
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Katherine Overman Date





Long Time Scales and Hierarchical Structure in Drosophila Behavior

By

Katherine Overman
Doctor of Philosophy

Physics

Gordon Berman, Ph.D.
Advisor

Justin Burton, Ph.D.
Committee Member

Ilya Nemenman, Ph.D.
Committee Member

Sam Sober, Ph.D.
Committee Member

Daniel Weissman, Ph.D.
Committee Member

Accepted:

Kimberly J. Arriola, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date



Long Time Scales and Hierarchical Structure in Drosophila Behavior

By

Katherine Overman
B.S., Augusta University, GA, 2014

Advisor: Gordon Berman, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Physics

2022



Abstract

Long Time Scales and Hierarchical Structure in Drosophila Behavior
By Katherine Overman

Animal behavior is fundamentally a biological process with complex dynamics.
However, to fully understand this process, an interdisciplinary approach is essential.
In this thesis, we used methods from physics and machine learning to study behavior.
We aim to quantify Drosophila melanogaster fruit flies’ stereotyped behaviors, to
build a model that is capable of reproducing complex, hidden behavioral features,
specifically the long time scales and hierarchical structure that we see in our data, and
to offer explanations for what internal processes are modulating these features, both
in general and in the context of aging. The data we are using are hour long recordings
of fruit flies imaged from above in a featureless dish that restrict their ability to fly
but otherwise allows them to move freely. Using methods from Berman (2014) [8], we
are able to take these recordings, identify the set of stereotyped behaviors and embed
them into a 2D plan known as the behavioral map. This indirectly gives us a time
series of behavioral states, and we have two different frameworks of this data that we
use.

The first consists of 300 fruit flies, half male and half female, with ages ranging
from 0 to 70 days, which is the typical lifespan of these flies. With this data set,
we measure behavioral changes as a function of age and find that the changes differ
between the males and females. As youths, the female flies are very active, performing
mostly locomotive behaviors or behaviors that require lots of movement. As they age,
they become more lethargic and perform more idle or “lazy” behaviors. On the other
hand, male flies are lazy as youths, perform more active behaviors in mid-life when
it is optimal mating time, and finally return to laziness in their late life. We find
that many of the hidden dynamics that we measure from data, show no change. This
includes the entropy of the behavioral map, the stereotypy (or repeatability) of the
behaviors, the long time scale dynamics, and the hierarchical structure in the data.
However, we also find that a major contributor to the change in behavior is a change
in the amount of energy available to the flies, or rather, that the flies have a changing
energy budget that modulates their behavior.

The second data set has 59 young, male fruit flies. We use the time series from
this data to train a recurrent neural network so that it is capable of reproducing the
data and the data’s hidden dynamics. It has been shown by previous work that the
internal states of an RNN act like a dynamical system with fixed points, and that
the interactions between the fixed points lend some clarity on how neural networks
make their computations [117]. By doing so with our network, we find that the fixed
points of our network behave as a multi-well plane with basins containing one or more
behavioral states. The plane shifts over time which changes the barriers between our
basins, and we show that this paradigm is capable of modulating the dynamics in our
data.

In conclusion, this thesis serves to offer explanations for the types of internal mech-
anisms that are necessary to produce the dynamics that are inherent to behavioral



data across long time scales, even as long as a fruit fly’s lifetime. Common behavioral
models are currently incapable of doing this, thus we also propose neural networks are
a better class of model to be considered for future behavioral studies. These models
could be crucial to unlocking what is modulating behavior within an organism.
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1

Chapter 1

Introduction

Animal behavior is a biological process that occurs in response to a stimulus, whether

internal, external, or both. For example, a cat hearing the shake of a treat bag will

invariably run over to the source of the sound in the hopes of being fed. This is a

response to an external stimulus (the sound of the bag) and internal stimulus (hunger,

or more likely, greed for food).

While studying animal behavior is inherently a biological problem, many of the

questions asked about behavior require a multidisciplinary approach using methods

and ideas from chemistry, mathematics, physics, and computer science. Behaviors

are complex and dynamic by nature, driven by multiple factors like genetic and de-

velopmental processes within an organism, external stimuli, and the surrounding en-

vironment. How those processes interact and react to the external factors can also

have behavioral impacts. Understanding which biological processes modulate animal

behavior is an important question that many disciplines have tried to answer dating

back to the ancient philosophers [33]. There have been improvements in behavioral

studies thanks to advancements in genetics [109], developmental biology [47], and

neuroscience [19]. It has been shown that many behaviors occur as a reaction to

a physiological change via the nervous system - eating when hungry, sleeping when
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tired, etc [18]. There are still many remaining behaviors that have no such expla-

nation though. For example, what explanation can be offered for a dog getting the

zoomies?

With all these complexities, it is unsurprising that studying behavior is both

difficult and fraught with limitations. In an ideal world, we could collect data on any

organism in its natural environment. That data would contain information on both

the observable behaviors, as well as readings from internal mechanisms that are known

to modulate behavior. We would be able to build informative and intuitive models

that are capable of making important predictions and shed light on how internal

mechanisms communicate to produce behavior. From a technological standpoint,

there are multiple complications. Working in a lab environment alters individual

behaviors and behavioral repertoires as a whole. For example, in the lab setup for

the data used in this thesis, the flies’ movements are restricted in a way so that they

are unable to fly. The use of markers is common for tracking purposes, but animals

have been known to pick up perturbations in their motions even after acclimating

to the marker. Some animals never acclimate to having a marker attached to them.

Other issues arise from the nature of behavior itself. For example, to fully capture

behavior and to understand it, data would need to include information about every

behavior across the animal’s whole lifetime as behavior spans multiple time scales.

These time scales range from seconds (e.g. grooming, locomotion, blinking), to hours

(e.g. circadian rhythms, hunger) to years (e.g. aging, puberty, mating seasons). These

are just some of the challenges that one faces when studying animal behavior.

This thesis offers two major advancements to the field. First, we investigate a data

set from recordings of male and female fruit flies across their lifespan and quantify

how their behavior changes with age. Further, we find that a major contributor to

this change in behavior is a change in the overall energy budget available to the fly at

a given age. Second, we propose a model to explain how internal mechanisms result
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in behavior. We do this by training a recurrent neural network (RNN) on behavioral

data from fruit flies and studying the internal dynamical system of that RNN. We

find these dynamics are comparable to a particle in a multi-well energy landscape

with barriers changing under Arrhenius behavior, and that these dynamics produce

the long time scale and hierarchical structure seen in the data.

There exists a wide range of animal behavior studies and how they are conducted.

However, there are three major themes that, although varying, can be seen throughout

the field: defining behavior, measuring behavior, and modeling behavior.

1.1 Defining Behavior

How we define behavior is an important question. There already exists several varying

and (often) opposing definitions of behavior ranging from “the total of movements

made by the intact animal” [119] to considering anything an organism does as its

behavior [26]. Some definitions establish a connection to the organisms environment

[52], while others posit internal processes dictate external movements and consider

the combination of internal and external factors to be behavior [63].

Notably, Tinbergen (1963) [120] proposed four questions to ask of animal behavior

that established how to think about studying animal behavior.

• Adaption: This question addresses why the animal does a behavior and specif-

ically how it contributes to the animal’s survival (or fitness). For example,

species that migrate during a season do so as a mean’s of survival.

• Phylogeny: We know natural selection modifies behavior over a long period

time. This question asks how behaviors evolve. The answer usually comes from

looking at comparable behaviors in species that are closely related.

• Mechanism: Which external stimuli or physiological mechanism(s) caused the

observed behavior to be performed? Examples include eating when hungry,
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seeking out a mate when certain pheromones or hormones are detected, or a

cat running under the couch in response to a knock at the door.

• Ontogeny: The final question investigates how behavior changes over the ani-

mal’s lifetime - often a result of learning, like baby birds and their song.

These four questions can be classified into two different categories. Adaption and

phylogeny, also referred to as function and evolution respectively, require extended

perspectives in time to explain the behavior we currently observe and are classified

as ultimate explanations. As for mechanism and ontogeny (or causation and devel-

opment), they classify as proximate explanations looking only at immediate causes

for a behavior. In order to fully understand all the necessary components behind a

behavior, both classifications must be explained and all four questions answered [120].

Another important contribution from Tinbergen was the idea of hierarchical struc-

ture in behavior, where the same behavior can have different meanings depending on

the context. An example of this is demonstrated in the context of reproductive in-

stinct (diagrammed in Figure 1.1), you may have bouts of fighting, building, mating,

and care for offspring. These bouts will consist of different actions or behaviors, and

there may be overlap in the actions seen. This concept leads into a way of building up

long time scale structures in behavior which will be discussed more in later sections

of this thesis [119].

Others studied behavior from a more experimental approach rather than theoret-

ical musings. A historically famous behaviorist B.F. Skinner believed you could only

study observed behavior, and that all behavior was either random or a product of the

environment. To support this claim, he designed an experiment where he placed a

rat in a box with a lever that is connected to a food dispenser. By pressing the lever,

the rat receives some food and eventually learns to associate pressing the lever with

getting food. This set the precedent for teaching animals new behaviors through op-

erant conditioning [107]. The experimental setup he designed, known as the Skinner
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Figure 1.1: Hierarchical and long time scale structure in reproductive instinct behav-
iors. Figure taken from Tinbergen (1951)[119]

box, is still used in labs today to manipulate and teach behaviors.

An additional aspect to defining behavior is quantifying behaviors. How do you

assign numbers to behavior in a meaningful way and how do you interpret those num-

bers? This consideration has gained importance in the field relatively recently thanks

to advancements in technology and other fields such as mathematics and engineer-

ing. Further, what behaviors do you consider relevant to your study? For many it

is sufficient to study one particular action in individuals such as the gait of a mouse

[71], or in large groups such as the overall movement of a group of baboons [114] or

the geometry of how bees will cluster [95]. Other studies will look at simultaneous

recordings of behavior (arm movement [111], facial expressions [31], birdsong vocal-

izations [91]) and their corresponding neural spikes. On the other end of the scale,

several studies have been done to measure the full repertoire of behaviors [8, 112].
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1.2 Measuring Animal Behavior

Once a definition of behavior has been selected, the task is to measure that behavior,

if possible. Despite some technological advancements, measuring animal behavior

remains a challenge. There currently exist multiple approaches to measuring animal

behavior, but perhaps the most prevalent approach is image based analysis, which can

range from tracking multiple animals in a 2D plane [29] to using multiple cameras to

track animals in a 3D arena[115]. Using computer vision to automatically detect and

track lab subjects has had a lot of development through algorithms such as DeepLab-

Cut [78] and LEAP (LEAP Estimates Animal Pose) [97], which train networks on a

few hand-labeled frames - assigning markers to distinct parts of the animal’s body.

These algorithms are looking at the overall shape of the animal, however, some other

approaches track movements of the animals by detecting their center of mass. This

approach can be useful particularly if you’re studying social interactions - ignoring

any bouts where the center of masses are too far apart to be interacting [25].

When tracking more than one animal at a time, maintaining the identity of each

animal throughout the data set can be an issue. Animals interact with each other,

and these interactions will often confuse an algorithm, resulting in an identity swap.

Further, depending on the recording setup, you may lose sight of the animal for a pe-

riod of time which can also result in identity confusion. However, several studies have

been done to advance tracking abilities. One such study (idTracker) using videos of

a school of zebrafish found that each fish has a unique ”fingerprint”. This fingerprint

is generated by taking each pixel on the fish and calculating it’s distance to every

other pixel on the fish. The resulting 2D array successfully creates a unique identity

for each fish. Using the fingerprints as a means to maintain identity eliminates nearly

all identity switches and is robust to occlusion [98]. More recently, SLEAP (Social

LEAP Estimates Animal Pose) is a LEAP successor that is capable of tracking multi-

ple animals. Like LEAP, it uses human input to label body parts in various frames in
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order to track the animals in the remaining frames while maintaining each animal’s

identity [96].

Measuring limb movements is another popular approach to measuring behavioral

changes, particularly in animals that have rigid or constantly visible legs, such as fruit

flies [80]. Although, studies like this have been done in other species as well, like in

mice. Results show that gait size in mice can determine overall body size, and gait

patterns can predict various neurological disorders [71].

Machine learning has become a useful tool for measuring animal behavior, es-

pecially as the field becomes more advanced. Machine learning algorithms can be

classified into two different types - supervised and unsupervised. The distinguishing

feature between these learning styles is whether or not the data is labelled. As the

names might imply, supervised algorithms get labelled data or some sort of human

input and can solve problems dealing with classification and regression. Unsupervised

learning analyzes unlabelled data with no human intervention to cluster, make asso-

ciations, or reduce the dimensionality of the data set. Both have their advantages

and are used in the field regularly.

A popular supervised learning algorithm is the Janelia Automatic Animal Be-

havior Annotator (JAABA) [55]. This algorithm automates behavioral classification.

It presents the user with short snippets of videos from data of fruit flies moving

around and asks the user to classify the behaviors seen frame by frame. Using the

human classifications, it then makes predictions on the rest of the frames in the data

set. The user can then step through those predictions and agree or disagree with

JAABA’s classifications. Another supervised learning example is MiceProfiler [28],

which automates tracking of two mice. Then, based off of the orientation of the two

mice, classifies different types of interactions as a function of proximity. In the past,

data sets like these would have to be hand labelled so being able to automate this pro-

cess saves a tremendous amount of time. However, there remain limitations - certain
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frames are hard to classify for both the algorithm and a human. Without knowing all

the possible categories, humans struggle with classification problems. Also, by asking

for human input, human error and bias are introduced into the analysis.

On the other hand, unsupervised learning has become a useful tool in automating

behavior identification without human input. Stephens et al. (2008) [112] measured

the curvature of Caenorhabditis elegans moving around freely in a featureless dish and,

by looking at the space of natural postures in the worm, found the dynamics to be low

dimensional. In fact, the space can almost entirely be explained by four ”eigenworms”,

qualitatively corresponding to forward crawling, reversals, Omega-turns, and pauses.

Any posture the worm produces can be broken down into some linear combination

of these eigenworms. Within the postural space and their determined equations of

motion, they found a set of attractors. This paper established a language to describe

worm behavior that is generalizable to other species.

