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Abstract

Causal Inference in Multilayered Networks

By Juan Estrada

Social and professional networks are critical to determining agents’ choices in various con-

texts, ranging from innovation and trade to labor markets and educational achievement. The

existence of network influences on decision-making processes can affect aggregate outcomes

and the effects of policy intervention. Therefore, understanding whether network structures

affect individuals’ outcomes is relevant in social sciences such as economics, public health,

sociology, and political science. However, empirically testing the existence of network effects

with observational data becomes a challenge because of outstanding identification issues such

as endogenous network formation. This dissertation provides novel methodologies to causally

estimate network effects with observational data robust to network endogeneity issues. Dif-

fering from existing approaches, the methods I propose are semiparametric, do not require to

specify a structural network formation model, and allow for the identification and estimation

of heterogeneous network effects generated by different types of social/professional links.

The first chapter proposes a method to identify and estimate the linear model of peer

effects parameters when a predetermined set of exogenous connections induce the observed

interest network. The second chapter expands the results from the first chapter by allowing

the possibility of multiple types of potentially endogenous networks to affect individual

outcomes. I show that the identification of heterogeneous network effects is possible under

the assumption that the dependence between individuals in the population vanishes with

their distance in the network space. Finally, chapter three focuses directly on the process

of determining the formation of network structures rather than their effect on outcomes.

In particular, it provides a novel approach to identify and perform inference on the utility

parameters of a network formation model with payoff externalities using observed network

data.
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1

Chapter 1

Instrumental Network Estimation of

Social Effects

Note: This chapter is the product of collaborative research with Kim P. Huynh, David T.

Jacho-Chávez and Leonardo Sánchez-Aragón. The views expressed in this chapter are solely

those of the authors and may differ from official Bank of Canada views.

This paper proposes a new method to identify and estimate the parameters of linear models

of peer effects in situations where predetermined exogenous peers induce the observed net-

work of interest. We argue that exogenous predetermined networks do not generate social

effects. However, based on the initial set of connections, agents can endogenously form rel-

evant relationships that can create peer influences. In this context, we introduce a moment

condition that aggregates local heterogeneous identifying information for all the individuals in

the population. We show that it is possible to identify the parameters of interest by using the

exogenous variation in the predetermined groups and provide a consistent GMM estimator
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and root-n asymptotic normal. We also characterize the asymptotically efficient variance-

covariance matrix that considers the network dependence among individuals. Monte Carlo

exercises confirm the adequate finite sample performance of the proposed estimator, and an

empirical application finds positive and significant peer effects in citations among research

articles published in top general interest journals in economics.

1.1 Introduction

Network structures shape observed outcomes across different types of markets. Empirical

evidence shows that connected individuals tend to have similar outcomes, see e.g., Sacerdote

(2001a) in economics, Alexander et al. (2020) in Public Health, Kreager et al. (2020) in

Criminology, and Salmivalli (2020) in Sociology to mention just a few. The observation that

connected individuals have correlated outcomes is consistent with models where individuals

decision-making process depends on the behavior of their connections. Blume et al. (2015)

present a model where individual utility is a function of both the peer characteristics –

contextual effects– and peer actions or outcomes –peer effects. The workhorse model in

the Social Sciences for this type of setting is the so-called linear-in-means regression model

proposed by Manski (1993), (see Section 3.1 in de Paula, 2017, pp. 275-289) where the

outcome variable for observation i (e.g., a person, a firm, or a country), yi, is determined

according to

yi = α + β
n∑

r=1

Wiryr + δ
n∑

r=1

Wirxr + γxi + vi (1.1)

where i, j ∈ {1, . . . , n} are also known as nodes, x is a vector of attributes that characterizes
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the observations i and j, wi,j = 1 if j is connected with i (an edge), and 0 otherwise, vi

represents an unobserved latent error, and n is the number of observations or nodes in the

sample. The structure of the social network is fully characterized by the square n×n matrix,

W, with (i, j) entry given by wi,j, i.e., the adjacency matrix. The structural parameters β

and δ capture the peer and contextual effects respectively, while γ captures the direct effects

of the observation’s own characteristics. They are jointly known as the social (or neighbor)

effect parameters and the object of interest in empirical studies with network data.

Sufficient conditions under which the social effects parameters in (1.1) can be uniquely

recovered from the estimating sample
{
yi,x

⊤
i , {wi,j}nj=1,j ̸=i

}n
i=1

is well understood under the

assumption that the adjacency matrix, W, is exogenous (de Paula, 2017). However, the

endogenous case remains an active area of research among social scientists because of simul-

taneity bias, measurement error in the link information, or because there might be a natural

correlation between covariates and the error term in (1.1) (Johnsson and Moon, 2019).

This research provides a new way to estimate social effects from observational data

consisting of characteristics and connections among individual-level observations in contexts

in which individuals freely form the social relationships of interest after being exogenously

assigned to peer groups, see, e.g., Carrell et al. (2009), Carrell et al. (2011), and Carrell et al.

(2013). The proposed estimator of the social effects turns out to be a linear Generalized-

Method-of-Moments (GMM) estimator that has an explicit formula, converges at the stan-

dard rate, and has a multivariate normal limiting distribution with an efficient asymptotic

variance-covariance matrix that takes into account the network dependence in the data.

Specifically, I proposed to conduct inference using the results in Kojevnikov et al. (2020)–

that functionals of network data become uncorrelated as observations becomes distant in
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the network space; i.e., ψ–dependence. By imposing ψ–dependence ob the data-generating

process, I propose a Heteroskedasticity and Autocorrelation Consistent (HAC) estimator of

the efficient asymptotic variance-covariance matrix that corrects for the presence of network

dependence in the data.

Recent articles offering methods to alleviate the network endogeneity issue propose aug-

menting the standard linear-in-means model to include specific generating mechanisms for

the network formation process, see e.g., Goldsmith-Pinkham and Imbens (2013), Qu and Lee

(2015), Johnsson and Moon (2019) and Auerbach (2022). Specifying an additional network

formation model generally involves imposing strong functional form and parametric assump-

tions (Graham and Pelican, 2020). This paper contributes by providing a computationally-

simple estimator that does not require imposing extra structure to the model, which at

the same time takes into account the potential resorting process after the initial exogenous

configuration.

I provide a Monte Carlo exercise that showcases the versatility of the proposed estimator

by analyzing its performance in two separate data generating processes that consider the

unobserved homophily in the network formation and measurement error scenarios. The

simulation results show that the proposed GMM estimator performs well in terms of bias and

asymptotic normal approximation, with sample sizes as small as 50 observations. In addition

to the simulated data, this paper also presents an application to real data on publication

outcomes in Economics. The use of web scraping and existing data on authors’ research

fields, education, and employment history allows the creation of two types of professional ties

among scholars, namely co-authorship and alumni connections. These multiplex networks

are then used to uncover positive and significant peer effects in terms of citations among
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articles published by these scholars, as well as significant positive effects of research teams

that are gender diverse on the quality of a paper measured in terms of citation outcomes after

controlling for other articles’ characteristics such as number of pages, number of bibliographic

references, co-authoring with current and previous editors, and various network fixed effects.

The remainder of this article is organized as follows. Section 1.2 introduces the necessary

definitions, including distance metrics on graph space, as well as the general notation used

throughout the paper. Section 1.3 then provides sufficient conditions under which social

parameters can be uniquely recovered from observational data when information from an

exogenous network is available. The proposed estimator and its asymptotic distributional

properties under ψ–dependence are presented in Section 1.4. A simulation study is described

in Section 1.5, while Section 1.6 provides an empirical illustration of the methods discussed

by applying them to a data set of publication outcomes in economics. Section 1.7 concludes

with a discussion on various venues the proposed method can be used for experimental

designs for example.

1.2 Preliminaries

Full observability of two types of network is assumed here. One is the endogenous network of

interest that can create social externalities, and the other is the instrumental network induced

by random assignment. We use a multilayered network data structure to characterize our

data generating process, see, i.e., Boccaletti et al. (2014) and Kivela et al. (2014) for up-

to-date comprehensive surveys and references therein. Following Boccaletti et al.’s (2014)

definition, a multilayer network is a pair M = (N , C), where N = {Gm; m ∈ {1, . . . ,M}}
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is a family of M graphs and C is the set of interconnections between nodes of different layers

gα and gβ with α ̸= β. When the same nodes are in each layer, and there are no connections

between different nodes in different layers except with themselves, these networks are called

multiplex, see, i.e., Atkisson et al. (2020). In our case we have m = 2, and we denote GN to

be the population network of interest, and GN,0 the population instrumental network, where

N is the number of individuals in the population, and it is assumed to be arbitrarily large.

Similarly, as in Graham (2020), the observed networks of size n < N are denoted as Gn

respectively, and are assumed to coincide with the subgraphs induced by a sample of nodes

from their corresponding large population networks.

In the population, we represent the two layers GN and GN,0 in the multiplex network

with the adjacency matrices of each layer, i.e., WN = [wN ;i,j] and WN,0 = [wN,0;i,j], where

wN ;i,j, wN,0;i,j ∈ (0, 1] are weights representing the importance of the (i, j) connection in

each of the networks, and wN ;i,j = 0 if i and j are not connected in GN , and similarly for

wN,0;i,j = 0 in GN,0. We also define the vectors wN,i = [wN ;i,1, . . . , wN ;i,N ]⊤ ∈ [0, 1]N and

wN,0,i = [wN,0;i,1, . . . , wN,0;i,N ]⊤ ∈ [0, 1]N to be the ith row of the adjacency matrices WN

and WN,0, respectively. Adjacency matrices from the observed sample, Wn and Wn,0, are

defined and formed accordingly.

Section 2.5 uses the concept of ψ−dependence to bound the dependence among indi-

viduals as a function of their distance in the network space. Following the literature on

graph theory, we use the shortest path length as our measure of distance, i.e., let dn(i, j)

be the minimum path length connecting individuals i and j in the network Gn induced by

the sample of size n. We define the following group of sets based on the geodesic distance

dn(i, j).
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LetA andB be any two sets of individuals of sizes a, b ∈ N+. Define the distance between

sets as dn(A,B) = mini∈A minj∈B dn(i, j). Consider the following sets: (i) P+
n (a, b, d) =

{(A,B) : A,B ⊂ In, |A| = a, |B| = b, and dn(A,B) ≥ d} containing groups of nodes

at distance of at least d from each other, (ii) P−
n (a, b, d) = {(A,B) : A,B ⊂ In, |A| =

a, |B| = b, and dn(A,B) ≤ d} containing groups of nodes at distance of at most d from

each other, (iii) Pn(a, b, d) = {(A,B) : A,B ⊂ In, |A| = a, |B| = b, and dn(A,B) = d} the

set associated with groups of nodes at distance d from each other. The associated set that

contain all nodes at a certain distance of node i are P+
n (i, d) = {j ∈ In : dn(i, j) ≥ d},

Pn(i, d) = {j ∈ In : dn = d} and P−
n (i, d) = {j ∈ In : dn ≤ d}.

1.3 Peer Effects Model and Identification

The model in the population is formed by a set IN of N agents, where N ⊂ N+ can be

arbitrarily large. In the population, each agent, i, is characterized by a set of K observable

characteristics xN,i, and an unobserved idiosyncratic shock (error) εN,i. Agents in the pop-

ulation are connected by two types of networks GN and GN,0. Motivated by the empirical

application, we assume that the network G0 is determined at random by an independent

institution that is trying to maximize neither any agent’s nor any collective welfare function.

However, the network GN is formed endogenously by agents who are deciding whether to

connect or not with each other to maximize some gain/loss function that potentially depends

on others’ observed and unobserved characteristics.

We assume that there is a population joint distribution determining the dependence pat-

terns between the regressors, the networks, and the errors denoted by F(XN ,GN ,GN,0, εN),
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where XN = [xN,1, · · · ,xN,N ]⊤ ∈ X and εN = [εN,1, · · · , εN,N ]⊤ ∈ RN represent the matrix

of regressors and the vector of errors for all agents in IN . The joint distribution is character-

ized by three main features. First, by the properties of randomization, the network GN,0 is

independent to the agents’ observed and unobserved characteristics xN,i ∈ RK , and εN,i ∈ R.

Second, agents randomly assign to the same group in GN,0 are more likely to form connections

in GN , see, e.g., Goldsmith-Pinkham and Imbens (2013). Finally, in general, there could be

agents in the population who do not have any connections in one or both networks. We

call them isolated agents and it is shown here they provide identifying information for both

direct as well as social effects.

To incorporate the possibility that individual i can be isolated in one or both of the

networks, let ηN,i and ηN,0,i be two Bernoulli random variables that equal one if individual

i is non-isolated in the networks GN or GN,0, respectively. It follows that κN,i = E[ηN,i]

and κN,0,i = E[ηN,0,i] give the unconditional probability that individual i is non-isolated

in the respective network, where the expectations are taken with respect to the marginal

distributions of GN and GN,0, respectively. With this notation, the following assumption

imposes restrictions on the joint distribution F that are consistent with the intuition in our

empirical application.

Assumption 1 (Joint Distribution Characterization). Consider the sets G , G0, X of all

possible realizations of GN , G0,N and XN with positive probability mass in F , respectively.

The following is true:

(i) The distribution H(XN ,GN,0, εN) =
∫
GN∈G

F(XN ,GN ,GN,0, εN)dGN is such that

E[X⊤
NεN ] = 0K, where 0K is a K × 1 vector of zeros.
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(ii) ∀GN,0 ∈ G0 and XN ∈ X , the conditional probability F(GN , εN | GN,0,XN) is such

that Pr(wN ;i,j > 0|GN,0,XN) = ρ(wN,0;i,j,GN,0,XN , εN), for some real-valued function ρ :

G0 × X × RN → [0, 1]. Moreover, ρ(0,GN,0,XN , εN) < ρ(1{wN,0;i,j > 0},GN,0,XN , εN),

∀(GN,0,XN , εN) ∈ G0 × X × RN , where 1(·) is the usual indicator function that equals one

if its argument is true and zero otherwise.

(iii) ∀GN,0 ∈ G0 and associated marginal distributions, the random variables {ηN,0,i}Ni=1 are

such that the event ηN,0,i = 0, ∀i ∈ IN happens with probability zero. (iv) ∀GN ∈ G and

associated marginal distributions, the random variables {ηN,i}Ni=1 are such that the event

ηN,i = 0, ∀i ∈ IN happens with probability zero.

Assumption 1(i) does not impose any restrictions on the correlation among GN , XN ,

and εN . In particular, this assumption allows for an endogenous network formation process

where agents can create connections in GN based on observed and unobserved characteristics,

which could also induce correlation between XN and εN because of homophily. Importantly,

the random assignment defining WN,0 guarantees that the network is independent of the

regressors and the errors, and conditioning on it is not necessary. Assumption 1(ii) imposes

the condition that the probability of agents i and j being connected in GN increases when

they are connected in GN,0. However, we are agnostic about the dependence structure in

the implicit network formation process for which we do not impose any explicit functional

form. In particular, this assumption can accommodate the pairwise independent network

formation models as in Graham (2017), and the network formation models with strategic

interactions as in de Paula et al. (2018) and Graham and Pelican (2020). Assumptions 1(iii)

and 1(iv) are necessary conditions for the model to be identified, and exclude the possibility
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that WN,0 = WN = ON (the N ×N matrix of zeroes).

There has been a relevant number of articles in economics showing that agents who

interact together in social networks tend to exhibit correlated behavior (Sacerdote, 2014).

The linear model of peer effects from Manski (1993) has been for many years now the most

widely used tool to estimate peer effects in applied work (de Paula, 2017). Manski’s linear

model and additional variations allowing for network data have a structural interpretation

as the best response function of a Bayesian game of social interactions as shown by Blume

et al. (2015). In this paper, we take the linear model of peer effects as our primitive model of

interest, and we investigate identification under endogenous network formation. We assume

that only the connections that are formed optimally by agents can create peer effects.

Assumption 2 (Linear Model). The optimal choice (outcome), yN,i, for agent i is charac-

terized by

yN,i = β0
∑
j ̸=i

wN,i,jyN,j +
∑
j ̸=i

wN,i,jx
⊤
N,jδ0 + x̃⊤

N,iγ0 + εN,i, (1.2)

where x̃N,i = [1,x⊤
N,i]

⊤, θ0 = (β0, δ
⊤
0 ,γ

⊤
0 )⊤ belongs to the interior of the parameter space

Θ ⊂ R2K+2 which is assumed to be compact.

Assumption 2 is a linear model for social effects, and it effectively imposes an exclusion

restriction on the network GN,0. The intuitive motivation for this assumption is that agents

would tend to behave similar to others with whom they have a close social relationship.

In particular, we argue that a group of people randomly assigned together into a group

are not likely to generate peer effects to each other. After the randomization, agents can

form endogenously connections that are relevant to create social effects. This intuition has
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found support in the literature, see, e.g., Carrell et al. (2013) who found that groups designed

optimally to improve academic performance ended up having a negative effect because of the

role of endogenous link formation. The coefficients β0 and δ0 are known as the peer effects

and the contextual effects respectively and referred jointly as the social effects parameters

hereafter. The assumption that the parameters θ0 are in the interior of the parameter space

is particularly relevant for the coefficient β0, because (1.2) has a solution in terms of wN,i,

XN , and εN,i only when β0 < 1/λmax, where λmax is the largest eigenvalue of WN . Assuming

K = 1 and no constant for the sake of illustration, Assumption 2 implies that the peer effects

regressor can be written as

WNyN = γ0WNxN + (γ0β0 + δ0)
∞∑
p=0

βk
0W

p+2
N xN +

∞∑
p=0

βp
0εN , (1.3)

which under the condition that γ0β0+δ0 ̸= 0 shows that in principle, powers of the adjacency

matrix WN could be used to instrument WNy (Bramoullé et al., 2009). In the case at hand

this approach is not possible because the network GN can be endogenous. However, note

that from Assumptions 1 (i) and (ii), powers of the adjacency matrix WN,0 are natural

candidates to replace WN .

We propose to use the random assignment embodied in WN,0 to identify the pa-

rameters of a linear model defined on the network space spanned by WN in Assump-

tion 2. To formalize our identification strategy, we define DN = [WNyN ,WNXN , X̃N ]

to be the matrix of regressors in the matrix-notation counterpart of equation (1.2), and

ZN = [Wp
N,0XN ,W

p−1
N,0XN , . . . ,WN,0XN , X̃N ] to be the matrix producing the moment con-

ditions formed based on Assumptions 1 (i) and (ii), where p > 1 is a constant parameters
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representing the power of the adjacency matrix used as an instruments. This framework

allows for the option of using so called friends of friends ’ characteristics as instruments

by letting p = 2. The flexibility of Assumption 1 also allows for the use of more indirect

connections’ characteristics that are at distance p > 2. To take into account the fact that

individuals without connections at distance p do not provide identifying information for the

network effects parameters, define ηpN,0,i to be a random variable that equals one if individual

i has at least one connection at distance p and zero otherwise. As before, κpN,0,i = E[ηpN,0,i]

is the unconditional probability that individual i has at least one connection at distance p.

Define HN,0,i = diag(ηpN,0,i, . . . , ηN,0,i, 1, . . . , 1) to be a ((p + 1)K + 1) × ((p + 1)K + 1)

matrix where the first K elements contain the random variables determining whether or not

individual i has at least one connection at distance p, the second K elements the random

variables determining whether or not individual i has at least one connection at distance

p−1, and so on, until the last K elements associated with WN,0XN , where ηN,i is the random

variable determining whether i is isolated in the network GN,0. Finally, the last K+1 elements

in the lower-right sub-matrix, which coincide with the non-network regressors x̃N,i, are ones.

Define the ((p + 1)K + 1) × ((p + 1)K + 1) matrix KN,0,i = diag(κpN,0,i, . . . , κN,0,i, 1, . . . , 1)

to be E[HN,0,i].

From Assumption 1(i), it follows that E[zN,iεN,i] = 0 for all i, where zN,i be the

ith row of the matrix ZN . Defining the function mN(θ) :=
∑

i∈IN zN,iεN,i, it follows

that E[mN(θ0)] = 0. The following remark about the moment condition E[mN(θ0)] is

noteworthy. By the law of total expectation E[zN,iεN,i] = KN,0,iE[zN,iεN,i | H∗
N,0,i ̸=

OpK ] + (I(p+1)K+1 −KN,0,i)E[zN,iεN,i | H∗
N,0,i = OpK ], where H∗

N,0,i contains the the left

top (pK × pK) upper matrix of HN,0,i, and OpK is the pK × pK zero metrix. Note that
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when H∗
N,0,i = OpK , the conditional expectation E[zN,iεN,i | HN,0,i = OpK ] is trivially zero

for the first pK elements, and one for that the last k+1 positions. Moreover, I(p+1)K+1−HN,0,i

equal zero in the last k + 1 elements of its diagonal. Therefore, it follows that E[zN,iεN,i] =

KN,0,iE[zN,iεN,i | HN,0,i ̸= O], and thus E[mN(θ0)] =
∑

i∈IN KN,0,iE[zN,iεN,i | HN,0,i ̸= O].

This remark is relevant because it gives an interpretation to the unconditional moment

condition as a weighted sum where the weights are the probabilities of having distance-p

connections and not being isolated. This scheme accommodates heterogeneity on the identi-

fying power of each individual in the population, and gives more importance for agents who

are unlikely to not have distance-p connections or to be isolated in the randomized network

in the population.

The use of the two networks for identification, requires a relevance condition that guar-

antees that the two networks have enough overlap. The moment correlating regressors and

exogenous variation can be written as E[
∑

i∈IN zid
⊤
i ], where di and zi represent the i rows of

matrices DN and ZN respectively. Importantly, we do not assume that E[zid
⊤
i ] are equal for

all i. The following Assumption imposes a rank condition related with the strength of the

correlation between zi and di. The conditions in Assumptions 1(ii) and 1(iii) are necessary

but not sufficient for the following assumption to hold:

Assumption 3 (Relevance). The matrix E[
∑

i∈IN zN,id
⊤
N,i] <∞ has full column rank.

Assumption 3 imposes restrictions on the product matrices WN,0WN and Wp
N,0. As

mentioned before, if the product WN,0WN = ON , identification breaks down. This condition

has three important empirical consequences: (1) there should exist nodes in the system that

share connections in common from the two networks GN,0 and GN , (2) it should be possible
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to connect two nodes with a path formed by an edge from network GN,0 followed by one from

the network GN (or vise-versa), and (3) the matrices IN , WN,0, . . . ,W
p
N,0 have to be linearly

independent (the network cannot be composed by fully connected groups of the same size).

Under the conditions stated before, the following Theorem shows that identification of the

parameters of interest in (1.2) is possible, even if the network WN is endogenous.

Theorem 1 (Identification). Let Assumptions 1, 2, and 3 hold, then E[mN(θ)] = 0K if and

only if θ = θ0, where mN(θ) :=
∑

i∈IN zN,iεN,i.

1.8 presents the proof for Theorem 1. This Theorem shows that identification is possible

in a context where the network of interest GN is formed endogenously, by taking advantage

of the randomization and exclusion restrictions on the network GN,0. This approach allows to

attach causal interpretation to the estimated parameters of a linear model of peer effects that

uses observational network data that emerges after an initial randomization. This method

can be used to address research designs with randomized peers such as that in Carrell et al.

(2013).

1.4 Estimation

We propose a GMM estimator based on the identifying moment condition in Theorem

1. We assume that the analyst observes a sample of size n < N from the population

described in the previous section. In our sample scheme, n agents are chosen at ran-

dom without replacement, and their observed characteristics, outcome, and connections

in G and G0 are recorded. Therefore, the random sample consist on the observations

{yi,x⊤
i , {wi,j, w0,i,j}nj=1,j ̸=i}ni=1, from where it is possible to calculate the n × (2K + 2) ma-
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trix of regressors Dn, and the n × (3K + 1) matrix of instruments Zn (depending on the

value of K, the system can be just or over identified). The population GMM objective

function is given by JN(θ) = E[mN(θ)]⊤ANE[mN(θ)], where AN is a constant full rank

weighting matrix AN . The GMM estimator of θ is defined as θ̂ = arg minθ∈Θ Jn(θ) where

Jn(θ) ≡ (n−1
∑

i∈In zn,iεn,i)
⊤An(n−1

∑
i∈In z

⊤
n,iεn,i), the (3K+1)×(3K+1) full rank weight-

ing matrix An is assumed to converge in-probability to AN . The linearity in (1.2) guarantees

that the GMM estimator has a closed form solution given by

θ̂GMM = [D⊤
nZnAnZ

⊤
nDn]−1[D⊤

nZnAnZ
⊤
nyn]. (1.4)

As to allow for the possibility that individuals’ observed and unobserved characteristics

to be correlated in the population joint distribution F(XN ,GN ,GN,0, εN), the concept of

Doukhan and Louhichi’s (1999) ψ−dependence in used here, see, e.g., Kojevnikov et al.

(2020) and Estrada (2021). That is to bound the correlation between non-linear functions

of random variables with the dependence coefficients which are decreasing functions of the

network distance. From equation (1), the network GN,0 is independent of the regressors and

the errors. Thus, we can rule out a dependence structure based on that network. However,

because individuals endogenously form connections in GN based on observed and unobserved

characteristics, we would expect relatively high levels of dependence between individuals close

to each other in the network space spanned by GN .

Following Estrada (2021), we define the random vector rN,i ≡ [x⊤
N,i, εN,i]

⊤ ∈ RK+1. For

K, a ∈ N+, endow R(K+1)×a with the distance measure da(x,y) =
∑a

l=1 ∥xl − yl∥2 where

∥ · ∥2 denotes the Euclidean norm and x,y ∈ R(K+1)×a. Let LK,a denote the collection of
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bounded Lipschitz real functions mapping values from R(K+1)×a to R. For each set of nodes

A, let rN,A = (rN,i)i∈A, and we write triangular arrays simply as {rN,i} and sequences say

{λn}n≥1 as {λn} hereafter. Following Doukhan and Louhichi (1999) and Kojevnikov et al.

(2020), ψ−dependence can be defined.

Definition 1 (ψ-dependence). A triangular array {rn,i}, n ≥ 1, rn,i ∈ RK+1 is ψ-dependent

if for each n ∈ N+ there exists a sequence {λn} ≡ {λn,d}d≥0 , λn,0 = 1 and a collection of non-

random functions (ψa,b)a,b∈N , ψa,b : Lv,a × Lv,b → [0,∞) such that for all A,B ∈ P+
N(a, b, d)

for d > 0 and all f ∈ LQ+1,a and g ∈ LQ+1,b,

|cov (f (rn,A) , g (rn,B))| ≤ ψa,b(f, g)λn,d.

The sequence {λn} is called the dependence coefficients of rn,i. As mentioned before,

the covariance of the non-linear functions of the random vectors rn,A and rn,B are bounded

by the dependence coefficients λn,d and a functional ψa,b(f, g) that depends on the size of the

sets A and B, and the aggregating non-linear functions f and g. Importantly by choosing

appropriate values for the functions f and g, the ψ-dependence framework allows us to

bound the dependence between observed and unobserved characteristics between any set of

of individuals. As in Estrada (2021) we impose a week dependence assumption, but we do

not impose a sharp bound on the decreasing pattern of the dependence coefficients with

respect to the network distance.

Assumption 4 (Weak Dependence). Consider the set G of all possible realizations of GN

with positive probability mass in F . For all networks GN ∈ G , the conditional distribution

F(XN , εN | GN) is such that:
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(i) {rN,i} is ψ-dependent with dependence coefficients λN .

(ii) For a generic constant C > 0, ψa,b(f, g) ≤ C × ab (∥f∥∞ + Lip(f)) (∥g∥∞ + Lip(g)).

(iii) For each n ∈ N+, maxd≥1 λn,d <∞ and limd→∞ λn,d = 0.

We impose Assumption 4(i) on the population, and it applies to the random vector

rN,i = [x⊤
N,i, εN,i]

⊤. Given that any sample of size n is taken from the population charac-

terized by the joint distribution F , condition (i) applies for any n ∈ N+. Condition (ii)

bounds the functional ψa,b(f, g) by an arbitrary constant C, the cardinality of the sets A and

B, the sup-norm and Lipschitz constants of the aggregating functions f and g. Intuitively,

if the Lipschitz constants Lip(f) and Lip(g) increase, the values of the functions f and g

can be larger for some values of rn,A and rn,B, which requires larger constants to bound the

covariance. The intuition is similar for the sup-norm. Finally, condition (iii) requires that

the dependence coefficients are finite for any value of d, and that they dissipate to zero for

large enough network distance between the random vectors rn,A and rn,B.

The use of the ψ−dependence framework to modeling network dependence has the ad-

vantages that it does not impose functional form restrictions on the errors, and it allows

correlation between indirectly connected nodes. However, transformations of ψ-dependent

random variables are not necessarily ψ-dependent, therefore in order to analyze the asymp-

totic behavior of the estimator θ̂GMM, we need to impose bounds to covariances of the form

cov(rn,i,qrn,j,ℓ, rn,h,q′rn,s,ℓ′), where i, j, h, s ∈ In and q, q′, ℓ, and ℓ′ are components of the vec-

tor rn,i. These include covariances such as cov(εn,iεn,j, εn,hεn,s) or cov(xn,i,qxn,j,ℓ, εn,hεn,s) for

example.

Assumption 5 (Bound Covariances). Define functions fq,ℓ and gq′,ℓ′ mapping R(Q+1)×2 into
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R to be such that fq,ℓ(rn,{i,j}) = rn,i,qrn,j,ℓ and gq′,ℓ′(rn,{h,s}) = rn,h,q′rn,s,ℓ′ for i, j, h, s ∈ In,

i ̸= j, h ̸= s, q ̸= ℓ and q′ ̸= ℓ′. The norms ∥fq,ℓ(rn,{i,j})∥p∗f + ∥gq′,ℓ′(rn,{h,s})∥p∗g < ∞ for all

q, ℓ where p∗f = max{pf,i, pf,j} (analogous for p∗g) and 1/pf,i + 1/pf,j + 1/pg,h + 1/pg,s < 1.

The weak dependence Assumption in 4 guarantees that the dependence coefficients

vanish to zero when the distance increases. However, the network distance dn(i, j) between

any two individuals i and j is also a function of the sample size. Therefore, the asymptotic

behavior of the dependence coefficients λn,d depends on the asymptotic behavior of the

network features determining the distance between nodes. In particular, the density of

the network is explicitly linked with the geodesic distance. When the network density is

arbitrarily large, the geodesic distance is always one for any pair of nodes. Therefore, as

noted by Kojevnikov et al. (2020), there is a trade-off between network density and rate

of convergence of the dependence coefficients. Networks with higher density would require

the dependence to decrease faster (and vise-versa). The following assumption provides a

necessary condition condition on the dependence coefficients for a Law of Large Numbers to

apply.

Assumption 6 (Dependence Rate of Decay). Let D̄n(d) ≡ n−1
∑

i∈In |Pn(i, d)| be the aver-

age number of distance-d connections on the network Gn such that n−1
∑

d≥1 D̄n(d)λn,d
a.s.−→ 0

as n −→ ∞.

This Assumption is similar in spirit to Assumption 3.2 in Kojevnikov et al. (2020), but

it includes the fact that in our setting the analyst has access to two types of networks that

can involve weighted adjacency matrices. The following assumption imposes the existence

of moments for products of ψ-dependent random variables, and it is a regularity condition
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needed for a Law of Large Numbers to apply.

Assumption 7 (Existence of Moments). ∃ϵ > 0, supn≥1 maxi∈In ∥Rn,i,j∥1+ϵ <∞ a.s. where

Rn,i,j ≡ rn,i,qrn,j,ℓ and ∥Rn,i,j∥p ≡ (E[|Rn,i,j|p])1/p.

The previous assumptions are enough to guarantee that the Law of Large Numbers ap-

plies for products of ψ−dependent random variables. To show asymptotic normality, we are

using the Central Limit Theorem result in Kojevnikov et al. (2020). As mentioned before, for

the asymptotic moments of network dependent random variables to be well defined, we need

to control the level of asymptotic density. In particular, following Kojevnikov et al. (2020),

we define a measure for the average neighborhood size as D̄n(d, k) = 1/n
∑

i∈In |Pn(i, d)|k,

and a measure for the average neighborhood shell size as

D̄n(d,m, k)− =
1

n

∑
i∈In

max
j∈Pn(i,d)

∣∣P−
n (i,m) \ P−

n (j, d− 1)
∣∣k ,

were P−
n (j, d−1) = {∅} when d = 0. With these two measures of average density, construct

the combined quantity

cn(d,m, k) = inf
α>1

[
D̄n(d,m, kα)−

] 1
α

[
D̄n

(
d,

α

α− 1

)]1− 1
α

. (1.5)

For some arbitrary position q in the matrix Zn,i, let Sn =
∑

i∈In zn,i,qεn,i. Defining

σ2
n,q = var(Sn), the following assumption guarantees the existence of higher order moments,

imposes asymptotic sparsity, and bound the long-run variance.

Assumption 8 (Average Sparsity). For all networks Gn ∈ G , (i) for some p > 4, it follows

that supn≥1 maxi∈In ∥zn,i,qεn,i∥p < ∞. There exists a sequence mn → ∞ such that for k =
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1, 2, (ii) , n

σ2+k
n,q

∑
d≥0 cn (d,mn, k)λ

1− 2+k
p

n,d

a.s.−→ 0 as n→ ∞, (iii)
n2λ

1−(1/p)
n,mn

σn,q

a.s.−→ 0 as n→ ∞.

These conditions impose a rate of convergence of the dependence coefficients λn,d that is

related with the network density. There is a trade-off in which higher density requires higher

speed in the dependence decreasing patterns. The previous assumptions are sufficient to

show that our GMM estimator is consistent and asymptotically normal. Moreover, Lemma

3 in the 1.9 shows Ωn = var(Z⊤
n εn) converges to the finite population variance

ΩN = lim
n→∞

n−1

[
n∑

i=1

var(zn,iεn,i) +
∑
i ̸=j

cov(zn,iεn,i, zn,jεn,j)

]
≡
∑
d≥0

ΓN(d) <∞, (1.6)

where ΓN(d) =
∑

i∈IN

∑
j∈PN (i,d) E[zN,iεN,iεN,jz

⊤
N,j] are the covariances for d. Therefore, the

variance-covariance matrix ΩN can be calculated by summing the covariances for all possible

distances d ≥ 0. After characterizing ΩN , Theorem 2 provides the asymptotic behaviour of

(1.4).

Theorem 2. Let Assumptions 2.1-8 hold, then as n → ∞, θ̂GMM = θ + op(1)

and
√
n(θ̂GMM − θ)

d→ N (0,ΣN) where the variance-covariance matrix is given

by ΣN ≡ (E[
∑

i∈IN zN,id
⊤
N,i]

⊤ANE[
∑

i∈IN zN,id
⊤
N,i])

−1 × (E[
∑

i∈IN zN,id
⊤
N,i]

⊤ANΩNAN ×

E[
∑

i∈IN zN,id
⊤
N,i])(E[

∑
i∈IN zN,id

⊤
N,i]

⊤ANE[
∑

i∈IN zN,id
⊤
N,i])

−1, and when AN = Ω−1
N then

ΣN = (E[Σi∈INzN,id
⊤
N,i]

⊤Ω−1
N E[Σi∈INzN,id

⊤
N,i])

−1. (1.7)

Recall that the expectation E[
∑

i∈IN zN,id
⊤
N,i] can be written as KN,0,iE[zN,iεN,i |

H∗
N,0,i ̸= OpK ]. Therefore, (1.7) depends on the population probabilities of an individual
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providing identification information. For low values of those probabilities, the upper right

sub-matrix of KN,0,i approaches the zero matrix, and the variance-covariance matrix could

grow arbitrarily large. In the extreme case of non-identification, (1.7) diverges to infinity.

Theorem 2 exposes a relationship between the network parameters’ precision and network

sparsity.

