

return nil

}

This circuit will verify if the product of X1 and X2 equals to X3.

2.2.2 Arithmetic Circuit

Consider the equation:

x1 · x2 + x1 + 1 = 22. (2.1)

To represent this computation as an arithmetic circuit:
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Figure 2.1: Arithmetic Circuit Visualization

1. Introduce an intermediate variable z to store the multiplication result:

z = x1 · x2. (2.2)

2. Express the equation in terms of z:

y = (z + x1) ∗ 1. (2.3)

3. Ensure that y satisfies:

h = (z + y) ∗ 1. (2.4)

Arithmetic circuits are converted into R1CS constraints, allowing efficient verifica-

tion in zero-knowledge proof systems.

2.2.3 Introduction to Rank-1 Constraint System (R1CS)

The Rank-1 Constraint System (R1CS) is a formalism used to represent arithmetic

circuits as a set of constraints. It is widely used in zero-knowledge proof systems such
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as zk-SNARK to encode computations in a verifiable manner [1].

An R1CS consists of:

• A set of variables (also known as the witness vector w), which includes both

private and public inputs.

• A set of constraints that each computation must satisfy, represented in the form:

A · w ⊙B · w = C · w. (2.5)

• The matrices A, B, and C, which define the constraints applied to the witness

vector.

The goal is to ensure that every valid execution of the computation satisfies these

constraints while allowing efficient verification.

2.2.4 Example of R1CS

To illustrate how a computation is transformed into R1CS, we continue the previous

example equation:

x1 · x2 + x1 + 1 = 22. (2.6)

Step 1: Define Intermediate Variables

To simplify the computation, we introduce auxiliary variables:

z = x1 · x2, (2.7)

y = (1 + x1) ∗ 1, (2.8)

h = (z + y) ∗ 1 (2.9)
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Thus, the witness vector is:

w = (1, x1, x2, z, y, 22). (2.10)

Step 2: Construct the R1CS Constraints

Each step in the computation corresponds to an R1CS constraint:

z = x1 · x2, (2.11)

y = (1 + x1) · 1, (2.12)

h = (z + y) · 1 (2.13)

Step 3: Express in Matrix Form

We now represent the computation in R1CS matrix form:

Constraint A (Left Side) B (Right Side) C (Output Side)

x1 · x2 = z (0,1,0,0,0,0) (0,0,1,0,0,0) (0,0,0,0,1,0)

(x1 + 1) · 1 = y (1,1,0,0,0,0) (1,0,0,0,0,0) (0,0,0,1,0,0)

(z + y) · 1 = h (0,0,0,1,1,0) (1,0,0,0,0,0) (0,0,0,0,0,1)

w = (1,x1,x2,y, z,h)

Here is a code of compiling the circuit to generate R1CS:

cs , e r r := frontend . Compile ( ecc . BN254 . S ca l a rF i e l d ( ) ,

r 1 c s . NewBuilder , &myCircuit )

This R1CS representation allows us to verify the correctness of the computation using

cryptographic techniques in zk-SNARK.



9

2.2.5 Trusted Setup and Groth16 in zk-SNARK

A trusted setup is a critical step in zk-SNARK systems that generates the necessary

cryptographic parameters for proof and verification. This setup ensures the security

and correctness of the system by establishing parameters that both the prover and

verifier will use.

Introduction to Groth16

The Groth16 zk-SNARK scheme is one of the most widely used proving systems due

to its efficiency and succinct proofs. It provides constant-size proofs and constant-time

verification but requires a trusted setup to generate public parameters.

Groth16 consists of three main phases:

1. Setup Phase: Generates the structured reference string (SRS) containing the

proving and verification keys.

2. Proving Phase: Uses the proving key to generate a zk-SNARK proof for a given

computation.

3. Verification Phase: Uses the verification key to verify the proof efficiently.

Despite its efficiency, Groth16 requires a separate trusted setup for each unique

circuit, which can limit its flexibility.