Another landmark unsupervised example is MoSeq[130]. This study builds off a

previous work[129] that measured 3D motion in mice and found that every behav-

ioral bout was composed of subsecond modules. These modules could be treated like

syllables and fed into language processing models. Ultimately, they found that every

type of behavior the mouse expressed could be described by varying these modules,

and that this method is robust to genetic and neural mutations. MoSeq tests the ro-

bustness of this method on the behavioral effects of drugs. It can distinguish between

the differences in behavior even when the mice have been given closely related drugs

and identify which drug caused behavioral changes regardless of the actual behaviors

displayed, which reveals information about drug and gene perturbations that was

previously unknown and even still not totally understood.

For this thesis, we will be using an unsupervised algorithm to measure the full

repertoire of a fruit fly and quantify that repertoire as a 2D behavioral space developed

by Berman (2014) [8], and it will be an important tool used throughout this thesis.
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1.2.1 Behavioral Spaces

This method has many benefits over other methods. First, being able to measure the

full repertoire of behavior (in a lab context) as opposed to singular actions provides

rich information about behavior and behavioral dynamics - how do behaviors interact

over time? The unsupervised approach saves time by not requiring a human to

make and assign labels for the data set. This also eliminates any human bias or

error. Finally, the method allows for comparisons across individuals or classification

of individuals (males vs. females, difference species, different age groups, etc.). By

comparing male and female fruit fly behavioral spaces, it was discovered that the two

groups perform left-wing grooming in slightly different ways, and the algorithm was

able to distinguish them as unique behaviors rather than lumping them together into

one state. Thus, the method is also robust to minor variances in how behaviors are

performed. These spaces are generated from videos of freely moving fruit flies using

an unsupervised approach that employs computer vision, dimensionality reduction,

and various other computational techniques.

1. Image segmentation and registration: To start, edge detection is used to

isolate the fly in each frame from the raw data set of videos. While the fly is

always in frame, its location and orientation in the frame varies. In order to get

a consistent image across all the frames, the flies are rotationally algined using

polar cross-correlation with a template image and translationally aligned using

a sub-pixel cross-correlation. Additionally, to address variation in the size of

the flies’ bodies, the images are rescaled so that they are all the same size or

cover the same number of pixels on average. In this data set, there were 4x104

frames after image processing.

2. Postural decomposition: Projecting the pixel values of these images onto a

50-dimensional Euclidean space explained over 90% of the variance in the flies’
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postures. After a Radon transform, which gives a sparse parameterization of

the images, principal component analysis (PCA) is applied. PCA is a common

dimensionality reduction technique. Here, the outcome of PCA is called the

postural modes or eigenflies. Given a fly’s posture, it can be described by a

combination of these modes, but the instantaneous values of these modes does

not complete the picture for the dynamics of behavior.

3. Spectrogram generation: Using the amplitudes of Morlet transforms by mea-

suring the power frequency associated with the postural modes within a window

of time forms a more complete picture of the modal dynamics across multiple

time scales. This gives a spectrogram representation with 25 frequency chan-

nels.

4. Nonlinear embedding: With 25 frequency channels for each of the 50 postu-

ral modes, each point in time is described by a 1250-dimensional feature vector.

Given strong correlations between the frequency channel, the actual dimen-

sionality of the postural dynamics is much lower. Prioritizing local structure

rather than more distant structure, t-distributed stochastic neighbor embed-

ding (t-SNE) [125] embeds the data points into a space while preserving the

Markovian transitions. By applying a Gaussian smoothed probability density

function (PDF) over the embedded points, structured peaks and valleys emerge.

The red peaks correspond to stereotyped behaviors, and the blue valleys are

non-stereotyped behaviors.

5. Spatial segmentation: In order to isolate the peaks in the space, the pdf

undergoes a watershed transform. This extracts the behavioral states. It is

possible to inspect the data within each watershed region and doing so confirms

that the states contain unique, stereotyped behaviors.

A visual representation of these steps are laid out in the data pipeline shown
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Figure 1.2: Behavioral space data pipeline. Raw images of the fruit flies (D.
melanogaster are isolated through background subtraction, rescaled and aligned to
a consistent size and direction. The resulting stack of images then undergo PCA,
which gives a relatively low-dimensional set of time series. A spectogram for the pos-
tural modes is generated by applying a Morlet wavelet transform to these time series.
Using t-SNE, each point in time is embedded into two dimensions. After applying
a Gaussian-smoothed density over the points, the individual peaks are isoloted via a
watershed transform.

Figure 1.3: Final steps of data pipeline. A. Probability density function generated
from t-SNE embedded points. B. Watershed regions with broad descriptions of the
stereotyped behaviors in each region. These descriptions were defined by visually
inspecting movies from the data.

in Figure 1.2. In Chapter 3, we use data from Berman (2014) [8] to reproduce the

behavioral space following this pipeline. That replicated space is provided here in

Figure 1.3A.

An important feature of these spaces is that posturally similar behaviors are em-

bedded near each other in the space, which was not inherently built into the algorithm.

Thus, by visually inspecting the data from each of the states, it is possible to create

clusters on the space with broader behavioral classifications. This is plotted in Figure

1.3B. The black lines, here, are the watershed regions outlining the area containing a

behavioral state.
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Figure 1.4: Graphical structures: A. Markov Model and B. Hidden Markov model.

The behavioral spaces also contain rich information about behavioral transitions,

time scales, and hierarchy which are all important themes to this thesis. We will go

into more detail about those features, how we used them, and what they tell us in

the following sections and chapters.

1.3 Modeling Animal Behavior

Now, with behavior defined and measured through postural movements, it is possible

to ask how to model behavior and what features a model need in order to produce

behavioral dynamics.

Historically, Markov models have been the preferred model of choice and even

more recently, hidden Markov models [70]. These models are stochastic and make

transitions depending on the current state that the system is in. Graphical represen-

tations of a Markov model and a Hidden Markov model can be seen in Figure 1.4. In

this figure xi’s are observable states, and yj’s represent hidden states. The transitions

between these states are determined by probability tensors.

Mathematically, these probability tensors evolve through time according to:
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P (xt+1 = i|xt = j) = Tij for Markov models, where t indicates a time step, i and

j represent all possible state values, T is the transition matrix containing transition

probabilities, P , which dictate how likely state j is going to transition to state i.

The primary difference between the Markov model and hidden Markov model is the

introduction of the set of hidden states. There is a layer of hidden states transitioning

between each other and emit an observable state at each time step. Thus, we have a

probability matrix, S. This matrix contains the emission probabilities, or how likely

a hidden state will produce an observable state as an output. In addition, there is

a transition matrix that determines how the hidden states interact through time.

These tensors evolve with P (yt+1 = i|yt = j) = Tij modulating the hidden states and

P (xt = k|yt = j) = Sjk controlling the observable states.

Although these models are desirable for their structural and mathematical sim-

plicity, studies have revealed that any model that restricts dynamics to a single time

scale (like the Markov models) fail to reproduce some of the more complex dynamics

we see in behavioral data and have significantly less predictive capabilities [9]. For

example, if we measure the transition matrix of our data at different time steps into

the future, multiple long time scales emerge. Taking similar measure from a Markov

model result in significantly shorter time scales, by orders of magnitude even [9].

While it is possible to increase the complexity by adding extra dependencies to the

transition, it has been shown that even with a nearly infinite history, the Markov

model still performs poorly[2]. We will go into more detail on measuring time scales

later in the text, but it is clear that in order to extract complex dynamics, a more

complex model is needed.

1.3.1 Recurrent Neural Networks

While some researchers have employed methods like latent state models with feedback

[135] and agent based models [105], we have found recurrent neural networks (RNNs)
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to be useful in studying animal behavior. Neural networks aim to recognize patterns,

underlying dynamics, and relationships in data sets and make computations the same

way that the brain makes decisions. The basic concept of neural networks has been

around since the 1940s starting in the form of an electric circuit that was meant to

replicate how neurons in the brain work [79], which eventually led to the invention

of the perceptron in the late 1950s, which is the oldest neural network still in use

[103]. We now know that perceptrons are only able to act as a binary (or linear)

classifier, but when it was discovered that they are unable to predict many classes of

patterns, neural networks fell out of interest for several years [75]. Modern day neural

networks have many different architectures, but they all have a handful of essentials:

input, layer (or layers) of neurons (also called nodes) each with their own weight and

bias, and an output. The shapes of the input, layers, and outputs take many forms,

but these are the essential elements to the networks. Applications of neural networks

include weather prediction, natural language processing [40], facial recognition [59],

and recommendation systems [67] just to name a few.

These networks can be trained to learn nonlinear relationships in a data set [134,

22, 77]. To avoid overfitting, where the network learns exactly the data set provided

and is unable to make predictions on new data, the data must be split into a training

and test set. As the name implies, the training set is used during training, and the

test set is used to validate that the network is learning the overall dynamics and not

just the data it can see. During the training process, the network is learning to map

inputs to outputs by finding a set of weights within the network that successfully

produce the desired output or something close enough to the output. This process is

iterative making small updates to the model weights in order to improve performance.

Further, this process is an optimization problem - typically done through stochastic

gradient descent (SGD) and backpropagation [104]. Each iteration the weights are

updated with backpropagation of errors and the loss is minimized through SGD.
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The basic concept behind this learning algorithm is exploring the plane of errors

given different combinations of weights and finding the weights that minimize that

error by computing the gradient of the loss function with respect to each weight [94].

While this may sound straightforward, two problems can arise when computing the

gradients. In some cases, the gradient may go to zero or infinity exponentially fast,

resulting in a vanishing or exploding gradient respectively. When this occurs, the

network cannot learn [7].

Long short-term memory (LSTM) [48] networks are a flavor of RNN that avoids

these gradient issues. At each iteration, the network decides whether to add or remove

information to the cell state Ct by performing a series of calculations. First, at time

step t, the forget gate takes ht−1, the hidden state, and xt, the input, and feeds them

through a sigmoid function, σ, which returns a 0 or 1 signifying what percent of the

cell state to keep. Next, the new information to store is chosen. The input gate,

which is also a sigmoid function, chooses the values to update, and a tanh function

creates potential values that could be added to the state, C̃t. By multiplying the

old cell state, Ct−1 with the output from the forget gate and adding the input gate

multiplied by C̃t, we update the cell state. Finally, the output gate is the result of

the updated cell state after a sigmoid function, and the hidden state is updated by

multiplying the output gate by the tanh of the cell state. A step-by-step diagram of

this with the corresponding equations can be seen in Figure 1.5.

LSTMs are used to solve a variety of problems. We will be using LSTMs to learn

and replicate the complex temporal dyanmics that our behavioral data contains. In

recent years, there has been an increased interest in neural networks for measuring

and modeling behavior [14, 113, 43, 32] (among numerous other applications) as they

have proven to be effective at making predictions and replicating complex data sets.

How they are able to do this is not clear at all, which for many purposes is fine. For

our purposes, if we’re able to reproduce a behavioral data set and all the dynamics
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Figure 1.5: Computational steps for LSTM network. 1. Forget gate. 2. input gate
and candidate values to be added to the state. 3. Cell state is updated. 4. Output
gate and hidden state. For more details see the text. [93]
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Figure 1.6: A. Transitions rates plotted on the behavioral map. Each red point repre-
sents a stereotyped behavior, and the black lines’ thicknesses represent the probability
of making the transition. Curvature of the lines are right-handed to indicate the direc-
tion of the transition. B. One-step Markov transition probability matrix T (τ = 1)ij.
There are 117 states clustered into six groups with boundaries indicated with black
lines given by the information bottleneck algorithm. Broad descriptions of the behav-
iors in each cluster are labeled above the matrix. Figure from Berman et al. (2016)
[9]

of that data set, we would like to be able to say something about the inner workings

of the network so that parallels could be made with the inner workings of the animal

itself. Fortunately, lots of work has been done to uncover and demystify the way

neural networks make computations [131, 117].

1.3.2 Time Scales and Hierarchy

Some of those dynamics that we want a model to replicate follow the analysis done

in Berman et al. (2016) [9] on the behavioral space from Berman et al. (2014) [8]. By

looking at the Markov transitions, which quantify the probability of transitioning to a

state given the state you’re currently in, and the movements from peak to peak in the

behavioral spaces, some interesting structures emerge. These transition probabilities

are plotted on the space in Figure 1.6A.

It is noticeable that this plot is relatively structured and not a messy hairball.
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States mostly transition to other nearby states that are similar. This makes sense from

the postural perspective - to go from sitting to standing there are some intermediate

postures to enable the action and avoid falling. This is quantified with the transition

matrix, seen in Figure 1.6B. The block diagonal structure in the matrix confirms

that most transitions are staying local. As it turns out, this matrix also contains

significant information about future transitions.

If the dynamics in this data set were Markovian, then iterative multiplication of

the one step transition matrix would compute the transition matrix after τ steps, or

mathematically, TMarkov(τ) = T (τ = 1)τ . Even after 100 iterations, the Markovian

matrix has lost all information about the initial state (Figure 1.7A). In contrast, the

measured transition matrices from the data still maintain a significant amount of

structure at τ = 100 (Figure 1.7B, left), even at τ = 1000 (Figure 1.7B, right) some

information about the initial state remains in tact, which says that the behavioral

dynamics are not Markovian.

The structure of the transition matrices is then quantified by measuring the eigen-

values for different values of τ . According to the Perron–Frobenius theorem, the

largest eigenvalue will always have a magnitude equal to 1, and all other eigenvalues

will have a magnitude less than one and describe the loss of predictability over time.

The resulting curves can be seen in Figure 1.7C. The solid lines correspond to the

timescales and predictability of the data set with SEM error bars, and the dashed

lines are from the Markovian matrices. This shows the Markov model failing to cap-

ture the timescale in the data set by two orders of magnitude. Further work has since

been done that shows a Markov model would have to have access to a nearly infinite

history in order to reproduce the structures seen in the data [2].

The data’s long time scale structure implies that it is possible to cluster the be-

haviors in such a way that much of the information about the future is preserved [10].