Efficient Weight Matrix Estimation

To construct the efficient version of the proposed GMM estimator we need a consistent

estimator of ΩN . Here we use Kojevnikov et al.’s (2020) network heteroscedasticity and

autocorrelation-consistent (HAC) variance estimator. Let Dn represent a bandwidth after

which the dependence between individuals vanishes. Then, the variance-covariance matrix

estimator is given by

Ω̃n =
∑
d≥0

K(d/Dn)
1

n

n∑
i=1

∑
j∈Pn(i,d)

zn,iε̃n,iε̃n,jz
⊤
n,j. (1.8)

where ε̃n,i = yn,i − d⊤
n,iθ̃GMM, K(·) is the kernel function such that K(0) = 1 and K(x) = 0

for x > 1, and θ̃GMM is a preliminary consistent estimator, e.g., (1.4) with An equal the

identity matrix or n−1Z⊤
nZn. In the second step, the feasible efficient GMM estimator is

defined with An = Ω̃−1
n in (1.4), call it θ̂⋆GMM.

Standard Error Calculation

It follows that the efficient variance-covariance matrix (1.7) can be estimated by
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[
n−1D⊤

nZnΩ̂
⋆−1
n n−1Z⊤

nDn

]−1

, (1.9)

where Ω̂⋆
n is calculated as in (1.8) but using θ̂GMM instead. The standard errors can then be

calculated by taking the squared-root of the main diagonal elements of (1.9) after dividing

them by n.

1.5 Monte Carlo Experiments

As to showcase the versatility of the proposed estimator here, this section documents its per-

formance in two different data generating processes (hereafter DGPs) where the endogeneity

is generated by simultaneous determination of network formation and outcomes - also known

as unobserved homophily- (Design 1) and measurement error in the connections (Design 2).

A total of 1,500 data sets
{
yi, xi, {wi,j}nj=1,j ̸=i, {w0;i,j}nj=1,j ̸=i

}n
i=1

with n ∈ {50, 100, 200} are

generated from (2.1) by setting k = 1 and drawing {xi}ni=1 as a random sample from a normal

distribution with mean zero and variance 3. The other data components are constructed as

follows:

Design 1: Unobserved Characteristics with Homophily

In this design, individual i’s outcome variable, yi, and connections {wi,j}nj=1,j ̸=i are jointly

determined through a common, ε∗1;i, idiosyncratic homophily-related unobserved feature.

Firstly, an exogenous adjacency matrix W0 = [w0;i,j] from a Erdös and Rényi’s (1959)

random graph with density 0.01 is generated along with a n× 1 vector ε∗1 = [ε∗1;1, . . . , ε
∗
1;n]⊤

from a multivariate standard normal distribution. The elements of the endogenous adjacency
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matrix W = [wi,j] are then calculated as

wij =



I[|ε∗1;i − ε∗1;j| < F̂−1
ε∗3

(0.95)] × (1 − w0;i,j) + w0;i,j ; if ε∗1;i > Φ−1(0.95),

I[|ε∗1;i − ε∗1;j| < F̂−1
ε∗3

(0.95)] × w0;i,j ; if ε∗1;i < Φ−1(0.05),

w0;i,j ; otherwise,

where F̂−1
ε∗1

(0.95) represents the 95% empirical quantile of the elements of ε∗1, ε
∗
1;k represents

its kth element, and Φ−1(·) represents the inverse of the cumulative distribution function of

a standard normal random variable. This design captures the homophily idea, i.e., agents

endowed with a large value of ε1 will tend to create/mantain connections with those also

endowed with large values of ε1, and severe them with those with low values of this idiosyn-

cratic unobserved feature. The n × 1 vector of outcomes, y, is then constructed from (2.1)

by setting v = m × ε1 + ε2, where m ∈ {1, 3}, ε2 is drawn from a multivariate standard

normal distribution, and the elements of ε1 are defined as

ε1;i =


ε∗1;i ; if ε∗1;i < Φ−1(0.05) or ε∗1;i > Φ−1(0.95),

0 ; otherwise.

Design 2: Misclassified Links

This is a modified version of Lewbel et al.’s (2019) Monte Carlo design. While the true

DGP involves an unobserved adjacency matrix W∗
0 = [w∗

0;i,j] generated from a standard

Erdös and Rényi’s (1959) random network model with density 0.01 of size n, the empiricist is
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assumed only to have access to an adjacency matrix, W = [wi,j], with randomly misclassified

links, i.e., wi,j = w∗
0;i,je1;i,j + (1 − w∗

0;i,j)e2;i,j for i ̸= j, and an exogenous adjacency matrix

W0 = [w0;i,j] where w0;i,j = w∗
0;i,jb1;i,j + (1 − w∗

0;i,j)b2;i,j for i ̸= j. The e1;i,j, e2;i,j, b1;i,j,

and b2;i,j are Bernoulli random variables drawn independently from each other ∀i ̸= j with

parameters 0.5, 0, 1 − τ , and 0.002 respectively. The design parameter τ ∈ {0.01, 0.05}

controls the probability of misclassification in W0. Notice that as in Lewbel et al. (2019),

non-existing links are never misclassified in W but misclasification of these non-existing links

are permitted in W0 with very small probability of 0.2%. However, this design makes the

vector of individual outcomes an explicit function of the proportion of misclassification in W

for each i, i.e., the n× 1 vector y is constructed following equation (2.1) where v = ε1 + ε2,

ε1,i = 1/n
∑n

j=1w
∗
0;i,je1;i,j, and ε2 is drawn from a multivariate standard normal distribution

independently of everything else.

Results

Figures 1.1 and show the results in terms of box plots and Q-Q plots of the Monte Carlo

replications. Apart from implementing the proposed GMM estimator in (1.4) which uses

the 2SLS weighting matrix for p = 2 and p = 3, the performance of the standard Ordinary

Least Squares (OLS) estimator, and the Generalized Two Stage Least Squares (G2SLS)

estimator are also included. All adjacency matrices in all designs are row-normalized prior

to estimation, see, e.g., Liu et al. (2014).

Each panel in Figure 1.1 displays the performance of the three estimators when the

state of a design (Des.) changes by changing the relevant design parameter m or τ . The box

plots based on the Monte Carlo replications of the OLS (black), G2SLS (dark gray), and the
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two proposed GMM estimators for p = 2 (gray) and p = 3 (light gray) of the social effects,

i.e., peer effects (β), contextual effects (δ), and direct effects (γ) in (2.1) are shown with

whiskers displaying the 5% and 95% empirical Monte Carlo quantiles. Across the board,

for all parameters, designs, and sample sizes the proposed both GMM estimators performs

better than the OLS and G2SLS estimators in terms of bias and sampling variability, and as

expected, the estimation variability decreases when going from p = 2 to p = 3. In contrast,

these results also show that the naive OLS and G2SLS could potentially lead to estimates

with substantial biases in the presence of a endogenous network in a linear-in-means model.

On average, the G2SLS underestimate the real value of the peer effects coefficient as shown

in Chandrasekhar and Lewis (2016) for the case of missclassified links (Design 2).

Similarly, Figure displays the corresponding Q-Q plots for the G3SLS based on the

standardized version of the Monte Carlo replications of the G3SLS estimator of the same

social effects for sample sizes n = 50 (light gray), n = 100 (gray), and n = 200 (black). The

blue dashed line depicts the 45 degree line. This plot shows that the asymptotic normal

approximation in Theorem 4 works well even with a sample as small as 50 observations.

Furthermore, as sample size increases the approximation improves for all parameters, and

design parameters.

1.6 Application to Publication Outcomes in Economics

To illustrate the behavior of the efficient GMM estimator presented in Theorem 2, we use data

of 1,628 peer-reviewed articles published between 2000-2006 in the top-four general-interest

journals in Economics. The availability of online scientific research repositories has resulted
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Figure 1.1: Box Plots of the OLS, G2SLS, and G3SLS Estimators of Social Effects
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Note: Box plots depicts the Monte Carlo performance of the OLS (black), G2SLS (dark gray), and the
proposed GMM estimators with the 2SLS weighting matrix for p = 2 (gray) and p = 3 (light gray) estimators
of the parameters in (2.1) based on 1,500 replications of Design 1 (Des.1 ) and Design 2 (Des. 2) for sample
sizes n ∈ {50, 100, 200}. The whiskers display the 5% and 95% empirical quantiles. The parameters m and
τ control the level of endogeneity and the probability of misclassification in W0 respectively.
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Figure 1.2: Q-Q Plots for the G3SLS Estimator of Social Effects
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respectively.
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in a stable source of data to uncover scholars’ professional connections. Additionally, when

linked with scholars’ biographical public information, other type of professional connections

beyond observed Co-authorship can be uncovered (Colussi, 2018). A major challenge when

performing causal inference analysis is that co-authorship connections are inherently corre-

lated with publications outcomes such as citation counts. However, the institutions where

completed their graduate training although related to the co-authorship network, arguably

does not a priori directly affect publications outcomes. This setting therefore directly lends

itself to the use of the proposed estimator here to calculate social effects in research citations.

Data on Publication Outcomes

The data consists of all peer-reviewed articles published in the top 4 general-interest jour-

nals in Economics, namely the American Economics Review (AER), Econometrica (ECA),

the Journal of Political Economy (JPE), and the Quarterly Journal of Economics (QJE)

between 2000 and 2006. This information was web scrapped from three different sources:

Ideas RePEc, Scopus, and the journal websites themselves. This allows to correctly identify

editors’ names and tenure, as well as research articles’ titles, page numbers, total number of

bibliographic references, complete authors’ names and affiliation at the time of publication,

authors-provided Journal of Economic Literature (JEL) codes (AER, QJE), and keywords

(ECA). After excluding editorial reports, conference announcements and proceedings, corri-

gendums, comments, replies, special issues, and Nobel prize lectures reprints, a total of 1,628

articles are used here. This roughly coincides with the 1,657 articles compiled by Card and

DellaVigna (2013), and the 1,620 papers identified by Colussi (2018) for the same journals

and time period. The total number of citations 8 years post publication for each article was
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then extracted from Scopus and completed with that of Colussi (2018). Similarly, having

identified 1,988 unique authors and 42 unique editors (37 of which also published papers

in these journals in this time period), information regarding their gender, research interests

(coded as a JEL code), education, and employment history was obtained from online profiles

and online curricula vitae by means of web scrapping and text mining. This information was

then merged with similar attributes already collected by Colussi (2018) for 1,882 of them.

Table 1.1 presents descriptive statistics. It shows that the number of peer-reviewed

research articles published in these journals is relatively stable in this time period, and that

the AER has the largest share of about 40% of the total number of articles for each year.

There was an average of 1.8 authors per paper in this time period, and the average number

of pages per article has slightly increased from 25 in 2002 to 27 in 2006. All these findings

coincide overall with the facts presented by Card and DellaVigna (2013) in a larger time

period including ours. The total number of citations up to 8 years post publication allows

direct comparisons of the impact of papers published at different points in time. The average

citation per article is relatively constant with an average of 60 citations per paper. The QJE

had a higher-than-average citation per article relatively to the other journals in 2002 and

2003. Authors’ gender allows to identified articles written by same-gender authors (males

or females only) as well as different-gender authors (males and females). Different-gender

articles represent about 14% of the total number of articles and this proportion does not

show any particular trend in this time period.
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Table 1.1: Descriptive Statistics for Research Articles

Variable 2000 2001 2002 2003 2004 2005 2006
Number of Authors 376 410 486 411 395 410 411
AER 136 166 189 168 140 169 172
ECA 93 111 153 107 107 111 108
JPE 87 79 93 80 98 76 71
QJE 74 80 73 80 80 82 84
Number of Articles 221 238 270 232 226 225 216
AER 79 88 92 90 79 89 88
ECA 51 64 90 59 61 55 51
JPE 49 44 48 43 46 41 37
QJE 42 42 40 40 40 40 40
Number of Citations 10,856 12,088 14,161 14,079 14,564 14,861 13,103
AER 4,140 4,833 4,476 4,586 5,354 5,606 5,289
ECA 2,530 2,773 3,346 3,379 2,811 2,724 2,914
JPE 1,692 1,446 2,240 1,954 2,787 3,420 1,852
QJE 2,494 3,036 4,099 4,160 3,612 3,111 3,048
Number of Editors 16 20 23 16 18 24 14
AER 3 2 7 6 4 8 9
ECA 4 9 5 3 8 2 3
JPE 4 2 7 4 3 7 1
QJE 5 7 4 3 3 7 1
Number of Pages 5,486 5,984 6,870 6,327 6,356 6,529 5,979
AER 1,409 1,537 1,557 1,636 1,589 1,702 1,807
ECA 1,297 1,566 2,341 1,735 1,772 1,877 1,559
JPE 1,337 1,379 1,424 1,396 1,429 1,397 1,131
QJE 1,443 1,502 1,548 1,560 1,566 1,553 1,482
Number of References 7,042 7,425 8,426 7,633 7,645 8,115 7,141
AER 2,420 2,783 2,729 2,896 2,576 3,032 2,888
ECA 1,388 1,695 2,598 1,772 2,013 1,886 1,467
JPE 1,285 1,311 1,452 1,391 1,503 1,445 1,166
QJE 1,949 1,636 1,647 1,574 1,553 1,752 1,620
Different Gender 24 34 37 34 29 27 41
AER 7 15 18 16 9 15 21
ECA 7 6 8 5 5 2 9
JPE 4 6 5 5 7 0 3
QJE 6 7 6 8 8 10 8

Note: Descriptive statistic for articles published in the American Economics Review (AER), Econometrica (ECA), the Journal of
Political Economy (JPE), and the Quarterly Journal of Economics (QJE) between 2000 and 2006. ‘Number of Authors’ counts the
total number of unique authors that participated in the writing of the articles presented in the variable ‘Number of Papers.’ ‘Number
of Citations’ refers to the total citations up to 8 years post publication. ‘Number of Editors’ shows the total number editors in
these journals with at least 1 year tenure in the time period. ‘Number of References’ counts the total number of items that each
paper cites in its bibliographic references section, and ‘Different Gender’ counts the total number of articles written by co-authors
of different gender.
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1.6.1 Multiplex Network Data

The multiplex network composed of two different types of connections among authors and ed-

itors (scholars hereafter) can be constructed using their co-authorship information, research

interests, education, and employment history. In particular, the Co-author layer is made up

of connections (edges) between scholars l and k if they co-authored a paper together. The

Alumni layer is made of edges between scholars l and k if both obtained their Ph.D. from the

same institution during the same time window. Details of how these two types of academic

ties among scholars are constructed can be found in 1.6.1 below.

Since articles’ authors are observed, these two types of professional ties can then be

collapsed at the article level instead, i.e., articles i and j are connected in networks W or

W0 if at least one of the authors of article i shares a co-authorship or alumni connection

with at least one of the authors of article j respectively. Table 1.2 presents relevant network

statistics for the implied articles’ Co-authors (W = [wi,j]) and Alumni (W0 = [w0;i,j])

networks. These networks are formed in a cumulative way, e.g., the 459 articles (nodes) in

2001 include the 221 articles published in 2000 and so on till all 1,628 articles are accounted

for in 2006.

The two layers display low densities which is a common feature of empirical social

networks (de Paula, 2017), with a somewhat small number of connected components for

the Alumni network and a large number for the the Co-authors network. Although these

networks are formed at the article level, and direct comparisons with classic collaboration

network analysis as in Goyal et al. (2006) is not possible, they still display small-world

properties, i.e., the levels of clustering (transitivity) are high while the average distance
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Table 1.2: Network Statistics

Statistic 2000 2001 2002 2003 2004 2005 2006
Nodes 221 459 729 961 1,187 1,412 1,628
Co-authors Network
Edges 28 189 674 1,217 2,120 3,302 4,732
Average Degree 0.25 0.82 1.85 2.53 3.57 4.68 5.81
Desity 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Transitivity 0.82 0.83 0.71 0.66 0.65 0.63 0.6
Average Distance 1.04 1.10 1.25 1.57 1.92 2.56 3.32
Components 199 351 478 549 611 651 682
Alumni Network
Edges 795 3,392 8,838 15,424 22,923 33,491 45,276
Average Degree 7.19 14.78 24.25 32.1 38.62 47.44 55.62
Desity 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Transitivity 0.57 0.57 0.55 0.55 0.55 0.54 0.53
Average Distance 3.14 3.25 2.95 2.80 2.81 2.73 2.70
Components 49 44 48 54 56 62 58
Same Faculty

Note: ‘Nodes’ refers to the total number of articles including all previous years since 2000. ‘Edges’
refers to the total number of pair-wise connections among nodes. ‘Average Degree’ represents the
average number of edges connected to each node, while ‘Transitivity’ presents the fraction of all
possible triangles present in each network. ‘Density’ is defined as the ratio of the total number of
observed edges to the total number of all possible edges in these networks. ‘Components’ displays
the total number of connected components (subgraphs), while ‘Average Distance’ refers to the
average number of steps along the shortest paths for all possible pairs of network nodes.

(average shortest path) is short (see, i.e., Humphries and Gurney, 2008, for a formal

definition of a small-world).

Scholars Network Constructions

Co-authors – This type of connection happens when a scholar publishes a paper (alone or

with other authors) in any of the four journals under consideration in any year of interest,

and also publishes other papers (with the same or new co-authors) in any of the four journals

and in the seven-year timeframe considered here. Then a co-autorship connection is created

between this scholar and all of his/her co-authors in these multiple publications. For example,

scholar 5 published a paper in JPE with scholars 424, 436 and 1,041 in 2001. Additionally,

the same scholar 5 published another article in the AER in 2005, this time in collaboration
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with scholar 1,108. Moreover, in addition to the article in JPE with authors 5, 436 and 1,041,

scholar 424 wrote another paper in ECA along with authors 847 and 889. Thus, scholar 5

is said to have a co-authorship connection with 424, 436, 1,041, and 1,108, as long as the

year of interest is 2005 or 2006 because in those year all the publications obtained during

the previous years are also considered. Similarly, scholars 424, 436, and 1,041 are connected

between them, and scholar 424 is also connected with 847 and 889, who are also co-authors

themselves.

Alumni – This type of connection happens when two scholars got their Ph.D. degrees from

the same university and within a maximum of a three-year gap. For example, scholars 1 and

1,699 have an alumni connection equal to one using this criteria because both completed

their Ph.D. degrees at Princeton University in 1995.

Estimation of Network Effects for the Coauthors’ Network

This section aims at quantifying the potential existence of human capital externalities (peer

effects) among scholars publishing in the 4 top general-interest journals described above.

Specifically, the running hypothesis is that if a paper’s authors are connected with other

scholars who produce good quality articles (measured in terms of citations, see, e.g., Card

et al. 2020), the quality of their own article will increase because of the existence of strategic

complementarities, see., e.g., Boucher and Fortin (2016). The previously defined professional

connections of co-authorship (ℓ = 1) and advisorship (ℓ = 2) are taken into account in the

following specific case of the estimating equation (1.2):
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yi,r,t = α + β
∑
j ̸=i

wi,j,tyj,r,t +
∑
j ̸=i

wi,j,tx̃
⊤
j,r,tδ + x⊤

i,r,tγ + λr + λt + λ0 + vi,r,t, (1.10)

where yi,r,t represents the natural logarithm of the total number of citations up to 8 years post

publication of article i, in journal r, at time t. The scalar wi,j,t represents the (i, j) entry of

the W adjacency matrix for the co-authorship network at time t. The controls in xi,r,t include

dummies for whether current or previous editors of journal r at time t are authors of article

i (Editor), and for whether all the authors of article i have different gender (Different

Gender). The latter is coded as zero for single-authored publications. Other articles char-

acteristics are also included such as the total number of pages (Number of Pages), total

number of authors (Number of Authors), total number of bibliographic references (Number

of References), and another dummy that equals one for isolated articles in the network

(Isolated). Contextual effects are only calculated for the Editor and Different Gender

covariates, i.e., x̃j,r,t. Estimating equation (1.10) also includes journal (λr), and year (λt).

As mentioned before, the scalar structural error vi,r,t is such that EX,W[v] ̸= 0 because of

the potential endogeneity of the co-authorship networks. A potential reason to be concerned

about network endogeneity is that authors producing high quality papers may be connected

with each other just because they are similar in their labels of skills, i.e., peer effects can be

confounded with unobserved heterogeneity or homophily as in Designs 1 in Section 1.5.

Therefore, to be able to provide a causal interpretation for the peer effect parameters

in equation (1.10), we need information on an additional network that is generated at ran-

dom, or that can be considered good as random. In this chapter, we argue that the Alumni
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connections can be used as the exogenous network W0 in the identification Theorem 1. The

main identifying assumption is that the natural timing when scholars form their Alumni

connections make the network predetermined (and therefore uncorrelated with the unmea-

surable characteristics of the contemporaneous outcome equation (1.10) such as professional

recognition) because it was formed prior to the endogenous co-authorship connections, and

by its nature to be correlated with them.

Model (1.10) is estimated in a rolling-regression setting for t = 2002, 2003, 2004, 2005,

and 2006, i.e., the estimating sample each year includes those from previous years. Results

for the year 2000 and 2001 are not included because they suffer degrees-of-freedom problems

given specification (1.10). Table 1.3 summarizes the results using the proposed G3SLS

estimator while Tables 1.4 and 1.5 in 2.11 report the OLS and G2SLS results respectively.

The GMM estimator uses the network HAC estimator of the covariance matrix in equation

(2.5.1) where the function K is the Parzen kernel, and as suggested by Kojevnikov et al.

(2020), we use the bandwidth Dn = Cons. × [log( avg.deg ∨ (1 + ε))]−1 × log n, where

Cons. equals 1.8, and ϵ = 0.05, see Kojevnikov et al. (2020) for more details. For the

both the OLS and G2SLS estimators the asymptotic standard errors are clustered at the

corresponding network component level. This is a natural way of clustering when utilizing

network data because each component corresponds to a portion of the network that are

disconnected from each other, allowing for articles within each component to be correlated

but not between disconnected components.

Table 1.3 provides different empirical results. Firstly, building upon Ductor et al. (2014),

peer effects are found to be positive and statistically significant for articles’ quality coming

from the Co-authors network. This positive result can potentially reflect human capital
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Table 1.3: Estimation Results for Social and Direct Effects

Co-author Network
2002 2003 2004 2005 2006

Peer Effects (β̂) 0.604*** 0.792*** 0.906*** 0.919*** 0.732***
(0.217) (0.257) (0.206) (0.180) (0.149)

Contextual Effects (δ̂)
Editor 0.112 -0.501 -0.624* -0.438 -0.433

(0.419) (0.355) (0.377) (0.378) (0.268)
Different Gender -1.921** -1.156** -0.852** -0.567* -0.224

(0.775) (0.497) (0.392) (0.302) (0.361)
Direct Effects (γ̂)

Editor -0.079 0.091 0.159 0.094 0.221*
(0.21) (0.173) (0.162) (0.148) (0.114)

Different Gender 0.386*** 0.348*** 0.243*** 0.233*** 0.155*
(0.132) (0.111) (0.098) (0.082) (0.085)

Number of Pages 0.027*** 0.021*** 0.018** 0.016*** 0.018***
(0.004) (0.004) (0.003) (0.003) (0.003)

Number of Authors 0.038 0.069 0.075** 0.086*** 0.074***
(0.051) (0.042) (0.037) (0.032) (0.027)

Number of References 0.008*** 0.008*** 0.008*** 0.008*** 0.009***
(0.002) (0.002) (0.002) (0.002) (0.001)

Isolated 1.608*** 2.367*** 2.763*** 2.851*** 2.260***
(0.126) (0.105) (0.089) (0.084) (0.073)

n 729 961 1187 1412 1628
R2 0.198 0.240 0.258 0.251 0.269

Note: Standard errors are in parenthesis and are calculated using the network HAC estimator of the covari-
ance matrix in equation (2.5.1) where the function K is the Parzen kernel and the bandwidth Dn = Cons. ×
[log( avg.deg ∨ (1 + ε))]−1 × logn, where Cons. equals 1.8 and ϵ = 0.05. Stars follow the key: * p < 0.10, ** p

< 0.05, and *** p < 0.01, where p stands for p-values. R2 are calculated as the squared of the sample correlation
coefficients between the observed outcomes and their fitted values. All specifications include indicator variables for
Journal, Year and Alumni Network Components.
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spillovers that could act through a variety of mechanisms, e.g., scholars provide feedback on

each other’s work, serve as referees, and work directly together. These instances of collabora-

tion are often paramount to the extension of existing research agendas and can bring to light

novel ideas. The Editor contextual effects from the coauthors’ network are insignificant for

all years. For each article, this variable counts the number of authors who are or have been

editors of at least one of the 4 journals till the relevant year. Then, the contextual effect

for article i measures the influence on quality of the average number of editors that have

written papers that are connected to i in one of the networks of interest. The intuition here

is that editors may have superior information of the publication process, they have greater

recognition, and therefore they can potentially produce highly cited papers. However, after

controlling for peer effects and other article characteristics, the editor contextual effects are

not significantly different from zero across the two networks. This is an interesting result

because there has been evidence suggesting that authors connected to editors are more likely

to publish their work (see, e.g., Laband and Piette 1994), however, when it comes to ci-

tations, the results suggest that articles connected to an editor do not benefit from such a

connection.

Similarly, a larger number of bibliographic references is associated with greater impact

in terms of citations for the both network in all years for all estimators, while positive

and significant effects in terms of number of authors are also found for all years for the

advisorship network and in 2005 and 2006 for the co-authorship network for the proposed

estimator. Finally, the direct effects of Different Gender on the articles’ quality are all

positive and significant for both networks and in all years. Numerically, the estimated values

and implied asymptotic confidence intervals are similar across different networks. Across the
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board, articles written by authors of different gender have a significantly higher number of

citations than articles written by same-gender authors. On average, different-gender articles

will have somewhere between 14% and 24% more citations than same-gender articles holding

everything else constant. This finding is robust across all estimators and presents evidence

of an improvement in the quality of the papers when the research teams are gender diverse

after controlling for peer effects, editorial participation, article characteristics, and a complete

set of fixed effects. This finding is in line with recent research investigating differences in

publication outcomes by gender (Card et al., 2020).

1.7 Conclusion

A novel, semiparametric, and computationally simple way to identify and consistently es-

timate social parameters in a linear-in-means model with endogenous network formation is

proposed here. Identification can be achieved by the inclusion of the multiplex network data

structure where at least one of the layers can be assumed to be exogenous (potentially pre-

determined), and the multiplex structure is such that the layers correlate with each other.

This research shows that peer and contextual effects can be uniquely recovered from an

estimating sample. Unlike current alternatives that require smoothing techniques and/or

Bayesian methods, the resulting estimator is simple to compute utilizing any IV estimation

routines in popular software like Python, R, or Stata for example. I establish the consistency

and asymptotic normality of the proposed GMM estimator. I also characterize the form of

the asymptotic variance-covariance matrix that accounts for the network dependence and

illustrate how standard errors can be calculated in an empirical application.
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An important aspect of the proposed methodology is that it recognizes that exogenously-

imposed connections on individuals (such as randomization) do not necessarily cause social

effects. However, they can generate new types of freely-formed connections that do so; i.e.,

resorting. The correlation between these two networks is at the heart of our identification

and estimation strategy. In this sense, our approach provides an explicit solution to the

resorting issue in random network identification strategies, such as in Moffitt (2001), by

distinguishing what type of network creates peer effects (who you study with, for example)

and what other type simply influences these connections, but are otherwise exogenous to the

model (for instance, to whom your are randomly assigned to share a physical space). The

type of endogeneity allowed in this framework is general enough to encompass settings with

measurement error, sample selection, and correlation between the unobservables driving net-

work formation and outcomes in a linear-in-means model. I present an empirical application

where I use web scrapping and text mining tools to construct a data set consisting of all peer-

reviewed research articles published in 4 of economics’ top general-interest journals between

2000 and 2006. Using publicly available information of where the authors of these publica-

tions obtained their Ph.D. degree from, I construct the Alumni network and I argue that it

is plausible to assume that the network is pre-determined yet correlated with the observed

co-authorship ties among these scholars. Results show the existence of positive peer effects

in terms of citations among peer-reviewed research articles connected through co-authorship

connections of their authors as well as significant positive effects of research teams that are

gender diverse on the quality of a paper measured in terms of citation outcomes.

Finally, another contribution of this research is technical in nature. A byproduct of

acknowledging potential network mismeasurement or endogeneity is that it explicitly permits
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the observed and unobserved characteristics of individuals to be correlated; i.e., creating

network dependence across observations in the sample. Our asymptotic results utilize the

idea that dependence among observations decreases as a function of their distance in the

network; i.e, ψ−dependence.

1.8 Appendix: Proofs of Main Results

Proof of Theorem 1. First note that Assumption 2 guarantees that the solution for model

(1.2) exists. Assumption 1(iii) guarantees that the system of equations E[mN(θ)] = 0K

are not trivially satisfied by making ηN,0,i = 0 for all i ∈ IN . We show that the moment

condition equation has a unique root at θ0 = (α0, β0, δ
⊤
0 ,γ

⊤
0 )⊤. In particular, we show that

there cannot be any other θ ∈ Θ different from θ0 for which equation the moment condition

holds. Choose an arbitrary vector of parameters θ ∈ Θ such that E[m(θ)] = 0. Assumption

2 implies that E[
∑

i∈IN zN,i(yN,i − d⊤
N,iθ)] = 0K . It follows that E[

∑
i∈IN zN,id

⊤
N,i](θ0 −

θ) + E[
∑

i∈IN zN,iεN,i] = 0K , and E[
∑

i∈IN zN,id
⊤
N,i] (θ0 − θ) = 0K . Under Assumption 3, it

follows that E[m(θ)] = 0K if and only if θ0 = θ.

Proof of Theorem 2. The GMM estimator in (1.4) in the main text can be written as

θ̂GMM = θ + (n−1D⊤
nZnAnn

−1Z⊤
nDn)

−1n−1D⊤
nZnAnn

−1Z⊤
n εn. (1.11)

By construction, the matrix An is assume to converge to the full rank matrix AN as n→ ∞.

From Corollary 1, n−1Z⊤
nDn converges to the population quantity E[

∑
i∈IN zN,id

⊤
N,i], which

is finite given Assumption 3. Finally, Corollary 2 shows that n−1Z⊤
n εn(θ) converges to
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E[
∑

i∈IN zN,iεN,i(θ)] = 0. It then follows that θ̂GMM = θ + op(1) as n→ ∞. For asymptotic

normality, note that, from (1.11)

√
n(θ̂GMM − θ) = (n−1D⊤

nZnAnn
−1Z⊤

nDn)−1n−1D⊤
nZnAn × n−1/2Z⊤

n εn.

Let Qzx = E[
∑

i∈IN zN,id
⊤
N,i], then from Corollary 1 and Lemma 4, it follows that

√
n
(
θ̂GMM − θ

)
d→
[
Q⊤

zxANQzx

]−1
Q⊤

zxAN ×N (0,ΩN),

and the result follows. The efficient variance-covariance matrix in (1.7) follows from standard

matrix algebra calculations.

1.9 Appendix: Proofs of Auxiliary Results

Lemma 1. Let Assumptions 4 hold for {rn,i}n≥1, i ∈ In, and define Ri,j = fq,ℓ(rn,{i,j}) ≡

rn,i,qrn,j,ℓ and Rh,s = gq′,ℓ′(rn,{h,s}) ≡ rn,h,q′rn,s,ℓ′ for i, j, h, s ∈ In, where q, q
′, ℓ, and ℓ′ are

components of the vector rn,i. Let Assumption 5 hold for Ri,j and Rh,s, then

|cov (Ri,j, Rh,s)| ≤ 2λ̄n,d(C + 16) × 4 (π1 + γ̃1) (π2 + γ̃2)λ
1−pf−pg
n,d , (1.12)

where λn,d = λn,d ∧ 1, λ̄n,d = λn,d ∨ 1, π1 = ∥rn,i∥pf,i∥rn,j∥pf,j , π2 = ∥rn,h∥pf,h∥rn,s∥pf,s, γ̃1 =

max{∥rn,i∥pf,i+pf,j , ∥rn,j∥pf,i+pf,j}, γ̃2 = max{∥rn,h∥pf , ∥rn,s∥pg} where pf = 1/pf,i + 1/pf,j

and pg = 1/pg,h + 1/pg,s, where the constant C is the same as in Assumption 4, the indexes

i, j, h, s, and components q, q′, ℓ, ℓ′ may or may not be the same.

Proof. Define the increasing continuous functions h1(x) and h2(x) as in Theorem A.2 in
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Kojevnikov et al. (Appendix A 2020, pp. 899-907) to be h1(x) = h2(x) = x . Note that

the functions fq,ℓ and gq′,ℓ′ are continuous, and their truncated version of the form φK1 ◦ f ◦

φh1 (K2) and φK1 ◦ g ◦ φh1 (K2) for all K ∈ (0,∞)2 are in LQ+1,2. Assumption 5 guarantees

the existence of the moments defining γ̃1 and γ̃2. Then, Theorem A.2 in Kojevnikov et al.

(Appendix A 2020, pp. 899-907) applies to this setting (see also Corollary A.2. in Appendix

A in Kojevnikov et al., 2020, pp. 899-907).

Lemma 2 (LLN for Products of ψ-dependent Random Variables). Let Assumptions 1 – 7

hold, define Rn,i,j ≡ rn,i,qrn,j,ℓ and form {Rn,i,j}i∈In,j∈Ii, where Ii is a set of indexes defined

for each i ∈ In, then as n→ ∞,

∥∥∥∥∥ 1

n

∑
i∈In

∑
j∈Ii

w∗
i,j (Rn,i,j − E [Rn,i,j])

∥∥∥∥∥
1

a.s.−→ 0.

Proof. Using the same approach of Jenish and Prucha (2009) and Kojevnikov et al. (2020),

let the censoring function φk(x) = (−K) ∨ (K ∧ x) be such that, for some k > 0,

Rn,i,j = R
(k)
n,i,j + R̃

(k)
n,i,j,

where R
(k)
n,i,j = φk(Rn,i,j), and R̃

(k)
n,i,j = Rn,i,j − φk(Rn,i,j) = (Rn,i,j − sgn(Rn,i,j)k)1{|Rn,i,j| >

k}. Let ∥X∥k = (E[|X|k)1/k for k ∈ [1,∞). Therefore, following the previous definition, and

applying the triangle inequality∥∥∥∥∥ 1

n

∑
i∈In

∑
j∈Ii

w∗
i,j (Rn,i,j − E [Rn,i,j])

∥∥∥∥∥
1

≤

∥∥∥∥∥ 1

n

∑
i∈In

∑
j∈Ii

w∗
i,j

(
R

(k)
n,i,j − E

[
R

(k)
n,i,j

])∥∥∥∥∥
1

+

∥∥∥∥∥ 1

n

∑
i∈In

∑
j∈Ii

w∗
i,j

(
R̃

(k)
n,i,j − E

[
R̃

(k)
n,i,j

])∥∥∥∥∥
1

.

