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Abstract 
 

 
The Epigenetics of Aging: Exploring Biomarkers and the Interplay Within the Aging 

Epigenome 
 

By Crystal Deloris Grant 
 
 
The process of aging is poorly understood yet age remains the main predictor of physiological 
decline and disease development in humans. Aging is marked by widespread, reproducible 
changes to the epigenome. The most studied epigenetic modification is DNA methylation 
(DNAm), which shows robust, genome-wide changes with age. These DNAm changes have 
been used to construct highly accurate blood-based models of chronological age. Using these 
models, it was found that individuals with a predicted DNAm age higher than their actual 
chronological age are at increased risk of all-cause mortality. This measure, termed the 
participants’ epigenetic age acceleration, may then serve as a proxy for some measures of 
health. First, I present a study of how this age acceleration term contributes to longitudinal 
models of phenotypes associated with Type II Diabetes (T2D)—an age-related disease. I 
found that this epigenetic age acceleration term remained stable over the 16 years the 
participants were sampled, and that this term does associate with risk factors for T2D. Our 
results suggest that DNAm has the potential to act as a mediator between aging and diabetes-
related phenotypes, or alternatively, that it may serve as a biomarker of these phenotypes. 
Next, I present work that aimed to uncover how variability in DNAm with age may be useful 
in modeling risk for developing adverse age-related phenotypes. I identified age-related 
variably methylated cytosines, then used these sites to construct a score indicating the amount 
of epigenetic drift an individual was undergoing. Though this score did not appear to 
contribute significantly to longitudinal models of aging phenotypes or mortality risk, other 
biomarkers that incorporate information about DNAm variability maybe be informative. 
Lastly, looking to other levels of the epigenome as part of a pilot study, I characterized changes 
in chromatin accessibility and three histone modifications with age. This led to the 
identification of regions of age-related change as well as the observation of which histone 
modifications can be informative in future aging studies. My dissertation work sheds light on 
which types of epigenetic changes can be used to inform biomarkers of biological aging, 
informing future studies of the epigenetics of aging.  
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Chapter I: Introduction  
 
Epidemiology of Aging 

There is a single phenomenon that is the most profound risk factor for nearly all non-

communicable diseases afflicting humans—that phenomenon is aging. Despite the concept of 

aging and the changes that accompany it being familiar to all who undergo it, at the biological 

level, aging is not fully understood by humans.1  Aging is a complex process characterized by 

the time-dependent, generalized decline in function of an organism, decreasing its fitness. This 

increasing dysregulation increases an organism’s susceptibility to stress, disease, and injury, 

ultimately leading to mortality. Age is the main risk factor for disease development in 

humans;2,3 in many countries, age-related diseases like cardiovascular diseases, diabetes, cancer, 

and neurodegenerative disorders are among the dominant health problems faced by the 

population.4 Considering the negative influence of aging on an organism’s fitness and ability 

to reproduce, it is paradoxical that such a process would evolve to exist in nearly all living 

organisms. While many theories have been proposed to explain the paradox of aging,5 the 

process remains poorly understood.1  

Worldwide, the population aged 65 years and older is growing rapidly, with a 150% 

expansion projected over the next few decades.6 The over 65 population worldwide is expected 

to jump from approximately 130 million in 1950 to an estimated 1.6 billion by 2050.7 This is 

due not to a slowing of the aging process, as this rate appears stable across populations and 

periods of time,8  but instead can be attributed to an increase of the number of individuals 

surviving to later stages in life. Despite these recent global gains in life expectancy, age-related 

disease burden and the incidence of chronic disabilities remain high.9 Considering that in many 

economically-developed countries, much of the costs of both health and social care occur in 

the final decades of an individual’s life,10 these shifting population demographics could cause 

severe economic and societal ramifications. Without intervention, the proportion of 
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individuals afflicted with chronic age-related diseases, including those with co-occurrences of 

multiple chronic conditions, termed comorbidity, will continue to increase.11 Thus, as the 

human lifespan continues to increase, interventions to ensure that this time is spent in good 

health are vital.  

The number of years spent in good health is termed the healthspan.9 Among the aging 

population, healthspan remains highly variable, with some maintaining good health 

throughout their lives while others fall ill.3 Thus, it is not necessarily the case that all who age 

are destined for sickness. Differential susceptibility to age-related diseases can be attributed to 

biological differences between individuals, which work to modify disease risk.12 Because aging 

is highly reflective of an individual’s biology—incorporating  everything from an individual’s 

genetics, life style choices and behaviors, diet, environment, and stochastic factors, it is a highly 

individual process. Part of what complicates the study of aging is that aging is highly multi-

factorial, both in the factors that affect it and those that are influenced by it. It is not the case 

that one system goes awry in the process of aging; instead, all biological systems reflect 

dysregulation in distinct yet interrelated ways.13 

The adverse health outcomes associated with aging begin at the molecular level. The 

accumulation of damage and increased dysregulation impairing individuals’ ability to repair 

damage leads to compromised cell and tissue function, manifesting as the characteristics 

commonly observed in aging.9,14 The following are considered the nine hallmarks of aging: 

genomic instability, telomere attrition, loss of proteostasis, deregulated nutrient sensing, 

mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular 

communication, and epigenetic alterations.13 The breadth of these hallmarks reflect both the 

complexity of aging—in that it is the case of multiple mechanism going awry in parallel instead 

of a single point of failure, as well as the interrelatedness of contributors to the phenomenon 
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of aging. Additionally, while some ground has been broken in studying aging by characterizing 

interventions and genotypes that lead to longer lifespans in model organisms,15,16 the 

translation to clinical and behavioral interventions that can be made by humans has been 

minimal. This underlies both the importance of leveraging network theories of aging in 

which molecular, cellular, and systemic level changes are integrated,17 and the utility of human 

epidemiological studies in better understanding aging at a fundamental level and using this 

understanding to improve health. 

 
 
Biomarkers of Aging 

Biomarkers are medical signs used to objectively indicate biological processes 

underlying a patient’s health in the absence of symptoms of disease.18 Examples of biomarkers 

include simple, non-invasive measures such as a patient’s pulse or blood pressure, through to 

more complex laboratory tests requiring clinical samples of blood or other tissues. The clinical 

utility of a biomarker is dependent on its high levels of reproducibility and accuracy in 

predicting the incidence or outcome of disease in individuals across different demographics 

and populations.19 Considering the link between aging and disease risk in humans, biomarkers 

specifically predictive of the aging process would be highly valuable. These biomarkers would 

inform both what phenotypes are consistent with the normal, healthy aging process as well as 

contribute to personalized medicine, a method of clinical practice that uses new technologies 

to provide individualized medical decisions regarding the prediction, prevention, and 

treatment of disease.20 In short, an accurate biomarker of the aging process could transform 

the field of personalized medicine by aiding in early diagnosis and identifying at-risk patients 

to whom medical interventions would be most efficacious—ultimately lowering healthcare 

costs and improving health outcomes.21 

  A Biomarker of Aging (BoA) is a measurable indicator of the biological age of an 
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organism, in the absence of disease.22 Biological aging refers to the change over time to 

biological processes in an organism; this differs from chronological aging, which is defined 

solely by the passage of time.2,22 Thus, aging can be viewed as a process occurring at different 

rates for different individuals, irrespective of the actual passage of time. The American 

Federation for Aging Research, in proposing their criteria for a BoA, suggest that it: be able 

to predict the rate of aging, monitor the aging process in the absence of disease, be functional 

in model organisms, and can be performed repeatedly on a subject without harm.23 Developing 

such a marker has been the focus of many recent studies with the goal of optimizing 

healthspan and longeveity.24,25 

Many candidate BoA have been developed that assay aging at different levels. One 

study, using photographs of individual’s faces, asked subjects to rate them on their perceived 

age. This perceived age based on a photograph was found to associate with the biological age 

measure in the cohort of young individuals of the same chronological age.26 Moreover, this 

perceived age based on photographs was even found to predict mortality in monozygotic (MZ) 

twins aged ≥70 years, finding that the greater the difference in perceived age, the more likely 

that the older-looking twin died first.27 Many other candidate biomarkers relying on physical 

indicators of health have been found to predict morbidity and mortality well, including walking 

speed, grip strength, forced expiratory volume, and more.17 Biomarkers that rely on molecular 

indicators of health, including circulating C-reactive protein, creatinine, and fasting glucose,7 

have also been developed and are useful in indicating health status, though no single 

measurement has yet been found to accurately capture biological age.28 

By definition, biomarkers of biological age should be better indicators of overall health 

than chronological age.22,26 Despite age being the main risk factor in disease development, 

individuals of the same age who share nearly identical genomes at birth can be discordant for 
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disease development. These cases, involving MZ twins, suggest that in addition to accounting 

for an individual’s genome in indicating their risk of an age-related disease, a BoA must also 

account for other factors influencing an individual’s health. Thus, a way to improve existing 

biomarkers is by incorporating an individual’s genetic information in addition to their distinct 

interactions with their environment by including epigenetic data.  

 
 
Epigenetics 
Introduction 

The term epigenetics, coined in 1942 by Conrad Waddington,29 refers to biological 

events and phenotypes not wholly explained by genetic principles. Epigenetics represents the 

bridge between genotype and phenotype, encompassing the changes in gene products and 

cellular phenotypes in the absence of changes to the DNA sequence itself.30 Epigenetic 

alterations have the potential to be reversible, making them a promising tool in personalized 

medicine involved targeted epigenetic therapies.31 Additionally, they are dynamic, serving as a 

response to both intra-and extra-cellular stimuli.32 It is this plasticity that allows for cellular 

diversity in organisms; though each cell possesses essentially the same genetic sequence, 

through epigenetic alterations, distinct cellular identities are established from the same genetic 

material.33 The coordinated epigenetic changes in somatic cells are vital for proper organismal 

development, and the erasure of these changes in the germline vital for reproduction.34 It is 

the establishment and stable passage of these alterations during cellular division that allow 

different tissues to maintain their cellular identities. Epigenetic changes can be influenced by 

genetics, mediated by an organism’s interaction with its environment, and can occur 

stochastically as a result of drift.35 Thus, it is the epigenome’s mutability that empowers it to 

mediate necessary changes from the, largely immutable, genetic code and pose it as a promising 

target in understanding human health and aging. 
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Part of what allows the epigenome its mutability is that it is mediated by the covalent 

and noncovalent modifications to individual base pairs of the DNA and histone proteins; 

taken together, these interactions compose the substructure of chromatin.30 Each level of the 

epigenome encodes different information and has a reciprocal relationship with the other 

levels, in which it can influence them and be influenced by them.36 Chromatin, which can be 

broadly classified as euchromatin (transcriptionally active, less compact) or heterochromatin 

(transcriptionally inactive, more compact),37 can undergo remodeling mediated by chromatin 

remodeler enzymes which act in a cell-type specific and developmental-stage specific manner.38 

The substructure of chromatin can exert regulatory functions by modifying the binding sites 

to transcription factors (TFs), as well as the spatial accessibility of DNA to transcription 

machinery, thus chromatin structure can directly affect cellular processes such as transcription, 

DNA repair, and replication.39 Chromatin’s substructure can be assayed by several high 

throughput techniques in which accessible regions are cleaved followed by sequencing to 

reveal where the chromatin is most accessible.40 This can be performed by nucleases and 

targeted to the level of the individual nucleosome, as in MNase-Seq,41 or more broadly, as in 

DNase-Seq.42 In the newest, and most efficient technique, a transposase inserts a sequence 

containing adapters into accessible regions which are then amplified and sequenced in the 

Assay for Transposase Accessible Chromatin (ATAC-Seq).43 

Chromatin structure is then influenced by the presence or absence of histone octamers 

comprising nucleosomes as well as the structural and functional variants of these histone 

proteins. A nucleosome consists of 147 base pairs of DNA wrapped around a histone 

octamer, where the octamer is made of two of each of the core histone proteins H2A, H2B, 

H3 and H4.44 The lysine residues on these different histone variants can then be modified in 

many ways, including: phosphorylation,45 sumoylation,46 ubiquitylation,47 acetylation,48 and 
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methylation.49 Histone modifications are established by enzymes that can transfer the specific 

group, for example histone acetyltransferases (HATs) for acetyl groups, histone 

methyltransferase (HMTs) for methyl groups, to specific amino acids on the histone proteins.50 

These modifications to different histones can trigger binding to the chromatin of different 

proteins, resulting in biochemically-induced structural changes to chromatin architecture as 

well as functional changes to gene expression.48 For example, the addition of an acetyl group 

to a histone tail often attenuates the slight positive charge on the histone protein, resulting in 

it being less tightly wound to the negatively charged DNA—which is often associated with 

increased gene transcription.51 While the methylation of histones can be associated with either 

an increase or decrease in gene expression depending on its location on the histone octamer.33  

In addition to specific histone modifications directly influencing function, the 

composition of the  modifications can also be used to identify the functional state of different 

regions of the genome. More specifically, histone H3 lysine 4 trimethylation (H3K4me3) is 

associated with promoter regions; H3 lysine 27 acetylation (H3K27ac) is associated with active 

enhancer regions; H3 lysine 27 trimethylation (H3K27me3) is associated with Polycomb 

repression; H3 lysine 9 trimethylation (H3K9me3) is associated with heterochromatin regions; 

and H4 lysine 20 trimethylation (H4K20me3) is associated with constitutive 

heterochromatin.33 These individual modifications can be assayed and their genomic locations 

identified using enrichment assays with antibodies made to specific modifications followed by 

sequencing, or chromatin immunoprecipitation with sequencing (ChIP-Seq).52 Histones 

provide the architecture through which DNA is compacted and this DNA is similarly subject 

to modification. 

DNA Methylation  
In 1975, two papers suggested that methylation of a cytosine (C) occurring next to a 

guanine (G), forming a CpG dinucleotide, could serve as an epigenetic mark in vertebrates.53,54 
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Since then, because of its stability and relative ease to assay genome-wide, DNA methylation 

(DNAm) has become the most studied modification to chromatin. DNAm generally refers to 

a CpG dinucleotide that has had a methyl group covalently attached, forming 5-methylcytosine 

(5-mC),55 though methylation can occur to cytosines in other contexts.56,57 The de novo addition 

of the methyl group is catalyzed by DNA methyltransferases (DNMTs), specifically, 

DNMT3A and DNMT3B, while the maintenance of DNAm patterns after cellular replication 

is carried out by DNMT1.34 There are around 28 million CpG sites in the human genome with 

the majority, approximately 70–80%, being methylated.56,58  

DNAm can be assayed across the genome using several methods which involve a 

bisulfite conversion step.59 In this step, unmethylated cytosines are deaminated to uracil, while 

the methyl groups on 5-mC cytosines are protected from this step, remaining cytosines. The 

DNA can then be sequenced at base-pair resolution, termed bisulfite sequencing (BS-Seq), to 

allow for the mapping of which CpGs are methylated in the genome. While this method is 

useful in determining methylation patterns in the genome, BS-Seq is unable to distinguish 

between different modifications made to 5-mC. 5-mC can be oxidized to 5-

hydroymethylcytosine (5-hmC) by the ten-11 translocation (TET) enzyme family proteins.60 

TET can further oxidize 5-hmC to 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). 

Research has suggested both the these modified version of 5-mC are part of an active DNA 

demethylation process,61 and that 5-hmC can act as its own stable mark showing enrichment 

at gene bodies and cell-type specific changes in its location indicating a functional role.62,63 In 

addition to BS-Seq, array-based methods offer the benefit of parallelization in that the 

methylation profiles of thousands of CpGs can be queried simultaneously.64 Illumina 

microarrays have been developed that assay over 27k, 450k, and 850k CpGs. 
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  While most of the genome is relatively depleted of CpG, regions of the genome with 

a high density of CpGs exist and are referred to as CpG islands (CGIs). About 60% of CGIs 

overlap gene promoters.65 5-mC is involved in the epigenetic regulation of gene expression in 

that promoter methylation is often associated with a transcriptionally repressive state. 

Methylation within genes associates with a transcriptionally active state.66 While intergenic 

methylation is suggested to affect gene expression through enhancer regulation.67 The 

observation that patterns of methylation undergo frequent change during early embryogenesis, 

and that different tissues feature distinct methylation profiles, suggests that this modification 

is vital for normal cell function and development. Moreover, DNAm plays a role in many 

other cellular processes including: the silencing of repetitive and centromeric sequences, X 

chromosome inactivation, the formation of heterochromatin, and mammalian imprinting.30 

Thus, DNA methylation represents a critical component of the epigenome, and, 

unsurprisingly, can give rise to disease when it goes awry.  

 DNAm patterns are often dysregulated with disease in humans. For example, cancer 

can be marked by reduced levels of global DNAm with the hypermethylation of some regions 

including certain promoters and tumor-suppressor genes. Additionally, changes in DNAm 

have been implicated in several other diseases, including cardiovascular disease (CVD), 

neurological disorders, metabolic disorders, and autoimmune diseases.68 DNAm can also be 

used to predict disease incidence; it has been found to change with obesity and these changes 

can predict the incidence of Type II Diabetes (T2D).69 In order to tease out the direction of 

causation between DNAm changes and obesity, the statistical approach Mendelian 

Randomization (MR) can be employed.70 Through the application of MR, the alterations to 

DNAm have been found to be a consequence of adiposity rather than a cause of it.71 

Consequential DNAm changes with disease could arise from disease-associated variants 
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negatively affecting the DNAm patterns across the genome—referred to as the methylome,72 

or could be a symptom of an individual’s internal environment, or some combination. 

 The methylome appears to change through lifestyle factors like smoking,73 exercise,74 

diet,75 as well as environmental factors like air quality,74 stress,76 early life events,77 and many 

more. It was discovered, through studies of MZ twin pairs, that methylomes of young twins 

start out similar but diverge over time due to environmental factors or spontaneous stochastic 

errors in the DNAm maintanence.78 This divergence appears enhanced if the twins were not 

living in the same environment.79 The differences that arise over time among nearly genetically 

identical individuals reinforces the influence of epigenetic factors on phenotypic variation over 

the lifetime. It is thought that some of the changes observed in DNAm with time are due to 

imperfect copying of DNAm from parent to daughter DNA strands, leading to an 

accumulation of epigenetic errors seen both in disease development and aging.68 

DNA Methylation and Aging 
 Among the nine hallmarks of aging are epigenetic alterations.13 Numerous studies 

detail that, much like other biological levels, the epigenome displays a progressive loss of 

configuration with age. While some parts of this loss of configuration appear stochastic, others 

appear to occur in a directional manner and in specific regions of the genome, suggesting an 

underlying biological mechanism in the aging process.80 Aging is correlated with a global 

decrease in DNA methylation, though many promoter-associated CpG islands (regions rich 

in CpG sites) have been observed to show hypermethylation with aging.81 The global decrease 

in DNAm seen in aging is thought to be due to the decline in levels of DNMT1.82,83 This 

suggests that distinct mechanisms may be at work, with hypermethylation resulting from 

programmed changes while hypomethylation is more a result of environmental and stochastic 

processes.84 Interestingly, many of the changes seen in normal aging are also seen in cancer. 
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 In fact, the finding that DNAm changes with age in healthy tissues was made 

serendipitously in 1994 by Issa et al. who, upon screening healthy cells, noted a CGI expected 

to be unmethylated was somewhat methylated while tumor cells were completely methylated.85 

They noted that this increase in methylation appeared dependent on the age of the participant 

whose cells were used. That DNAm is a hallmark of cancer cell has been well documented 

since its discovery in 1983,86 but the finding that many of the alterations seen in cancer are 

also seen in healthy aging have led some to propose that the two processes share a common 

pathway.68 Thus, a better understanding of the changes in the methylome during healthy aging 

may help inform the causes of cancer. 

Several epigenome-wide association studies (EWASs) have characterized the robust 

changes to the methylome with age across multiple tissues,87-91 and find that these changes 

appear to be highly tissue specific.92 However, assaying DNAm in blood to gain insight into 

age-related changes can be complicated by the finding that proportions of white blood cells 

vary with age.93 The proportion of CD8+ T cells decreases with age due to age-related thymic 

involution.94 Because individual blood cells feature distinct methylation profiles,95 not 

correcting for cell type proportions has the potential to confound observed age-differential 

DNAm patterns if not accounted for. In order to address this issue, Houseman et al.96 

developed a method to infer leukocyte identities and proportions in whole blood samples 

based on DNAm signatures. Employing this or more recently developed tools, including 

reference-free methods for assessing cell type mixtures in samples,97,98 EWASs of age have 

been able to address the issue of possible confounding in their studies in tissues containing a 

mix of cell types, like blood.  

Blood is a promising tissue in the development of a BoA because of the ease with 

which it can be assayed. A blood-based BoA complies with the American Federation for Aging 
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Research’s requirement that an ideal BoA is able to be performed repeatedly on a subject 

without harm. Blood-based biomarkers have recently been developed that use observed 

epigenetic age-related changes to measure biological aging. These epigenetic biomarkers are 

highly predictive of chronological age, even being referred to as ‘aging clocks,’ and are 

promising candidates to also predict biological age.90,99-101 

 

Linear DNA Methylation Changes with Age  
Development of DNAm Aging Clocks 

Methylation shows robust, genome-wide changes with age.87,102,103 Capitalizing on these 

changes, researchers have created models that use DNAm information at a subset of age-

related differentially methylated cytosines (aDMCs) throughout the genome, where DNAm 

has a significant linear relationship with age.99,101,104 These models, termed DNAm aging clocks, 

output an estimate of chronological age based on DNAm patterns (DNAm age), and these 

DNAm ages have been found to correlate very closely with individuals’ chronological ages. 

These clocks are generally built by using a linear regression algorithm trained against the 

chronological ages of sampled participants DNAm array data.105 While tens of thousands of 

CpGs across the genome appear to be aDMCs,106 relying on supervised machine learning 

methods such as a penalized regression (for example, least absolute shrinkage and selection 

operator, lasso, or elastic net) to reduce redundancy,7 some clocks are able to narrow the 

number of CpGs used as input. These clocks, due to the different study populations and 

techniques used in their development, show variability not just in the number and identity of 

CpGs they contain but also in their ability to model chronological aging. 

The first DNAm aging clock was developed in 2011 from saliva samples. It found that 

DNAm information from just two genes (NPTX2 and Tom1L1) predicted the age of an 

individual within 5.2 years.90 A study published the following year found that DNAm in blood 
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samples at the CpG islands of three genes, ELOVL2, FHL2, and PENK, strongly correlated 

with age—with the correlation for ELOVL2 in particular being 92%.100 In the same vein, a 

study by Weidner et al., using blood samples, found that data at just 3 CpGs, located in the 

genes ITGA2B, ASPA and PDE4, could predict chronological age within 5 years.107 While 

these studies focused in on several genes, two additional clocks published in 2013 more 

broadly utilize DNAm arrays in predicting chronological age without tying the CpGs used as 

input to specific genetic pathways. 

The first of these clocks, developed by Hannum et al.,99 assayed DNAm using the 450k 

array on whole blood samples from 656 individuals. Using an elastic net regression model with 

an input of both DNAm data and clinical parameters including gender and body mass index 

(BMI), 71 CpGs across the genome were identified; these 71 sites accurately predicted 

chronological age within 3.9 years. In addition to this finding in blood, Hannum et al. found 

that their sites were somewhat predictive across other tissues tested (including breast, kidney, 

lung, and skin), with a 72% correlation between the age predicted by the model (DNAm age) 

and actual chronological age of the participant providing the sample. The genes linked to the 

71 CpGs in the model occur within or near genes with known functions in aging, including: 

Alzheimer’s disease, cancer, tissue degradation, DNA damage, and oxidative stress. Because 

cell type proportions were not included as a covariate in the Hannum clock, its predictive 

ability in blood is, in part, driven by age-related alterations in blood cell composition.  

The second clock was constructed to be tissue-agnostic; Horvath,101 using data from 

Hannum et al. and additional samples, developed an aging clock that functions across different 

tissues. Limiting the CpGs to those present on the 27k array, this clock also used an elastic net 

regression model on 8,000 samples from over 30 different tissues. This model selected 353 

CpGs for Horvath’s clock, which is able to accurately model chronological age within 3.6 years 



 

 14 

across tissues. There were, however, varying degrees of accuracy in the prediction depending 

on the tissue; the correlation between predicted and chronological DNAm age are quite low 

across: breast tissue (cor = 0.87), uterine endometrium (cor = 0.55), skeletal muscle tissue (cor 

= 0.70), and heart tissue (cor = 0.77). The fact that it works well across many tissues, in 

addition to the publicly availability of the pipeline, encouraged the widespread use of this early 

version of the Horvath clock in many studies.108 Interestingly, though both the Hannum and 

Horvath clock appear highly accurate, they share only 6 CpGs in common.109 

Other interesting finding from the Horvath clock includes the finding that in stem 

cells (both induced pluripotent and embryonic), DNAm age appears to increase with passage 

number—reflecting their limited proliferation and differentiation potential after several 

rounds of cell divisions. Additionally, these stem cell samples have a DNAm age near zero, 

again suggesting that this measure is capturing their biological age.101 Horvath also introduced 

the concept of age acceleration (Dage), which refers to the positive difference between the 

predicted DNAm age and the actual chronological age of the participant. This term appears 

to be highly heritable when tested in MZ twin pairs, with that heritability decreasing over time, 

again supporting the findings of previous research supporting that non-genetic factors like 

one’s environment and stochastic factors become more relevant over time. Interestingly, 

cancer tissues showed significant age acceleration relative to normal tissues, suggesting that 

this Dage measure could be useful as a biomarker. 101 

 In an attempt to test the utility of the Hannum and Horvath clocks as potential BoAs, 

in 2015, Marioni et al.110 assessed whether an individual’s degree of accelerated aging, or Dage, 

predicted their risk of mortality. The Weidner clock107 was also examined but after it was found 

to correlate poorly with chronological age, it was not used in further analysis. Using DNAm 

data from four longitudinal cohorts, a meta-analysis was performed to estimate the association 
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between Δage and mortality. Participants with a Δage of 5 or greater (so whose predicted DNAm 

age was 5 years higher than their chronological age) had a 21% higher mortality risk than those 

without this degree of age acceleration. This increased risk of mortality persisted even after 

adjustments for hypertension, diabetes, CVD, and APOE e4 status—all well-characterized 

risk factors for early mortality. This finding, that a measure of accelerated aging can predict 

all-cause mortality better than chronological age alone, suggests that methylation is a 

meaningful indicator of biological aging. 