More precisely, given the behavioral space S(n), they want to find a representation Z
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Figure 1.7: Transition matrices across long time scales. A. Markov model transition
matrix for τ=100. B. Transition matrices measured from data for τ=100 (left) and
τ=1000 (right). C. Absolute values of the transition matrix eigenvalues across differ-
ent values of τ . The solid curves represent the average over all the flies with SEM
error bars. Dashed lines are the Markovian timescales. The black line is a noise floor,
the second eigenvalue of a transition matrix after randomly shuffling of the data set.
Figure from Berman et al. (2016) [9]
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Figure 1.8: Information bottleneck clusters of behavioral space for τ = 67. Previous
borders are plotted in black (dashed lines for 25 clusters). Figure from Berman et al.
(2016) [9]

that maximizes information τ transitions in the future, while maintaining information

from the past. This turns into an optimization problem known as the information

bottleneck:

maxF = I(Z;S(n+ τ))− βI(Z;S(n)),

where I gives the mutual information and β is a Lagrange multiplier[121].

This algorithm varies in both τ and β and results in many solutions. The optimal

solutions for τ = 67, which is approximately twice the Markovian timescale can be

seen in Figure 1.8. This Markovian timescale refers to the maximal time scale that

a Markov model is capable of predicting. Mathematically, the Markovian time scale

is: tMarkov = −1/log|λ2(1)|, where λ2(1) referes to the second eigenvalue of the 1-step

transition matrix. The clusters from the DIB algorithm are hierarchical, which is not

a built in feature of the information bottleneck. The idea of hierarchy is hardly a new

one, dating back to Tinbergen in the 1950s [119] as was mentioned earlier. Previous

measurements of hierarchy in behavior typically limited the scope of their findings

by focusing on single behavioral types like grooming [64, 65, 66, 27], or modeling the



21

hierarchy across a single time scale (often Markovian) [88, 53], or relying on methods

that would only yield hierarchical results [45].

While Berman et al. (2016) [9] used the Information Bottleneck, in this thesis,

we will be using the Deterministic Information Bottleneck (DIB) [116] instead. Ulti-

mately, DIB returns similar clusters as IB but the clusters themselves are determin-

istic which is preferred for our purposes. Also, DIB is supposed to better capture

the compression by using entropy of the clustered representation instead of mutual

information:

minF = H(Z)− βI(Z;S(n+ τ)).

Here, we will be discussing behavior of fruit flies under two time scale paradigms.

One is behavior measured in an hour, and the other is behavior measured in an hour

but across the span of the flies’ lifetimes.

1.4 Behavioral Effects of Aging

While there are many internal and external factors that impact and modulate be-

havior, one internal process that is known to have a significant impact across all

organisms is aging. As an organism ages, its behavior will change. Sometimes the

change is because a behavior no longer serves a purpose or has become morphologi-

cally impossible. For example, kangaroos at a certain age stop riding around in their

mothers’ pouch. Sometimes, an organism learns a new behavior, like birds learning

to fly. While there are plenty of other reasons for behavioral changes throughout a

lifetime, most commonly, a behavior is continually performed throughout the animal’s

life but changes as the animal’s physical body changes. An easy example of this is the

gait and posture of humans walking from infancy to midlife to old age all look very

different but are considered to be the same behavior. The changes in gait observed

from midlife to old age can be partially explained by senescence, the deterioration
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one experiences with age, but there are likely many other factors involved as well.

It is not surprising, then, that a big question in aging studies is if we can determine

what system or systems are modulating the changes.

Aging effects are present across multiple scales, which can make answering that

question difficult. At the molecular level, previous studies have identified the age-

regulated genes and the corresponding genetic pathways’ responses to aging [132].

Even certain single gene mutation can have huge impacts on longevity, suggesting

that there may be only a few cellular processes that contribute to aging [54]. One such

process is called programmed cell death, and aside from aging, it is also associated

with aging-related diseases [123]. Development of diseases or physical deficits can also

introduce perturbations affecting postures, overall longevity, and can especially affect

the neural level with regards to vision, speech encoding, and dementia [110, 3, 126].

Other studies have shown how vision, sensation, strength, reaction time, and bal-

ance (all variables that change with age) are related to the optimal gait pattern

for stable locomotion [81], how oxidative stress and caloric restrictions can extend

lifespans [108, 76], how disrupting circadian rhythm accelerates aging [62] as well as

cellular senescence, deregulated nutrient sensing, or a breakdown in mitochondrial

regulations and proteostasis [68], and finally, how senescence [42] reduces an organ-

ism’s ability to perform its full range of behaviors [60]. Many of these studies use fruit

flies (or Caenorhabditis elegans worms) because they are easily contained, have rela-

tively short life spans, can be manipulated genetically, and mutated neurally. They

are a good model organism for humans as approximately 70% of genes in humans are

homologous to genes in fruit flies (Drosophila melanogaster specifically), and most

cellular mechanisms are the same between flies and humans via evolution [11, 39].

In this thesis, we will work with data from Choi (2017) [23] which recorded behav-

ior from male and female fruit flies at different stages of life. From these recordings,

we can measure the full repertoire of behaviors and quantify how those behaviors
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change with age. We find that the male fruit flies experience a ”mid-life crisis” where

they become very active, performing a lot of locomotive behaviors, where before and

after this period of time, they are mostly idle. This ”mid-life crisis” corresponds to

the peak mating age for fruit flies. On the other hand, the female fruit flies start

life very active and gradually become lazier. After measuring many quantities that

remained constant, we determine that the primary predictor of behavioral changes is

the changing energy budget, or rather, the average amount of energy expended as a

function of age, which is a common theory in the field.

1.5 Internal Recurrent Neural Network Dynamics

In this thesis, we will implement a basin hopping model with multiple attractors

to describe the internal dynamics we observe in our recurrent neural network. The

barriers between these basins will interact according to Arrhenius behavior.

1.5.1 Basin Hopping Model

Basin hopping models are a global optimization technique that transforms the po-

tential energy plane. By randomly iterating through perturbations of the plane, it

performs local optimization to accept or reject the perturbation based on a mini-

mized energy function value [127]. These models have stochastic and deterministic

dependencies. Stochasticity in a system can be a driving force behind hopping from

one basin to another, and the deterministic force acts as a counter balance to resist

that stochasticity. The strength of the stochastic forces present in the system directly

impacts the persistence times, or the amount of time spent in a basin. Persistence

times can vary dramatically across the basins, but an increase in stochasticity will

overall decrease the persistence times. However, the shape of the basin can also have

an impact. With a certain amount of stochastic force, a deeper, more narrow basin
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will likely have a longer persistence time than a basin that is wide and shallow [30].

In fact, without any stochastic forces present, the dynamics would be Markovian. To

introduce stochasticity to our system, we will use Arrhenius behavior, adapted from

chemical kinetics, to describe our change in basin heights.

1.5.2 Arrhenius Behavior

Molecules each contain a certain amount of energy, collectively potential energy and

kinetic energy. Properly aligned collisions between particles can cause chemical reac-

tions when the kinetic energy of the collision is above a certain threshold. Otherwise,

the particle will simply bounce off each other. This energetic threshold is called the

activation energy. Obtaining the activation energy can be difficult to do with classic

Arrhenius analysis. Mathematically, the activation energy is defined as:

Ea = −∂ln(k(T )

∂β
,

and β = 1/kBT . Here, Ea is the activation energy, k(T ) is the temperature dependent

reaction rate, kB is a gas constant, and T is temperature. Typically, Ea is calculated

by measuring the slope from an Arrhenius plot of lnk(T ) vs. 1/T. However, this

approach requires calculating or measuring the reaction rate, k(T ) which is where the

challenges arise. Temperature needs to be able to vary which may not be possible in

some cases. For example, a change in temperature can lead to a phase change near a

phase transition. This would change the empirical value of k as it is a phase dependent

quantity. Additionally, some systems’ structure are highly sensitive to temperature

such as folded proteins, bilayer membranes, and self-assembled structures. Thus, the

temperature range must be constrained enough to avoid these potential issues but

broad enough that the changes in k are detectable either through experimental or

simulation methods.
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In thermodynamics, activation energy and reaction rates are fundamental char-

acteristics of a chemical reaction. These characteristics are often referred to in the

context of Arrhenius’s Law, given by rearranging the above equation:

k(T ) = Aexp

(
− Ea
kBT

)
.

A is a frequency factor that is temperature independent [5, 82].

Although this discussion has so far been in the context of chemistry kinetics,

the concept of activation energy is applicable to more than just chemical reaction

rates. For example diffusion coefficients, reorientation times, viscosity, and dielectric

relaxation times can all be described by their own, analogous Arrhenius equation. In

these examples, there are smaller activation energies and therefore less dependency

on temperature, but without a clear threshold, the interpretability of the activation

energy also becomes less clear [99].

Arrhenius’ law has been derived through principles from statistical physics as well

[122, 34]. The activation energy, Ea, is generally considered to be the difference

between the threshold energy for the reaction and the reactant’s energy, which allows

us to interpret it as a ratio of probabilities [85, 86]. By exploiting the exponential

distribution, we can recover Maxwell-Boltzmann statistics for a single particle and

restrict the maximal randomness in a system [84, 85]. We will be using probabilities

to measure how the basins are interacting and want to quantify the probability of

transitioning. To do that, we essentially need an expression for the probability of

a particle’s energy being at least equal to the threshold energy. We can get that

expression using the probability density function (PDF). The PDF for this system

has the form:

f(Ei) =
1

〈Ei〉
exp

[
− Ei
〈Ei〉

]
,
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where Ei is the energy for an individual particle, and 〈Ei〉 is the overall average energy.

By integrating over this PDF, we can calculate the probability that a particle’s energy

is greater than or equal to the threshold energy, Et.

P (Ei ≥ Et) =

∫ ∞
Ei=Et

f(Ei), dEi = exp

[
− Ei
〈Ei〉

]
Then, by taking a difference between probabilities, P (Ei ≥ Et)−P (Ei ≥ Et + 1),

we can get an expression for P (Ei = Et):

P (Ei = Et) =
exp

[
−Et
〈E〉

]
∑

j exp
[
−Ej
〈E〉

]
This expression replicates Boltzmann’s partition function and reaffirms that the

exponential probability is fundamental to statistical mechanics. The same expression

can be derived by integrating over the PDF from Ei to Ei + 1 [87].

In this thesis, we will be using an adapted version of this statistical mechanics

approach to Arrhenius behavior. We find that the internal dynamics of our recurrent

neural network are analogous to a particle in a multi-well landscape with barriers

between the wells changing according to Arrhenius’s law.

1.5.3 Application to Our Network

By treating the internal states of the network as a nonlinear dynamical system fol-

lowing the findings from Sussilo et al. (2013) [117], we can measure fixed points, both

stable and unstable. These fixed points then act as our internal states, and their inter-

actions modulate the external behavioral states. From the interactions, a basin-like

structure emerges, where a set a of states act as the bottom of a basin for other states

to flow to. Thus, if we treat this dynamical system of internal states as a particle in

a multi-well landscape, we can see how transitions are modulated through changes in

the barriers between basins. This concept is illustrated in Figure 1.9. Changes in the
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Figure 1.9: Behavioral transitions as a multi-basin landscape allowing transitions to
occur between different states by shifting barriers between basins.

barrier heights could result from a number of things including changes in an internal,

sensory state or external stimuli.

By assuming the barrier heights interact under Arrhenius behavior, we can derive

how those barriers change with time. Although Arrhenius behavior is classically

applied to reaction rates in chemistry, we have discussed how it has applications in

many other contexts including thermodynamics [85] and microbial “social” decision

rates [24]. Thus, we use a statistical mechanics approach to describe the Arrhenius

behavior in our system. In this context, Arrhenius’s Law gives us an expression for

persistence time rather than reaction rate:

〈τ〉 = Aexp[−β∆E]

Here, the reaction rate, k(T ), has been replaced with persistence time, τ . Activa-

tion energy, Ea, is analogous to our basin depth, ∆E. We can also write an expression

to quantify how transitions between basins occur as a function of time as the barrier

heights change:

Tij(t) =
exp[−β∆Eij(t)]∑
k exp[−β∆Eik(t)]

≡ exp[−β∆Eij(t)]

Zi(t)
.
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Here, Tij is the transition probability from basin i to basin j, β is a temperature,

and ∆Eij is the barrier height between the two basins i and j.

Understanding how the internal mechanisms of an RNN are able to produce be-

havioral dynamics provides a framework of how the internal mechanisms of an animal

produce the same dynamics.

1.6 Thesis Outline

This thesis consists of four chapters. Chapter 2 introduces a novel study on aging in

Drosophila melanogaster fruit flies. The data analyzed in this study measures the full

repertoire of behaviors across the flies’ lifespan in both male and females, ages ranging

from 0 to 10 weeks. We find a sexual dimorphism in how the repertoire changes with

age and further that while repertoire of behaviors being performed changes with age,

the postures required to perform the behavior remain the same without experiencing

degradation with age. In fact, many quantities of our data remains constant across

age, but we find that the observed changes in behavior can be predicted by the fly’s

overall energy budget. In Chapter 3, we train a recurrent neural network to predict

and replicate the behavioral sequences from the Berman et al. (2014) [8] data set.

This data is a subset of the data used in Chapter 2 having only the male flies in the

0-2 week old age group. We find that the network successfully reproduces multiple

long time scales as well as some other features of our data. However, we would like to

have a model that is more easily interpreted. Thus, we built a model that describes

the internal workings of the network. First, we treated the internal dynamics of the

network as a dynamical system and observed how the fixed points of the system

interact with each other. This leads us to treating the fixed point interactions similar

to a set of basins with varying barriers between the basins. These changing barriers

provides a framework to discuss how the network is modulating behavioral sequences
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and making transitions. Finally, Chapter 4 is a conclusion to summarize the work

laid out in this thesis and to propose future works for the field.
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Chapter 2

Measuring the repertoire of

age-related behavioral changes in

Drosophila melanogaster1

Abstract

Aging affects almost all aspects of an organism – its morphology, its physiology,

its behavior. Isolating which biological mechanisms are regulating these changes,

however, has proven difficult, potentially due to our inability to characterize the full

repertoire of an animal’s behavior across the lifespan. Using data from fruit flies (D.

melanogaster) we measure the full repertoire of behaviors as a function of age. We

observe a sexually dimorphic pattern of changes in the behavioral repertoire during

aging. Although the stereotypy of the behaviors and the complexity of the repertoire

overall remains relatively unchanged, we find evidence that the observed alterations

in behavior can be explained by changing the fly’s overall energy budget, suggesting

1This text is adapted from Overman, Katherine E., et al. ”Measuring the repertoire of age-
related behavioral changes in Drosophila melanogaster.” PLoS computational biology 18.2 (2022):
e1009867.
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potential connections between metabolism, aging, and behavior.