From Assumption 7, noting that the expectation on the second term of the previ-
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ous equation is bounded by E[|Ỹ (k)
n,i |] = E[|Ỹ (k)

n,i |1{|Yn,i| > k}] ≤ 2E[|Yn,i|1{|Yn,i| >

k}], and following the same arguments as in Kojevnikov et al. (2020) under which

limk→∞ supn≥1 maxi∈In E [|Rn,i,j| 1 {|Yn,i| > k}] = 0 a.s. By Lyapunov’s inequality it follows

that

∥∥∥∥∥ 1

n

∑
i∈In

∑
j∈Ii

w∗
i,j

(
R

(k)
n,i,j − E

[
R

(k)
n,i,j

])∥∥∥∥∥
1

≤

∥∥∥∥∥ 1

n

∑
i∈In

∑
j∈Ii

w∗
i,j

(
R

(k)
n,i,j − E

[
R

(k)
n,i,j

])∥∥∥∥∥
2

, (1.13)

where (1.13) is an expression for the standard deviation of
∑

i∈In
∑

j∈Ii wi,jR
(k)
n,i,j. Note that

var

∑
i∈In

∑
j∈Ii

w∗
i,jR

(k)
n,i,j

 =
∑
i∈In

var

∑
j∈Ii

w∗
i,jR

(k)
n,i,j

+
∑

i ̸=h∈In

cov

∑
j∈Ii

w∗
i,jR

(k)
n,i,j ,

∑
s∈Ih

w∗
h,sR

(k)
n,h,s



The variance part of the previous equation can be further expressed as

var

(∑
j∈Ii

w∗
i,jR

(k)
n,i,j

)
=
∑
j∈Ii

w∗2
i,jvar(R

(k)
n,i,j) +

∑
j ̸=s∈Ii

w∗
i,jw

∗
i,scov(R

(k)
n,i,j, R

(k)
n,i,s) (1.14)

≤ C
∑
j∈Ii

w∗2
i,j +

∑
j∈Ii

∑
d≥1

∑
s∈Pn(j,d)∩Ii

|cov(R
(k)
i,j R

(k)
i,s )|

≤ C
∑
j∈Ii

w∗2
i,j + ψ1,1 (φk, φk)

∑
d≥1

λn,d
∑
j∈Ii

|Pn(j, d)| ,

where the second inequality follows form w∗
i,j, w

∗
i,s ∈ [0, 1]. In the first term of the second

inequality, C represents any generic constant from the fact that after the initial partition

of Rn,i,j, the variance of R
(k)
n,i,j is bounded. The last inequality follows from two reasons.
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Firstly, |cov(R
(k)
i,j R

(k)
i,s )| ≤ ψ1,1 (φk, φk)λn,d for dn(i, j) = d and φk a bounded function with

Lip (ψk) = 1. Secondly, the fact that the set of indexes Pn(j, d) ∩ Ii ⊂ Pn(j, d). The

covariance component can be written as

cov

(∑
j∈Ii

w∗
i,jR

(k)
n,i,j,

∑
s∈Ih

w∗
h,sR

(k)
n,h,s

)
=
∑
j∈Ii

∑
s∈Ih

w∗
i,jw

∗
h,scov(R

(k)
n,i,j, R

(k)
n,h,s) (1.15)

≤
∑
j∈Ii

∑
d≥1

∑
s∈Pn(j,d)∩Ih

|cov(R
(k)
i,j R

(k)
h,s)|

≤ ψ1,1 (φk, φk)
∑
d≥1

λn,d
∑
j∈Ii

|Pn(j, d)| ,

where the second and third inequalities follow from the same principles discussed before. It

follows from equations (1.14) and (1.15) that the total variance of
∑

j∈Ii w
∗
i,jR

(k)
n,i,j can be

bounded by

var

(∑
i∈In

∑
j∈Ii

w∗
i,jR

(k)
n,i,j

)
= C

∑
i∈In

∑
j∈Ii

w∗2
i,j + 2ψ1,1 (φk, φk)

∑
i∈In

∑
d≥1

λn,d
∑
j∈Ii

|Pn(j, d)| (1.16)

= C
∑
i∈In

∑
j∈Ii

w∗2
i,j + 2ψ1,1 (φk, φk)

∑
d≥1

λn,d
∑
i∈In

|Pn(j, d)|

≤ n

(
CĪn + 2ψ1,1

∑
d≥1

D̄n(d)λn,d

)
,

where Īn = n−1
∑

i∈In |Ii| and the inequality follows because w∗2
i,j ∈ [0, 1]. The set Ii can

either be empty, equal to the union of individual i’s degree in the networks G and G0, or equal

to Pn(i, 1) (individual i’s degree in network G). Note that |Ii| ≤ |Pn(i, 1)| for all i. Also,
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∑
i∈In |Pn(i, 1)|λn,1 ≤

∑
d≥1 D̄n(d)λn,d, which converges to zero almost surely by Assumption

6. It follows that n−1Īn
a.s.−→ 0. Therefore,

∥∥∥∥∥∥ 1

n

∑
i∈In,m

∑
j∈Ii

w∗
i,j

(
R

(k)
n,i,j − E

[
R

(k)
n,i,j

])∥∥∥∥∥∥
1

≤

(
n−1CĪn + 2ψ1,1n

−1
∑
d≥1

D̄n(d)λn,d

)1/2

. (1.17)

The result follows from n−1Īn
a.s.−→ 0 and n−1

∑
d≥1 D̄n(d)λn,d

a.s.−→ 0 under Assumption 6.

Corollary 1 (LLN for Instruments and Regressors). Let Assumptions 1 to 6 hold. Then,

∥∥∥∥∥ 1

n

∑
i∈In

(
zn,id

⊤
n,i − E[zN,id

⊤
N,i

)∥∥∥∥∥
1

a.s.−→ 0.

Proof. There are four different types of components in the matrix Z⊤
nDn formed by sum-

mations of products of (1) non-network regressors of the form xn,i,qxn,i,ℓ, (2) network re-

gressors of the form wn,0,ixn,qwn,ixn,ℓ, (3) network and non-network regressors of the form

wn,0,ixn,qxn,i,ℓ, and (4) network regressors and network outcomes of the form wn,0,ixn,qwn,iyn

(and the versions of (2) and (3) with wp
n,0,i instead of wn,0,i). The LLN follows from Lemma

2 by choosing Ii = for (1), Ii to be the union of individual i’s degree in the networks G and

G0 in (2), and Ii = Pn(i, 1) for (3). For (4) note that

E[WNy] = γ0WNxN + (γ0β0 + δ0)
∞∑
p=0

βk
0W

p+2
N xN , (1.18)

and by choosing Ii to be the union of individual i’s degree in the network G and the set

of individuals at distance p from i (for all p ∈ R+), Lemma 2 applies for all the values in
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the infinite sum formed by wn,0,ixn,qwn,iyn after replacing wn,iyn from equation (1.18) (the

same argument holds for (2) and (3) when using wp
n,0,i instead of wn,0,i) . Given that each

component of the sum converges to a finite expectation, the infinite sum of finite expectations

is also finite given the restriction on the parameters β0 from Assumption 2, completing the

proof.

Corollary 2 (LLN for Instruments and Errors). Let Assumptions 1 to 6 hold, then

∥∥∥∥∥ 1

n

∑
i∈In

(
zn,iε

⊤
n,i − E[zN,iε

⊤
N,i

)∥∥∥∥∥
1

a.s.−→ 0.

Proof. Given that rn,i = [xn,i, εn,i] and zi can be divided into network and non-network

components, the proof of this result is analogous to that of Corollary 1 parts (1) and (3).

Lemma 3 (Finite Variance). Define Sn = Z⊤
n εn and Ωn = var(n−1/2Sn) and let Assumptions

1 to 6 hold, then as n→ ∞, Ωn
a.s.−→ ΩN <∞.

Proof. As before n−1/2Sn ≡ n−1/2
∑n

i=1 zn,iεn,i. The bounded covariance assump-

tions from Lemma 1 combined with the arguments in Lemma 2 guarantee that

limn→∞ n−1var (
∑n

i=1 zn,iεn,i) is finite. In particular, from equation (1.17), using the ap-

propriate values for Rn,i,j and Ii, nm,λ (see Corollary 1), it follows that var(
∑n

i=1 zn,iεn,i) =

Op(1). Given that Ωn converges to a finite quantity, it follows that Ωn
a.s.−→ ΩN , where

ΩN = lim
n→∞

n−1

[
n∑

i=1

var(ziεi) +
∑
i ̸=j

cov(ziεi, zjεj)

]
<∞.
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Lemma 4 (Central Limit Theorem). Let Assumptions 1 to 8 hold and define Sn ≡∑
i∈In zn,i,qεn,i, where zn,i,q is the qth entrance of the vector zn,i. Then by definition of

zi, E[zn,i,qεn,i] = 0, and as n→ ∞,

sup
t∈R

∣∣∣∣P{Sn

σn
≤ t | Cn

}
− Φ(t)

∣∣∣∣ a.s.−→ 0,

where σn ≡ var(Sn) and Φ(·) denotes the cumulative distribution function of a standard

normal random variable.

Proof. Let Yn,i = zn,i,qεn,i, from Lemma 1, the covariance of any two Yn,i and Yn,j is bounded.

Then, the proof follows from applying Lemmas A.2 and A.3 in Kojevnikov et al. (2020,

Appendix A, pp. 899-907) to Yn,i and Sn/σn, respectively.

Lemma 5 (Multivariate Central Limit Theorem). Under Assumptions 1 to 8 hold, then as

n→ ∞, n−1/2
∑n

i=1 zn,iεi
d−→ N (0,ΩN).

Proof. From Lemma 4 it follows that n−1/2
∑n

i=1 zn,i,qεn,i
d−→ N (0, σ2

n), while from Lemma

3 it follows that ΩN exists. Therefore, the result follows from an application of the Cramér-

Wold device.

1.10 Appendix: Robustness and Additional Empirical

Results
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Table 1.4: Estimation Results for Social and Direct Effects using the OLS Estimator

Co-author Network
2002 2003 2004 2005 2006

Peer Effects (β̂) 0.375*** 0.414*** 0.474*** 0.470*** 0.471***
(0.064) (0.052) (0.047) (0.045) (0.039)

Contextual Effects (δ̂)
Editor 0.266 0.133 0.004 -0.056 -0.020

(0.259) (0.163) (0.148) (0.144) (0.130)
Different Gender -0.087 0.036 -0.040 0.008 -0.013

(0.190) (0.130) (0.116) (0.110) (0.103)
Direct Effects (γ̂)

Editor 0.039 -0.021 -0.024 0.054 0.083
(0.136) (0.117) (0.127) (0.122) (0.117)

Different Gender 0.216* 0.183* 0.179** 0.133* 0.123
(0.118) (0.103) (0.088) (0.079) (0.078)

Number of Pages 0.028*** 0.025*** 0.021*** 0.018*** 0.017***
(0.053) (0.044) (0.039) (0.034) (0.029)

Number of Authors 0.081 0.094** 0.085** 0.092*** 0.073**
(0.057) (0.047) (0.041) (0.036) (0.030)

Number of References 0.010*** 0.010*** 0.009*** 0.010*** 0.011***
(0.002) (0.002) (0.002) (0.002) (0.001)

Isolated 1.105*** 1.243*** 1.355*** 1.322*** 1.320***
(0.124) (0.104) (0.096) (0.085) (0.082)

n 729 961 1187 1412 1628
R2 0.259 0.292 0.298 0.283 0.282

Note: Estimation results using the OLS estimator. Standard errors are in parenthesis and are clustered at the specific
network’s components. Stars follow the key: * p < 0.10, ** p < 0.05, and *** p < 0.01, where p stands for p-values.
R2 are calculated as the squared of the sample correlation coefficients between the observed outcomes and their fitted
values. All specifications include indicator variables for Journal, Year and Alumni Network Components.
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Table 1.5: Estimation Results for Social and Direct Effects using the G2SLS Estimator

Co-author Network
2002 2003 2004 2005 2006

Peer Effects (β̂) 0.665*** 0.604*** 0.456*** 0.505*** 0.600***
(0.163) (0.113) (0.079) (0.085) (0.112)

Contextual Effects (δ̂)
Editor 0.061 0.020 0.001 -0.077 -0.056

(0.295) (0.189) (0.153) (0.150) (0.137)
Different Gender -0.198 -0.032 -0.067 -0.028 -0.075

(0.217) (0.150) (0.131) (0.123) (0.121)
Direct Effects (γ̂)

Editor -0.032 -0.041 -0.032 0.038 0.070
(0.156) (0.126) (0.129) (0.129) (0.123)

Different Gender 0.244* 0.192* 0.190** 0.143* 0.134*
(0.131) (0.111) (0.091) (0.081) (0.081)

Number of Pages 0.027*** 0.024*** 0.021*** 0.018*** 0.016***
(0.005) (0.004) (0.003) (0.003) (0.003)

Number of Authors 0.082 0.092** 0.077* 0.085** 0.065**
(0.056) (0.046) (0.041) (0.036) (0.030)

Number of References 0.008*** 0.009*** 0.009*** 0.010*** 0.010***
(0.003) (0.002) (0.002) (0.002) (0.001)

Isolated 2.139*** 1.936*** 1.299*** 1.447*** 1.788***
(0.131) (0.109) (0.099) (0.089) (0.087)

n 729 961 1187 1412 1628
R2 0.286 0.320 0.337 0.319 0.311

Note: Standard errors are in parenthesis and are clustered at the specific network’s components. Stars follow the
key: * p < 0.10, ** p < 0.05, and *** p < 0.01, where p stands for p-values. R2 are calculated as the squared of
the sample correlation coefficients between the observed outcomes and their fitted values. All specifications include
indicator variables for Journal, Year and Alumni Network Components.
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Chapter 2

Estimation of Multilayered Networks

Effects with Observational Data

This paper proposes a new method to identify and estimate the parameters of an extension

of a linear model of peer effects where individuals form different types of social and profes-

sional connections that can affect their outcomes. I use a multilayer network data structure

to characterize my data generating process and accommodate multiple social networks. My

methodology allows all layers in the multilayer network to be endogenous, which is funda-

mental when dealing with observational data. I show that identification of heterogeneous net-

work effects is possible under the assumption that the dependence between individuals in the

population is characterized by a ψ-dependent stochastic process, which guarantees that their

dependence vanishes in the network space. I offer a novel multilayer measure of distance that,

combined with the ψ-dependence assumption, provides a source of exogenous variation that

I use to form identifying moment conditions. I propose a Generalized Method of Moments

estimator that is consistent and asymptotically normal at the standard rate. I characterize
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the asymptotic variance-covariance matrix that considers the intrinsic network dependence

among individuals. I show that too dense or too sparse networks provide weak identifying in-

formation that translates into larger standard errors. A Monte Carlo experiment confirms the

desirable finite properties of the proposed estimator. An empirical application finds positive

and significant peer effects in citations from a multilayer network of professional connections

among scholars publishing in top general interest journals in economics.

2.1 Introduction

Economic models where social interactions influence individual behavior are becoming in-

creasingly popular in the literature. The so-called Linear-in-Means (LiM) model is the most

widely used tool in applied work to estimate the effects of peers’ behaviors and characteris-

tics on individual outcomes (see Section 3.1 in de Paula, 2017, pp. 275-289). The challenges

to identify the parameters of the LiM model are widely recognized in the econometrics of

networks literature. In particular, the outstanding identification issue in the field is how to

address the endogenous network formation problem (Jackson et al., 2017). Recent methods

designed to solve this issue are built under the standard assumption that only one social

or professional network exists and requires an explicit network formation model, see, e.g.,

Johnsson and Moon (2019) and references therein. However, empirical work has shown that

different types of connections such as classmates, neighbors, friends, or coauthors can create

peer effects (Miguel and Kremer, 2004; Conley and Udry, 2010; Bursztyn et al., 2014; Ductor

et al., 2014).

This paper proposes a novel method to employ multilayer network data to identify and
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estimate the parameters of an extension of the LiM model. The proposed approach can

handle both the reflection problem and the issue of correlated effects while at the same time

allowing for different types of social connections to generate network effects. The standard

LiM model assumes full observability of one network whose potential impacts on individuals’

outcomes are summarized by the peer and contextual effects. These parameters capture the

effects of the outcomes and characteristics of an individual’s peers on her own outcome. I

propose an extension where I assume full observability of M different networks (also called

layers here) that can produce M potentially different peer and contextual effects. I call

this model the Multilayer Linear-in-Means model (MLiM hereafter). This generalization

is meaningful because it nests standard models relevant to applied work and relaxes the

assumption of monolayer network effects.

As in Bramoullé et al. (2009), I solve the reflection problem in the MLiM by using the

exclusions restrictions generated by a multilayer network data structure that is not fully

connected. However, the multiple endogenous layers in the MLiM model make solving the

issue of the correlated effect more complex as the network structure cannot be used directly

as an instrument. Instead of imposing explicit structural restrictions on the multilayer

network formation process, I assume that a ψ−dependent stochastic process characterizes

the dependence of individuals in the population (Doukhan and Louhichi, 1999; Kojevnikov

et al., 2020). This assumption guarantees that individuals’ dependence dies out when their

distance in the multilayer network space increases. Imposing the ψ−dependence assumption

on any network that happens with positive probability allows me to construct moment

conditions to separately identify the potential M different peer and contextual effects after

controlling for the presence of correlated effects (endogenous network formation).
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I propose an innovation to the idea of ψ-dependence to accommodate multilayer network

data structures by proposing a novel multilayer network measure of distance that consid-

ers both the standard monolayer geodesic distance and the number of edge-type changes.

The idea of a measure of distance that incorporates the complete information provided by

the multilayer network data is at the core of my identification, estimation, and inference

strategies. It allows me to take advantage of local multilayer network structures nearly inde-

pendent from each other to form moment conditions and incorporate network dependence for

inference. In the multilayer network context, edge types refer to the nature of the social or

professional relationship connecting two nodes. I interpret the edge-type changes as reducing

the dependence between any two nodes faster than standard monolayer paths. Empirical

articles have used a similar idea to argue that, for instance, the correlation of individual

i’s characteristics with her coworker spouse’s characteristics is lower than that between her

and her coworker’s coworker (De Giorgi et al., 2020). Nicoletti et al. (2018) and Nicoletti

and Rabe (2019) use similar arguments in the context of a multilayer network composed by

friends and neighbors connections.

Current methods to identify the LiM model’s parameters in the presence of correlated

effects generally require estimating a monolayer network formation model. This paper ab-

stracts away from network formation estimation and is agnostic about the underlying process

generating the network. Instead, I use changes in the characteristics of individuals who are

sufficiently far in the multilayer network space as a source of exogenous variation to construct

moment conditions for identification and estimation. These characteristics could include lo-

cal shocks to certain parts of the multilayer network as in De Giorgi et al. (2020). To the

best of my knowledge, this is the first article to formalize the use of multilayer network data
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structures to identify the network effects parameters of an extension of the linear-in-means

model with flexible assumptions on the network formation process. Prior to this paper,

Estrada et al. (2020) formalized how to use multiplex networks to identify a monolayer LiM

model’s parameters when the network of interest forms endogenously, and Manta et al. (2021)

provides identification results for a MLiM model with exogenous network formation. The

results in this paper are more general because I do not require any layer in the multilayer

network data to be strictly exogenous, and the proposed estimator collapses to the estimators

in Estrada et al. (2020) and Manta et al. (2021) when additional exogeneity assumptions are

imposed in the model.

I model the potential network endogeneity by assuming the existence of a joint distribu-

tion that allows for correlation between the idiosyncratic errors, the multilayer network, and

the model’s regressors. Instead of imposing parametric assumptions on the joint distribu-

tion, I introduce the weak dependence assumption on the dependence coefficients. Intuitively,

any underlying multilayer network formation process will not set individuals with similar

characteristics at a long multilayer network distance. In addition to the weak dependence

assumption, the relevance condition imposes restrictions on the multilayer network to guar-

antee enough identifying variation. I use these conditions to show that the parameters of

the MLiM model are point identified.

Based on the moment conditions used for identification, I propose a Generalized Method

of Moments (GMM) estimation procedure that is consistent and asymptotically normal. The

sample consists of n individuals drawn from an arbitrarily large population characterized by

a joint distribution of the errors, the multilayer network, and the regressors. I study limit-

ing distributions when n → ∞. The linearity assumption of the MLiM model guarantees
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that the resulting GMM estimator has a closed-form solution. My asymptotic results show

that the variance-covariance matrix of the GMM estimator differs from the standard sand-

wich formulas because it considers the network dependence between individuals and their

heterogeneity in the identifying information they provide in the population. I use a HAC

estimator of the variance-covariance matrix in the same spirit of Newey and West (1987),

Conley (1999) and Kojevnikov et al. (2020). The derived asymptotic variance-covariance

matrix in this paper formally explains the anecdotal finding that Monte Carlo variability

increases with network density (see, e.g., Bramoullé et al., 2009). Intuitively, higher network

density reduces the possibility of forming moment conditions which reduces the identification

power in the population and increases the variance of the estimator in the sample. These re-

sults are new and relevant for correct inference in empirical work estimating network effects.

A Monte Carlo experiment based on an exemplary network formation model confirms the

desirable finite properties of the proposed estimator when the assumption that individuals’

dependence decreases with their distance in the multilayer network space holds.

To show the importance of taking into account network endogeneity when dealing with

observational data, I present an empirical application to publication outcomes in Economics.

The use of web scraping and existing data on authors’ research fields, education, and em-

ployment history allows the creation of four types of professional ties among scholars: co-

authorship, alumni, advisors, and colleagues connections. I use the multilayer network data

to uncover positive and significant peer effects in citations from the co-authorship network

among articles published by these scholars. However, I do not find peer effects from any

of the other types of networks included in the estimating model. I interpret this result as

emphasizing the importance of a network that guarantees a direct communication channel
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between authors instead of other professional networks that may generate fewer interpersonal

interactions. The empirical application also shows that the OLS estimator can be severely

biased when trying to estimate network effects without considering the potential network

endogeneity of the layers. I also find positive results of research teams that are gender di-

verse on the quality of a paper measured in terms of citation outcomes after controlling for

other articles’ characteristics such as number of pages, number of bibliographic references,

and various network fixed effects.

This paper provides new insights on current identification results in the literature.

The multilayer network data structure is general enough to cover cases such as the non-

overlapping network structure used in De Giorgi et al. (2020) and the multiplex structure

in Estrada et al. (2020). The proposed framework collapses to the reduced form version of

Zacchia’s (2019) model in the monolayer case when the researcher is willing to assume that

the endogenous peer effect coefficient is zero. In that sense, this paper presents a general

theory of using multilayer network data to estimate network effects in linear models. The

commonality between the articles mentioned above emerges from the idea of keeping the net-

work formation process unspecified. Recent papers augment the standard linear-in-means

model to include specific generating mechanisms for the network formation process, see e.g.,

Goldsmith-Pinkham and Imbens (2013), Qu and Lee (2015) and Johnsson and Moon (2019).

In general, these network formation models are difficult to estimate and involve additional

assumptions such as the absence of strategic interactions on individuals’ utilities of forming

peers. For a complete discussion on the importance of strategic interactions to network for-

mation models’ point-identification see Graham (2017), de Paula et al. (2018) and Graham

and Pelican (2020).
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This work relates with the broad reduced form literature on social interactions. It is

most closely associated with observational studies which aim to identify both endogenous

peer effects and contextual effects. There have been two recent approaches to deal with

endogenous network formation in observational studies: quasi randomization and structural

endogeneity (Bramoullé et al., 2020). This article importantly separates from the structural

endogeneity approach. It does not have to assume a particular source of unobserved hetero-

geneity, and it does not require network formation estimation. The framework also separates

from the literature using natural or artificial experiments to randomize peers because I ex-

plicitly assume that the networks can form endogenously. Thus, my approach is closer to

the literature using random shocks (experimental or quasi-experimental) on the regressors

for identification. The reason is that the use of individual characteristics of distant nodes

as a source of exogenous variation can be interpreted as a partial population experiment,

see Moffitt (2001) and Kuhn et al. (2011). Also closely related is the approach proposed by

Kuersteiner and Prucha (2020), which extends the standard linear-in-means model to include

panel data. The two methods relate in that they present an extension of the standard linear

model with additional data to provide new identification and estimation results.

The structure of the paper is as follows. Section 2.2 introduces the multilayer network

data structure and its representation in terms of adjacency matrices. Section 2.3 introduces

the MLiM model and provides conditions under which it has a solution in terms of regres-

sors, errors, and layers. The model section also provides some examples where the multilayer

network data structure has been used in empirical work. Section 2.1 presents conditions for

the parameters of the MLiM to be uniquely recovered (point identification) from the joint

distribution characterizing the infinite population of interest, and outlines a network forma-
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tion model under which the main identifying assumptions are satisfied. Section 2.5 describes

the proposed GMM estimation procedure, its asymptotic distribution, and how to calculate

valid asymptotic standard errors. Section 2.6 presents a Monte Carlo simulation study, while

section 2.7 presents the empirical application to publication outcomes in economics. Finally,

Section 2.8 concludes. The supplemental materials contain all mathematical proofs of the

main results, the proofs for intermediate results, proposed algorithms, and data construction

in 2.9, 2.10 and Appendix 2.11, respectively.

2.2 Background

This section introduces the background and notation necessary to develop the framework

for identification and estimation. Following Boccaletti et al.’s (2014) notation, a multi-

layer network is a pair M = (G, C) where G = {Gm;m ∈ {1, . . . ,M}} is a set of graphs

Gm = (Vm, Em). For each graph m, Vm and Em represent the set of nodes and edges, respec-

tively. In principle, the graphs in G are allowed to be directed or undirected, weighted or

unweighted but are assumed not to have self cycles. The graphs forming the set G are known

as the multilayer network layers. The set of edges Em is known as intralayer connections.

To complete the multilayer network structure’s characterization, let C be the set of intercon-

nections between nodes of different layers Gm and Gs with m ̸= s known as crossed layers

and constructed as C = {Em,s ⊆ Vm × Vs;m, s ∈ {1, . . . ,M},m ̸= s}. The elements of each

set Em,s are known as the interlayer connections of M. To accommodate the multilayer

network data structure into the MLiM model, I represent the multilayer network by the

adjacency matrix of each layer Gm. I denote each adjacency matrix by Wm = [wm;i,j], where
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wm;i,j = ρm;i,j if (vm;i, vm;j) ∈ Em and 0 otherwise. The constant ρm;i,j ∈ (0, 1] represents

the weights on the (i, j)th connection, which may or may not sum up to one. Using this

notation, the next section introduces the MLiM model and provides conditions under which

the model has a solution in terms of errors, regressors, and layers’ adjacency matrices.

2.3 Multilayer Linear-in-Means (MLiM) Model

The object of study is a MLiM model where agents can create connections in more than one

social or professional aspect. The MLiM could be derived as a best response function of an

structural game of social interactions with a quadratic utility (Blume et al., 2015). However,

I take the MLiM model as my primitive to analyze identification and estimation. The model

is composed of a collection IN of N economic agents (N is allowed to be arbitrarily large),

where a set ofQ characteristics xN,i describes each individual. The choices and characteristics

of a person’s peers can influence her decision-making process. Individuals’ social interactions

can be embedded into a multilayer network MN composed by a set GN of M graphs. I argue

that it is possible to write the optimal choice (outcome) of an individual as

yN,i = α0 +
M∑

m=1

∑
j ̸=i

wN,m;i,jyN,jβ
0
m +

M∑
m=1

∑
j ̸=i

wN,m;i,jx
⊤
N,jδ

0
m + x⊤

N,iγ
0 + εN,i, (2.1)

where j ∈ {1, . . . , N}, wN,m represents the adjacency matrix of layer m, εN,i is an unobserved

shock which may include unobserved idiosyncratic characteristics relevant to determine the

outcome yi, or believes about others’ private types in a setting of incomplete information as
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in Blume et al. (2015). The coefficients (β0,m, δ0,m) represent the social effects for network

m ∈ M while γ0 captures the direct effects. The zero superscript is used to emphasise that

[β0
1 , . . . β

0
M , δ

0
1, . . . , δ

0
M , α

0,γ0] is the true parameter vector. The model can be written in

matrix form as

yN = α0ιN +

(
M∑

m=1

β0
mWN,m

)
yN +

M∑
m=1

WN,mXNδ
0
m + XNγ

0 + εN . (2.2)

This article focuses on the representation of the multilayer network as the set of lay-

ers’ adjacency matrices. The reason is that the proposed MLiM model does not consider

interlayer connections to affect individuals’ outcomes. The multilayer measure of distance

define in section 2.1 can handle data structures where the multilayer network could contain

interlayer connections. Then, so long as the model in (2.2) is correctly specified -in the sense

that intralayer edges do not generate network effects- the identification idea proposed in

this paper still works. In potential settings where the interlayer connections exist and can

generate network effects, it is still possible to use this paper’s identification approach. The

only required modification is to include the regressors associated with interlayer connections

on the right-hand side of the MLiM by using, for instance, an interlayer adjacency matrix.

Let S(β0,MN) = IN −
∑M

m=1 β
0
mWN,m. The model described by equation (2.2) has a

solution for a given XN , εN , and MN if the matrix S(β0,MN) has an inverse. Lemma 6

in 2.10 shows that the parametric restrictions in Assumption 9 are sufficient to guarantee

the existence of S−1(β0,MN). Regarding the adjacency matrices’ characteristics, the in-

vertibility result in Lemma 6 only requires the assumption of no cycles for each adjacency

matrix m. Thus, it covers cases of directed, undirected, weighted, or unweighted graphs.
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When the adjacency matrices of the layers are weighted such that ∥WN,m∥∞ = 1 for all m,

the condition in Assumption 9 reduces to |β0
1 | + · · · + |β0

M | < 1, which is a generalization

of a familiar assumption on the peer effects coefficient that is customary in the literature

when m = 1 (see, e.g., Kelejian and Prucha (1998), Kelejian and Prucha (2001), and Lee

(2007a) in spacial econometrics, Lee (2007b) and Bramoullé et al. (2009) in econometrics of

networks, to mention some).

Assumption 9 (Invertibility). The adjacency matrix of layer m has no cycles, i.e., wN,ii = 0

for all m = 1, . . . ,M and i = 1, . . . , N . The peer effects coefficients associated with the

layers WN,1,WN,2, . . . ,WN,M are such that |β0
1 |∥WN,1∥∞ + · · ·+ |β0

M |∥WN,M∥∞ < 1, where

∥WN,m∥∞ = supi

∑N
j=1 |wN,m;ij| and m = 1, . . .M .

If Assumption 9 is satisfied, it follows that the solution for equation (2.2) can be written

in terms of XN , εN , and MN as follows

yN = S−1(β0,MN)

(
α0ιN +

M∑
m=1

WN,mXNδ
0
m + XNγ

0 + εN

)
, (2.3)

which makes explicit the correlation between WN,myN and εN for all m. In addi-

tion to the endogeneity of the variable WN,myN , this article allows for a general type

of dependence between observable characteristics, networks, and unobserved shocks, i.e.,

E(εN |XN ,WN,1, . . . ,WN,M) ̸= 0. In practice, endogeneity can arise when individuals form

connections in the networks {GN,m}Mm=1 based on observed and unobserved characteristics

correlated with the outcome yN . If individuals sort themselves into groups following pref-

erences such as observed and unobserved homophily, the network structures in {GN,m}Mm=1

will be correlated with the errors, and they will also induce correlation between XN and
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εN . Recent work investigating the estimation of social effects under network endogeneity

has been based on approaches that explicitly model the network formation process, see,

e.g., Johnsson and Moon (2019). This article, however, abstract away from explicit network

formation assumptions. Instead, as I detail in section 2.1, the main idea to overcome this

endogeneity issue is to form independent multilayer sub-network structures that allow me to

create moment conditions to identify the parameters in equation (2.3) separately.

One legitimate question regarding the relevance of the MLiM mode is whether multilayer

network data are available in empirical contexts. Before detailing the main identification ap-

proach, the next subsection provides a couple of examples that showcase both the availability

and versatility of the multilayer data structure.

2.3.1 Examples

Example 1 (non-overlapping networks): De Giorgi et al. (2020) studies consumption

network effects in a context where co-workers are the relevant reference group. Acknowledg-

ing the potential network endogeneity, the authors use what they define as a non-overlapping

network structure to form valid peer consumption instruments. Essentially, the data struc-

ture contains two types of connections: spouses and co-workers. Figure 3 presents a minimal

example of their primary data structure. Panel (a) in Figure 2.1 shows a flat representation

of the network data structure where the connections between co-workers and spouses are

depicted in blue and red, respectively. Panel (b) shows the multilayer representation of the

network in Panel (a). As mentioned before, intralayer edges are the only relevant type of

connections. Interlayer edges do not provide relevant information as they only connect a
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Figure 2.1: De Giorgi et al.’s (2020) Data Structure Represented as a Multilayer Network
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Note: Panel (a) displays an example of the non-overlapping network data structure in De Giorgi et al. (2020)
which is a modification of the example presented in Figure 2 of their article. The blue edges represent co-
worker’s connections while the red edges illustrate spouses relationships. Panel (b) shows the representation
of the same graph as a multilayer network. The non-overlapping is particular to De Giorgi et al. (2020).
However, my method can also accommodate links between two people across multiple layers, i.e. if the
spouses are also coworkers.

node in one layer to itself in the other layer. The non-overlapping is particular to De Giorgi

et al. (2020). However, my method can also accommodate links between two people across

multiple layers, i.e. if the spouses are also coworkers.

Example 2 (monolayer network): Zacchia (2019) studies knowledge spillovers gener-

ated by interactions between inventors of different firms. The estimation procedure is based

on a monolayer network where two firms are connected if they employ inventors who have

collaborated before. Zacchia (2019) is a relevant example because it provides an analytical

framework to understand how network endogeneity complicates the identification of contex-

tual effects in a linear model where the endogenous peer effect parameter is not of interest.

Figure 2.2 presents an simplified example of the network data structure in Zacchia (2019).

This example explicitly highlights the fact that any monolayer network can be represented
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Figure 2.2: Zacchia’s (2019) Monolayer Network Data Structure
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Note: Panel (a) displays the monolayer data structure in Zacchia (2019). The nodes represent inventors who
are connected by an edge if they have worked together in a project before. Nodes of the same color belong
to the same firm. Panel (b) represents the monolayer firms network. Two firms i and j are connected if at
least one of the inventors working for i is connected to an inventor working for j.

as a multilayer network by setting M = 1.

2.4 Identification

The identification strategy in this article abstracts away from a network formation model. In-

stead, I assume that the matrix of observable characteristics XN , the multilayer network MN ,

and the vector of shocks εN are random draws from a joint distribution F(XN ,MN , εN).

This joint distribution could reflect a potential correlation between MN and εN caused by

a strategic network formation characterized by unobserved homophily. Correlation between

XN and εN is also allowed as matching based on homophily could induce network dependence

across observed and unobserved characteristics. The identification approach is based on im-

posing the restriction that functionals of network data become uncorrelated as observations

becomes distant in the network space characterized by MN .
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In particular, I assume that implicit network formation processes or the potential exis-

tence of local network shocks induce correlation patterns that decrease with the individuals’

distance in the network space. Thus, there exists a level of distance between individuals

such that their observed and unobserved characteristics are not correlated. The second rel-

evant assumption imposes restrictions on the interlayer network dependence. Intuitively,

dependence decreases faster if the distance path between two individuals involves changes in

the social or professional connections. It is possible to formalize this intuition using the of

ψ-dependence framework proposed by Doukhan and Louhichi (1999) and Kojevnikov et al.

(2020). The ψ-dependence approach requires the availability of a metric that can charac-

terize the distance between individuals in the multilayer network space. Kojevnikov et al.

(2020) uses the minimum path lengths (or geodesic distance) which is the standard mono-

layer measure of distance. However, my proposed identification idea uses multilayer network

data, which requires to propose a measure of distance that takes into account the existence

of different types of connections.

2.4.1 Multilayer Measure of Distance

It is possible to extend the geodesic distance definition to the multilayer framework. Fol-

lowing Boccaletti et al. (2014), for a given multilayer MN = (GN , CN), a multilayer

walk of length q − 1 can be defined as a sequence of edges
{
v1;m1 , v2;m2 , . . . , vq;mq

}
where

m1,m2, . . . ,mq ∈ {1, . . . ,M} and two adjacent nodes in the sequence are connected by an

edge belonging to the set {EN,1, . . . , EN,M}
⋃
CN . In words, a walk connects nodes v1;m1 and

vq;mq (which are allowed to be in different layers) trough a sequence of nodes that can be
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connected by either intralayer or interlayer edges. For instance, Alice knows Bob from work

(layer 1), and Bob knows Cassey because they are neighbors (layer 2). Alice and Cassey do

not work in the same place. However, they are at a distance 2 once we consider all the layers

in the multilayer network. A multilayer path is then defined as a multilayer walk where each

node is only visited once, and a multilayer minimum path lengths is the shortest multilayer

path connecting two nodes, and it is denoted by d∗N(i, j). I use the star superscript to em-

phasize that from all the possible paths connecting i and j, those at distance d∗N(i, j) are

the shortest.

