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Abstract 

China promulgated its 2013 Action Plan of Air Pollution Prevention and Control in 

order to remediate the heavily polluted atmosphere. To evaluate the effect of this 

nationwide policy, a statistical model was developed using ground measurements of 

fine particulate matter (PM2.5) concentration, satellite retrieved Aerosol Optical Depth 

(AOD), meteorological factors and land cover parameters in northern China between 

2013 and 2014. Model predictions suggested that the policy implementation has 

accounted for 35% or 48% of the total reduction in annual average PM2.5 

concentrations, based on different scenarios of policy implementation. As data 

required to develop this model are generally accessible in most cities of China, this 

model can be applied as a convenient tool to evaluate Chinese air pollution policies. 
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Literature Review 

 

1. Air Pollution and Action Plan in Northern China 

Ambient fine particulate matter (PM2.5, airborne particles with an aerodynamic 

diameter of less than or equal to 2.5 μm) has been identified as one of the major 

causes of the severe air pollution in northern China [1, 2]. PM2.5 was proved to be 

associated with different adverse health outcomes including cardiovascular disease 

and preterm birth [3-6].  

 

In order to relieve the problem of heavy air pollution and reduce the concentration of 

PM2.5, the State Council of China had released the Action Plan for Air Pollution 

Prevention and Control (referred as Action Plan in below) in September, 2013 [7]. 

The Action Plan selected ten evidence-based polices to improve air quality. The 

Action Plan attempts to reduce pollutant emission, shift industrial structure, regulate 

economic power and establish alert systems for exposure protection, etc. Other 

general laws were either providing indirect legislative approaches, or have failed to 

keep up with the pace of current environmental problems. For example, the current 

Air Pollution Prevention and Control Act of China was amended in 2000 to regulate 

sulfur dioxide emission, and the latest updated version (December 2014) was only a 

draft proposal released for comments [8]. Therefore, the Action Plan was regarded as 

the only legislative text that was specifically designed to regulate nationwide air 

pollution emission activities. 

 

Quantitatively, the Action Plan had set a list of goals for air quality improvement. 

Two out of three goals were evaluated by PM2.5: (1) by 2017, the annual average 
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concentration of fine particulate matter in the Beijing-Tianjin-Hebei region (also 

include province of Shanxi, Shandong and Inner Mongolia) should be decreased with 

by 25%, and (2) the annual average concentration of fine particulate matter in Beijing 

must be not exceed 60 μg/m3. Additionally, mid-term goals were set within the Action 

Plan to ensure the compliance of provincial governments in a timely manner, 

especially for Beijing-Tianjin-Hebei Region.  

 

The goals are listed as following. By the end of 2015, regional governments are 

required to complete (a) reconstruction of coal-burning power plants, (b) gasoline and 

diesel should meet the National V standard, (c) eliminate the 500 million “yellow tag 

vehicles” (the yellow tag refers to the automobiles who are using gasoline below 

National I standard, or using diesel below National III standard), (d) phase out the 

excessive and lagging productivity capacity of iron & steel smelting, cement grinding 

and glass production, and (e) complete the establishment of fine particulate matter 

monitoring sites and a heavy pollution weather alerting system. 

 

A decrease in PM2.5 concentration should be expected in 2014, the first year of the 

Action Plan implementation, if provincial governments were on track to reach their 

midterm and final reduction goals. This expectation was based on the following 

evidence:  

 

Evidence #1. In response to the Action Plan, each province of the Beijing-Tianjin-

Hebei Region, also referred as northern China, submitted a letter of responsibility 

including annual plan of industry phase out and emission control to the Minister of 

Environmental Protection of China (available on CMEP’s official website). By the 
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end of 2014, Beijing had planned to (a) add denitration/ desulfurization/dust removal 

devices to seven major plants in total, (b) decrease 10,000 tons of VOC emissions, (c) 

add 5,000 new-energy automobiles and phase out 280,000 old standard automobiles, 

and (d) shift 44,000 households from coal-burning heating to natural-gas power.  

 

Evidence #2. Each province had either developed its own regional plan or a united 

plan with adjacent provinces [9-11], or at least delivered the Action Plan via its own 

province level Environment Protection Bureau to local industries [12-14]. These 

requirements ensured that each province has an individual guideline for 

implementation. 

 

Evidence #3. In order to urge the implementation of the Action Plan, State 

Council of China had also released a document that requires each province 

government to submit an annual report on the implementation of Action Plan to 

Ministry of Environmental Protection of China for effect evaluation, in which the goal 

of reduction in annual average PM2.5 concentration is emphasized [15].  

 

2. Evaluating the Particulate Matter with Remote Sensing Data 

Air quality measurement stations have been established since 2013 to keep track of 

the particle pollution. Due to restrictions on research priorities, only major cities in 

northern China had been prioritized to establish ground measurement stations with the 

capability of measuring PM2.5 concentration. For example, the northern China only 

prioritized 14 cities, and only less than 50 cities have been established monitoring 

sites, which could greatly halted the representativeness of the ground measurement 
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data. In order to expand spatial and temporal coverage, satellite remote sensing data 

has been applied in air quality studies in recent years [16]. 

 

With broader coverage, satellite sensors are able to provide aerosol optical density 

(AOD), a quantitative indicator of particle abundance in the atmospheric column. 

AOD retrieved at visible wavelength is uniquely sensitive to PM from 0.1-2 μm and 

therefore is a good indicator for ambient PM2.5 concentration [17]. Recent studies 

have established quantitative relationships between AOD and PM2.5 using 

mathematical models along with meteorological covariates and land use covariates 

[18-21]. 

 

Meteorological parameters are used, either in linear combination with AOD, or fitted 

in the model as smoothing terms to enhance the performance of the model. In 

assessing the quantitative relationship between AOD and PM2.5, meteorological 

factors such as surface temperature, wind speed, absolute or relative humidity, planet 

boundary layer height, and precipitation are commonly included in the models [21-

24]. As these meteorological factors affect the physical and chemical properties of the 

atmospheric aerosols, the retrieval of AOD values will be affected as well.  