Purpose of Trusted Setup

The trusted setup is performed to create:

• A proving key (pk), which the prover uses to generate zk-SNARK proofs.

• A verification key (vk), which the verifier uses to check the proof.
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The correctness of zk-SNARK highly relies on Groth16 protocol and all components

of Groth16 must remain secret to prevent abusing. If the secret is leaked, an attacker

could generate fraudulent proofs and falsely convince a verifier [7].

Process of Trusted Setup

The trusted setup process consists of the following steps:

1. Generating a Random Secret: A random value, often called the ”toxic

waste,” is generated. This value must be securely discarded after setup.

2. Computing the Structured Reference String (SRS): The SRS contains

public parameters derived from the random secret, which are required for proof

generation and verification.

3. Extracting Proving and Verification Keys: From the SRS, the proving key

(pk) and verification key (vk) are extracted.

Trusted Setup in Groth16 Using Gnark

In the Groth16 zk-SNARK scheme, the trusted setup generates public parameters

required for proof construction and verification. In the Gnark framework, the trusted

setup is handled as follows:

1. Circuit Compilation: The prover first defines and compiles an arithmetic

circuit into an R1CS constraint system.

2. Parameter Generation: Gnark runs the setup phase to create the proving

and verification keys:

pk , vk , e r r := groth16 . Setup ( cs )
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3. Proving and Verification Keys: The proving key (pk) is used to generate

proofs, while the verification key (vk) is shared with verifiers to check proof

validity.

2.3 Robustness of Machine Learning Model

Robustness in machine learning refers to the ability of models to produce reliable and

consistent results, ensuring that biases in the data and model inaccuracies do not lead

to outcomes that treat individuals unfavorably based on characteristics such as race,

gender, or other sensitive attributes [10]. Suppose we have an k-dimension input set S,

for a pointwise robustness of a ReLU neural network, the goal is to ensure that small

perturbations to any input x∗ ∈ S do not lead to significant changes in the network’s

output. Mathematically, this can be expressed as:

∀x ∈ S : ∥x− x∗∥2 ≤ ϵ =⇒ f(x∗) = f(x) (2.14)

where ϵ defines the permissible range of perturbations in the L2-norm [3].

To verify that a model satisfies robustness properties such as the one defined above,

computationally efficient and provably secure methods are needed. This is where

cryptographic techniques like Zero-Knowledge Succinct Non-Interactive Arguments of

Knowledge (zk-SNARK) become valuable. zk-SNARK are a type of cryptographic

proof system that allows one party (the prover) to prove the validity of a statement

(e.g., a robustness property) to another party (the verifier) without revealing the

underlying data or the detailed computations involved .

In the context of machine learning robustness, zk-SNARKs can be used to create

verifiable proofs that a model adheres to robustness constraints without exposing

sensitive inputs, model parameters, or intermediate computations. For instance, a

zk-SNARK can be constructed to certify that for every input x∗ within a specified
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neighborhood defined by ϵ, the output of the model remains consistent. The key

advantage of zk-SNARK is their ability to ensure both privacy and computational

efficiency, making them particularly suitable for verifying robustness in applications

where data privacy is critical [8].

This combination of machine learning robustness and zk-SNARK is especially relevant

in privacy-sensitive domains, such as biomedical applications, where both robustness

and data confidentiality are paramount. By integrating zk-SNARK into robustness

verification pipelines, users can enhance trust in machine learning systems while

ensuring compliance with ethical and regulatory standards [11].

2.4 FairProof and GeoCert

In the paper FairProof : CONFIDENTIAL AND CERTIFIABLE FAIRNESS FOR

NEURAL NETWORKS, the author utilitize the algorithm inspired by GeoCert to

compute the exact pointwise fairness and robustness of neural networks by determining

the largest permissible perturbation within an ℓp-ball centered around an input [10, 12].

In order to calculate the exact robustness, the naive approach would be calculating

the exact euclidean distance between the input point to every decision boundary facet.