In addition to shortest path length, my proposed measure of distance also takes into

account the number of edge type changes in a path connecting two individuals. To formalize

this idea, let DN(i, j; d) be the set of all possible paths pN(i, j) -which can include paths across

multiple layers- of length d connecting individuals i and j. Based on the set of all possible

paths, define the set of all possible shortest paths as DN(i, j) = arg mind∈IN+ DN(i, j; d)

(where IN+ is the set of positive natural numbers). For instance, the minimum path length

between individuals 1 and 5 in Figure 2.1 is given by d∗7(1, 5) = 3 and the set D7(1, 5) =

{(1, 3, 4, 5)} is a singleton in this case. For any path pN(i, j) ∈ DN(i, j; d), define cN(i, j; p)

as path p’s number of edge type changes. In the example, the total number of edge type

changes associated with the shortest path (1, 3, 4, 5) is given by c7(1, 5; (1, 3, 4, 5)) = 2. In

general, the set DN(i, j) does not need to be a singleton.

There could be different combinations of nodes connecting two individuals with the same

number of edges. To incorporate the intuition that less edge type changes are associated with

shorter distances, let c∗N(i, j) = minp∈DN (i,j) cN(i, j; p) be the minimum number of edge-type

changes of the shortest paths connecting i and j. Let D∗
N(i, j) be the set of all paths pN(i, j)
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of length d∗N(i, j) and total edge changes c∗N(i, j). The sets DN(i, j) and D∗
N(i, j) are such

that D∗
N(i, j) ⊆ DN(i, j) as D∗

N(i, j) only consider the shortest paths with the minimum

number of edge type changes (the set D∗
N(i, j) does not have to be a singleton either). I

call the paths pN(i, j) ∈ D∗
N(i, j) multilayer shortest paths. Having described these objects,

I now define the multilayer measure of distance as

dMN (i, j) = d∗N(i, j) + τi,jc
∗
N(i, j), (2.4)

where τij > 1 is a constant that captures the intuition that the distance between two indi-

viduals i and j (and consequently their levels of dependence) increases (reduces) faster when

the shortest path connecting them involves edge-type changes. In other words, this measure

of distance penalizes edge type changes more than shortest path lengths. I characterize the

value of τij in Proposition 1 below. This penalizing idea has been used in the physics liter-

ature of multilayer networks. Kivela et al. (2014) suggests that it is natural to hypothesize

that paths containing only one edge type may have different lengths than those containing

more than one type. In the context of potential restrictions to the F distribution, I argue

that it is reasonable to think that for any given path of length d∗N(i, j), the dependence

between the observed and unobserved characteristics of individuals i and j should decrease

with the number of different edge types connecting them. Intuitively, it may be more likely

to find similarities between two indirectly connected coworkers than between a person and

her spouse’s coworker (De Giorgi et al., 2020). Based on the pairwise measure of distance, it

is possible to define the distance between sets of nodes. Following Kojevnikov et al. (2020),

for a, b ∈ IN+ the distance between two sets A and B with a and b nodes respectively is given
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by

dN(A,B) = min
i∈A

min
j∈B

dMN (i, j). (2.5)

Through the identification and estimation sections, I will be using different sets that

contain groups of nodes that are at different intralayer or multilayer distances. The following

definition collects all the distance sets that I will use in the following sections.

Definition 2 (Distance Sets). Consider the distance measures dMN (i, j), dN(A,B) and

d∗N(i, j,m), where d∗N(i, j,m) is the geodesic distance between individuals i and j only

considering connections in layer m ∈ {1, . . . ,M}. Consider the sets: (i) P+
N(a, b, d) =

{(A,B) : A,B ⊂ IN , |A| = a, |B| = b , and dN(A,B) ≥ d} containing groups of nodes at dis-

tance of at least d from each other, (ii) P−
N(a, b, d) = {(A,B) : A,B ⊂ IN , |A| = a, |B| = b ,

and dN(A,B) ≤ d} containing groups of nodes at distance of at most d from each other,

(iii) PN(a, b, d) = {(A,B) : A,B ⊂ IN , |A| = a, |B| = b , and dN(A,B) = d} the set asso-

ciated with groups of nodes at distance d from each other. The associated set that con-

tain all nodes at a certain distance of node i are P+
n (i, d) = {j ∈ In : dMn (i, j) ≥ d},

Pn(i, d) = {j ∈ In : dMn (i, j) = d} and P−
n (i, d) = {j ∈ In : dMn (i, j) ≤ d}. The same

notation applies for sets based on the interlayer connections of layer m by adding the index:

P+
n (i, d,m), Pn(i, d,m) and P+

n (i, d,m).

2.4.2 Network Dependence

This section introduces a helpful framework to characterize the levels of network dependence

between the regressors and the errors in equation (2.1). Form the vector ri,N = [x⊤
i,N , εi,N ]⊤ ∈
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IRQ+1. ForQ, a ∈ IN+, endow IR(Q+1)×a with the distance measure da(x,y) =
∑a

l=1 ∥xl − yl∥2

where ∥ ·∥2 denotes the Euclidean norm and x,y ∈ IR(Q+1)×a. Let LQ,a denote the collection

of bounded Lipschitz real functions mapping values from IR(Q+1)×a to IR. For each set of

nodes A, let rA,N = (rN,i)i∈A. I accommodate the ψ-dependence definitions in Doukhan and

Louhichi (1999) and Kojevnikov et al. (2020) to my multilayer network framework.

Definition 3 (ψ-dependence). A triangular array rn,i for n ≥ 1 and rn,i ∈ n ∈ IRQ+1

is ψ-dependent if for each n ∈ IN there exists a sequence θn = {θn,d}d≥0 , θn,0 = 1 and a

collection of non-random functions (ψa,b)a,b∈N , ψa,b : Lv,a × Lv,b → [0,∞) such that for all

A,B ∈ P+
N(a, b, d) for d > 0 and all f ∈ LQ+1,a and g ∈ LQ+1,b,

|Cov (f (rn,A) , g (rn,B))| ≤ ψa,b(f, g)θn,d.

The sequence θn is called the dependence coefficients of rn,i. I state the definition in

terms of triangular arrays because it fits the asymptotic results for the estimator in section

2.5. Given that the definition applies for any n ∈ IN, it can also be used to describe the

dependence of the random variables in the population. Note that by choosing appropriate

functions f and g, and appropriate sets A and B, Definition 3 bounds the covariance between

any pair εN,i and xN,j (and also between any two xN,i and xN,j). The following assumption

guarantees that the dependence between individuals indeed decreases with their distance in

the multilayer network space.

Assumption 10 (Weak Neighborhood Dependence (WND)). Consider the set M of all

possible realizations of MN with positive probability mass in F . For all networks MN ∈ M ,

the conditional distribution F(XN , εN | MN) is such that:
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(i) {rN,i} is ψ-dependent with dependence coefficients θN .

(ii) For C > 0, ψa,b(f, g) ≤ C × ab (∥f∥∞ + Lip(f)) (∥g∥∞ + Lip(g)).

(iii) maxd≥1 θN,d <∞ and there exists a finite constant D ∈ n ∈ IN+ such that if d > D,

θN,d = 0.

The WND Assumption is crucial for both identification and estimation. It is impor-

tant to emphasize that the WND assumption holds for any network that happens with

positive probability in the joint distribution F . Therefore, even when the arbitrary net-

work MN forms endogenously, the conditions in WND holds for the conditional distribution

F(XN , εN | MN). The idea is that any endogenous process of network formation will not

place correlated individuals close to each other. Subsection 2.4.3 presents a network forma-

tion process under which the WND assumption holds. Part (ii) of Assumption 10 states

that the functional bounding the covariance in definition 3 is increasing in in the set sizes,

the sup-norm of the aggregating functions f and g, and their Lipschitz constants, Lip(f) and

Lip(g), related to the continuity of the functions.1 Part (iii) imposes a stronger condition

than Doukhan and Louhichi (1999) and Kojevnikov et al. (2020) because the dependence

coefficients dissipate to zero after a finite distance D, not asymptotically. The existence of

the finite distance D matters for identification. The reason is that the sharp bound allows

me to form identifying moment conditions based on exact distances (see Proposition 1). In

addition to the weak dependence assumption, I shall impose an additional restriction related

to the marginal distribution of the errors and their individual by individual correlation with

1The Lipschitz constant for a function f : IR(Q+1)×a → IR is the smallest constant L such that|f(x) −
f(y)| ≤ Cda(x, y) for all x,y ∈ IR(Q+1)×a.
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the regressors.

Assumption 11 (Errors’ Moments). The unobserved shocks εN,i are such that (i) E(εN,i) =

0 and (ii) E (xN,iεN,i) = 0Q×1 for all i ∈ IN , where 0Q×1 is the Q× 1 vector of zeros.

The first part of Assumption 11 can be viewed as just a normalization. Part (ii) is more

substantial. It implies that the dependence between observed and unobserved characteris-

tics is generated by the underlying network formation process but rules out any correlation

between them for the same individual. This assumption is customary in network effects

studies, see e.g., De Giorgi et al. (2020), Estrada et al. (2020) and Zacchia (2019). Articles

in the literature that are concern with endogenous network formation for the monolayer case

use assumptions of no correlation between εN,i and xN,i after controlling for the effects of

the underlying matching process. These type of estimators share the spirit of Assumption

11 in the sense that they think of the network formation process as generating the depen-

dence between individuals’ observed and unobserved attributes, see e.g, Johnsson and Moon

(2019) and Auerbach (2022). The following proposition characterizes the identifying moment

conditions.

Proposition 1. Let Assumptions 10 and 11 hold for rN,i. Then, there exist two constants Kc

and Kd with Kd > Kc + 1 such that for all networks MN ∈ M , the conditional distribution

F(XN , εN | MN) is such that for all pairs

E (xN,jεN,i | c∗N(i, j) ≥ Kc, d
c
N(i, j) ≥ Kd) = 0Q×1, (2.6)

E (xN,jεN,i | c∗N(i, j) < Kc, d
∗
N(i, j) ≥ Kd) = 0Q×1. (2.7)
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2.9 presents the proof for Proposition 1. The proof shows that if Kd ≤ Kc + 1, the con-

ditioning set in equation (2.6) does not provide different information from that in equation

(2.7). Intuitively, the inequality Kd > Kc + 1 is required to guarantee that the dependence

between individuals decreases faster when the number of edge type changes increase. Im-

portantly, the proof sets D = Kd and τij = 1{dcN(i, j) ≥ Kd}Kc(Kd − Kc − 1), so that

choosing the values of the values of Kc and Kd completely characterizes the measure of dis-

tance dMN (i, j). The object dcN(i, j) captures the second shortest path between individuals

i and j for which the number of changes in edge types is lower than c∗N(i, j). If no path

exists with those characteristics, then dcN(i, j) → ∞. The object dcN(i, j) is vital to guar-

antee that a second longer path with lower edge type changes does not connect individuals

also connected through the shortest path with enough edge type changes. For instance, in

Figure 2.1, d1,5(2) → ∞, because there is not path connecting 1 and 5 that has less than

two edge type changes. The determination of the hyperparameters Kc and Kd is crucial for

my identification argument. Their choice is best handled on a case-by-case basis, potentially

involving theoretical arguments or re-sampling methods to justify the selection. Providing

an optimal rule to choose those hyperparameters is an exercise left for future research.

Equation (2.6) can be interpreted in the context of the multilayer network structure.

It states that paths involving edge types changes make the dependence between individuals

decrease faster. Individuals connected by the same type of social or professional ties will

tend to be similar because of the homophily characterizing the network formation process,

see, e.g., Graham (2017). However, when additional types of connections are allowed, similar

individuals connected by the same edge type can be indirectly connected to others who are

different, given that they do not belong to that same local monolayer network. Equation
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(2.7) provides a result that has been used in recent literature for the case when c∗N(i, j) = 0

for any i and j (monolayer network data case). It states that if non of the paths connecting

two individuals change edge types enough times, they have to be at a longer distance in the

network space for their characteristics to be not correlated. One illustrating case is when

the network only includes intralayer edges. In that case, this assumption implies that if two

individuals are too far apart in the same layer, it is more likely that their characteristics are

not correlated. It is instructive to see how the examples presented before have implicitly

used the results in Proposition 1.

Example 1 (continuation): In the context of non-overlapping network structure, De

Giorgi et al. (2020) uses distance two coworkers of spouses and firms’ shocks to identify peer

effects in consumption.2 Figure 2.1 helps to visualize the central identifying assumption. The

idea is that shocks in firm 1, which are assumed to affect individuals’ 1, 2, and 3 consumption

levels, are independent of the unobserved characteristics of individual 5 who is indirectly

connected to 3 by a coworker of a spouse relationship (see Section 4.1 in De Giorgi et al.,

2020, pp. 142-144). In the context of Proposition 1, this means that it is enough to chose

the parameter Kc to equal one in order to guarantee that equation (2.6) is satisfied when

two types of connections are observed (M = 2). In general, the non-overlapping network

structure guarantees that whenever it is possible to connect individuals i and j with a path

containing at least one edge change, their interlayer distance is such that dcN(i, j) → ∞.

From Figure 2.1 it is clear that if Kc = 1 and Kd is arbitrarily large, it is still possible to

find pairs such as (2, 4), (1, 4) or (4, 6) for which equation (2.6) holds. This property makes

2In Section 4.1 in (De Giorgi et al., 2020, pp. 142-144), the authors consider distance-3 nodes to be the
same as intransitive triads. However, if we assume that each connection’s weight is one, the shortest path
measure for individuals connected by an intransitive triad is 2.
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non-overlapping networks structures to be particularly useful for identification of peer effects,

even more when it is combined with credible exogenous shocks as in De Giorgi et al. (2020).

Example 2 (continuation): Zacchia (2019) is concerned with the identification of con-

textual effects rather than peer effects. His setting is one where the network structure and

some of the characteristics in xN,i are allowed to be endogenously determined. Observing a

monolayer network structure, the author proposes a game theoretical framework to formalize

the idea that observed and unobserved attributes are orthogonal for individuals who are far

in the (monolayer) network space. Assumption 1 in Zacchia (2019) resembles the restric-

tions imposed by equation (2.7) in this paper (see Section 2.1 in Zacchia, 2019, pp. 1994).

Given a monolayer data structure su particular information structure (see Assumption 2 and

Proposition 2 in Section 2.1 in Zacchia, 2019, pp. 1995-1997).

2.4.3 Example of a Network Formation Model

As mentioned before, the estimator identification and estimation approaches I propose in this

paper, do not require explicit assumptions on the network formation process. However, a

specific network formation rule under which Assumption 10 holds can be useful to check the

plausibility of higher level conditions. Thus, this section outlines a network formation model

under which the WND Assumption, and consequently, the moment conditions in Proposition

1, are justified. The central insight comes from the small world model proposed by Jackson

and Rogers (2005), see also Jackson (2010), where an exogenous group of clusters (also

known as islands) determines the individuals’ incentives to form connections. Individuals

are more likely to create links within than across islands. From a statistical perspective,
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in this example, the clusters impose restrictions on the joint distribution of the regressors

and the errors. One sufficient condition to imply WND is to assume the existence of a

collection of random variables determining link formation that can be arbitrarily dependent

intracluster but not intercluster. This assumption can be thought as imposing a sharp bound

on the dependence between individuals who are sufficiently spread out as measured by their

characteristics (Kuersteiner, 2019; Kuersteiner and Prucha, 2020).

Individuals are exogenously distributed across different clusters. I think of this process

as an endowment to individuals with initial characteristics that feature local dependence

(for instance, being born in a wealthy family or geographical endowments). Individuals then

form connections in the multilayer network in the context of a link announcement game

where the payoffs are functions of the random variables generated across different clusters.

Let qi and νi be observed and unobserved (to the econometrician) random variables affecting

the position of individual i in the multilayer network. These random variables are drawn

from an arbitrary joint distribution for all individuals in the same cluster but independently

across different clusters. Individuals’ utility functions include homophily taste on qi and νi,

and it may include payoff externalities (Miyauchi, 2016; Mele, 2017; de Paula et al., 2018;

Christakis et al., 2020; Sheng, 2020), or degree heterogeneity (Graham, 2017). Given that

my goal in this section is not to identify the parameters of the network formation model

but to characterize the statistical dependence generated by the network structure, I can be

agnostic about the specifics of the utility function. In particular, for the sake of simplicity, I

assume that only homophily effects are relevant to characterize individuals linking behavior.

A critical difference between the existing network formation models and my proposed

setup is the multilayer network data structure. As in Joshi et al. (2020a), I argue that links
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across different networks exhibit complementarities. Individuals experience higher marginal

utilities when they connect otherwise disconnected components with a link of a different

type. This relevant feature where social structures are clusters of dense connection linked by

occasional relations between groups is known in the literature as bridging structural holes

(Burt, 2004). Following Joshi et al. (2020b), I assume an exhaustive game of multilayer

formation, which is a sequential game that is played one layer at a time via a link announce-

ment game. The sequence of games repeat until agents have no incentives to delete or form

new links, i.e., pairwise stable multilayer network (Jackson and Wolinsky, 1996). One simple

network formation rule that encompasses the strategic features described before is given by

wij,m = 1{πg|gi − gg| + πν |νi − νj| + πC1{Ci,−m ̸= Cj,−m} + uij,m > 0}, (2.8)

where the first two components, with πg, πν < 0, capture the homophily effect: individuals

are more likely to form a connection if they are more similar in observed and unobserved char-

acteristics, the third component captures the increasing marginal utility of forming bridge

links with individuals who belong to disconnected components that do not include edges

from the m layer, and uij,m is a dyadic, layer specific shock.

The distances between the pairs of random vectors (gi, gj) and (νi, νj) when i and j

belong to the same cluster are more likely to be short when the within-cluster dependence

features positive correlations. In that case, individuals within the same cluster are more

likely to be connected. Moreover, component 1{Ci,−m ̸= Cj,−m} in the marginal utility

makes it more likely that edge-type changes happen across clusters. Under this network

formation model, it is possible to determine the minimum number of edges required to
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guarantee traveling from one cluster to another by using paths with a given number of edge

type changes. Because the random vectors (gi, νj) and (gj, νj) are independent for any i and

j in different clusters, it follows that Assumption 10 holds for this simple network formation

model.

Moreover, with the knowledge of the cluster membership, it is also possible to calculate

the values of Kc and Kd that satisfy equations (2.6) and (2.7). Endogeneity will occur if the

random variables gi and νi are correlated with the regressors and the errors in the outcome

equation (2.1). Given my emphasis on non-experimental data, endogeneity is the more likely

scenario in this context. Of course, this is not the only network formation model that can

rationalize the high-level conditions in Assumption 10. I include this discussion to justify

the WND conditions and present a plausible set of individual incentives under which those

assumptions are fulfilled. I also emphasize that the network formation model is required for

neither identification nor estimation, as the primary goal of this paper is to propose a robust

method to arbitrary network endogeneity.

2.4.4 Identification Result

The identification argument combines the rich information provided by the multilayer net-

work structure with the intuition that the strength of the dependence between individuals

decays with their distance in the multilayer network space, as suggested by Proposition 1.

To form the moment conditions required for identification, I construct the (N ×N) matrices

WN,m,β = [wN,m,β;i,j] and WN,m,δ = [wN,m,δ;i,j], where wN,m,β;i,j, wN,m,δ;i,j ∈ [0, 1] are weights

that are different from zero if (2.6) or (2.7) are satisfied for individuals i and j for layer m,
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respectively, and wN,m,β;i,j = wN,m,δ;i,j = 0 otherwise. The sum of weights across rows may

or may not sum up to one. These conditions apply for some fixed values of Kc and Kd.

The two matrices are indexed by m because the paths connecting nodes i and j are required

to start with an edge type m representing social effects generated by that layer. From the

definition of the moment condition matrices, it follows that different individuals may provide

different identifying power for the parameters of interest. For instance, if ∥wN,m,λ,i∥1 = 0

(where wN,m,λ,i represents the ith row of WN,m,λ and ∥ · ∥1 represent the L1 norm) then,

individual i does not provide any information to identify the parameter λ, for λ ∈ {β, δ}. In

addition, isolated individuals do not contribute information to identify the network effects

parameters in this context.

To formalize this idea, notice that the joint distribution F induces a marginal distribu-

tion on the multilayer network MN , which determines the subset of individuals providing

variation to identify the parameters of interest. Let the random variable ηN,m,i equal one if

individual i is non-isolated in layer m, and zero otherwise. Note that κN,m,i = E[ηN,m,i] gives

the unconditional probability that individual i is non-isolated in layer m, where the expec-

tation is taken with respect to the marginal distribution of MN . Additionally, it is possible

to construct a set of random variables that contain possible measures of the expected identi-

fying power for each individual i. These measures are based on the probability distribution

of WN,m,β and WN,m,δ induced by the marginal distribution of MN . Let ηN,m,λ,i equals one

if ∥wN,m,λ,i∥1 > 0 and zero otherwise. The expectation κN,m,λ,i = E[ηN,m,λ,i] represents the

unconditional probability that individual i provides information to identify the parameter λ,

where the expectation is taken with respect to the marginal distribution of wN,m,λ,i. Thus,

κN,m,λ,i measures the expected identifying power of individual i for any values of XN and
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εN in their respective support. Let ηN,λ,i = [ηN,1,β,i, . . . , ηN,M,β,i, . . . , ηN,M,δ,i] represent the

random vector that collects all the ηN,m,λ,i (κN,λ,i is defined analogously). The following as-

sumption imposes restrictions on the random variables ηN,m,i and ηN,m,λ,i to guarantee that

any configuration of the multilayer network that happens with positive provability provides

enough information to identify the parameters of interest.

Assumption 12 (Identifying Variation). For all MN ∈ M and associated marginal

distributions, the random variables ηN,m,i and ηN,m,λ,i are such that:

(i) The event ηN,m,i = 0 for all i and m, happens with probability zero.

(ii) The event ηN,m,λ,i = 0 for all i, m and λ, happens with probability zero.

Parts (i) and (ii) are crucial for identification. If ηN,m,i = 0 for all i and m, then all

individuals are isolated in all layers and the population multilayer network would not provide

any information about social interactions that can be used for identification. Similarly, even

if not all individuals are isolated, but ηN,m,λ,i = 0 for all i, m and λ, then it is not possible

to form moment conditions to back up the parameters of interest.

Identification of the model in (2.1) requires at least (M + 1)(Q + 1) moment condi-

tions, given that there are (M + 1)(Q + 1) parameters to estimate. If the 2M matrices

WN,m,β and WN,m,δ provide different information for each m, in the sense that their expec-

tations are linearly independent, then it is possible to construct at least (2M + 1)Q + 1

moment conditions based on the Q observable characteristics xN,i. Define the matrix DN =[
WN,1yN , . . . ,WN,MyN ,WN,1XN , . . . ,WN,MXN , X̃N

]
associated with the vector ψ =

[β1, . . . , βM , δ1, . . . , δM , γ̃], where X̃N = [ιN ,XN ], and γ̃ = [α,γ]. As before, the true pa-
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rameters are denoted by ψ0 = [β0
1 , . . . , β

0
M , δ

0
1, . . . , δ

0
M , α

0,γ0]. For any given Kc and Kd, the

matrices WN,m,β and WN,m,δ can be used to construct the matrix associated with the moment

conditions given by ZN =
[
WN,1,βXN , . . . ,WN,M,βXN ,WN,1,δXN , . . . ,WN,M,δXN , X̃N

]
. The

previously defined matrices DN and ZN have dimensions N × (M + 1)(Q + 1) and

N × (1 + R + Q), respectively. Note that (M + 1)(Q + 1) = 1 + M + QM + Q, so that

R > M +QM when there are more than one regressor in matrix XN that can be used as an

instrument for the peer effects variables. The vector ψ has dimensions (M + 1)(Q+ 1) × 1,

so that depending on the value of Q the system can be over or just identified.

Before formalizing the identification argument, it is relevant to include a remark regard-

ing the heterogeneity in identifying power among different individuals in the population. Let

zN,i and dN,i represent the ith row of the matrix ZN and DN , respectively. Also, define the

(1 + R + Q) × (1 + R + Q) matrix matrix HN,λ,i = diag(ηN,1,β,iιQ, . . . , ηN,M,δ,iιQ, ιQ+1),

with KN,λ,i = E[HN,λ,i]. By Proposition 1, and the definition of zN,i, it follows

that E[zN,iεN,i(ψ)] = 01+R+Q, and by the law of total expectation E[zN,iεN,i(ψ)] =

KN,λ,iE[zN,iεN,i(ψ) | H∗
N,λ,i ̸= OR×R] + (I1+R+Q − KN,λ,i)E[zN,iεN,i(ψ) | H∗

N,λ,i = OR×R],

where H∗
N,λ,i contains the left top upper matrix of HN,λ,i, and OR×R is the (R×R) matrix of

zeros. Note that when H∗
N,λ,i = OR×R the upper left matrix of the conditional expectation

is trivially zero, and the (Q+ 1) lower right component of (I1+R+Q −KN,λ,i) is also a matrix

of zeros. Therefore, E[zN,iεN,i(ψ)] = KN,λ,iE[zN,iεN,i(ψ) | H∗
N,λ,i ̸= OR×R]. Defining the

moment condition function as mN(ψ) =
∑

i∈IN zN,iεN,i(ψ), it follows that E[mN(ψ)] can be

written as
∑

i∈IN E[zN,iεN,i(ψ)] =
∑

i∈IN KN,λ,iE[zN,iεN,i(ψ) | H∗
N,λ,i ̸= OR×R]. Intuitively,

the moment condition is a weighted sum of conditional expectations where the weights are

the unconditional probability that µN,m,λ,i = 1. This weighting scheme gives more impor-
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tance to individuals for whom the probability of finding moment conditions is higher in the

population.

For identification to be possible, in addition to the restrictions guaranteeing the validity

of the moment conditions, the instrumental variables in zN,i need to be relevant. The rele-

vance condition is closely related with the identifying variation, as the second is a necessary

condition (but not sufficient) for the first. To see why, notice that by the same arguments

presented before, it follows that E[zN,id
⊤
N,i] = KN,λ,iE[zN,id

⊤
N,i | H∗

N,λ,i,H∗
N,i ̸= OR×R]KN,i,

where KN,i is a (M + 1)(Q + 1) × (M + 1)(Q + 1) matrix such that KN,i = E[HN,i], for

HN,i = diag(ηN,1,iιQ, . . . , ηN,M,iιQ, ιQ+1), and H∗
N,i is defined analogously to H∗

N,λ,i. There-

fore, if ηN,m,i = ηN,m,λ,i = 0 for all i and m and λ, the matrix E[
∑

i∈IN zN,id
⊤
N,i] cannot have

full column rank. The following assumption imposes a column rank condition on the matrix

E[
∑

i∈IN zN,id
⊤
N,i].

Assumption 13 (Relevance). The matrix E[
∑

i∈IN zN,id
⊤
N,i] <∞ has full column rank.

As mentioned above, parts (i) and (ii) of Assumption 12 are necessary conditions for

Assumption 13 to hold. If either all individuals are isolated, or it is not possible to form

moment conditions for any i, then the full rank condition is trivially not satisfied. Addition-

ally, the relevance assumption has empirical consequences. For n large enough, the matrix

Z⊤
nDn has to have full column rank, for which a necessary condition is that the matrices

Wn,1, . . . ,Wn,M and In are linearly independent. This imposes restrictions on the m adja-

cency matrices for the layers in network Mn, they have to be all different from each other,

and non-zero. Moreover, for the instruments in Zn to not be redundant, one necessary con-

dition is that the matrices Wn,1,β, Wn,2,β, . . . , Wn,M,β, Wn,1,δ, Wn,2,δ, . . . , Wn,M,δ and In are
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linearly independent.

These conditions are not trivially satisfied by Wn,m,β and Wn,m,δ as there may not be

enough (or too much) sparsity in the intralayer and interlayer connections to guarantee that

Assumption 13 holds for given values of Kc with Kd. Figure 2.3 presents three examples

where Assumption 13 fails. Panels (a), (b) and (c) illustrate flat representations of different

multilayer networks for M = 2. This example’s main feature is that the number of edge

type changes is zero for all the presented multilayer networks in all possible shortest paths

between two individuals i and j, for all (i, j) ∈ Vm, where m = {1, 2}. Having zero changes in

edge types for all shortest paths implies that Wn,m,β = O for all m ∈ {1, 2} and n = 4 (where

O represents the matrix of zeros). Assumption 13 breaks down for the examples in panels

(a) and (b) because both layers’ adjacency matrices are equal. Therefore, the necessary

condition of linear independence of the m layers’ adjacency matrices Wn,m is not satisfied.

Panel (c) presents an example where the two layers’ adjacency matrices are different and

linearly independent, but still, Assumption 13 fails. The reason is that the two networks are

completely disjointed. These examples show that linear independence is only a necessary

condition and that the layers also need to have connections in common for Assumption 13

to be satisfied. Notably, as shown in the examples presented in panels (b) and (c), unlike

previous work in the monolayer case, intransitive triads in each layer’s network are not

enough to guarantee identification. See Bramoullé et al. (2009) and De Giorgi et al. (2010)

for seminal work on the importance of intransitive triads for identification in the monolayer

case.

Instruments’ relevance has an additional interpretation when using a series expansion

on the solution of (2.2). The conditions in Assumption 9 required for invertibility also
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Figure 2.3: Failure of Assumption 13
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Panel (c)

Note: Panels (a), (b) and (c) display examples of flat representations of different multilayer networks for
M = 2. In panel (a) the multilayer network is dense meaning that all individuals are connected to each other
in both layers. The multilayer network in panel (b) contains intransitive triads in both individual layers,
and the adjacency matrices of both layers are equal. Panel (c) shows a multilayer network with intransitive
triads in both layers, and linearly independent adjacency matrices for each layer. The number of edge type
changes for the three multilayer networks equals zero for all possible shortest paths. Thus, for the presented
examples, Wn,m,β = O for all m ∈ {1, 2} and n = 4 or n = 6 (where O represents the matrix of zeros). For
the example in panel (a), for any Kd > 1, Wm,δ = O for all m ∈ {1, 2}, as the minimum path length for any
nodes i and j is always 1.

guarantee that each WN,myN can be written as a function of infinite powers of WN,m and

infinite products of WN,mWN,s for all m = 1, . . . ,M and m ̸= s as shown in the Remark

2 in 2.10. In the monolayer network case, it is well known that the (i, j)th element of the

matrix Wk
N,m gives the number of paths of length k from agents i to j (for some layer m),

see e.g., Graham (2015). For the multilayer case, assuming that Vm = V for all m, the

(i, j)th element of the product of two adjacency matrices WN,m and WN,s for layers m and

s, contains the number of paths of length two between nodes i and j, where each path begins

with a type m edge and changes to type s after the second node in the sequence. Remark 2

in 2.10 shows that both interlayer and intralayer indirect connections can be used as relevant

instruments for WN,myN given some conditions on the parameters. The rule for choosing

which indirect connections are also valid is given in Proposition 1. The following theorem
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formalizes the previous discussion.

Theorem 3. Suppose Assumptions 9, 10, 11, 12, and 13 hold for some Kc and Kd such

that Kd > Kc + 1. Then, the parameters ψ0 = [β0
1 , . . . , β

0
M , δ

0
1, . . . , δ

0
M , α

0,γ0] are identified

by the moment conditions E[mN(ψ)] = 0, where mN(ψ) =
∑

i∈IN zN,iεN,i(ψ).

Remark 1. Theorem 3 is based on the existence of a set of regressors for which Assumption

11 applies. Note that only one of such regressors is necessary to form sufficient moment con-

ditions to identify β1, . . . , βm. The parameters γ are only identified for the set of regressors

for which part (ii) of Assumption 11 is satisfied. It is possible to control for other observable

characteristics that are not orthogonal to the errors as long as they are uncorrelated with

the set of exogenous regressors. The estimated parameters for those regressors do not have a

causal interpretation. Identification of δ1, . . . , δM requires the existence of at least Q exoge-

nous regressors. The validity of the instruments formed by the Wm,δ matrices is guaranteed

by Proposition 1. The strength of those instruments, though, should be considered on a

case-by-case basis, see, e.g., Zacchia (2019).

2.9 presents the proof for Theorem 3. This theorem shows that identification is pos-

sible in a general framework that allows for endogenous multilayer network formation and

potential correlation between the regressors and errors. This result exploits the additional

information provided by the multilayer network structure and depends crucially on the pos-

sibility of forming valid paths. The level of generality of this identification approach makes it

applicable to different models and data structures proposed in the literature. As to showcase

the generality of Theorem 3, I now describe how it can be applied in the context of the two

examples presented in the previous sections.
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Example 1 (continuation): Given their data structure, De Giorgi et al. (2010) rules

out the possibility of peer effects generated by the spouse’s network. Assuming that the

social effects from the spouses’ network equal zero, and ignoring the panel data structure for

simplicity, the linear model (2.1) reduces to

yN,i = α +
∑
j ̸=i

wN,1;i,jyjβ +
∑
j ̸=i

w1;i,jx
⊤
N,jδ + x⊤

N,iγ + εN,i, (2.9)

where WN,1 is the co-workers network of interest. The researcher also observes the network

of spouses WN,2. De Giorgi et al. (2020) assumes that Kc = 1, and the structure of non-

overlapping networks guarantee that equation (2.6) in Proposition 1 holds for any Kd. With

this information, it is possible to construct WN,1,β which can be used to identify the co-

workers peer effects β. By choosing Kc = 1 and any arbitrary Kd, it is possible to construct

WN,1,β for the example in Figure 2.1:

WN,1,β =



1 2 3 4 5 6 7

1 0 0 0 1 1 1 1

2 0 0 0 1 1 1 1

3 0 0 0 0 0 0 0

4 0 0 0 0 0 1 1

5 1 1 1 0 0 0 0

6 0 0 0 0 0 0 0

7 1 1 1 1 1 0 0



.
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De Giorgi et al. (2020) uses individuals connected by length-two paths that change

their edge type from co-workers to spouses as an instrument for the peer effects endoge-

nous variable. This set of paths can be characterized by the matrix product of the two

layers’ adjacency matrices WN,1WN,2, and it is a subset of the valid paths presented in

the matrix WN,1,β. Assuming only one regressor for the sake of illustrations, note that

E [WN,1,βxNεN ] produces a vector of expectations with components such as E [x4ε1], E [x5ε1],

E [x6ε1], E [x7ε1], which are all equal to zero under the results in Proposition 1 for Kc = 1,

and where d1(i, j) → ∞ follows from the network structure for all i and j.

De Giorgi et al. (2020) does not use any instrument to identify contextual effects. In

light of Proposition 1, it is possible to understand the absence of an instrument for contextual

effects as assuming Kd = 0. Under these assumptions, the matrix WN,1,δ reduces to WN,1,δ =

WN,1, and the matrix of instruments is given by ZN =
[
WN,1WN,2XN ,WN,1XN , X̃N

]
.

Theorem 3 can be apply to show that [β, δ, α,γ] are indeed point identified.

Example 2 (continuation): Zacchia (2019) considers a model where only contextual effects

are relevant, and the researcher observes only one network. His model can be written as

yN,i = α +
∑
j ̸=i

wN,i,jx
⊤
N,jδ + x⊤

N,iγ + εN,i,

where δ is the coefficient of interest for Zacchia (2019). The author has access to panel

data but, for simplicity, this example considers the cross-section case. Because the author

is assuming that the peer effects are zero, the only relevant matrix in this case is WN,δ

constructed based on equation 2.7. Zacchia (2019) chooses Kd = 2 but also includes empirical

estimations for Kd = 3. Assuming the parameter value Kd = 2, the matrix to identify
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contextual effects for the network in Figure 2.2, this matrix is given by

Wn,δ =



i j k l

i 0 0 1 0

j 0 0 0 1

k 1 0 0 0

l 0 1 0 0


.