2.1 Introduction

Aging is a biological process that affects nearly all organisms, resulting in profound

changes to their morphology, physiology, and behavior [4, 102, 106]. While there exists

variability in the precise form and timing of these alterations, stereotyped patterns

of aging-related change are commonly observed at scales ranging from molecules to

tissues to the entire organism [13]. However, we lack a comprehensive framework for

predicting how the multifarious age-related changes at the molecular and neuronal

level directly lead to behavioral changes.

While many age-related changes in behavior are due to direct reductions in an

animal’s capacity for movement (e.g., arthritis in humans or wing damage in flies),

another commonly posited hypothesis is that aging effects in behavior can be par-

tially understood as an alteration in an animal’s energy budget [60, 73]. In other

words, while the organism may still be able to physically perform most activities

within its repertoire, its reduced metabolic efficiency might impose constraints on

an animal’s total amount of energy to expend, leading to age-related changes in its

behavioral repertoire. This idea, that the available energy an animal possesses would

have systemic effects on its chosen actions, is reminiscent of the “hydraulic” theory

of action selection that was popularized by Lorenz and others [69] and might be re-

lated to molecular models of metabolic decline such as insulin pathway modifications

[56, 1, 90].

Testing the hypothesis that age-related alterations can be understood through

alterations in energy budgets, however, has proven difficult, partially due to the lim-

itations in our ability to accurately measure full repertoires of behavior across time.

Aging is a complex, dynamical process that cannot be measured at a single time-point,
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but, rather, it must be characterized as a trajectory across a lifetime. Accordingly,

to measure how animals’ behavioral repertoires and their usage alter with age, we

need to have not only a framework to measure repertoires at the timescale of single

stereotyped movement (order of tens of milliseconds to seconds), but also new anal-

ysis methods to isolate the between-age-group variability from the within-age-group

variability in these behaviors, finding combinations of behaviors that best describe

the dynamics of aging.

In this paper, we study the age-related changes in the behavioral dynamics of the

fruit fly Drosophila melanogaster, a common model system for the study of aging and

behavior [15, 16, 36, 100]. We measure the full repertoire of behaviors that flies of

varying ages perform. While previous research on aging and behavior in flies focus

on how only a small number of behaviors change with age, here, by quantifying the

full repertoire of behaviors that the animals exhibit in our experimental conditions,

we can observe how behavioral performance, in terms of both usage frequency and

context-dependent usage (e.g., transition probabilities), changes with age. To measure

the animals’ behavior, we use an unsupervised method that identifies the stereotyped

behaviors that the fly performs without a priori behavioral definitions - behavioral

mapping [8]. Our results show that (1) large changes and a sexual dimorphism in

how the behavioral repertoire changes with age; (2) despite these changes, the over-

all complexity of the flies’ behavior remains unchanged; (3) as the fruit flies age,

their behavioral repertoires alter, but the behaviors are still performed with similar

stereotypy; (4) we can explain most of the inter-age-group behavioral variability that

we observe by using an estimation of average power consumption. Thus, we provide

evidence that the energy budget that an animal has available may be a key factor

in regulating its behavior with age. This result encourages further investigation into

the physiological basis of aging, lending credence to hypotheses that link metabolic

decline to age-related behavioral changes in animals.
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Figure 2.1: Behavioral densities for quantifying the full repertoire of behaviors of
male and female fruit flies (D. melanogaster) with ages ranging from 0-70 days. (A)
A behavioral density averaged across all flies in this study (both males and females).
The color scale corresponds to the probability density function, where red peaks cor-
respond to individual stereotyped behaviors. (B) Applying a watershed transform on
the PDF from (A) produces boundary lines for the different behavioral states. Simi-
lar types of movement (described via manual annotation of the videos) are clustered
together on the behavioral space, and broad descriptions of the type of movements
in each cluster are obtained from the original videos. By taking the embedded points
and sorting them by sex, we can make behavioral densities for the males and females
separately. (C) The behavioral density averaged over all the male flies from all age
groups. (D) Same as in (C), but averaged over all female flies.

2.2 Results

2.2.1 Experiments and behavioral densities

In order to characterize how flies’ behavioral repertoires changes with age, we imaged

flies (Drosophila melanogaster) in a largely featureless environment (see Materials

and Methods for details). In total, we imaged 304 flies (155 male and 159 female),

each imaged once with and age between 0 and 70 days old (the average lifespan is
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60-80 days [37]). The flies were placed in the arena via aspiration and given 5 minutes

to acclimate to the environment. To measure the flies’ behavioral repertoires, we use

the behavioral mapping approach originally described in Berman (2014) [8]. In brief,

this method uses image compression techniques to measure a time series of the fly’s

postural dynamics, computes a continuous wavelet transform to isolate the dynamical

properties of these time series (i.e., finding which parts of the body are moving at

what speeds), and uses t-Distributed Stochastic Neighbor Embedding (t-SNE) to

perform dimensionality reduction on the amplitudes of this transform, creating a 2-

dimensional probability density function over the space of postural dynamics. We

refer to the arrangement of peaks within this probability density function as our

behavioral space.

Each peak within this density represents a distinct stereotyped behavior (e.g.,

grooming, running, idle, etc.). Thus, the relative probabilities of observing a fly

within each peak in the density is a measure of the animal’s behavioral repertoire,

seen in Figure 2.1A. Following the procedure described in Cande (2018)[20], all flies -

including all males and all females of all ages - were embedded into the same space in

order to facilitate comparisons between individuals, sexes, and ages. We isolate the

individual peaks by applying a watershed transform [83] to segment the density into

122 discrete states, with near-by regions corresponding to similar behaviors (Figure

2.1B). The density for all the males can be seen in Figure 2.1C, and the density for

all the females in Figure 2.1D. These behavioral densities provide the foundation for

our analysis, as we use them to quantify how behavioral repertoires change with age.

2.2.2 Quantifying behavioral changes with age

Dividing the males and females each into two-week-interval age groups (Figure 2.2),

we observe a sexual dimorphism in how their behaviors change with age. Specifically,

the younger male flies mostly perform idle behaviors. In mid-life, they perform more
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Figure 2.2: Behavioral densities as a function of age. Behavioral densities for male
and female flies are shown on the left, with ages broken down into 2-week intervals.
We construct these densities by separating the embedded points into subgroups of
male, female, and their age. Then, we take each set of points and apply a probability
density function. In this figure, we can see a broad description for behavior as a
function of age emerge. Male flies mostly perform idle or slow throughout their life
with the exception of mid-life, when they do more active behaviors. In contrast,
females are very active when young and become more idle as they age. An annotated
behavioral space from Figure 2.1 is displayed on the right.

active behaviors before again becoming lethargic in later life. Conversely, the females

perform active behaviors when young, and gradually begin to perform more idle

behaviors as they increase in age (excepting the last age group, which is likely under-

sampled). While these results could have been found with center-of-mass tracking

or other less computationally intensive methods than behavioral mapping, that our

method replicates previously observed experimental results [16], provides additional

confidence in the analyses to follow.

While the data plotted in Figure 2.2 displays how flies’ mean behavioral profile

alters with age, there also exists variance and co-variance within sex and age groups

[46, 50, 6] (although no notable structure based on the precise time of imaging –

see Figs. 2.9 and 2.10). Thus, we need to isolate the variance in our data that

is associated with changing age, rather than from inter-age-group variability. To

quantify the inter-group behavioral variance structure, we measured the behavioral
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Figure 2.3: Identifying aging-specific behavioral covariances. (A) The covariance
matrix of the mean behaviors sorted according to the clusters in in Figure 2.1B. (B)
The eigenvalues of the covariance matrix. There are two eigenvalues (blue) that are
larger or approximately equal to the eigenvalues returned from shuffling the behavioral
density matrix (red, error bars are the standard deviations from many independent
shuffles of the data). These two modes account for approximately 62% of the variation
in the data. (C) The eigenvectors corresponding to the largest (top) and second-
largest (bottom) eigenvalues. (D) Projections of the data onto the largest (top) and
second-largest (bottom) eigenvectors in (C), plotted as a function of age. Here, dots
are values for individual animals, and the solid lines are from smoothing the data
with a Gaussian of σ = 3.5. Error bars are the standard deviations of this process
as a function of age after re-calculating the curve with re-sampled data (drawn with
replacement from the original data).
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covariance matrix across all sex/ages, providing a quantification of the behaviors that

are shifting together with age.

Our analyses here use the discretized version of the behavioral densities, using

the watershed-transform-derived regions shown in Figure 2.1B. PPP (i) is a vector of

probabilities, where, P
(i)
j is the the time-averaged probability that fly i performs

behavior j during the one hour filming epoch – we call this vector our behavioral

vector. Given these values, we can then calculate the average behavioral density for all

individuals within each sex/age group. We define this group-specific mean behavioral

vector to be µµµ
(z)
k , where z ∈ {male, female} and k is the age group. From these means,

we can then compute the covariance matrix of the set of mean behavioral vectors,

M ≡
[
µµµ
(male)
1 · · ·µµµ(male)

5 µµµ
(female)
1 · · ·µµµ(female)

5

]
∈ R122×10 (5 different 2-week groups

for each sex).

This covariance matrix (C(M) ≡ Cov(M)), shown in Figure 2.3A, quantifies which

behaviors are likely to increase or decrease with respect to each other across sex/age

groups. To further quantify the structure within C(M), we calculate its eigenvectors

and eigenvalues (Figure 2.3B-C), effectively performing Principal Components Anal-

ysis on the mean vectors. Because the covariance matrix is, by definition, real-valued

and symmetric, all of its eigenvalues must be greater or equal to zero. We focus here

on only the modes corresponding to the two largest eigenvalues, as only these two

modes have eigenvalues that are significantly larger or similar in value to those from

a covariance matrix derived from independently shuffling each of the columns in M .

Although there is not a clear interpretation of these two eigenvectors (v̂1 and v̂2),

both appear to capture the relative performance of idle and locomotory behaviors,

and the first also appears to capture the relative usage of slow vs. fast locomotion.

By plotting the projection of each fly’s behavioral vector as a function of age and

finding Gaussian-smoothed average curves (see Materials and Methods), we see how

this low-dimensional space of behaviors alters as the flies age (Figure 2.3D). There
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is a clear sexual dimorphism in the projections onto the first eigenmode, with the

male flies exhibiting non-monotonic dynamics with age, whereas the female’s average

curve is largely monotonically decreasing. A similar dynamic can be observed in the

second eigenmode but with a more subtle shift, as well as a sign flip. These results

agree with the visual intuition from Figure 2.2 and provide a quantification of the

most important changes in the flies’ behavioral repertoire with age.

2.2.3 Estimated Energy Consumption Alters with Age

As stated in the introduction, a potential mechanism for the flies’ observed changes in

behavior could be an overall reduction in the flies’ energy budget with age. While it

was not possible to directly measure the power consumption from the animals in our

experiments, we can instead estimate the metabolic cost of the observed behaviors

with a biomechanical model.

Given that the flies are constrained to move within a two-dimensional environ-

ment, we focus our modeling efforts on estimating the cost of legged locomotion

within the arena (making the assumption that non-locomotion behaviors like groom-

ing are negligible in energetic cost compared to locomotion, see Materials and Meth-

ods for further justification). Our model of the power consumption during locomotion

largely follows that of Nishi (2006) [92], which estimates the heat dissipation and work

done during each swing and stance phase of locomotion at a given velocity using a

biomechanical model of force production during legged locomotion (see Materials and

Methods for details). While this model has several free parameters related to the fly

morphology and how gait dynamics alter with speed, we use morphological and scal-

ing data from the literature on legged locomotion [80, 51] to set these parameters.

More precisely, we wish to calculate R(v), the specific power (mechanical power per

unit mass) required for the fly to move at a speed v.

From tracking the center-of-mass of each fly, we are able to measure pi(v), the
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Figure 2.4: Energy usage predicts aging-specific changes in behavior. (A) Comparison
of the quadratic model to the full model of Nishii (2006) to estimate specific power
(power per unit mass) of legged locomotion in fruit flies. (B) Specific power as a
function of age for male (blue) and female (orange) fruit flies. Each point represents
an individual, and the curves are the Gaussian-smoothed means (σ = 3.5 days), with
error bars generated in the same manner as Fig. 2.3D. (C) Average projections
onto the first eigenmode (Fig. 2.3C (top)) plotted versus the average specific power
consumption for both male and female flies. Each point represents the value (plus
error bars) from the curves in (B) and Fig. 2.3D (top), each spaced 7 days apart.
Dashed lines are the linear fits to the data. (D) Same as (C), but instead using
projections onto the second eigenmode (Fig. 2.3C (bottom)). Note that at over 70%
of the mean aging-specific variation can be explained using the first two eigenmodes.
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probability density function for speed for fly i, for each animal. Given this distribution

and our expression for R(v), we can calculate the average specific power consumption,

R̄i for each animal through numerically integrating

R̄i =

∫ vmax

0

pi(v)R(v)dv, (2.1)

where vmax is the largest observed speed for the flies. To make this calculation

more tractable, we find that for biologically realistic range of locomotion speeds (0-60

mm/s), R(v) is well-approximated by a quadratic function (R(v) = av2 + bv + c,

where a = 19.9s−1, b = 1.17m/s2, and c = .0002m2/s3), as shown in Figure 2.4A.

The results of this calculation for each individual animal are shown in Figure

2.4B as a function of age. While there is significant scatter in the data (likely due

to variance in the internal activity state of the flies [9, 46]), when we compute a

smoothed average of the data, a clearer portrait emerges. Specifically, we observe

that these curves are reminiscent of the sexual dimorphism we observed in the inter-

group eigenvector projections in Figure 2.3. More quantitatively, we see that when

plotting the eigenvector projections versus the group-average specific power (Figure

2.4C), we see a high degree of correlation for each of these values. As seen in the figure,

we can explain at least 72% of the aging-specific behavioral variation using a linear fit

to the estimated specific power consumption. Thus, these analyses imply that most

of the age-related changes we observe in the animal’s behavior are correlated with

changes in the average energy expenditures of the flies.