However, the time complexity of this approach is exponential in hidden neurons, makes

it infeasible for large networks. Therefore, GeoCert algorithm is used to simplify the

calculation. The GeoCert algorithm computes the exact distance from a given point

x0 to the decision boundary of a neural network. It explores the geometric structure of

the input space, which is partitioned into polytopes induced by the activation patterns

of the network. The algorithm efficiently traverses these polytopes to determine the

closest decision boundary.

• Initialization: A priority queue Q and a set of visited polytopes C are initialized.

The algorithm starts with the polytope P(x0) that contains the input point x0.
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Figure 2.2: GeoCert Computation

• Processing Initial Facets: For each facet F of the initial polytope P(x0), a

priority is computed based on its distance to x0. These facets are pushed into

the priority queue Q.

• Iterative Search: It pops the closest facet F from the priority queue, terminates

if F lies on the decision boundary, and otherwise explores neighboring unvisited

polytopes, adding their facets to the queue with updated priorities.

• Termination: The algorithm continues until the decision boundary is found,

ensuring an exact computation of the distance.

Those iterations allow the program to check whether the neural network’s robustness

holds by iteratively searching for the closest decision boundary. If the minimum

distance required to reach the boundary is large, the model is considered robust to

small adversarial changes. Conversely, if the boundary is close, the model is more
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vulnerable to adversarial attacks. Even though this algorithm provides a way to

measure the robustness of the machine learning model, it is not as practice due to the

following reasons:

• Limitation on ReLU activation function

• Heavy time complexity

Due to its reliance on linear decision boundaries, this approach is restricted to

networks with ReLU activations. GeoCert computes the minimum distance to each

linear region boundary; however, the number of such boundaries increases exponentially

with input dimensionality, resulting in high computational overhead. These reasons

make the FairProof algorithm have no feasibility in any of the real-world applications.

2.5 Randomness

A source of randomness is crucial for this experiment in order to convince the verifier

that the outputs are not manipulated by the prover. However, to remain non-interactive

and prevent sneaky verifiers from getting secret information, it is also not reasonable

to let verifier provide the random string. Therefore, having a trusted random string

is necessary. Due to the deterministic nature of today’s computer, there is no way

to let any computer generate a true random number [3]. Therefore, cryptographic

protocols rely on alternative methods, such as multi-party computation and trusted

setup ceremonies like the Powers of Tau ceremony, to introduce randomness in a

verifiable and decentralized manner [9]. For the simplicity purpose, this experiment

designed a simple source of verifiable random number generator that generates the

random string.



Chapter 3

Approach

While FairProof provides a significant advancement in certifying both fairness and

robustness of neural networks, it is not without its limitations. One key limitation

is its reliance on approximations to compute distances to decision boundaries. This

can lead to inaccuracies in certifying robustness and fairness, particularly in networks

with complex or highly non-linear decision boundaries. Another limitation arises

from the algorithm’s focus on multilayer perceptron (MLP) architectures with ReLU

activation functions, which restricts its applicability to other types of neural networks,

such as convolutional or recurrent neural networks. This hugely restricts the scope of

FairProof in real-world scenarios which they mostly require more diverse and complex

architectures.

To address these challenges, this chapter introduces a novel method that builds upon

the foundation laid by FairProof while overcoming its key limitations. The proposed

approach incorporates:

• A more efficient and scalable framework for computing robustness and fairness

metrics, reducing computational overhead while maintaining accuracy.

• Generalization to broader classes of neural networks beyond MLPs, including

architectures with non-linear activation functions and other specialized layers.

15
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• Integration of cryptographic techniques, such as zk-SNARK, to ensure privacy-

preserving robustness verification, enabling secure deployment in sensitive do-

mains.