 

Similarly, land use terms in models typically includes land use classification/type, 

population density, traffic information, and vegetation coverage [19, 24, 25]. 

Specifically, vegetation coverage is assessed using Normalized Difference Vegetation 

Index (NDVI), which is designed to provide consistent spatial and temporal 

comparisons of vegetation conditions. According to NASA and the USGS, NDVI 

retrieved by MODIS instrument, and generated via blue, red, and near-infrared 



5 

 

reflectance, centered at 469nm, 645nm, and 858nm, respectively. The NDVI reflects 

the bio-active content of the land cover, and its value was mainly associated with the 

live green plant on the land surface. 

 

3. Modelling effort between AOD and PM2.5 concentration 

In the beginning, attempt were made to evaluate the quantitative relationship between 

AOD and PM2.5 using Linear Regression [25-27]. In order to improve the 

performance of the model with linearity assumption, additional models were used. 

Both a geological weighted model and generalized linear model yielded fairly good 

result with R2 ranging from 0.51 to 0.71 [18, 28]. Generalized Additive Model 

(GAM) have been used to enhance the performance by applying smoothing terms into 

the model. Liu et al. used GAM with lag terms of AOD and precipitation to illustrate 

the autocorrelative nature of the data [21]. Yanosky et al., created separate 

generalized additive mixed models with different time intervals [22]. Hamer et al. 

compared the performance of linear regression, GAM, and Multivariate Adaptive 

Regression Splines (MARS) and improve retrieval of PM2.5 from linear to non-linear 

methods [26]. In the work of Zou et al., a Neural Network model was established 

based on limited observations of PM2.5 concentration [29]. In the research of Reid et 

al., 11 models, including GLM, GAM, lasso regression, random forest and others 

were fitted using up to 29 variables, and the performances of these models were 

compared [24]. 

 

Several statistical parameters were calculated to evaluate the fitness of the proposed 

model. Adjusted R squared, Mallow’s Cp, Akaike Information Criterion (AIC), 

Deviance and Bayesian Information Criterion are commonly used to illustrate the 
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feasibility and fitness of the model. Apart from these parameters, Cross Validation 

(CV) is also an important technique to examine the performance of the candidate 

models. Specifically, CV is used in the format of Leave-one-out Cross Validation, k-

fold Cross Validation (k-fold CV) and Generalized Cross Validation. Based on CV, 

there are several parameters that are used for evaluation of the models: R squared of 

CV (CV-R2), Root of Mean Square of Prediction Error (CV-RMSPE or CV-RMSE), 

Mean Prediction Error (MPE) or Mean Absolute Error (MAE) [30]. Xin et al. 

reported the linear relationship between PM2.5 and AOD using measurements from 

ground sensors and from MODIS retrieval, with R2 equals to 0.58 and 0.57, 

respectively [27]. Non-linear approaches have improved the performance of the 

model comparing to linear approaches. Reid et al. have produced a Generalized 

Boosting Model (GBM) out of 11 models with CV-R2 = 0.80 and CV-RMSE = 1.50 

g/m3using Geostationary Operational Environmental Satellite Aerosol/Smoke 

Product (GASP) AOD as the main predictor. Similarly, using GASP AOD, Liu et al. 

had built a GAM describing the relationship between PM2.5 concentration and GASP 

AOD with CV-R2 = 0.78 and CV-RMSE = 3.6. Using Collection 5 MODIS AOD as 

the major predictor, Chang et al. used statistical downscaling to generated improved 

model with CV-R2 = 0.78 and CV-RMSE = 3.61. [31]. 
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1. Introduction 

The first decade of 21st century has witnessed the great economic development of 

China, as well as emerging environment issues. The challenge of the heavy haze, 

which might remaining and accumulating in the atmosphere of cities of China for 

days, had forced the air pollution problem be put onto the priority list of the China’s 

government. After severe air pollution since 2012, China promulgated a responsive 

action plan as a comprehensive solution. 

 

The State Council of China released Action Plan for Air Pollution Prevention and 

Control in September, 2013 (abbreviated as Action Plan in the following content) [7]. 

The Action Plan attempts to regulate in several aspects covering reducing pollutant 

emission, shifting industrial structure, economical regulating power and alert system 

for exposure protection, etc.  

 

Quantitatively defined by the Action Plan, the control was measured by PM2.5 

concentration. PM2.5 has been identified as one of the major causes of the severe air 

pollution and the grey haze that decrease the visibility in northern China [1, 2]. Recent 

studies also revealed that PM2.5 is associated with a series of adverse health effect 

covering respiratory disease, cardiovascular disease and also birth-related conditions. 

Due to the small size of the PM2.5, it is capable to go through the defense system of 

the respiratory tract, and reached as deep as alveoli, causing irreversible damage to 

the tissues and inducing respiratory-related diseases [6]. It also has the ability to 

invade into the circulation system, and move along the blood vessels, finally causing 

cardiovascular disease. Ping revealed that because of the heavy pollution of hazy 

weather, in which the PM2.5 reached its peak value, the hospital visit had significantly 
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grew in bronchitis, bronchial asthma, upper respiratory infection, COPD, and 

pneumonia [32]. Yamazaki et al. had observed an increased asthma attack in Japan 

due to the transboundary air pollution from Beijing’s January 2013 episode [33]. 