 
Modeling Age-Related Phenotypes 

Since this initial finding that linked the deviation between an individual’s chronological 

and predicted DNAm age, or Dage, to their all-cause mortality risk, many studies have sought 

to also link this measure to risk of individual diseases as well as to note what phenotypic factors 

can influence it. Studies have linked accelerated epigenetic aging to: higher BMI;111,112 early 

menopause;113 risk of cancer incidence;114 increased frailty;115 risk of Down Syndrome;116 

stress;117 obesity;118 Alzheimer’s disease,119 and more. Conversely, being extremely long-lived 

seemed linked to relatively lower Dage in participants and their offspring.120 While the Horvath 

and Hannum clocks have consistently proved their utility in modeling some age-related 

diseases and time to death, even in a large scale meta-analysis,104 they appear to lack predictive 

ability in informing some disease risk and outcomes.121 

It was hypothesized that the reason these clocks fell short in their predictive ability 

was that they were trained only on chronological age and did not take into account 

environmental exposures known to influence disease risk. These initial clocks, though accurate 

in modeling chronological age and predicting mortality risk, have been updated to incorporate 

more phenotypic and clinical data—dramatically improving their ability to model both lifespan 

and healthspan.104,122,123 Interestingly, by leveraging the use of longitudinal data, future 
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prediction can be made based on epigenetic age acceleration, including the future onset of 

lung cancer,124 and mortality from both cancer and cardiovascular events.125  

While many of the studies using DNAm aging clocks have been performed on cross-

sectional data, comparing different individuals of different ages, longitudinal data, in which 

the same individuals are profiled over a period of time, offers the benefit of studying the 

trajectory of aging within individuals, and thus removing the possibility that observed 

associations are due to confounders in the individual process of aging. In fact, using 

longitudinal data to observe  Dage over time has revealed its notable stability,126 suggesting even 

that the measure becomes fixed at some point before adulthood. This finding was echoed by 

another study that observed a relationship between Dage and BMI, but that this was only 

observable in middle age, perhaps due to confounding factors (development and survival bias, 

respectively) in the extremely young and older cohorts.118 Thus, these DNAm clocks represent 

the best candidate epigenetic BoA to date. Using these DNAm aging clocks in conjunction 

with longitudinal data may provide insight into individuals’ aging processes and risk of adverse 

health outcomes. 

 
 
Changes in DNA Methylation Variability with Age  

Studies of the functional role of aDMCs in humans imply that these sites, while they 

may be tracking changes consistent with all-cause mortality risk, are not necessarily indicative 

of functionally relevant regions of the genome in their effects on gene expression changes with 

age.106,127 Thus, while these CpGs are informative of chronological age, they may provide only 

limited insight into the transcriptional changes in an organism as it ages—limiting its use as a 

biomarker. This could be due to the methods used to identify the aDMCs in models like 

Horvath’s,101 in which informative aDMCs are identified by linear regression techniques and 
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the residual between chronological and predicted age (Dage) used to model aging-related 

phenotypes and mortality risk. A recent study found this residual to be dependent on the 

population size used when identifying aDMCs, with a larger population size leading to a 

smaller residual; this suggestion, that the measure can vary based on the size of the population 

in which it is calculated, further challenges its use as a reliable BoA.104,128  

Studies have reported that there is a change in the variability of DNAm with age; this 

suggests that DNAm profiles may be varying at different rates and in different directions 

across different individuals.106,129 Considering the variability in DNAm age among people of 

the same chronological age,130 between MZ twins in healthy aging129 as well as the observation 

that heritability of DNAm age among MZ twins decreases over time,101 modeling methylomic 

variability may be essential to capturing phenotypic variability. Perhaps a more informative 

model of aging would feature CpGs that show more variability over time instead of those 

reflecting linear age-related methylation differences. Several studies106,131,132 have characterized 

such CpGs, termed age-related variably methylated cytosines (aVMCs), using diverse methods 

of identification (methods reviewed in 133). These studies have sought to identify in both cross 

sectional and longitudinal data, individual CpGs particularly susceptible to methylomic drift.  

These studies have found that these sites representing drift in increased variability 

appear to occur especially at age-associated CpGs,134 and that these CpGs are often near genes 

involved in the aging process.132 Genes near these sites were enriched in pathways involved in 

aging and development and, more specifically, aVMCs are enriched in transcription factors 

binding sites.131 Additionally, aVMCs identified in blood appear to also reflect variability in 

other tissues (including colon, lung, and skin)106—suggesting that assaying blood could give 

insight into drift occurring throughout the body. In a study identifying regions of CpGs 

reflecting high variability in methylation across different tissues, irrespective of age, termed 
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variably methylated regions (VMRs), VMRs specific to cell type and shared between them 

were identified—where different tissues sharing VMRs also shared common developmental 

origins.135 This study also found that VMR networks were highly responsive to environment 

and are enriched in enhancers. This finding further suggests the functional link between 

changes at these sites, reflecting epigenetic drift, and resultant transcriptional drift and suggests 

that modeling variability at the molecular level could aid in modeling health.  

Negative health outcomes, like cancer, and aging are both marked by an increase in 

stochastic DNAm drift.136 This drift is not a directional like the linear DNAm changes used in 

building the aging clocks—with specific loci undergoing either hyper- or hypomethylation in 

a reliable manner. Additionally, this drift is not uniform across the genome, nor across 

individuals of the same age.67 These observations, in addition to the finding that the degree of 

drift appears linked to the rate of proliferation of the tissue, implies that drift may be more a 

result of dysregulation in DNAm maintenance systems than an innate, programmed aging 

phenomenon. The rate and severity of this drift, while stochastic, does appear to follow some 

patterns in terms of the regions of the genome that it most affects as well as its severity 

increasing with some health factors like the degree of chronic inflammation in the body.137 

While this methylomic drift can have negative effects on the integrity of cells overall, it can be 

especially detrimental to stem cells, in which differential methylation can lead to differential 

gene expression of cells of the same tissue, termed transcriptional drift, as well as overall 

impaired stem cell function—one of the hallmarks of aging.13 

Modeling variability may be key to understanding and quantifying the degree to which 

the integrity of the epigenome is disrupted in the process of aging, and in disease development. 

One study found that methylomic drift is more severe in MZ twins discordant for an 

autoimmune disease, with the diseased twins’ methylomes reflecting more variability than 
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those of the healthy twins.138 Single-cell epigenetic profiling is another method that can be 

used to assay variability between samples taken from young and older participants. A study 

that aimed to characterize within-individual variability among histone modifications using 

single-cell ChIP-Seq noted that variability in histone modifications increased with age and that 

this increase in variability was driven by non-genetic factors.139 This finding supports the 

interconnectedness of different levels of the epigenome in that both linear and variability 

changes with age are observed at the sequence level in DNAm and at the chromatin-level in 

histone modifications. 

Summarizing the high dimensional variability occurring across thousands of sites into 

a single score indicating epigenetic drift may also provide insight into the gene expression 

patterns directly influenced by allowing this measure to be treated as a predictor of biological 

age in future analysis. DNAm, however, is limited in its ability to accurately model gene 

expression as it is often outperformed by data from histone modifications comprising the 

chromatin’s local microenvironment.140,141 This suggests that modeling the effect of drift on 

the epigenome and the resulting phenotypic dysregulation would be better served by 

integrating other epigenetic data more relevant to gene expression. 

 

Chromatin, Histone Modification, and Expression Changes With Age  
Interplay of Epigenetic Marks  

Epigenetic modifications vary according to their level of influence but often contribute 

overlapping information.142 For example, regions in the genome that feature differential 

methylation with age, specifically age-related hypermethylation at CGIs, also often feature 

repressive histone marks.143 Conversely, active transcriptional start sites (TSSs) are often in 

nucleosome-depleted regions (NDRs) marked both by trimethylation of histone H3 at lysine 

4 (H3K4me3) and the histone variant H2A.Z, which has been observed to repel DNMTs.65,144 
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This indicates that DNA methylation patterns are interrelated with patterns in histone 

modifications which can influence expression. DNAm patterns can also affect the binding of 

transcription factors (TFs), some of which can show a preference for either methylated or 

unmethylated DNA—another method through which it directly influences gene expression.145 

Taken together, these interactions are vital to proper chromatin structure and function.142 It is 

hypothesized that these redundancies and layers of complexity and control employed by the 

epigenome are in place to guard against aberrant gene expression.146 

These covalent histone modifications have the ability to induce changes in chromatin 

structure as well as recruit proteins important in chromatin regulation and gene expression.37 

In addition to their local contribution to transcription, histone modifications have important 

functional consequences in establishing global chromatin environments. These modifications 

are the basis of chromatin domains that contribute to whether DNA is transcriptionally 

accessible or inaccessible. Measures of chromatin accessibility seem to be interrelated with 

DNA methylation patterns as well. DNA methylation, which is associated with 

heterochromatin formation, appears to become depleted with age, lending to the theory that 

heterochromatin is lost in aging.66,147 Because of their importance in chromatin function and 

their interrelatedness to DNA methylation, both histone modifications and chromatin 

accessibility are likely to also reflect age-related changes; they also have the potential to modify 

disease risk through their regulatory influence on gene expression and thus may also be 

informative in a model of aging. 

Chromatin Structure 
Aging chromatin is marked by disruptions in the normal maintenance of chromatin 

structure and its overall instability. With age, the protective ends of chromosomes composed 

of repeats of a short DNA sequence, or telomeres, shorten—one of the hallmarks of aging. 

This telomere attrition can lead to replicative senescence in which a cell will no longer divide, 
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leading to lost information.148 Additionally, the loss of DNAm globally with age across 

mammalian cells appears to occur especially at repetitive DNA sequences, where DNAm had 

previously exerted a silencing influence. Due to passive hypomethylation and a decrease in the 

number of histone proteins with age, the repressed heterochromatin microenvironment home 

to these repetitive sequences is not as well maintained in a condensed, repressive state and 

some regions are no longer silenced during aging.80 This heterochromatin loss with aging can 

be observed both through the digestion of aged chromatin with MNase, in which the spacing 

between nucleosome becomes more irregular, as well as through the observation of less dense 

30 nm fibers with age.149 This loss of structure could cause an increase in genomic 

perturbances, including DNA breaks, translocations, and insertions.  

This loss of the repressive DNAm on a larger scale is also thought to worsen observed 

genomic instability with age by allowing for the reactivation of typically silenced regions like 

inactive X-chromosomes and transposable elements (TE). Much of the repetitive, repressed 

DNA in the genome consists of retrotransposons, a class of transposable elements capable of 

moving around the genome;150 this movement, can interrupt normal gene function and is even 

capable of causing cancer.151 The increased mobilization of TEs is observed in cancer but has 

also been observed to occur to some degree even in healthy aging. These translocations, 

however, can be counteracted in mice by interventions known to slow the process of aging in 

model systems,152 suggesting that interventions for healthy aging could mitigate some of the 

effects driven by chromatin aging. 

Histone Modifications 
  Histone modifications have also been found to change with age, though these marks 

are more dynamic than DNAm, reflecting fluctuations in gene expression, so these 

observations are not as robust or well-characterized.51 An additional mechanism driving aging 

chromatin’s less compact structure is that the synthesis of core histone proteins decreases with 
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age in human cells in vitro.153 In fact, one study found  in vitro fibroblasts from a 92-year-old 

had a 50% reduction in the synthesis of histones compared to those of a 9-year-old.154 The 

factors driving this global histone loss, are poorly understood, though some studies suggest it 

may be linked to the shortening of telomeres.153 Studies in mammalian model organisms and 

human cells have observed specific changes in histone modifications, including an increase in 

H3K9me3,155 an increase in H4K20me3,156 and an increase in H3K27me3 with age.157 Overall, 

observed trends in histone modification changes in model systems indicate that there is an 

increase in the appearance of activating modifications and a decrease in repressive 

modifications with age, this is consistent with the observation in chromatin on the larger scale 

that the genome is becoming less compact with age.158 

 DNAm patterns and histone modifications are interrelated, and the directionality of 

their influence can change over the course of development.142 Underlying the coordination 

between DNAm and histone modifications, CGIs featuring hypermethylation with age also 

featured H3K27 methylation—a repressive histone modification,159 conversely, regions of the 

genome featuring histone modifications or variants associated with more open chromatin can 

work to shield CpGs sites within them from DNMTs.160 Because of the interrelation between 

histone modifications and gene expression, it is likely that the age-related changes in histone 

modifications, in part, drive the widespread age-associated changes in gene expression.127  

 
 
Objectives 

The following chapters introduce three studies: 1) a study of the utility of the Horvath-

derived Dage term in modeling an age-related disease longitudinally, 2) a study identifying 

aVMCs, using them to construct a score, and testing how the score contributes to modeling 
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age-related phenotypes, and 3) a study that characterizes regions of the epigenome showing 

age-related differences in chromatin accessibility and histone modifications.  

 The first study (Chapter II), acknowledges that most research into the utility of the 

Dage term as a biomarker has been limited to cross-sectional (CS) studies which found the term 

had little predictive ability in disease incidence. The finding that the term could predict risk of 

all-cause mortality indicated that, theoretically, it should give some insight into overall health. 

It was hypothesized that leveraging the power of longitudinal data might remove any 

confounding factors leading to the lack of correlation between the term and health measures 

in CS data. Thus, this research is important because it was one of the first studies to 

characterize Dage longitudinally in its relationship to risk factors for type II diabetes.  

 The second study (Chapter III), aimed to create a novel model of methylomic 

variability that could be used as a biomarker indicating epigenetic drift. Recently, it has been 

suggested that understanding variability in aging would be important in characterizing both 

healthy aging and risk of disease incidence. Several studies have determined sites throughout 

the genome increasing in variability, and linked these sites to pathways important in aging. To 

test the relationship between variability at these sites and aging phenotypes, a score of 

variability must be developed. This research is important because it develops such a score and 

tests its link to aging-related phenotypes and mortality risk in a longitudinal cohort.  

The third study (Chapter IV), characterizes age-related changes in the epigenome 

among two groups at extreme ends of the aging spectrum. While the levels of the epigenome 

interact and often complement one another in terms of the functionality of their 

modifications, DNA methylation is most often the sole subject of study because of its relative 

stability and the ease with which it can be assayed. This research is important because it aims 

to characterize aging at the level of broad histone modifications and chromatin accessibility in 
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humans with the goal of uncovering what information the other levels of the epigenome can 

to contribute to the current understanding of molecular changes with age. 

Finally, Chapter V is a discussion of the findings from the three studies as well 

predictions for future directions in the development of epigenetic biomarkers of aging. 

Suggestions of cutting-edge epigenetic profiling technologies and methodologies are 

discussed. Additionally, the importance of leveraging longitudinal studies in diverse human 

populations is addressed to ensure aging biomarkers can be widely used to improve care. 
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Chapter II. A Longitudinal Study of DNA Methylation as a Potential Mediator of 
Age-Related Diabetes Risk 
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Abstract 

DNA methylation (DNAm) has been found to show robust and widespread age-related 

changes across the genome. DNAm profiles from whole blood can be used to predict human 

aging rates with great accuracy. We sought to test whether DNAm-based predictions of age 

are related to phenotypes associated with type 2 diabetes (T2D), with the goal of identifying 

risk factors potentially mediated by DNAm. Our participants were 43 women enrolled in the 

Women’s Health Initiative. We obtained methylation data via the Illumina 450K Methylation 

array on whole blood samples from participants at three timepoints, covering on average 16 

years per participant. We employed the method and software of Horvath, which uses DNAm 

at 353 CpGs to form a DNAm-based estimate of chronological age. We then calculated the 

epigenetic age acceleration, or Δage, at each timepoint. We fit linear mixed models to 

characterize how Δage contributed to a longitudinal model of aging and diabetes-related 

phenotypes and risk factors. For most participants, Δage remained constant, indicating that 

age acceleration is generally stable over time. We found that Δage associated with body mass 

index (p = 0.0012), waist circumference (p = 0.033), and fasting glucose (p = 0.0073), with the 

relationship with BMI maintaining significance after correction for multiple testing. 

Replication in a larger cohort of 157 WHI participants spanning 3 years was unsuccessful, 

possibly due to the shorter time frame covered. Our results suggest that DNAm has the 

potential to act as a mediator between aging and diabetes-related phenotypes, or alternatively, 

may serve as a biomarker of these phenotypes.
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Introduction  

Worldwide, the population aged 65 years and older is growing rapidly, with a 150% 

expansion projected over the next few decades.6 Despite these recent global gains in life 

expectancy, age-related disease burden and the incidence of chronic disabilities remain high.9 

The healthspan, or years spent in good health, among the aging population remains highly 

variable, with some maintaining good health throughout their lives while others fall ill.3 Age 

itself is the leading risk factor for the development of most diseases and conditions that drive 

morbidity and mortality and contribute to limited healthspan.2,3 In many countries, age-related 

diseases like cardiovascular disease, diabetes, cancer, and neurodegenerative disorders, are 

among the predominant health problems faced by the population.4 

A particularly widespread age-related disease adversely impacting the healthspan of 

millions worldwide is type 2 diabetes (T2D), which is now considered a global epidemic.161 

Due to population growth, increased longevity, and urbanization (which can promote physical 

inactivity and an unhealthy diet),162 the global burden of T2D is expected to worsen over time 

as the prevalence increases from 415 million living with the disease in 2015 to an estimated 

642 million in 2040.161,163 There are many well-documented risk factors associated with the 

development of T2D, including: weight gain,164 high body mass index (BMI),165 high waist 

circumference,166 ethnicity,167  smoking status,168 high fasting glucose,169 high fasting insulin,170 

and age.171,172 Diabetes contributed to approximately 5 million deaths globally in 2015161 and is 

itself a risk factor for numerous other co-morbidities.  Globally, ~50% of diabetic individuals 

are unaware of their condition, and subsequently are unaware of their increased risk of 

diabetes-related complications. Thus, a better marker of early T2D risk could provide 

mechanistic insights and facilitate earlier identification of high-risk individuals most likely to 

benefit from targeted lifestyle interventions.161 
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Differential susceptibility to age-related diseases can be attributed to biological 

differences between individuals, which work to modify disease risk (reviewed by Feinberg12). 

Among these biological differences are epigenetic changes, which arise without changes to the 

underlying DNA sequence and have the potential to modify disease risk through their 

regulatory influence on gene expression.30 Additionally, because the major risk factors for T2D 

are lifestyle factors, such as diet and exercise behavior,173 an epigenetic mechanism in which 

these factors can modify underlying genetic predisposition to disease incidence is highly 

plausible. DNA methylation (DNAm), the presence of a methyl group on the cytosine within 

a CpG dinucleotide, is the most studied epigenetic modification. The robust and genome-wide 

changes to DNAm observed with age make it an ideal biomarker of aging.87,102,103,159,174 

Biomarkers of aging are indicators of the biological age of an organism that predict its 

physiological functioning and disease susceptibility better than its chronological age alone.22,23 

Recently, highly accurate biomarkers of aging have been developed that capitalize on age-

related changes to DNAm at a subset of CpGs across the genome to predict chronological 

age.99,101 The approach of Horvath101 uses methylation data from just 353 CpGs to form a 

multi-tissue, DNAm-based estimate of chronological age (DNAm age). Using DNAm age as 

a measure of biological age, the difference between a participants’ DNAm age and their 

chronological age can be calculated.  This measure is termed the participants’ epigenetic age 

acceleration (Δage) and may proxy for the general health or rate of aging of the individual.101 

Instances in which the Δage term is positive indicate an epigenetic age that is higher than the 

participant’s chronological age. 

Many studies support the hypothesis that epigenetic Δage is associated with negative 

health outcomes, including increased risk of premature mortality,104,110,114,125,130 early onset of 

age-related disease,115,124 and changes in physical and cognitive fitness.175 These findings 
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indicate that Δage contributes more predictive information about these health outcomes than 

chronological age alone. This is consistent with the possibility that Δage may be acting to 

mediate the health outcome or risk of disease onset, but also with the possibility that DNAm 

age may be marking another biological process that is acting as a mediator. Consistent with 

the adverse health outcomes associated with positive Δage, a negative Δage can predict positive 

outcomes: centenarians in an Italian population and their offspring tended to have a DNAm 

age that was lower than their chronological age.120 Taken together, these results support that 

epigenetics can be important in predicting both negative health outcomes and healthy aging. 

Previous studies176-178 have reported associations between site-specific methylation 

differences and T2D as well as related phenotypes across several cell types and tissues.  Our 

study aims to assess the potential of 5mC as a mediator between aging and age-related T2D 

risk phenotypes.  To model age-related 5mC patterns, we focus on a well-studied methylation-

based biomarker of aging101 which identified 353 CpG sites as being the most predictive in 

modeling chronological age. We take advantage of a longitudinal study spanning 16 years to 

1) characterize the changes to participants’ Δage over time, and 2) characterize the contribution 

of DNAm age and Δage in modeling T2D susceptibility. Given that many T2D risk factors 

(including high BMI, waist circumference, and fasting glucose and insulin levels) reflect age-

related changes, a measure of biological aging may help predict which participants are at a 

higher risk of T2D incidence throughout the study. Though we do not have the power to 

model incidence of clinical T2D in our sample, the longitudinal nature of this study allows us 

to model changes to phenotypes intermediate between age and disease risk. We will use the 

DNAm-based measure of biological age as a proxy for genome-wide DNAm and other age-

related biological processes that may underlie age-related disease risk.  We aim to inform future 

studies by assessing the utility of genome-wide methylation changes and other biological 
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processes as potential mediators between age and risk factors for and indicators of T2D 

(subsequently referred to as ‘diabetes-related phenotypes’).  
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Methods  

Study population and study design 

Participants are a subsample from the 68,132 women who took part in the Women’s 

Health Initiative (WHI) Clinical Trials (CT) Cohort. The WHI was a national study which 

sought to investigate interventions and treatments for the prevention and management of 

common causes of morbidity and mortality among older women.179 All WHI participants were 

post-menopausal women, aged 50 to 79 years at the time of enrollment, with minority women 

recruited at the same proportion found in the U.S. population at the time.180 Women in the 

WHI were also more likely to be overweight, with three quarters of the women overweight or 

obese at the time of enrollment.180 

The study began in 1993 with participants completing questionnaires detailing their: 

sociodemographic information (including their age and race), current health behaviors 

(including weekly physical activity and smoking behavior), and current health status (any 

disease diagnosis and medications or supplements currently prescribed). Participants also 

attended scheduled clinic visits in which anthropometric measurements were assessed, 

including: weight, height, and waist circumference; from these measures, body mass index was 

calculated. Additionally, a 6% minority oversample of participants had blood drawn during 

these clinic visits from which insulin, glucose, triglyceride, and high-density lipoprotein 

cholesterol concentrations were measured and buffy coat was archived. “Epigenetic 

Mechanisms of PM-Mediated CVD Risk” (WHI-EMPC) measured DNAm on a genome-wide 

scale using DNA extracted from the archived buffy coat in a stratified, random sample (2,200) 

of the participants who were examined between 1993 and 2001. Among a subset (200) of the 

2,200 participants, WHI-EMPC also measured DNAm in buffy coat archived at a second 

timepoint on average 3.3 years later.  Subsequently, a “Longitudinal Study of DNA 
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Methylation as a Mediator between Age and Cardiovascular Risk” (AS #534) measured 

DNAm in buffy coat archived at the third timepoint, on average 16.1 years after the first, for 

a subset (43) of the 200 participants who were followed up as part of the Long Life Study 

(LLS). These 43 participants are included in our study and described in Table 1. 

 

Data cleaning 

Chronological age of the participants was approximated at each timepoint as 

participant’s self-reported age at screening (in years) + 0.5 + number of days between 

screening and blood sampling / 365.25. Phenotypic measures include: BMI measured as 

weight (kg) divided by the square of height (m2), waist circumference (cm), fasting glucose 

(mg/dL), and fasting insulin (µIU/mL). Homeostasis Model Assessment of Insulin 

Resistance, termed HOMA-IR, was calculated using the following equation: Insulin (µU/mL) 

´ Glucose (mg/dL)/405.181 The ratio of plasma triglycerides (mg/dL) to high-density 

lipoprotein cholesterol concentration (mg/dL), termed TG/HDL-C ratio, was calculated.182  

Lastly, the triglyceride-glucose index, termed the TyG index, was calculated using the following 

equation: ln[Triglycerides  / (Fasting glucose / 2)].183 Both TG/HDL-C and TyG were 

included as markers of insulin resistance.   

Three unrealistic data points believed to be entered in error were removed. These 

included BMI measures below 15 kg/m2, or above 55 kg/m2; these values were >2 SD away 

from the participant’s mean throughout the study and were flanked by more moderate values 

measured within 4 years. Additionally, a waist measurement above 150 cm was also removed, 

as it was 1.7 SD from the participant’s mean and was flanked by more moderate measurements 

within 6 years. Phenotypic data collected from within 30 days of a blood draw were assumed 

to approximate data that would have been collected at the time of the draw. Additionally, 
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several waist circumference measurements originally recorded in inches were converted to cm, 

with 1 inch equivalent to 2.54 cm. Insulin measures at the first and second timepoints were 

ascertained using different but similar methods. All insulin testing for the first timepoint used 

the radioimmunoassay (RIA) method. For some participants, the second timepoint used an 

automated ES300 analyzer. Because ES300 and RIA methods gave comparable results at 

insulin levels below 60 µIU/mL, and because all participants had insulin levels below this 

cutoff for the first two timepoints, the insulin results were combined into a single variable. 