For the zk-SNARK approach to be valid, it must satisfy three core properties —

completeness, soundness, zero-knowledge. To achieve these properties, this experiment

builds up a zk-SNARK circuit that checks the forward calculation process of a multi-

layer perceptron neural network with randomly generated public inputs and privates

inputs committed by companies using cryptographic protocol. The circuit sizes, time

for proof, time for verify, proof file size, and verification key file sizes are measured to

ensure the scalability and efficiency.

3.1 Public and Private Inputs in the Proof System

In the zk-SNARK proof system, there are two categories of data: change in some

way to detail description of how I actually did it or maybe mention that in

latter paragraphs

• Public Inputs: These include the user-provided inputs to the model and the

corresponding classification outputs. The public inputs serve as the observable

evidence against which robustness and fairness claims are verified. In order

to ensure the users cannot engineer the inputs to obtain information from the

machine learning model, the inputs are generated through a verifiable way to

ensure randomness.

• Private Inputs: These include the model’s learned parameters—weights, biases,

and hidden-layer outputs. Since these contain proprietary information, they are

committed through private commitment scheme that allows verification without

direct exposure.
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The commitments leverage well-established cryptographic methods, ensuring that even

though the verifier does not see the raw weights and biases, they can still validate

whether the model satisfies robustness and fairness properties under specific adversarial

perturbations.

type ProveModelCircuit struct {

Weights [2][3][3]frontend.Variable ‘gnark:",private"‘

Biases [2][3]frontend.Variable ‘gnark:",private"‘

Inputs [10][3]frontend.Variable ‘gnark:",public"‘

Expected [10]frontend.Variable ‘gnark:",private"‘

}

The gnark library provides an intuitive interface for defining variables in a

zk-SNARK circuit, clearly distinguishing between public and private inputs using

struct tags. In the code snippet above, the ProveModelCircuit struct defines the

model components and inputs used in the proof system. Variables tagged with

gnark:”,private”—such as the Weights, Biases, and Expected outputs—are hidden

from the verifier and remain confidential throughout the proving and verification pro-

cess. On the other hand, variables tagged with gnark:”,public”—like the Inputs—are

visible to the verifier and serve as the publicly observable evidence used to validate

the model’s behavior.

This explicit separation ensures that sensitive model parameters remain hidden and

tells the program to only include the public parameters for the public witness while

still allowing the verifier to confirm whether the model produces consistent and fair

outputs for the provided inputs. Compare to circom, Gnark’s high-level abstraction

significantly simplifies the circuit design process and enforces the zero-knowledge

guarantees central to zk-SNARK protocols.
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3.2 Verifiable Randomness

If users were allowed to arbitrarily select public inputs, they could potentially craft

specific queries that, when combined with observed outputs, reveal partial information

about the model’s internal parameters. This could lead to unintended privacy leaks,

undermining the zero-knowledge non-interactive guarantee of our zk-SNARK approach.

To prevent users from strategically selecting public inputs in a way that could reveal

information about the private model parameters, a ”true” randomness string should

be used to generate inputs. This source of randomness can be achieved through a

trusted third party.

For the simplistic reason of this experiment, a verifiable random number generator

(RNG) is used to generate the random seed for public input data generator. This

ensures that public inputs are chosen in an unpredictable and unbiased manner,

preventing adversaries from reverse-engineering the model. However, in real-world

scenario, a more complicated and secure procedure should be taken to better ensure

security.

Please refer to code in appendix A.

This code provides a simple demonstration of how a verifiable random number genera-

tor (RNG) could operate within the constraints of zk-SNARK-friendly computation.

Specifically, it uses a Linear Congruential Generator (LCG) to produce pseudorandom

values based on an initial seed. Since zk-SNARK circuits operate over finite fields and

do not natively support modular arithmetic in the traditional sense, we implement

our own modular reduction using the SmallMod function. This function is called as a

custom hint (NewHint) in the gnark library, allowing us to perform the modulus oper-

ation during proof generation in a verifiable way. While this approach is simplified for

experimental purposes, it illustrates the principle of embedding verifiable randomness

within a zk-SNARK-compatible framework. In a production setting, this would be

replaced with cryptographically secure and non-manipulable randomness sources.
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3.3 Inputs Generation

Input generation is a critical step in the zk-SNARK proof system because the selection

of inputs directly influences what aspects of the model are being verified. If the input

space is not well-sampled or is biased in any way, a malicious prover could construct

a model that passes verification while still being unfair or vulnerable to adversarial

perturbations.