Using time series data in Beijing, Xie et al concluded that 10 μg/m3 increase in 

PM2.5 was associated with a 0.27% (95% CI 0.21 to 0.33%, p<0.0001) increase in 

ischaemic heart disease morbidity and a 0.25% (95% CI 0.10 to 0.40%, p<0.0001) 

increase in mortality on the same day [34]. Yang et al. conducted a meta-analysis on 

the lung cancer effect due to air pollutant, and concluded that the risk of lung cancer 

mortality or morbidity increased 7.23 (95% CI: 1.48–13.31) % per10 μg/m3 increase 

in PM2.5 [35]. In another meta-analysis study focusing Chinese population, the author 

summarized A 10 μg/m3 increase inPM2.5 was associated with a 0.40% (95% CI: 

0.22%, 0.59%) increase in total non-accidental mortality, a 0.63% (95% CI: 0.35%, 

0.91%) increase in mortality due to cardiovascular disease, and a 0.75% (95% CI: 

01.39%, 1.11%) increase in mortality due to respiratory disease [36]. Also, Xu et al. 

had reported that PM2.5 is associated with the variation of heart rate in elderly people 

with heart disease in Beijing, China [37]. Besides the respiratory and cardiovascular 

disease, the PM2.5 also contribute to the adverse effect on neonatal. A study using 

WHO survey data had suggested a threshold effect between PM2.5 concentration and 

the condition of low birth weight [38]. Additionally, Zhu et al. conducted a meta-

analysis and found association between the maternal exposure to PM2.5 and the 

occurrence of low birth weight, preterm birth, and small for gestational age [39]. With 

the evidence of a variety of adverse effect on human health, it is crucial to implement 

a policy that aim to reduce the ambient PM2.5 concentration within a small period of 

time. 
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According to the Action Plan, the goals for controlling ambient PM2.5 concentrations 

are: (1) by 2017, the annual average concentration of fine particulate matter in the 

Beijing-Tianjin-Hebei region (also include province of Shanxi, Shandong and Inner 

Mongolia) should be decreased with by 25%, and (2) the annual average 

concentration of fine particulate matter (PM2.5) in Beijing must be not exceed 60 

μg/m3.  

 

In accordance with the Action Plan, a decrease in PM2.5 concentration should be 

expected in 2014, which is the first year after the enforcement of the Action Plan. 

This assumption was supported by the following evidence. (1) The letter of 

responsibility from each regional government had denoted their first year’s annual 

plan of industry phase out and emission control, which was available on China’s 

Minister of Environmental Protection’s (CMEP) website. For example, by the end of 

2014, Beijing had planned to (a) add denitration/desulfurization/dust removal device 

to 7 major plants in total, (b) decrease 10,000 tons of VOC emission, (c) add 5,000 

new-energy automobiles and phase out 280,000 old-standard automobiles, and (d) 

shift 44,000 households from coal-burning heating to natural-gas power. (2) Some 

province has already published its own regional plan or united plan with adjacent 

provinces [9-11], and (3) In order to urge the implementation of the Action Plan, State 

Council of China had released a document demanding that each government of 

province should submit an annual report to CMEP for effect evaluation, in which the 

goal of deduction in annual average PM2.5 concentration is emphasized [15].  

 

Since air pollution is affected by meteorological conditions, and may have differences 

that is caused by seasonal fluctuation or annual variation, it is therefore not sufficient 
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to evaluate the effect by comparing solely the annual average concentration of PM2.5. 

In order to eliminate the interference of the annual variation, it is necessary to apply 

statistic models to control for meteorological effects. Liu et al. developed a statistical 

model to evaluate the effectiveness of a temporary PM2.5 control method during the 

Olympic Game events in Beijing, and was able to isolate the effect of control policy 

from the effect of meteorological impact. The model could explained 70% of the 

temporal variability in PM2.5, and according to the fitted coefficient, the emission 

control policies is accounted for 27-33% reduction of the PM2.5 concentration during 

the game [21]. 

 

The purpose of the study is to evaluate the effectiveness of the Action Plan 

implementation on northern China. northern China contains one of the China’s five 

main metropolitan areas, the Beijing-Tianjin-Hebei Triangle. Also, this region resided 

nearly 25% of China’s population, and covers nearly one fifth of the China’s land 

territory. Due to its importance, the Action Plan should be evaluated in a legitimate 

approaches. Current evaluation method only asks for direct comparison between the 

two annual means generated from province-level reports, which could only be 

resulted from local monitoring sites. However, as far as the author is concerned, no 

more than 400 monitoring sites were built in the six provinces of northern China, 

which has a total area as approximately 1,782,901 square kilometers. This means each 

observation sites is representing averagely more than 4,000 square kilometers, which 

is very non-representative and biased. In addition, as it could be found from Figure 1, 

most of the observations sites are located in more developed metropolitan areas (in 

where the regional Environment Protection Bureau would have the ability to conduct 

such observation and record). Therefore the result from the government report would 
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be highly biased to more developed cities. In order to solving these problems, satellite 

remote sensing data could be used because of its ability to expand to a great coverage 

on space and on time.  

 

The evaluation will be conducted using a statistical approach to analyzing data 

retrieved from both ground measurement and satellite observations. We first develop 

a linear mixed model which contains both satellite AOD and corresponding 

meteorological and land use parameters to estimate ground level daily average PM2.5 

concentrations in Beijing. After the model describes the association between these 

predictors and PM2.5 levels, a categorical variable labeling the time before and after 

the implementation of the Action Plan will be added into the model. The 

performances of models with and without the period variable will both be evaluated 

with cross-validation techniques. The better model will be able to illustrate whether or 

not the Action Plan had successfully affect the PM2.5 concentration within the 2013-

2014 time period. 

 

The study objective is to evaluate the impact of the policy implementation of China’s 

2013 Action Plan for Air Pollution Prevention and Control using statistical modelling 

with the data combined from ground measurement PM2.5 concentration and satellite 

remote sensing data of AOD values, meteorological parameters and land covers 

status. 

 

2. Data and Methods 

With the purpose of evaluating the effect of Action Plan conducted in Beijing-Tianjin-

Hebei Region, i.e. northern China, the Region of Interest was defined as the 



12 

 

geographic region that covers this area. In total, the Region of Interest includes 42 

cities, whose ground measurement PM2.5 data have been successfully been extracted 

and matched to other meteorological and land use parameters. This study region 

covers an area of approximately 890,000 square kilometers in land, and is located 

between a latitude of 34.3°N – 42.7°N and a longitude of 105.5° E – 126.2° E. This 

region contains six provinces or direct-controlled municipalities in northern China, 

including Beijing, Tianjin, Hebei, Shandong, Shanxi, and Inner Mongolia.  