The method for measuring insulin concentrations changed again for the third timepoint with 

the Roche Elecsys 2010 Immunoassay analyzer being used. Measures from the third timepoint 

were recorded in pmol/L and were converted to µIU/mL, with 6 pmol/L equivalent to 1 

µIU/mL.184 Self-reported smoking behavior, originally recorded as: “Never Smoked,” “Past 

Smoker,” and “Current Smoker” were recoded to “Never Smoked” and “Smoked” due to 

only one participant being classified as a “Current Smoker.” 

Alcohol intake, total caloric intake, and family history of diabetes were self-reported 

at the start of the study. Alcohol intake reported was weekly intake of alcoholic beverages. 

This includes the number of servings per weeks of beer, wine, and/or liquor based on a serving 

size of 12oz for beer, 6oz for wine, and 1.5oz for liquor. Entries ranged from 0 to 12.4 drinks 

per week (mean=1.5) with missing data for one participant. Total caloric intake was reported 

in kilocalories per day, ranging from 660.1 to 3455.2 (mean=1487.4) with data missing for one 

participant. Participants whose energy intake estimates suggested that they were not properly 

completing the food frequency questionnaire (i.e. those with daily intake less than 600 kcal or 

greater than 3500 kcal), were excluded (N=2).185 In characterizing family history, participants 

were asked: ‘Did your mother, or father, or full-blooded sisters, full-blooded brothers, 

daughters, or sons ever have sugar diabetes or high blood sugar that first appeared as an adult?’ 
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Participants’ responses were: ‘Yes’ (11 participants), ‘No’ (31 participants), or ‘Unsure’ (1 

participants). For the model, participants who answered either ‘No’ or ‘Unsure’ were 

combined into ‘No or Unsure.’ Incident diabetes and incident diabetes treatment occurring 

within the study period were also characterized as part of the sensitivity analysis. Incident 

diabetes was defined, according to standards set by the American Diabetes Association,186 as 

anyone who fasted for 8 or more hours and has a glucose measure ≥ 126 mg/dL, or anyone 

who fasted for fewer than 8 hours and has a glucose  measure ≥ 200 mg/dL (4 participants). 

Timepoints occurring after a participant indicated they were prescribed medication to treat 

diabetes were considered incident treatment with an antidiabetic agent (4 participants).  

 

DNA methylation data 

DNA was extracted from buffy coat from participants at each timepoint.  DNA (500 

ng) was used for the bisulfite conversion with the EZ-96 DNA Methylation Kit (Zymo 

Research, Irvine, CA, USA), following the manufacturer’s protocol. Once converted and 

amplified, DNA (15 µL) was fragmented, and hybridized to the Infinium 

HumanMethylation450 Bead Chip (Illumina Inc., CA, USA). DNAm profiles of >485,000 

cytosine-guanine (CpG) sites were measured using the Infinium HumanMethylation450 

BeadChip at the Northwestern University Genomics Core Facility in two batches, with the 

first two timepoints run as part of WHI-EMPC and the third run as part of AS #534. DNA 

methylation was subject to quality controls: excluding probes targeting CpG sites on the Y 

chromosome, probes with detection p-values > 0.01 in > 10% of samples, and samples with 

detection p-values > 0.01 across in > 1% of probes.  484,220 CpG sites passed this quality 

control step and were eligible for further analysis. Two control DNA samples on each 

BeadChip were used to assess reproducibility, and duplicates from the first batch were run 
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with the second to account for batch effects. Methylated (M) and unmethylated (U) signals 

were used to compute estimates of the methylation proportion, β-values, (β=M/(U+M)). 

Next, beta-mixture quantile normalization (BMIQ), was performed to reduce technical 

variation and intra-array bias between differing types of probes.187 Lastly, ComBat, which 

employs an empirical Bayes method to adjust for batch effects, was used to adjust for 

differences between the two batches.188 

 

Measures of DNA methylation age and Δage 

DNAm age at each timepoint was calculated using the methylation profiles from 353 

CpGs and the R pipeline detailed in.101 The difference between DNAm predicted age and the 

chronological age of each participant at each of the three timepoints, termed “age acceleration” 

(Δage), was calculated at each point.  

 

Testing for association between age and DNA methylation 

Using the R package CpGassoc,189 we performed an epigenome-wide association study 

(EWAS) to test for association between chronological age and DNAm. For each CpG site we 

fit a linear mixed model that included a random effect for each participant to account for the 

repeated measures within participants, and self-reported ethnicity and Illumina chip and row 

as covariates.  

 

Testing for association between Δage and diabetes-related phenotypes 

Phenotypes analyzed included seven diabetes-related phenotypes: fasting insulin and 

glucose, HOMA-IR, BMI, waist circumference, TG/HDL-C ratio, and TyG index. Using the 

R package nlme,190 we fit longitudinal, mixed effect models with the phenotype as the outcome 
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and a random effect for participants. For each phenotype, two models were fit: the first 

regressed each phenotype on chronological age and relevant covariates, while the second 

regressed each phenotype on both chronological age and Δage, in addition to other covariates.  

Our goal was to assess whether the additional term Δage associates independently with the 

phenotype, indicating that Δage contributes to our ability to model the phenotype. Thus, for 

participant (i) at timepoint (j), the following models were fit:  

 

Model 1: 

!"#$%&%'-)%*#&%+	-ℎ%/0&1-%23

= 	56 + 58#9%23 + 5:%&ℎ/";"&12 + 5<'=0>"/92 + 5?@#'&"/9	ℎ0A)'23 +	B2 + C23  

 

Model 2: 

						!"#$%&%'-)%*#&%+	-ℎ%/0&1-%23

= 	56 + 58#9%23 + D∆FGH23 + 5:%&ℎ/";"&12 + 5<'=0>"/92 + 5?@#'&"/9	ℎ0A)'23 +	B2 + C23  

 

where ∆FGH23  represents age acceleration for individual i at time j, B2 represents a random 

effect (individual-specific error term) for individual i, and C23 represents the error term for 

individual i and timepoint j.  Significance of the age acceleration coefficient D in the second 

model was taken to suggest that the relationship between chronological age and that 

phenotype could potentially be mediated by methylation or a related biological process, or that 

Δage could serve as a biomarker for this phenotype. To adjust for potential confounding, 

ethnicity, cigarette smoking, and fasting hours (where relevant), were included as covariates. 

Sensitivity analysis were performed with several well-known T2D risk factors added 
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individually as covariates, including total energy expenditure, total caloric intake, alcohol 

intake, and family history of diabetes. 

 

Estimation of blood cell proportions based on DNA methylation  

A complication in analysis of whole blood samples in aging studies is that cell 

proportions in whole blood change with age,93,96 and different subpopulations of blood cells 

feature different methylation patterns.95 Together, these can confound the relationship 

between DNAm and aging, since it is difficult to distinguish DNAm changes in whole blood 

with age from DNAm changes in blood with disease development if the model does not 

explicitly account for differences in cell proportions.191 Houseman’s regression-based 

method96 was used to estimate the composition of white blood cells in whole blood using 

DNAm array data. This tool uses DNAm data from 500 CpGs found to be most informative 

of white blood cell (WBC) type in whole blood. The tool constrains the sum of the 6 blood 

type proportions (CD4+ helper T cells, CD8+ cytotoxic T cells, granulocytes, monocytes, 

natural killer cells, B cells) to 100%, then fits a regression model to the DNAm data at the 500 

sites. This allows for the estimation of the 6 WBC proportions, which were then included as 

covariates in the comparisons of Models 1 and 2, with granulocyte proportions excluded as 

the reference category. 

 

Testing for change in Δage over time 

A mixed effects model, with the year of the participant’s clinic visit as a fixed effect and a 

random effect for participants, was used to test whether there was significant change in Δage 

over time. 
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Results  

Sample characteristics 

The sample characteristics of our population are detailed in Table 1. Participants were 

43 post-menopausal women, between 50 and 76 years of age at enrollment, with a mean age 

of 61.5 years (sd=6.9). A plurality of our sample was non-Hispanic white (41.9%), about a 

third were African American (32.6%), and about a quarter were Hispanic or Latino (25.6%). 

Self-reported smoking behavior indicated that 23 participants (54.8%) were either current or 

previous smokers; 19 participants report having never smoked (45.2%), while one participant 

failed to respond. Longitudinal DNAm data were available for three timepoints with the 

second and third timepoints occurring on average 3.3 and 16.1 years after the first, respectively. 

At baseline, none of the participants were being treated for diabetes. The distributions of the 

seven diabetes-related phenotypes in our population are shown in Supplementary Fig. 1. 

 

DNA methylation changes with chronological age  

Using DNAm array data, we performed a longitudinal epigenome wide association study as 

proof of concept that many CpGs display differential methylation associated with participants’ 

estimated chronological ages, a pattern which been well-established in many other datasets 

(e.g. Alisch et al. 2012; Bollati et al. 2009; Christensen et al. 2009; Teschendorff et al. 2010; Xu 

and Taylor 2014). In our data, 232 sites showed significant changes with age according to the 

Holm step-down Bonferroni procedure (p<1.0E-7), while 3,064 sites were found significant 

by the Benjamini–Hochberg procedure (FDR<.05). Top CpGs are listed in Supplementary 

Table 1. Supplementary Fig. 2 features a Manhattan plot of p-values reflecting the association 

between methylation and chronological age. Our results appear consistent with those reported 

by Xu and Taylor,159 who identified 749 high confidence age-related CpGs in >1000 individuals. 
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Supplementary Fig. 3 demonstrates a high correlation (r=0.74) between t-statistics across the 

two studies. Additionally, 11 of our significant sites overlap with the 353 CpGs that make up 

the epigenetic clock.101 

 

DNA methylation age estimates over time 

Participants’ chronological ages show high correlation with the predicted DNAm ages 

of our participants (r=0.89) (Fig. 1). The difference between this predicted age and the 

chronological age of each participant at each of the three timepoints, termed Δage, is calculated 

at each point. DNAm age at enrollment ranges from 43.2 to 84.5, while Δage, at enrollment 

ranges from -12.3 to 9.0. The median Δage value across participants is -4.5. Δage is negative for 

109 of the 129 measurements (84.5%), which is consistent with previous reports showing that 

women tend to have lower Δage than men.99,121 The average Δage at the first timepoint is -3.5 

(sd=4.4), -4.9 (sd=4.5) at the second timepoint, and -4.6 (sd=5.2) at the third timepoint (Table 

1, Supplementary Fig. 4). According to a Shapiro-Wilk normality test, Δage is normally 

distributed at timepoints 1 (p=0.16) and 2 (p=0.87), but not timepoint 3 (p=0.0033).  

However, with the removal of a single individual with an extreme Δage, values for timepoint 3 

are consistent with a normal distribution (p=0.94).  

Δage is not significantly associated with smoking status (p=0.51) in our data.  It is also 

not significantly associated with chronological age (r=-0.14, p=0.13) (Supplementary Fig. 5), 

though the negative correlation is consistent with previous reports.104,130,175 It does vary by 

ethnicity, with the Hispanic/Latino group having a smaller Δage, but this difference is not 

statistically significant in our sample (p=0.39). This observation agrees with recent findings 

that Hispanic/Latina women participating in the WHI study have a lower Δage compared to 

WHI Caucasians,121 though our study did not have power to detect a significant difference. 
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Stability of Δage 

Within individuals, very little change in Δage is observed over time, suggesting that the 

value of age acceleration remains roughly constant over time among our participants (Fig. 2). 

On average, Δage showed a 0.041 decrease each year, which does not differ significantly from a 

change of zero (p=0.25) (Supplementary Fig. 6). To identify individuals whose Δage changed 

significantly during the study, each of the 43 participants’ DNAm age was regressed on their 

chronological age. The mean slope of this regression was close to 1 (mean=0.96, SD=0.29), 

suggesting that on average, DNAm age increases at a similar rate to chronological age.  Five 

participants (10, 26, 27, 33 and 34) were at least 1.5 standard deviations from the mean, with 

slope values of 0.46, 1.41, 0.52, 1.71, and 2.02 respectively. To assess whether these changes 

in Δage could be influenced by changes in blood cell proportions, we regressed each of six 

estimated cell type proportions onto the year of the participant’s visit, and found that cell 

proportions did not change significantly over the course of the study (Supplementary Fig. 7).  

 

DNAm age acceleration associates with several diabetes-related phenotypes 

Results from our models of diabetes-related phenotypes are listed in Table 2. Δage has 

a significant positive association with fasting glucose (p=0.0073), BMI (p=0.0012), and waist 

circumference (p=0.033). Using a Bonferroni-corrected a of 0.0071 to adjust for the 7 

phenotypes tested, the association remains significant for BMI and near-significant for 

glucose. To assess the robustness of our results to inclusion of covariates, we performed 

sensitivity analyses that added the following covariates to the model: alcohol intake, total 

caloric intake, family history of diabetes, incident diabetes during follow-up, and incident 

treatment with antidiabetic agents. Supplementary Table 2 shows that the addition of each 

covariate produces similar results to our baseline model. Furthermore, inclusion of a covariate 
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for participants taking medication for incident diabetes suggests that, in addition to Δage 

contributing significantly to modeling of BMI, it also contributes significantly (p<.0071) to 

modeling fasting glucose among our participants.  

Supplementary Fig. 8 reflects measurements of BMI over the 16-year study period for 

our participants. Of the five participants with extreme Δage slope values, three participants (10, 

34, and, to a lesser extent, 27) also had extreme changes in BMI during the study. This BMI 

fluctuation could, perhaps, be linked to changes in DNAm and Δage. To test whether the 

relationship between Δage and BMI, fasting glucose, and waist circumference were driven by 

these five participants, we removed them in a sensitivity analysis. Supplementary Table 3 

includes the results of this analysis in which it appears that our findings are driven by the 

participants with dynamic Δage, since the effect sizes decrease substantially upon their removal 

compared to the original results in Table 2. This loss of an association with the removal of the 

most dynamic participants suggests that the association may be driven by within-person 

changes in Δage and BMI, rather than static differences between individuals. 

 

Replication study in a second WHI subsample 

A subset of 200 women from a stratified, random sample of 2,200 WHI-CT 

participants had two DNAm measurements assessed as part of WHI-EMPC. Our 43 

participants with three DNAm timepoints are part of this subset of 200; we attempt to 

replicate our findings in the remaining 157 participants who had two DNAm timepoints on 

average 3.7 years apart. The replication cohort’s ethnic make-up is fairly similar to our 

participants, with: 55.4% Non-Hispanic, White, 19.6% Black or African American, 15.92% 

Hispanic/Latino, 4.46% Asian or Pacific Islander, 3.18% American Indian or Alaska Native, 

and 1.27% Other. Smoking behavior had a high rate of missingness (85.7% of participants did 
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not provide data on their smoking habits), and thus was not included in regression models. 

The sample characteristics of our replication population are detailed in Supplementary Table 

4. The replication cohort mirrored our finding of female participants having lower DNAm age 

than their chronological age (mean Δage is -4.30 years in our data and -3.87 in the replication 

cohort). However, while the correlation between Δage and chronological age was not significant 

in our analysis of 43 participants (r = -0.14, p=0.13), analysis of this larger sample yielded a 

significant negative correlation (r = -0.20, p=3.9E-6, Supplementary Fig. 9).  

Results of the regression of diabetes-related phenotypes on age and Δage are shown in 

Supplementary Table 5.  We found that Δage did not contribute significantly to models of our 

seven diabetes-related phenotypes in our replication group. To test whether the significant 

findings in the original dataset were due to its longer timespan relative to the replication data, 

we censored the original dataset so that only the first two timepoints were included in the 

regression. In Supplementary Table 6, we see that the originally reported associations with 

BMI and glucose disappear when only two timepoints are used, marked by a substantial drop 

in the estimated effect size. This suggests that these results may depend on the ability to 

observe individual changes over a sufficiently long time period. 
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Discussion 

This study supports previous findings on the utility of DNAm-based biomarkers of 

age in modeling health outcomes. We analyzed longitudinal DNAm data in order to capture 

the relationship between participants’ changes in DNAm age over time and diabetes-related 

phenotypes. We found that age acceleration contributes significantly to models of diabetes-

related phenotypes among our 43 participants. Epigenetic age acceleration is positively 

associated with longitudinal changes in participants’ body mass index. Additionally, epigenetic 

age acceleration shows a suggestive association with longitudinal changes to participants’ 

glucose, narrowly missing our Bonferroni cutoff for significance. Glucose does in fact reach 

significance in our sensitivity analysis in which a covariate for incident T2D treatment is 

included (p=0.0054).  This indicates that age acceleration may contribute to longitudinal 

models of fasting glucose and that more research should be done with a larger sample. Age 

acceleration does not appear to significantly contribute to longitudinal models of waist 

circumference, insulin, HOMA-IR measurements, TG/HDL-C ratio, or TyG index. These 

findings give us leads into which aspects of diabetes-related phenotypes may feature an 

important epigenetic component. The utility of epigenetic-based biomarkers is that they can 

offer a more personalized model of an individual’s health status than age alone, though this 

may not be true for all phenotypes. This is evident in the result that Δage contributes to models 

of BMI and fasting glucose but that chronological age appears to be a better predictor of 

fasting insulin, HOMA-IR, TG/HDL-C ratio, and TyG index. 

An intriguing finding is that, for most of our participants, a DNAm-based measure of 

age acceleration remains stable over the course of the study. This indicates that participants 

who displayed accelerated biological age at the start of the study were likely to display the same 

degree of epigenetic age acceleration 16 years later. The dynamics of Δage over time have not 
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been extensively characterized, but this observed stability of Δage over time among adults is 

consistent with findings in previous longitudinal studies of age acceleration.126,175 Additionally, 

we found that Δage exhibits a negative correlation with chronological age, which is consistent 

with previous reports.104,130,175 While this relationship was not significant in our initial sample, 

it reaches significance in our larger replication cohort. While this could suggest a non-linear 

relationship between DNAm age and chronological age over the life course, Δage did not 

change significantly over time for the majority of individuals in our study. Thus, the negative 

correlation appears to result from between-individual differences, and may reflect a selection 

bias due to biologically “younger” individuals being more likely to survive to old age.130 

A recent study reported that Hispanic/Latinos from the WHI feature a significantly 

lower epigenetic age acceleration compared to Caucasians.121 In our study, Hispanic/Latinos 

also featured a lower Δage compared to Caucasians and African Americans, but this was not 

significant due to our small sample size. Additionally, our findings, that Δage did not associate 

significantly with several diabetes-related phenotypes, have been corroborated by another 

study of Δage among WHI participants; however, in contrast to our findings, this study did not 

find a significant association between Δage and BMI or glucose.121 Reasons for this difference 

could lie in our use of longitudinal data over 16 years, while most previous studies of epigenetic 

age acceleration have relied on cross-sectional data.   

A recent publication, which used longitudinal data from an overlapping set of subjects 

within the WHI, observed a significant association of age acceleration with individual changes 

in BMI over a 3-year study period.111 Another study, using longitudinal methylation data, found 

that an increase in the BMI is significantly associated with an increase in age acceleration.118 

These findings suggest that a longitudinal approach to modeling diabetes-related phenotypes 

may allow for the detection of associations previously not possible with a cross-sectional study. 
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The increased ability to detect association between DNAm and the phenotypes tested can be 

attributed to the length of time between repeated measures. The 3-year study period may 

explain why our replication sample, though larger, did not reflect the associations between age 

acceleration and diabetes-related phenotypes noted in our 16-year study.  

Longitudinal studies provide a powerful means to identify phenotypic changes 

associated with within-person changes in DNA methylation, while avoiding potential 

confounding due to between-person differences. Sensitivity analyses revealed that our 

observed association between BMI and Δage was driven by within-individual differences in the 

participants with the most dynamic Δage and BMI over the time period studied.  We also noted 

that Δage was relatively stable over time for most individuals.  Based on these observations, to 

maximize within-person variation in predictors and phenotypes, future longitudinal studies of 

DNAm and age-related phenotypes should strive to focus on the age ranges that are most 

dynamic with respect to the phenotypes of interest, and incorporate the widest possible study 

duration within the relevant age range.  In addition, a previous finding that events like 

menopause can accelerate biological aging in blood113 imply that perhaps studies of DNAm 

and/or biological aging could benefit from focusing on post-menopausal women. 

Our study had several limitations. Our population of only post-menopausal women 

potentially limits the generalizability of our findings. More research into the contribution of 

Δage to health outcomes in both men and women, and in participants across different age 

groups is necessary. Furthermore, a disproportionally high number of participants enrolled in 

the WHI are obese, potentially limiting generalizability to non-obese populations. Additionally, 

data on smoking behavior, alcohol consumption, exercise habits, and ethnicity were self-

reported and thus could be biased, potentially affecting our results. Data on time spent 

exercising per week was unavailable for the third timepoint, and was thus not included in our 
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models. Because physical activity is known to protect against the development of diabetes,192 

this may inflate the importance in the contribution of DNAm to disease development. Lastly, 

T2D incidence was included as a covariate in the sensitivity analysis and not analyzed as an 

outcome because only 4 participants in our study developed T2D over the 16-year time 

period—which would limit our power to detect associations with disease incidence.  Because 

of this limitation, our focus was on phenotypes associated with the incidence of T2D rather 

than the incidence itself.    

Finally, while our study benefits from a longitudinal design with DNAm spanning an 

average of 16 years within subjects, the number of subjects is small.  Larger studies will be 

needed to confirm the associations reported here and to investigate mechanisms underlying 

the associations.  Our results are consistent with a scenario in which the relationship between 

age and these diabetes-related phenotypes may be mediated by DNAm or a related process.  

However, much larger studies are required to tease out causality in the relationship between 

epigenetic aging rates and phenotypes associated with diabetes such as high BMI. Recent 

cross-sectional publications have used Mendelian randomization approaches to assess 

causality between DNAm and obesity from whole blood.69,71 Their findings suggest that the 

majority of obesity-associated differences in DNAm patterns may be a result, rather than a 

cause, of the development of obesity.  Regardless of the direction of causality, our results and 

others support the potential of DNAm and epigenetic factors as candidates to develop 

biomarkers for diabetes-related phenotypes.  
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Conclusions 

Diabetes is associated with genetic, lifestyle, and environmental factors, suggesting that 

the epigenome may be important in determining both susceptibility and progression of the 

disease. While numerous past studies have noted small scale DNAm changes that accompany 

diabetes risk and progression, our findings speak to the utility of genome-wide methylation 

changes in modeling phenotypes associated with diabetes. This contribution of Δage in 

modeling diabetes phenotypes also speaks to the ability of DNAm to serve as a potential 

mediator of the relationship between aging and the phenotypes associated with age-related 

disease, or alternatively as a biomarker. We believe this pilot study can inform future studies 

of DNAm-based biomarkers and their potential to predict phenotypes associated with disease.  
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Tables and Figures  
 
Fig. 1 Chronological Age (x-axis) vs. DNA Methylation Age (y-axis)  
 

 
 
Each point shows chronological age and DNAm age for one participant at one of the three 
timepoints. The dotted red line represents the equivalence line, meaning there would be 
perfect agreement between the computed DNAm age and the approximated chronological 
age. The blue line represents the regression line obtained from a regression of DNAm age on 
chronological age with random effects to account for repeated measures within subjects. The 
shaded grey region around the blue line represents a 95% confidence interval of the regression 
line 
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Fig. 2 Chronological Age (x-axis) vs. DNA Methylation Age (y-axis) for Each Participant   
 

 
 
Each subplot represents one participant; a solid black line connects the participants’ three 
measures of Δage across the three timepoints. The dotted red line represents a line of slope = 
1, reflecting perfect agreement between DNAm age and chronological age. A participant’s 
black line being nearly parallel to the dotted red line indicates little change in Δage within a 
participant over the course of the study, while a black line with a slope other than 1 would 
reflect changes in Δage over time. Figure 1 provides a composite view of these data combined 
across all 43 subjects 
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Table 1.  Demographic and clinical characteristics of study population (N=43) 
   

Variable Mean +/- SD or percentage  
 Baseline (SD) Follow-up (SD) LLS (SD) # missing obs. 
Chronological age (years) 61.52 (6.94) 65.05 (6.77) 77.48 (6.48) 0 
DNAm age (years) 58.05 (8.05) 60.19 (6.93) 72.85 (7.92) 0 
Δage (years) -3.47 (4.36) -4.86 (4.47) -4.56 (5.20) 0 
BMI (kg/m2) 29.02 (5.23) 29.32 (4.47) 28.34 (5.88) 4 
Fasting glucose (mg/dL) 94.88 (8.47) 95.47 (14.22) 100.19 (18.76) 0 
Fasting insulin (μIU/mL) 12.00 (5.21) 13.04 (7.58) 18.94 (15.10)a 6 
HOMA-IR 2.82 (1.23) 3.17 (2.37) 5.01 (4.56)a 6 
TG/HDL-C ratio 3.09 (1.65) 2.92 (1.91) 2.08 (1.19) 1 
TyG index  8.85 (0.47) 8.84 (0.46) 8.57 (0.49) 0 
Waist circumference (cm) 87.64 (12.29) 88.87 (11.55) 89.20 (13.37) 10 

   
aLLS insulin measures were obtained from a different analyzer from the baseline and follow-
up measures and units were converted from pmol/L to µIU/mL. We observe higher values 
and standard errors for this measure. These observed differences between timepoints could 
reflect a true increase in fasting insulin with age, or could be due to differences in 
measurement 
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Table 2.  Multivariate regression analysis of diabetes-related phenotypes on age and 
biological age acceleration 
 

 
Phenotype 

 

Model 1 
Coefficients on 

chronological age 

Model 2  
Coefficients on 

chronological age 

Model 2  
Coefficients on 

Δage 
Est. (SE) P-value Est. (SE) P-value Est. (SE) P-value 

BMI -0.046 
(0.030) 

0.13 -0.032 
(0.029) 

0.27 0.29 
(0.087) 

0.0012* 

Fasting Glucose 0.24 
(0.14) 

0.081 0.30 
(0.13) 

0.027 0.97 
(0.34) 

0.0073 

Fasting Insulin 0.28 
(0.10) 