Even if we start with a truly random seed, vulnerabilities may still arise. If

the prover is allowed to select the seed, they could generate one that favors their

model—choosing inputs on which the model performs well while concealing unfair

behavior elsewhere. Conversely, if the verifier selects the seed, they could potentially

craft inputs designed to extract sensitive information about the model’s internal

parameters, violating the zero-knowledge property. This creates a fundamental tension:

neither party can be fully trusted to generate the seed independently.

The best solution to this problem is to allow limited interaction between the prover

and verifier prior to the private commitment phase, enabling both parties to jointly

contribute to the randomness seed. By using a protocol such as a commit-and-reveal

scheme or a coin-flipping protocol, each party can submit a random value, and the

final seed is derived from the combination (e.g., via XOR). This ensures that neither

party has full control over the seed, and as long as one party is honest, the resulting

seed remains unbiased and unpredictable. This interactive setup preserves fairness

while maintaining the zero-knowledge guarantees of the system.

3.4 Real World Scenario Simulation

To better simulate a real-world interaction between a prover and a verifier, we modify

the experimental setup used in the FairProof paper. In FairProof, the entire proving

and verification process was conducted locally within the same environment, without
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explicitly separating the roles of the prover and verifier[12]. In our setup, we extract

the proof and verification key files from the prover’s environment and transmit them

to the verifier, ensuring a more realistic simulation of the protocol in a distributed

environment.

// Write the verification key to a file

vkF, _ := os.Create(vkKeyFile)

defer vkF.Close()

_, _ = vk.WriteTo(vkF)

// Write the proof to a file

proofF, _ := os.Create(proofFile)

defer proofF.Close()

_, _ = proof.WriteTo(proofF)

The code above demonstrates how the verification key (vk) and the proof (proof) are

serialized and written to separate files within the prover’s environment. These files

are then transmitted to the verifier, who can independently use them to verify the

correctness of the model’s behavior without requiring access to the model weights

or intermediate computations. This separation reflects a more realistic client-server

or decentralized verification scenario, where the verifier operates independently from

the prover and must rely solely on the proof and the verification key to validate the

claims.

vkF, err = os.Open(vkKeyFile)

assert.NoError(err)

defer vkF.Close()

proofF, err = os.Open(proofFile)

assert.NoError(err)
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defer proofF.Close()

The code above allows any party with access to the verification key and proof files to

read the contents sent by the prover. This code retrieves all the necessary artifacts

to carry out the verification independently. Once the vk and proof are loaded, the

remaining steps of the verification process proceed exactly as they would in a local

setting—using the standard zk-SNARK verification process. This code demonstrates

that the proving and verifying processes can be fully decoupled, enabling trustless and

distributed validation of machine learning model fairness and robustness.

3.5 Forward Propagation

To compute the output of the multi-layer perceptron neural network given a set of

weights and biases, we employ the standard forward propagation process. The network

consists of multiple layers, where each neuron’s activation is computed as a weighted

sum of the previous layer’s activations, followed by an activation function.

Formally, for each layer l, the activation of neuron i is given by:

z
(l)
i =

∑
j

W
(l)
ij · a(l−1)

j + b
(l)
i (3.1)

where:

• W
(l)
ij represents the weight connecting neuron j in layer l− 1 to neuron i in layer

l,

• a
(l−1)
j is the activation from the previous layer,

• b
(l)
i is the bias term for the neuron.