 

The data in this study consist of ground measured particulate matter concentrations, 

satellite retrieved aerosol optical density, and satellite observation of meteorological 

and land cover parameters. The retrieval, processing and the integration of these 

dataset are described briefly in the following contents. 

 

2.1 Ground PM2.5 Measurement Data 

Daily average PM2.5 measurements from January 1, 2013 to December 31, 2014 were 

primarily collected from the official real-time data portal of the China Environmental 

Monitoring Center (CEMC) (http://113.108.142.147:20035/emcpublish/). Some 

provinces (such as Shandong and Shanxi province) and municipalities (such as 

Beijing and Tianjin City) have newly established measurement sites that are not 

included in the CEMC’s system. Data from those additional sites were also collected. 

Ground PM2.5 measurements in China are required to follow the most recent 

promulgated Chinese National Ambient Air Quality Standard (GB 3095-2012 and HJ 

316-2011, available on Chinese Ministry of Environmental Protection (MEP) website 

http://kjs.mep.gov.cn/), in which the measurements are required to be conducted 

http://113.108.142.147:20035/emcpublish/
http://kjs.mep.gov.cn/
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either by the tapered element oscillating microbalance method or the beta-attenuation 

method.  

 

Several illegitimate observations were marked as invalid values including (1) 

observations with PM2.5 concentration below 1 μg/m3, which is very rare in countries 

with pollution issues like China and possibly caused by detection error, and (2) 

observations with great leverage and marked as outliers in the diagnostic plots – three 

observations were removed in this way since they are observed in the exceptional 

event. Two of them were observed when a heavy dust storm hits nearly half of China 

in early May, 2014, and the other one was observed when there was an extremely 

heavy haze hit northern China in November, 2014. After excluding invalid values, a 

total of 336 PM2.5 monitoring sites in 42 cities are included in the region of interest 

within the northern China. These 42 cities covers most part of the six provinces 

except only 3 out of 12 cities from the Inner Mongolia Province are included (Figure 

1).  

 

2.2 Remote Sensing Data 

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is 

operating on the Aqua spacecraft launched by National Aeronautics and Space 

Administration (NASA). The MODIS is capable of scanning a swath of 2,330 km and 

has a global coverage of 1-2 days [40]. Aqua MODIS approximately crosses the 

equator at 1:30 p.m. local time, and AOD were retrieved at 10 kilometer spatial 

resolution by the MODIS instrument. The Level 2 MODIS Aerosol Product 

(Collection 6), which contains the AOD variables from January 1, 2013 to December 

31, 2014, were obtained from the Level 1 and Atmospheric Archive and Distribution 
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System (LAADS Web; http://ladsweb.nascom.nasa.gov/), and subset according to the 

latitude and longitude range of region of interest. Specifically, AOD data (MODIS 

parameter name: Image_Optical_Depth_Land_And_Ocean) at 550 nm were extracted 

using IDL 8.4 and used Quality Assurance Confidence Flag equals to 3 to yield better 

AOD retrieval value (AOD, unitless).  

 

2.3 Meteorological Data and Land Cover Data 

Meteorological data were downloaded from the Goddard Earth Observing System-

Forward Processing (GEOS-FP). GEOS-FP is the latest GEOS-5 meteorological data 

product provided by NASA/Global Modeling and Assimilation Office (GMAO). 

Current GESO-FP uses the 5.11.0 version of the GEOS Data Assimilation System. 

GEOS-FP data was gridded in a native spatial resolution of 0.25˚ latitude × 0.3125˚ 

longitude, and temporal resolution of one hour or three hour. In accordance with the 

local time of the satellite retrieval, the mean values between 1:00 p.m. and 2:00 p.m. 

of the following variables were extracted from the dataset “tavg3_3d_asm_Nv” in the 

China 0.25˚ × 0.3125˚ nested gridded file from FTP location ftp://rain.ucis.dal.ca : 

planetary boundary layer height above surface (PBLH, m), mean relative humidity in 

PBLH (RH, %), temperature at 2 m above displacement height (T, K), wind speed at 

10 m above displacement height regardless of direction (Wind, m/s), and total 

precipitation (Precip, kg m-2 s-2). 

 

Land cover status also has impact on the relationship between the PM2.5 concentration 

and satellite AOD value, and was taken into consideration in the present study. In 

order to address the effect of land cover, NDVI was chosen to indicate the influence 

http://ladsweb.nascom.nasa.gov/
ftp://rain.ucis.dal.ca/
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of vegetation change. The MODIS Level 3 monthly mean normalized difference 

vegetation index (NDVI) products were downloaded from NASA Earth 

Observations (NEO) (http://neo.sci.gsfc.nasa.gov/). The data provided by NEO was 

already aggregated into monthly period and gridded into 0.25° × 0.25° spatial 

resolution. 

 

2.4 Data Preparation and Integration 

The raw dataset varied in format. Several steps were used to prepare and combined 

the data into ready-to-use dataset. Aqua MODIS AOD data were extracted using IDL 

8.4 from .HDF format to .CSV format with a latitude/longitude coordinates and date 

of year (DOY) associated with each observation. Also the Quality Assurance flag is 

kept to filter out bad observations. GEOS-FP data were extracted using IDL from .nc 

format to .CSV format with the meteorological parameters in need and again 

geological coordinates and temporal date marks associated. PM2.5 concentration data 

were summarized as daily average from hourly record, and prepared as long-format 

data so that each observations is marked with one pair of latitude/longitude 

coordinates and one date of year value, which could be used to match with two set of 

predictors above. As Land cover data were represented by NDVI, the dataset is 

retrieved as aggregated data stored in excel file, with latitude as rows and longitude as 

columns. Using coordinate as matching variable, the NDVI value was assigned to 

each observations. These two steps of matching was conducted in R 3.1.3 

environment with no additional package installation required. 