Based on WN,δ, the matrix of instruments can be constructed as ZN =
[
WN,δXN , X̃N

]
,

and DN =
[
WNXN , X̃N

]
. Theorem 3 can be also apply for this case to show that the

parameters [δ, α,γ] are point identified.

2.5 Estimation

This section provides details for the construction of a GMM estimator for the vector of pa-

rameters ψ0. The empirical counterparts of the moment conditions used for identification in

Theorem 3 are the basis for estimation. Consider the joint distribution F that characterizes

the values of xN,i, εN,i, and MN in an arbitrarily large population where outcomes follow the

model in equation (2.1). Assume that a practitioner observes a random sample of size n < N

from that population that preserves the network structure in MN . This article interprets

the sampling mechanism as in Graham (2020). The sample schema is a thought experiment

useful to derive limiting distributions convenient in practice.
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From the sample, the annalist observes {yi,x⊤
i , {{wm;i,j}nj=1,j ̸=i}Mm=1}ni=1 (or

{yn,Xn,Mn} in vector form). Then, it is possible to construct the n × (M + 1)(Q + 1)

matrix of regressors Dn, and the n× (1 +R+Q) matrix of instruments Zn. The errors are

a function of the unknown parameters, εn(ψ) = yn −Dnψ according to equation (2.1). The

construction of the matrix of instrument Zn requires the computation of the matrices Wn,m,β

and Wn,m,δ for m = 1 . . . ,M , which involves evaluating equations (2.6) and (2.7) for all the

possible dyads i, j ∈ In×In (where In represents the set of individuals in the sample). This

problem could entail a computational complexity in the order of n(n
2). I use two algorithms

that are based on the idea behind Dijkstra’s shortest path algorithm for monolayer graphs.

The modified algorithms compute the first and second shortest paths with a minimum num-

ber of edge types in polynomial time (Balasubramanian et al., 2022). The algorithms are

described in Appendix 2.11 and may be of independent interest for those interested in path

problems.

I form the GMM estimator from the moment condition JN(ψ) =

E[mN(ψ)]⊤(A⊤
NAN)E[mN(ψ)], with sample analog given by Jn(ψ) =

[n−1Z⊤
n εn(ψ)]⊤(A⊤

nAn)[Z⊤
Nεn(ψ)], where An is a fixed (M + 1)(Q + 1) × (1 + R + Q) full

row-rank matrix, assumed to converge to a constant full row-rank matrix AN . The linearity

assumption of the model in (2.1) guarantees that the GMM estimator has a closed form

given by

ψ̂GMM = [D⊤
nZn(A⊤

nAn)Z⊤
nDn]−1[D⊤

nZn(A⊤
nAn)Z⊤

nyn].

The GMM estimator ψ̂GMM is constructed based on a random sample from the joint
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distribution F(XN ,MN , εN) which allows for correlation between the errors, the regressors

and the multilayer network. As discussed in section 2.4.1, the week dependence Assumption

in 10 controls the levels of dependence between individuals based on their distance in the

multilayer network space. Given that the data used to calculate ψ̂GMM are assumed to come

from a random sample of a week dependent population, they will inherit that property for all

finite samples of size n. In addition to the week dependence condition, the following assump-

tions are necessary to characterize the asymptotic behavior of the linear GMM estimator in

a context where network dependence is allowed.

Assumption 14 (Existence of Moments). Let the functions fq,ℓ and gq′,ℓ′ mapping IR(Q+1)×2

to IR be such that fq,ℓ(rn,{i,j}) = rqn,ir
ℓ
n,j and gq′,ℓ′(rn,{h,s}) = rq

′

n,hr
ℓ′
n,s for i, j, h, s ∈ In, i ̸= j,

h ̸= s, q ̸= ℓ and q′ ̸= ℓ′. Assume that ∥fq,ℓ(rn,{i,j})∥p∗f + ∥gq′,ℓ′(rn,{h,s})∥p∗g < ∞ for all q, ℓ

where p∗f = max{pf,i, pf,j} (analogous for p∗g) and 1/pf,i + 1/pf,j + 1/pg,h + 1/pg,s < 1.

This assumption imposes the existence of moments for non-linear functions of ψ-

dependent random variables. The existence of these moments is required to guarantee that

the covariances between the transformed random variables for two groups of individuals are

bounded for a large enough distance in the network space. Importantly, this assumption does

not impose any differentiating restrictions on the correlation structure between the regressors

and the errors than in the autocorrelations between two sets of regressors. The following

Assumption guarantees that the sum of the weights for any adjacency matrix Wn,m, and any

matrix of moment conditions Wn,λ,m does not grow faster than the sample size. Similar to

the notation introduced in Definition 2, let Pn(i, 1,m, λ) = {i : i, j ∈ IN , and wn,mλ;i,j > 0}.

Assumption 15 (Bounded Weights). For all networks Mn ∈ M , (i) for all lay-
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ers m, coefficient λ, and all individuals i ∈ In,
∑

j∈Pn(i,1,m,λ)wn,m,λ;i,j = oa.s.(n) and∑
j∈Pn(i,1,m)wn,m;i,j = oa.s.(n). (ii) the set of individuals formed by the intersection of non-

isolated nodes in layer m and λ ∈ {β, δ} denoted by νm,λ, and those from the the prod-

uct of ζ adjacency matrices organized in a sequence ϕ, denoted by νζ,ϕ,λ,m1, is such that∑
j∈ηi,µ,ϕ wµ,ϕ;i,j = oa.s.(n) for any j ∈ In, all (i, s) ∈ ηµ,ϕ, any product of adjacency matrices

ζ and any sequence ϕ.

Part (i) of Assumption 15 guarantees that the weighted sum of individual connec-

tions and nodes that can be used as instruments do not grow faster than the sample size.

This condition is generally satisfied. In particular, it is immediately satisfied when the ma-

trix Wn,m,λ and Wn,m are row-normalized for λ ∈ {β, δ} and any m. The reason is that∑
j∈Pn(i,m,λ,1)wm,λ;i,j = 1 for any individual i (and the same is true for the adjacency matri-

ces of the layers). The use of row-normalized adjacency matrices is common in the literature

of econometrics of networks, see, e.g., de Paula (2017). This assumption is related with the

relevant condition for identification in section 2.3, where I pointed out that too dense or

too sparse population networks can breakout identification. Part (ii) guarantees that the

number of paths of order ζ does not grow faster than n. This is a technical requirement

necessary for the moments of the outcome yn to exist. The next assumption imposes a global

measure of sparsity on the asymptotic multilayer network MN .

Assumption 16 (Dependence Rate of Decay). Let D̄n(d) = n−1
∑

i∈In |Pn(i, d)| be the

average number of distance-d connections on the multilayer network network Mn. Then, for

all networks MN ∈ M , n−1
∑

d≥1 D̄n(d)θn,d
a.s.−→ 0 as n→ ∞.

Assumption 16 captures the trade off between the network density and the level of
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dependence that the model can allows via the dependence coefficients θn,d. Intuitively, it

guarantees that, on average, the level of sparsity capture by D̄n(d) does not increase faster

than the dependence between individuals at distance d for all possible distances. Assumption

16 extends Assumption 3.2 in Kojevnikov et al. (2020) for the case where the distance between

individuals is defined in the multilayer network space. In addition to characterizing the rate

of decay for the dependence coefficients θn,d, the central limit theorem result in Kojevnikov

et al. (2020) requires to impose sparsity restrictions based average neighborhood sizes and

average neighborhood shell sizes. Following Kojevnikov et al. (2020), define a measure for

the average neighborhood size as δn(d; k) = n−1
∑

i∈In |Pn(i, d)|k, and a measure for the

average neighborhood shell size as

δ−n (d,m; k) =
1

n

∑
i∈In

max
j∈Pn(i,d)

∣∣P−
n (i,m) \ P−

n (j, d− 1)
∣∣k ,

were P−
n (j, d− 1) = when d = 0. With these two measures of average density, construct the

combined quantity

cn(d,m, k) = inf
α>1

[
δ−n (d,m, kα)

] 1
α

[
δn

(
d;

α

α− 1

)]1− 1
α

. (2.10)

The measure of average density in equation 2.10 is crucial to impose a set of assumptions

that are sufficient for Kojevnikov et al.’s (2020) central limit theorem to apply. For an

arbitrary position q in Zn,i, define Sn =
∑

i∈In zn,i,qεn,i. Defining σ2
n = Var(Sn), the following

assumption guarantees the existence of higher order moments, imposes asymptotic sparsity,

and bound the long-run variance.
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Assumption 17 (Average Sparsity). For all networks MN ∈ M ,

(i) for some p > 4, supn≥1 maxi∈In ∥zn,i,qεn,i∥p <∞.

There exists a sequence mn → ∞ such that for k = 1, 2,

(ii) , nq

σ2+k
n

∑
d≥0 cn (d,mn, k) θ

1− 2+k
p

n,d

a.s.−→ 0 as n→ ∞,

(iii)
n2θ

1−(1/p)
n,mn

σn

a.s.−→ 0 as n→ ∞.

Lemmas 10 and 11 in 2.10 show that the sample averages n−1D⊤
nZn and n−1Z⊤

n εn

converge to their population counterparts E[
∑

i∈IN zN,id
⊤
N,i] and E[

∑
i∈IN zN,iεN,i(ψ)], re-

spectively. Moreover, Lemma 13 shows that Ωn = Var(Z⊤
n εn) converges to the population

variance

ΩN = lim
n→∞

n−1

[
n∑

i=1

var(zn,iεn,i) +
∑
i ̸=j

cov(zn,iεn,i, zn,jεn,j)

]
<∞, (2.11)

which is necessary for the multivariate central limit theorem result in Lemma 14. Summing

over all individuals is analogous to summing over all possible distances. By definition,

E[zn,iεn,i] = 0 for all i and n. Then, the limiting measure of covariance in equation (2.11)

can be written in terms of a generic distance d as

ΓN(d) =
∑
i∈IN

∑
j∈PN (i,d)

E
[
zN,iεN,iεN,jz

⊤
N,j

]
, (2.12)

which implies that the population variance-covaraince matrix ΩN can be constructed as the

sum of the covariance estimators in equation (2.12) for all possible distances d ≥ 0 (equality
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is allowed to account for the variance),

ΩN =
∑
d≥0

ΓN(d). (2.13)

After characterizing the variance-covariance matrix ΩN both in terms of individ-

ual and distances sums, Theorem 4 shows that the optimal GMM estimator is con-

sistent and asymptotically normal. The optimal estimator is given by ψ̂⋆
GMM =

(D⊤
nZnΩ

−1
N Z⊤

nDn)−1(D⊤
nZnΩ

−1
N Z⊤

nyn).

Theorem 4. Let Assumptions 9-16 hold, then ψ̂⋆
GMM = ψ + op(1) and

√
n(ψ̂⋆

GMM −ψ)
d→

N (0,Σ⋆
N), where Σ⋆

N = (E[
∑

i∈IN zN,id
⊤
N,i]

⊤Ω−1
N E[

∑
i∈IN zN,id

⊤
N,i])

−1.

2.9 presents the proof for Theorem 4. As discussed before, the expectation

E[
∑

i∈IN zN,id
⊤
N,i] can be written as

∑
i∈IN KN,λ,iE[zN,id

⊤
N,i | H∗

N,λ,i,H∗
N,i ̸= OR×R]KN,i,

where KN,λ,i and KN,i contain the probabilities of finding moment conditions and the proba-

bility of being isolated for individual i in all possible layers m. These probabilities implicitly

depend on the network formation model and are a function of the network’s multilayer con-

nectivity. I interpret the results in this theorem as the network counterpart of the results

by Lee (2007b) in the context of group structures. Lee (2007b) shows that the network pa-

rameters of peer and contextual effects have a slower convergence rate than the direct effect

coefficients and that they slow down when the groups’ size increases. Intuitively, for larger

groups, social interactions are more challenging, which could be interpreted as more isolated

individuals reducing social interactions in the network framework. Instead of affecting the

rate of convergence, this paper shows that in the context of multilayer networks, the exis-

tence of isolated individuals directly affects the variance-covariance matrix of the peer and
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contextual effects estimators. Moreover, Σ⋆
N depends on the population probabilities of an

individual providing identification information. When that probability approaches zero, the

2Q upper right sub-matrix of KN,λ,i approaches the zero matrix, and the variance-covariance

matrix could grow arbitrarily large. In the extreme case of non-identification, the matrix

ψ̂⋆
GMM approaches infinity. This result provides a theoretical justification to the simulation

results in Bramoullé et al. (2009) showing that an increase in the graph’s density decreases

the precision of the peer and contextual effects estimators. Under this framework, denser

networks provide fewer opportunities to form moment conditions (see Figure 2.3 for an ex-

ample). Theorem 4 exposes a relationship between the network parameters’ convergence

rate, precision, and network sparsity. To the best of my knowledge, this result is new in the

literature of econometrics of networks.

2.5.1 Covariance Matrix Estimation

The estimation of the asymptotic variance-covariance matrix Σ⋆
N follows the network HAC

estimator proposed by Kojevnikov et al. (2020). This class of covariance matrix estimators

are formed by taking weighted averages of the network autocovariance terms with weights

that are zero if the distance between two nodes is greater than D (see Assumption 10). In

principle, as in Kojevnikov et al. (2020), the constant D can be a function of the sample

size. The covariance matrix estimator is given by

Ω̂N =
∑
d≥0

K(d/Dn)
1

n

n∑
i=1

∑
j∈Pn(i,d)

zN,iε̂N,iε̂N,jz
⊤
N,j.

where ε̂n,i = yn,i − d⊤
n,iψ̂

⋆
GMM , and K(d) represents the wight associated with the size of the
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correlation between observed and unobserved characteristics of individuals i and j who are at

distance d. The kernel function is such that K(0) = 1 and K(x) = 0 for x > 1. Kojevnikov

et al. (2020) suggests a set of possible kernel functions that guarantee the expected properties

for the covariance matrix estimator. The choice of the bandwidth Dn, and whether or not it

depends on the sample size, is directly connected to the choices of Kc and Kd, and whether

or not they depend on the sample size. From this estimator, it follows that the efficient

variance-covariance matrix Σ⋆
n can be estimated by

Σ̂⋆
n =

[
n−1Z⊤

nDnΩ̂
−1
n n−1Z⊤

nDn

]−1

. (2.14)

Standard Errors Calculation

The standard errors for the coefficient of interest can be computed by taking the squared-root

of the main diagonal elements of the matrix Σ̂⋆
n after dividing them by n. The estimation of

the efficient weighting matrix in (2.14) requires a consistent estimator of ψ. I use a standard

two-step GMM approach where the one-step estimator for ψ is two stage least squares.

With this method, it is possible to efficiently estimate the parameters of the MLiM

model while at the same time adjusting for multilayer network dependence. These estimation

results show that in general, when estimating peer and contextual effects, the researcher

should expect larger variances when the network density or sparsity increases. These results

are novel and relevant for empirical work concerning network effects.
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2.6 Monte Carlo Simulations

This section presents the simulation experiments designed to test the finite sample properties

of the GMM estimator proposed in Theorem 4 and its robustness to endogenous multilayer

network formation. To that end, I use a data generating process that mirrors the endogenous

multilayer formation rule described in section 2.4.3. In particular, I define the number of

regressors in equation (2.1) as Q = 1 and assume that the same observed characteristic xi

affects both the outcome in (2.1) and the network formation rule in (2.8). I set the number

of exogenous clusters to be K = 10, and randomly separate all nodes into these clusters.

For each cluster c ∈ {1, . . . , 10}, I draw the unobserved random vector gc of size nc from

a multivariate normal with mean µc, variance 1, and intercluster correlation of 0.9 for all

clusters c. I draw the 10 × 1 vector of cluster means µ from a multivariate normal with

mean 5, variance 2, and correlation 0.6. The idea of randomly drawing the cluster means is

to generate some variation in how close the clusters are to each other. Finally, I generate

the vector of observed characteristics for cluster c as xc = gc + ϵ1,c, where ϵ1,c follows a

multivariate normal standard normal with correlation 0.6 for all clusters.

I assume that the total number of layers is M = 3, and I form the network following the

rule described in equation (2.8). I approximate the exhaustive iterative process by performing

six iterations of the link announcement game. Based on the resulting network, I construct

the outcome vector y following equation (2.3) with parameters [β0
1 , β

0
2 , β

0
3 , δ

0
1, δ

0
2, δ

0
3, γ

0, α0] =

[0.1, 0.2, 0.3, 1, 2, 3, 2, 1], where εi = gi + ϵ2,i, and ϵ2,i follows a standard normal distribution.

The fact that both εi and xi depend on gi induces endogeneity in the model. Given that

I know the cluster membership within the data generating process (DGP), and I created



98

the 10 clusters independent to each other, I can then exactly calculate the values of Kc and

Kd that make equations (2.6) and (2.7) hold. Therefore, I can form the correctly specified

matrices of moment conditions given by Wm,β and Wm,δ for m = {1, 2, 3}. Note that the

values of Kc and Kd depend on the realization of the random variables presented before, and

therefore change from iteration to iteration. There are cases where given Kc and Kd, there

are not enough identifying variation to estimate the parameters of interest. To solve this

issue, I simulated the DGP until I reached a total of 1,000 data sets.

Based on the 1,000 data sets
{
yn;i, xn;i, {wn,1;i,j}nj ̸=i, {wn,2;i,j}nj ̸=i, {wn,3;i,j}nj ̸=i

}n
i=1

with

n ∈ {50, 100, 200}, I estimate the parameters of interest [β0
1 , β

0
2 , β

0
3 , δ

0
1, δ

0
2, δ

0
3, γ

0, α0] by using

the proposed GMM estimator. Given that Q = 1, in this case, the system is just identified,

and I can disregard concerns about efficiency. Figure 2.4 presents the results for the Monte

Carlo simulation for the parameters [β0
2 , δ

0
2, γ

0]. The result for the other parameters can

be found in Appendix 2.12. The first row in Figure 2.4 displays the performance of the

GMM where the box plots are shown with whiskers displaying the 5% and 95% empirical

Monte Carlo quantiles. Across the board, for all parameters, the proposed GMM estimator

performs well in terms of bias and sampling variability for sample sizes as small as 50 nodes.

As expected, the estimation variability decreases when increasing the sample size. Similarly,

the second row of Figure 2.4 displays the corresponding Q-Q plots for the GMM based on the

standardized version of the Monte Carlo replications for sample sizes n = 50 (light gray),

n = 100 (gray), and n = 200 (black). The blue dashed line depicts the 45 degree line.

This plot shows that the asymptotic normal approximation in Theorem 4 works well even

with small samples. The approximation improves when the sample size increases. These

results confirm that the proposed GMM estimator is robust to multilayer network formation
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process, under the assumption that individuals’ dependence decreases with their distance in

the multilayer network space.

2.7 Application to Publication Outcomes in Economics

As in Chapter 1 Section 2.7, this section aims at quantifying the potential existence of hu-

man capital externalities (peer effects) among scholars publishing in the 4 top general-interest

journals described above. Differing from the previous Chapter, this empirical application in-

cludes four different types of networks: co-authorship (m = 1), alumni (m = 2), advisorship

(m = 3), and colleagues (m = 4). I specify how to construct the co-authorship and alumni

networks in the previous Chapter. The other two networks are constructed as follows.

Ph.D. Advisor – This type of connection is defined to happen when a scholar studying in

an institution obtains his or her Ph.D. in a particular year when another scholar held the

position of assistant, associate, or full professor in the same institution and also shares at

least one common JEL code. Of the 2,057 scholars, 46% are full professors, 16% are associate

professors, while 23% are assistant professors. 15% of scholars held other positions such as

post doc, visiting, etc. For example, scholar 2 was employed by University of California

Berkeley as a full professor between 2000-2006, working in Law and Economics (JEL code:

K) and Industrial Organization (JEL code: L). In 2001, author 1,035 finished her Ph.D. in

Industrial Organization (JEL code: L) and Public Economics (JEL code: H). Then author 2

and 1,035 are said to have a Ph.D. Advisor connection. There are 19 scholars who held the

title Assistant Professor in the same institution they obtained their Ph.D. in the same year.

Their Ph.D. Advisor connection with the remaining 2,038 scholars and among themselves
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Figure 2.4: Box Plots and Q-Q plots of the GMM Estimator
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Note: Box plots in the first row depict the Monte Carlo performance of the proposed GMM estimator. The
boxplots are based on 1,000 for sample sizes n ∈ {50, 100, 200}. The whiskers display the 5% and 95%
empirical quantiles. Q-Q plots in the second row are based on the standardized sample of 1,000 Monte Carlo
replications of the proposed GMM estimator of the parameters in (2.1) and sample sizes n = 50 (light gray),
n = 100 (gray), and n = 200 (black). The blue dashed line shows the 45 degree line.
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are set to zero.

Colleagues – This link happens when two scholars are considered each other’s colleague,

i.e., they ever worked in the same institution in the same time period. For instance, scholars

1 and 103 are connected because both were working at the University of Illinois Urbana-

Champaign between 2000 and 2002. As in Same Ph.D., 136 scholars are omitted from the

estimating sample because institution information for them is missing.

The MLiM specification using the Publication Outcomes data is given by (2.1):

yi,r,t = α+
3∑

m=1

∑
j ̸=i

wm,i,j,tyj,r,tβm+
3∑

m=1

∑
j ̸=i

wm,i,j,tx̃
⊤
j,r,tδm+x⊤

i,r,tγ+λr +λt+λ0+εi,r,t, (2.15)

where yi,r,t represents the natural logarithm of the total number of citations up to 8 years

post publication of article i, in journal r, at time t. The scalar wm,i,j,t represents the (i, j)

entry of the Wm adjacency matrix for the co-authorship, alumni, advisorship and colleagues

networks at time t. The controls in xi,r,t include dummies for whether current or previous

editors of journal r at time t are authors of article i (Editor), and for whether all the

authors of article i have different gender (Different Gender). The latter is coded as zero

for single-authored publications. Other articles characteristics are also included such as the

total number of pages (Number of Pages), total number of authors (Number of Authors),

total number of bibliographic references (Number of References), and another dummy that

equals one for isolated articles in the three different networks (Isolated). Contextual effects

are only calculated for the Editor and Different Gender covariates, i.e., x̃j,r,t. Model (2.15)

is estimated in a rolling-regression setting for t = 2002, 2003, 2004, 2005, and 2006, i.e., the
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estimating sample each year includes those from previous years. Results for the year 2000

and 2001 are not included because they suffer degrees-of-freedom problems given specification

(2.15). Given that the estimator in this paper is designed for cross-sectional data, I pull all

the years together and add year fixed effects (λt). Estimating equation (2.15) also includes

journal (λr) fixed effects. As mentioned before, the scalar structural error εi,r,t is such that

E(ε|X,W1, . . . ,W4) ̸= 0 because of the potential endogeneity of the professional networks

included in the estimation. A potential reason to be concerned about network endogeneity is

that authors producing high quality papers may be connected with each other just because

they are similar in their labels of skills, i.e., peer effects can be confounded with unobserved

heterogeneity or homophily.

Therefore, to be able to provide a causal interpretation for the peer effect parameters in

equation (2.15), we need to impose restrictions on the dependence patters on the population

joint distribution F . For this empirical application, I choose the constants Kc and Kd to be

Kc = 1 and Kd = 3. This choice of parameters implies that individuals who are connected

by paths with one edge type change or at least three edges are assumed to be uncorrelated.

Therefore, changes in their exogenous characteristics can be used as exogenous variation to

identify the parameters of interest. In particular, I use the Different Gender, Number of

Pages, Number of Authors and Number of References as the exogenous characteristics to

form the moment conditions in equations (2.6) and (2.7). Table 2.1 presents the results for

the Efficient GMM estimator characterized in Theorem 4. For comparison, the results for

the first stage GMM estimator and the OLS estimator are presented in Tables 2.2 and 2.3 in

Appendix 2.12. I conduct the analysis by changing the constants Kc and Kd to be Kc = 2 and

Kd = 4. The magnitude and direction of the estimated parameters in Table 2.1 are robust
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to changes in these constants. However, as suggested by the identification and asymptotic

theory, the standard errors of the estimated coefficients increase. The reason is that the

amount of information that can be used to identify and estimate the parameters of interest

is decreasing in Kc and Kd. When trying to perform the analysis for values of Kc = 3 and

Kd = 5, all the standard errors greatly surpass the value of the estimated parameters, this

presents empirical evidence of the remarks in Theorem 4 arguing that when the probability

of finding moment conditions approaches zero, the parameters’ variance-covariance matrix

could grow arbitrarily large.

Regarding the estimators’ behavior, Tables 2.1 and 2.2 confirms the results predicted

by the estimation theory. Across the board, the estimated standard errors of the Efficient

GMM estimator are lower than those of the first stage GMM. The coefficients estimated by

the first stage GMM and the Efficient GMM are relatively consistent, which shows empirical

evidence of the consistency results in Theorem 4. Additionally, the OLS estimated peer and

contextual effects parameters in Table 2.3 differ from those estimated by the proposed GMM

method. This result is expected. As argued before, the layers included in the estimation are

likely to be formed endogenously.

In terms of empirical findings, Table 2.1 provides different meaningful results. First, as in

Chapter 1 peer effects are found to be positive and statistically significant for articles’ quality

coming from the Co-authors network for all years. However, the peer effects estimators from

the other professional networks do not significantly affect the publication outcomes. This

result is new to the literature of scholars’ research productivity. It emphasizes the importance

of a network that guarantees a direct channel of communication between authors instead of

other professional networks that may generate fewer interpersonal interactions. The Editor
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contextual effects are, in general, insignificant for all the networks included in the regression.

The results for direct effects are all consistent with the results in Chapter 1. Finally, the

empirical results in this Chapter also provide statistical evidence in favor of the exclusion

restriction on the alumni network that I imposed in Chapter 1

2.8 Conclusion

This paper provides a novel approach to show how multilayer network data structures can

be used to identify and consistently estimate network effects. My method applies to an

extension of the linear-in-means model which relaxes the assumption that only one type

of network can generate peer and contextual effects. This paper’s results provide a tool

to identify multilayer network effects in settings with endogenous network formation and

network dependence between observed and unobserved individual characteristics. I show

that it is possible to identify the model by imposing mild conditions on the dependence

structure of the multilayer network space. In particular, I impose ψ−weak dependence to

model the correlation structure. I provide a simple linear GMM estimator and characterize its

limiting distribution. The asymptotic covariance matrix accounts for the multilayer network

dependence and incorporates the possibility that too dense or too sparse networks could

provide weak identifying information, increasing the estimator’s variance. These results

regarding the asymptotic covariance matrix allow me to construct correct standard errors

for inference.

This method will be helpful to empirical researchers aiming to estimate network effects

using observational data. My framework can handle both monolayer and multilayer data
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Table 2.1: Efficient GMM Estimation Results for Social and Direct Effects

2002 2003 2004 2005 2006

Peer Effects ({β̂}3m=1)
Co-authors 0.425*** 0.453*** 0.574*** 0.534*** 0.523**

(0.117) (0.107) (0.111) (0.103) (0.271)
Alumni 0.125 0.128 0.195 0.148 0.369

(0.237) (0.201) (0.237) (0.164) (0.381)
Advisor -0.133 0.192 -0.655** -0.369 -0.105

(0.229) (0.253) (0.316) (0.227) (0.360)
Colleagues 0.514 -0.233* -0.054 0.051 0.092

(0.406) (0.111) (0.096) (0.096) (0.155)

Contextual Effects ({δ̂}3m=1)
Co-authors: Editor in Charge 0.059 -0.281 -0.326 -0.465 0.879

(0.657) (0.589) (0.655) (0.542) (0.952)
Alumni: Editor in Charge -0.031 0.055 0.019 0.051 0.417

(0.201) (0.150) (0.136) (0.125) (0.312)
Advisor: Editor in Charge 0.678 0.257 1.585** 0.975 0.431

(0.662) (0.710) (0.726) (0.653) (0.774)
Colleagues: Editor in Charge 0.348 0.006 -0.225 -0.271 -0.208

(0.258) (0.179) (0.169) (0.182) (0.394)
Co-authors: Different Gender -0.462 -0.541 -1.548 -1.089 3.001

(1.508) (1.117) (1.496) (0.827) (1.776)
Alumni: Different Gender -0.439 -0.207 -0.329 0.039 -1.041

(0.401) (0.363) (0.372) (0.288) (0.866)
Advisor: Different Gender 0.238 4.096*** 6.062*** 4.224*** 1.268

(2.735) (1.566) (1.740) (1.443) (1.764)
Colleagues: Different Gender 0.435 0.169 -0.073 -0.382 -2.710

(0.476) (0.543) (0.554) (0.712) (1.636)
Contextual Effects (γ̂)

Editor in Charge -0.099 -0.081 -0.042 -0.029 0.011
(0.125) (0.111) (0.133) (0.118) (0.138)

Different Gender 0.247** 0.238** 0.182** 0.127 0.080*
(0.115) (0.097) (0.089) (0.078) (0.092)

Number of Pages 0.023*** 0.022*** 0.019*** 0.017*** 0.016***
(0.004) (0.003) (0.003) (0.003) (0.003)

Number of Authors 0.067 0.088 0.046 0.072* 0.069**
(0.053) (0.045) (0.043) (0.038) (0.035)

Number of References 0.009*** 0.009*** 0.007*** 0.009*** 0.011***
(0.002) (0.002) (0.002) (0.002) (0.002)

Co-authors: Isolated 1.427*** 1.477*** 1.789*** 1.642*** 1.661*
(0.414) (0.388) (0.398) (0.372) (1.001)

n 729 961 1187 1412 1628

Note: Standard errors are in parenthesis and are calculated using the network HAC estimator of the covari-
ance matrix in equation (2.5.1) where the function K is the Parzen kernel and the bandwidth Dn = 1.8 ×
[log( avg.deg ∨ (1.05))]−1 × logn. Stars follow the key: * p < 0.10, ** p < 0.05, and *** p < 0.01, where p

stands for p-values. R2 are calculated as the squared of the sample correlation coefficients between the observed
outcomes and their fitted values. All specifications include indicator variables for Journal and Year. The indicator for
isolated nodes in the Alumni, Advisor and Colleagues networks are also included but are not statistically significant.



106

structures. However, it is more useful when the analyst observes at least two layers. The

reason is that this method is designed to use all the additional information provided by

including additional types of connections. This method is best suited for studies where the

researcher has access to a credible exogenous shock. The shocks do not need to be strictly

exogenous but rather exogenous from the perspective of other individuals far away in the

multilayer network space. This characteristic of the method resembles the partial population

identification ideas (Moffitt, 2001).

While this paper provides new results in the econometrics of networks literature, it also

opens the possibility for new research. Future work could include the explicit characterization

of the relationship between the values of the matrices KN,λ,i and KN,i and the denseness

or sparsity of the multiyear network by potentially assuming a general multilayer network

formation process. Another research avenue can be to investigate how to optimally choose

the hyperparameters controlling the network dependence or the weights used in the moment

conditions.

2.9 Appendix: Proofs of Main Results

Proof of Proposition 1. Choose f such that it selects an arbitrary position q from the vector

rN,i, i.e., f(rN,i) = VqrN,i = xN,i,q where xN,i,q denotes the qth regressor in xN,i. Similarly,

choose g to select the Q+ 1th position of rN,i = VQ+1rN,i = εN,i. Note that ∥f∥∞ = |xqN,i| <

∞, ∥g∥∞ = |εN,i| <∞, Lip(f) = Lip(g) = 1, so that from Assumption 10 (a) and (b):

|Cov (xN,i,q, εN,i)| ≤ C (|xN,i,q| + 1) (|εN,i| + 1) θN,s.
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By Assumption 10 part (iii), it follows that if dMN (i, j) ≥ D, then θN,s = 0. Set Kd, Kc ∈ IN+

such that Kd > Kc + 1, let D = Kd and τ = 1{dcN(i, j) ≥ Kd}Kc(Kd −Kc − 1). Note that if

Kd ≤ Kc+1 the condition in equation (2.7) does not provide any additional information. The

reason is that by definition, the shortest path d∗N(i, j) and the number of edge type changes

c∗N(i, j) are such that d∗N(i, j) ≥ c∗N(i, j). Let Kd ≤ Kc+1, then c∗N(i, j) ≥ Kc directly implies

d∗N(i, j) ≥ Kd. Thus, the inequality c∗N(i, j) ≥ Kc does not provide additional information.

If c∗i,j ≥ Kc and dcN(i, j) ≥ Kd, then dMN (i, j) ≥ d∗(i, j) + K0
c (D − Kc − 1) > D implying

θn,s=0. Similarly, if c∗(i, j) < Kc and d∗(i, j) ≥ Kd, then dMN (i, j) = D + τc∗N(i, j) > D,

which also implies θn,s = 0. By Assumption 11, Cov(xN,i,q, εN,i) = E(xN,i,q, εN,i), so that

equations (2.6) and (2.6) hold for xN,i,q. Because q was chosen arbitrarily, the result holds

for all q in xi completing the proof.

Proof of Theorem 3. First note that Assumption 9 guarantees that the solution for model

(2.1) exists. Fix Kc and Kd with Kd > Kc + 1, and let Assumption 10 and 11 holds

such that Proposition 1 follows for any realization of MN ∈ M . Assumption 12 part (ii)

guarantees that there is at least one individual for which it is possible to form a moment

condition. Combining the results of Proposition 1 with the law of iterated expectations, it

follows that E[m(ψ0)] = 0. Choose an arbitrary vector of parameters ψ ∈ Ψ such that

E[m(ψ0)] = 0. Notice that E[
∑

i∈IN zN,i(yN,i − d⊤
N,iψ)] = 0 implies E[

∑
i∈IN zN,id

⊤
N,i](ψ

0 −

ψ) +E[
∑

i∈IN zN,iεN,i] = 0, and E[
∑

i∈IN zN,id
⊤
N,i] (ψ0 −ψ) = 0. Under the Assumption 13,

it follows that E[m(ψ)] = 0 if and only if ψ0 = ψ.

Proof of Theorem 4. The GMM estimator is from Section 2.5 in the main text can be written
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as

ψ̂GMM = ψ + (n−1D⊤
nZn

(
A⊤

nAn

)
n−1Z⊤

nDn)
−1n−1D⊤

nZn(A
⊤
nAn)n

−1Z⊤
n εn (2.16)

By construction, the matrix An is assume to converge to AN , so that (A⊤
nAn) → (A⊤

NAN)

as n→ ∞, which is assumed to be finite and full rank. From Lemma 10, n−1Z⊤
nDn converges

to the population quantity E[
∑

i∈IN zN,id
⊤
N,i], which is finite given Assumption 13. Finally,

Lemma 11 shows that n−1Z⊤
n εn(ψ) converges to E[

∑
i∈IN zN,iεN,i(ψ)] = 0. It follows that

ψ̂GMM = ψ + op(1). For asymptotic normality, note that, from equation 2.16

√
n(ψ̂GMM −ψ) = (n−1D⊤

nZn

(
A⊤

nAn

)
n−1Z⊤

nDn)
−1n−1D⊤

nZn(A
⊤
nAn)n

−1/2Z⊤
n εn.