In our implementation, this computation is performed within the circuit, iterating

through each layer and neuron. The weighted sum is calculated using the Mul and
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Add operations from gnark’s frontend.API. After computing the sum, we apply a

non-linear activation function.

Since zk-SNARK work over finite fields, we carefully handle numerical precision and

apply a modular reduction technique (SmallMod) to keep values within the appropriate

range. Additionally, we use the ReLU activation function, defined as:

ReLU(x) = max(0, x) (3.2)

which ensures non-negative activations and prevents negative values from propa-

gating.

At the final layer, we determine the predicted class by computing the index of the

neuron with the highest activation (argmax operation). The circuit then enforces a

constraint that this predicted class matches the expected output.

This structured forward propagation ensures that the proof captures the cor-

rect inference computation while being efficiently verifiable within the zk-SNARK

framework.

Please refer to the code in Appendix A.

The code defines the core logic of the zk-SNARK circuit for forward propagation

using the gnark framework. Each value—whether it be an input, weight, bias, or

intermediate result—is represented as a frontend.Variable, which allows the gnark

compiler to translate these operations into verifiable constraints over a finite field.

The circuit processes each input vector by iteratively applying the forward prop-

agation steps layer-by-layer. For each neuron, it computes the weighted sum of its

inputs, adds the corresponding bias, and then scales down the result using a custom

modular reduction function (SmallMod) to simulate fixed-point arithmetic. The scaled

value is passed through a ReLU activation function, implemented as a constraint that

ensures negative values are clipped to zero. The largeBoundary variable is used as a

proxy for handling ReLU within the circuit.
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After propagating through all layers, the circuit performs an argmax operation

on the final layer’s outputs to determine the predicted class. This is achieved us-

ing api.Select to conditionally update the current maximum value and its index.

Finally, the predicted class index is asserted to match the expected label using

api.AssertIsEqual, which guarantees that only correct model behavior will produce a

valid zk-SNARK proof.

By representing every step of computation through frontend.Variables and field-

compatible operations, this code ensures that the entire inference process is verifiable,

preserving the privacy of model parameters while confirming model correctness on

public inputs. This exemplifies how neural network inference can be securely and

efficiently encoded in zero-knowledge.

3.6 Number Preprocessing

One of the major limitations when working with zk-SNARK systems like Gnark is

the lack of native support for floating-point arithmetic. Since all values must be

represented as elements within a finite field, it is not possible to directly represent

decimal numbers. However, in the context of neural networks, weights, biases, and

activations are often floating-point values. This mismatch introduces a challenge in

accurately simulating forward propagation within the zk-SNARK circuit.

Initially, we considered a method that separates each floating-point number into

its integer and fractional components. Although this approach is conceptually correct,

it significantly increases circuit complexity and constraint count due to the additional

logic required for decomposition and recomposition.

To address this issue more efficiently, we adopted a fixed-point approximation

strategy. Specifically, before embedding the values into the circuit, each floating-point

number is scaled by a large constant C (e.g., 1000), effectively converting it into an
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integer. Inside the circuit, standard operations such as multiplication and addition

are performed on these scaled integers. After each multiplication, the result is divided

by the same constant C to maintain the original magnitude, and then rounded to

the nearest integer using a custom rounding function. This allows us to simulate

real-valued arithmetic with reasonable precision while keeping the circuit lightweight

and compatible with Gnark’s constraint system.

This scaling and rounding method ensures that the forward propagation logic

remains accurate enough for practical use, while maintaining the efficiency and

verifiability required for zero-knowledge proofs.
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Experiments

To evaluate the feasibility of the zk-SNARK verification implementation, we conducted

experiments focusing on computational complexity, proof size, and verification speed.