 

In order to reduce the burden of processing data, all downloaded datasets were first 

subset using geological range of the northern China, which is a spherical rectangle 

http://neo.sci.gsfc.nasa.gov/
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with the border of latitude 34.3° N – 42.7° N and longitude 105.5° E – 126.2° E. For 

data integration, different variables were matched to build each observation using 

their unique spatial and temporal parameters. The Julian dates of the PM2.5 dataset 

were converted into the variable of date of year (DOY) to help matching other 

datasets. Based on DOY, a weekend variable was created to demonstrate the weekend 

effect. 

 

MODIS AOD value were matched to PM2.5 that was measured on the same date of 

year, and within the distance of 0.25 degree approximately. As GEOS-FP was gridded 

in the 0.25˚ × 0.3125˚ cell, the five meteorological parameters (Temperature, 

Precipitation, PBLH, Relative Humidity and Wind speed) were assigned to the 

observation that share the same date of year value, and have latitude and longitude 

covered within. Using similar matching mechanism, the NDVI value representing a 

0.25° × 0.25° cell was also assigned to each PM2.5 observation according to geological 

coordinates and date of year variable. 

 

2.5 Model Development and Validation 

The model is developed based on the relationship between the PM2.5 concentration 

and AOD value along with meteorological factors and the land use parameter. In 

order to address the temporal and spatial variation of the relationship above, temporal 

and spatial variables were added as random effect into the model as follows: 

 

PM2.5 = β0 + β1 AOD+β2 log(PBLH) + β3 Wind + β4 log(T) + β5 log(Precip+1) + β6 RH 

+ β7 NDVI + β8 Weekend+(b0, i, j+ b1,i, j AOD + b2, i log(PBLH) ) + ε   ….. (1) 
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where PM2.5 (μg/m3) is the daily average ground measurement of PM2.5 concentration, 

β0 is the intercept of fixed effect, β1 – β8 are the slopes of the corresponding 

predictors. AOD (unitless) is the AOD value retrieved from Aqua MODIS Collection 

6 Aerosol Product; Log(PBLH) (m), Wind (m/s), log(T) (K), log(Precip + 1) (mm), 

RH (%) are the meteorological parameters (as defined in the “Meteorological Data” 

section above) with proper log transformation to decrease the range of these variables. 

NDVI (unitless) is the NDVI value collected from Terra MODIS NDVI value. 

Weekend is a categorical variable, indicating the difference of effect on weekdays 

(Weekend = 0) and weekends. b0 is the random intercept in particular City and on a 

particular day of year (DOY), b1 and b2 are the random slopes for AOD and 

log(PBLH), respectively. In order to take temporal and spatial variation into 

consideration, city and week of year are used to address such issues. In the above 

model, the subscript i denotes the effect from city, and j denotes the effect from week 

of year. Therefore the b1,i,j is the random effect on AOD in i-th City and on j-th DOY, 

while b2,I is the random effect on log(PBLH) in i-th City. The selection of the 

meteorological and land use variables in the final model is based on the reference of 

parameter combination from previous studies, and statistical parameters for model 

selection including Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC), and Deviance. 

 

10-fold Cross validation (CV) was conducted to test for potential overfitting of the 

proposed model by comparing the predictive performance in the training dataset and 

the test dataset with a 10-time repetition. In each fold, approximately 10% of the total 

dataset were randomly sampled and forms a test data to determine model 

performance, while the other 90% of the dataset were used as training dataset to fit a 
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model. After a 10-fold repetition, the statistics used to help determine the performance 

of the model were used to detect model performance were calculated as a mean value 

from these 10-fold values. Furthermore, in order to evaluate the model prediction 

accuracy and CV results, R2 of the CV (CV-R2), Mean Fractional Bias (FBIAS) and 

Mean Fractional Error (FERROR) were calculated to help demonstrate the model 

performance in our study. The approaches to obtain these parameters are provided as 

follows: 

 

 

 

Where Mi refers to fitted value using our model, and Oi refers to the observation 

value, N equals to the total observation and is 52,974 in our case. 

 

After fitting the model, a policy implementation period variable (PERIOD) was added 

into the model, and its statistical significance was calculated to illustrate whether or 

not this variable is statistically significant under such model. Statistical significance of 

the PERIOD variable will determine if the Action Plan has been sufficiently effective 

to reach the desired PM2,5 reduction.  

 

2.6 Evaluation of the Effectiveness of the Action Plan 

Based on equation (1), the policy implementation period variable (PERIOD) was 

added into the model. Several definitions of the policy implementation were tested 
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due to the ambiguous implementation date that could be identified from governmental 

documents. 

 

Although the Action Plan was published on September, 2013, we allowed some time 

for regional governments to form a responsive plan that would achieve compliance 

with the Action Plan. Two cut-offs dates (February 1, 2014 and May 1, 2014) were 

picked to determine the PERIOD variable value and define the date the Action Plan 

had real effects on the aerosol fine particulate matter concentrations. The dates as 

February 1, 2014 was chosen because it is the date that all regional governments were 

required to deliver the Action Plan to local industries and submit their letter of 

responsibility to the CMEP, and May 1, 2014 is the date that the Regional United 

Action Strategy for the six provinces involved in this study region was published as a 

response to the national-level Action Plan. With these cut-off dates, the PERIOD 

variable was added into the model, with PERIOD = 0 for the time before the policy 

implementation and PERIOD = 1 for the time after the policy implementation. The 

Action Plan was first considered, and subsequently the Regional United Action 

Strategy was added into model instead of the previous one to demonstrate its effect. 

Statistical significance of the PERIOD variable will be calculated as inclusion 

criterion, and the reduction of annual average PM2.5 concentration from 2013 to 2014 

accounted by impact of policy implementation alone will be determined comparing to 

the reduction in total. 

