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Abstract

Field Patching and Galois Cohomology
By Feng Chen

Let T be a complete discrete valuation ring with uniforrmizer t, and X̂ a
smooth projective curve over S = SpecT . Let F = K(X̂) be the function
field and let F̂ = K̂(X̂) be the completion of F with respect to the discrete
valuation defined by the closed fibre X .

In this paper, we construct indecomposable and noncrossed product
division algebras over F . This is done by defining an index-preserving
homomorphism and using this map s to lift indecomposable and non-
crossed product division algebras over F̂ to indecomposable and non-
crossed product division algebras over F , respectively.
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Part I

I N T R O D U C T I O N



1
I N T R O D U C T I O N

The primary result of this paper is a construction of in-

decomposable and noncrossed product division algebras

whose centers are function fields of curves over Henselian

discrete valuation rings. We briefly recall definitions of

these objects here. (See Chapter 2 for the more detailed

definitions of division algebras, indecomposable division

algebras and noncrossed product division algebras.)

Recall if K is a field, a K-division algebra D is a (noncom-

mutative) algebra over K in which every nonzero element

has an inverse. The period of D is the order of the class

[D] in Br(K), and the index ind(D) is the square root of D’s

K-dimension. A noncrossed product is a K-division algebra

which does not contain a Galois maximal subfield, or equiv-

alently, whose structure is not represented by a 2-cocycle.

Noncrossed products were first constructed by Amitsur in

Amitsur [2], settling a longstanding open problem. Since

then there have been several other constructions, including

Saltman [29], Jacob and Wadsworth [23], Brussel [5], Brussel

[4], Reichstein and Youssin [26], and Hanke [15].
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A K-division algebra is indecomposable if it cannot be ex-

pressed as tensor product of two nontrivial K-division sub-

algebras. It is not hard to see that all division algebras of

equal period and index are indecomposable, and that all di-

vision algebras of composite period and index have “Sylow”

decomposition, so the problem of producing indecompos-

able division algebras reduces easily to producing algebras

whose period and index are unequal prime powers. Albert

constructed decomposable division algebras of unequal (2-

power) period and index in the 1930’s, but indecomposable

division algebras of unequal period and index

The method used here is quite different from that of Brus-

sel et al. [6] and other works on this topic. Our construction

relies on the ideas from patching, a method that has been

used in the past to prove many results about Galois theory

(c.f. Harbater [16]). Harbater and Hartmann [17] extended

patching to structures over fields rather than over rings,

to make the method more amenable to other applications.

This approach shows that giving an algebraic structure over

certain function fields is equivalent to giving the structure

over a suitable collection of overfields.

The application of patching over fields to division alge-

bras, or equivalently, to Brauer groups, was introduced in

Harbater et al. [18] and Harbater et al. [19]. Considerable

amount of results has been produced since then.
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In the next a few chapters, we lay out the backgrounds

and summarize the main results we will prove later on

in this paper. In particular, in Chapter 2, we introduce

the main objects of study for this paper, division algebras

and central simple algebras; in Chapter 3, we introduce

the main technique that we employ for the construction,

namely, patching over fields.
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B A C K G R O U N D



2
D I V I S I O N A L G E B R A S A N D B R A U E R

G R O U P S

In this chapter, we will set up the basic definition and facts

about division algebras and Brauer groups, in particular, the

fundamental connection between these two notions. Then

we will introduce the main objects we will study in this

paper, indecomposable and noncrossed product division

algebras.

2.1 definitions and basic facts

We begin by recalling the following

Definition 2.1. Let k be a field. A k-algebra D is called

a k-division algebra if every nonzero element of D has a

two-sided multiplicative inverse.

Division algebras are closely tied to central simple algebras,

which we define next.

Definition 2.2. Let k be a field. A k-algebra C is called

simple, if C has no (two-sided) proper ideal. C is called

central if its centre equals k. C is a central simple k-algebra if

C is both simple and central.
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A division k-algebra is clearly a central simple k-algebra.

A deeper relation between k-division algebras and central

simple k-division algebras is the following celebrated theo-

rem due to Wedderburn:

Theorem 2.3. Let A be a finite dimensional simple algebra over a

field k. Then there exists an integer n > 1 and a division algebra

D ⊃ k so that A is isomorphic to the matrix ring Mn(D).