2.2.4 Complexity of the Behavioral Repertoire

Although we show that most age-related changes in fly behavior are correlated with

energy consumption, it still may be possible that other factors such as the complexity

of the behavioral repertoire or the degradation of stereotyped behaviors might also
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Figure 2.5: Entropy of the behavioral densities as a function of age for the males
(left) and females (right) with a best fit line to estimate the value included on the
plot by taking the mean value. Error bars for individual animals are smaller than the
symbol size in the plot. The males have a slope of −0.00± 0.03 and the females have
a slope of −0.01± 0.03.

be observed as the animals age [38, 44]. We test the former of these hypotheses by

calculating the entropy of the behavioral space, using this metric as a proxy for the

overall repertoire complexity.

Specifically, we measure the entropy, Hi, of each individual fly’s behavioral density

according to

Hi = −
∫∫

ρ(x, y)log2ρ(x, y)dxdy, (2.2)

where ρ(x, y) is the probability distribution over the two-dimensional behavioral

space. Plotting Hi as a function of the flies’ ages (Figure 2.5), we see no discernible

trend in entropy vs. age, with the best fit slopes showing a value of −0.00± 0.03 for

the male flies and −0.01 ± 0.03 for the female flies. (We also took a measure of the

entropy using the probability distribution over the 122 discretized behaviors and ob-

tained comparable results – Figure 2.12.) Thus, even though the behavioral densities

are dramatically changing with age, the overall complexity remains largely unaltered,

and thus we cannot conclude that the complexity of the repertoire degrades with age.
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2.2.5 Long Time Scales and Hierarchical Structure in Behav-

ior with Age

While the complexity of the behavioral repertoire remains unchanged, the complexity

of how the animals traverse through this space over time might still show significant

deviations. Prior investigations into the complexity of fly behavioral sequences have

shown that these dynamics of transitions between stereotyped behaviors exhibit long

time scales and hierarchical organization [9, 46]. A hypothesis for aging-related be-

havioral change is that the structure of the behavioral repertoire becomes less complex

with age [38, 44], and with the detailed measurements of behavior described here, we

can test this idea, potentially gaining insight into changes occurring to the internal

programs that may generate these patterns.

First, to assess the overall timescale structure of the flies’ behavioral patterns, we

measure the transition matrix at different time scales,

[T(τ)]i,j = p(S(n+ τ) = i|S(n) = j), (2.3)

where i and j as two stereotyped behaviors, S(n) is the behavioral state of a system at

transition n (note: to decouple waiting time in a state from complexity in the order

of pattern of transitions between states, we measure time in units of transitions,

following the methods in [9]). We can decompose each of these matrices via

[T(τ)]i,j =
∑
µ

λµ(τ)uµi (τ)vµj (τ), (2.4)

where uµi and vµj are the ith right and jth left eigenvectors of the matrix, respectively,

and λµ is the eigenvalue with the µth largest modulus. Because the columns of each

of these matrices must sum to one, λ1(τ) = 1 for all values of τ , and |λµ>1(τ)| < 1 by

the Perron-Frobenius Theorem. While for a Markov Model, the eigenvalues should
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Figure 2.6: Absolute value of the second eigenvalue of the transition matrices as a
function of transitions into the future, averaged over all flies in each age group with
error bars corresponding to standard error of the mean for the male flies (left) and
the female flies (right). The light blue line, which acts as a noise floor, is the second
eigenvalue in a transition matrix calculated after shuffling our finite data set.

decay exponentially with τ , we find that flies in all sex and age groups exhibit super-

Markovian time scales (Figure 2.6 shows the results for the second-largest eigenvalues

in each transition matrix.The 3rd-5th eigenvalues can be seen in Figure 2.13). With

the exception of the > 56 day-old females (for which we had fewer individuals in our

sample), however, we found no differences larger than the standard error of the mean

between the time scales across age groups.

While the complexity of the repertoire or the overall timescale might not be chang-

ing with age, the underlying structure of the behavioral transitions might still be

altering. To test for this possibility, we applied a predictive clustering analysis to the

space to identify groupings of behaviors that best preserve information about the long

timescale structure in our data. More precisely, we would like to find a partition of

our behavioral space, Z, such that this representation has a simple of a representation

as possible, while still maintaining information about the future behavioral states of

the animal. Here, we achieve this using the Deterministic Information Bottleneck

(DIB) approach [10, 116], which minimizes the functional

FDIB = H(Z(n))− βI(Z(n);S(n+ τ)), (2.5)
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Figure 2.7: Hierarchical partitioning solutions from deterministic information bottle-
neck for the behavioral density with τ = 100 and 5 clusters for male flies (top) and
female flies (bottom) as a function of age.

where Z is our partition, H(Z(n)) is the entropy of the partition, β is a Lagrange

multiplier that modulates the relative importance of simplicity and predictability,

and I(Z(n);S(n+ τ)) is the mutual information between the partition and the future

behavioral state at a time τ in the future. We perform this optimization for several

values of τ for each age group, in all cases varying β and the number of initial clusters

in Z to create a full curve of values (see Materials and Methods for details and Figure

2.14).

The resulting clusterings for τ=100 with five clusters can be seen in Figure 2.7. As

with the eigenvalues in the previous plot, the clusters obtained via this approach re-

main nearly constant with varying age, with only small-probability behaviors flipping

between regions. Thus, we lack evidence of significant alterations of the temporal

complexity of the flies’ behavior with age.

2.2.6 Stereotypy

Lastly, while we observe no significant changes to the flies’ repertoire or temporal

complexity, we still can measure if there is deterioration in how the behaviors are per-

formed, potentially implying that the flies are undergoing a physical deterioration or

some other inability to consistently perform behaviors while aging. To assess changes
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in how stereotyped behaviors are performed, we measure how much the performance

of individual behaviors are altered with age, quantifying a decreased stereotypy with

an increase in the variance of the postural trajectories underlying the performance of

these actions.

We divide the data into age groups of two week intervals, with a one week overlap

(0-14 days, 8-21 days, 15-28 days, etc.), finding the postural trajectories associated

with the performance of each behavior. While the details of this can be found in

Materials and Methods, broadly, we use a phase-reconstruction method (based on

Revzen (2008)[101]) across all of the postural modes for each time a behavior is

performed. We measure the mean postural dynamics across all individuals in a given

sex/age group and assess the stereotypy of each behavior (b) in each age group (κ)

with our Stereotypy Index, χb,κ, which is the fraction variance explained by the mean

trajectory for that behavior. Thus χb,κ → 1 implies that each time the behavior

is performed, its postural trajectories are exactly the same (maximally stereotyped),

and χb,κ → 0 implies that the postural trajectories are different each time the behavior

is performed (minimally stereotyped).

The values of χb,κ for each behavior and three different age groups are displayed

in Figure 2.8A. By eye, we can see only minimal changes across the age groups (and

no outside errorbar changes after accounting for multiple comparisons using Bonfer-

roni corrections). Note that a few behaviors, while stereotyped, were not performed

enough to get a good estimate of their synchronization parameters so those behaviors

are listed as having a synchronization parameter of 0 (see Materials and Methods for

more details).

To quantify this lack of change across the whole behavioral repertoire, we calcu-

lated the average stereotypy for each age group,

χ̄κ =
1

Nκ

∑
b

χb,κ
∑
i∈Gκ

P
(i)
b , (2.6)



46

Figure 2.8: Few measurable changes in stereotypy with age. (A)The stereotypy of
each behavior (or how stereotyped each behavior is - 1 being very stereotyped, 0
being not at all stereotyped) plotted as a function of age by calculating the maxi-
mum synchronization parameters of each behavior for the males (top) and females
(bottom). (B) Quantification of how the synchronization parameters change between
each age group and the initial age group by taking the mean difference between the
synchronization parameters of each behavior. Error bars are bootstrap estimates from
re-sampling individuals with replacement.
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where Gκ is the set of all flies in age group κ, Nκ is the number of flies in the group,

and P
(i)
b is the fraction of time that fly i performs behavior b. We then measured the

difference in the average stereotypy the youngest age group and each of the subsequent

age groups for each sex (χ̄κ − χ̄0). Figure 2.8B shows the results of this calculation

for both the males and females. Although we do observe some changes between the

age group, they are within 1.5 standard deviations. Thus, although the probability of

choosing a behavior changes with age, each behavior, when performed, is, on average,

no less stereotyped.

2.3 Discussion

In this paper, we measured the behavior of fruit flies (D. melanogaster) at many

points along their lifespan, aiming to isolate patterns of behavioral change with age

and to make predictions about the physiological basis of these changes. Consistent

with previous studies, we found a sexual dimorphism in changes in the animals’ overall

activity level, but we also identified subtler patterns of change with age by measuring

the largest eigenvalues, and their corresponding eigenvectors, of the inter-age-group

covariance matrix. Despite observing no significant changes in the repertoire complex-

ity or stereotypy with age, we find that most of the age-specific behavioral alterations

can be explained by a model of energy consumption, implying that energy budget

may play an overarching role in regulating aging behavior.

This observation that energy may play a key role in aging-specific changes in

behavior is in accordance with results from long-lived mutants in a variety of species,

many of which have changes in gene regulation pathways that affect energy availability

[57]. For example, mutations in the insulin/IGF-1 receptors or homologs, which

promote food storage and cell replication, have been shown to extend lifespan in

flies [118, 17], nematodes [58, 90], and rodents [49]. In addition, another long-lived
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fly mutant, the E(z) histone methyltransferase heterozygous mutation, is associated

with large alterations in a variety of metabolic regulation pathways [89]. In addition,

these changes were found to exhibit sex-dependent effects, similar to our results as

well. However, these studies do not examine how longevity affects full repertoires of

behavior. There is a known inverse correlation between frequency of high energetic

cost behaviors and longevity [21], so we would expect the long-lived mutants to use

fast locomotion less and idle more than an unaltered fly. We further hypothesize that

caloric restricted animals too would exhibit fewer of the high energetic cost behaviors.

In future efforts where behavioral repertoire and metabolic state could be simulta-

neously assayed (through, for example, proteomic or transcriptomic measurements),

we would expect to find correlations between position along the the curves seen in

Fig. 2.3D and key metabolic regulators. Through this methodology, it may be also

possible to provide an effective age for each individual in a heterogeneously aging

population, providing a phenotyping tool for identifying new molecules involved in

increased and decreased longevity, as well as for the study of evolutionary aging dy-

namics. A possible follow-up study could use measurements of metabolic state and

behavioral repertoire with groups of flies that are optigenetically altered to express

primarily higher energy costing behaviors versus lower energy costing behaviors. This

would allow some probing at the question of whether performing more lower energy

behaviors leads to higher longevity or if the idleness in longer living flies is a result

of a lower energy budget overall.

While the analysis framework detailed in this paper should be generalizable to

other data sets, including other species [74, 61] and neuroimaging data [12], the

data used in this study present several limitations that need to be studied in future

work. First, despite the wide range of behaviors we observed in our assay, many

natural behaviors, including courtship and flying, were not measured here. Flight

in particular is known to be more common in young flies [21] and likely a large
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source of oxidative stress and potential injury for the animals, likely creating more

opportunities for decreased stereotypy and the degradation of behavioral performance.

Additionally, due to technical constraints in our experimental set-up, we only imaged

flies for one hour during their life. Future studies would benefit from having longer

recording epochs – up to the animal’s full lifetime – that could capture the influence of

circadian rhythms and could more ably measure inter- vs. intra-individual variability

across the lifespan.

Despite these limitations, this study points a way forward for using full repertoires

of behavior to study aging and its physiological underpinnings. Although many of

our energy budget-related analyses here could have been performed using center-of-

mass tracking alone, by studying multiple actions simultaneously, it becomes not

only possible to identify the age-relevant behavioral changes (here, primarily related

to locomotion and slow/idle behaviors), but also to control for other possibilities

such as the complexity of the animal’s usage of its behavioral repertoire or behav-

ioral degradation and to isolate covariances between and within age groups. These

measurements allows us to better predict how genetic or neural manipulations may

affect aging across individuals and across the lifespan, as well as to make more spe-

cific predictions as to what types of physiological factors might play a role in these

changes.

2.4 Materials and methods

2.4.1 Data

The data consist of 304 flies (D. melanogaster), 150 of which are male and 154 of which

are female, with ages ranging from 0 to 70 days of age (all from strain Oregon-R).

Within 4 hours of eclosion, flies were isolated in a vial that was changed every other

day for food (female flies were all unmated). While unmated and mated female flies
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might behave differently, we decided to focus on unmated flies in order to more readily

facilitate comparisons between males and females. We anticipate that behavioral

differences with age between mated and unmated animals (both males and females)

could potentially be different and could be the basis for future studies.

Each fly was imaged from above for an hour while contained in a featureless dish

with sloped sides to prevent aerial movements, following the approach detailed in [8].

Flies were placed into the arena using aspiration and provided 5 minutes to adapt to

their environment before data collection. To reduce the effect of circadian rhythms,

all recordings occurred between 10:00 and 17:00 with incubator lights on from 07:00

to 19:00. (We’ve measured the behavioral spaces as a function of when the data

was taken and calculated the corresponding projections to quantify how time of day

did not have an impact on how the flies behaved. See Figures 2.9 and 2.10.) The

temperature was kept constant at 25◦±1◦C.

Male Flies Female Flies
0-2 Weeks 32 46
2-4 Weeks 35 40
4-6 Weeks 20 37
6-8 Weeks 31 27
8-10 Weeks 32 4

Table 2.1: Number of Flies in Each Age Group

2.4.2 Behavioral Densities

We created our behavioral densities following the data pipeline outlined in [8]. This

approach begins with image analysis (segmentation and alignment), projecting im-

ages onto postural eigenmodes, Morlet wavelet transforms [41], and a dimensionally

reduced embedding via t-distributed Stochastic Neighbor Embedding [125]. We ap-

plied a watershed transform [83] to a Gaussian-smoothed (σ = 1) density containing

points from all the flies in each grouping (All flies, all males, all females, 0-2 week
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old males, 0-2 week old females, etc.) in order to isolate the individual peaks. We

defined behavioral epochs as lengths of time lasting at least 0.05s with low speeds in

the behavioral densities, again following the approach of [8].

2.4.3 Gaussian-smoothed Average Curves

For Figure 2.3D, we applied a Gaussian-smoothed average according to the following

equation:

y(t) =

∑N
i=1 e

(ti−t)
2

2σ2 ·Xi∑N
i=1 e

(ti−t)2

2σ2

(2.7)

Here, t is age, X is the original value of the eigenvector projections, y is the smoothed

value of X, N is the number of flies, and σ corresponds to the standard deviation of

the projections. For example, Figure 2.3D is a plot of y vs. t.