 

3 Result and Discussion 

3.1 Descriptive Analysis and Summary Statistics 
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Summary statistics are provided in Table 1(a) for the response variable PM2.5 and 

major predictor AOD value. Overall, the full dataset covers temporally 730 sample 

days (January 1, 2013 to December 31, 2014) and spatially 42 cities in the six 

provinces. Within this time interval, the overall mean PM2.5 concentration is 71.57 

μg/m3, while the year specific mean values are 77.41 and 64.86 μg/m3 in 2013 and 

2014, respectively. Mean values for AOD are 0.767, 0.762 and 0.772 for overall, 

2013-specific and 2014-specific, respectively. A city-specific summary data can be 

found in Table 1(b). Additionally, histograms of other predictors are also provided in 

Figure 2 for each model variables in the model fitting dataset. 

 

Comparing the annual average PM2.5 concentration between the 2013 and 2014, we 

could see a small decrease from 2013 to 2014, although this decrease could be caused 

by either annual variations due to change in climate and weather conditions, or by the 

immediate implementation of the Action Plan. Given that the effect from these two 

factors are both influencing the variation of PM2.5 concentration, the modelling 

approach is used to control for the effects from each variable. 

 

3.2 Model Development 

In order to develop a model with good fitness, several attempts were made to improve 

the performance. Predictors were added into the model either in its original format or 

with natural log transformation to rescale the predictor so that the range of the value is 

shrunk to a proper magnitude. Different combinations of the predictors in original 

format and with log transformations were tried (Table 2(a)). After figuring out several 

predictors, i.e. PBLH, Temperature and Precipitation, serves better in log-transformed 

format, the random effect is added into the model. Several grouping factors have been 
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tried to demonstrate effect, including day of year, week of year, city, cities group, 

province, etc. Also, the random effects were added on different predictors to help 

determine the model with the best performance (Table 2(b) and Table 2(c)). With the 

outcome from ANOVA, and comparison of several statistical criteria including AIC, 

BIC, deviance, df, etc. the final model came in this format: natural log transformation 

were used on predictors of PBLH, Precipitation and Temperature. Random effect 

were added as random intercept, random slope on AOD and random slope on 

log(PBLH). Finally, as a supplementary adjustment, Date of week (DOW) variable is 

substituted by Weekend variable (=1 on weekend and =0 on weekdays) since it 

improves the model by demonstrating the difference between weekdays and weekends 

in the scenarios of emission from human activities. 

 

In order to fit a model with random effect (i.e. Linear Mixed Effects model), a R 

package named lme4 were installed in the R 3.1.3 environment and the function of 

lmer() were mainly utilized to build the model. For coefficient estimation, Maximum 

Likelihood (MLE) were used. Although there are other choice such as Restricted 

Maximum Likelihood (REML) or Generalized Estimation Equation (GEE), we pick 

MLE method for the purpose of enable the comparison capacity of MLE, while other 

approaches don’t have. As there are broad discussions about the uncertainty and the 

approximation method to retrieve an R2 in a linear mixed model with the 

consideration of random effect, an approach to retrieve a R2 is derived by Jarrett 

Byrnes and could be referenced in http://glmm.wikidot.com/faq . Similarly, there is 

some controversy in estimating a confidence interval with the consideration of 

random effect, and the approach to estimate these intervals were also referenced in the 

web link above. 

http://glmm.wikidot.com/faq
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3.3 Model Performance 

First, a model without the policy implementation period variable was built to describe 

the impact of weather conditions and land cover status. As indicated by adjusted R2 

value, the fitted model explained 68.7% of the temporal and spatial variation. A linear 

regression between fitted and observed values of PM2.5 concentration could be found 

on Figure 3. 

 

Comparing the following parameters between model and Cross Validation (CV), we 

would have Mean Fractional Bias (FBIAS) increased from 0.071 in the fitted model to 

0.202 in CV, Mean Fractional Error (FERROR) decreased from 0.296 in the model to 

0.211 in CV, and Root of Mean Square Error (RMSE) increased by 10.2 μg/m3 from 

the model fitted to the result in the 10-fold cross validation. This probably suggests a 

slight overfitting in our model. 

 

For the AOD variable in our model, as the optical property is greatly influenced by 

the physical and chemical status of the atmospheric aerosol, the random effect from 

spatial and temporal terms could help explain these variations between cities and 

between weeks. The aerosol PM2.5 is basically generated from the city’s local 

emission, thus a difference in the distribution and the type of emission source can 

resulted in different association between PM2.5 concentration and AOD retrieval. 

Similarly, the week of year variable could be linked to the seasonal variation and its 

subsequent effect on the weather condition. These difference in weather condition 

could also help explain the variation. The Planetary Boundary Layer Height is another 

factor that is greatly associated with the PM2.5 as its height affect the mixing effect of 
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aerosol, and thus impact the elimination and removal process of the PM2.5. While 

aggregating the weather effect into city-level, it is legitimate to have the PBLH as 

random effect to help address the different association between PM2.5 level and AOD 

value. 

 

3.4 Effectiveness of the Implementation of the Action Plan 

The cut-off dates of the study period was defined as February 1, 2014 for the first 

definition of policy implementation period, and defined as May 1, 2014 for the second 

definition of period Both models containing period terms for each definition are both 

statistically significant at α = 0.05 level. With the addition of the policy 

implementation impact variable, the RMSE of the model did not decline compared to 

the model (1) (Table 3).  

 

The annual average PM2.5 concentration decrease by 12.0 µg/m3 from 2013 to 2014. 