Let Qzx = E[
∑

i∈IN zN,id
⊤
N,i]. From Lemmas 10 and 12 it follows that

√
n
(
ψ̂GMM − ψ

)
d→
[
Q⊤

zx

(
A⊤A

)
Qzx

]−1
Q⊤

zx

(
A⊤A

)
N(0,ΩN),

The efficient weighing matrix is given by AN = Ω
−1/2
N so that A⊤

NAN = Ω−1
N . With that

choice of weighting matrix, the asymptotic variance-covariance matrix is given by

Σ⋆
N = [Q⊤

zxΩ
−1
N Qzx]−1

By the remarks presented in section 2.1 about conditional expectation interpretation of Qzx,

it follows that Σ⋆
N can also be written as
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(∑
i∈IN

KN,λ,iE[zN,id
⊤
N,i | H∗

N,λ,i,H∗
N,i ̸= OR×R]KN,i

)⊤

Ω−1
N(∑

i∈IN

KN,λ,iE[zN,id
⊤
N,i | H∗

N,λ,i,H∗
N,i ̸= OR×R]KN,i

)]−1

,

(2.17)

Equation (2.17) shows that the efficient asymptotic variance-covariance matrix of the coeffi-

cient vector ψ̂GMM can grow arbitrarily large if the matrices K∗
N,λ,i and K∗

N,i (containing the

upper right sub-matrices related with the values of κN,m,λ,i and N,m, i) are too close to the

zero matrix. I interpret this result as week identification of the peer and contextual effects

parameters when the probabilities of finding moment conditions are low. Those probabilities

are linked with the density/sparsity of the population network. The efficient GMM estimator

is given by ψ̂⋆
GMM = (D⊤

nZnΩ
−1
n Z⊤

nDn)−1(D⊤
nZnΩ

−1
n Z⊤

nyn). The previous arguments imply

that
√
n(ψ̂⋆

GMM − ψ)
d→ N (0,Σ⋆

N). Note that the consistency argument also applies to

ψ̂⋆
GMM given that by Lemma 13, Ωn → ΩN <∞, as n→ ∞.

2.10 Appendix: Proofs of Auxiliary Results

Lemma 6 (Invertibility of S(β)). Let Assumption 9 holds then S(β) = IN −
∑M

m=1 βmWN,m

is invertible.

Proof. In the trivial case where βm = 0 for all m, it follows that S(β) = IN which is

inevitable. For the non-trivial case, let θ =
∑M

m=1 |βm| and note that θ = 0 if only if βm = 0

for all m. For θ ̸= 0, S(β) can be written as
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S(β) = I− θ

(
1

θ

m∑
m=1

βmWN,m

)
≡ I − θA,

where A ≡ 1/θ
∑m

m=1 βmWN,m. To show that S(β) has an inverse, it is enough to

show that det(I − θA) ̸= 0. Note that the Gerschgorin’s disk of A is given by

Ri =
∑N

j=1,i ̸=j |ai,j|. By assumption 9, all the matrices forming A have zeros in the

main diagonal, thus Ri =
∑N

j=1,i ̸=j |ai,j| =
∑N

j=1 |ai,j|. Let λi be the ith eigenvalue

of A, then by Gerschgorin’s (1931) Circe Theorem, λi lies within at least one of the

Gershgorin discs centered in zero with radius Ri. Given that all the circles are cen-

tered in zero, it follows that |λi| ≤ supi

∑N
j=1 |ai,j| = ∥A∥∞ for all i. Note that

supi

∑N
j=1 |ai,j| = supi

∑N
j=1

∣∣∣1θ ∑M
m=1 βmwN,m;i,j

∣∣∣ ≤
∣∣1
θ

∣∣∑M
m=1 |βm| supi

∑N
j=1 |wN,m;i,j| =∣∣1

θ

∣∣∑M
m=1 |βm| ∥WN,m∥∞, where the second inequality follows from the triangle inequal-

ity and the supremum of the sum being at most the sum of the supremum. Therefore,

|λi| ≤ |1/θ|
∑M

m=1 βm∥WN,m∥∞. Note that if λi is an eigenvalue of A, then (1 − θλi) is an

eigenvalue of I − θA. Moreover, given that I − θA is a N × N matrix, its determinant is

given by the product of its eigenvalues, i.e., det(I − θA) = Πi(1− θλi). From the discussion

before, |θλi| ≤
∑M

m=1 βm∥WN,m∥∞ < 1 for all i, where the second inequality comes from

Assumption 9. Thus, Πi(1 − θλi) ̸= 0, completing the proof.

Remark 2 (Series Expansion). Assumption 9 also guarantees that it is possible to write the

matrix S(β) as an infinite series given by S(β) =
∑∞

r=0

(∑M
m=1 βmWN,m

)r
. Let the matrix

AN(ζ, ϕ) represent a product of ζ adjacency matrices containing a possible combination of

edge types given by the sequence ϕ. This notation simplifies the representation of large

multiplications of adjacency matrices. For instance, for any arbitrary layers m1,m2,m3 ∈
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{1, . . . ,M}, the matrix WN,m1WN,m2WN,m3 can be represented by AN(3, {m1,m2,m3}).

With this additional notation, it is possible to explicitly write the solution for equation (2.2)

in the main text as an infinite sum of the product of different adjacency matrices given by

yN =
∞∑
ζ=0

∑
ϕ∈P
(
{1,...,M},ζ

)
(∏

ℓ∈ϕ

βℓ

)
M∑

m=1

AN(ζ, ϕ)WN,mXNδ

+
∞∑
ζ=0

∑
ϕ∈P
(
{1,...,M},ζ

)
(∏

ℓ∈ϕ

βℓ

)
AN(ζ, ϕ)X̃N γ̃ +

∞∑
ζ=0

∑
ϕ∈P
(
{1,...,M},ζ

)
(∏

ℓ∈ϕ

βℓ

)
AN(ζ, ϕ)εN ,

(2.18)

where P
(
{1, . . . ,M}, ζ

)
represents the sequence of all possible ζ-permutations with repetition

from the set of possible layers {1, . . . ,M}. By convention, the matrix AN(0, 0) = IN and

β0 = 1. Importantly, note that the (i, j)th element of the matrix Wk
N,m gives the number of

paths of length k from agents i to j (for some layer m), see e.g., Graham (2015), while the

(i, j)th element of the product of two adjacency matrices WN,m and WN,s for layers m and

s, contains the number of paths of length two between nodes i and j where each path begins

with a type m edge and changes to type s after the second node in the sequence. In general,

the (i, j)th position of the matrix formed by k products of adjacency matrices from different

layers gives the number of k-paths between individuals i and j that change edge types

k times. Therefore, (2.18) shows that both interlayer and intralayer indirect connections

can be used as relevant instruments for WN,myN . The required necessary conditions on

the parameters to guarantee instruments relevance are not straightforward to characterize

analytically. The reason is that many coefficients associated with the potential instruments
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involve complicated non-linear functions of the structural parameters. However, it is possible

to provide sufficient conditions to guarantee the relevance of a subset of possible instruments.

Following Manta et al. (2021), it is possible to rewrite (2.18) as

yN =α
∞∑
r=0

(
M∑

m=1

βmWN,m

)r

ι+

Q∑
q=1

γqx
q
N +

Q∑
q=1

M∑
m=1

(
∞∑
r=0

βr
mW

r+1
N,m

)
xq
N (δq;m + γqβm)

+

Q∑
q=1

∑
m ̸=s∈{1,...M}

(
∞∑
r=0

∞∑
r′=0

βr
mβ

r′

s W
r+1
m Wr′+1

s

)
xq
N (δq;m + γqβm) + . . .+

+
∞∑
r=0

(
M∑

m=1

βmWm

)r

εN ,

(2.19)

where the dots notation masks the additional products between the different adjacency matri-

ces. Note that the instruments formed by the product of infinite powers of any two adjacency

matrices m and s are relevant so long as maxq∈{1,...,Q} (|γqβ1 + δq;1| , . . . , |γqβM + δq;M |) ̸= 0.

Remark 3 (Solution for the Outcome Equation). Equation (2.19) in Remark 2 shows that

the outcome equation for yN can be written as an infinite sum of the adjacency matrices’

products. All multiplications between unweighted adjacency matrices produce new matrices

with the property that their (i, j)th entry contains the number of paths at a certain distance

and with a certain number of edge changes between individuals i and j. For instance, the

(i, j)th position of the matrix Wk
m contains the number of length-k paths from agents i to j in

layer m. The (i, j)th position in the matrix WmWs gives the number of length 2 paths that

start with an edge-type m and changes to an edge-type s. The i, jth position in the matrix

WmWsWr gives the number of length 3 paths that start with an edge-type m, changes to
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an edge-type s, and changes again to an edge-type r. The pattern can be extended to any

possible combination of products between the matrices Wm for m ∈ {1, . . . ,M}.

The empirical counterpart of the outcome equation for yn can be decomposed into three

possible types of summands: (1) An(ζ, ϕ)Wn,mXn, (2) An(ζ, ϕ)X̃n, and (3) An(ζ, ϕ)ε for

m ∈ {q, . . . ,M}, where An(ζ, ϕ) was introduced in Remark 2 for Lemma 6. As mentioned

before, this notation facilitates to write the products of adjacency matrices. From the ex-

ample above, the matrix WmWsWr can be represented by An(3, {m, s, r}). Similarly, the

matrix Wk
m can be written as A(k, {m, . . . ,m})n, where the sequence {m, . . . ,m} contains

k elements. Denoting P
(
{1, . . . ,M}, ζ

)
as in Remark 2, it follows that the sample analogue

of equation (2.18) can be written as

yn =
∞∑
ζ=0

∑
ϕ∈P
(
{1,...,M},ζ

)
(∏

ℓ∈ϕ

βℓ

)
M∑

m=1

An(ζ, ϕ)Wn,mXnδ

+
∞∑
ζ=0

∑
ϕ∈P
(
{1,...,M},ζ

)
(∏

ℓ∈ϕ

βℓ

)
An(ζ, ϕ)X̃nγ̃ +

∞∑
ζ=0

∑
ϕ∈P
(
{1,...,M},ζ

)
(∏

ℓ∈ϕ

βℓ

)
An(ζ, ϕ)εn.

(2.20)

Lemma 7. Let Assumptions 10 hold for {rn,i}n≥1, i ∈ In. Define Ri,j = fq,ℓ(rn,{i,j}) =

rn,i,qrn,j,ℓ and Rh,s = gq′,ℓ′(rn,{h,s}) = rn,h,q′rn,s,ℓ′ for i, j, h, s ∈ In, where q, q
′, ℓ, and ℓ′ are

components of the vector rn,i. Let Assumption 14 hold for Ri,j and Rh,s. Then

|Cov (Ri,j, Rh,s)| ≤ 2θ̄n,s(C + 16) × 4 (π1 + γ̃1) (π2 + γ̃2) θ
1−pf−pg
n,s , (2.21)
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where θn,s = θn,s ∧ 1, θ̄n,s = θn,s ∨ 1, π1 = ∥rn,i∥pf,i∥rn,j∥pf,j , π2 = ∥rn,h∥pf,h∥rn,s∥pf,s, γ̃1 =

max{∥rn,i∥pf,i+pf,j , ∥rn,j∥pf,i+pf,j}, γ̃2 = max{∥rn,h∥pf , ∥rn,s∥pg} where pf = 1/pf,i + 1/pf,j

and pg = 1/pg,h + 1/pg,s. The constant C is the same as in Assumption 10, the indexes

i, j, h, s, and components q, q′, ℓ and ℓ′ may or may not be the same.

Proof. Define the increasing continuous functions h1(x) and h2(x) in (Appendix A in Ko-

jevnikov et al., 2020, pp. 899-907) Theorem A.2 to be h1(x) = h2(x) = x . Note that the func-

tions fq,ℓ and gq′,ℓ′ are continuous, and their truncated version of the form φK1 ◦ f ◦φh1 (K2)

and φK1 ◦ g ◦ φh1 (K2) for all K ∈ (0,∞)2 are in LQ+1,2. Assumption 14 guarantees the

existence of the moments defining γ̃1 and γ̃2. Then, Theorem A.2 in (Appendix A in Ko-

jevnikov et al., 2020, pp. 899-907) applies to this setting (see also Corollary A.2.in Appendix

Kojevnikov et al., 2020, pp. 899-907).

Lemma 8 (LLN for Products of ψ-dependent Random Variables). Let Assumptions 10, 14,

15 and 16 hold. Define Rn,i,j = rn,i,qrn,j,ℓ and form {Rn,i,j}i∈In,j∈Ii, where In is the set of

all individuals in the sample of size n, while Ii is a set of indexes define for each i ∈ In.

Defining the weights wi,j ∈ [0, 1], as n→ ∞

∥∥∥∥∥ 1

n

∑
i∈In

∑
j∈Ii

wi,j (Rn,i,j − E [Rn,i,j])

∥∥∥∥∥
1

a.s.−→ 0

Proof. For simplicity, in this proof I assume that Var(Rn,i,j) ≤ a for all i and j, and a

generic constant a. However, this assumption is not necessary. Without the finite variance

assumption, the proof proceeds similarly but separating Rn,i,j = Rk
n,i,j +R̃k

n,i,j, where R̃k
n,i,j =

φk(Rn,i,j), and φk(x) = (−K) ∨ (K ∧ xi) is a censoring function, see Jenish and Prucha’s

(2009) proof of Theorem 3 for more details, and Kojevnikov et al.’s (2020) proof for Theorem
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3.1. Define the k-norm for a random variable X as ∥X∥k = (E[|X|k)1/k for k ∈ [1,∞). Thus,

by Lyapunov’s inequality and the definition of the k-norm it follows that

∥∥∥∥∥ 1

n

∑
i∈In

∑
j∈Ii

wi,j (Rn,i,j − E [Rn,i,j])

∥∥∥∥∥
1

≤

∥∥∥∥∥ 1

n

∑
i∈In

∑
j∈Ii

wi,j (Rn,i,j − E [Rn,i,j])

∥∥∥∥∥
2

(2.22)

where (2.22) is an expression for the standard deviation of
∑

i∈In,m,λ

∑
j∈Ii wi,jRn,i,j normal-

ized by the sample size n. Moreover, note that the variance of that quantity can be written

as

Var

(∑
i∈In

∑
j∈Ii

wi,jRn,i,j

)
=
∑
i∈In

Var

(∑
j∈Ii

wi,jRn,i,j

)

+
∑

i ̸=h∈In

Cov

(∑
j∈Ii

wi,jRn,i,j,
∑
s∈Ih

wh,sRn,h,s

)

Let start by analyzing first the variance component. Given the network dependence between

individuals, it follows that

Var

(∑
j∈Ii

wi,jRn,i,j

)
=
∑
j∈Ii

w2
i,jVar(Rn,i,j) +

∑
j ̸=s∈Ii

wi,jwi,sCov(Rn,i,j, Rn,i,s) (2.23)

≤ a
∑
j∈Ii

w2
i,j +

∑
j∈Ii

∑
d≥1

∑
s∈Pn(j,d)∩Ii

|Cov(Rn,i,jRn,i,s)|

≤ a
∑
j∈Ii

w2
i,j + b

∑
d≥1

θn,d
∑
j∈Ii

|Pn(j, d)| ,

where the second inequality follows form wi,j, wi,s ∈ [0, 1], and a is a generic constant that
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follows from the assumption that Var(Rn,i,j) is finite (or the fact that after partitioning Rn,i,j

it is possible to bound its variance). The third inequality comes from the fact that under

Assumptions 10 and 14, and Lemma 7, the covariances are bounded by |Cov(Rn,i,j, Ri,s)| ≤

bθn,d, where b < ∞ contains the constants from Lemma 7, and includes the possibility

that θn,d could have exponents of either 1 or 1 − pf − pg. Focusing now on the covariance

component of equation (2.22), by the properties of the covariance, the expression inside the

summation can be written as

Cov

(∑
j∈Ii

wi,jRn,i,j,
∑
s∈Ih

wh,sRn,h,s

)
=
∑
j∈Ii

∑
s∈Ih

wi,jwh,sCov(Rn,i,j, Rn,h,s) (2.24)

≤
∑
j∈Ii

∑
d≥1

∑
s∈Pn(j,d)∩Ih

|cov(Rn,i,jRn,h,s)|

≤ b
∑
d≥1

θn,d
∑
j∈Ii

|Pn(j, d)| ,

where the inequalities in (2.24) follow from the same arguments discussed before. It follows

from equations and (2.24) that the total variance can be bounded by

Var

 ∑
i∈In,m,λ

∑
j∈Ii

wi,jRn,i,j

 ≤ a
∑
j∈Ii

w2
i,j + 2b

∑
d≥1

θn,d
∑
j∈Ii

|Pn(j, d)| (2.25)

= a
∑
i∈In

∑
j∈Ii

w2
i,j + 2b

∑
d≥1

θn,d
∑
i∈In

|Pn(j, d)|

≤ n

(
a
∑
i∈In

n−1
∑
j∈Ii

wi,j + 2b
∑
d≥1

θn,dD̄n(d)

)
,
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where the last inequality follows from wi,j ∈ [0, 1]. Define Īw
i = n−1

∑
j∈Ii wi,j. It follows

that combining equations 2.22 and 2.25,

∥∥∥∥∥ 1

n

∑
i∈In

∑
j∈Ii

wi,j (Rn,i,j − E [Rn,i,j])

∥∥∥∥∥
1

≤

(
a

n

∑
i∈In

Īw
i +

2b

n

∑
d≥1

θn,dD̄n(d)

)1/2

(2.26)

Depending on the component of interest from the matrix Z⊤
nDn and the vector Z⊤

n ε, the set

Ii can be either: (1) Ii = ∅, (2) Ii = P(i, 1,m, λ) × P(i, 1, s) where P(i, 1,m, λ) is the set

of individual i’s neighbors in the implicit network formed by the weighted adjacency matrix

Wn,m,λ (set of nodes that can be used to for moment conditions for i), and P(i, 1, s) is the set

of i’s neighbors in layer s, (3) Ii = P(i, 1,m, λ), or (4) P(i, 1,m). For any of the four cases,

Assumption 15 guarantees that Īw
i = oa.s.(1) for all i, and by the algebra of stochastic orders∑

i∈In Ī
w
i = oa.s.(1). Moreover, Assumption 16 guarantees that n−1

∑
d≥1 θn,dD̄n(d)

a.s.−→ 0.

It follows that the right hand side of equation (2.26) is oa.s.(1), completing the proof.

Lemma 9 (LLN for Outcomes and Regressors). Let Assumptions 9, 10, 14, 15 and 16 hold

hold. Define xn,q as the qth column of the matrix Xn. As in the main text wn,m,λ,i and wn,s,i

represent the ith row of the matrices Wn,m,λ and Wn,s, respectively. Then,

∥∥∥∥∥ 1

n

∑
i∈In

wn,m,λ,ixn,qwn,s,iyn − E[wN,m,λ,ixN,qwN,s,iy]

∥∥∥∥∥
1

a.s.−→ 0 (2.27)

and

∥∥∥∥∥ 1

n

∑
i∈In

wn,m,iynxn,q − E[wN,m,iyxN,q,i]

∥∥∥∥∥
1

a.s.−→ 0 (2.28)
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Proof. From Assumption 9, as shown in Remark 3, it follows that for any three arbitrary lay-

ers m1, m2, and m3 from {1, . . . ,M}, two arbitrary characteristics q and l from {1 . . . , Q}, an

arbitrary number of products of adjacency matrices ζ, and an arbitrary sequence ϕ, one single

summation from the first component A(ζ, ϕ)nWn,m2Xn of the vector (Wn,m1,λxn,q)
⊤Wn,m2yn

can be written as:

(∏
ℓ∈ϕ

βℓ

)
(Wn,m1,λxn,q)

⊤Wn,m2A(ζ, ϕ)Wn,m3xn,lδm3,l

=

(∏
ℓ∈ϕ

βℓ

)
(Wn,m1,λxn,q)

⊤A(ζ + 2, {m2, ϕ,m3})xn,lδm3,l,

(2.29)

where the equality follows by the definition of A(ζ, ϕ)n. For simplicity, define A(ζ +

2, {m2, ϕ,m3})n ≡ A(ζ ′, ϕ′)n. Let Ii = ηi,λ,m × ηi,ζ′,ϕ′ represent the Cartesian product of

ηi,λ,m and ηi,ζ′,ϕ′ , which are the set of individual i’s neighbors in the implicit networks in-

duced by Wn,m,λ and A(ζ ′, ϕ′)n, respectively. Therefore, the rigth hand side of equation

(2.29) can be written as

1

n

∑
ℓ∈In

∑
i,j∈Iℓ

wi,jRn,i,j, (2.30)

where wi,j = wλ;ℓ,iwℓ,j and Rn,i,j = xn,qxn,l. Thus, from Lemma 8, it follows that (2.30)

converges to the population expectation. Because the characteristics q and l, the number

of products of adjacency matrices ζ, and the sequence ϕ were chosen arbitrarily, this con-

vergence process applies for all the components in the infinite sum in ζ. Given that each

component of the sum converges to a finite expectation, the infinite sum of finite expec-
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tations is also finite given the restriction on the parameters βm from Assumption 9. This

completes the proof for the convergence of the first component of the outcome equation yn

in (2.20).

For the second component in (2.20), given by A(ζ, ϕ)nX̃n, the proof works analogously by

substituting A(ζ + 2, {m2, ϕ,m3})n for A(ζ + 1, {m2, ϕ})n. Finally, for the third component

in (2.20) given by A(ζ, ϕ)nεn, because εn,i is just another component of rn,i for all i, the

results in Lemma 8 also applies for this case. This completes the proof for equation (2.27).

The proof for (2.28) is analogous.

Lemma 10 (LLN for Instruments and Regressors). Let Assumptions 10, 14, 15 and 16 hold.

Then as n→ ∞

∥∥∥∥∥ 1

n

∑
i∈In

zn,id
⊤
n,i − E[zN,id

⊤
N,i]

∥∥∥∥∥
1

a.s.−→ 0. (2.31)

Proof. There are four different types of components in the matrix Z⊤
nDn formed by sum-

mations of products of (1) non-network regressors of the form xn,i,qxn,i,ℓ, (2) network

regressors of the form wn,m,λ,ixn,qwn,s,ixn,ℓ, (3) network and non-network regressors of

the form wn,mλ,ixn,qxn,i,ℓ, and (4) network regressors and network outcomes of the form

wn,m,λ,ixn,qwn,s,iyn. Thus, to proof the convergence result in (2.31), it suffices to show the

convergence for each of the four components described before. Firs, from Lemma 9, it follows

that the network regressors and network outcomes component converges to its population

mean. The other three results follow by appropriately choosing Rn,i,j, Ii, and wi,j to apply

the results from Lemma 8. For (1), choose Rn,i = xn,i,qxn,i,ℓ for two arbitrary regressors q

and ℓ, Ii = ∅ so that there is not a second summation over j and wi = 1. For (2) and (3),
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choose Rn,i,j = xq,ixℓ,j for arbitrary regressors q and ℓ. Regarding the set of indexes, for

(2), choose Ii = Pn(i, 1,m, λ) × Pn(i, 1,m), and for (3) choose Ii = Pn(i, 1,m, λ) and cor-

responding weights if the relevant network is Wn,m,λ, or Ii = Pn(i, 1,m) and corresponding

weights if the relevant network is Wm. Therefore, applying Lemma 8 component-wise for∑
i∈In zn,id

⊤
n,i implies the result.

Lemma 11 (LLN for Instruments and Errors). Let Assumptions 10, 14, 15 and 16 hold.

Then as n→ ∞

∥∥∥∥∥ 1

n

∑
i∈In

zn,iε
⊤
n,i − E[zN,iε

⊤
N,i]

∥∥∥∥∥
1

a.s.−→ 0. (2.32)

Proof. Given that rn,i = [xi, εi] and zi can be divided into network and non-network com-

ponents, the proof of this result is analogous for that of Lemma 10 parts (1) and (3).

Lemma 12 (Central Limit Theorem). Let Assumptions 10, and 14 to 17 hold. Define

the sum Sn =
∑

i∈In zn,i,qεn,i, where zn,i,q is the qth entrance of the vector zn,i, In,q is the

set of individuals with non-zero values in column q of the matrix Zn. By definition of zi,

E[zn,i,qεn,i] = 0. Define σn = Var(Sn). Then, as n→ ∞

sup
t∈R

∣∣∣∣P{Sn

σn
≤ t | Cn

}
− Φ(t)

∣∣∣∣ a.s.−→ 0,

where Φ denotes the distribution function of a N (0, 1),

Proof. Let Yn,i = zn,i,qεn,i, from Lemma 7, the covariance of any two Yn,i and Yn,j is bounded.

Then, the proof follows from applying Lemmas A.2 and A.3 in (Appendix A in Kojevnikov

et al., 2020, pp. 899-907) to Yn,i = zn,i,q and Sn/σn, respectively.
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Lemma 13 (Finite Variance). Define Sn = Z⊤
n εn and Ωn = Var(n−1/2Sn). Let Assumptions

10, and 14 to 16 hold, then Ωn → ΩN <∞ as n→ ∞.

Proof. As defined before n−1/2Sn = n−1/2
∑n

i=1 zn,iεn,i. The bounded covariance as-

sumptions from Lemma 7 combined with the arguments in Lemma 8 guarantee that

limn→∞ n−1Var (
∑n

i=1 zn,iεn,i) is finite. In particular, from equation (2.25), using the ap-

propriate values for Rn,i,j, In,m,λ, Ii, nm,λ, and wi,j (see Lemma 10), it follows that

var(
∑n

i=1 zn,iεn,i) = Op(1). Given that Ωn converges to a finite quantity, it follows that

Ωn → ΩN , where

ΩN = lim
n→∞

n−1

[
n∑

i=1

var(ziεi) +
∑
i ̸=j

cov(ziεi, zjεj)

]
<∞.

Lemma 14 (Multivariate Central Limit Theorem). Let Assumption 10, and 14 to 17 hold.

Then,

n−1/2

n∑
i=1

zn,iεi
d−→ N (0,ΩN) as n→ ∞

Proof. From Lemma 12, n−1/2
∑n

i=1 zn,i,qεn,i
d−→ N (0, σ2

n). From Lemma 13, ΩN exists.

Therefore, the result follows from the Cramér-Wold device.

2.11 Appendix: Multilayer Shortest Path Algorithms

This section describes the computation process required to calculate the empirical analog of

the moment condition matrices. First, I use Algorithm 1 to calculate the multilayer shortest
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paths between a source node s and all the other nodes v ∈
⋃

m∈M Vm. The time complexity

of this algorithm is O(V + E logE), where V ≡
⋃

m∈M Vm and E ≡
⋃

m∈M Em

⋃
C

(Balasubramanian et al., 2022). I then use parallel computation to repeat the process for

all possible sources. Thus, the described procedure provides all shortest path lengths and

edge type changes for the sampled nodes in the multilayer network. With this information,

it is feasible to evaluate equation 2.7 for all possible dyads efficiently.

Algorithm 1: Multilayer Colored Shortest Path

Input: (1) a multilayer graph M = (G, C) with non-negative edge weights, and

(2) a source vertex s ∈
⋃

m∈M Vm.

Output: shortest paths and color changes for all nodes v ̸= s in M.

1 Initialization Q =
⋃

m∈M Vm, D = ∞ for all nodes in Q, P = CP = CC = ∅ Define

D[s] = 0; while Q is not empty do

2 u= node in Q with the minimum distance to s; Remove u from Q and add it to

P ; foreach v directly connected to u do

3 distance = D[u]+ weight of the edge from u to v;

4 if distance <= D[v] then

5 D[v] =distance

6 if s = v then

7 CP=layer where the edge exists and CC = 0;

8 else

9 CP=CP [u]+layer where the edge exists and CC = number of

edge-layer changes
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The calculation of the second shortest path involves a recursive execution of the

Multilayer Colored Shortest Path algorithm. The basic idea is that for each node, I replace

weighs of the edges in the shortest path for any arbitrary node v for infinite and then run

Algorithm 1 again (Balasubramanian et al., 2022). Algorithm 2 details the process. This

algorithm has the same complexity as the one in 1. The construction of the matrices Wm,β

and Wm,δ for all m ∈ 1, . . . ,M is then only a matter of filtering the dyads that fulfill the

requirements of equations 2.6 and 2.7.

Algorithm 2: Multilayer Colored Second Shortest Path

Input: (1) a multilayer graph M = (G, C) with non-negative edge weights, and

(2) a source vertex s ∈
⋃

m∈M Vm.

Output: second shortest paths and color changes for all nodes v ̸= s in M.

1 foreach v s ∈
⋃

m∈M Vm do

2 Multilayer Colored Shortest Path for v;

3 store shortest path;

4 foreach u in the shortest path do

5 replace the edge weights for ∞;

6 do Multilayer Colored Shortest Path for v again;

2.12 Appendix: Additional Simulation and Estimation

Results

This section contains additional simulation and estimation results. Plots 2.5 and 2.6 show

the results from the Monte Carlo simulation for the additional network effects [β0
1 , β

0
3 , δ

0
1, δ

0
3].
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Figure 2.5: Box Plots for the GMM Estimator
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Note: Box plots in the first row depict the Monte Carlo performance of the proposed GMM estimator. The
boxplots are based on 1,000 for sample sizes n ∈ {50, 100, 200}. The whiskers display the 5% and 95%
empirical quantiles.

The results for the other parameters are presented in Section 2.6 in the main text. The

results here are consistent with those for the parameters [β0
2 , δ

0
2]. The simulation confirms

the desirable properties of the estimator in finite sample. Similarly, Tables 2.2 and 2.3 present

the empirical estimation results using the publications data described in section 2.7. These

results are used as a benchmark to compare the behavior of the efficient GMM estimator.
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Figure 2.6: Q-Q plots of the GMM Estimator
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Note: Q-Q plots in the second row are based on the standardized sample of 1,000 Monte Carlo replications
of the proposed GMM estimator of the parameters in (2.1) and sample sizes n = 50 (light gray), n = 100
(gray), and n = 200 (black). The blue dashed line shows the 45 degree line.
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Table 2.2: GMM Estimation Results for Social and Direct Effects

2002 2003 2004 2005 2006

Peer Effects ({β̂}3m=1)
Co-authors 0.485*** 0.428*** 0.566*** 0.536*** 0.468*

(0.123) (0.112) (0.114) (0.106) (0.279)
Alumni 0.120 0.113 0.165 0.175 0.374

(0.262) (0.216) (0.263) (0.172) (0.387)
Advisor 0.033 0.197 -0.606* -0.437* -0.086

(0.259) (0.272) (0.330) (0.238) (0.369)
Colleagues 0.132 -0.283* -0.042 0.081 0.086

(0.471) (0.1421) (0.103) (0.098) (0.159)

Contextual Effects ({δ̂}3m=1)
Co-authors: Editor in Charge 0.215 -0.288 -0.317 -0.501 0.885

(0.699) (0.639) (0.681) (0.550) (0.993)
Alumni: Editor in Charge -0.069 0.069 0.029 0.060 0.402

(0.216) (0.156) (0.138) (0.128) (0.316)
Advisor: Editor in Charge 0.417 0.105 1.589** 1.071 0.337

(0.724) (0.744) (0.740) (0.676) (0.802)
Colleagues: Editor in Charge 0.145 0.001 -0.204 -0.293 -0.321

(0.285) (0.185) (0.174) (0.187) (0.396)
Co-authors: Different Gender -0.929 -0.753 -1.627 -1.215 2.689

(1.695) (1.253) (1.606) (0.856) (1.825)
Alumni: Different Gender -0.385 -0.284 -0.301 -0.014 -0.951

(0.428) (0.379) (0.424) (0.307) (0.892)
Advisor: Different Gender 1.875 4.991*** 5.954*** 3.595** 1.382

(3.116) (1.734) (1.884) (1.515) (1.869)
Colleagues: Different Gender 0.606 0.253 0.015 -0.357 -2.146

(0.522) (0.552) (0.567) (0.732) (1.633)
Contextual Effects (γ̂)

Editor in Charge -0.069 -0.094 -0.042 -0.017 0.061
(0.135) (0.115) (0.139) (0.123) (0.141)

Different Gender 0.253** 0.229** 0.189** 0.143* 0.069
(0.122) (0.102) (0.091) (0.081) (0.093)

Number of Pages 0.025*** 0.023*** 0.020*** 0.017*** 0.016***
(0.004) (0.003) (0.003) (0.003) (0.003)

Number of Authors 0.064 0.084* 0.052 0.074* 0.065*
(0.056) (0.047) (0.043) (0.038) (0.035)

Number of References 0.009*** 0.009*** 0.007*** 0.008*** 0.011***
(0.003) (0.002) (0.002) (0.002) (0.002)

Co-authors: Isolated 1.566*** 1.367*** 1.775*** 1.629*** 1.452
(0.437) (0.404) (0.409) (0.384) (1.032)

n 729 961 1187 1412 1628

Note: Standard errors are in parenthesis and are calculated using the network HAC estimator of the covari-
ance matrix in equation (2.5.1) where the function K is the Parzen kernel and the bandwidth Dn = 1.8 ×
[log( avg.deg ∨ (1.05))]−1 × logn. Stars follow the key: * p < 0.10, ** p < 0.05, and *** p < 0.01, where p

stands for p-values. R2 are calculated as the squared of the sample correlation coefficients between the observed
outcomes and their fitted values. All specifications include indicator variables for Journal and Year. The indicator for
isolated nodes in the Alumni, Advisor and Colleagues networks are also included but are not statistically significant.
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Table 2.3: OLS Estimation Results for Social and Direct Effects

2002 2003 2004 2005 2006

Peer Effects ({β̂}3m=1)
Co-authors 0.359*** 0.397*** 0.461*** 0.452*** 0.453***

(0.061) (0.049) (0.047) (0.045) (0.042)
Alumni 0.026 0.088 0.113* 0.154** 0.139**

(0.087) (0.076) (0.064) (0.064) (0.063)
Advisor -0.123* -0.117* -0.075 -0.055 -0.045

(0.07) (0.066) (0.061) (0.054) (0.056)
Colleagues 0.266** 0.096 0.138** 0.156** 0.028

(0.122) (0.105) (0.072) (0.068) (0.048)

Contextual Effects ({δ̂}3m=1)
Co-authors: Editor in Charge -0.219 -0.141 -0.186 0.055 0.086

(0.215) (0.202) (0.178) (0.180) (0.172)
Alumni: Editor in Charge -0.063 0.076 -0.012 0.025 0.001

(0.193) (0.139) (0.117) (0.117) (0.108)
Advisor: Editor in Charge 0.519 0.278 0.202 -0.065 -0.002

(0.373) (0.308) (0.299) (0.296) (0.279)
Colleagues: Editor in Charge 0.207 0.038 -0.027 -0.092 -0.072

(0.235) (0.169) (0.158) (0.142) (0.161)
Co-authors: Different Gender -0.453 -0.265 -0.319 -0.359 -0.048

(0.421) (0.388) (0.368) (0.387) (0.432)
Alumni: Different Gender -0.181 -0.162 -0.035 -0.122 -0.214

(0.27) (0.229) (0.219) (0.204) (0.211)
Advisor: Different Gender 1.434* 2.120*** 0.753 0.939 1.290

(0.786) (0.742) (0.971) (0.974) (0.964)
Colleagues: Different Gender 0.386 0.325 0.012 -0.118 0.112

(0.405) (0.393) (0.379) (0.974) (0.964)
Contextual Effects (γ̂)

Editor in Charge -0.017 -0.057 -0.047 0.009 0.044
(0.126) (0.112) (0.131) (0.114) (0.107)

Different Gender 0.260** 0.206** 0.179 0.133* 0.121*
(0.113) (0.094) (0.082) (0.078) (0.069)

Number of Pages 0.026*** 0.023*** 0.019*** 0.016 0.016
(0.004) (0.003) (0.003) (0.003) (0.003)

Number of Authors 0.054 0.078* 0.071* 0.084** 0.063**
(0.055) (0.044) (0.038) (0.035) (0.031)

Number of References 0.009*** 0.009*** 0.009*** 0.009*** 0.011***
(0.002) (0.002) (0.002) (0.002) (0.002)

Co-authors: Isolated 1.129*** 1.258*** 1.383*** 1.328*** 1.312***
(0.236) (0.196) (0.183) (0.178) (0.164)

n 729 961 1187 1412 1628

Note: Standard errors are in parenthesis and are calculated using the network HAC estimator of the covari-
ance matrix in equation (2.5.1) where the function K is the Parzen kernel and the bandwidth Dn = 1.8 ×
[log( avg.deg ∨ (1.05))]−1 × logn. Stars follow the key: * p < 0.10, ** p < 0.05, and *** p < 0.01, where p

stands for p-values. R2 are calculated as the squared of the sample correlation coefficients between the observed
outcomes and their fitted values. All specifications include indicator variables for Journal and Year. The indicator for
isolated nodes in the Alumni, Advisor and Colleagues networks are also included but are not statistically significant.
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Chapter 3

Inference in Network Formation

Models with Payoff Externalities

Note: I want to thank my colleagues Cheng Ding and Santiago Montoya-Blandón for their

comments and support. This chapter would not exist without your help.