All experiments were performed on a system equipped with an NVIDIA RTX 3090

GPU and an Intel Core i7-12700KF CPU. The primary objectives of these experiments

were to investigate the following key questions:

1 Can this algorithm distinguish between fair and unfair models?

2 Is this algorithm feasible in real-world scenario?

4.1 Fairness Verification

To assess the point-wise fairness robustness of a given machine learning model, we

sample a set of test inputs from different regions of the input space. For each sampled

point, we generate a set of perturbed inputs within an Euclidean distance of 0.1,

simulating small, localized changes. The model is then evaluated on each set of

perturbations. If the model’s output remains consistent across all perturbations of a

particular input, we consider it fair at that point. This defines a notion of point-wise

robustness : rather than assessing global model fairness, we evaluate whether fairness
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holds locally around individual data points. In our experiments, we sample 10 such

points and observe their robustness behavior. Because our models are small, we

use a strict threshold—requiring 100% consistency across perturbations—but this

threshold can be relaxed for more complex models or higher-dimensional inputs. Given

a machine learning model randomly generated by ChatGPT, we are able to verify its

point-wise fairness robustness. For each of the 10 randomly sampled input points,

we generate perturbed variants within an Euclidean distance of 0.1 and evaluate the

model’s output on these perturbations. Our results show that the model is consistent:

all 10 input points exhibit locally stable behavior, meaning the model’s predictions

remain unchanged within their respective neighborhoods. This indicates that the

model satisfies point-wise fairness robustness under our evaluation criterion.

4.2 Feasibility Analysis

To measure the feasibility of the algorithm, all tests were executed in the environment

specified above. The following metrics were recorded:

• Proof Generation Time: The time taken to generate zk-SNARK proofs.

• Verification Time: The time required to verify a generated proof.

• Number of Constraints: The total number of constraints generated during the

zk-SNARK proving process.

The results align with our expectations. As the size of the weights increases, the

number of constraints and proof time exhibit a linear relationship with weight size.

However, the verification time remains constant and very fast, highlighting the strong

feasibility of this approach.
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Figure 4.1: Running time for proof and verification on the local machine

Table 4.1: Running Time Data
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The results matches our expectation. As the sizes of the weights increases, the

number of constraints and proof time has a linear relation to the size of the weights.

However, the verification time remains constant. An additional observation from the

graph is the ”stair-step” pattern in the proof time. Rather than a smooth linear

increase, the graph appears to grow in discrete jumps. I hypothesize that this behavior

might be due to the internal workings of Gnark. It’s possible that proof time increases

significantly once the number of constraints surpasses certain thresholds—perhaps

linked to internal batching, circuit segmentation, or memory alignment mechanisms

within the Gnark backend. The constant verification time is a particularly important

aspect of zk-SNARKs, as it ensures that once a proof is generated, the verification

can be performed quickly, making it highly efficient.



Chapter 5

Conclusion

The results of our study demonstrate that our proposed method offers a much more

efficient algorithm compares to Fairproof to verifiy the robustness of machine learning

model while preserving high accuracy. Our experiments have shown that this method

is applicable to small sizes of forward-perceptron neural networks.

One of the key advantages of our method is its ability to maintain rapid verification

and relatively low runtimes, even as model complexity increases. Even though the proof

computation time might be large, we only required to compute the proof once, and it

can be repeatedly used with a constant verification time. This ensures its integration

into large-scale systems without significant computational overhead. Additionally,

our method successfully captures essential properties of the problem space, providing

robust and reliable outcomes.

However, there are inherent limitations to our approach. While our experiments

validate its applicability, real-world machine learning models are not limited to

feedforward perceptron networks with ReLU activation functions. In addition, our

model requires the inputs to be continuous numbers, meaning it is not compatible

with large language models whose inputs are usually a set of string. The primary

reason we did not explore these extensions in this study was to keep the experiment
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focused on feasibility rather than broad applicability. In future research we can extend

it to more complex architectures and activation functions.

There are several problems that can be addressed in the future. In order to

reach cryptographically secure level, we need a truely random seed. This seed can

be obtained through hashing the random inputs or from the Groth16 setup phase.

There are some solutions to this problem, but due to the scope of this research, those

problems are left for future studies.