We also used our model to predict the annual average PM2.5 concentration without the 

policy impact variable, the annual average PM2.5 concentration level would have been 

5.7 µg/m3 higher than the scenario with policy being implemented. Our model also 

indicated that the policy implemented by January, 2014 is responsible for 48% of the 

reduction in PM2.5 concentration. Similarly, if the second policy impact is considered 

to be the main factor that altering PM2.5 concentration, then we would see a 4.2 µg/m3 

reduction in 2014. This implies that the Responsive Strategy of the Action Plan 

accounts for 35% of the total reduction. Both models including policy impact variable 

did not alter RMSE largely, yet the magnitude of Mean Fractional Error (FERROR) 

increased, which indicated that the real scenario might not be as simple as a two-stage 

levels in our study. A possibility in real scenario would be the regional governments 
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would gradually bring out regulations on emission control and progressively shutting 

down facilities, other than having all policy sections implemented in one day. 

Therefore the actual reduction of PM2.5 concentration could follow a multi-stage 

pattern or have a linear association with temporal parameter, which is not illustrated 

in our model. 

 

Comparatively, Liu et al. conducted an evaluation of the effectiveness of emission 

control policies during the Beijing Olympic Games in 2008, and reported a reduction 

in 24±4 µg/m3 or 27–33% in daily PM2.5 concentration due to the emission control 

measures [21]. Our result shows PM2.5 reductions are lower in magnitude, indicating 

that current type of long-term and permanent policy is still in its preliminary phase of 

implementation, and may have only generated a partial effect in controlling air 

pollution. The higher percentage in our results, when comparing to the total reduction 

amount of a 12 µg/m3
 reduction, might result from the different magnitude of the total 

reduction.  

 

3.5 Limitations 

In February 2015, CMEP released a report indicating the decrease in annual average 

PM2.5 concentration from 2013 to 2014 in the Northern China Region was 12%. This 

CMEP report also reported the annual average PM2.5 concentration was 93 µg/m3 in 

2014 [41]. In contrast, our model suggested that there was a 15% reduction and that 

the PM2.5 level for 2014 is 65 µg/m3, which should be noted as an underestimation of 

the PM2.5 level. Several factors could contribute to this difference.  
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(1) The CMEP report did not provide criteria for the inclusion of the data according to 

observation legitimacy or definition of cities, while our dataset had excluded 

obviously invalid observations and gathered data from all possible sites in this region. 

For example, there is a large proportion of PM2.5 observations detected with a daily 

average value less than 1 μg/m3, which would be uncommon even for cities 

worldwide that had drastically reduced emissions.  

 

(2) Additionally, extremely high concentrations of PM2.5 may limit eligibility of 

remote sensing retrieval of AOD values, because the algorithm of the AOD retrieval 

would regard heavy haze as thin clouds and report missing values instead. Therefore, 

the extremely heavy pollution episodes would generate invalid and missing values in 

the dataset. In order to fit models, observations with these missing values or obtained 

during exceptional events have been filtered out. Thus resulted in an estimation bias 

towards cleaner days with lower mean PM2.5 concentrations. 

 

Another reason for the bias of PM2.5 reduction is the lack of PM2.5 ground 

measurement sites in rural areas in 2014 – As the demand for monitoring sites is 

satisfied in urban region, the new sites built in 2014 is more likely to be located in 

urban areas, where the PM2.5 level could be close to background values which is very 

low. If the subset of 2014 data is contained with much of these rural sites, it is very 

easy to detect a lower mean value compared to 2013 even there is no reduction in 

atmospheric aerosol PM2.5 at all. A remedy for this phenomenon would be 

accumulating more observations, so that separate analyses of urban and rural areas 

can be performed. 
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At last, there is also a limitation in the time interval covered by our dataset. As China 

only begin its PM2.5 observations in massive cities till very end of 2012, we cannot 

retrieve data before that time point. Thus, the sample size is insufficient to 

demonstrate daily effect. In order to satisfy the demand of sensitivity to detect the 

effect, temporal variable is defined as "week of year" instead of "day of year" to help 

resolve this issue. 
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4. Conclusion 

In this study a statistical model aimed to evaluate the effectiveness of the China’s 

2013 Action Plan for Air Pollution Prevention and Control is demonstrated. These 

estimates were obtained by controlling the meteorological parameters and land cover 

status. Additionally, temporal and spatial variation is also resolved by applying 

random effect terms. Our model indicates that the Action Plan policy is accounted for 

48% or 35% of the reduction of annual average PM2.5 levels, respectively depending 

on an implementation date based on the selection of either nationwide legislation or 

regional united responsive action. 

 

The data used as predictors in this model are accessible for most cities in China, 

suggesting that this model could be used as a tool to expand the evaluation of the 

PM2.5 concentration to a greater spatial and temporal coverage, as well as an approach 

to assess the effectiveness of other Chinese air pollution policies. Due to reliance on 

satellite data, cloud cover is an important limiting factor in data availability. It is 

advised that this model be used with fewer extreme pollution scenarios. 
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Tables and Figures 

 

 

 

Figure 1. Study domain – northern China (circled with orange border). Monitoring sites for 

ground level PM2.5 are marked out with light blue cross.  
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Figure 2. Distribution of the model variables. Several variables have been log-transformed to 

improve model performance. (Note: Precip.adj = Log(precip +1) 

 

 

 

Figure 3. Linear regression between fitted value and observed PM2.5 concentration using 

model (1). Fitted PM2.5 = 0.66 × Observed PM2.5 + 24.03, R2 = 0.698. 
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Table 1(a). Summary statistics of MODIS AOD and ground measurement of PM2.5 

 Overall    2013        2014      

 Mean (SD) Range Mean (SD) Range Mean (SD) Range 

PM2.5 (μg/m3) 71.9 (46.1) 1.1 – 500.0  77.0 (48.1)  3.0 – 500.0 65.4 (42.9) 1.1 – 469.0 

MODIS AOD 0.77 (0.62) -0.05 – 4.84  0.76 (0.62) -0.05 – 4.64 0.77 (0.62) -0.05 – 4.84 

 

 