This paper provides a novel approach to identify and perform inference on the utility param-

eters of a network formation model with payoff externalities using observed network data.

The existence of externalities induces an issue of multiple equilibria. Under the assumption

that a predetermined probability distribution exists over the set of all possible equilibrium

networks, we show that local point identification of the parameters of interest is possible. We

propose a Bayesian estimation method to conduct statistical inference of the structural payoff

coefficients. We address the issue of high-dimensional numerical integration by proposing a

composite likelihood function based on the marginal distribution of all the possible subgraphs

forming the observed network. We present an empirical application to model the network
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formation process of individuals creating social connections in villages in Karnataka, India.

We find strong evidence of homophily effects.

3.1 Introduction

Social networks are critical to determining how individuals make choices in contexts ranging

from labor markets and educational achievement to substance abuse and criminality (Gaviria

and Raphael, 2001; Sacerdote, 2001b; Bayer et al., 2009; Mas and Moretti, 2009). As network

structures arise from individual strategic interaction, it becomes essential to understand the

underlying network formation process when studying the effects of these structures using

observational data (see, e.g., Goldsmith-Pinkham and Imbens, 2013; Johnsson and Moon,

2021). The main contribution of this article is to propose a method to point-identify and

estimate strategic network formation models using observational data on network links. In

particular, we offer a Bayesian approach to estimate the structural parameters of preferences

and equilibrium selection probabilities that characterize the network formation model. For

our method, observed networks are interpreted as the equilibrium outcome of a complete

information game where individuals make connections based on a flexible payoff function that

allows for externalities in the utility received from links elsewhere in the network (Pelican

and Graham, 2020).

Allowing for strategic externalities is appealing since it provides a rich model that

matches documented features of social networks found in the data, such as clustering and

homophily (Jackson and Rogers, 2007; Jackson et al., 2012; Sheng, 2020). However, strate-

gic network formation models with utility externalities are plagued with identification and
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estimation issues. These outstanding problems include multiple equilibria, statistical depen-

dence in large networks, and the curse of dimensionality (Leung, 2015; de Paula et al., 2018).

Differing from previous research proposing methods that resolve some issues but not all, this

paper provides a technique that simultaneously addresses all these fundamental issues.

We deal with the problem of multiple equilibria by specifying both a payoff function

and an equilibrium selection mechanism as the primitives of the network formation model.

The selection mechanism determines the probability distribution over possible equilibria for

a given realization of exogenous characteristics, individual heterogeneity, and idiosyncratic

dyadic shocks. As in Bajari et al. (2010), we take an empirical approach to characterize

the equilibrium selection. Critically, we assume the existence of a predetermined and poten-

tially unknown probability distribution over all possible equilibrium outcomes. We interpret

the probability distribution as nature assigning different likelihoods of occurrence to differ-

ent network structures. We show that this assumption is enough to guarantee local point

identification of the structural parameters underlying both utility functions and equilibrium

selection probabilities. Our approach differs from previous studies of discrete games of com-

plete information with multiple equilibria such as Bajari et al. (2010) and Bajari et al. (2011)

due to the added complexity in the strategy space for the game we consider. This complexity

makes it intractable to compute all possible equilibria of the game. Therefore, instead of

defining a selection mechanism in the space of individuals’ strategies, this paper focuses on

selecting network structures that are the game’s equilibrium outcomes. One advantage of

directly selecting outcomes is that selection of equilibrium networks can result from both

pure and mixed strategies (Pelican and Graham, 2020).

There has been an increasing interest in proposing identification and estimation methods
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to deal with the issues of multiple equilibria and the curse of dimensionality. Significant de-

velopments in this literature include modeling the network formation as a sequential process

(Mele, 2017; Christakis et al., 2020), focusing only on non-negative externalities (Miyauchi,

2016), and using subnetworks as the unit of analysis (Chandrasekhar, 2016; Sheng, 2020).

To the best of our knowledge, our paper contributes to this literature by providing the first

results on point-identification of both preference and selection mechanisms parameters. In

addition, we also offer a method to conduct statistical inference on those parameters that do

not rely on asymptotic approximations. This contribution is relevant because it can handle

large and repeated network data structures.

We then turn to the issue of estimating the identified quantities. To this end, we

introduce some assumptions on equilibrium selection based on the idea of multiplicity regions.

We define a multiplicity region as a set in the space of idiosyncratic dyadic shocks where

the group of all equilibrium networks is the same for any value of the shocks belonging to

that region. We show that the complete likelihood of observing a network d can be written

as a weighted sum of integrated likelihoods across all possible multiplicity regions. Though

critical for showing that the model’s parameters are point identified, the formalization in

terms of multiplicity regions does not solve the curse of dimensionality problem inherent

to the estimation process. This is due to the dimensionality of the idiosyncratic shocks,

which result in a computationally intractable likelihood, even when using simulation-based

methods (McFadden, 1989; Hajivassiliou and McFadden, 1998).

To overcome this issue, we resort to a Bayesian estimation method. In particular, we

propose a Markov Chain Monte Carlo (MCMC) algorithm similar in spirit to Mele (2017).

Following a data augmentation approach, we introduce the idiosyncratic shocks as latent
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variables to be sampled along with the necessary preference parameters. This idea forms the

basis of many computationally efficient algorithms for estimating models where numerical

integration is unfeasible, such as discrete choice models with large choice sets (Albert and

Chib, 1993; McCulloch et al., 2000). With this choice of latent variables, our algorithm

alternates between sampling from the utility parameters conditional on a transformation of

the shocks and the distribution of shocks given parameters and network data.

The advantages of using a Bayesian estimation method are twofold. First, it allows us

to sidestep the issue of high-dimensional numerical integration to evaluate the likelihood.

Second, we can address the potential issue of statistical dependence in large networks. The

key idea is that because our estimation method does not rely on asymptotic approximations

to conduct inference, distinguishing between large-games and many-games asymptotics be-

comes less relevant. Notably, the flexibility in our estimation method can accommodate

both large-networks and many-networks data structures. Finally, our Bayesian approach

also generates posterior distributions for the equilibrium selection probabilities, which al-

lows the researcher to simulate the model and perform counterfactual analysis.

To highlight the usability of our approach, we present an empirical application using data

from the Social Networks and Microfinance project, which contains the publicly available

data of participation in a program of Bharatha Swamukti Samsthe (BSS), a microfinance

institution (MFI) in rural southern Karnataka (Banerjee et al., 2013). The data include

information on thirteen possible relationships among individuals, including visiting each

other, praying, borrowing and lending money and goods, obtaining advice, and giving advice.

We combine the different social ties into one unique social network encompassing the thirteen

dimensions. Based on the constructed social network, we model the network formation
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process and estimate the payoff parameters of interest. We find strong evidence of homophily

for most of the characteristics in our analysis. The most substantial homophily effects happen

among the same gender and working status of villagers.

The structure of the paper is as follows. Section 3.2 introduces the network formation

model, our population assumptions, and the main identification result. Section 3.3 presents

the Bayesian algorithm, and introduces the idea of the composite likelihood function. Section

3.4 presents the data and empirical results. Finally, section 3.5 concludes.

Notation: we follow the standard statistical notation and use capital letters to describe

random variables and lower case letters represent the realizations of those random variables.

We use bold letters for vectors and non-bold letters for scalars. For example, X is a random

vector while x is a vector of realizations, and U is a scalar random variable with u is a

possible realization.

3.2 Network Formation Model and Identification

3.2.1 Network Formation

Following Pelican and Graham (2020) and Sheng (2020), we assume that observed network

structures are the result of a network formation model where N individuals choose connec-

tions simultaneously in what is known as a link announcement game. Each individual i is

characterized by a vector of observed attributes Xi, and the unobserved (to the researcher)

shocks Ai and Uij for j ̸= i. Let d ∈ DN be a realization of a network configuration from the

set DN of all possible N -player equilibrium networks. We assume payoff functions that allow
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players to have preferences over other individuals’ positions in the network. In particular,

we assume that individuals have additively separable utility functions divided into degree

heterogeneity, assortative matching (also known as homophily) and an externality compo-

nent that can generate multiple equilibria. In defining our payoff function, for notational

convenience, we do not explicitly include A and X as arguments.

Furthermore, for estimation purposes, we will introduce a few mild assumptions on the

distribution of A given the covariates X. These assumptions will resemble a correlated

random effects (CRE) approach that differs from that in Graham (2017), which instead

resembles a fixed-effects type assumption.1 In fact, combined with our Bayesian estima-

tion method outlined in Section 3.3, this view offers an alternative to Graham (2017) for

estimation and testing when we assume that there are no additional payoff externalities.

Individual’s utility from the network configuration is determined by

νi (d, Uij) =
∑
j

dij [Ai + Aj +X ′
iΛ0Xj + γ0sij(d) − Uij] , i = 1, . . . , N (3.1)

where the dependence on the network d follows from the fact that individual i’s utility

can be potentially affected by other individuals’ links in the network. The utility function

depends on two individual degree heterogeneity components Ai and Aj, a dyadic unobserved

component Uij, a homophily component X ′
iΛ0Xj, and preferences over links other than dij

given by the function sij(d). The function sij(d) can include relevant cases in the literature

such as taste for reciprocated links in directed networks (Pelican and Graham, 2020), and

1We use the language of panel data models to make this distinction. In this literature, a fixed effect
is usually an individual-specific effect correlated to covariates. Still, it can be eliminated from the model
using a particular transformation (e.g., differencing in linear panel models). Instead, assumptions in place
in a CRE framework restrict the distribution of effects given covariates but generally make the model more
tractable.
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taste for indirect connections and completing triangles in undirected networks (Mele, 2017;

Christakis et al., 2020; Sheng, 2020).

As pointed out by Pelican and Graham (2020), the selection of an equilibrium selec-

tion concept is closely related to the assumption on the directed or undirected nature of

individuals’ links. Games on directed networks are associated with the Nash equilibrium

solution concept, while in the analysis of undirected networks, pairwise stability as equi-

librium concept plays a fundamental role (Jackson and Wolinsky, 1996). To accommodate

the structure of our empirical application, we assume that individuals form undirected con-

nections. In 3.7, we show that this assumption is not necessary for our identification and

estimation results as they also apply to a game where individuals can form directed links

under a Nash equilibrium solution concept. Following the literature on undirected network

formation games, we use the concept of pairwise stability under non-transferable utility as

our equilibrium concept. Individuals i and j decide whether or not to form a connection

based on their marginal utilities. From the payoff function (3.1), it follows that the marginal

utility of creating a link between i and j is

∆νij (d−ij;Uij) = Ai+Aj +W ′
ijλ0+γ0sij(d)−Uij , i = 1, . . . , N ; j = 1, . . . , N ; i ̸= j , (3.2)

where d−ij represent the set of all connections in network d excluding the ij-link, Wij =

Xi ⊗Xj and λ = Λ′. Using this definition of marginal utility in equation (3.2), we can now

introduce the definition of pairwise stability.

Definition 4 (Pairwise Stability). A network d is pairwise stable under non-transferable
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utility if

(i) for any dij = 1,∆νij (d−ij;uij) ≥ 0 and ∆νji (d−ji;uji) ≥ 0;

(ii) for any dij = 0,∆νij (d−ij;uij) > 0 implies ∆νji (d−ji;uji) < 0.

Equilibrium. We assume a game of complete information. Each individual i observes

{Ai, X
′
i}Ni=1 and {uij}i ̸=j, then decides a set of links from the N − 1 agents. A link is formed

if both individuals perceive a positive marginal utility from the connection. Sheng (2020)

shows that under non-transferable utility, assuming that the links are strategic complements,

the model can be casted into a supermodular game in which the the existence of an equi-

librium follows from the fixed-point theorem for isotone mappings (Topkis, 1979; Milgrom

and Roberts, 1990). Therefore, assuming that γ0 ≥ 0 in our payoff function guarantees a

non-empty set of pairwise stable networks DN .

3.2.2 Population Assumptions

We assume that the population is formed by an arbitrarily large set of individuals IN . An

equilibrium population network d ∈ DN connects all nodes in IN . As argued by Goldsmith-

Pinkham and Imbens (2013), the ability to identify the statistical properties of the network

rests on the assumptions on the individuals’ dependence on the population given the net-

work structure. Two standard assumptions have been used in the econometrics literature of

network formation games. The more straightforward but less realistic case assumes a large

number of exchangeable networks. This assumption is consistent with a large population

that can be divided into independent networks that are mutually disjoint. A more realistic

alternative is to assume a large network defined on the set of nodes IN . As argued by Leung
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(2015), the issue with this approach is that the researcher has to impose conditions on the

network dependence between individuals to be able to use asymptotic approximations to

conduct inference.

One of our Bayesian estimation method’s key advantages is that we do not require an

asymptotic approximation to conduct inference. Therefore, our approach can accommodate

both of the mentioned population assumptions. However, to identify the parameters of the

equilibrium selection mechanism, we require observing repeated networks. The identification

argument applies to the repeated networks population assumption. However, in the case of

the large networks, we have to assume further that the analyst can partition the large

network into approximately independent sub-networks, see, e.g., Sheng (2020). It is then

possible to estimate selection probabilities when multiple equilibria are present with repeated

sub-network sequences.

3.2.3 Identification

The network externality component sij(d) in our network formation game induces the po-

tential for multiple equilibria. To specify a likelihood function for this problem, we need to

incorporate a way to assign probabilities to equilibrium outcomes realized from the set of all

possible equilibria. To that end, we define N (d,u; θ) : DN × RN → [0, 1] to be a function

that assigns probabilities to the set of equilibrium networks, where θ = [λ′, γ]′ is the vector

of payoff parameters. We call this function N (d,u; θ) the equilibrium selection function.2

The set of networks in equilibrium can include both outcomes that result from individuals

2For convenience, we do not make explicit that the equilibrium selection distribution also depends on
covariates X and degree heterogeneity effects A and B.
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playing mixed strategies or multiple equilibrium outcomes where individuals are playing pure

strategies. With this definition, the likelihood of observing a network d is given by

P (d; θ) =

∫
u∈RN

N (d,u; θ)
∏
i ̸=j

fU(uij)u . (3.3)

For now, we leave fU unspecified but we note that an usual assumption is the logistic

distribution given by fU(u) = eu/ [1 + eu]2. This distributional assumption generates an

exponential random graph structure that is common in network formation models. In our

Bayesian algorithm, we replace this with a normality assumption that is more compatible

with posterior updating.

A common practice in the econometrics of games in which multiple solutions are possible

is to partition the errors’ space into different subspaces that determine the potential number

of equilibria conditional on given values of the regressors and the parameters of the model

(De Paula, 2013). Characterizing these regions in our context is relevant because it allows us

to express the likelihood of observing any given outcome as a sum of the probability mass in

the areas where the outcome can happen weighted by the relative probability of the outcome

in those regions. We call the areas partitioning the errors’ space the multiplicity regions.

In this paper, the definition of multiplicity regions requires conditioning on the values of

regressors X, degree heterogeneity A,B and parameters θ.

Definition 5 (Multiplicity Region). Conditional on values of X, A, B and θ, a multiplicity

region m ∈M in the space of U is a region where the set of all possible equilibrium networks

is the same for all u ∈ m. That is, N (d,u; θ) = N (d,u′; θ) for any d ∈ DN and u,u′ ∈ m.

Furthermore, multiplicity regions partition the space of U; i.e., for m, s ∈ M , m ∩ s = ∅
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(regions are disjoint) and
⋃

m∈M m = RN(N−1).

A simple example can clarify the role of multiplicity regions in determining the observed

network d.

Example 3.2.1. Consider the simple case when Ai = 0, Bj = 0 for all i, j and Λ = 0.

Moreover, assume that externalities are given by intransitive triads, sij(d) = dikdkj for all

i, for γ ≥ 0. Finally, assume N = 3. In this scenario there are only eight possible network

configurations given by

d1 =


0 0 0

0 0 0

0 0 0

 , d2 =


0 1 0

1 0 0

0 0 0

 , d3 =


0 0 1

0 0 0

1 0 0

 , d4 =


0 0 0

0 0 1

0 1 0

 , d5 =


0 1 0

1 0 1

0 1 0

 ,

d6 =


0 1 1

1 0 0

1 0 0

 , d7 =


0 0 1

0 0 1

1 1 0

 , and d8 =


0 1 1

1 0 1

1 1 0

 .

Determining what network configuration would emerge and whether or not it is unique, de-

pends on the realizations of the errors and the values of the parameters. In this example the

space of the vector of shocks u = (u12, u21, u13, u31, u23, u32) can be divided into the following

partition that completely determine the admissible equilibrium networks given the externality

parameter γ:
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Table 3.1: Possible Equilibrium Networks in a Simple 2x2 Example

(u12, u21) d1 d2 d3 d4 d5 d6 d7 d8
I1, I1 0 0 0 0 0 0 0 1
I1, I2 0 0 1 0 0 0 0 1
I1, I3 0 0 1 0 0 0 0 0
I2, I1 0 0 1 0 0 0 0 1
I2, I2 0 0 1 0 0 0 0 1
I2, I3 0 0 1 0 0 0 0 0
I3, I1 0 0 1 0 0 0 0 0
I3, I2 0 0 1 0 0 0 0 0
I3, I3 0 0 1 0 0 0 0 0

Note: table with all the possible multiplicity regions for an example with intransitive
triads externalities. Each row represents a possible combination of realized shocks
that follow in one of three possible buckets as described in equation (3.4). Each
column represents the network structures that are possible equilibria. Position i, j
in the table equals one if the network configuration j is a possible equilibrium in the
multiplicity region i, and zero otherwise.

(−∞, 0]︸ ︷︷ ︸
I1

∪ (0, γ]︸ ︷︷ ︸
I2

∪ (γ,∞)︸ ︷︷ ︸
I3

. (3.4)

Table 3.1 presents all the possible equilibrium networks given that u13, u31 ∈ I1 and

u23, u32 ∈ I2. Each row represents a realization of the errors such that each dyad shock falls

into one of the three possible multiplicity regions. Intuitively, if the shocks are too small (both

u12 and u21 fall into I1), then it is always profitable for individuals to form connections, and

the only equilibrium network is d4. The same intuition holds for large values of the shocks

where the only possible equilibrium configuration is the empty network. When both shocks

fall into intermediate values (I2), multiple equilibria arises, both the empty and the complete

network are possible outcomes.

The primary identification idea is to separate the likelihood of the problem into all
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possible multiplicity regions and evaluate whether it is possible to identify the parameters

of interest for each of those regions. Identification in this context is in terms of observa-

tional equivalence; i.e., data distribution at the true parameter is different from that at any

other possible parameter value. We impose assumptions on equilibrium selection in terms

of multiplicity regions sufficient to point-identify utility function parameters and selection

probabilities from observational data on links. We separate N (d,u; θ) into two components.

One depends only on the network and multiplicity regions, while the other depends only on

the network and errors.

Assumption 18 (Equilibrium Selection Characterization). Let h0(d) be the true predeter-

mined probability distribution over the set of possible equilibrium networks DN .

The most critical part of Assumption 18 is the existence of a predetermined probability

distribution over the set of all possible equilibrium outcomes. Let Dm be the set of all

possible equilibrium networks within an arbitrary multiplicity region m ∈ M . Then, from

the definition of conditional probability, the true equilibrium selection distribution is such

that

N (d,u; θ0) =
∑
m∈M

h0(d)∑
d′∈Dm

h0(d′)
I{u ∈ m}g(d,u; θ0).

Therefore, Assumption 18 implies that the selection probability N (d,u; θ0) only de-

pends on X and utility components via the multiplicity regions. We interpret this proba-

bility distribution as nature determining what type of equilibrium is more likely given some

parameters and shocks. Because we are providing a non-parametric form for the selection

probabilities, we partially alleviate the potential misspecification issues raised in De Paula

(2013). A potential misspecification problem in our context would arise if the probability
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distribution h0(d) is indeed a function of any of the random variables X, A, B or U. Ac-

cordingly, the second part of Assumption 18 explicitly assumes that the first component of

the equilibrium selection distribution is independent of idiosyncratic shocks, the regressors,

and the degree heterogeneities. Finally, the equilibrium selection probability depends on u

because those shocks control the potential configurations that the network can take given a

set of parameters. In particular, the function g(d,u; θ) takes the form

g(d,u; θ) =
N∏
i=1

∏
j>i

[
I
(
Ai +Bj +W ′

ijλ+ γsij(d) ≥ uij
)
I
(
Aj +Bi +W ′

jiλ+ γsji(d) ≥ uji
)]dij

×
[
1− I

(
Ai +Bj +W ′

ijλ+ γsij(d) ≥ uij
)
I
(
Aj +Bi +W ′

ijλ+ γsij(d) ≥ uji
)]1−dij . (3.5)

Combining equation (3.3) with the definition of the equilibrium selection distribution

in Assumption 18, it follows that the likelihood of the problem can be written as

P (d; θ, h0) =

∫
u∈RN

∑
m∈M

h0(d)∑
d′∈Dm

h0(d′)
I{u ∈ m}g(d,u; θ)

N∏
i=1

∏
j ̸=i

fU (uij)u

=
∑
m∈M

h0(d)∑
d′∈Dm

h0(d′)

∫
u∈m

g(d,u; θ)
N∏
i=1

∏
j ̸=i

fU (uij)u

(3.6)

Notice that when the network d is not an equilibrium in the multiplicity region m and

the shocks u belong to that multiplicity region, the function g(d,u; θ) has to take the value

of zero. The reason is that, given our definition of multiplicity region, if u ∈ m and d is

not an equilibrium in m, then there exist a dyad ij such that it cannot be the case that

dij = 1 and Ai +Bj +W ′
ijλ+ γsij(d) ≥ uij at the same time or vice versa. For simplicity in



144

notation, let G(d,m; θ) =
∫
u∈m g(d,u; θ)

∏N
i=1

∏
j ̸=i fU (uij)u. It follows that the likelihood

can be represented as

P (d; θ, h0) =
∑
m∈M

h0(d)∑
d′∈Dm

h0(d′)
G(d,m; θ). (3.7)

The likelihood in (3.7) varies as a function of θ from the selection probability, the

density of u, and the shape of multiplicity regions. When testing for the existing of strategic

interactions, Pelican and Graham (2020) define the concept of bucket, which is a mapping

from the space of u to a collection of intervals that determine the connection behavior of

individuals i and j. In particular, Pelican and Graham (2020) argue that if the realization of

the shock uij falls into the outer buckets, then ij’s connection decision is uniquely determined,

while uij falling into the inner buckets opens the possibility for multiple equilibria. Following

Pelican and Graham (2020), we define buckets as follows.

Definition 6 (Buckets). Let sij(d) be an arbitrary type of network externality such that

sij(d) ∈ {s, . . . , s̄}, where s and s̄ are the minimum and maximum values that sij can take.

Then, an outer bucket is either the interval (−∞, µij + γs] or (µij + γs̄,∞), while the inner

buckets are (µij + γsk, µij + γsk+1] for all s ≤ sk < s̄.

Definition 6 states that the externality function is discrete and takes on finitely many

values between s and s̄. For example, when sij takes the form of the reciprocity externalities,

then s = 0 and s̄ = 1, while if sij is the intransitive triads externality function, then s = 0

and s̄ = N − 2. Example 3.2.1 presents a simple case where the definition of sij(d) allows

for a simple characterization of the multiplicity regions. In that example, the multiplicity

regions coincide with the buckets as defined by Pelican and Graham (2020). However, for
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a more general externality measure such as intransitive triads, in which sij(d) =
∑

k dikdkj,

the multiplicity regions will not coincide with the buckets. Even though the two measures

do not coincide, there is a tight relationship between them. All multiplicity regions are

composed of a countable number of buckets that also determine their shape. The following

Proposition formalizes this discussion.

Proposition 2 (Multiplicity Regions Characterization). Let b ∈ B be an arbitrary bucket,

where B is the set of buckets that partition the errors’ space RN . Then, b must be within one

and only one multiplicity region m ∈M , where b ⊆ m.

The proof of proposition 2 is relegated to 3.6. Instead, we provide an example with the

main intuition of the result. Example 3.2.2 shows the geometric intuition from the result in

proposition 2 for a simple case of three individuals when the taste for completing triangles

generates the externalities.

Example 3.2.2. Assume I3 = {1, 2, 3} with utility functions given by equation (3.1), where

sij(d) =
∑

k dikdkj. As shown in equation 3.5, individuals are only going to form connections

if their idiosyncratic shock is low enough. In particular, following definition 6, we can divide

the space of each uij shock into three components given by two outer buckets and one inner

bucket. Because there is only one possible intransitive triad for each dyad, then s̄ = 1. Figure

3.1 shows the set of all possible buckets for individuals 1, 2, and 3, where for simplicity, we

consider a bounded space of u. Panel (a) shows that the different cubes represent 27 possible

buckets in the three-dimensional graph, associated with either unique or multiple equilibria

(depending on whether the cubes are in the outer or inner buckets). Panel (b) in the same

figure shows all the possible equilibrium networks (up to isomorphisms).
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Figure 3.1: Multiplicity Regions and Possible Equilibrium Networks

u12

u13

u23

1

2

3 1

2

3

1

2

3 1

2

3

Panel (a) Panel (b)

Note: This example shows that multiplicity regions are composed by buckets. Moreover, it exemplifies
how multiple equilibria can arise when the utility function (3.1) includes externalities of the form sij(d) =∑

k dikdkj . Panel (a) displays the 3D space of the errors uij for individuals 1, 2, and 3. The blue cubes
represent different buckets that form a multiplicity region where only the empty network is an equilibrium.
Panel (b) shows all the possible equilibrium networks -up to isomorphisms- for this simplified example with
three individuals.

To exemplify the relationship between buckets and multiplicity regions, Panel (a) high-

lights in blue the cubes representing outer buckets for all individuals in which only the empty

network is an equilibrium outcome. Those blue buckets are all part of the same multiplicity

region (where only the empty network is an equilibrium outcome). In addition to being gen-

erated by the outer buckets, the empty network can also arise from an inner bucket with the

potential to generate multiple equilibria. For instance, the empty network can also occur in

the most inner cube (composed of inner buckets), where the empty and complete networks

are possible equilibria. This example shows that the same equilibrium outcome can belong to

different multiplicity regions composed of different buckets.
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The fact that multiplicity regions are made up of buckets guarantees invariability of

the shape of the areas for small changes in the parameters θ. Intuitively, changes in the

parameters θ can only affect the shape of the buckets, not the number of partitions of R.

Therefore, the number of multiplicity regions does not change when the parameters change.

The above discussion matters for identification because the invariability of the number of

multiplicity regions to changes in the parameters θ implies that the selection probabilities

are independent of changes in the parameters. The following Proposition shows that under

the proposed framework, the likelihood in (3.7) is locally identified.

Theorem 5 (Identification). Let Assumption 18 hold. Then, the true vector of payoff pa-

rameters θ0 and the selection probabilities hD0(d) are locally identified for all d from the

likelihood P (d; θ, h0) at (θ0, fD0) if the following matrix is full rank

∑
m



∂G(dN,1,m;θ)/∂γ∑
ℓ∈m h̄D(dN,ℓ)

−
G(dN,1,m;θ)

(
∑

ℓ∈m h̄D(dN,ℓ))
2 . . . −

G(dN,1,m;θ)

(
∑

ℓ∈m h̄D(dN,ℓ))
2 ... −

G(dN,1,m;θ)

(
∑

ℓ∈m h̄D(dN,ℓ))
2

.

.

.

.

.

.

.

.

.

.

.

.

h̄D(dN,j)∂G(dN,j,m;θ)/∂γ∑
ℓ∈m h̄D(dN,ℓ)

−
h̄D(dN,j)G(dN,j,m;θ)

(
∑

ℓ∈m h̄D(dN,ℓ))
2 . . .

(
∑

i̸=j h̄D(dN,i))G(dN,j,m;θ)

(
∑

ℓ∈m h̄D(dN,ℓ))
2 . . . −

h̄D(dN,j)G(dN,j,m;θ)

(
∑

ℓ∈m h̄D(dN,ℓ))
2

.

.

.

.

.

.

.

.

.

.

.

.

h̄D(dN,J )∂G(dN,J ,m;θ)/∂γ∑
ℓ∈m h̄D(dN,ℓ)

−
h̄D(dN,J )G(dN,J ,m;θ)

(
∑

ℓ∈m h̄D(dN,ℓ))
2 . . . −

h̄D(dN,J )G(dN,J ,m;θ)

(
∑

ℓ∈m h̄D(dN,ℓ))
2 . . .

(
∑

i̸=J h̄D(dN,i))G(dN,J ,m;θ)

(
∑

ℓ∈m h̄D(dN,ℓ))
2



where J = |D|, and we define h̄D(di) = hD(dN,i)/hD(dN,1) as the relative probability of dN,i

with respect to dN,1. We can only identify the relative selection probabilities because we have

the additional condition that
∑

d∈D h0(d) = 1. We chose the normalizing probability to be

hD(dN,1) with out lost of generality.

Theorem 5 shows that, in general, for an arbitrarily large population, the likelihood in 3.7

contains enough information to point-identify both the parameters of interest and selection

probabilities. However, in practice, it is unfeasible to construct a probability distribution over
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a sequence of relatively large networks. The issue is that the space of networks configurations

is excessively large even for a moderate number of nodes, such that finding two networks

that are isomorphic becomes impractical.3 To circumvent the issue, we propose to modify

the likelihood function in 3.7 to form a more tractable object. Details are given in Section

3.3.2.

3.3 Bayesian Algorithm

Before proceeding with a complete description of the Bayesian algorithm, it is informative

to understand the simple case with γ0 = 0. This will allow us to set the stage and introduce

our assumptions to obtain a tractable Bayesian specification of the estimation problem. In

this description, we work under the more general model where there are two sources of

unobserved heterogeneity A and B, but the procedure also applies to the special case where

A = B. These assumptions concern the unobservable A and B as well as their relationships

to covariates X. Specifically, in this context Pelican and Graham (2020) essentially treat A

and B as fixed effects in the sense that no assumptions are made about the distribution of

(A,B) conditional on X. On the other hand, we take a correlated random effects approach

(Mundlak, 1978; Chamberlain, 1982) that maintains the essential features of the problem

while making estimation more straightforward, particularly in a Bayesian framework.

3Obtaining an empirical analogue of a probability distribution over networks would require observing
the same network configurations many times to compute relative frequencies, which becomes even more
impractical.
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3.3.1 Simplified Version

Our results so far do not depend on the specific form of the distribution of idiosyncratic errors

fU(u). As mentioned previously, while a standard assumption in the network formation

literature is to specify this distribution as logistic, we instead assume that u is i.i.d. across

dyads with a standard normal distribution such that

fU(u) =
∏
i ̸=j

ϕ(uij) ,

where ϕ(·) is the standard normal density. Setting the variance of this distribution to unity

can be seen as an identifying restriction, which is standard in models with binary dependent

variables (see, e.g., pp. 476, Cameron and Trivedi, 2005).4 Indeed, as we only observe

whether a specific link was formed or not, all scalings of the idiosyncratic shocks will be

observationally equivalent.

Under our equilibrium concept, when γ0 = 0 the equilibrium selection distribution is

degenerate and places all of its mass at the only equilibrium network d that satisfies

dij = dji = I(Ai +Bj +W ′
ijλ ≥ uij)I(Aj +Bi +W ′

jiλ ≥ uji) i = 1, . . . , N ; j = 1, . . . , N ; i < j.

We introduce the following two assumptions on the distribution of (A,B) conditional on X.

Assumption 19 (Conditionally independent). For all i = 1, . . . , N and j = 1, . . . , N with

4The use of a standard logistic density in the network formation literature, which sets the variance of
uij equal to π2/3, is another such identifying restriction. Of course, other restrictions are possible, such as
fixing the value of one coefficient or the sum of the coefficients. However, these restrictions would impact the
meaning and interpretation of preference parameters, and so we choose to fix the variance of shocks instead.
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i ̸= j, it holds that (i) (Ai, Bi)⊥(Aj, Bj)|Xi, Xj and (ii) f(Ai, Bi|Xi, Xj) = f(Ai, Bi|Xi).

Assumption 20 (Correlated random effects). For all i, we have (Ai, Bi)|Xi ∼ N (ΦXi,Σ),

where Φ = [ϕ1 ϕ2]
′ is a 2 ×K matrix of coefficients and Σ is a 2 × 2 covariance matrix.

Assumption 19.(i) simply states that the in- and out-degree heterogeneity effects are

independent across individuals once you condition on the covariates of each dyad. Assump-

tion 19.(ii) then states that the joint distribution of these effects will only depend on each

individual’s covariates. Finally, Assumption 20 is a correlated random effects specification

for a network framework, similar to that in Mundlak (1978). This device is widely used

in nonlinear panel data methods in order to deal with unobserved heterogeneity (see, e.g.,

Chapter 11 of Wooldridge, 2010). In fact, Assumption 19.(i) together with linearity in the

conditional expectation of Ai and Bi, which is part of Assumption 20, is enough to satisfy

Assumption 19.(ii) without loss of generality. To see this, note that a more general device

such as that in Chamberlain (1980) would set (Ai, Bi)|Xi, Xj ∼ N (Φ1Xi + Φ2Xj,Σ) for

each dyad, where Φ1 = [ϕ11 ϕ12]
′ and Φ2 = [ϕ21 ϕ22]

′. However, as Ai and Bi never appear

together in the marginal utility equation for any individual i, we cannot identify both Φ1

and Φ2 separately; we can only identify their sum. Thus, we do not gain more flexibility by

including both sets of covariates.

Define u∗ij ≡ Ai + Bj + W ′
ijλ − uij for i = 1, . . . , N and j = 1, . . . , N with i ̸= j. Note

that, using Assumption 20, we can write Ai = X ′
iϕ1 + ai and Bi = X ′

iϕ2 + bi for all i, where

(ai, bi) ∼ N (0,Σ) and (ai, bi) is independent of X. Replacing into the definition of u∗ij, we

have

u∗ij = X ′
iϕ1 +X ′

jϕ2 +W ′
ijλ+ ai + bj − uij . (3.8)
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Following the way the elements of an adjacency matrix d ∈ DN are indexed, we can first

stack (3.8) across i for a given j to obtain

u∗−j = X−jϕ1 + ιN−1X
′
jϕ2 +W−jλ+ a−j + ιN−1bj − u−j, j = 1, . . . , N ;

where ιN−1 is an (N − 1)-dimensional vector of ones, u∗−j and a−j are N − 1-dimensional

vectors, X−j is a (N − 1) ×K matrix, W−j is a (N − 1) ×K2 matrix and we define

u∗−j =



u∗1j

...

u∗j−1,j

u∗j+1,j

...

u∗Nj



, X−j =



X ′
1

...

X ′
j−1

X ′
j+1

...

X ′
N



, W−j =



W ′
1j

...

W ′
j−1,j

W ′
j+1,j

...

W ′
Nj



, a−j =



a1

...

aj−1

aj+1

...

aN



, u−j =



u1j

...

uj−1,j

uj+1,j

...

uNj



.

We can then stack across the index j to obtain

u∗ = FXϕ1 +GXϕ2 +Wλ+ Fa+Gb− u ,

where u∗ and u are N(N − 1)-dimensional vectors, a and b are N -dimensional vectors, F

and G are N(N − 1) ×N matrices, X is a N ×K matrix, W is a N(N − 1) ×K2 matrix,
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u∗ =


u∗−1

...

u∗−N

 , F =


F−1

...

F−N

 , X =


X ′

1

...