0.0078 0.30 
(0.10) 

0.0050* 0.26 
(0.24) 

0.28 

HOMA-IR 0.084 
(0.028) 

0.0043*   0.091 
(0.029) 

0.0022* 0.089 
(0.065) 

0.18 

TG/HDL-C ratio -0.051 
(0.015) 

0.0013* -0.048 
(0.016) 

0.0029* 0.048 
(0.040) 

0.24 

TyG index -0.014 
(0.0045) 

0.0023* -0.013 
(0.0046) 

0.0055* 0.021 
(0.012) 

0.073 

Waist 
circumference 

0.10 
(0.077) 

0.18 0.13 
(0.076) 

0.082 0.48 
(0.22) 

0.033 

 
The model includes the following covariates for the 43 participants: ethnicity, smoking 
history, age, and estimated cell type proportions. P-values marked with an asterisk (*) are 
significant at our Bonferroni-corrected a of 0.0071 
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Fig. S1 Density Plots of Phenotypes Grouped by Timepoint  
 

  
 
Density plots of our seven diabetes-related phenotypes at each of three timepoints. The first 
timepoint is red, the second is green and the third is blue. HOMA-IR, and TG/HDL-C 
ratios are log-transformed 
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Table S1.  Top ten CpG sites reflecting methylation changes with age 
 

CpG site Est. (SE) P-value Associated Genea 
cg14252149 -0.0081 (0.00051) 2.37E-25 LGALS8 
cg22337626 0.0067 (0.00045) 1.13E-23 MAST2 
cg01188578 -0.0065 (0.00047) 5.09E-22 HADHA 
cg04246708 -0.0059 (0.00045) 4.63E-21 CNST 
cg15075357 0.0058 (0.00046) 5.83E-20 NPHP4 
cg09281805 -0.0070 (0.00057) 1.67E-19 FOXK1 
cg14782559 0.0059 (0.00049) 5.26E-19 COL11A2 
cg18239511 0.0040 (0.00035) 4.43E-18  
cg03122926 0.0056 (0.00049) 1.041E-17  
cg01156747 0.0064 (0.00057) 1.96E-17  

 
aAssociated gene according to the Illumina HumanMethylation450K manifest file 
(https://support.illumina.com/downloads/infinium_humanmethylation450_product_files.h
tml) 
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Fig. S2 Manhattan Plot for Association Between DNA Methylation and Chronological Age  
 

 
This figure shows the Manhattan plot (−log10 of the p value by genomic location) of the 
association results. Each dot represents the p-value associated with a CpG. The solid black 
line indicates the significance threshold of 1E-07. A random effect for participants was 
included to account for repeated measures within subject  
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Fig. S3 Comparison of T-statistics of 713 Age-Related CpGs   
 

 
 
T-statistics of 713 CpGs that were available in both our EWAS and in results presented by Xu 
and Taylor 2014 were plotted for comparison.  The correlation of 0.74 suggests that, though 
our dataset is smaller, our results are consistent with those identified in a more well-powered 
study 
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Fig. S4 Density Plot of Participants’ Age Acceleration Grouped by Timepoint 
 

 
 
Participants showed substantial variation in their measures of Δage (range = -13.8 to 15.7 years, 
mean = -4.3, SD =4.7 years). Red shows the density plot at the first timepoint, green at the 
second and blue at the third. There was little variation in Δage across the three timepoints. A 
Shapiro-Wilk normality test of Delta at each timepoint was performed, timepoints 1 and 2 are 
normally distributed, while timepoint 3, due to an extreme value, is not normally distributed  
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Fig. S5 Chronological Age (x-axis) vs. Age Acceleration (y-axis)  
 

 
 
The Δage term exhibits a negative relationship with chronological age. A mixed effects model 
was fit that regressed Δage on chronological age. The dotted red line represents a line of slope 
= 0, representing no significant relationship between Δage and chronological age. The solid 
blue line represents the regression line obtained from the mixed effects model.  The line has 
a negative slope (b= -0.05) but this trend was not significant (p=0.13), suggesting that age 
acceleration is roughly independent of chronological age in our samples 
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Fig. S6 Changes to 43 Participants’ Age Acceleration Over Time  
 

 
 
Each subplot represents one participant; a solid black line connects the participants’ three 
measures of Δage across the three timepoints. The dotted red line represents a line of slope = 
0, reflecting no significant relationship between Δage and years in the study. The observed lack 
of change in Δage with time was tested using a mixed effects model, with the year of the 
participant’s clinic visit as a fixed effect and a random effect for participants the slope obtained 
(-0.041) was not significantly different from the null value of zero (p=0.25). This indicates that 
age acceleration, on average, does not change significantly over the course of the study for 
most participants. The lack of significant change in slope over time suggests that 1) Δage appears 
stable over time, and 2) our estimates of Δage are not influenced by possible batch effect 
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Fig. S7 Estimated Proportions of B cell, CD4T, CD8T, Granulocyte, Monocyte and NK cells 
in Peripheral Blood  
 

 
 
Boxplots of cell type proportions organized in separate panels by cell type and separated by 
timepoint. Each of the six cell type proportions was regressed on the visit year when blood 
was drawn and the resulting p-value of the slope is included in the plot, this regression model 
included a random effect for the participant. We see that the cell proportions do not change 
significantly across the course of the study 
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Fig. S8 Changes to 43 Participants’ BMI Over Time 
 

 
 
Each subplot represents one participant; a solid black line connects the participants’ 
measures of BMI across the study. The red dots represent one of three timepoints when 
DNAm data in available, other visits are marked by blue dots 
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Fig. S9 Chronological Age (x-axis) vs. Age Acceleration (y-axis) for replication population 
 

 
 
The Δage term exhibits a negative relationship with chronological age. A mixed effects model 
was fit that regressed Δage on chronological age. The dotted red line represents a line of slope 
= 0, representing no significant relationship between Δage and chronological age. The solid 
blue line represents the regression line obtained from the mixed effects model.  The line has 
a negative slope (b= -0.19) and this trend was significant (p=0.0000039), suggesting that age 
acceleration is inversely related to chronological age in our replication cohort. This could be a 
true underlying relationship due to a non-linear relationship between chronological age and 
DNAm age or, perhaps, a result of selection bias with subjects who survived to advanced age 
being more likely to show lower Δage  
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Table S2.  Sensitivity Analysis: Multivariate regression analysis of diabetes-related phenotypes on age acceleration  
 

 
Phenotype 

 

Model 2 Δagea  Model 2 Δage + alcohol 
consumptionb 

Model 2 Δage + total caloric 
intakec 

Model 2 Δage + family 
history of diabetesd 

Model 2 Δage + incident 
diabetese 

Model 2 Δage + incident 
diabetes treatmentf 

Est. (SE) P-value Est. (SE) P-value Est. (SE) P-value Est. (SE) P-value Est. (SE) P-value Est. (SE) P-value 
BMI 0.29 (0.087) 0.0012* 0.26 (0.086) 0.0032* 0.32 (0.090) 0.0007* 0.28 (0.085) 0.0015* 0.26 (0.089) 0.0044* 0.29 (0.088) 0.0015* 

Fasting 
Glucose 

0.97 (0.34) 0.0073 0.83 (0.33) 0.015 0.75 (0.36) 0.043 0.87 (0.33) 0.0091 0.61 (0.30) 0.045 0.96 (0.34) 0.0054* 

Fasting Insulin 0.26 (0.24) 0.28 0.11 (0.23) 0.62 0.22 (0.25) 0.38 0.18 (0.23) 0.44 0.23 (0.24) 0.34 0.27 (0.24)  0.27 
HOMA-IR 0.089 (0.065) 0.18 0.050 (0.063) 0.42 0.073 (0.069) 0.29 0.072 (0.065) 0.27 0.068 (0.064) 0.29 0.090 (0.066) 0.17 

TG/HDL-C ratio 0.048 (0.040) 0.24 0.036 (0.038) 0.34 0.012 (0.036) 0.75 0.047 (0.039) 0.23 0.046 (0.041) 0.27 0.049 (0.041) 0.23 
TyG index 0.021 (0.012) 0.073 0.018 (0.011) 0.10 0.0082 (0.012) 0.48 0.023 (0.011) 0.052 0.018 (0.012) 0.013 0.023 (0.012) 0.053 

Waist 
circumference 

0.48 (0.22) 0.033 0.39 (0.22) 0.079 0.53 (0.22) 0.021 0.42 (0.22)  0.056 0.37 (0.22) 0.10 0.46 (0.22) 0.043 

 
aModel 2 Δage results from Table 2 
bWeekly consumption of alcoholic beverages was included as a covariate in model 
cDaily dietary energy intake for participants in kilocalories was included as a covariate in model 
dFamily history of diabetes was included as a covariate in model, with n = 11 participants responding ‘Yes’  
eIncident diabetes was included as a covariate in model, with n = 4 participants having incident diabetes in at least one time period 
fIncident treatment with antidiabetic agents (including pills or insulin shots) was included as a covariate in model, with n = 4 
participants under treatment in at least one time period 
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Table S3.  Multivariate regression analysis of diabetes-related phenotypes on age and biological age acceleration, 5 outliers removed 
 

 
Phenotype 

 

Model 1 
Coefficients on chronological age 

Model 2  
Coefficients on chronological age 

Model 2  
Coefficients on Δage 

Est. (SE) P-value Est. (SE) P-value Est. (SE) P-value 
BMI -0.022 (0.023) 0.34 -0.018 (0.024) 0.45 0.049 (0.094) 0.60 

Fasting Glucose 0.14 (0.14) 0.33 0.20 (0.15) 0.18 0.60 (0.42) 0.16 
Fasting Insulin 0.31 (0.11) 0.0079 0.35 (0.12) 0.0039* 0.40 (0.31) 0.20 

HOMA-IR 0.086 (0.031) 0.0081 0.098 (0.032) 0.0038* 0.11 (0.083) 0.18 
TG/HDL-C ratio -0.042 (0.016) 0.0099 -0.043  (0.017) 0.011 -0.015 (0.048) 0.75 

TyG index -0.014 (0.0049) 0.0064* -0.014 (0.0051) 0.0066* -0.0060 (0.015) 0.6915 
Waist circumference 0.082 (0.077) 0.29 0.098 (0.082) 0.23 0.18 (0.28) 0.52 

 
The model includes the following covariates for the 43 participants: ethnicity, smoking history, age, and estimated cell type 
proportions. The 5 outliers have been removed
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Table S4.  Demographic and clinical characteristics of replication population (N=157, 314 
observations) 
 

Variable Mean +/- SD or percentage  
 Baseline (SD) Follow-up (SD) # missing obs. 
Chronological age (years) 62.10 (6.62) 66.04 (6.63) 0 
DNAm age (years) 58.63 (6.99) 61.78 (6.95) 0 
Δage (years) -3.47 (4.54) -4.27 (4.47) 0 
BMI (kg/m2) 29.20 (5.86) 29.73 (6.06) 30 
Fasting glucose (mg/dL) 99.69 (24.61) 98.39 (23.55) 0 
Fasting insulin (uIU/mL) 10.86 (5.72) 11.74 (6.35) 12 
HOMA-IR 2.80 (2.10) 2.99 (2.38) 12 
TG/HDL-C ratio 3.26 (4.75) 2.99 (2.69)  0 
TyG index 8.80 (0.61) 8.79 (0.58)  0 
Waist circumference (cm) 88.07 (12.95) 89.79 (13.55) 54 
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Table S5.  Multivariate regression analysis of diabetes-related phenotypes on age and biological age acceleration among replication 
population  
 

 
Phenotype 

 

Model 1 
Coefficients on chronological 

age 

Model 2  
Coefficients on chronological 

age 

Model 2  
Coefficients on Δage 

Est. (SE) P-value Est. (SE) P-value Est. (SE) P-value 
BMI 0.016 (0.043) 0.71 0.026 (0.047) 0.58 0.038 (0.065) 0.56 

Fasting Glucose -0.0090 (0.23) 0.97 -0.052 (0.24) 0.83 -0.17 (0.33) 0.61 
Fasting Insulin 0.062 (0.060) 0.31 0.087 (0.065) 0.18 0.096 (0.093) 0.30 

HOMA-IR 0.024 (0.022) 0.28 0.037 (0.024) 0.13 0.049 (0.033) 0.15 
TG/HDL-C ratio -0.041 (0.037) 0.28 -0.033 (0.040) 0.41 0.029 (0.058) 0.62 

TyG index 0.0026 
(0.0054) 

0.62 0.0031 
(0.0057) 

0.59 0.0019 
(0.0079) 

0.81 

Waist circumference 0.095 (0.12) 0.42 0.17 (0.12) 0.18 0.30 (0.17) 0.088 
 
The model includes the following covariates for the 157 participants: ethnicity, age, and estimated cell type proportions 
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Table S6.  Multivariate regression analysis of diabetes-related phenotypes on age and biological age acceleration, third timepoint 
censored  
 

 
Phenotype 

 

Model 1 
Coefficients on chronological age 

Model 2  
Coefficients on chronological age 

Model 2  
Coefficients on Δage 

Est. (SE) P-value Est. (SE) P-value Est. (SE) P-value 
BMI 0.080 (0.071) 0.27 0.099 (0.074) 0.19 0.081 (0.10) 0.43 

Fasting Glucose 0.23 (0.21) 0.27 0.26 (0.22) 0.24 0.16 (0.33) 0.62 
Fasting Insulin 0.13 (0.095) 0.18 0.13 (0.098) 0.19 -0.017 (0.15) 0.91 

HOMA-IR 0.036 (0.026) 0.18 0.036 (0.027) 0.20 -0.0052 (0.043) 0.90 
TG/HDL-C ratio 0.023 (0.031) 0.47 0.029 (0.032) 0.38 0.043 (0.049) 0.39 

TyG index 0.0081 (0.0082) 0.33 0.0094 (0.0084) 0.27 0.0090 (0.013) 0.49 
Waist circumference 0.10 (0.18) 0.57 0.11 (0.18) 0.55 0.038 (0.26) 0.88 

 
The model includes the following covariates for the 43 participants: ethnicity, smoking history, age, and estimated cell type 
proportions. The third timepoint has been censored, so only the first two timepoints are included 
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Chapter III. Modeling the impact of age-related epigenetic variability on aging-
related phenotypes 

 
Crystal D. Grant, Thomas H. Jonkman, BIOS Consortium, Riccardo E. Marioni, Ian J. 

Deary, Bastiaan T. Heijmans  
 
 



 

 68 

Abstract 

DNA methylation (DNAm) data has been used to identify CpGs across the genome 

that reflect increased variability with age, termed age-related variably methylated cytosines 

(aVMCs). Interestingly, methylation at these aVMCs was linked to changes in the expression 

of genes with key roles in biological pathways implicated in aging. We hypothesized that 

participants’ epigenetic variability associates with aging-related phenotypes, and thus can serve 

as a biomarker of aging. We analyzed DNAm at 412,373 CpGs in whole blood samples from 

4,112 participants. Using Double Generalized Linear Models to test for age-related changes in 

variance, we discovered 11,524 aVMCs (P < 10-7). Of these, 3,151 replicated in two 

independent data sets of whole blood (n=643) and purified monocytes (n=1,187). Functional 

annotation of the replication aVMCs found them enriched in repressive regions of the 

genome, and more specifically, enriched at developmental genes. We used these aVMCs to 

construct a composite score indicating participants’ methylomic variability relative to the 

young (<30 years) group. This variability score was then evaluated for its link to known aging-

related phenotypes in an external longitudinal dataset from the Lothian Birth Cohort 

(LBC1921 n = 469, LBC1936 n = 1,055). Though these sites appear functionally linked to 

aging pathways, the score does not appear to contribute significantly to longitudinal models 

of aging-related phenotypes nor does it contribute to predictions of all-cause mortality. Thus, 

while modeling epigenetic variability in aging may be informative, an alternate approach to the 

development of this score is necessary. 
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Introduction 

DNA methylation (DNAm), shows robust, genome-wide changes with age.87,102,103 

Capitalizing on these changes with age, researchers have used DNAm data at a subset of age-

related differentially methylated cytosines (aDMCs)99,101,104 to estimate chronological age. This 

estimate, based on DNAm patterns (DNAm age), can have a strong correlation with 

individuals’ chronological ages. Some studies have used the difference between predicted 

DNAm age and chronological age, the residual, as an indicator of biological age. An organism’s 

biological age predicts its physiological functioning and disease susceptibility better than 

chronological age alone.22 However, a recent study128 found that the residual can be influenced 

by the sample size used in training the predictor. This suggests that the use of this residual as 

an indicator, or biomarker, of biological age may not be the optimal approach.  

Considering the variation in DNAm age among people of the same chronological age, 

a relevant alternative biomarker may take into account environmental and stochastic changes 

to an individual’s epigenome over time. This model would, in theory, better capture biological 

age as well as the variability among humans in the process of aging. We hypothesize that a 

more informative model of biological aging should feature CpGs undergoing changes in 

variability over time instead of those reflecting linear age-related methylation change. An 

example of such a CpG, termed an age-related variably methylated cytosine (aVMC) in 

contrast to an aDMC can be observed in Supplementary Figure 1. This hypothesis is 

supported by studies among monozygotic twins observing variability of DNAm increasing 

with age,78,129 and with discordant disease development.138 Studies have found that this increase 

in variability appears to occur especially at age-associated CpGs,134 and that these CpGs appear 

near to genes involved in the aging process.132 
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In a recent publication from our group,106 Slieker et al. identified 6,366 aVMCs, across 

the genome that showed increased variability with age. Moreover, methylation at these aVMCs 

was found to strongly associate with changes in gene expression of genes with central roles in 

biological pathways associated with aging, including: apoptosis, DNA repair, and lymphocyte 

activation. These sites represent a distinct class of CpGs indicating which regions of the 

genome are undergoing epigenetic drift. Several studies have characterized such CpGs using 

differing methods of identification. Slieker et al.106 used the Breusch–Pagan test for 

heteroscedasticity193 which first models linear changes in the relationship between DNAm and 

age, then tests the resulting squared residuals for a relationship between their variance and age 

(6,366 CpGs identified). This approach can also be used on longitudinal DNAm data where 

the residuals are modeled as the independent variable in a mixed effect model with a random 

intercept to account for repeated measures in the same individual (570 CpGs identified).131 

Similarly, also in longitudinal data, a random slope model can be applied to the CpGs in the 

450K array to find sites whose slopes reflect significant change over time (1507 CpGs 

identified).132 Another approach is to use Double Generalized Linear Models (DGLM)194 in 

which the linear and variance relationships between DNAm and age are modeled 

simultaneously. This approach was used on our cross-sectional cohort. 

In the current study, we aimed to create an updated catalogue of aVMCs using a robust 

statistical approach, and to combine the DNAm data at these sites into a composite score of 

methylomic variability (MV). We hypothesize that this MV score, because of the links between 

aVMCs and biological pathways important in aging, will be a useful biomarker of aging. To 

test the utility of this biomarker, we apply it to longitudinal models of important age-related 

phenotypes28 using longitudinal DNAm and phenotypic data from the Lothian Birth Cohorts. 
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Methods 

BIOS Cohort Information  
DNA methylation and RNA-seq data were generated within the Biobank-based 

Integrative Omics Studies Consortium (BIOS Consortium). The BIOS Consortium, detailed 

in 106, encompasses data from six Dutch biobanks: Cohort on Diabetes and Atherosclerosis 

Maastricht (CODAM),195 LifeLines (LL),196 Leiden Longevity Study (LLS),197 Netherlands 

Twin Registry (NTR),198 Rotterdam Study (RS),199 and the Prospective ALS Study Netherlands 

(PAN).200 To ensure that analysis was performed only on unrelated participants, a random twin 

was chosen from each twin pair from the Netherlands Twin Registry.  

 
BIOS Data Cleaning  

For each participant, whole blood samples were obtained. Briefly, 500 ng of genomic 

DNA was bisulfite converted using the EZ DNA Methylation kit (Zymo Research, Irvine, 

CA, USA) and hybridized to Illumina Infinium 450k arrays according to the manufacturer’s 

protocols. Signal intensities were measured using an Illumina iScan BeadChip scanner. Quality 

control (QC) on the DNAm data was performed using the R package MethylAid.201 DNAm 

was available at 481,388 CpGs; of these, 59,232 CpGs were ambiguously mapped probes and 

were removed from future analysis as recommended by Zhou et al.202 The remaining 422,156 

CpGs were used in future analysis. Probes with a high detection P value (>0.01), probes with 

a low bead count (<3 beads), and probes with a low success rate (missing in >95 % of the 

samples) were set to missing. Probes mapping to chromosomes X and Y were excluded from 

future analyses. Functional normalization, as implemented in the minfi R package,203 was used 

per cohort. 

Out of 4,386 samples passing QC, 263 of these participants did not have their age 

available and were removed from future analysis (n=4,123). The getSex.DNAmArray() 

function from the DNAmArray R package,204 which uses DNAm data on the X chromosome 
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to impute sex, was used to impute sex for participants for whom sex was not reported by the 

biobank (of the 4123, n=2). This step also identified participants (n=11) for whom the 

biobank’s reported sex appeared to be incorrect. These 11 participants were removed from 

analysis; imputed sex was then used in future analysis for all participants (n=4,112). Residual 

batch effects were removed using ComBat,205 with biobank as batch and gender and age as 

outcome variables. The sample identities were confirmed by comparing DNAm data to 

genotype data using MixupMapper.206 

Cell count data of the whole blood samples (neutrophils, lymphocytes, monocytes, 

eosinophils, and basophils) were available for the majority of samples (>69%). Previous 

studies have emphasized the importance of accounting for changes in cell type proportions 

during aging,96,207 cell counts were imputed for each individual and these counts were included 

as a covariate. To impute these missing cell counts, a prediction model of cell composition 

was fitted using the subset of participants for whom cell counts were available. A multivariate 

partial-least-squares model was fit to the normalized DNAm data, and using the fitted model, 

cell composition was imputed for all samples. This step was performed using the 

wbccPredictor R package, pipeline available on Github,208 and imputed cell type percentages 

were used as covariates in future analysis.  

 
Identifying aVMCs 

Two methods were used to identify aVMCs then their overlap compared in 

Supplementary Figure 3. The first method was the Breusch–Pagan (BP) test for 

heteroscedasticity193 (as used in Slieker et al.) and the second was Double Generalized Linear 

Models (DGLM).194 Both models were applied to DNAm in M-values, in contrast to Slieker 

et al. which used Beta values. M-values are considered more statistically valid for analyses when 

compared to Beta values because they are considered approximately homoscedastic,209 thus 
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this approach is an improvement over previous aVMC selection. In applying the BP test for 

heteroscedasticity, first a linear regression model accounting for changes in age, blood cell 

composition (lymphocytes, monocytes, basophils, eosinophils), and gender was applied. Next, 

squared residuals were tested for an association with age, again adjusting for blood cell 

composition and gender. CpGs that showed a significant association between squared 

residuals and age were considered aVMCs, using a Bonferroni-adjusted alpha level of 

0.05/(412,373 tests).  

In an alternative method, aVMCs were identified by using DGLM, as implemented in 

the R package dglm.210 Briefly, DGLM works by simultaneously modeling both the mean and 

dispersion in the relationship between variables–in this case the relationship between age and 

DNAm–until convergence. This approach is thought to be advantageous over the use of 

BPtest because it avoids some of the issues associated with overdisperson and the mean value 

affecting the measure of variances. The linear model of the mean included age, blood cell type 

proportions, and gender as covariates. To identify sites reflecting changes only in variability 

with age, only age was included in the dispersion model and the p-value on this age term was 

extracted and used to identify which sites were aVMCs (using a Bonferroni corrected alpha of 

0.05). This method identified 11,524 aVMCs. For four CpGs (cg09370299, cg04045327, 

cg24139216, cg07035145), the DGLM model failed to converge and these sites were removed 

from analysis. For both methods, validation of aVMCs was performed in two external datasets 

of whole blood (n=643) and monocyte datasets (n=1,187). Discovery of aVMCs was 

performed on M-values, other analyses were performed on Beta values for easier visualization 

of the DNAm data; M-values were transformed to Beta values using the lumi package. 

The aVMCs were validated in two external datasets, whole blood and monocyte 

datasets. For the whole blood data, IDAT files from Hannum et al.99 underwent the same 
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quality and normalization procedures outlined above. After quality control, 643 samples were 

used in subsequent analysis. For the monocyte data, normalized data were obtained from 

GEO211 (accession number GSE56046).212 For the whole blood data, the BP test and DGLM 

outlined above were used with the same cell type proportions used as covariates. For the 

monocyte data, imputed cell type proportions were used as covariates in the model (B cells, T 

cells, natural killer (NK) cells, and neutrophils). 

 
Smoking sensitivity analysis in aVMC discovery 

Studies have suggested that smoking can influence DNAm patterns.73,213 Self-reported 

smoking behavior was available for a subset of participants from BIOS (n=3,222). 

EpiSmokEr,214 was used to impute smoking behavior among all participants. This smoking 

exposure score was then included as part of a sensitivity analysis in aVMC discovery. Briefly, 

EpiSmokEr uses DNAm data at 187 CpGs to compute a numeric score indicating smoking 

exposure, with a higher score indicating more exposure. Among the BIOS data, participants 

ranged in their smoking score from -12.44 to 23.17 (mean=-0.01, sd=5.34). Agreement 

between participants’ self-reported smoking behavior and calculated smoking exposure scores 

can be observed in Supplementary Figure 8A. This smoking score was then included as a 

covariate in the identification of aVMCs, with almost all (>96%) of the same aVMCs being 

identified, confirming that smoking behavior does not influence aVMC discovery 

(Supplementary Figure 8B, C).  

 
Functional annotation of aVMCs 

Chromatin state annotations were obtained from the Epigenomics Roadmap project,33 

which contains tissue-specific data on 15 chromatin states in 127 tissue types, imputed from 

5 histone marks using a hidden Markov model. Though our data were generated in whole 

blood samples, the peripheral blood mononuclear cell (PBMC) annotation was used as proxy 
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for our tissue. Additionally, data on 6 histone modifications (H3K4me1, H3K4me3, H3K27ac, 

H3K36me3, H3K9me3, H3K27me3) in PBMCs were obtained. 