Error bars for these plots are generated through a bootstrapping procedure. Specif-

ically, the data ({ti, Xi}) are sampled with replacement, and (2.7) is now applied to

this re-sampled data set. This procedure is repeated 1, 000 times (each independently

sampled), and the error bars are the standard deviations of these re-sampled curves

at each point in time.

2.4.4 Synchronization Parameter

By treating the fruit flies’ postural modes as a phase-locked oscillator, we use the

Phaser algorithm [101] to estimate the behaviors’ phases, providing a measure of

stereotypy. For each behavior, we use the algorithm to map the individual behavioral

bouts to a phase variable between 0 and 2π, providing us with a phase reconstruction

of our data that we can compare to the original trajectories (the methodology is the

same as in [8]). To ensure the phase-averaged orbits are aligned between individuals

and bouts, we calculate the maximum cross-correlation value between orbits for ev-
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Body Weight, M 2.5× 10−6 kg [51]

Body Length, L 2.5× 10−3 m [51]

Stance Length, S (.0472× V + .748)/1000 m [80]

Velocity, V 0− 6× 10−2 m/s [51]

Length of Leg, l 1.3× 10−3 m [51]

Moment of Inertia of the Leg, I 1.6× 10−14 kgm2 [51]

Duty Ratio, β tst
tst+tsw

Stance Duration, tst 11.5 + .910V s [80]

Swing Duration, tsw (−0.126V + 36.56)/1000 s [80]

Table 2.2: Parameters Used for Locomotion Energetics Calculations

ery postural mode separately, which gives our phase offset. After determining which

modes contribute to each behavior (We use only modes that have mode-specific syn-

chronization parameters of greater that 0.1 which means some behaviors will have a

synchronization parameter of 0 if they don’t have any modes greater than 0.1), we

calculate the synchronization parameter for age group κ for each behavior b across

all postural modes γ according to:

Xb,κ =
1

N
(γ)
κ

∑
γ

[
1−

σ2(~y(γ)b,κ(φ)− ~µ(γ)b,κ(φ))

σ2(~y(γ)b,κ(φ))

]
, (2.8)

where ~y(γ)b,κ(φ) contains the postural projection time series from every bout of be-

havior b, ~µ(γ)b,κ(φ) is the phase-averaged orbits for the projection data in ~y(γ)b,κ(φ),

N
(γ)
κ is the number of postural modes used, and σ2(x) is the variance in x.

By taking the maximum value across the modes, we quantify our stereotypy for

each behavior. This value ranges from 0 to 1, where 0 signifies no stereotypy and

1 signifies full stereotypy. This algorithm requires many bouts of each behavior in

order to make the calculation.
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2.4.5 Deterministic Information Bottleneck

The deterministic information bottleneck algorithm is an iterative algorithm that

obeys a set of self-consistent equations:

q(t|x) =
1

Z(x, α, β)
exp

[
1

α
(logq(t)− βDKL[p(y|x)q(y|t)])

]
(2.9)

q(t) =
∑
x

p(x)q(t|x) (2.10)

q(y|t) =
1

q(t)

∑
x

q(t|x)p(x, y) (2.11)

Here, x ∈ S(n), y ∈ S(n + τ), t ∈ Z, Z is a normalizing function, and DKL is

the Kullback-Leibler divergence between two probability distributions. For a given

|Z| = K number of clusters, inverse temperature β, and random initialization of

q(t|x), the equations are iterated until (Ft −Ft+1)/Ft < 10−6 is satisfied, where F is

the previously defined cost function, FDIB = H(Z)−βI(Z;S(n+ τ)). We performed

24 replicates of the solution using a range of β ∈ [0.01, 500] spaced exponentially,

K ∈ [2, 30], and τ ∈ [1, 4096]. The optimization is done for each value of β until the

convergence criterion is satisfied. The resulting solution is then used as the initial

condition for the next value of β.

2.4.6 Power Estimation Model

We used the model from Nishii (2006)[92] to estimate the power consumption accord-

ing to the following equations. The swing and stance phase describes the portion of

motion where the leg is sweeping forward and when the leg applies pressure to the

ground to propel the body forward, respectively.
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Specifically, we model the power consumption using the following equations:

Hst = γ

∫
T st

(|τ st(t)|k + |αN(t)|k)dt = γ

(
M

n

)2
T

β

(
α2 +

S2

12

)
(2.12)

Hsw = γ

∫
T sw
|τ sw(t)|kdt = γ

2π2I2

l2
βV 3

S(1− β)3
(2.13)

W st =

∫
T st

f(N(t)x(t))
V

l
dt =

MS2

8nlβ
(2.14)

W sw =

∫
T sw

f(τ swθ̇)dt = I

(
V

l

)2
1 + β2

(1− β)2
. (2.15)

Here, Hst is the heat dissipation during the stance phase, and Hsw is the heat dissi-

pation during the swing phase. Similarly, W st and W sw denote the mechanical work

done during the stance and swing phase, respectively. In these equations, n is the

number of legs, γ represents the ratio of heat dissipation to mechanical work, and α

is the amplitude of the torque required to maintain a bent leg posture. The rest of

the parameters are defined in Table 2.2. We use values to calculate the specific power

as a function of velocity, which we called e. We calculate e by summing together the

power consumed from the heat and work during the stance and swing phase according

to the following equations for esth , eswh , estw , esww :

e(V, β, S) = esth + eswh + estw + esww (2.16)

esth =

∑n
i=1H

st
i

MV T
=

γM

nβV

(
α2 +

S2

12

)
(2.17)

eswh =

∑n
i=1H

sw
i

MV T
= γ

2nπ2I2

l2M

V 3β2

S2(1− β)3
(2.18)

estw =

∑n
i=1W

st
i

MV T
=
S

8l
(2.19)

esww =

∑n
i=1W

sw
i

MV T
=
nIβ

MS

(
V

l

)2
1 + β2

(1− β)2
, (2.20)

where T is the gait cycle period.

Using this model, we can estimate the relative mechanical cost of grooming com-
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pared to locomotion by the quantity
eswh +esww
esth +estw

, since the animal is moving its legs

but is no longer having to expend excess energy to propel itself forward during the

stance phase. Across all speeds, this ratio is ≈ 10−7, justifying our treatment of all

zero-velocity epochs as having the same energetic cost.
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2.6 Supplemental Figures:

Figure S1. Behavioral maps as a function of the time of day when the data was

taken for all the flies, male flies, female flies, and the 0-2 week old female flies.

Figure S2. Eigenvector projections (as calculated in Figure 2.3D for the maps in

Figure 2.9) as a function of time.

Figure S3. Average number of transitions per hour as a function of age. Each data

point is a different animal, and the line is the Gaussian-weighted average (error bars

are standard error of the mean for the average).

Figure S4. Entropy of the behavioral probabilities as a function of age for the males

(left) and females (right) with a best fit line to estimate the value included on the
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plot by taking the mean value. Error bars for individual animals are smaller than the

symbol size in the plot. The males have a slope of −0.00± 0.03 and the females have

a slope of −0.01± 0.08.

Figure S5. The third, fourth, and fifth eigenvalue timescales for each sex and age

group. Line thicknesses represent the standard errors of the mean.

Figure S6. Trade-off curves computed from the deterministic information bottleneck

for each sex and age group.
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Supplemental Figures:

Figure 2.9: Behavioral maps as a function of the time of day when the data was taken
for all the flies, male flies, female flies, and the 0-2 week old female flies.



58

Figure 2.10: Eigenvector projections (as calculated in Figure 2.3D for the maps in
Figure 2.9) as a function of time.

Figure 2.11: Average number of transitions per hour as a function of age. Each data
point is a different animal, and the line is the Gaussian-weighted average (error bars
are standard error of the mean for the average).
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Figure 2.12: Entropy of the behavioral probabilities as a function of age for the males
(left) and females (right) with a best fit line to estimate the value included on the
plot by taking the mean value. Error bars for individual animals are smaller than the
symbol size in the plot. The males have a slope of −0.00± 0.03 and the females have
a slope of −0.01± 0.08.

Figure 2.13: The third, fourth, and fifth eigenvalue timescales for each sex and age
group. Line thicknesses represent the standard errors of the mean.
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Figure 2.14: Trade-off curves computed from the deterministic information bottleneck
for each sex and age group.
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Chapter 3

Using Recurrent Neural Networks

to Model Hidden Dynamics of

Animal Behavior

Abstract

Animal behavior can be broken down into two components, the external postural

actions and the internal states that drive those observable postures. For example,

hunger will cause an animal to eat, circadian rhythm effects sleeping, and courtship

behavior results from various hormones and puberty. Understanding how these in-

ternal states drive external behaviors has been a difficult problem to solve. In this

chapter, we train a recurrent neural network on behavioral data from fruit flies, verify

the network is reproducing the long time scale and hierarchical structures that we

see in our data, and study how the internal states of the network interact to produce

behavioral data of the network itself. We find that these internal states behave as

a particle in a multi-well landscape with shifting barrier heights. This provides a

framework for how behavioral sequences are modulated and could be analogous to
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systems within the fly.

3.1 Introduction

Animal behavior is known to be a complex process to study. It is generally accepted

that an animal’s behavior results from interactions between many internal systems

within the animal, such as metabolic state and neurological signals as a couple of

examples. Behavioral sequences are hierarchical in nature and thus must have some

memory of what occurred in the past in order to produce the repeated and non-

random patterns that make up behavior. To understand behavior and how these

patterns and hierarchy emerge, a deeper understanding of the interactions of the

organisms’ internal states is essential.

Previous work from Berman et al. (2014) [8] established a new method for cate-

gorizing behavioral data. Starting from images taken of a fruit fly from above in a

featureless dish, the algorithm uses computer vision, dimensionality reduction, and

a few other techniques to automatically detect the full set of stereotyped behaviors

(those behaviors that were repeated consistently and frequently) and arrange those

behaviors into what we will refer to as the behavioral space (see Figure 3.1A). In this

space, the red peaks correspond to the stereotyped behaviors - the behaviors that

are performed repeatedly in the same way. By happenstance, similar behaviors end

up clustered together as can be seen by the annotated space in Figure 3.1B. Further

work from Berman et al. (2016) [9] demonstrates that the behavioral time series from

this data set exhibits multiple long time scales (solid lines in Figure 3.1C), and that

Markov models (dashed lines in Figure 3.1C) fail to produce any comparable time

scales when asked to replicate the dynamics seen in the data. Additionally, when

clustering the behavioral space to optimize information about the future (using the

information bottleneck algorithm, see Methods section for details), the space breaks
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down hierarchically, or rather, to make a new cluster, one of the old clusters breaks

into two (see Figure 3.1D). This is also a feature that is difficult to capture with a

model.

Recurrent neural networks are a class of model capable of replicating complex

temporal and dynamical structures with applications in language processing [128],

molecular dynamics [124], image recognition [35], predicting traffic patterns[133], and

anomaly detection in time series [72] as merely a few examples. A subclass of these

models that are currently popular is long short-term memory (LSTM) which allows

the network to have access to and remember information across longer time scales

than other RNN architectures like gated recurrent units (GRU) [48]. In the context

of behavioral data, these long time scales become an important feature. In this paper,

we will use those innate long time scales to model behavior of freely moving fruit flies,

Drosophila. melanogaster and replicate the long time scales and hierarchical structure

mentioned earlier. We will assess whether our RNN is reproducing comparable data

with four different metrics: 1) Persistence time within each behavioral state, 4) the

structure of the transition matrix across forward predictions, 3) the time scales that

the model generates, and 4) the deterministic information bottleneck clusters of the

behavioral space (similar to those seen in Berman et al. (2016) [9]).

Although our RNN performs well under these metrics, it is a very complex model

that is not easily interpretable. RNN’s, although certainly proven to be useful and

versatile models, have largely been a mystery in how they manage their computa-

tions, but efforts have been made to solve that mystery by treating the internal state

interactions as a nonlinear dynamical system [117]. For each state, we can find a

fixed point within our network, and “basins” form where the states only interact with

certain subsets of states. We find that we can quantify how these basins interact with

each other by using Arrhenius behavior. This forces the energy barriers between the

basins to change in time, which drives the system to make transitions and produce
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the complex dynamics that we see in behavioral data.

3.2 Results

3.2.1 Model Validation

In this paper, we use data from Berman et al. (2014) [8] of a fruit fly moving around

freely in a dish. The data has been analyzed to identify the stereotyped behaviors

as a function of time and create an embedding of those stereotyped behaviors. This

embedding can be seen in Figure 3.1A.

Further work from Berman et al. (2016) [9] has shown that behavioral data exhibits

complex temporal dynamics such as long time scales (Figure 3.1B) and hierarchical

organization (Figure 3.1C). We want the sequences produced by our RNN to have

those same dynamics.