X ′
N

 , W =


W−1

...

W−N

 , a =


a1

...

aN

 , b =


b1

...

bN

 ,

G = IN ⊗ ιN−1 and F−j is an identity matrix of order N with column j removed. Using

basis vectors ei ∈ RN that have a 1 at component i and zeros everywhere else, we can write

F−j = [e1 · · · ej−1 ej+1 · · · eN ]′.

Finally, we can condense the resulting expression by defining X̃ = [FX GXW ], H =

[F G], β = [ϕ′
1 ϕ

′
2 λ

′]′ and c = [a′ b′]′ to obtain

u∗ = X̃β +Hc− u . (3.9)

With these definitions, we see that the unique equilibrium network d satisfies dij = dji =

I(u∗ij ≥ 0) · I(u∗ji ≥ 0). As u∗ is a multivariate normal distribution conditional on X, β, c

and Σ, this is similar to a multivariate probit structure. Existing Bayesian algorithms such

as the data augmentation approach (Albert and Chib, 1993) are designed to deal with such

structures. We will take advantage of these methods for the algorithms we propose in this

paper. As a first step, we introduce u∗ as additional latent variables, which lets us define

the likelihood for this simplified problem as

P (d|u∗, β, c,Σ) =
N∏
i=1

∏
j>i

[I(u∗ij ≥ 0) · I(u∗ji ≥ 0)]dij [1 − I(u∗ij ≥ 0) · I(u∗ji ≥ 0)]1−dij (3.10)
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To complete a Bayesian specification of the problem, we let the joint prior distri-

bution be π(u∗, β, c,Σ) = π(u∗|β, c,Σ)π(β)π(c|Σ)π(Σ). First, note that u∗|β, c,Σ ∼

N (X̃β − Hc, IN(N−1)). Additionally, given Assumption 20, we have c|Σ ∼ N (0,Σ ⊗ IN).

For the remaining components, we will assume the standard conditionally conjugate priors

given as

β ∼ N (β,B) ,

Σ ∼ IW(v,Σ) ,

where IW is the inverse Wishart distribution. Symbols with an underline are prior hy-

perparameters and the updated (posterior) quantities will be denoted using an overline.

Combining the likelihood in (3.10) with these priors allows us to find the posterior distribu-

tion of all quantities of interest. For the coefficients β and random effects c, we can obtain a

joint posterior as π(β, c|u∗,Σ, d) = π(β|u∗,Σ, d)π(c|u∗, β,Σ, d). Standard updates (see, e.g.,

Chib, 2008) result in posteriors

β|u∗,Σ, d ∼ N (β̄, B̄) ,

c|u∗, β,Σ, d ∼ N (c̄, V̄ ) ,
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where

B̄ = (X̃ ′Ω−1X̃ +B−1)−1 ,

β̄ = B̄(X̃ ′Ω−1u∗ +B−1β) ,

V̄ = (H ′H + Σ−1 ⊗ IN)−1 ,

c̄ = V̄ H ′(u∗ − X̃β) ,

and we define Ω = IN(N−1) +H(Σ⊗ IN)H ′. For the posterior distribution of Σ, we introduce

a matrix version of c that simplifies the resulting expression; i.e., we define C = [a b] such

that vec(C) = c, where vec is the vectorization operator. Using this definition, we can obtain

Σ|u∗, β, c, d ∼ IW(v̄, Σ̄), where v̄ = v +N and Σ̄ = C ′C + Σ.

Finally, we need the posterior of u∗ conditional on the parameters and network d. From

(3.10), and given the conditional independence of u∗ across dyads, we have that for all

i = 1, . . . , N and j = 1, . . . , N with i < j

(u∗ij, u
∗
ji)|β, c,Σ, d ∼


T N [0,∞)×[0,∞)(µij, I2) if dij = dji = 1 ,

T N [R×(−∞,0)]∪[(−∞,0)×(0,∞)](µij, I2) if dij = dji = 0 ,

where T N S is a bivariate normal distribution truncated to set S, we define µij =

[x̃′ijβ − ai − bj, x̃
′
jiβ − aj − bi] and x̃ij is the ij-th row of X̃. As we have all conditional

posterior distributions for the quantities of interest, we can set up a Gibbs sampling algorithm

to obtain draws from the joint posterior distribution of interest.
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3.3.2 Full algorithm

The previous section assumed there were no externality effects by setting γ0 = 0 and ob-

tained the full posterior distributions of the preference parameters. However, this paper

aims to conduct inference in cases where γ0 ≥ 0, which, as mentioned previously, generates

externalities and complicates the estimation process. Like the previous section, we rely on

data augmentation by including the latent u∗ as part of our sampling scheme. Note that,

using (3.8), we can express the marginal utilities in (3.2) as

∆vij(d−ij;u
∗
ij) = u∗ij + γsij(d) (3.11)

In this way, we can separate the effects of degree-heterogeneity and homophily on marginal

utility from those of the externalities. Furthermore, we see that this simplifies our definitions

for buckets and multiplicity regions given in Section 3.2. That is, we can simply re-define

buckets and multiplicity regions from the support of original shocks u to the transformed

u∗. This change in definition modifies the buckets to be of the form (−∞, γs], (γs̄,∞), or

(γsk, γsk+1] for s ≤ sk < s̄, where µij is no longer relevant (this change in expectation is

included as part of the distribution of u∗ after the transformation). We can also update

our definitions of the equilibrium selection distribution N (·), as, conditional on u∗, all of

the multiplicity in equilibria come from the dyad-level shocks u∗ij falling into regions that

only depend on γ and the externality functions sij(d). With this change, this equilibrium
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selection distribution becomes

N (d,u; θ) = N (d,u∗; γ) =
∑
m∈M

h0(d)∑
d′∈Dm

h0(d′)
I(u∗ ∈ m)g(d,u∗; γ) (3.12)

where now

g(d,u∗; γ) =
N∏
i=1

∏
j>i

[
I
(
γsij(d) ≥ −u∗ij

)
I
(
γsji(d) ≥ −u∗ji

)]dij
×
[
1 − I

(
γsij(d) ≥ −u∗ij

)
I
(
γsji(d) ≥ −u∗ji

)]1−dij

(3.13)

These simple transformations arise because the number of multiplicity regions and their

relative ordering is independent of the preference parameters other than γ.5 Using these

definitions, we can re-express the joint distribution of d and u∗ as

P (d,u∗; θ) = N (d,u∗; γ)f(u∗|β, c,Σ) (3.14)

where the conditional distribution f(u∗|β, c,Σ) is multivariate normal as found in the sim-

plified version of the algorithm. Given the addition of γ, we modify our priors accordingly.

That is, we now specify π(u∗, β, c,Σ, γ) = f(u∗|β, c,Σ)π(β)π(c|Σ)π(Σ)π(γ), where π(γ) is

the prior distribution for the externality parameter γ. As we assume in our identification

results that γ ≥ 0, we can incorporate this restriction into our prior π(γ) by choosing a

distribution with support on the non-negative reals (e.g., a gamma distribution).

A crucial consequence of including the latent u∗ into our sampling scheme is that now

the likelihood (3.14) separates into two terms. The first term depends on the parameters only

5Indeed, c and β control the translation of each bucket through µij , while γ controls their widths.
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through γ, while the other preference parameters enter the likelihood through the second

term. This immediately implies that the conditional posterior distributions of β, c and Σ

will remain the same as in the simplified version of the algorithm given in the previous

subsection. To see this, note that the joint conditional posterior is

π(β, c,Σ|d,u∗, γ) ∝ N (d,u∗; γ)f(u∗|β, c,Σ)π(β)π(c|Σ)π(Σ)π(γ)

∝ f(u∗|β, c,Σ)π(β)π(c|Σ)π(Σ)

Thus, Gibbs sampling for β, c and Σ proceeds exactly as before once we obtain values of u∗

and γ. To complete our sampling scheme, we need to obtain the conditional posteriors for

u∗ and γ. For the former, write

π(u∗|d, β, c,Σ, γ) ∝ N (d,u∗; γ)f(u∗|β, c,Σ) (3.15)

=
∑
m∈M

h0(d)∑
d′∈Dm

h0(d′)
I(u∗ ∈ m)g(d,u∗; γ)f(u∗|β, c,Σ) (3.16)

To make sense of this expression, first note that from (3.13), g(d,u∗; γ) imposes constraints

on each pair (u∗ij, u
∗
ji), as they need to be such that they satisfy our equilibrium concept (for a

given equilibrium network d). Furthermore, this latent component of marginal utility should

be such that equilibrium solutions arising from u∗ (and conditional on γ) belong to the same

multiplicity region as d. Finally, as d can be an equilibrium network for several multiplicity

regions, the posterior of u∗ weights each of these regions according to the underlying network

distribution from Assumption 18. Putting everything together implies that the posterior of

u∗ is a mixture of truncated multivariate normals across multiplicity regions, with mixture
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weights given by the conditional probability of observing network d in each multiplicity

region.6

For the posterior of γ, we can similarly obtain

π(γ|d,u∗, β, c,Σ) = π(γ|d,u∗) ∝ N (d,u∗; γ)π(γ) (3.17)

This equation in a way evidences the inherent identification problem for γ, as conditional on

u∗, all identifying data information comes from the associated probabilities for each multiple

equilibria in N (d,u∗; γ). The remaining information comes purely from the prior.

The main issue in obtaining draws for u∗ and γ is that we must now find a way to

evaluate these equilibrium selection probabilities; i.e., we need to compute N (d,u∗; γ). As

this is unfeasible given the current setup, we introduce one further simplifying assumption

in the form of a composite likelihood that replaces the full likelihood (3.14) for sampling the

two remaining components.

3.3.3 Composite Likelihood Function

Let dK,k be the subgraph of size K induced by the network d. Construct the sequence of

N choose K subnetworks {dK,1, . . . ,dK,NK
}, where NK is the total number of subnetworks

that can be formed by forming all possible combinations of nodes of size K. Therefore, the

marginal probability of observing network d can be constructed by the joint probability of

observing the sequence of subnetworks {dK,1, . . . ,dK,NK
}. Under the assumption that each

subnetwork dK,k forms following the Pairwise Stability criteria in 4, the marginal likelihood

6If a network d cannot arise as an equilibrium network for shocks in multiplicity region m (i.e., d /∈ Dm),
then the associated mixture weight of multiplicity region m is 0 because u∗ /∈ m.
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of each subgraph will be given by

P (dK,k,uK,k; θ, h0) =
∑
m∈M

h0(dK,k)∑
d′
K,k∈Dm

h0(d′
K,k)

I(u∗
K,k ∈ m)g(dK,k,u

∗
K,k; γ),

for all the possible multiplicity regions M for subnetworks of size K, and for all k in

the sequence of NK subnetwokrs. Characterizing the joint distribution over the sequence

{dK,1, . . . ,dK,NK
} is also unfeasible. Instead, we follow the idea in Graham (2020) and pro-

pose a composite likelihood that is formed by multiplying the marginal distributions of NK

subgraphs forming dN

P (d,u∗; θ, h0) =

NK∏
k=1

P (dK,k,u
∗
K,k; θ, h0). (3.18)

The advantage of a composite likelihood is that, even though it fails to represent the

dependence structures across different subgraphs correctly, if the marginal distributions are

correctly specified, estimators for θ based on the composite likelihood are consistent for the

true population parameter (Cox and Reid, 2004; Varin et al., 2011). In addition, by choosing

values of K that make the space of potential network configurations manageable, it is possible

to provide a tractable probability distribution over the set of possible equilibrium networks.

Interestingly, when K → N , the composite likelihood in (3.18) collapses to (3.7), and we

are back to the situation where the identification of selection probabilities is an intractable

problem.
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3.4 Empirical Application

This section presents an empirical application that highlights the relevance and practicality

of our proposed Bayesian estimator. We use data from Banerjee et al. (2013), whose primary

objective is to study learning diffusion through social networks in the context of microfinance

participation for 77 villages in Karnataka, India. Banerjee et al. (2013) examines microfi-

nance take-up diffusion in a network, arguing that the information seed is exogenous because

it is decided by a third-party institution that is not explicitly maximizing any individual or

aggregate objective function. Interestingly, though, the authors acknowledge that the social

network is likely endogenous. They mention homophily reasons arguing that connected in-

dividuals tend to exhibit strong similarities. Additional strategic considerations can affect

individuals’ decisions to form connections, such as degree heterogeneity and payoff externali-

ties. Given the availability of granular and rich network information, our data is particularly

well-suited to investigate which channels are relevant for individuals to form social ties.

3.4.1 Network Data

The data comes from the Social Networks and Microfinance project, which contains the

publicly available data of participation in a program of Bharatha Swamukti Samsthe (BSS),

a microfinance institution (MFI) in rural southern Karnataka. The data were collected

in 2006 for 77 villages and included information of thirteen possible dimensions in which

individuals can be connected, including visiting each other, going to pray, borrowing and

lending money and goods, obtaining advice, and giving advice (Banerjee et al., 2013). The

data contain a village questionnaire and a complete census, including information on all
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villages’ households. Individuals’ characteristics include gender, age, religion, caste, sub-

caste, mother tongue, whether the individual is a village native, education, work frequency,

and occupations. There are two levels of aggregation in the data: individuals and households.

Given that our objective is to estimate the utility function parameters of individuals making

strategic choices, we will use the individual-level data to fit our model.

Regarding the construction of the social network, we follow Banerjee et al. (2013) when

defining our network of interest. We consider the connections to be undirected, so we use the

symmetric version of the adjacency matrices capturing the relationships between individuals.

Therefore, two individuals are neighbors in the network if at least one mentions the other as

a contact in response to some network question. Finally, instead of considering each of the

thirteen possibles ways people interact in these villages in a different network, we consider

two people linked if they mentioned each other in at least one type of relationship. Table 3.2

presents some summary statistics for the social networks of the 20 most populated villages

in the sample. The networks consistently show relatively high average degrees between ap-

proximately 8 and 10 connections. The levels of transitivity are across the board lower than

0.5, meaning that there are more incomplete triangles than complete ones. These transitiv-

ity values present initial evidence that individuals may not have a substantial payoff from

completing triangles (Jackson and Rogers, 2007). These networks also feature a relatively

high average shortest path length (distance) and many disconnected components. All these

attributes suggest highly clustered networks that are sparse across clusters.
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Table 3.2: Summary Network Statistics

Village Nodes Average Degree Transitivity Average Distance Components
60 1775 8.67 0.45 4.63 16
28 1612 9.40 0.52 4.36 18
59 1599 8.37 0.44 4.68 20
52 1525 10.28 0.36 4.13 12
71 1387 8.26 0.33 4.44 13
3 1380 7.78 0.35 4.36 21
39 1339 8.96 0.45 4.29 14
29 1337 7.61 0.39 4.53 21
65 1331 9.22 0.30 4.09 11
25 1313 9.33 0.46 4.21 10
64 1286 8.67 0.46 4.46 10
46 1257 7.71 0.39 4.55 12
23 1252 8.40 0.39 4.27 19
36 1214 8.61 0.31 4.07 21
32 1181 9.42 0.42 4.10 15
55 1180 7.84 0.48 4.84 12
76 1154 8.15 0.45 4.48 13
18 1146 9.10 0.38 4.13 5
19 1134 9.19 0.40 4.18 5
40 1097 7.89 0.40 4.58 11

Note: table with the network statistics for the 20 most populated villages out of the
77 villages in the data. The average distance is calculated as the maximum distance
in all possible connected components.
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3.4.2 Data on Individual Characteristics

The Social Networks and Microfinance project also includes a battery of variables charac-

terizing individuals in the villages. We have information on gender, individuals’ role in the

household (head of the household, spouse of the head, or other), age, religion, cast, sub-cast,

languages that the individuals speak, working status, saving behavior, and participation in

the financial market. We choose a subset of those characteristics to construct our homophily

measure in equation Wi,j from Equation (3.5). In particular, we use the working status,

gender, individuals’ role in the household, cast, and whether or not the individual is native

from the village and construct a set of dummy variables. Using this information, the measure

of homophily is whether two individuals match in the value of each of the dummy variables.

If they match, the homophily variable takes the value of zero and the value of one if they

mismatch.

3.4.3 Subgraphs and Selection Probabilities

As we argue in Section 3.2.3, it is untractable to estimate probability distribution over a

sequence of large networks in practice. The data we are using contains large networks for

each village, with a sample size between 780 and 1775 nodes. Section 3.3.3 presents a

solution for this practical issue based on the idea of subgraphs and composite likelihoods.

One relevant parameter that we need to choose is the number of subgraphs K. As argued by

Graham (2017), working with subgraphs of size four (tetrads) provides enough variation to

identify homophily parameters while at the same time having the the advantage of yielding

a criterion function that is easy to evaluate and maximize. Tetrads subgraphs also contain
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enough nodes to provide variation in the number of complete and incomplete triads. Based

on these arguments, we choose K = 4 to perform our Bayesian estimation algorithm. An

additional convenient feature of working with tetrads, is that it is possible to completely

characterize all the possible configuration of the subnetworks. Figure 3.2 presents the 11

unique isomorphism classes in which tetrads can be wired.

Selection Probability Estimator

Based on the 11 isomorphism classes in Figure 3.2 and under Assumption 18, it is possible

to non-parametrically estimate the selection probabilities for each isomorphism given the

observation of one large network. We compute the estimator as follows: given the obser-

vations of a sampled network d of size n, construct the sequence of n choose 4 possible

tetrads in the network and calculate the frequency of each isomorphism. The frequency

values are our estimator for the predetermined probabilities h0(d4,k). After estimating the

predetermined probabilities, conditional on the form of the externality component sij(d), it

is possible to form the buckets as defined in 6, construct the multiplicity region following

proposition 2, and form the quotient h0(d4,k)/
∑

d′∈Dm
for each multiplicity region m. For

instance, if sij(d) is the test for completing triangles externality, for each tetrad, there are a

total of three values for the possible number of intransitive triads for individual i. Following

the same idea as in equation 3.4, it is possible to construct four buckets. Given that the links

are undirected, there are six possible ways in which the tetrads adjacency matrices’ upper

triangular elements can be arranged that can be mapped to the isomorphism. Therefore,

there are 4,096 possible combinations of matrix configurations and buckets, and we can know

exactly to what bucket each isomorphism belongs.
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Figure 3.2: Tetrads Isomorphisms
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Note: each of the graphs represent one possible tetrad configuration. A tetrad can be wired in up
to 64 different ways, but the 11 configurations in this figure are the unique isomorphism classes.
Any tetrad can be represented by one of the graphs in this figure up to rotating indexes (Graham,
2017).
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Table 3.3: Estimators of Tetrads Probabilities

Tetrad Village 60 Village 28 Village 59
Empty 0.324 0.352 0.358
One Edge 0.449 0.471 0.476
Two Edge 0.049 0.049 0.048
Two Star 0.061 0.047 0.047
Triangle 0.068 0.064 0.056
Four Path 0.009 0.006 0.006
Three Star 0.002 0.001 0.001
Four Cycle 0.000 0.000 0.000
Tailed Triangle 0.007 0.005 0.005
Chordalcycle 0.001 0.001 0.001
Clique 0.029 0.004 0.002

Note: table with the non-parametric estimates of the tetrads probabilities based
on the three villages with larger sample sizes. We compute the n choose 4
sequence of tetrads where n represents the number of nodes in each village, and
then use that sequence to calculate the proportions of each tetrad isomorphisms.

Table 3.3 presents the estimates of the predetermined probability of each tetrad iso-

morphism for the three villages with the larger sample sizes. The one Edge is the most

likely configuration to emerge, followed by the Empty isomorphisms. These two network

configurations are the most sparse among all possible isomorphisms, suggesting that our

sample’s social networks are relatively sparse. This result is consistent with the relatively

low transitivity index and the large average distance from the network statistics presented in

Table 3.2. Based on the predetermined probabilities shown in Table 3.3, it is then possible

to calculate the relative frequency of each isomorphism with respect to the other network

configurations that belong to its multiplicity region. Again, that calculation depends entirely

on the specification of the payoff externality form in sij(d).
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3.4.4 Empirical Results

This section presents the empirical results of estimating the network formation rule described

in section 3.2.1 without the presence of payoff externalities. These estimators can be seen

as the Bayesian-Correlated Effects version of the tetrads fixed effects maximum likelihood

estimator proposed by Graham (2017). We focus on the results for the homophily parame-

ters where we fit the network formation model using the observed characteristics described

in section 3.4.2. Table 3.4 presents the means and standard deviations of the homophily

parameters for work status, gender, head of the household, spouse of the head, casts, and

native variables. We focus only on village 60, which contains the largest sample size among

all villages.

We find strong evidence of homophily for most of the characteristics in our analysis.

The most substantial homophily effects happen among the same gender and working status

of villagers. These results have repercussions in the context of learning dynamics because the

shape of the network critically depends on the characteristics of the individuals. Therefore,

we can expect to see higher levels of information transition across similar people, which can

affect policies determining interventions such as injection points (Banerjee et al., 2013).

3.5 Conclusion

This paper provides a novel approach to identify and perform inference on the utility function

parameters of a network formation model with payoff externalities. Our identification results

rely on the assumption that there is a predetermined probability distribution over the set of

all possible equilibrium networks. Under this assumption, we can characterize the selection
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Table 3.4: Mean and Standard Deviation for the Posterior Distribution of λ

Mean Standard Deviation
Different Work Status -0.012 0.006
Different Gender -0.043 0.023
Head of the Household/Others 0.007 0.076
Spouse of the Head/Others -0.011 0.078
Different Caste -0.011 0.006
Native and Non-Native -0.012 0.006

Note: the table presents the mean and standard deviation for the posterior
distribution of λ using the Bayesian algorithm described in section 3.3.1. The
posterior distribution takes into account the fact that there may exists degree
heterogeneity in the network formation rule.

probabilities relying on the fact that the space of idiosyncratic payoff shocks and the type

of payoff externalities determine entirely the regions where multiple equilibria happen–we

call them multiplicity regions. With the characterization of the selection probability, we

show that the payoff parameters of interest are identified from the likelihood function that

aggregates the likelihoods of observing a network across different multiplicity regions.

We propose a Bayesian algorithm to estimate the parameters of interest. The use of

Bayesian methods allows us to sidestep the issue of high-dimensional numerical integration.

It also enables us to address the potential problem of statistical dependence in large networks

because it does not rely on asymptotic theory to conduct inference. Because we recover the

posterior distribution of the parameters of interest, we can perform statistical inference

based on that distribution. One potential issue when translating the identification results

to the estimation method is that it is unfeasible to construct a probability distribution

over a sequence of relatively large networks in practice. We address this issue by building a

composite likelihood based on the marginal distribution of all the possible subgraphs forming
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the network of interest.

Using the proposed estimation methods, we present an empirical application to model

the network formation process of individuals creating social connections in villages in Kar-

nataka, India (Banerjee et al., 2013). We characterize the probability distribution of tetrads

subgraphs for the social networks and use our Bayesian algorithm to estimate the homophily

effects. We find strong evidence of homophily for most of the characteristics in our analysis.

The most substantial homophily effects happen among the same gender and working status

of villagers.

3.6 Appendix: Proofs of Main Results

Proof of Proposition 2. We prove this proposition by contradiction. Assume there exists a

bucket b and two multiplicity regions m1 and m2, such that b∩m1 = b1 and b∩m2 = b2. By

the definition of multiplicity region, there must exist some network equilibrium d such that

d ∈ m1 and d /∈ m2. Thus, we have d ∈ b1 and d /∈ b2, which is a contradiction.

Proof of Theorem 5. Let h̄D(di) = hD(dN,i)/hD(dN,1) be the relative probability of dN,i with

respect to dN,1, where hD(dN,1) was chosen as the normalizing probability without lost of

generality. Defining J = |D|, the likelihood function of the problem in equation (3.7) can be

written as a system of equation as follows
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P (d1,N ;hD, θ) =
∑
m∈M

1∑
ℓ∈m h̄D(dN,ℓ)

G(dN,1,m; θ),

...

P (dN,j;hD, θ) =
∑
m∈M

h̄D(dN,j)∑
ℓ∈m h̄D(dN,ℓ)

G(dN,j,m; θ),

...

P (dN,J ;hD, θ) =
∑
m∈M

h̄D(dN,J)∑
ℓ∈m h̄D(dN,ℓ)

G(dN,J ,m; θ).

Without lost of generality, we assume there is one multiplicity region for the rest of the proof.

We take the total differentiation of both sides of the system of equations defined before to

get
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∆P (dN,1;hD, θ) =
1∑

ℓ∈m h̄D(dN,i)

[∑
ij

∂G(dN,1)

∂Wijλ
Wij∇λ+

∂G(dN,1)

∂γ
∆γ

]

−
J∑

l=1

G(dN,1; θ)

(
∑

ℓ∈m h̄D(dN,ℓ))2
∆h̄D(dN,l)

...

∆P (dN,j;hD, θ) =
h̄D(dN,j)∑
ℓ∈m h̄D(dN,i)

[∑
ij

∂G(dN,j)

∂Wijλ
Wij∇λ+

∂G(dN,j)

∂γ
∆γ

]

+
G(dN,j; θ)∑
ℓ∈m h̄D(dN,ℓ)

∆h̄D(dN,j)

−
J∑

l=1

h̄D(dN,j)G(dN,j; θ)

(
∑

ℓ∈m h̄D(dN,ℓ))2
∆h̄D(dN,l)

...

∆P (dN,J ;hD, θ) =
h̄D(dN,J)∑
ℓ∈m h̄D(dN,i)

[∑
ij

∂G(dN,J)

∂Wijλ
Wij∇λ+

∂G(dN,J)

∂γ
∆γ

]

+
G(dN,J ; θ)∑
ℓ∈m h̄D(di,N)

∆h̄D(dN,J)

−
J∑

l=1

h̄D(dN,J)G(dN,J ; θ)

(
∑

ℓ∈m f̄D(dN,i))2
∆h̄D(dN,l)

The identification idea is then to show that when the total derivative of the likelihood

function equals zero, the vector of parameters θ and the selection probabilities hD(d) do not

vary. Let ∆P (dj; fD, θ) = 0 for all j = 1, ..., J . Defining the following matrix,
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A =



∂G(dN,1)

∂γ
− G(dN,1;θ)∑

ℓ∈m h̄D(dN,ℓ)
. . . − G(dN,1;θ)∑

ℓ∈m h̄D(dN,i)
. . . − G(dN,1;θ)∑

ℓ∈m h̄D(dN,ℓ)

...
...

...
...

...
...

h̄D(dN,j)
∂G(dN,j)

∂γ
− h̄D(dN,j)G(dN,j ;θ)∑

ℓ∈m h̄D(dN,ℓ)
. . .

(
∑

i̸=j h̄D(dN,i))G(dN,j ;θ)∑
ℓ∈m h̄D(dN,ℓ)

. . . − h̄D(dN,j)G(dN,j ;θ)∑
ℓ∈m h̄D(dN,ℓ)

...
...

...
...

...
...

h̄D(dN,J )
∂G(dN,J )

∂γ
− h̄D(dN,J )G(dN,J ;θ)∑

ℓ∈m h̄D(dN,i)
. . . − h̄D(dN,J )G(dN,J ;θ)∑

ℓ∈m h̄D(dN,i)
. . .

(
∑

ℓ ̸=J h̄D(dN,i))G(dN,J ;θ)∑
ℓ∈m h̄D(dN,i)


,

the system of equations defined before can be represented in matrix form as

A



∆γ

∆h̄D(dN,2)

...

∆h̄D(dN,J)


=



−
∑

ij
∂G(dN,1)

∂Wijλ
Wij∇λ

−h̄D(dN,2)
∑

ij
∂G(dN,2)

∂Wijλ
Wij∇λ

...

−h̄D(dN,J)
∑

ij
∂G(dN,J )

∂Wijλ
Wij∇λ


,

Under the full rank assumption the matrix A is invertible. Given that Wij are random

variables, we have that ∆P (dj; fD, θ) = 0 for all j = 1, ..., J if and only if ∇λ = 0, and



∆γ

∆h̄D(dN,2)

...

∆h̄D(dN,J)


= 0,

where 0 is a vector of zeros. Therefore, the vector of parameters θ and hD(dN) for all d ∈ DN

are locally identified from the likelihood P (dN ;hD, θ) at (hD0, θ0).
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3.7 Appendix: Equilibrium in Directed Networks

In this section we show that our identification results are consistent with a network formation

model where individuals can choose undirected links. We follow the model by Pelican and

Graham (2020) where individuals form directed links based on a payoff function that includes

preferences over other individuals’ positions in the network. As in the main text, individual’s

utility from the network configuration is determined by

νi (di,d−i;U) =
∑
j

dij [Ai +Bj +X ′
iΛ0Xi + γ0sij(d) − Uij] , (3.19)

where the components of the utility are described in the main text (equation (3.1)). We

assume a game of complete information where individual i observes {Ai, Bi, X
′
i}Ni=1 and

{Uij}i ̸=j, then decides what N − 1 agents she will send links to. Following the literature of

directed network formation, we use the Nash Equilibrium (NE) solution concept. A pure

strategy NE corresponds to a strategy d∗ such that νi
(
d∗
i ,d

∗
−i,u

)
≥ νi

(
di,d

∗
−i,u

)
.

Based on the marginal utility defined in equation (3.2) in the main text, an observed

Nash Equilibrium network is one that satisfies the following N(N − 1) set of non-linear

equations:

dij = I
(
Ai +Bj +W ′

ijλ+ γ0sij(D) ≥ uij
)
,

for i = 1, . . . , N and i ̸= j. Following Miyauchi (2016) and Pelican and Graham (2020), we

define the mapping φ(d) : DN → IN(N−1) as
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φ(d) ≡



I (∆ν12 (di,d−i;uij) ≥ 0)

I (∆ν13 (di,d−i;uij) ≥ 0)

...

I (∆νNN−1 (di,d−i;uij) ≥ 0)


,

and use Tarski’s (1955) fixed point theorem to argue that for γ0 ≥ 0, and equilibrium exists

and the set of all equilibria constitutes a non-empty complete lattice (see Proposition 1 in

Miyauchi (2016)). An important insight is that the change in equilibrium concept does

not change the idea of multiplicity regions in definition 5. The reason is that multiplicity

regions definition takes any arbitrary equilibrium concept as its input, and serves as a way to

partition the space of shocks u. Therefore, the likelihood of observing a network dN under

the Nash Equilibrium concept, can also be written as in equation (3.20) in the main text

P (dN ; θ) =
∑
m∈M

hD(dN)∑
i∈m hD(dN,ℓ)

∫
uN∈RN

I{uN ∈ m}g(dN ,uN ; θ)
∏
i ̸=j

fU (uN,ij) duN , (3.20)

where in this case the function g(dN ,uN ; θ) takes the form

g(dN ,uN ; θ) =
∏
i

∏
j

I
(
Ai +Bj +W ′

ijλ ≥ uij
)dij × I

(
Ai +Bj +W ′

ijλ < uij
)1−dij

to be consistent with the Nash Equilibrium solution concept. Given that the likelihood

function can be still separated into a weighted sum of multiplicity regions probability masses,
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the identification result in 5 also holds for the directed network formation game.
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Manta A, Ho ATY, Huynh KP, Jacho-Chávez DT. 2021. Estimating social effects in a

multilayered linear-in-means model with network data. Unpublished Manuscript.

Mas A, Moretti E. 2009. Peers at work. American Economic Review 99: 112–45.

McCulloch RE, Polson NG, Rossi PE. 2000. A bayesian analysis of the multinomial probit

model with fully identified parameters. Journal of Econometrics 99: 173–193.

McFadden D. 1989. A method of simulated moments for estimation of discrete response

models without numerical integration. Econometrica : 995–1026.

Mele A. 2017. A structural model of dense network formation. Econometrica 85: 825–850.

Miguel E, Kremer M. 2004. Worms: Identifying impacts on education and health in the

presence of treatment externalities. Econometrica 72: 159–217.

Milgrom P, Roberts J. 1990. Rationalizability, learning, and equilibrium in games with

strategic complementarities. Econometrica: Journal of the Econometric Society : 1255–

1277.

Miyauchi Y. 2016. Structural estimation of pairwise stable networks with nonnegative ex-

ternality. Journal of Econometrics 195: 224–235.

Moffitt RA. 2001. Policy interventions, low-level equilibria and social interactions. In Durlauf

S, Young P (eds.) Social Dynamics. MIT Press, 45–82.

Mundlak Y. 1978. On the Pooling of Time Series and Cross Section Data. Econometrica

46: 69–85.

Newey WK, West KD. 1987. A simple, positive semi-definite, heteroskedasticity and auto-

correlation consistent covariance matrix. Econometrica 55: 703–708.

Nicoletti C, Rabe B. 2019. Sibling spillover effects in school achievement. Journal of Applied

Econometrics 34: 482–501.

Nicoletti C, Salvanes KG, Tominey E. 2018. The family peer effect on mothers’ labor supply.

American Economic Journal: Applied Economics 10: 206–234.



184

Pelican A, Graham BS. 2020. An optimal test for strategic interaction in social and economic

network formation between heterogeneous agents. Technical report, National Bureau of

Economic Research.

Qu X, Lee LF. 2015. Estimating a spatial autoregressive model with an endogenous spatial

weight matrix. Journal of Econometrics 184: 209–232.

Sacerdote B. 2001a. Peer effects with random assignment: Results for dartmouth roommates.

Quaterly Journal of Economics 116: 681–704.

Sacerdote B. 2001b. Peer effects with random assignment: Results for dartmouth roommates.

The Quarterly journal of economics 116: 681–704.

Sacerdote B. 2014. Experimental and quasi-experimental analysis of peer effects: two steps

forward? Annu. Rev. Econ. 6: 253–272.

Salmivalli C. 2020. Bullying and the peer group: A review. Aggression and Violent Behavior

15: 112–120.

Sheng S. 2020. A structural econometric analysis of network formation games through

subnetworks. Econometrica 88: 1829–1858.

Tarski A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific journal

of Mathematics 5: 285–309.

Topkis DM. 1979. Equilibrium points in nonzero-sum n-person submodular games. Siam

Journal on control and optimization 17: 773–787.

Varin C, Reid N, Firth D. 2011. An overview of composite likelihood methods. Statistica

Sinica : 5–42.

Wooldridge JM. 2010. Econometric Analysis of Cross Section and Panel Data. MIT Press,

second edition edition.

Zacchia P. 2019. Knowledge Spillovers through Networks of Scientists. The Review of Eco-

nomic Studies 87: 1989–2018.


	Instrumental Network Estimation of Social Effects
	Introduction
	Preliminaries
	Peer Effects Model and Identification
	Estimation
	Monte Carlo Experiments
	Application to Publication Outcomes in Economics
	Multiplex Network Data

	Conclusion
	Appendix: Proofs of Main Results
	Appendix: Proofs of Auxiliary Results
	Appendix: Robustness and Additional Empirical Results

	Estimation of Multilayered Networks Effects with Observational Data
	Introduction
	Background
	Multilayer Linear-in-Means (MLiM) Model
	Examples

	Identification
	Multilayer Measure of Distance
	Network Dependence
	Example of a Network Formation Model
	Identification Result

	Estimation
	Covariance Matrix Estimation

	Monte Carlo Simulations
	Application to Publication Outcomes in Economics
	Conclusion
	Appendix: Proofs of Main Results
	Appendix: Proofs of Auxiliary Results
	Appendix: Multilayer Shortest Path Algorithms
	Appendix: Additional Simulation and Estimation Results 

	Inference in Network Formation Models with Payoff Externalities
	Introduction
	Network Formation Model and Identification
	Network Formation
	Population Assumptions
	Identification

	Bayesian Algorithm
	Simplified Version
	Full algorithm
	Composite Likelihood Function

	Empirical Application
	Network Data
	Data on Individual Characteristics
	Subgraphs and Selection Probabilities
	Empirical Results

	Conclusion
	Appendix: Proofs of Main Results 
	Appendix: Equilibrium in Directed Networks 