Table 1(b). Descriptive statistics for each city in northern China 

City 

Central 

longitude 

Central    

Latitude 

Observation 

Sites 

Average 

PM2.5 

Average 

AOD 

Baoding 115.2 39.0 6 90.0 1.0 

Beijing 116.4 40.2 7 63.3 0.7 

Binzhou 117.9 37.6 6 83.0 0.9 

Cangzhou 116.8 38.3 3 72.4 0.8 

Changzhi 112.9 36.5 5 59.3 0.5 

Chengde 117.5 41.3 5 39.5 0.3 

Datong 113.7 39.9 6 39.2 0.3 

Dezhou 116.6 37.2 6 93.8 0.9 

Dongying 118.6 37.6 9 73.2 1.0 

Handan 114.5 36.6 4 89.9 1.1 

Hengshui 115.8 37.8 3 87.9 0.9 

Heze 115.7 35.2 6 91.8 0.9 

Hohhot 111.4 40.6 19 37.6 0.3 

Jinan 117.1 36.7 16 77.0 0.9 

Jincheng 112.7 35.6 5 88.2 0.6 

Jining 116.7 35.4 7 95.7 0.9 

Jinzhong 113.0 37.3 4 85.4 0.6 

Laiwu 117.7 36.3 7 78.6 0.7 

Langfang 116.6 39.3 4 70.4 0.8 

Liaocheng 115.9 36.5 6 94.5 1.0 

Linfen 111.4 36.2 16 67.7 0.8 

Linyi 118.3 35.3 8 87.2 0.9 

Luliang 111.3 37.7 3 57.5 0.3 

Qingdao 120.1 36.5 14 63.2 0.8 

Qinhuangdao 119.2 40.1 1 65.2 0.8 

Rizhao 119.1 35.6 7 71.8 0.8 

Shijiazhuang 114.4 38.1 8 89.2 1.0 

Shuozhou 112.6 39.6 4 53.1 0.4 

Tai'an 117.0 36.0 7 73.7 0.8 

Taiyuan 112.3 38.0 9 58.2 0.5 

Tangshan 118.3 39.7 6 84.0 0.8 

Tianjin 117.3 39.3 27 74.7 0.9 

Weifang 119.1 36.5 9 78.1 0.8 
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Table 1(b).(Continued) 

City 

Central 

longitude 

Central    

Latitude 

Observation 

Sites 

Average 

PM2.5 

Average 

AOD 

Weihai 122.0 37.1 10 49.2 0.6 

Xingtai 114.8 37.2 4 99.6 1.1 

Xinzhou 112.4 38.9 3 103.4 0.5 

Yangquan 113.5 38.1 6 56.9 0.5 

Yantai 120.8 37.2 11 52.0 0.7 

Yuncheng 111.1 35.2 5 91.4 0.8 

Zaozhuang 117.3 35.0 8 89.3 0.8 

Zhangjiakou 115.0 40.9 5 27.9 0.3 

Zibo 118.0 36.6 13 88.6 0.8 

 

 

Table 2(a). Stepwise Linear Selection of candidate models. 

Model Specification* Residual Sum of 

Squares 

Keep Log transformed 

term in the model? 

All terms in Linear 67204120 / 

+Log transform: PBLH 66448481 YES 

+Log transform: RH 66766120 NO 

+Log transform: Wind 66602354 NO 

+Log transform: Temp. 66446907 YES 

+Log transform: Precip. 66366831 YES** 

+Log transform: RH &Wind 66761408 NO 

* Only a proportion of the candidate models are presented here. 

** After selection, the predictors of PBLH, Temperature and Precipitation are 

determined to be added as log-transformed terms into the model. 
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Table 2(b). Selecting terms to add random effect 

Model Specification* DF AIC BIC logLik deviance 

1.Random intercept from Site 17 529678 529829 -264822 529644 

2.Random intercept and slope on 

AOD from Site 18 528921 529081 -264442 528885 

3.Random slope on AOD from 

Site 19 528922 529091 -264442 528884 

4.Random slope on AOD from 

Site & Random intercept from 

City 20 528604 528782 -264282 528564 

5.Random intercept and slope, 

nested group on City & Site 21 528606 528793 -264282 528564 

6.Random slope on AOD, random 

intercept and slope on PBLH** 23 527729 527933 -263842 527683 

7.Random slope on AOD, random 

intercept and slope on RH 23 528138 528343 -264046 528092 

8.Random slope on AOD, random 

intercept and slope on Wind 23 528360 528564 -264157 528314 

9.Random slope on AOD, random 

intercept and slope on Temp. 23 528278 528483 -264116 528232 

10.Random slope on AOD, 

random intercept and slope on 

Rain 60 528510 529043 -264195 528390 
 

* Only a proportion of the candidate models are presented here. 

** Model 6 in Table 2(b) is decided to use to develop model in next step. 

 

Table 2(c). Selecting terms to add random effect 

Model Specification Df AIC BIC logLik deviance 

1. Day of Year and City as grouping factor 25 482601 482823 -241276 482551 

2. Week of Year and City as grouping 

factor* 25 506624 506846 -253287 506574 

3. Week of Year and City as nested 

grouping factor 25 507840 508062 -253895 507790 

4. Week of Year and Cities Group as 

grouping factor 25 508979 509201 -254464 508929 

5. Week of Year and Cities Group as nested 

grouping factor 26 508983 509213 -254465 508931 

*Model 2 in Table 2(c) is selected as the model with best performance. 

 

 

 

  



36 

 

Table 3. Performance of the Models and Cross Validation results.  

Model RMSE R2 CV- 

R2 

CV-

RMSE 

FERROR FBIAS 

(1) 

PM~AOD+Met*+Land** 

25.4 0.698 0.699 35.4 19.5% 20.2% 

(2) PM~AOD+Met+Land  

    +PERIOD1 

25.2 0.702 0.702 34.4 53.9% -12.9% 

(3) PM~AOD+Met+Land  

    +PERIOD2 

25.4 0.701 0.702 34.0 30.9% 9.4% 

* Met: Meteorological parameters.  

** Spatial and temporal variables are not demonstrated in these three equations. 

 