For genic annotations, genomic ranges of all protein-coding genes were obtained using 

the R package ensembldb.215 Nearest genes were annotated to the aVMCs as well as five gene-

centric features: 1) Distal promoter: 10kb - 1.5 kb upstream of the coding sequence of each 

gene; 2) Proximal promoter: 1.5 kb upstream to 0.5 kb downstream of the coding sequence of 

each gene; 3) Gene body: the coding sequence of each gene, minus the overlap from the 

proximal promoter; 4) Downstream: 5000 bp downstream of the coding sequence of each 

gene; and 5) Intergenic: none of the above.  

For the enrichment analysis, odds ratios (OR) were calculated for aVMCs overlapping 

an annotation compared to non-aVMCs (all other CpGs from the array). Enrichments were 

expressed as odds ratio on a log2 scale. Fisher’s exact test was then performed to test for 

enrichment of a feature in aVMCs vs. non-aVMCs. Gene ontology (GO) enrichment of the 

nearest annotated genes was performed using the R package STRINGdb.216 GO terms were 

exported to the web-based GO tool WEGO,217 to investigate enrichments of high-level 

biological processes. In WEGO, the full human genome was used as a background, and only 

GO terms of Biological Process of level 2 were visualized; all GO-terms tagged as “obsolete” 

were removed from analysis. For visualization of enrichments of GO terms, only enrichments 

with a p-value smaller than 0.05/15,631 = 3.19877´10-6 were considered statistically 

significant, as 15,361 GO terms were tested for enrichment. 

 
LBC Descriptions and Data Cleaning 

The Lothian Birth Cohort (LBC) studies feature two birth cohorts of 1921 (LBC1921) 

and 1936 (LBC1936), and include children born in 1921 and 1936 respectively in the Lothian 

region of Scotland (which includes Edinburgh and its surrounding areas).128 As part of national 
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testing for almost every child attending school in the region at around age 11, participants 

completed a test of cognitive ability (the Moray House Test); this was done on June 1, 1932 

(n=89,498) and June 4, 1947 (n=70,805) for participants in LBC1921 and LBC1936 

respectively.218 In both studies, participants were re-contacted later in life and have been 

followed-up on at subsequent waves. For LBC 1921, the first wave of data collection occurred 

between 1999 and 2001; for LBC 1936, the first wave of data collection occurred between 

2004 and 2007—where waves of testing were spaced roughly 3 years apart. LBC1921 

participants at Wave 1 are on average at age 79 and there have been four additional follow-up 

waves for data collection at average ages of 83, 87, 90, and 92. LBC1936 participants at Wave 

1 are on average at age 70 and there have been four additional follow-up waves for data 

collection at average ages of 73, 73, 76, and 79. Both cohorts have been deeply phenotyped 

during these later-life waves, including: white blood cell counts, blood biomarkers, cognitive 

testing, and psychosocial, lifestyle, and health measures. In addition to these phenotypes being 

measured, whole blood was drawn from participants for DNAm analysis using the 450k array. 

DNAm was measured in LBC1921 participants as Waves 1, 3, and 4; DNAm was measured 

in LBC1936 participants at all four waves.  

The phenotypic data from LBC used in this analysis focused on established risk factors 

for age-related disease detailed in MARK-AGE,28 including: C-reactive protein, MMSE, 6 

meter walk time (in seconds), grip strength (both right and left were assayed in LBC136 but 

only right hand was used in analysis), serum creatinine, glycated hemoglobin/HbA1C, systolic 

blood pressure (measured 3 times while seated with the means of the measures taken in 

LBC136), serum albumin, total cholesterol, forced expiratory volume (FEV), serum urea 

nitrogen, body mass index (BMI), height, and weight. Mortality data for participants and their 

age in days at death was available for both cohorts (LBC1921 n = 519, 91.37%; LBC1936 n = 
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277, 25.39%). Age was measured in days since birth and divided by 365.25 to find age in years 

(used in subsequent analysis). Observations recorded as -999 or 999 in phenotypic data (n=10 

in LBC 1936) were set to missing in future analysis. 

DNA was extracted from whole blood samples for LBC1921 and LBC1936, using 

standard methods. Raw intensity data were background-corrected and normalized using 

internal controls, and methylation M-values were generated using the R minfi package.203 

DNAm M-values were regularized by constraining them to be in the interval between − 9.96 

and 9.96 (corresponding to the interval 0.001 to 0.999 of the Beta-value). Participants with 

DNA methylation three standard deviations above and below the mean M value were 

excluded as outliers for each probe. Covariates including sex, age, and cell counts (CC), and 

batch effects including position in array (PIA), hybridization date (HD), set ID (SI), plate ID 

(PI) and array ID (AI, both PI and AI were regarded as random effects), were corrected for 

each probe. M-values were then transformed to Beta values using the lumi package.219 

Additional protocols and quality control steps are detailed in Zhang et al.132 

 
Creating an MV score 
 To characterize the directionality and the degree to which LBC participants’ DNAm 

values differ from the “Young” (aged >30 years) group of the BIOS consortium, the Z score 

at each of the 3,151 aVMCs was calculated for each individual relative to the mean and 

standard deviation within the Young group: 

 

!"# =
(&'()"# − &'()+,-----------)

/",
 

 
where Zij is the Z-score of participant j and aVMC i; DNAmij is the Beta value of participant 

j and aVMC i; &'()+,----------- the average Beta value in young participants (y) at aVMC i; and /",  is 

the standard deviation in young participants (y) at aVMC i. These Z-scores are then meant to 
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capture variability as measured in standard deviations from the young DNAm value, with the 

assumption that values farther from the young mean represent aberrant DNAm among some 

older participants.  

 3,183 of the 3,151 sites were present in the LBC studies, so only these sites were used 

in constructing the score. MV scores were calculated for each participant in the LBC by 

totaling the number of aVMCs at which the Z score was greater than or equal to 2 or less than 

or equal to -2. This was done at each wave to measure change in the number of sites showing 

extreme variability over time in each participant.  

 
Applying MV score to Longitudinal Data 

For each aVMC, a linear mixed model that included a random effect for each 

participant was fit to account for repeated measures within participants. Covariates included 

in all models were sex, age in years (centered), and the square of the centered age value. These 

were included in the model to account for effects on phenotypes driven by linear or nonlinear 

changes in age. Thus, for participant (i) at timepoint (j), the following model was fit: 

(01 − 2134516	8ℎ1:;5<81"#~	(01"# +	(01?"# + @1A" + BC	DE;21"# 

The coefficients on each term were then presented in Tables 1 and 2.   

 
Survival analysis using MV score 

Quartiles were calculated for the MV score values (25%: 11; 50%: 53; 75%: 206) and 

235 of the participants whose MV scores placed them in either the first and fourth quartile 

were compared for differences in their risk of mortality during the study. Five LBC121 

participants were recorded at having died but did not include age in days at time of death, thus 

age at last follow-up was used as age at death. Cox models were used for analyzing the censored 

survival time data (from the age in days at blood draw until age in days at death or last follow-

up). We regressed the censored survival times on covariates using Cox regression models from 
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the R function coxph in the survival package. Sex was not found to have a significant effect 

on survival time (p-value = 0.67) and thus was not included as a covariate for overall survival. 
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Results 

Identification of aVMCs 
To model methylomic variability and characterize its link to age-related phenotypes, 

whole blood samples from 4,112 participants aged 18 to 87 were analyzed at 412,373 CpGs 

(Supplementary Figure 2). Building on the findings from Slieker et al. in which 3295 BIOS 

consortium participants were analyzed, in this study, an additional 817 participants were 

included. CpGs showing increased variability with age, independent of an average change in 

DNAm or changes in blood cell composition with age, termed age-related variably methylated 

cytosines (aVMCs), were identified. In contrast to Slieker et al., DNAm M-values were analyzed 

instead of Beta values because of the benefit they offer in identifying differential sites. 

Additionally, Double Generalized Linear Models (DGLM) were implemented in identifying 

aVMCs, compared to Slieker’s approach of using the Breusch–Pagan (BP) test. To ensure that 

the identification of aVMCs wasn’t influenced by different cell compositions in blood with 

age, imputed cell type proportions were included as covariates in the model. 

DGLM identified 178,597 sites (43% of CpGs tested) reflecting linear changes in 

DNAm with age, termed age-related differentially methylated cytosines (aDMCs) (Figure 1A); 

while the BP test identified 165,493 aDMCs (40% of CpGs tested). For sites reflecting changes 

in variability in DNAm with age, DGLM identified 11,524 aVMCs (P < 10-7, Figure 1B); while 

the BP test identified 22,499 aVMCs (P < 10-7). A subset of aVMCs (8.0% for BP test aVMCs 

and 53.5% for DGLM aVMCs) also reflected changes in their mean methylation with age in 

addition to age-related changes in variance, thus they were also considered aDMCs. The 

overlap of aVMCs identified using the two methods were compared in Supplementary 

Figure 3, finding that many aVMCs (11,376/22,647, 50.2%), especially those with the highest 

effect sizes, overlap between the two methods. Additionally, the majority of sites (99.97% for 



 

 81 

DGLM, 99.88% for BP test) appear to reflect increased methylomic variability with age, with 

very few showing decreasing variability, consistent with previous findings.106,131 

The aVMCs were validated in two large public datasets consisting of whole blood (n 

= 643, ages range 19–101)99 and purified monocytes, (n = 1,187, ages range 44–83).212 This 

validation step supports that aVMCs used in future analysis were not influenced by discovery 

in a Dutch population or by any age-related cellular composition changes in whole blood. 

Additionally, in monocytes, predicted blood cell subtype fractions (CD8+ T cells, CD4+ T 

cells, natural killer (NK) cells, B cells, and granulocytes)96 were included as covariates in aVMC 

discovery. External replication of the identified aVMCs using each method was performed 

and the final number of aVMCs identified was 3,151 using DGLM (Figure 1C) and 9,038 

using BP test (Supplementary Figure 4). Overlap between the previously characterized 6,366 

sites and the newly discovered sites was noted in Figure 1D, finding that each method results 

in the identification of unique aVMCs. Only the aVMCs identified using the more conservative 

DGLM method were used in future analysis.  

 
aVMCs are depleted in active regions and enriched in repressed regions 

Functional annotation of the 3,151 aVMCs was performed using chromatin state 

annotations from the Epigenomics Roadmap33 in peripheral blood mononuclear cells 

(PBMCs) (used as a proxy for the whole blood collected in the BIOS consortium). The aVMCs 

appear to be present throughout the genome (Figure 2A). Similar to the findings of Slieker et 

al.,106 aVMCs appear to be enriched in regions featuring repressive chromatin states (Figure 

2B).  Specifically, aVMCs are enriched in the regions marked by repressed polycomb (6.1-fold 

enrichment, P<0.0001), weak repressed polycomb (2.3-fold enrichment, P<0.0001), and 

bivalent enhancers (4.9-fold enrichment, P<0.0001). Conversely, aVMCs appear depleted in 

regions marked by strong transcription (0.05-fold enrichment, P<0.0001) and regions 
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undergoing active transcription (0.23-fold enrichment, P<0.0001). Overall, 1,943 aVMCs 

(61.7%) mapped to segments marking repressed DNA. The aVMCs are also marked by 

histone modifications consistent with repressive chromatin marks (Figure 2C) and depleted 

in regions containing proximal promoters or gene bodies (Figure 2D). This finding was 

supported by a weak enrichment of aVMCs in binding sites of the PcG repressive complex 2 

(PRC2) protein EZH2 in the ENCODE blood cell line GM12878 (1.4-fold enrichment, P = 

0.03). Gene ontology (GO) analysis of cis-associated genes was performed finding an 

enrichment for genes involved in developmental processes (P < 0.0001). (Figure 3) 

 
DNAm at aVMCs remains relatively stable over time for most individuals 

Longitudinal data from the Lothian Birth Cohorts (LBC) (detailed in Figure 4) was 

used to characterize changes over time in DNAm among the aVMCs discovered in the cross-

sectional BIOS consortium. DNAm was collected in either 3 waves for LBC 1921 or 4 waves 

for LBC 1936, with waves spaced approximately 3 years apart. The LBC data features 

participants progressing through to old age, with ages between the first and final waves ranging 

from 79.1 to 90.1 years for LBC 1921 and 67.6 to 80.9 years for LBC 1936. Supplementary 

Figure 5 shows an example of an aVMC in participants from LBC 1936 with data at all 4 

waves. Though the Beta values appear to change over time, a simple linear regression for 

DNAm on age tested for each person reveals the slope is not significantly different from 

zero—indicating relative stability over time. This suggests that DNAm does not change 

significantly over time even at sites that are becoming more variable on a population-wide 

level. Of note in Supplementary Figure 5, are the participants whose slopes deviate 

significantly from zero (in red).  

  In contrast to participants whose Beta values appear to be significantly diverging from 

the Young value with time, in Supplementary Figure 5 participants whose DNA remains 
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stable but is relatively far from the mean Beta value in Young across all waves can be observed. 

We hypothesized that participants with this higher deviation are experiencing more epigenetic 

drift and that this drift is linked to negative phenotypic outcomes. In order to test the 

relationship between methylomic variability (MV) and phenotypic outcomes, the degree of 

MV across these aVMCs must be summarized into a single measure for each participant. 

 
Development of methylomic variability (MV) score 

Methods for creating this MV score were first explored using the BIOS dataset. 

Because many of the Beta values of the aVMCs appear weakly correlated (Supplementary 

Figure 6A), it was hypothesized that the dimension reduction technique, Principal 

Component Analysis (PCA), could be used to summarize the aVMCs into a single measure. 

The mean and standard deviations of DNAm values among the Young (<30 years) group in 

the BIOS data were measured. Next, Z-scores relative to the Young group were calculated for 

each BIOS participant. PCA was performed on these Z-scores in order to capture underlying 

contributors of variance. The MV score would ideally itself resemble an aVMC, however, the 

first 5 PCs together capture a low (0.1672) proportion of the variance and PC1 does not 

resemble an aVMC (Supplementary Figure 6B). Instead of this approach, the count of 

aVMCs at which a participant appears very different from Young were used as an MV score.  

To examine whether epigenetic drift is linked to phenotypic outcomes, the degree to 

which DNAm changes throughout the life course must be characterized. To accomplish this, 

the Young (<30 years) population from the BIOS data, considered to be the standard for a 

healthy DNAm profile, was compared to the aged population in the LBC. The mean and 

standard deviations of DNAm values among the Young group were measured; Z-scores 

relative to the Young group were calculated in the LBC data for each participant at each aVMC 

at each wave. 3,138 of the 3,151 aVMCs discovered in the BIOS data were also present in the 
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LBC data, so only these sites were used in constructing the score. To create a composite 

indicator of MV, the number of sites at which the 3,138 Z-scores were above a value of 2 or 

below -2 (representing 2SD from the Young mean) was totaled for each LBC participant at 

each wave. This score captures the degree to which, at each wave, the participant’s DNAm 

differs from that of a young, healthy participant.   

 
MV score does not appear informative in modeling age-related phenotypes or mortality  

In order to test whether this measure of methylomic variability contributes to 

longitudinal models of age-related phenotypes, MV scores were calculated at each wave. LBC 

participants with data for at least two waves (n= 160 LBC1921, n = 810 LBC196) were used 

in analysis (data available at each wave detailed in Figure 4). A density plot of this MV score 

can be observed in Supplementary Figure 7A-B, showing that the measured methylomic 

variability is low for many participants. The MV score does not appear to be correlated with 

age in either LBC1921 (r = 0.04. p-value = 0.25) or LBC1936 (r = 0.005, p-value = 0.81), 

suggesting that variability at the CpGs used to construct the score is not driven solely by an 

increase in participants’ chronological age.  

Established risk factors for age-related disease, detailed in MARK-AGE,28 were 

available for analysis. These included: C-reactive protein, MMSE, 6 meter walk time, grip 

strength, serum creatinine, glycated hemoglobin (HbA1C), systolic blood pressure (BP), serum 

albumin, total cholesterol, forced expiratory volume (FEV), serum urea nitrogen, Body mass 

index (BMI), height, and weight. A linear mixed model with a random effect for participant 

was used to assess whether the inclusion of a covariate for the MV score improved longitudinal 

models of aging-related phenotypes; results from the model are listed in Tables 1 and 2. Both 

the Age and the Age2 terms appear significantly informative in the model (Bonferroni 

corrected α of 0.0045 and 0.0036 for LBC1921 and LBC1936 respectively) for some of the 
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aging phenotypes. Among the phenotypes in which age were informative in our models were: 

serum album, BMI, cholesterol, FEV, 6 meter walk time, and hemoglobin A1C. The 

phenotypes in which the Age2 term was informative in our models (indicating a non-linear 

relationship between the phenotype and age) were: creatine, hemoglobin A1C, BMI, 

cholesterol, grip strength, and weight. This finding underlies the necessity in accounting for 

the non-linear effects of age when modeling aging phenotypes. The MV score, however, does 

not appear to contribute significantly to modeling any of the aging phenotypes surveyed as the 

coefficient does not reach significance. 

Mortality data on whether a participant had died and their age in days at death was 

available for both cohorts (LBC1921 n = 519, 91.37%; LBC1936 n = 277, 25.39%). Kaplan–

Meier survival curves for MV score quartiles at the Wave closest to death are presented in 

Figure 5 for the LBC1921 cohort (because this cohort has higher rates of mortality). There 

does not appear to be a significant association between survival rates and MV scores (p-value 

= 0.92). 
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Discussion  

We aimed to characterize CpGs reflecting increased variability with age and to test 

whether these sites would be informative in modeling age-related phenotypes and mortality. 

3,151 aVMCs were identified and found to have statistically significant increases in variability 

among participants, in addition to replicating in two external cohorts. These sites appear to be 

present throughout the genome but are enriched in repressed regions and developmental 

genes and depleted in regions undergoing active transcription This finding suggest that sites 

that should remain repressed see that repression in dysregulation with as the DNAm 

maintenance processes degrading with age. Additionally, the aVMCs that replicated all feature 

increasing variance perhaps reflecting increased epigenetic drift with age.  

Changes in DNAm relative to the Young in the discovery cohort were used to indicate 

both how different older participants’ DNAm was from younger participants, and how 

DNAm at these aVMCs change over time. We hypothesized that participants with higher 

amounts of drift relative to the young mean, as evidenced by a higher MV score, would also 

have worse phenotypic outcomes including early risk of mortality. A linear mixed model was 

used to test the contribution of the MV score to longitudinal models of aging related 

phenotypes. The findings do not support the hypothesis that this particular implementation 

of the MV score functions as a meaningful biomarker of aging-related phenotypes as it does 

not appear to significantly contribute to these models. Additionally, using the LBC1921 cohort 

mortality data, the MV-score does not appear to significantly linked to risk of mortality.  

A possible reason for this finding is that all 3,151 aVMCs may not be biologically 

meaningful in the aging-related phenotypes tested. Future directions of this study will include 

limiting the composition of the MV score to only sites found to be biologically meaningful in 

aging-related pathways. In an alternative approach to generating the MV score, 400 of the 
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aVMCs identified in the cross-sectional BIOS data were also identified in a previous study 

using the LBC data to be longitudinally increasing in variability in DNAm.132 Sites like these 

may be more informative in an MV score since they have been found to act as aVMCs in both 

cross-sectional and longitudinal data from their BIOS and LBC cohorts respectively. 

Alternatively, an analysis of differentially expression genes linked to the aVMCs may better 

inform an MV score, as these sites would serve as a direct link between variability in DNAm 

and changes in transcription with age or age-related phenotypes. RNA-seq expression profiles 

are available for 3,377 participants for whom DNA methylation data is available in BIOS, 

allowing for the discovery of these potentially more informative sites in developing a 

meaningful score of methylomic variability. 
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Tables and Figures 
 
 

 
 
Figure 1: Discovery of aVMCs using Double Generalized Linear Models (DGLM) 
A) An example of an aDMC identified from DGLM (p-value = 0.0). Each point represents a 
participant, the y-axis is the methylation Beta value, and the x-axis is age. The red horizontal 
line represents the mean methylation value among the young participants. B) The example 
aVMC pictured is the CpG with the lowest p-value (6.19 ´ 10-23) from DGLM. C) Flow chart 
of 3,151 CpGs identified as aVMCs, featuring replication rates in external datasets. D) Overlap 
between the previously characterized 6,366 sites from Slieker et al. and the newly discovered 
sites using DGLM (n=3,151) and BP test (n=9,038).  
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Figure 2: Characteristics of genomic regions featuring aVMCs  
A) The frequency of aVMCs (x-axis) on each of the autosomal chromosomes (y-axis). B) The 
enrichment (odds ratio, y-axis) of aVMCs in chromatin state segments (x-axis) in peripheral 
blood mononuclear cells. C) The enrichment (odds ratio, y-axis) of aVMCs in histone 
modifications (x-axis). D) The enrichment (odds ratio, y-axis) of aVMCs in genic features (x-
axis).  
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Figure 3: Annotation of genes associated with aVMC methylation  
GO categories of regions enriched for aVMCs. 
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Figure 4: Data available from the Lothian Birth Cohorts 
A) Table of characteristics of participants with phenotypic data available. For LBC 1921, 4 
waves of data were collected, but DNAm data was only available for Waves 1, 3, and 4. B) A 
figure showing which LBC 1921 participants have DNAm data that passed QC for multiple 
waves; a green box indicates DNAm data is available at that wave. The Total number of 
participants with data available is displayed on the right.  C) A figure showing which LBC 
1936 participants have DNAm data available for multiple waves. D) A figure of aging-related 
phenotype data available for each LBC cohort across waves.  
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Figure 5: Survival probability by quartiles of MV score in LBC1921 by MV score 
A figure indicating the survival probability (y-axis) of subjects by Age in years (x-axis) by MV 
score quartile (1st quartile is in red and 4th is in blue). 
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Table 1: Multivariate regression analysis of age-related phenotypes on age and MV 
score in LBC1921 
The model includes the following covariates for the LBC1921 participants: age, age2, and sex. 
p values marked with an asterisk (*) are significant at our Bonferroni-corrected α of 0.0045. 
 