Overall, our study provides strong evidence that our method is a viable solution

for real-world applications, with clear directions for further refinement and expansion.



Appendix A

Source Code

All source code can be found at https://github.com/2pir2/HonorThesis.

A.1 Code For Verifiable Randomness:

func smallModHint(mod *big.Int, inputs []*big.Int, outputs []*big.Int) error {

// Computes a % r = b

// inputs[0] = a -- input

// inputs[1] = r -- modulus

// outputs[0] = b -- remainder

// outputs[1] = (a-b)/r -- quotient

if len(outputs) != 2 {

return errors.New("expected 2 outputs")

}

if len(inputs) != 2 {

return errors.New("expected 2 inputs")

}

outputs[1].QuoRem(inputs[0], inputs[1], outputs[0])

return nil
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}

// SmallMod uses the smallModHint to compute the quotient and remainder

func SmallMod(a, r *big.Int) (quo, rem *big.Int) {

// Initialize output variables

rem = new(big.Int)

quo = new(big.Int)

// Use the hint function to compute modular division

err := smallModHint(nil, []*big.Int{a, r}, []*big.Int{rem, quo})

if err != nil {

panic(fmt.Sprintf("Error in modular computation: %v", err))

}

return quo, rem

}

func main() {

// Linear Congruential Generator (LCG) constants

a := big.NewInt(1664525) // Multiplier

c := big.NewInt(1013904223) // Increment

m := big.NewInt(100) // Modulus (2^32)

seed := big.NewInt(12345) // Example seed

// Step 1: Compute the intermediate result temp = a * seed + c

temp := new(big.Int).Add(new(big.Int).Mul(seed, a), c)

// Step 2: Use SmallMod to compute the quotient and remainder
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quo, rem := SmallMod(temp, m)

// Step 3: Print the results

fmt.Println("Seed:", seed)

fmt.Println("Temp:", temp)

fmt.Println("Quotient:", quo)

fmt.Println("Remainder:", rem)

}

A.2 Code for Forward Propagation and Rounding

func (circuit *ProveModelCircuit) Define(api frontend.API) error {

largeBoundary := frontend.Variable(1000000000)

// Iterate over each input vector

for k := 0; k < len(circuit.Inputs); k++ {

layerOutputs := circuit.Inputs[k] // Start with the input vector

// Iterate over each layer

for layer := 0; layer < len(circuit.Weights); layer++ {

// Create a new slice for the outputs

newOutputs := make([]frontend.Variable, len(circuit.Weights[layer]))

// Iterate over each neuron in the layer

for i := 0; i < len(circuit.Weights[layer]); i++ {

sum := circuit.Biases[layer][i]
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// Compute the weighted sum

for j := 0; j < len(circuit.Weights[layer][i]); j++ {

tmp := api.Mul(circuit.Weights[layer][i][j], layerOutputs[j])

sum = api.Add(sum, tmp)

}

// Apply the scale-down function

sum, rem := SmallMod(api, sum, 1000)

api.Println(sum, "numb", rem)

// Apply ReLU activation

newOutputs[i] = applyReLU(api, sum, largeBoundary)

}

// Update layerOutputs by iterating through elements

for i := range newOutputs {

layerOutputs[i] = newOutputs[i]

}

// Print the outputs after the current layer

api.Println("Outputs after layer", layer, ":", layerOutputs)

}

// Find the argmax in the final layer’s output

maxVal := layerOutputs[0]

maxIdx := frontend.Variable(0)

for i := 1; i < len(layerOutputs); i++ {
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isLess := cmp.IsLess(api, maxVal, layerOutputs[i])

maxVal = api.Select(isLess, layerOutputs[i], maxVal)

maxIdx = api.Select(isLess, frontend.Variable(i), maxIdx)

}

// Assert the predicted output matches the expected output

api.AssertIsEqual(maxIdx, circuit.Expected[k])

}

return nil

}
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