We trained a single layer Long-Short Term Memory (LSTM) network on the be-

havioral data until the validation loss on our test data set had stopped decreasing after

50 epochs of training, and then chose the set of weights which minimized that loss

from the prior epochs. From the training curve in 3.3A, our network appears to have

completed training by the 200th epoch. We trained the network using the sequence-

to-sequence paradigm with a lag in the output sequence. During the training process,

we give the network sequences of data batched into shorter lengths for inputs and

outputs and ask the network to learn the relationship between those sequences. The

output sequences that we want to predict are the continuation of the input sequences

but shifted forward in time by lag-number of steps. For example, with a sequence

length of 50 and a lag of 10, the input sequence would look like: [t1, t2, t3, ..., t50]

and the sequence the network would predict would look like: [t10, t11, t12, ..., t60]. Our

network was trained with a sequence length of 500 and a lag of 200. For more details

about these parameters, see the Methods section.
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Figure 3.1: Previous Work. (A) behavioral space as a probability density function,
where each peak represents a stereotyped movement from D. melanogaster fruit flies.
(B) Broad descriptions of different regions in the behavioral space. (C) Long time
scale dynamics produced by taking the absolute value of the leading eigenvalues of the
transition matrices T (τ) for different values of τ averaged across 59 flies with SEM
error bars. Dashed lines represent the same eigenvalues for a Markov model simula-
tion. The black line represents the noise floor calculated from a transition matrix with
random temporal shuffling of our finite data set. (D) Hierarchical breakdown of the
behavioral space with the previous clusters’ borders drawn in black. These clusters
are calculated with the information bottleneck algorithm at τ = 67, approximately
twice the longest time scale in a Markov model.
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Figure 3.2: RNN modes. (A) Generative mode: To generate sequences, we initially
give the network one-hot encoded sequences from data. Then, we feed the output
through a soft max layer and use that as the input for the next time step. (B) Clamp
mode: We use this mode to measure the fixed points of the network. Disregarding the
output entirely, the network receives a constant input for multiple time steps until it
has reached a steady state. (C) Release mode: This mode allows us to see how the
fixed points interact with each other. Functionally, it is similar to generative mode,
but here, we skip the softmax layer and use the output directly as the input for the
next time step. This is shown for t=0 and t=1.
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Once the network is trained, we are able to run it in what we call “generative”

mode in order to produce a data set from the network with time series that are

equivalent in length and quantity to our original data set. To initiate this mode, we

pass the network data from the testing set and sample the resultant output. This

sampled output is used as the initial time steps for out RNN “behavioral” sequences

as well as the input to the network to acquire the next time steps. By iteratively

passing the network sequences that it generated, we create the RNN “behavior”

time series and are able to make comparisons to the fly behavior time series. A

diagram of this process can be seen in Figure 3.2A. First, we measure the average

amount of time that the RNN and flies spend in a specific state. We’ve plotted

these quantities against each other in Figure 3.3B. By eye, we can see that they

are not wholly uncorrelated but overall the correlation is a bit weak. Thus, and

in order to remain consistent with the published results from Berman (2016)[9], we

will largely work in transitions rather than time. The 1-step transition matrix is

known to have a block diagonal structure (Figure 3.3C, right), which implies behaviors

prefer to transition between posturally similar behaviors. Although we do not get

the exact transition matrix from the flies, the 1-step transition matrix for our RNN

sequences maintain that block diagonal structure. Measuring the eigenvalues of the

transition matrices n-steps into the future quantifies the time scales of our data. We

know from Berman et al. (2016) [9], that the flies produce multiple long time scales

(Figure 3.3D, right), and our model successfully reproduces this dynamic. Finally,

we want to see a hierarchical breakdown of the behavioral space when using the

deterministic information bottleneck algorithm. In other words, to add a new cluster

to the space, one of the old clusters breaks into two. The RNN (Figure 3.3E, top)

produces different clusters from the flies (Figure 3.3E, bottom) initially and with

larger number of clusters, but the clusters are formed hierarchically as a result of the

inherent hierarchy in the time series. These hierarchical clusters and the multiple long
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time scales together are what we call the summary statistics of our data set. Although

the summary statistics from our network are quantitatively different, they have the

same qualitative structures that we require from our model, which implies the overall

dynamics are the same. Thus, we are satisfied that our network is reproducing the

features from the fly data.

3.2.2 Fixed Points Dynamics

Now, that we’ve shown that our model is reproducing the dynamics that we see

in our data, we can study the internal workings of the network, to determine the

mechanisms that modulate the “behavior” of the network. Ultimately, we would like

to make connections between the internal dynamics of the network to the internal

dynamics of the fly itself. By treating the network as a dynamical system, we can

measure the fixed points of the network’s internal states (commonly referred to as

c and h) and observe how those fixed points interact with each other. For more

information on these internal states, refer to the Methods section.

To measure the fixed points, we “clamp” the network, giving it a constant input,

until the network’s internal states have reached a steady state and are no longer

changing. This is diagrammed in Figure 3.2B. We do this for each behavioral state

and store the final values from both c and h. Using multidimensional scaling (MDS),

we get our fixed points, one for each behavioral state, and can embed these points

into a 2D plane. This is shown in Figure 3.4.

Here, each of the black points represent one of the fixed points, and the clusters

applied come from the 4 bottleneck cluster solution from Figure 3.3E (bottom). This

tells us that the internal fixed points of the network are replicating similar structure

as the original behavioral states of the flies since the clusters are mostly continu-

ous. Since these fixed points correspond to the stereotyped behaviors, we will use

the original behavioral map from Berman (2014)[8] for future visualizations of our
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Figure 3.3: Model Summary Statistics. (A) Training curve for out RNN, showing
both training and testing validation loss as a function of number of epochs. (B)
Average persistence times in a behavioral state of the RNN vs. our data. (C) 1-
step transition matrix for the data (left) and RNN (right). (D) Timescales from
the transition matrices for the data (left) and RNN (right) sequences. (E) Compar-
isons between bottleneck clusters from sequences from the RNN (top) and the data
(bottom)
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Figure 3.4: MDS embedding of LSTM’s fixed points (in black) with the 4 bottleneck
cluster solution from Figure 3.3E (bottom) applied.

analyses.

In order to quantify the interactions between these fixed point states, we once

again “clamp” the network to initialize the network at a fixed point and then “release”

the network and allow it to drive itself, meaning that at each time step we use the

network’s output from the previous time step as the input. This step is essentially the

same as “generative” mode but without the sampling the output. To see this process,

refer to Figure 3.2C. Doing this for each fixed point allows us to see where the fixed

points flow to. What emerges is a basin-like structure, where a stable fixed point will

act as a local minimum for a set of other states to flow to. Every state’s trajectory

after releasing can be seen in Figure 3.5A. In Figure 3.5B is an example of one of the

basins with four fixed point states flowing to the same stable fixed point state. In

both figures, each black point indicates the fixed points’ location in the behavioral

map. Arrows indicate where each state flows to, and the red dots are indicators of

states that have been flowed to. The clusters on the map are the same bottleneck

solutions from Figure 3.4 and Figure 3.3E(bottom).
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Figure 3.5: Fixed Point Basins. (A) Every fixed point’s “release” trajectory with
arrows indicating the direction of the flow. Red points indicate a state that has been
flowed to. This reveals multiple, disparate basins where a set of stable fixed point
states act as a local minimum for other states to flow to. (B) One example basin for
the sake of visibility. Clusters are once again from the bottleneck solution in Figure
3.3E (bottom).

3.2.3 Basin Dynamics

With the emergence of these basins, we can coarse grain our data according to which

states are in each basin. This gives us sequences that have basins as a function of

time rather than behavior as a function of time. Determining the mechanisms behind

how these basins interact will shed light on how behavioral sequences that produce

our summary statistics are generated and could reveal similar mechanisms within

the fly. After converting the behavioral sequences of both the fly and RNN to the

basins paradigm, we check our summary statistics (time scales and DIB clusters) to

ensure that these sequences still produce the dynamics of our data. Both RNN basin

sequences and the fly data basin sequences produce multiple long time scale (see

Figure 3.6A) and have hierarchical clusterings from the DIB algorithm (see Figure

3.6B). In Figure 3.6B, we are using the fixed points’ embedding from Figure 3.4. We

have represented each basin by using the state that acts as the bottom of the basin.

These are shown on the embedding as black dots.
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Figure 3.6: Summary Statistics in Basin Paradigm. (A) Multiple long time scales
emerge from both RNN and fly data coarse grained to basin paradigm. (B) One
example basin for the sake of visibility. Clusters are once again from the bottleneck
solution in Figure 3.3E (bottom).

We propose that there exist energy barriers between the basins that shift with

time and modulate the transitions between states. We can think of this as a particle

in a multi-well energy landscape, which is illustrated in Figure 1.9. As the particle

bounces around in a well, transitions between those behaviors occur. After some

time, the landscape and barriers between basins can shift. This could be because of

some internal state change or as a response to external stimuli. With this shift, the

particle is allowed to switch basins and make transitions between the behaviors in

that basin.

To simulate these changes between basin barriers, we can construct a transition

matrix that changes in time depending on the local dynamics, by using a weighted

average between the average transition probabilities and the local-in-time probability.

That weight depends on how many of the behaviors are seen in the local-in-time

probabilities.
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Tij(t) = Wi(t)T̃ij(t) + (1−Wi(t))T̄ij

Wi(t) = exp
[−αρi(t)
< ρi >

]

Here, i and j denote different fixed point basins. T is the transition matrix, T̃ is a

transition matrix that’s calculated over a sliding window of 20 seconds, and T̄ is the

overall average transition probability. W is a weight factor dependent on α, which is

inversely proportional to a weighting factor on the previous transition matrix in the

case that ρ =< ρ >. ρ is the states’ probability densities across that sliding window.

We can further define a transition matrix that changes in time and depends on the

change in the energy barriers by using concepts from thermodynamics, specifically

Arrhenius behavior.

Tij(t) =
exp[−β∆Eij(t)]∑
k exp[−β∆Eik(t)]

≡ exp[−β∆Eij(t)]

Zi(t)
.

In this equation, β is a temperature and ∆E will represent the change in barrier

height between basins. We can rearrange the final equation to solve for ∆E, which

gives us the change in the energy barrier as a function of time. This gives us:

∆Eij(t) =
1

β

[
log(Tij(t)) + log(Zi(t))

]
Since we know that both the flies and RNN sequences produce similar summary

statistics within the fixed point basin paradigm, we can use these equations on the

flies’ basin sequences to determine if these changing barriers modulate long time scales

and hierarchical structure. Without the assumed Arrhenius behavior, this equation

returns Markovian behavior. In Figure 3.7A, we show one of the flies’ ∆E’s time
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series for one of its basins. Each line represents the barrier to transition to another

basin, and the values are restricted by Wi, or how many behaviors we see in our

sliding window.

Now that we know the barriers are changing with time in our data set, we can

quantify the time scales of the ∆E’s by calculating their auto-correlation as a function

of time into the future. Doing so on average across all individuals for the basin in

Figure 3.7A, we see long time scales emerge even on the order of minutes, shown

in Figure 3.7B. This confirms that the ∆E’s are modulating behavior in a way that

produces long time scales. However, to further show the long time scale dynamics

from these ∆E’s, we can simulate transitions between behavioral states and measure

the eigenvalues of the resultant transition matrices. These time scales can be seen

in Figure 3.8. The solid lines correspond to data, the dashed lines correspond to the

simulation. Thus, the simulation from the ∆E dynamics produce long time scales.

Finally, we can check if hierarchical structure is being preserved in the ∆E frame-

work. We do this by further coarse graining our data from basins as a function of

time to basin DIB clusters as a function of time. Specifically, we coarse grain accord-

ing to the DIB clusters from Figure3.6B, left. By calculating the auto-correlation

time scales for each of these hierarchy levels, we see long time scales on the order of

seconds. These time scales are plotted in Figure 3.9A. This is shorter than the time

scales from Figure 3.7B, but that’s expected since a lot of information is lost by using

the clusters. However, we also see that adding more clusters lengthens the those time

scales (see Figure 3.9B). This trend of increasing number of clusters (and therefore

increasing the amount of information) varying directly with autocorrelation time tells

us the hierarchy is being preserved in the basin paradigm.
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Figure 3.7: (A) ∆E barriers changing with time for one of the basins. Each line is the
barrier to a different basin. For visibility (B) Example of auto-correlation time scales
for all the flies combined together (dark blue line) and calculated for flies individually
(dark green line).
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Figure 3.8: Long time scale dynamics from data (solid lines) compared to long time
scale dynamics from simulated ∆E dynamics (dashed lines).

Figure 3.9: (A) Auto-correlation time scales calculated from one set of ∆E’s that have
been coarse grained into the hierarchical structure of the fixed points. (B) Plotted
the auto-correlation of the time scales from the dashed line at t=100 as a function of
number of hierarchical clusters to see an overall increasing trend.
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3.3 Discussion

In this chapter, we used a recurrent neural network to replicate behavioral data from

59 fruit flies. This RNN dataset qualitatively reproduced complex structures (block

diagonal transition matrices, multiple long time scales, and hierarchical clustering of

the behavioral spaces) from the fly data that Markov models have been unable to

reproduce. Ultimately, if we want to talk about behavior as a dynamical process,

Markov and other statistical models will struggle to learn behavioral data. Thus,

we used RNN’s as they are inherently a dynamical class of model. These models

allow us to investigate the kind of internal mechanisms that are in place to modulate

behavioral sequences, by measuring the internal states and their interactions. By

treating those internal state interactions as a dynamical system, we measured the

fixed points of the system and observed their interactions. From those interactions, a

basin-like structure emerged where each state belonging to a basin would ultimately

flow to a stable fixed point that acts as a local minimum. By coarse graining our

data into the basin paradigm, we confirmed that our long time scales and hierarchical

structures were preserved. Thus, we proposed a mathematical model that infers

how barriers between the basins change with time and how those changing barriers

are capable of modulating behavioral sequences. This theoretical framework is built

entirely from dynamics within the network and tested on data from the flies. For

future work, this analysis should be done on data that takes simultaneous neural and

behavioral recordings.

3.4 Methods

Our Data. The data consisted of 59 male fruit flies (D. melanogaster) all under

two weeks of age. After given 5 minutes to acclimate to their environment, each fly

was imaged from above for an hour while contained in a featureless dish with sloped
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sides to prevent aerial movements. To reduce the effect of circadian rhythms, all

recordings occurred between 09:00 and 13:00. The temperature was kept constant at

25◦±1◦C.

Behavioral Densities We created behavioral densities following the data pipeline

outlined in [8]. This approach begins with image analysis (segmentation and align-

ment), projecting images onto postural eigenmodes, Morlet wavelet transforms [41],

and a dimensionally reduced embedding via t-distributed Stochastic Neighbor Em-

bedding [125]. We applied a watershed transform [83] to a Gaussian-smoothed density

of the resulting points to isolate the individual peaks. We defined behavioral epochs

as lengths of time lasting at least 0.05s with low speeds in the behavioral densities,

again following the approach of [8].

Recurrent Neural Network. We performed sequence to sequence training using

our data set on a 1-layer, stateful Long-Short Term Memory (LSTM) recurrent neural

network with 512 hidden units and 500 time steps as the sequence length, and used

the number of flies (59) as our batch size. LSTM’s have an input gate (it), forget

gate (ft), and output gate (ot) that obey the following set of equations, respectively:

it = σ(wi[ht−1, xt] + bi) (3.1)

ft = σ(wf [ht−1, xt] + bf ) (3.2)

ot = σ(wo[ht−1, xt] + bo) (3.3)

In these equations, wx contains the weights for the respective gate neurons, ht−1

represents the output of the lstm block at the previous time step, xt is the input of

the current time step, and bx corresponds to each gates’ biases.
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The internal cell states (c and h) are updated according to:

ct = ft ∗ ct−1 + it ∗ tanh(wc[ht−1, xt] + bc) (3.4)

ht = ot ∗ tanh(ct) (3.5)

By running the network in generative mode, we created an equivalent dataset

of “behavioral” sequences that were then used to make comparisons between our

network and the fly.