 
 
  
 
 
 
 
 

Phenotype  

MV score 
Estimate 

MV score 
p value 

Age  
Estimate 

Age  
p value 

Age2  
Estimate 

Age2  
 P value 

BMI -2.79E-04 0.645 0.0594 0.0350 -0.0131 0.0492 
Creatine 1.81E-03 0.673 1.650 1.75E-09* -0.190 3.94E-03* 
FEV -2.43E-05 0.736 -0.0236 3.38E-11* -0.00134 0.101 
Grip Strength -1.14E-03 0.269 -0.829 1.62E-32* 0.0435 0.0436 
Hemoglobin A1C 2.35E-06 0.987 -0.0410 2.06E-05* 0.00722 4.41E-05* 
Height -3.53E-05 0.963 -0.4280 1.02E-33* 0.0180 0.0117 
MMSE -2.00E-04 0.550 -0.0617 9.83E-03 -0.00487 0.420 
6 Meter Walk Time 7.89E-05 0.877 0.2630 2.63E-10* -0.00814 0.443 
Systolic BP 3.67E-04 0.931 -1.480 4.55E-06* 0.0935 0.253 
Urea 6.4E-04 0.480 -2.11E-03 0.969 0.0366 0.323 
Weight -3.21E-04 0.838 -0.1860 6.78E-03 -0.019 0.237 
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Table 2: Multivariate regression analysis of age-related phenotypes on age and MV 
score in LBC1936 
The model includes the following covariates for the LBC1936 participants: age, age2, and sex. 
p values marked with an asterisk (*) are significant at our Bonferroni-corrected α of 0.0036. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phenotype  

MV score 
Estimate 

MV score 
p value 

Age 
Estimate 

Age  
p value 

Age2  
Estimate 

Age2  
p value 

Album -2.42E-04 0.360 -0.78500 0.00E+00* -0.0108 0.0102 
BMI -1.39E-04 0.573 -0.0016 0.840 -0.0124 2.69E-08* 
Cholesterol -6.65E-05 0.499 -0.0613 1.48E-43* 0.00692 3.37E-08* 
Creatine 3.72E-03 0.0311 0.1600 0.0247 0.00999 0.625 
C-reactive Protein 8.74E-04 0.163 -0.1930 5.20E-07* -0.0174 0.126 
FEV -5.31E-05 0.191 -0.0407 2.34E-143* 0.00164 8.60E-05* 
Grip Strength 5.04E-04 0.363 -0.3090 2.33E-42* -0.0217 6.31E-04* 
Hemoglobin A1C -5.99E-05 0.354 -0.00424 0.217 0.00548 6.65E-07* 
Height -3.46E-04 0.142 -0.170 8.58E-111* -0.00215 0.282 
MMSE -1.33E-04 0.344 -0.0387 1.65E-07* -0.00171 0.427 
6 Meter Walk Time 3.26E-05 0.803 0.1500 5.96E-118* 0.0023 0.193 
Systolic BP (mean) -6.88E-04 0.678 -0.2910 3.27E-04 -0.0318 0.175 
Urea 4.67E-04 0.0463 0.02690 0.0485 -0.00354 0.380 
Weight -5.27E-04 0.431 -0.1580 1.30E-13* -0.0347 6.41E-09* 
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Supplementary Figure 1: Examples of CpGs Changing with Age 
A) Figure shows an example of a CpG where DNAm (y-axis) does not change with age in 
years (x-axis). B) Figure shows an example of an aDMC, a CpG at which DNAm and age 
have a linear relationship.  C) Figure shows an example of an aVMC, a CpG at which the 
variance in DNAm and age have a linear relationship.  D) Figure shows an example of an 
aVMC at which DNAm changes with age both linearly and in its variance. 
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Supplementary Figure 2: Information about biobanks in the BIOS Consortium  
A) Data on each of the six biobanks in the BIOS Consortium by number of samples and sex. 
B) A density plot of all participants’ (n=4,112) age by sex. C) A density plot of all participants’ 
age by biobank. 
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Supplementary Figure 3: Overlap of aVMCs identified using two statistical tests 
Test statistics from DGLM (x-axis) are plotted against the test statistics from the BP test (y-
axis), where each point represents one of the 412,373 CpGs tested. The BP test statistics have 
been multiplied by -1 for sites where there was negative change in the variance with age. Sites 
in grey (labeled NA) are not aVMCs according to a Bonferroni corrected P value < 0.05. Sites 
in blue are aVMCs according only to DGLM, sites in green are aVMCs according only to BP 
test, sites in red are aVMCs according to both tests. Sites in the upper right quadrant reflect 
CpGs reflecting increased variability with age in both tests, while sites in the lower left 
quadrant reflect CpGs reflecting decreased variability with age in both tests. 
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Supplementary Figure 4: Discovery and replication of aVMCs using Breusch–Pagan 
test (BP test) 
A) Flow chart of 9,020 CpGs identified as aVMCs, featuring replication rates in external 
datasets. B) The example aVMC pictured is the CpG with the lowest p-value (2.40 ´ 10-32) 
from BP test. Each point represents a participant, the y-axis is the methylation Beta value, and 
the x-axis is age. 
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Supplementary Figure 5: DNAm patterns do not change significantly over time  
Individual participants (n=25) from LBC1936 have their ages (x-axis) plotted against their Beta 
values (y-axis) for an aVMC chosen at random ("cg04884090"). A black horizontal line 
indicates the mean Beta value (0.506) among the Young group in BIOS at this aVMC. Points 
represent the Beta value corresponding to the age at that wave; points are connected in a line 
representing the trajectory of change at the aVMC over time. A simple linear regression for 
each participant was performed in which their Beta values were regressed on age at each wave; 
line color indicates the p-value of the slope of the age term (blue indicates a p-value > 0.05, 
red indicates a p-value ≤ 0.05). Though the DNAm patterns appear variable for some, a simple 
linear regression reveals the slopes are not significantly different from zero for the majority of 
participants, this significance disappears after correction for testing multiple participants.  
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Supplementary Figure 6: Methods for creating an MV score in BIOS 
A) Correlation matrix showing the Spearman correlations between the 3,151 Beta-values. B) 
The ages of participants in BIOS (x-axis) were plotted vs. the first Principal Component (y-
axis). 
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Supplementary Figure 7: Visualizing the methylomic variability score 
A)  Density plot of the LBC1921 MV scores.  B)  Density plot of the LBC1936 MV scores.  
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Supplementary Figure 8: Sensitivity analysis, effect of smoking on aVMC discovery 
A) For the individuals (n=3,222) who self-reported smoking behavior (current, former, or 
non-smoker), a boxplot of their EpiSmokEr smoking exposure score (x-axis) is plotted against 
their self-reported smoking behavior (y-axis). B) The overlap in aVMCs identified between 
the aVMCs with smoking score included as part of a sensitivity analysis show that smoking 
doesn’t affect aVMCs selected using the Breusch–Pagan test or C) Double Generalized Linear 
Models. 
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Abstract 

Aging is marked by widespread alterations in the epigenome. Epigenomic studies have 

reported age-related changes in DNA methylation across the genome, while changes in 

chromatin accessibility and histone modifications are not as well-characterized. We performed 

ATAC-Seq, ChIP-Seq (H3K27me3, H3K4me3, and H3K27ac), and RNA-Seq on peripheral 

blood mononuclear cells from 20 healthy, Caucasian women (10 aged 23-30 and 10 aged 68-

76). We identified 23 ATAC-Seq peaks of age-related differential chromatin accessibility 

(FDR<0.05); 19 of these reflected increased accessibility in younger women. We did not 

observe significant age-related differences in H3K27me3 or H3K4me3, while 49,742 sites 

showing age-differential H3K27ac were found across the genome. When sites were annotated 

to nearest genes, a weak positive correlation (r=0.17) was observed between log2-fold-change 

for age-differential H3K27ac and expression at 124 age-differentially-expressed genes.  Genes 

annotated to regions showing increased H3K27ac in younger participants were enriched for 

biological processes related to development and neurogenesis, while those annotated to 

regions showing increased H3K27ac in older participants were enriched for immune response 

and metabolic processes.  In conclusion, we report age-related changes in chromatin 

accessibility and H3K27ac, though these changes do not appear to recapitulate each other, and 

our findings suggest that H3K27ac may be useful in modeling age-related changes.   
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Introduction 

Aging is associated with altered biological functioning and increased risk of morbidity 

and mortality.1 Among the molecular hallmarks of aging are epigenetic changes,13 in which 

reversible, heritable changes occur without changes to the underlying genetic sequence. Similar 

to disease, aging is marked by widespread, reproducible alterations to the epigenome thought 

to be characteristic of epigenetic dysregulation.80 Because of the stability of DNA methylation 

(DNAm) and the relative ease with which it can be assayed, numerous studies have 

characterized the robust changes to DNAm with age in whole blood in humans.87,99,101,102 In 

contrast, other structural levels of the epigenome, like broad histone post-translational 

modifications (PTMs) and overall chromatin structure, remain relatively poorly understood in 

how they change with age in blood. 

The interaction between sequence-level DNAm and higher-level covalent histone 

PTMs are vital to proper chromatin structure and function.142,220 Regions in the genome that 

feature differential methylation with age are enriched for histone PTMs associated with 

repression, such as H3 lysine 27 trimethylation (H3K27me3) associated with Polycomb 

repression, and H3 lysine 9 trimethylation (H3K9me3) associated with heterochromatin 

regions.143 These modifications have the ability to induce changes in chromatin structure as 

well as recruit proteins important in chromatin regulation and gene expression.37 Histone 

PTMs have also been found to reflect the aging process, with increases in H3K9me3,155 

H3K27me3,157 and H4K20me3156 (associated with constitutive heterochromatin) observed 

with age. In addition to their local contribution to transcription, histone PTMs have important 

functional consequences in establishing global chromatin environments.37 The accessibility of 

chromatin domains is also related to DNAm patterns, with transcriptionally inactive 

heterochromatin showing an enriched for DNAm.147 Because of their importance in 
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chromatin function and their interrelatedness to DNAm, a better understanding of both 

histone modifications and chromatin accessibility will be informative in understanding a 

complex biological process like aging.  

The assay for transposase-accessible chromatin with sequencing (ATAC-Seq)43 allows 

for genome-wide profiling of chromatin accessibility. The locations of broad histone 

modifications can be profiled using chromatin immunoprecipitation with sequencing (ChIP-

Seq).52 The functional relevance of chromatin structure changes indicated by ATAC-Seq and 

ChIP-Seq can be quantified through observed transcriptional changes in RNA sequencing 

(RNA-Seq).221 Two recent studies performed ATAC-Seq and RNA-Seq on blood samples 

among populations of different ages in order to elucidate the aging signature in peripheral 

blood mononuclear cells (PBMCs).222,223 Focusing on CD8+ T cell subsets purified from 

PBMCs, Moskowitz et al. detailed how aging is accompanied by alterations in chromatin 

accessibility among naïve and central memory cells.222 Using PBMCs, Ucar et al. found less 

accessibility with age at promoters and enhancers associated with T-cell signaling, as well as 

an increase in accessibility at quiescent and repressed sites thought to reflect stochastic 

epigenetic changes with age.223 While these studies have shed light on the effects of aging on 

chromatin accessibility and the subsequent influence on gene expression, age-related changes 

at the level of histone modifications were not assayed.  

Here, we present the results of a pilot study with the aim of uniting all three assays 

(ChIP-Seq, ATAC-Seq, and RNA-Seq) to leverage the different information contributed by 

overall chromatin accessibility and three histone modifications. The histone modifications 

profiled include H3K4 trimethylation (H3K4me3, associated with active promoter), H3K27 

acetylation (H3K27ac, enhancer regions), and H3K27 trimethylation (H3K27me3, a repressive 

mark).66 The aim is to better understand age-related changes in these marks and to elucidate 
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possible functional roles through their associations with gene expression in peripheral blood 

mononuclear cells (PBMCs).  
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Results 

Profiling Epigenetic Changes with Age  
PBMCs were isolated from 20 healthy Caucasian women: 10 participants aged 23 to 

30 years (“Young”) and 10 participants aged 68 to 76 years (“Old”). ATAC-Seq, ChIP-Seq, 

and RNA-Seq were performed (detailed in Methods and Figure 1). The histone modifications 

profiled via ChIP-Seq were H3K4 trimethylation (H3K4me3), H3K27 acetylation (H3K27ac), 

and H3K27 trimethylation (H3K27me3). 

 
Age-Related Changes in Chromatin Accessibility  

ATAC-Seq data was used to generate genome-wide maps of chromatin accessibility. 

A total of 4,430 distinct chromatin accessibility peaks were identified that were present in more 

than one participant. Differential analysis by age group (“Young” vs “Old”) was performed 

for samples passing QC (Figure 1 and Supplementary Tables 1-4). 23 differentially 

accessible regions (DARs) due to differences in age group were identified (FDR < 0.05). 

Comparing regions more accessible in Young and Old groups, 19 DARs are observed to be 

more accessible in the Young group and 4 more accessible in the Old group (Figure 2A). The 

ATAC-Seq peaks occur throughout the genome and the predicted chromatin states of the 

peaks, obtained from the Roadmap Epigenomics Project,224 can be observed in Figure 3A. In 

order to test for enrichment in chromatin states among DARs, a relaxed criterion (FDR<0.2) 

was used to define differentially accessible regions. The DARs that are less accessible with age 

appear more likely to occur at enhancer regions (OR=1.47) and sites associated with 

transcription (OR=1.50), while DARs that are more accessible with age appear more likely to 

occur at quiescent or repetitive regions (OR=1.68) (Figure 3B). However, given the small 

numbers of DARs, the p-values of enrichment tests do not indicate significance (Fisher’s exact 

test; 0.09<P<1).   
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Age-Related Changes in Histone Modifications 
Next, using ChIP-Seq, the relationship between chromatin accessibility and chromatin 

modifications was examined for H3K4me3, H3K27me3, and H3K27ac. For samples passing 

QC (Supplementary Tables 2-4), differential analysis by age group was performed. For 

H3K4me3, 108,629 peaks were called in at least two participants, and these regions were tested 

for age-differential enrichment of H3K4me3. No regions were considered significantly age-

differentially represented (FDR<0.05). Similarly, for H3K27me3, 401,265 peaks were called 

in at least two participants and no regions were significantly age-differential after correction 

for multiple testing. 

For H3K27ac, 306,204 peaks were called in more than one person; comparing regions 

more accessible in Young or Old groups, 49,742 regions were found to be significantly 

differentially represented between the Old and Young groups (FDR < 0.05). Of these, 14,687 

showed an enrichment of H3K27ac in the Young group, while 35,055 were more enriched in 

the Old group (Figure 2B). 

 
Comparing Age-Related Changes Across Assays 

To indicate the functional relevance of the chromatin openness and chromatin 

organization patterns identified, age-differential peaks were integrated with age-differential 

gene expression results previously estimated by our group for the same 20 samples.225 Among 

the 124 differentially expressed genes (DEGs) by age group that were identified, 79 sites 

showed increased expression in the Young  group and 45 sites showed increased expression 

in the Old group. Data from the three assays, ATAC-Seq, H3K27ac ChIP-Seq, and RNA-Seq 

can be observed in Figure 4, where only regions found to show significant age-related 

differences are plotted for each assay.  

ATAC-Seq peaks were annotated to their nearest gene using HOMER (results of the 

ATAC-Seq peaks can be observed in Table 1). Of the genes annotated to our 23 DARs, none 
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corresponded to the 124 DEGs—suggesting that, though there are age differential changes in 

chromatin accessibility especially enriched at promoters, they are not driving significant age-

related differences in gene expression Two genes annotated to DARs – AKAP7 and  DOLPP1 

– were identified as DEGs in a larger (N=14,893) study that identified 1,497 age-related DEGs 

in whole blood.127 Expression decreased with age in both genes but the changes in accessibility 

reflect a decrease with age in DOLPP1 and an increase in AKAP7. 

To integrate the differential H3K27ac peaks with DARs, H3K27ac peaks found to be 

age-differential were also annotated to their nearest gene using HOMER. Additionally, a test 

for overlaps between the two types of peaks was performed, finding that none overlapped. 

was used to test for overlap between the two types of peaks—finding that none overlapped. 

This is likely because the locations assayed comprise non-overlapping chromatin states in the 

genome, with the ATAC-Seq peaks often occurring in promoters and the H3K27ac peaks 

occurring in enhancers. 81 of the ChIP-Seq peaks were annotated to 9 unique genes also 

annotated to DARs, including ADAM22, AKAP7, ASB7, CYLD, CYTH2, ELOVL5, 

FAM117A, FBXO11, and TLE4. For CYTH2 both ChIP-Seq and ATAC-Seq feature an 

enrichment of peaks in the Young group; for AKAP7 and ADAM22, both assays feature an 

enrichment in the Old group. For the other six genes, the test statistics from the two assays 

did not agree in direction, suggesting that H3K27 acetylation and accessibility, mostly at 

promoter regions, do not co-occur in these regions. 

To investigate whether peaks reflecting age-differential H3K27ac annotate to genes 

reflecting differential expression in aging, annotated genes from H3K27ac were compared to 

the 124 DEGs. The DEG and H3K27ac peaks were merged, identifying 203 H3K27ac peaks 

corresponding to 58 unique DEGs (detailed in Supplementary Table 5). A weak positive 

correlation was observed between the test statistics of genes linked to each of the assays 
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(r=0.174, p=0.0129; Supplementary Figure 1), suggesting that the H3K27ac mark may be 

associated with expression for some of these regions. Gene ontology (GO) analysis showed 

that the 4,418 unique gene annotations reflecting increased H3K27 acetylation in the Young 

group were significantly enriched for genes reflecting 545 unique GO terms, many of which 

are involved in biological processes in development and neurogenesis. The 7,183 unique gene 

annotations reflecting increased H3K27 acetylation in the Old group were enriched for 380 

unique GO terms, many of which were involved in immune response and metabolic processes. 

The top ten GO terms for each of the two groups are shown in Table 2. 
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Discussion 

This is a pilot study with the aim of elucidating which levels of the epigenome can be 

used to model age-related changes. Because of its stability and the ease with which it can be 

assayed, DNAm is usually at the center of studies detailing changes with age in the epigenome. 

In this study, we characterized changes at the level of overall chromatin accessibility and 

individual histone modifications, confirming that age-related changes happen at several levels 

of the epigenome. We found that some of the modifications assayed appear to undergo 

widespread changes with age, while others, namely H3K27 trimethylation and H3K4 

trimethylation, do not appear to show significant changes with age. 

Among the 23 DARs annotated to genes, many have been previously linked to aging 

phenotypes and age-related disease in changes in their gene expression or their DNAm 

patterns. Among these was CYLD (log2 fold change = -1.56, P=0.0087), with the region being 

significantly more open in the Young group. The CYLD gene encodes an enzyme, the 

CYLD lysine 63 deubiquitinase,226,227 which acts as a tumor suppressor. Interestingly, a loss of 

function of this enzyme has been linked to premature aging in mice.228 Another peak found to 

be more accessible in the Young group was annotated to HSPA5 (fold change = -1.304, p-

value = 7.25´ 108). Aging leads to lower levels of HSPA5 in mice, leading to ER stress; it is 

also thought to play a role in the development of age-related disease.229-232  

A peak found to be more accessible in the Young group was annotated to Elongation 

of very long chain fatty acids 5 (ELOVL5). Interestingly, this gene belongs to the same family 

as ELOVL2, which shows robust, age-related changes in DNAm across tissues.92,100 Also 

among these sites, the gene corresponding to the ATAC-Seq peak significantly more open in 

the Old group was AKAP7 (fold change =-1.07, p-value= 0.0418). The expression of A-

kinase anchoring protein 7 (AKAP7) in blood was recently found to serve as a reliable 
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biomarker for patients at risk of post-stroke blood brain barrier disruption.233 Eight of the 23 

ATAC-Seq peaks found to be age-differential in this study were annotated to genes also 

identified as age differentially accessible in a larger ATAC-Seq study in blood by Ucar et al.223 

(these sites are marked with an asterisk in Table 1). 

Similar to the study approach by Ucar et al., we performed ATAC-Seq and RNA-Seq in 

PBMC samples of different ages. Though we had a smaller sample size (n=20 compared to 

n=77) we were able to replicate some of the findings of regions of age-related chromatin 

accessibility changes. Our replication of only some of these findings may result from our 

smaller sample size and limited power, which represents a major limitation of our study. 

Another limitation is that our assay was performed in PBMCs. Without accounting for the 

composition of different cell types in the data analyses, it is possible that some of the observed 

age-related differences are related to the change of cell composition. Interestingly, several 

genes linked to premature aging or age-related diseases like cancer were identified by us to 

reflect differential accessibility despite not accounting for age-related changes in cell types. 

Some of these genes have previously only been linked to these phenotypes in mice, suggesting 

that similar mechanisms may be at work in humans. Another potential limitation is that our 

cross-sectional (rather than longitudinal) study design leaves open the possibility that observed 

differences could reflect cohort effects, mortality selection, or inter-individual differences. Our 

study did focus on a set of individuals that were matched on sex, broad ancestral group (all 

Caucasian), and geographic location, which will limit confounding due to inter-individual 

heterogeneity; however, this may also limit generalizability of our findings. 

A key finding of our study is the widespread changes in H3K27 acetylation with age in 

blood. While the next step should be replication in a set of independent samples, this finding 

may help inform future aging studies as to which histone modifications are useful to assay in 
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developing models of age-related epigenetic changes. This is reinforced by the findings from 

the GO analysis that the sites marked by more H3K27ac in Young are involved in 

developmental processes while those in the Old are involved in immunological responses, 

supporting the functional relevance of this modification. In addition, the changes at the sites 

marked by this modification, which often marks active enhancers, could shed light on the 

importance of enhancers in mediating age-related changes in a cell. Lastly, considering the 

inter-relationship between DNAm and histone modifications, our findings of widespread age-

related changes at H3K27ac suggest that future studies of aging, including DNAm studies, 

would benefit from focusing on age-related changes occurring at enhancers.  
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Methods 

Human subjects  
Whole blood samples were collected at iSpecimen, an independent, contract research 

organization, after receiving approval by Quorum Review IRB. Donors were healthy non-

smoking Caucasian females not currently taking medication. They belonged to two age groups, 

a younger group aged 20-30 years and an older group aged 68-76 years. Donors from each 

group were asked to provide their age, medical history, including past conditions and 

treatments, and current medications to determine whether they qualified. Ten recruited donors 

from each group were scheduled and blood was drawn between 2-3pm and shipped overnight 

in refrigerated shipping containers. PBMCs were isolated from whole blood samples using 

density gradient media and centrifugation. 

 
ATAC-Seq library generation and preprocessing  

ATAC-Seq libraries were generated and preprocessing was performed according to 

the protocol previously described.43 All samples were frozen in a DMSO/DMEM medium; 

cells were thawed for 1 minute in a 37 °C warming cabinet and transferred to a 50 mL Falcon 

tube. Cells were then suspended in 20 mL of warm 1x PBS followed by a 5 minute 

centrifugation at 1000 rpm to pellet the cells. Cells were lysed with a cold lysis buffer and spun 

to pellet the nuclei. Two million unfixed nuclei were tagged using a Tn5 transposase reaction 

mix (Illumina Nextera DNA Library Prep Kit) for 30 min at 37 °C, and the resulting library 

fragments were purified using the Qiagen Minelute kit. Libraries were amplified with 10-12 

PCR cycles and finally sequenced on an Illumina HiSeq 2500, generating paired end 50 bp 

reads. 

ATAC-Seq data analysis was performed using the following tools and versions: 

Samtools v1.5, Picard v2.6.0, Bowtie2 v2.2.6, macs2 v2.1.1.20160309, and bedtools v2.25.0. 

Adapters were trimmed from the reads using trimmomatic.234 Paired end trimmed reads were 
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then aligned to hg38 using bowtie2,235 with standard parameters and a maximum fragment 

length of 2 kb (-X 2000). Duplicate reads were removed using Picard. De-duplicated reads 

were then filtered for alignment quality (MAPQ ≥ 30) and were required to be properly paired 

(Samtools flag 0 × 2). Reads mapping to the mitochondria, unmapped contigs, and sex 

chromosomes were removed and not analyzed.  

To identify regions of accessibility in the ATAC-Seq data, peak calling was performed 

individually on each of the 20 samples using MACS2.236 MACS2 was run with the model 

building option turned off (--nomodel), 100-bp shift, 200-bp extension, and only peaks called 

with a peak score (q-value) of 1% or better (--q 0.01) were kept for each sample. Peaks 

overlapping regions from the consensus excludable ENCODE blacklist,66 designed to remove 

regions that show artifacts due to deficiencies in the genome assembly, were removed from 

future analysis. Additionally, only peaks called on autosomal chromosomes were used in this 

study.  

 
ChIP-Seq library generation and preprocessing 
  PBMC samples had nuclei prepared and were crosslinked and frozen. ChIP was then 

performed in parallel using antibodies to each of three histone modifications, H3K4me3, 

H3K27me3, and H3K27ac. Libraries were generated using the NEBNext ChIP-Seq Library 

Prep Reagent Set for Illumina according the manufacturer’s protocol. Fifty-cycle single-end 

sequencings were performed using Illumina HiSeq 2000. Samples that failed QC were 

recaptured and re-sequenced in a different batch. Single end reads were then aligned to hg38 

using bowtie2,235 with standard parameters. Sorted BAM files were filtered for alignment 

quality (MAPQ ≥ 30). Reads mapping to the mitochondria, unmapped contigs, and sex 

chromosomes were removed and not analyzed. Duplicate reads were removed using Picard. 

To be eligible for analysis, samples were required to have: at least 10 million reads sequenced, 
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a minimum of 50% reads mapping, and a maximum duplication rate 50%; details on the 

number of samples passing this quality control (QC) step are available in Supplementary 

Tables 1-4. 

Peak calling was performed with MACS2236 on single end BAM files using the 

parameters –nomodel, –nolambda, –broad, –keepdup all, in order to identify regions of 

enrichment. MACS2 was used to identify three types of regions: (1) narrow peaks passing a p-

value threshold (-p) of 0.01, termed narrowPeaks; (2) broader regions of enrichment passing 

an additional broad-peak cutoff p-value of 0.1 (-p 0.01; --broad; --broad-cutoff) termed 

broadPeaks; and (3) gapped regions of enrichment defined as broadPeaks containing at least 

one strong narrowPeak, termed gappedPeaks. Following the approach of Kellis et al.,237 the 

gappedPeak representation was used for the histone marks with relatively compact enrichment 

patterns (H3K4me3 and H3K27ac). The broadPeak representation was used for more diffuse 

histone marks (H3K27me3). Peaks overlapping blacklisted regions were removed from future 

analysis, as were peaks called on non-autosomal chromosomes. 

 
RNA-Seq library generation and preprocessing 

Total RNA was extracted from PBMCs for each subject using the QIAGEN RNeasy 

Kit. Next, cDNA was synthesized using 1ug of the extracted mRNA with Invitrogen 

Oligo(dT)20 primers, the cDNA was then amplified using PCR. RNA-Seq libraries were 

generated using 0.5 µg of cDNA via the TruSeq RNA Sample Preparation Kit v2 (Illumina). 

Libraries were validated by DNA Chips via the Agilent 2100 Bioanalyzer. Libraries were then 

sequenced using 50-cycle single-end runs via the Illumina HiSeq 2000. RNA-Seq reads were 

aligned to hg38 using the STAR aligner.238 Reads shorter than 50 bps and with quality scores 

below 20 were discarded. 
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Differential analysis 
First, peaks called for the 4 assays (ATAC, H3K4me3, H3K27me3, H3K27ac) were 

merged into a consensus peakset for each assay using the BEDTools multiinter tool.239 Peaks 

present in only one subject were removed from future analysis and a peak was required to 

have a mean read count of 5 to be included in differential analysis. For quality control in the 

RNA-Seq data, read count matrices were generated and regions with fewer than 10 reads in 5 

or more samples were excluded. Next, reads overlapping consensus peaks were counted and 

these counts compared in an age-differential analysis using DESeq2.240 Briefly, DESeq2 

models read counts as a negative binomial distribution with a normalized mean to account for 

different library sizes across individuals. It then uses an Empirical Bayes approach to estimate 

log fold change and dispersion. A Wald test is used to test for significantly differential read 

counts between the two groups. Either batch (in the case of ATAC-Seq) or read length (in the 

case of ChIP-Seq) was included as a covariate in the model (the RNA-Seq was performed as 

one batch). Age group (Old or Young, with Young as the reference) was included as the 

predictor variable and read counts as the outcome. A p-value for each region was calculated, 

indicating confidence that the peak is differentially present in the Young and Old groups. Age 

differential sites were defined based on a false discovery rate criterion (FDR<0.05), using the 

Benjamini-Hochberg procedure. Lastly, the circularize package in R241 was used to generate a 

circos plot of all the sites found to be significantly age-differential. 

 
Peak annotation and downstream analysis 

For functional annotation of peaks, the 18-state ChromHMM chromatin state 

annotations for PBMCs were obtained from Roadmap Epigenomics.224 Overlaps between the 

peaks and these annotated regions of the genome were then identified. ChromHMM 

chromatin states “1_TssA,” “2_TssFlnk,” “3_TssFlnkU,” “4_TssFlnkD,” and “14_TssBiv,” 

are labeled as Promoters. Chromatin states labled “5_Tx,” and “6_TxWk,” are labeled as 
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Transcription. Chromatin states “7_EnhG1,” “8_EnhG2,” “9_EnhA1,” “10_EnhA2,” 

“11_EnhWk,” and “15_EnhBiv” are labeled as Enhancers. Chromatin states 

“12_ZNF/Rpts,” and “18_Quies,” are labeled as Quiescent/Repetitive. Chromatin states 

“13_Het,” “16_ReprPC,” and “17_ReprPCWk,” are labeled as Repressed/Heterochromatin. 