Moreover, the division algebra D is uniquely determined up to

isomorphism.

Two central simple k-algebras A and A ′ are called Brauer

equivalent or similar ifA⊗kMm(k) ∼= A ′⊗kMm ′(k) for some

m,m ′ > 0. This defines an equivalence relation on the set

of all central simple k-algebras. By Theorem 2.3, each equiv-

alence class is uniquely represented by a division algebra.

The set of equivalence classes of central simple k-algebras is

denoted by Br(k). Since a tensor product of central simple

k-algebras is still a central simple k-algebra, we could equip

the set Br(k) with the tensor product operation. And in

fact, the tensor product makes the set Br(k) into an abelian

group, which we state in the following

Proposition 2.4. The set Br(k) equipped with the tensor product

operation is an abelian group, called the Brauer group of k.

Thus the study of division algebras over the field k

amounts the same to studying the Brauer group Br(k). This

is the crucial perspective that we will take to study divi-
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sion algebras throughout the sequel because Br(k) can be

studied using cohomological method.

Theorem 2.5. Let k be a field and ks a fixed separable closure of

k. Then there exists a natural isomorphism of abelian groups

Br(k) ∼= H2(k,k×s ).

We also have the following cohomological interpretation

of the m-torsion part mBr(k) of the Brauer group.

Corollary 2.6. For each positive integer m prime to the charac-

teristic of k we have a canonical isomorphism

mBr(k) ∼= H2(k,µm).

where µm denotes the group of m-th roots of unity in ks equipped

with its canonical Galois action.

2.2 index and period

In this section we use the cohomological theory of the

Brauer group to derive basic results of Brauer concerning

two important invariants for central simple algebras. They

play important role in the sequel.

The first invariant is the following.

8



Definition 2.7. Let A be a central simple algebra over a

field k. The index indk(A) is defined to be the degree of the D

over k, where D is the division algebra for which A = Mn(D)

according to Theorem 2.3.

Remark 2.8. We have the following facts regarding the index

of a central simple algebra:

1. For a division algebra index and degree are the same

thing.

2. The index of a central simple k-algebra A depends

only on the class of A in the Brauer group Br(k). In-

deed, this class depends only on the division algebra

D associated with A by Theorem 2.3. Therefore, index

can be viewed as a cohomological invariant associated

to the elements of Brauer groups.

Now we come to the second invariant.

Definition 2.9. Let A be a central simple k-algebra. Then

the period or exponent of A is the order of the corresponding

Brauer element in Br(k).

2.3 noncrossed product division algebras

Let K be a Galois extension of a field k with [K : k] = n 6 ∞,

and let G = Gal(K : k). Recall that from any 2-cocycle f ∈

9



Z2(G,K×) one can build a crossed product algebra (K/k,G, f)

as
⊕
σ∈G Kxσ with multiplication given by

(cxσ)(dxτ) = cσ(d)f(σ, τ)xστ.

This (K/k,G, f) is a central simple k-algebra of dimension

n2 over F, and it contains a copy of K as a maximal subfield.

Conversely, one deduces from the Skolem-Noether theorem

that if A is a central simple k-algebra of dimension n2

and A contains a Galois extension field K ′ of k with [K ′ :

k] = n, then A ∼= (K ′/k, Gal(K ′/k), f) for some 2-cocycle f,

whose cohomology class in H2(Gal(K ′/f),K ′×) is uniquely

determined. The crossed product construction provides

an explicit description of the isomorphism between the

Brauer group Br(k) and the continuous cohomology group

H2(Gal(ks/k),k×s ) as given in Theorem 2.5. Besides this,

knowing that a specific central simple algebra A is a crossed

product gives a concrete description of the multiplication

in A that can help us understand A.