Deterministic Information Bottleneck The deterministic information bottle-

neck algorithm is an iterative algorithm that obeys a set of self-consistent equations:

q(t|x) =
1

Z(x, α, β)
exp

[
1

α
(logq(t)− βDKL[p(y|x)q(y|t)])

]
(3.6)

q(t) =
∑
x

p(x)q(t|x) (3.7)

q(y|t) =
1

q(t)

∑
x

q(t|x)p(x, y) (3.8)

Here, x ∈ S(n), y ∈ S(n + τ), t ∈ Z, Z is a normalizing function, and DKL is the

Kullback-Leibler divergence between two probability distributions. For a given |Z| =

K number of clusters, inverse temperature β, and random initialization of q(t|x),

the equations are iterated until (Ft − Ft+1)/Ft < 10−6 is satisfied. We performed

24 replicates of the solution using a range of β ∈ [0.01, 500] spaced exponentially,

K ∈ [2, 30], and τ ∈ [1, 4096]. The optimization is done for each value of β until the

convergence criterion is satisfied. The resulting solution is then used as the initial

condition for the next value of β.

Hidden State Fixed Points. Previous work from Sussillo et al. (2013) [117] has

shown that the internal dynamics of an LSTM behaves like a dynamical system. By
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feeding the network a constant input for a long enough time (usually on the order of

100 time steps), the c and h cells reached a stable fixed point. We call this clamping

the network. We did this for each possible input (the different behavioral states), and

got a set of fixed points one for each behavior state. To see how these fixed points

interacted with each other, we made a 2D embedding using t-Distributed Stochastic

Neighbor Embedding (t-SNE)/Multidimensional scaling (MDS). Then, we let the

network drive itself by making the previous time step’s output the current time step’s

input, and tracked the trajectory of the internal states within our embedded space.

We call this releasing the network. While most of trajectories remain stationary at

their corresponding fixed points, a handful of “basins” develop where different states

will flow to each other and to other states. Each network of non-stationary trajectories

forms a basin, and each stationary trajectory acts as its own basin.
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Chapter 4

Conclusion

Animal behavior is a complex biological process, but studying it can involve concepts

and methods from many other disciplines. In this thesis, we studied behavior of

Drosophila melanogaster fruit flies. We measured the full repertoire of stereotyped

behaviors using unsupervised learning methods from Berman et al. (2014) [8]. In

addition, using the resulting behavior classification, we constructed sequences of be-

havior as a function of time. These sequences have known complex features that

were referenced throughout the thesis. First, there are multiple long time scales. We

measured these time scales by computing the eigenvalues of the transition matrices

across different time steps into the future. Each subsequent time scale decreases in

magnitude, however common behavioral models, such as Markov models, produce

time scales that are shorter by an order of magnitude or more. Second, the structures

that are capable of predicting these long time scales are hierarchical. We clustered

the behavioral map using the deterministic information bottleneck algorithm, which

finds the clustered structure that minimizes entropy while maximizing information the

representation has about the future. These are important features to our data set as

time scales and hierarchy are inherent features to behavior. For example, behavioral

time scales can range from seconds in actions like grooming to hours like in circadian
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rhythm. As for hierarchy, many behaviors like grooming can be broken down into

simpler actions as grooming is largely composed of various limb movements. Thus,

these two quantities are crucial to the work in this thesis.

In Chapter 2, we quantified how behavior changes with age in male and female

fruit flies with ages spanning the typical Drosophila lifetime. Female fruit flies begin

life very active and gradually become lazier as they age. On the other hand, male

flies are inactive in their youth, experience a mid-life boost in activity before again

becoming inactive in their old age. We showed that, as flies age, they have a changing

energy budget which regulates their preferred behaviors. However, the long time scales

and hierarchical structures remain constant across the flies’ lifespans.

In Chapter 3, we trained a recurrent neural network on behavioral sequences from

59 males fruit flies. The network was capable of generating sequences that had long

time scales and hierarchical structures similar to our data set. However, we wanted

to explain what kinds of internal dynamics are modulating behavior. Ultimately, by

treating the internal states of the network as a dynamical system and measuring how

the fixed points of the system interact, we were able to determine that a particle in

a multi-well system with changing barrier heights between the wells is an effective

paradigm at producing multiple long time scales and hierarchy in behavior.

Both of these studies could be enhanced by recording data with more information.

This could include an experimental set up that allows flight, that allows for social

interactions, that is capable of recording neural activity, that measures metabolic

state, or some combination of all of these options. Data sets with such rich information

about the flies’ internal states and with a fuller scope of their behaviors would greatly

benefit the field of animal behavior and could help bridge the gap between animal

behavior and neuroscience.
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[98] Alfonso Pérez-Escudero, Julián Vicente-Page, Robert Hinz, Sara Arganda, and

Gonzalo De Polavieja. idtracker: tracking individuals in a group by automatic

identification of unmarked animals. Nature methods, 11(7):743, 2014.

[99] Zeke Piskulich. Beyond Arrhenius: Fluctuation Theory for Dynamics. PhD

thesis, University of Kansas, 2021.

[100] Valeriya Privalova, Ewa Szlachcic, Lukasz Sobczyk, Natalia Szabla, and Marcin

Czarnoleski. Oxygen Dependence of Flight Performance in Ageing Drosophila

melanogaster. Biology, 10(4):327, 2021. doi: 10.3390/biology10040327.

[101] Shai Revzen and John Guckenheimer. Estimating the phase of synchronized

oscillators. Physical Review E, 78(5):051907, 2008. ISSN 1539-3755. doi: 10.

1103/physreve.78.051907.

[102] Angela Ridgel and Roy Ritzmann. Insights into age-related locomotor declines

from studies of insects. Ageing Research Reviews, 4(1):23–39, 01 2005. ISSN

1568-1637. doi: 10.1016/j.arr.2004.08.002.

[103] Frank Rosenblatt. The perceptron: a probabilistic model for information stor-

age and organization in the brain. Psychological review, 65(6):386, 1958.

[104] David Rumelhart, Geoffrey Hinton, and Ronald Williams. Learning represen-

tations by back-propagating errors. nature, 323(6088):533–536, 1986.

[105] Jeffrey Schank. The development of locomotor kinematics in neonatal rats: an

agent-based modeling analysis in group and individual contexts. Journal of

Theoretical Biology, 254(4):826–842, 2008.



96

[106] Rachael Seidler, Jessica Bernard, Taritonye Burutolu, Brett Fling, Mark Gor-

don, Joseph Gwin, Youngbin Kwak, and David Lipps. Motor control and aging:

Links to age-related brain structural, functional, and biochemical effects. Neu-

roscience & Biobehavioral Reviews, 34(5):721–733, 2010. ISSN 0149-7634. doi:

10.1016/j.neubiorev.2009.10.005.

[107] Burrhus Skinner. The experimental analysis of operant behavior. Annals of the

New York Academy of Sciences, 291(1):374–385, 1977.

[108] Rajindar Sohal and Richard Weindruch. Oxidative stress, caloric restriction,

and aging. Science, 273(5271):59–63, 1996.

[109] Marla Sokolowski. Drosophila: genetics meets behaviour. Nature Reviews Ge-

netics, 2(11):879–890, 2001.

[110] Peter Spear. Neural bases of visual deficits during aging. Vision research, 33

(18):2589–2609, 1993.

[111] Sergey Stavisky, Jonathan Kao, Paul Nuyujukian, Chethan Pandarinath, Chris-

tine Blabe, Stephen Ryu, Leigh Hochberg, Jaimie Henderson, and Krishna

Shenoy. Brain-machine interface cursor position only weakly affects monkey

and human motor cortical activity in the absence of arm movements. Scientific

reports, 8(1):1–19, 2018.

[112] Greg Stephens, Bethany Johnson-Kerner, William Bialek, and William Ryu.

Dimensionality and dynamics in the behavior of c. elegans. The Public Library

of Science: Computational Biology, 4(4):e1000028, 2008.

[113] Ulrich Stern, Ruo He, and Chung-Hui Yang. Analyzing animal behavior via

classifying each video frame using convolutional neural networks. Scientific

reports, 5(1):1–13, 2015.



97

[114] Ariana Strandburg-Peshkin, Damien Farine, Iain Couzin, and Margaret Cro-

foot. Shared decision-making drives collective movement in wild baboons. Sci-

ence, 348(6241):1358–1361, 2015.

[115] Andrew Straw, Kristin Branson, Titus Neumann, and Michael Dickinson.

Multi-camera real-time three-dimensional tracking of multiple flying animals.

Journal of The Royal Society Interface, 8(56):395–409, 2011.

[116] DJ Strouse and David Schwab. The deterministic information bottleneck. Neu-

ral computation, 29(6):1611–1630, 2017. doi: {10.1162/NECO\ a\ 00961}.

[117] David Sussillo and Omri Barak. Opening the black box: low-dimensional dy-

namics in high-dimensional recurrent neural networks. Neural computation, 25

(3):626–649, 2013.

[118] Marc Tatar, A. Kopelman, Diana Epstein, Meng-Ping. Tu, Chih-Ming Yin,

and Robert Garofalo. A Mutant Drosophila Insulin Receptor Homolog That

Extends Life-Span and Impairs Neuroendocrine Function. Science, 292(5514):

107–110, 2001. ISSN 0036-8075. doi: 10.1126/science.1057987.

[119] Niko Tinbergen. The study of instinct, 1951.

[120] Niko Tinbergen. On aims and methods of ethology. Zeitschrift für tierpsycholo-

gie, 20(4):410–433, 1963.

[121] Naftali Tishby, Fernando Pereira, and William Bialek. The information bottle-

neck method. arXiv preprint physics/0004057, 2000.

[122] Richard Tolman. Statistical mechanics applied to chemical kinetics. Journal of

the American Chemical Society, 42(12):2506–2528, 1920.

[123] John Tower. Programmed cell death in aging. Ageing research reviews, 23:

90–100, 2015.



98

[124] Sun-Ting Tsai, En-Jui Kuo, and Pratyush Tiwary. Learning molecular dy-

namics with simple language model built upon long short-term memory neural

network. Nature communications, 11(1):1–11, 2020.

[125] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of machine learning research, 9(11), 2008.

[126] Devin Wahl, Samantha Solon-Biet, Victoria Cogger, Luigi Fontana, Stephen

Simpson, David Le Couteur, and Rosilene Ribeiro. Aging, lifestyle and demen-

tia. Neurobiology of disease, 130:104481, 2019.

[127] David Wales and Jonathan Doye. Global optimization by basin-hopping and the

lowest energy structures of lennard-jones clusters containing up to 110 atoms.

The Journal of Physical Chemistry A, 101(28):5111–5116, 1997.

[128] Shuohang Wang and Jing Jiang. Learning natural language inference with lstm.

arXiv preprint arXiv:1512.08849, 2015.

[129] Alexander Wiltschko, Matthew Johnson, Giuliano Iurilli, Ralph Peterson, Jesse

Katon, Stan Pashkovski, Victoria Abraira, Ryan Adams, and Sandeep Robert

Datta. Mapping sub-second structure in mouse behavior. Neuron, 88(6):1121–

1135, 2015.

[130] Alexander Wiltschko, Tatsuya Tsukahara, Ayman Zeine, Rockwell Anyoha,

Winthrop Gillis, Jeffrey Markowitz, Ralph Peterson, Jesse Katon, Matthew

Johnson, and Sandeep Robert Datta. Revealing the structure of pharmacobe-

havioral space through motion sequencing. Nature neuroscience, 23(11):1433–

1443, 2020.

[131] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson.

Understanding neural networks through deep visualization. arXiv preprint

arXiv:1506.06579, 2015.



99

[132] Jacob Zahn, Rebecca Sonu, Hannes Vogel, Emily Crane, Krystyna Mazan-

Mamczarz, Ralph Rabkin, Ronald Davis, Kevin Becker, Art Owen, and Stuart

Kim. Transcriptional profiling of aging in human muscle reveals a common

aging signature. The Public Library of Science: Genetics, 2(7):e115, 2006.

[133] Zheng Zhao, Weihai Chen, Xingming Wu, Peter Chen, and Jingmeng Liu. Lstm

network: a deep learning approach for short-term traffic forecast. The Institu-

tion of Engineering and Technology: Intelligent Transport Systems, 11(2):68–75,

2017.

[134] Man Zhihong, Hong Ren Wu, and Marimuthu Palaniswami. An adaptive track-

ing controller using neural networks for a class of nonlinear systems. The Insti-

tute of Electrical and Electronics Engineers: Transactions on Neural Networks,

9(5):947–955, 1998.

[135] Walter Zucchini, David Raubenheimer, and Iain MacDonald. Modeling time

series of animal behavior by means of a latent-state model with feedback. Bio-

metrics, 64(3):807–815, 2008.


	Introduction
	Defining Behavior
	Measuring Animal Behavior
	Behavioral Spaces

	Modeling Animal Behavior
	Recurrent Neural Networks
	Time Scales and Hierarchy

	Behavioral Effects of Aging
	Internal Recurrent Neural Network Dynamics
	Basin Hopping Model
	Arrhenius Behavior
	Application to Our Network

	Thesis Outline

	Measuring the repertoire of age-related behavioral changes in Drosophila melanogaster
	Introduction
	Results
	Experiments and behavioral densities
	Quantifying behavioral changes with age
	Estimated Energy Consumption Alters with Age
	Complexity of the Behavioral Repertoire
	Long Time Scales and Hierarchical Structure in Behavior with Age
	Stereotypy

	Discussion
	Materials and methods
	Data
	Behavioral Densities
	Gaussian-smoothed Average Curves
	Synchronization Parameter
	Deterministic Information Bottleneck
	Power Estimation Model

	Acknowledgments
	Supplemental Figures:

	Using Recurrent Neural Networks to Model Hidden Dynamics of Animal Behavior
	Introduction
	Results
	Model Validation
	Fixed Points Dynamics
	Basin Dynamics

	Discussion
	Methods

	Conclusion
	Bibliography