Peaks found to be age-differential were annotated to the hg38 genome using 

HOMER.242 Rsamtools, GenomicFeatures, and GenomicAlignments R Bioconductor 

packages were used to count reads of RNA-Seq regions found to reflect age-differential 

expression changes overlapping each Ensembl-annotated gene of hg38.243 The 

subsetByOverlaps command from the GenomicRanges package243 was used to test for 

overlaps between different assays. When large sets (>100) of age-differential regions were 

identified, GO analysis on genes annotated to these regions was performed using the ideal and 

goseq Bioconductor packages in R.244,245  Because 15,971 GO terms were tested, a Bonferroni 

corrected a of 3.13´10-06 was applied to identify significantly enriched GO terms.
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Tables and Figures  

Figure 1: Overview of Assays and Analyses Performed 

 
 
A schema summarizing the sample participants, high-throughput sequencing assays 
performed, and data analysis in this study. The total number of participant samples (n) in 
each assay are detailed as well as the specific number of young (Y) and old (O) participants. 
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Figure 2: Age-Differential Regions of Accessibility and H3K27 Acetylation 
 

 
 
A) A volcano plot of the 4,430 peaks called by ATAC-Seq, where each point represents a peak 
present in at least 2 particpants. The  points in grey represent peaks not found to be age 
differential while  the  points in red represent the 23 peaks found to be age differential after 
multiple testing correction. B) A volcano plot of the 306,204 peaks called by the H3K27ac 
ChIP-Seq. The points in grey represent peaks not found to be age differential while  the  points 
in red represent the 49,742 peaks found to be age differential after multiple testing correction. 
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Figure 3: Genomic Locations and Chromatin States of ATAC-Seq peaks 
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A) Genomic locations by chromosome of the 4,430 consensus ATAC-Seq peaks by Roadmap 
annotated chromatin state. Bar height indicates the number of peaks present on the 
chromosome. B) Proportions of the functional states of ATAC-Seq peaks for: all consensus 
ATAC-Seq peaks (‘All Peaks’), peaks found to be less accessible with age (‘More Open in 
Young’), and peaks found to be more accessible with age (‘More Open in Old’). For the 
enrichment analysis in this figure, a relaxed criterion (FDR<0.2) was used to define 
differentially accessible peaks. Counts of chromatin state features represented by each part of 
the bar are noted in that portion of the bar. 
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Figure 4: Circos plot of Age-Differential Sites Across the Genome by Assay 
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49,742 sites were identified throughout the genome showing age-related differential H3K27 
acetylation (blue). 14,687 sites were more enriched in the Young group (light blue) and 35,055 
sites were more enriched in the Old group (dark blue). 124 sites showed differential expression 
(red) by age group throughout the genome. 72 sites showed increased expression in the Young  
group (light red) and 39 sites showed increased expression in the Old group (dark red). 23 sites 
were found to show differential accessibility (green) by age group. 19 sites showed increased 
accessibility in the Young  group (light green) and 4 sites showed increased accessibility in the 
Old group (dark green). 
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Table 1: Gene Annotations of the 23 Age-Differential ATAC-Seq Peaks 
 

Gene Name Gene Description log2 
FoldChange 

Annotation Relationship to Aging Phenotypes 

ACTR1A ARP1 actin-related protein 1 
homolog A, centractin alpha 

-1.148 intron  
 

ADAM22 ADAM metallopeptidase domain 22 0.953 promoter-TSS 
 

AKAP7* A-kinase anchoring protein 7 1.072 intron  Higher expression among patients at risk of 
post-stroke complications233 

ASB7 ankyrin repeat and SOCS box 
containing 7 

-0.922 promoter-TSS  

CIC capicua transcriptional repressor -1.623 intron   
CNOT3 CCR4-NOT transcription complex 

subunit 3 
-1.414 promoter-TSS Levels are reduced in aging-induced 

osteoporosis246 
CYLD CYLD lysine 63 deubiquitinase -1.556 promoter-TSS Tumor suppressor, loss of function leads to 

premature aging228 
CYTH2 cytohesin 2 -1.058 promoter-TSS NA 

DCBLD2 discoidin, CUB and LCCL domain 
containing 2 

-1.668 promoter-TSS Differential expression with age in skin;247 
Suggested to have a suppressor role in some 

cancers248 
DOLPP1 dolichyldiphosphatase 1 -1.076 promoter-TSS  
ELOVL5* ELOVL fatty acid elongase 5 -1.313 promoter-TSS  

FAM117A* family with sequence similarity 117 
member A 

-1.397 promoter-TSS  

FAM72A family with sequence similarity 72 
member A 

-0.981 promoter-TSS  

FBXO11* F-box protein 11 -1.198 promoter-TSS  
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HSPA5 heat shock protein family A (Hsp70) 
member 5 

-1.304 promoter-TSS Aging leads to declining levels in mice 
causing ER stress; thought to be linked to 

age-related disease229-232 
KRT74* keratin 74 1.151 exon   
NEU1* neuraminidase 1 -0.878 promoter-TSS  
P4HB prolyl 4-hydroxylase subunit beta -1.111 promoter-TSS  
SHC1 SHC adaptor protein 1 -1.505 promoter-TSS Linked to longevity in mice249 
TLE4* transducin like enhancer of split 4 -0.998 promoter-TSS  

TMEM160* transmembrane protein 160 -0.731 promoter-TSS  
TYW1B tRNA-yW synthesizing protein 1 

homolog B 
-0.950 promoter-TSS  

ZDHHC2 zinc finger DHHC-type containing 2 1.094 promoter-TSS Tumor suppressor;250 Expression is 
associated with cancer metastasis251 

 

Gene names marked with an asterisk (*) are also found to show age-differential accessibility in blood by Ucar et al.   
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Table 2: GO Analysis of Biological Processes Associated with H3K27ac Peaks 
 

 
A GO analysis was performed on peaks annotated to their nearest gene. This was done for the 4,418 unique peaks with more H3K27 
acetylation in Young group (on the left) and in the 7,183 unique peaks in the Old group (right). The top 10 sites for each of the two groups 
can be observed.  

Young Old 
GO Term Biological Process p-value GO Term Biological Process p-value 
GO:0048731 system development 1.50E-86 GO:0048731 immune system process 3.12E-43 
GO:0007275 multicellular organism development 8.28E-84 GO:0006955 immune response 1.19E-41 
GO:0032501 multicellular organismal process 8.69E-83 GO:0044237 cellular metabolic process 2.17E-34 
GO:0048856 anatomical structure development 1.78E-82 GO:0045321 leukocyte activation 1.26E-29 
GO:0009653 anatomical structure morphogenesis 1.95E-81 GO:0002252 immune effector process 2.57E-29 
GO:0007399 nervous system development 1.91E-79 GO:0044248 cellular catabolic process 9.05E-27 
GO:0032502 developmental process 1.61E-73 GO:0002682 regulation of immune system process 1.74E-26 
GO:0009887 animal organ morphogenesis 1.70E-67 GO:0001775 cell activation 2.63E-26 
GO:0022008 neurogenesis 1.54E-64 GO:0002757 immune response-activating signal transduction 4.81E-26 
GO:0048699 generation of neurons 6.21E-64 GO:0008152 metabolic process 2.83E-25 
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Supplementary Figure 1: Comparison of DEGs and Differential H3K27ac Regions 

 

The relationship between the log2 fold change from the H3K27ac ChIP-Seq (x-axis) and the 
RNA-Seq (y-axis) are plotted. There is a positive correlation between the test statistics of genes 
linked to each of the assays (r=0.174, p=0.0129). 
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Supplementary Table 1: Sample information from ATAC-Seq 
 

ID Age Age Group Batch # of total reads % of reads mapping  % of unique reads QC 
NS0001 73 Old 2 35485108 86.45 89.85 Passed 

NS0002 70 Old 2 30523168 84.97 91.99 Passed 

NS0003 24 Young 2 21465194 83.18 88.39 Passed 

NS0004 74 Old 2 25574713 88.64 93.05 Passed 

NS0005 27 Young 1 33918017 73.42 82.98 Passed 

NS0006 27 Young 1 35547266 84.92 80.39 Passed 

NS0007 23 Young 2 50460486 81.41 85.1 Passed 

NS0008 70 Old 2 37608809 80.92 81.34 Passed 

NS0009 24 Young 2 40728137 84.98 67.79 Passed 

NS0010 30 Young 2 39927602 77.94 80.47 Passed 

NS0011 30 Young 1 36493122 82.89 85.21 Passed 

NS0012 73 Old 1 34025313 81.88 81.77 Passed 

NS0013 71 Old 1 36028394 81.78 82.24 Passed 

NS0014 24 Young 1 32155280 80.04 81.27 Passed 

NS0015 23 Young 1 38753173 78.67 85.09 Passed 

NS0016 76 Old 1 39644091 80.77 79.53 Passed 

NS0017 69 Old 1 51056153 78.81 58.82 Passed 

NS0018 76 Old 1 46222752 83.88 56.69 Passed 

NS0019 68 Old 1 32642193 87.64 56.26 Passed 

NS0054 24 Young 1 33500794 75.32 64.21 Passed 
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Supplementary Table 2: Sample information from H3K27ac ChIP-Seq 
 

ID Age Age Group Batch read length # of total reads % of reads mapping  % of unique reads QC 
NS0001 73 Old 4 51 20619199 94.38 73.2051 Passed 

NS0002 70 Old 3 51 35410959 93.91 87.1 Passed 

NS0003 24 Young 3 51 12038209 82.13 52.5 Passed 

NS0004 74 Old 4     Failed 

NS0005 27 Young 3 51 27566908 91.04 6.04 Failed 

NS0006 27 Young 3 51 4775829 87.75 23.61 Failed 

NS0006 27 Young 4 51 13458562 89.79 12.5577 Failed 

NS0007 23 Young 1 151 38805698 98.16 75.61 Passed 

NS0008 70 Old 3 51 4548117 92.15 10.59 Failed 

NS0008 70 Old 4 51 2569339 92.56 14.15 Failed 

NS0009 24 Young 1 151 30292529 94.19 45.07 Failed 

NS0010 30 Young 3 51 24506026 91.74 6.58 Failed 

NS0011 30 Young 3 51 996752 64.39 23.26 Failed 

NS0011 30 Young 4 51 1151725 67.98 19.8561 Failed 

NS0012 73 Old 1 151 34985622 98.27 59.83 Passed 

NS0013 71 Old 1 151 35101421 95.44 85.11 Passed 

NS0014 24 Young 3 51 18554584 94.06 49.18 Failed 

NS0015 23 Young 2 51 34514616 97.58 67.97 Passed 

NS0016 76 Old 2 51 31056944 97.9 87.18 Passed 

NS0017 69 Old 2 51 29726115 98.69 89.85 Passed 

NS0018 76 Old 2 51 30465602 98.78 90.1 Passed 

NS0019 68 Old 2 51 28622019 98.48 88.85 Passed 

NS0054 24 Young 2 51 23915846 98.48 88.89 Passed 
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Supplementary Table 3: Sample information from H3K27me3 ChIP-Seq 
 

 
ID Age Age Group Batch read length # of total reads % of reads mapping  % of unique reads QC 

NS0001 73 Old 4 51 57677288 97.32 84.5583 Passed 

NS0002 70 Old 3 51 26802741 94.29 80.82 Passed 

NS0003 24 Young 3 51 514593 55.85 63.14 Failed 

NS0003 24 Young 4 51 31516817 97.88 88.8968 Passed 

NS0004 74 Old 4     Failed 

NS0005 27 Young 4     Failed 

NS0006 27 Young 4     Failed 

NS0007 23 Young 1 151 20791778 89.05 52.93 Passed 

NS0008 70 Old 3 51 28847930 86.85 4.36 Failed 

NS0009 24 Young 1 151 16959523 96.13 81.8 Passed 

NS0010 30 Young 3 51 2130215 91.4 19.73 Failed 

NS0010 30 Young 4 51 1312928 90.74 23.9674 Failed 

NS0011 30 Young 3 51 36440223 91.41 3.76 Failed 

NS0012 73 Old 1 151 31614393 93.29 49.78 Passed 

NS0013 71 Old 1 151 7716320 21.6 92.98 Failed 

NS0014 24 Young 3 51 21725828 91.84 7.01 Failed 

NS0015 23 Young 2 51 26088736 98.24 82.32 Passed 

NS0016 76 Old 2 51 25172405 96.03 67.33 Passed 

NS0017 69 Old 2 51 32536797 96.39 89.4 Passed 

NS0018 76 Old 2 51 30975417 98.61 89.84 Passed 

NS0019 68 Old 2 51 31915403 98.2 84.75 Passed 

NS0054 24 Young 2 51 27845713 98.01 80.47 Passed 
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Supplementary Table 4: Sample information from H3K4me3 ChIP-Seq 
 

ID Age Age Group Batch read length # of total reads % of reads mapping  % of unique reads QC 
NS0001 73 Old 4 51 30696913 95.89 66.5361 Passed 

NS0002 70 Old 3 51 31828166 91.9 56.53 Passed 

NS0003 24 Young 3 51 48254065 97.44 36.92 Failed 

NS0004 74 Old 3 51 26373865 94.12 58.45 Passed 

NS0005 27 Young 4     Failed 

NS0006 27 Young 3 51 26702859 93.17 5.21 Failed 

NS0007 23 Young 1 151 49872915 97.87 64.36 Passed 

NS0008 70 Old 3 51 45265509 98.75 60.16 Passed 

NS0009 24 Young 1 151 36108251 97.41 58.6 Passed 

NS0010 30 Young 3 51 39914720 97.23 68.72 Passed 

NS0011 30 Young 3 51 38801691 98.14 81.09 Passed 

NS0012 73 Old 1 151 30216046 98.17 86.28 Passed 

NS0013 71 Old 1 151 28048815 94.26 65.31 Passed 

NS0014 24 Young 3 51 21429947 93.32 8.89 Failed 

NS0015 23 Young 2 51 25715387 98.26 83.48 Passed 

NS0016 76 Old 2 51 34965552 98.09 71.31 Passed 

NS0017 69 Old 2 51 35803126 98.17 82.66 Passed 

NS0018 76 Old 2 51 27985935 98.03 83.63 Passed 

NS0019 68 Old 2 51 54566585 92.72 80.5 Passed 

NS0054 24 Young 2 51 38026067 98.51 59.37 Passed 
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Supplementary Table 5: Results from genes annotated to both H3K27ac ChIP-Seq and DEGs 
 

ChIP-Seq peak log2FoldChange_CHIP RNA-Seq region log2FoldChange_RNA 
Gene 
Name Gene Description 

chr2:42496858-42498331 -2.0659492 chr2:42494569-42756947 -0.6002609 MTA3 metastasis associated 1 family member 3 

chr1:234499988-234500402 2.89048395 chr1:234391313-234479103 -0.5104962 TARBP1 TAR (HIV-1) RNA binding protein 1 

chr2:219434990-219435338 -3.0690829 chr2:219434846-219498287 -1.0211249 SPEG SPEG complex locus 

chr2:219441913-219442300 -2.0177913 chr2:219434846-219498287 -1.0211249 SPEG SPEG complex locus 

chr2:219496156-219496746 -3.136465 chr2:219434846-219498287 -1.0211249 SPEG CAVP-target protein-like 

chr2:219441693-219441913 -2.7542898 chr2:219434846-219498287 -1.0211249 SPEG SPEG complex locus 

chr2:219493031-219493505 -2.1938028 chr2:219434846-219498287 -1.0211249 SPEG CAVP-target protein-like 

chr2:219435571-219436076 -2.1582653 chr2:219434846-219498287 -1.0211249 SPEG SPEG complex locus 

chr2:219483647-219483993 -3.3878274 chr2:219434846-219498287 -1.0211249 SPEG CAVP-target protein-like 

chr2:219451903-219452711 -2.2239712 chr2:219434846-219498287 -1.0211249 SPEG SPEG complex locus 

chr2:219496848-219497096 -2.2479082 chr2:219434846-219498287 -1.0211249 SPEG CAVP-target protein-like 

chr2:219483400-219483647 -3.4081299 chr2:219434846-219498287 -1.0211249 SPEG CAVP-target protein-like 

chr2:219448765-219449084 -3.9466279 chr2:219434846-219498287 -1.0211249 SPEG SPEG complex locus 

chr2:219443289-219443978 -2.0055026 chr2:219434846-219498287 -1.0211249 SPEG SPEG complex locus 

chr2:219490838-219492544 -1.9580753 chr2:219434846-219498287 -1.0211249 SPEG CAVP-target protein-like 

chr2:219484900-219485211 -3.0382794 chr2:219434846-219498287 -1.0211249 SPEG CAVP-target protein-like 

chr2:219483993-219484272 -2.5355782 chr2:219434846-219498287 -1.0211249 SPEG CAVP-target protein-like 

chr2:219495450-219495907 -2.1840844 chr2:219434846-219498287 -1.0211249 SPEG CAVP-target protein-like 

chr2:219494591-219495450 -2.0959153 chr2:219434846-219498287 -1.0211249 SPEG CAVP-target protein-like 

chr2:219484463-219484706 -3.4567466 chr2:219434846-219498287 -1.0211249 SPEG CAVP-target protein-like 

chr2:219448362-219448704 -3.1913029 chr2:219434846-219498287 -1.0211249 SPEG SPEG complex locus 

chr2:219445176-219446086 -3.0006451 chr2:219434846-219498287 -1.0211249 SPEG SPEG complex locus 

chr16:180401-180725 -3.2041283 chr16:180453-181181 1.53510878 HBQ1 hemoglobin subunit theta 1 
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chr16:180725-181637 -1.8099627 chr16:180453-181181 1.53510878 HBQ1 hemoglobin subunit theta 1 

chr14:30620776-30622899 1.52803495 chr14:30622112-30735812 0.20939892 SCFD1 sec1 family domain containing 1 

chr14:30691531-30692753 2.97749024 chr14:30622112-30735812 0.20939892 SCFD1 sec1 family domain containing 1 

chr14:30632735-30633653 2.96745401 chr14:30622112-30735812 0.20939892 SCFD1 sec1 family domain containing 1 

chr12:54276048-54277002 3.35285529 chr12:54230940-54280133 -0.279898 CBX5 chromobox 5 

chr10:114499019-114499598 4.7128821 
chr10:114431113-
114685003 -0.4663786 ABLIM1 actin binding LIM protein 1 

chr10:114540753-114541598 1.70848242 
chr10:114431113-
114685003 -0.4663786 ABLIM1 actin binding LIM protein 1 

chr10:114526216-114527946 1.29203414 
chr10:114431113-
114685003 -0.4663786 ABLIM1 actin binding LIM protein 1 

chr10:114500753-114501462 3.34719292 
chr10:114431113-
114685003 -0.4663786 ABLIM1 actin binding LIM protein 1 

chr10:114494612-114495719 2.8601631 
chr10:114431113-
114685003 -0.4663786 ABLIM1 actin binding LIM protein 1 

chr10:114498787-114499019 4.28776742 
chr10:114431113-
114685003 -0.4663786 ABLIM1 actin binding LIM protein 1 

chr10:114631655-114632344 -1.641289 
chr10:114431113-
114685003 -0.4663786 ABLIM1 actin binding LIM protein 1 

chr14:24643720-24644131 -1.4034763 chr14:24630954-24634267 0.75969397 GZMB granzyme B 

chr14:24681172-24682125 2.96171651 chr14:24630954-24634267 0.75969397 GZMB granzyme B 

chr14:24694961-24696013 1.44455383 chr14:24630954-24634267 0.75969397 GZMB granzyme B 

chr14:24678335-24679549 1.39692987 chr14:24630954-24634267 0.75969397 GZMB granzyme B 

chr14:24693936-24694849 1.96995212 chr14:24630954-24634267 0.75969397 GZMB granzyme B 

chr14:24680084-24680891 1.45610968 chr14:24630954-24634267 0.75969397 GZMB granzyme B 

chr14:24673378-24674454 1.73899232 chr14:24630954-24634267 0.75969397 GZMB granzyme B 

chr14:24673231-24673378 2.84143239 chr14:24630954-24634267 0.75969397 GZMB granzyme B 

chr14:24631259-24633957 1.09744061 chr14:24630954-24634267 0.75969397 GZMB granzyme B 

chr14:24679749-24680084 2.63834051 chr14:24630954-24634267 0.75969397 GZMB granzyme B 

chr16:68282178-68285510 1.52222416 chr16:68264516-68301823 -0.4272165 SLC7A6 solute carrier family 7 member 6 

chr7:72937841-72938227 4.24885684 chr7:72947581-72954790 -0.6382985 NSUN5P2 
NOP2/Sun RNA methyltransferase family 
member 5 pseudogene 2 
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chr17:2028882-2029702 -1.5995383 chr17:2030110-2043430 -0.4476532 DPH1 diphthamide biosynthesis 1 

chr4:73844771-73845665 3.10340386 chr4:73853189-73854155 1.24200011 PF4V1 platelet factor 4 variant 1 

chr4:73848123-73848665 2.90495647 chr4:73853189-73854155 1.24200011 PF4V1 platelet factor 4 variant 1 

chr12:50059844-50060195 -1.9128452 chr12:50057548-50083611 -1.6589348 ASIC1 acid sensing ion channel subunit 1 

chr12:50059244-50059844 -1.9967704 chr12:50057548-50083611 -1.6589348 ASIC1 acid sensing ion channel subunit 1 

chr12:50058032-50059218 -1.8512003 chr12:50057548-50083611 -1.6589348 ASIC1 acid sensing ion channel subunit 1 

chr12:50050133-50051650 -1.1595527 chr12:50057548-50083611 -1.6589348 ASIC1 acid sensing ion channel subunit 1 

chr6:35370130-35370911 1.12499712 chr6:35342558-35428191 -0.2299371 PPARD 
peroxisome proliferator activated receptor 
delta 

chr6:35361957-35362536 2.81413339 chr6:35342558-35428191 -0.2299371 PPARD 
peroxisome proliferator activated receptor 
delta 

chr6:35368732-35369157 3.49294484 chr6:35342558-35428191 -0.2299371 PPARD 
peroxisome proliferator activated receptor 
delta 

chr6:35370911-35371726 1.73929088 chr6:35342558-35428191 -0.2299371 PPARD 
peroxisome proliferator activated receptor 
delta 

chr6:35369157-35369956 1.85578635 chr6:35342558-35428191 -0.2299371 PPARD 
peroxisome proliferator activated receptor 
delta 

chr6:43076194-43076673 -2.1219302 chr6:43076268-43161719 -0.9564751 PTK7 protein tyrosine kinase 7 (inactive) 

chr6:43075774-43076194 -1.6829499 chr6:43076268-43161719 -0.9564751 PTK7 protein tyrosine kinase 7 (inactive) 

chr2:25483218-25483990 2.58620358 chr2:25227855-25342590 -0.4495961 DNMT3A DNA methyltransferase 3 alpha 

chr10:97766733-97767373 -1.6907552 chr10:97766751-97771952 -1.6153515 SFRP5 secreted frizzled related protein 5 

chr3:113740545-113741456 2.0450597 chr3:113716460-113746300 0.25540833 NAA50 
N(alpha)-acetyltransferase 50, NatE catalytic 
subunit 

chr3:113742954-113744039 3.97084939 chr3:113716460-113746300 0.25540833 NAA50 
N(alpha)-acetyltransferase 50, NatE catalytic 
subunit 

chr3:113736965-113737480 3.50261704 chr3:113716460-113746300 0.25540833 NAA50 
N(alpha)-acetyltransferase 50, NatE catalytic 
subunit 

chr3:113744496-113745331 3.49965536 chr3:113716460-113746300 0.25540833 NAA50 
N(alpha)-acetyltransferase 50, NatE catalytic 
subunit 

chr3:113741535-113742306 3.33872486 chr3:113716460-113746300 0.25540833 NAA50 
N(alpha)-acetyltransferase 50, NatE catalytic 
subunit 

chr9:133611128-133611961 -2.5516226 chr9:133636360-133659344 -1.1727947 DBH dopamine beta-hydroxylase 

chr12:68612008-68612973 3.19114595 chr12:68610839-68671901 0.33328492 RAP1B RAP1B, member of RAS oncogene family 
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chr12:68613797-68615385 2.53499624 chr12:68610839-68671901 0.33328492 RAP1B RAP1B, member of RAS oncogene family 

chr12:68611865-68612008 4.17158332 chr12:68610839-68671901 0.33328492 RAP1B RAP1B, member of RAS oncogene family 

chr12:68591982-68592197 3.6806602 chr12:68610839-68671901 0.33328492 RAP1B RAP1B, member of RAS oncogene family 

chr12:68591565-68591982 2.56597605 chr12:68610839-68671901 0.33328492 RAP1B RAP1B, member of RAS oncogene family 

chr12:68615385-68615947 2.09035705 chr12:68610839-68671901 0.33328492 RAP1B RAP1B, member of RAS oncogene family 

chr22:23073601-23074081 -1.4640747 chr22:23070361-23125037 0.84447425 GNAZ G protein subunit alpha z 

chr8:17800650-17800975 -2.6961684 chr8:17643795-17800917 -1.087405 MTUS1 microtubule associated tumor suppressor 1 

chr8:17800975-17801719 -2.842286 chr8:17643795-17800917 -1.087405 MTUS1 microtubule associated tumor suppressor 1 

chr3:15045656-15046236 2.36133037 chr3:15042460-15065335 -0.2297381 MRPS25 mitochondrial ribosomal protein S25 

chr6:85449734-85450685 -1.6295576 chr6:85449584-85495791 -0.8696894 NT5E 5'-nucleotidase ecto 

chr2:130837462-130837733 -3.7715943 chr2:130836916-131047263 -0.8260299 ARHGEF4 Rho guanine nucleotide exchange factor 4 

chr2:130914673-130915247 -2.1177408 chr2:130836916-131047263 -0.8260299 ARHGEF4 Rho guanine nucleotide exchange factor 4 

chr2:130915247-130916079 -2.5562655 chr2:130836916-131047263 -0.8260299 ARHGEF4 Rho guanine nucleotide exchange factor 4 

chr2:130964649-130965564 -2.2115959 chr2:130836916-131047263 -0.8260299 ARHGEF4 Rho guanine nucleotide exchange factor 4 

chr2:130836670-130837010 -3.0231721 chr2:130836916-131047263 -0.8260299 ARHGEF4 Rho guanine nucleotide exchange factor 4 

chr2:130837010-130837462 -3.0682417 chr2:130836916-131047263 -0.8260299 ARHGEF4 Rho guanine nucleotide exchange factor 4 

chr2:130963318-130964368 -2.8497399 chr2:130836916-131047263 -0.8260299 ARHGEF4 Rho guanine nucleotide exchange factor 4 

chr13:75481318-75482672 -1.4954184 chr13:75284665-75482114 -0.60917 TBC1D4 TBC1 domain family member 4 

chr13:75480938-75481318 -2.7603043 chr13:75284665-75482114 -0.60917 TBC1D4 TBC1 domain family member 4 

chr1:225836649-225837201 2.45543027 chr1:225810092-225845563 -0.4419496 EPHX1 epoxide hydrolase 1 

chr5:137695043-137695521 2.63003535 chr5:137617500-137736090 -0.6248682 KLHL3 kelch like family member 3 

chr7:45973018-45973981 -2.0360618 chr7:45912245-45921874 1.22170459 IGFBP3 insulin like growth factor binding protein 3 

chr7:45920659-45921407 -3.3753106 chr7:45912245-45921874 1.22170459 IGFBP3 insulin like growth factor binding protein 3 

chr9:121365899-121366676 3.67346585 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121352766-121354500 1.79211835 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121363749-121364742 2.78920554 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121367630-121368618 3.94239526 chr9:121338988-121370304 0.57428455 STOM stomatin 
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chr9:121350173-121351310 2.83022659 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121359282-121359657 4.81677049 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121395466-121395864 2.7365264 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121355668-121356912 2.05464045 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121360629-121361434 2.81129997 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121359657-121360003 4.24858182 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121344979-121345672 3.1210978 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121354501-121355489 1.69264911 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121357919-121359255 1.70059752 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121365104-121365370 4.66374831 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121397878-121398569 2.10982566 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121399452-121400179 2.66468118 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr9:121363046-121363506 3.53886332 chr9:121338988-121370304 0.57428455 STOM stomatin 

chr10:126388017-126388571 -2.9112892 
chr10:126012381-
126388455 -1.1260976 ADAM12 ADAM metallopeptidase domain 12 

chr4:22515466-22516247 -1.8090522 chr4:22345071-22516054 -0.9186261 ADGRA3 adhesion G protein-coupled receptor A3 

chr3:133895343-133895790 -3.1017505 chr3:133824239-133895836 0.79673236 RAB6B RAB6B, member RAS oncogene family 

chr3:133895790-133896076 -3.6342333 chr3:133824239-133895836 0.79673236 RAB6B RAB6B, member RAS oncogene family 

chr1:64469868-64471230 -1.6768561 chr1:64470792-64693058 -1.9386234 CACHD1 cache domain containing 1 

chr1:64472504-64473826 -2.2295504 chr1:64470792-64693058 -1.9386234 CACHD1 cache domain containing 1 

chr1:64513370-64513696 3.27680276 chr1:64470792-64693058 -1.9386234 CACHD1 cache domain containing 1 

chr1:64511590-64512009 3.06362215 chr1:64470792-64693058 -1.9386234 CACHD1 cache domain containing 1 

chr1:64471230-64471515 -1.8002106 chr1:64470792-64693058 -1.9386234 CACHD1 cache domain containing 1 

chr1:1359276-1360220 -1.5403082 chr1:1352689-1361777 -0.571779 MXRA8 matrix remodeling associated 8 

chr1:1354121-1355661 -2.9383052 chr1:1352689-1361777 -0.571779 MXRA8 matrix remodeling associated 8 

chr1:1357371-1357880 -2.536794 chr1:1352689-1361777 -0.571779 MXRA8 matrix remodeling associated 8 

chr1:247347931-247348274 -1.4560862 chr1:247297412-247331846 -0.8950014 ZNF496 zinc finger protein 496 
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chr3:13550436-13551344 -1.775146 chr3:13549131-13638422 -1.1699153 FBLN2 fibulin 2 

chr3:13545986-13546584 -1.7440301 chr3:13549131-13638422 -1.1699153 FBLN2 fibulin 2 

chr3:13548813-13549821 -2.297947 chr3:13549131-13638422 -1.1699153 FBLN2 fibulin 2 

chr1:155126597-155130604 -0.7781952 chr1:155127460-155134857 -1.3373672 EFNA1 ephrin A1 

chr1:155125891-155126584 -2.9026586 chr1:155127460-155134857 -1.3373672 EFNA1 ephrin A1 

chr16:31538081-31539381 -2.7580402 chr16:31527864-31528803 2.48352136 AHSP alpha hemoglobin stabilizing protein 

chr16:31537445-31537759 -2.6323905 chr16:31527864-31528803 2.48352136 AHSP alpha hemoglobin stabilizing protein 

chr2:100820259-100820737 -2.9382575 chr2:100820152-100996829 -1.254777 NPAS2 neuronal PAS domain protein 2 

chr2:100818841-100819363 -2.2663392 chr2:100820152-100996829 -1.254777 NPAS2 neuronal PAS domain protein 2 

chr2:100819363-100820161 -2.7228571 chr2:100820152-100996829 -1.254777 NPAS2 neuronal PAS domain protein 2 

chr20:31723990-31724840 1.71694738 chr20:31664452-31723989 0.50293874 BCL2L1 BCL2 like 1 

chr7:134645881-134648252 1.56964879 chr7:134646808-134679813 0.30798484 BPGM bisphosphoglycerate mutase 

chr7:134677375-134678364 3.38223135 chr7:134646808-134679813 0.30798484 BPGM bisphosphoglycerate mutase 

chr7:134641735-134642065 3.66204242 chr7:134646808-134679813 0.30798484 BPGM bisphosphoglycerate mutase 

chr7:134670423-134671412 4.31228407 chr7:134646808-134679813 0.30798484 BPGM bisphosphoglycerate mutase 

chr7:134639999-134640703 2.72907898 chr7:134646808-134679813 0.30798484 BPGM bisphosphoglycerate mutase 

chr7:134669622-134670165 2.00700203 chr7:134646808-134679813 0.30798484 BPGM bisphosphoglycerate mutase 

chr7:134635830-134636445 2.2914387 chr7:134646808-134679813 0.30798484 BPGM bisphosphoglycerate mutase 

chr7:134641155-134641735 3.40185187 chr7:134646808-134679813 0.30798484 BPGM bisphosphoglycerate mutase 

chr7:111026758-111027318 2.83922563 chr7:111091006-111125454 -1.4113622 LRRN3 leucine rich repeat neuronal 3 

chr5:179549151-179549951 1.42294097 chr5:179550558-179610026 0.39982442 RUFY1 RUN and FYVE domain containing 1 

chr3:18679089-18679533 3.29512077 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18760285-18761396 3.10772718 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18677555-18678752 3.04714562 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18402006-18402707 3.11969449 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18738621-18739093 3.86621952 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18739093-18739952 3.17592507 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 
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chr3:18725361-18725953 2.44660842 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18439114-18439567 4.14507519 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18727913-18728298 3.64017104 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18437341-18438134 3.25216461 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18747073-18748002 2.42042872 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18429662-18430931 2.43603791 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18744073-18744691 2.03792288 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18727648-18727913 2.52493021 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18593087-18594010 3.95460939 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18723696-18725361 2.6112733 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18739952-18740380 3.00627704 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18419540-18420482 4.06516312 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18744695-18745420 3.99234298 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18740917-18741383 2.42321123 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18726036-18726728 2.84292565 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18741815-18742428 3.04198302 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18745902-18746726 3.16940276 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18740539-18740917 2.60900762 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18743377-18743792 3.01100861 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18403048-18404762 2.63145232 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr3:18741383-18741815 4.32893241 chr3:18345387-18445588 -0.500976 SATB1 SATB homeobox 1 

chr12:55824289-55824838 2.78200853 chr12:55829745-55836246 -0.504748 TMEM198B transmembrane protein 198B (pseudogene) 

chr3:42906071-42906765 -1.7572802 chr3:42905731-42917641 -1.2282273 ZNF662 zinc finger protein 662 

chr3:42906819-42907383 -1.8598279 chr3:42905731-42917641 -1.2282273 ZNF662 zinc finger protein 662 

chr8:4992052-4992631 -3.0748089 chr8:2935353-4994972 2.4187487 CSMD1 CUB and Sushi multiple domains 1 

chr8:4993793-4994507 -2.4440007 chr8:2935353-4994972 2.4187487 CSMD1 CUB and Sushi multiple domains 1 

chr20:43507186-43507472 -1.7195335 chr20:43507680-43550950 -0.3822358 L3MBTL1 l(3)mbt-like 1 (Drosophila) 
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chr20:43507472-43508054 -2.0111582 chr20:43507680-43550950 -0.3822358 L3MBTL1 l(3)mbt-like 1 (Drosophila) 

chr16:170547-171477 -2.8550701 chr16:172847-173710 1.81467013 HBA2 hemoglobin subunit alpha 2 

chr22:43997272-43997912 2.10958344 chr22:43999211-44172949 0.65361968 PARVB parvin beta 

chr22:44090975-44091875 2.16546814 chr22:43999211-44172949 0.65361968 PARVB parvin beta 

chr7:100170276-100171992 -1.0901479 chr7:100159244-100168750 -0.714478 GAL3ST4 galactose-3-O-sulfotransferase 4 

chr7:100164376-100165473 -1.617404 chr7:100159244-100168750 -0.714478 GAL3ST4 galactose-3-O-sulfotransferase 4 

chr17:47204375-47204861 2.04900177 chr17:47200446-47223679 4.34518242 MYL4 myosin light chain 4 

chr16:177401-178174 -2.4472986 chr16:176680-177522 1.79859024 HBA1 hemoglobin subunit alpha 1 

chr16:165322-165819 -2.6381196 chr16:153892-166768 2.18056074 HBM hemoglobin subunit mu 

chr16:165819-166207 -2.7495031 chr16:153892-166768 2.18056074 HBM hemoglobin subunit mu 

chr16:168504-168837 -2.5001118 chr16:153892-166768 2.18056074 HBM hemoglobin subunit mu 

chr16:166857-167979 -3.5649863 chr16:153892-166768 2.18056074 HBM hemoglobin subunit mu 

chr2:28756812-28757514 3.2396292 chr2:28751640-28802940 0.45716745 PPP1CB protein phosphatase 1 catalytic subunit beta 

chr2:28675819-28676433 2.96378784 chr2:28751640-28802940 0.45716745 PPP1CB protein phosphatase 1 catalytic subunit beta 

chr2:28749569-28750546 2.68906242 chr2:28751640-28802940 0.45716745 PPP1CB protein phosphatase 1 catalytic subunit beta 

chr2:28748484-28749078 4.51618545 chr2:28751640-28802940 0.45716745 PPP1CB protein phosphatase 1 catalytic subunit beta 

chr2:28716161-28716988 3.19142488 chr2:28751640-28802940 0.45716745 PPP1CB protein phosphatase 1 catalytic subunit beta 

chr2:28712731-28713392 1.95948505 chr2:28751640-28802940 0.45716745 PPP1CB protein phosphatase 1 catalytic subunit beta 

chr2:28771316-28772071 3.15616784 chr2:28751640-28802940 0.45716745 PPP1CB protein phosphatase 1 catalytic subunit beta 

chr2:28716988-28717421 2.61049018 chr2:28751640-28802940 0.45716745 PPP1CB protein phosphatase 1 catalytic subunit beta 

chr3:73038019-73038254 2.97634455 chr3:73061659-73063337 -1.062678 EBLN2 endogenous Bornavirus-like nucleoprotein 2 

chr3:73040854-73042381 2.95713225 chr3:73061659-73063337 -1.062678 EBLN2 endogenous Bornavirus-like nucleoprotein 2 

chr3:73029272-73030712 3.09026767 chr3:73061659-73063337 -1.062678 EBLN2 endogenous Bornavirus-like nucleoprotein 2 

chr3:73051960-73052999 4.47731 chr3:73061659-73063337 -1.062678 EBLN2 endogenous Bornavirus-like nucleoprotein 2 

chr3:73037458-73037980 2.45535371 chr3:73061659-73063337 -1.062678 EBLN2 endogenous Bornavirus-like nucleoprotein 2 

chr17:35795102-35796076 -1.8057306 chr17:35756249-35795707 -1.3531576 MMP28 matrix metallopeptidase 28 
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Chapter V: Discussion 

Epigenetic Biomarkers of Aging Show Promise 
This work has contributed to the base of scientific knowledge by further exploring the 

utility of epigenetic Biomarkers of Aging (BoA) both by characterizing existing markers and 

by exploring epigenetic modifications and age-related alterations that could be used to develop 

novel markers. In Chapter II, an existing DNAm biomarker is examined in longitudinal 

DNAm data, noting the biomarker’s stability over a 16-year study, as well as its contribution 

to modeling BMI and possibly fasting glucose levels. In Chapter III,  a novel biomarker based 

on the degree to which DNAm shows variation across individuals is developed; however, this 

simple approach to developing a biomarker does not correlate with age-related phenotypes or 

mortality. Lastly, in Chapter IV, changes in chromatin accessibility and histone modifications 

with age are characterized, shedding light on which epigenetic modifications are informative 

in modeling age in biomarkers.  

A recent review of BoA characterized the 6 current types of biomarkers, which include: 

epigenetic clocks, telomere length, transcriptomic predictors, proteomic predictors, 

metabolomics-based predictors, and composite biomarkers. This review concludes that the 

most promising current biomarkers are the epigenetic clocks109—motivating the importance 

of their study – though this review also suggests that the most useful future biomarkers will 

likely be more similar to the composite biomarkers that combine information across the six 

types.   

It is known that epigenetic modifications interact but contribute overlapping 

information.142 An example of this is present in the structure of heterochromatin, which is 

marked by condensed chromatin, the absence of histone modifications associated with active 

transcription, an enrichment of histone modifications associated with repressed transcription, 

as well as the presence of DNAm.147 While assaying just one of these mechanisms doesn’t 
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allow for precise prediction of whether a region is heterochromatic, assaying all mechanisms 

leads to diminishing returns. Thus, the epigenetic modifications most informative in aging 

should be characterized in a model that is both accurate and parsimonious. Many epigenetic 

aging clocks are informed by patterns in DNAm, but do not take into account other 

informative levels of the epigenome; this information may be able to inform age-related 

changes and may benefit future aging clocks. 

 In addition to which levels of the epigenome are assayed in aging clocks, the types of 

changes that the epigenome undergoes can reflect different biological phenomenon, with age-

related changes being linear, non-linear, or occurring randomly, reflecting epigenetic drift. 

Understanding the driving forces behind the different types of changes occurring, whether 

they are a result of programmed changes with age or a result of drift, will be vital to the 

improvement of models of aging. 

 
 
Considerations for Populations Included in Future Epigenetics Studies 

In the United States, health disparities disproportionately affect historically 

disadvantaged groups of racial and ethnic minorities, leading to inequities in rates of morbidity 

and mortality,252 however, in many scientific studies, these groups are underrepresented.253 

Black Americans in particular have consistently worse health outcomes when compared to 

white Americans—despite recent improvements in access to health care.254 Part of the driving 

force for this difference may lay in epigenetic differences between these groups driven both 

by underlying genetic differences as well as differing interactions with the environment. These 

differing interactions leading to epigenetic changes are driven by the effects of: stress, racism, 

diet, socioeconomic status (SES), and residing in areas of the US disproportionately plagued 

by harmful environmental exposures.252 
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A recent study used the 450K array to assay DNAm in B-lymphocytes among white, 

black, and Han-Chinese Americans and found that methylation at just 439 sites allowed them 

to accurately separate participants by population.255 In addition to these sites providing insight 

into which population the participant came from, they were also associated with distinct 

phenotypic characteristics, drug metabolism, response to external stimuli, and, most relevant 

to this work, disease susceptibility. Two thirds of these sites were driven by the underlying 

genetic background, leaving one third of these sites reflecting DNAm differences that do not 

appear to be driven by genetic variance yet remain epigenetic markers indicating population 

of origin.  

Applying DNAm aging clocks to populations of black, white, and Hispanic Americans, 

it was revealed that epigenetic aging rates also appear linked to the racial and ethnic 

populations to which a participant belongs; even finding that these different populations have 

different mortality rates after accounting for their differing SES.121 Of note, the study found 

that Hispanic Americans, despite their disadvantaged status in the U.S., actually have lower 

levels of age acceleration when compared to white Americans. This finding from an aging 

clock echoes health data that also shows Hispanic Americans have a lower overall risk of 

mortality compared to white Americans—a phenomenon known as the ‘Hispanic mortality 

paradox.’256 This study also identified differences between black and white Americans in 

proportions of CD8+ T cells, and between Hispanic and white Americans in CD4+ T cells. 

Not accounting for these age-dependent proportions is a known confounder in aging studies 

conducted in blood because different cell types in blood feature different DNAm profiles. 

The finding that these differences exist across racial lines reaffirms the importance of using 

models that allow for estimation of blood cell proportions that are either reference free or 

matched to the population to which they will be applied. Additionally, because some aging 
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clocks are influenced by cell proportions in blood, not accounting for racial differences in cell 

proportions in blood could lead different clocks to reach different accuracy in different 

populations.  

These findings, in addition to the discovery that women consistently reflect lower 

DNAm-based age acceleration despite higher rates of morbidity,121 and that racial differences 

exist in telomere lengths,257 complicate the notion that a single, sex and race/ethnicity agnostic 

BoA can be developed. In order to develop models that are both accurate and applicable to a 

wide range of Americans, more underrepresented populations must be included in epigenetic 

studies. Yet, many genetic studies (genome-wide association studies, GWASs) focus on and 

feature majority a European population. A 2009 analysis found that 96% of participants in 

GWASs were of European descent, despite this population comprising only 16% of the global 

population; an updated 2016 analysis found this number decreased—but only to 80%.253  

This lack of diversity among those included in genetics and epigenetics research has 

been well documented and lamented in several publications, with many researchers touting 

the many clinical benefits and scientific discoveries that more inclusion among the participants 

in genetics studies would engender.253,258-261 Arguably, this lack of diversity is already worsening 

health outcomes for minorities. A study found that, because the algorithm used to determine 

the appropriate prescription of an anticoagulant was trained on a homogenous, European 

population it did not account for genotypes more common in black Americans, leading many 

black Americans to be prescribed the incorrect dosage.262 Moreover, a recent study of BoA 

developed using machine learning methods (specifically, deep neural networks) trained on 41 

clinical biomarkers found the resulting model to be highly accurate in predicting age.263 

However, Cohen et al.264 found this model to be highly population dependent, not performing 

nearly as well as it did in the homogenous population in which it was developed (which was 
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90% Eastern European). This suggests that using newer, and more complex deep learning 

techniques to develop algorithms to predict age and age-related phenotypes may create models 

that are accurate but lack generalizability to wider, more diverse populations.  

In addition to considerations into the composition of participants in future studies of 

epigenetics and aging, the study design must also be taken into account. While some aging 

studies rely on cross-sectional data, in which subjects of different ages are compared, others 

leverage longitudinal data’s ability to allow for the observation of age-related changes in one 

individual as they occur. Both types of studies are associated with potential sources of bias,265 

though they can be less expensive and carried out faster, cross-sectional studies can be affected 

by selection and cohort bias, in which differences are due to specific members of a cohort and 

factors specific to the time at which they lived. Conversely, longer and more expensive 

longitudinal studies are susceptible to survivor bias or loss-to-follow-up, where participants 

leave the study in a non-random way or those informative to the phenotype of interest do not 

survive long enough to be studied.  

Though the two types of studies offer their own advantages and drawbacks, some 

researchers have found that, by analyzing a subset their longitudinal data as cross-sectional, 

they are not able to detect significant associations using cross-sectional data that are evident 

when the data is analyzed longitudinally.266,267 This suggests that, in order to best capture 

changes in the trajectory of aging, longitudinal studies must be utilized, and would ideally 

follow participants through different stages of aging, not just in old age after survivor bias may 

already have been at work. Additionally, the very real effect of cohort biases suggest that all 

participants, ideally, be the same age at that start of the study.267 Studies applying epigenetic 

clocks to babies at birth268 or to teens269 propose that aging trajectories are already being 

established early in life. This suggests that studies of aging would improve by incorporating 
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epigenetic information from participants in early life when their aging trajectories are first 

being established. 

 
 
Future Directions for Biomarkers of Aging 

 Biomarkers of the future will likely leverage different information than those 

currently in use, incorporating changes across the different hallmarks of aging13 as well as 

phenotypic and clinical data to create more comprehensive indicators of health.17 The original 

DNAm clocks included little to no clinical data, while the newly developed clocks incorporate 

several clinical measures.123 Additionally, many of these clocks depend on DNAm data from 

the 27K and 450K DNAm arrays, which feature CpGs enriched at promotors and CpG 

islands.270 The newly developed 850K EPIC array assays many of the same sites as well as 

additional sites in regions identified as enhancers by the ENCODE project.271 The results of 

Chapter IV suggest widespread age-related changes at regions marked by a histone 

modification common to enhancers, suggesting that these sites may be involved in phenotypes 

accompanying the aging process. The development of the CRISPR-Cas9 system272,273 offers 

promise for the editing of both the genome and the epigenome. By creating fusion proteins 

between the CRISPR-Cas9 complex and histone modifiers (like histone acetyltransferases, 

histone acetyltransferase inhibitors, etc), the Cas9 can guide the histone modifier to specific 

genomic locations, thereby directly targeting the actions of enhancers found to play a role in 

aging and disease.274,275  

Additionally, many DNAm clocks are informed by individual CpGs across the 

genome, each with very little predictive ability of an individual’s age. DNAm, however, can 

also be characterized at the regional level by identifying differentially methylated regions 

(DMRs). It has been suggested that these DMRs are more functionally important than 

methylation changes at individual CpGs in informing gene expression.133 Assaying DNAm 
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changes at the regional level can uncover previously uncharacterized CpGs associated with age 

and age-related disease, allowing for the discovery of informative regions outside of those 

assayed by arrays.276  

As useful as these DNAm arrays are, they have their own biases and limitations, with 

the biggest being the limitation to assaying a set number of sites in the genome that are usually 

in close proximity to each other.277 In addition, the integration of array-based and capture-

based epigenetic assays can prove difficult, impeding the understanding of the interplay 

between sequence-level changes with broader chromatin and histone modification changes.278 

Because the cost of sequencing the genome is decreasing, future epigenetic studies may 

increasingly rely on whole genome sequencing techniques, favoring whole genome bisulfite 

sequencing for capturing DNAm patterns over array-based methods.  

In addition to being able to assay more CpGs across the genome, sequencing 

techniques will allow for the distinct types of modifications to DNA besides  5-methylcytosine 

(5-mC) to be assayed. Employing such a sequencing technique,279 genome-wide patterns of  5-

hydroymethylcytosine (5-hmC) were recently assayed in whole blood among the Old and 

Young subjects also assayed in Chapter IV.225 Johnson et al. found thousands of sites 

undergoing age-related changes in DNA hydroxymethylation that were also linked to gene 

expression, suggesting this mark too may be useful in future aging studies in blood. 

 Future markers, in addition to relying on different assay techniques of the epigenome, 

may also rely on different types of epigenetic changes observed in age. In Chapter III, CpGs 

reflecting changes in their variability with age in a cross-sectional cohort are identified, with 

the assumption that these regions reflect stochastic processes and a lack of maintenance at the 

level of the epigenome.67 At the genomic level, this also occurs in the form of DNA damage 

and repair. The efficiency with which these repairs occur varies at genomic locations based on 
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their transcriptional activity, this leads some regions to maintain their integrity while others 

accumulate mutations.280 In theory, the same could be true of the epigenome—that some 

regions are protected from drift because of their functional importance and genomic locations. 

A better understanding of the mechanisms that promote epigenomic integrity could lead to 

interventions that maintain that integrity epigenome-wide. The development of recent 

techniques in single-cell profiling techniques may be vital to understanding this variability 

between cells, informing which mechanisms drive this variability on a molecular scale.281,282 

Attenuating epigenetic dysregulation could have protective effects against the aberrant 

changes in chromatin configuration and gene expression with age, and thus, a protective effect 

against age-related disease development. 

 
 
Conclusions 

Cellular changes seen in aging are similar to those observed in disease, suggesting that 

aging and disease share a common pathway.4 Because it is established by enzymes, and thus 

reversible, the epigenome is a promising target for therapeutic interventions and personalized 

medicine.80 Of interest, these concepts of interventions were recently applied in model 

organism studies, showing that interventions known to prolong lifespan in mice actually slow 

age-related changes in DNA methylation.283 This finding supports the hypothesis that a better 

understanding of the contributors to biological aging may allow for interventions that can 

delay the onset and progression of age-related disease, ultimately uncoupling the normal 

process of aging from the development age-related disease.  

 With an increasing proportion of the population surviving to old age, it is imperative 

that biomarkers are developed that can accurately predict not just lifespan, but healthspan. 

These biomarkers will form the basis of accurate personalized medicine and be integrated into 

geriatric care. These biomarkers will benefit from a development that takes into account the 
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makeup of the participants included as well as the structure of sample collection. Longitudinal 

studies of aging are advantageous over cross-sectional studies because the allow for the 

characterization of aging in an individual as it occurs. Lastly, more diversity in genetics and 

epigenetics studies will be vital to ensure that the advances made from the aging biomarkers 

developed are beneficial to all. 
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