For several decades, the biggest open question in the

theory of finite-dimensional division algebras was whether

every such algebra D is a crossed product. Restated, the

question was: Does every such D contain a maximal sub-

field which is Galois over the center of D? This possibility

seemed plausible in light of Reiner [27, Theorem 7.15(ii)]
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which says that D has a maximal subfield which is separa-

ble over the center. Moreover, there was the great theorem

of the 1930’s, (cf. Hasse et al. [20] and Albert and Hasse

[1]), which says that every central simple algebra over an

algebraic number field is a cyclic algebra. But that has not

ruled out the possibility of crossed products with noncyclic

Galois groups. Also it had been proved by Wedderburn and

Albert that every division algebra of degree 2, 3, 4, 6 or 12

is a crossed product (cf. Rowen [28, PP. 180-183]).

In 1972 Amitsur [2] finally settled the crossed product

question which had been lingering since the 1930’s, by

producing counterexamples. Since then there has been sev-

eral other constructions, including Saltman [29], Jacob and

Wadsworth [23], Brussel [5].

2.4 indecomposable division algebras

A division algebra D/k is said to be decomposable if D ∼=

D1 ⊗kD2 where each deg(Di) > 1. It is obviously desirable

to know whether a given D is decomposable, since if so D

can be studied in terms of the smaller division algebras Di.

Of course, one always has the primary decomposition of D

(also called the “Sylow decomposition” of D): if deg(D) =

p
r1
1 · · ·p

rl
l , where the pi are distinct primes, then D ∼= D1⊗k

· · · ⊗k Dl where deg(Di) = p
ri
i , and each Di is uniquely

determined up to isomorphism (although typically there are
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many different copies of each Di in D). Thus, the study of

decomposability is immediately reduced to the case where

deg(D) is a prime power.

The first serious investigation of decomposability in the

prime power case seems to have been given by Saltman [30].

Suppose deg(D) = pn, where p is a prime. It is immediate

that if exp(D) = deg(D), then D is indecomposable. So, the

interesting division algebras for decomposability questions

are those of degree pn and exponent pm where m < n.

Saltman [30] gave the first example of such a division alge-

bra which is indecomposable. Since then there have been

several other constructions such as Tignol [34], Jacob and

Wadsworth [22], Jacob [21], Schofield and Van den Bergh

[32], Brussel [3] and McKinnie [25].
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3
PAT C H I N G O V E R F I E L D S

3.1 notation

In this chapter, we will briefly recall the main technique

used in this paper; namely, patching over fields which was

introduced in Harbater and Hartmann [17] and then ap-

plied to the study of division algebras, Brauer groups and

quadratic forms in Harbater et al. [18] and Harbater et al.

[19].

Throughout this chapter, T will be a complete discrete val-

uation ring with uniformizer t, fraction field K and residue

field k. Let X̂ be a smooth projective T -curve with function

field F.

We follow Harbater and Hartmann [17, Section 6] to

introduce the notation. Given an irreducible component

X0 of X with generic point η, consider the local ring of

X̂ at η. For a (possibly empty) proper subset U of X0, we

let RU denote the subring of this local ring consisting of

rational functions that are regular at each point of U. In

particular, R∅ is the local ring of X̂ at the generic point of the

component X0. The t-adic completion of RU is denoted by

13



R̂U. If P is a closed point of X, we write RP for the local ring

of X̂ at P, and R̂P for its completion at its maximal ideal.

A height 1 prime ideal p of R̂Pthat contains t determines

a branch of X at P, i.e., an irreducible component of the

pullback of X to Spec(R̂P). Similarly the contraction of p to

the local ring of X̂ at P determines an irreducible component

X0 of X, and we say that p lies on X0. Note that a branch p

uniquely determines a closed point P and an irreducible

component X0. In general, there can be several branches p

on X0 at a point P; but if X0 is smooth at P then there is a

unique branch p on X0 at P. We write R̂p for the completion

of the localization of R̂P at p; thus R̂P is contained in R̂p,

which is a complete discrete valuation ring.

Since X̂ is normal, the local ring RP is integrally closed

and hence unibranched; and since T is a complete discrete

valuation ring, RP is excellent and hence R̂P is a domain (cf.

Grothendieck and Dieudonné [13, Scholie 7.8.3(ii,iii,vii)]).

For nonempty U as above andQ ∈ U, R̂U/tnR̂U → R̂Q/t
nR̂Q

is injective for all n and hence R̂U → R̂Q is also injective (cf.

Harbater et al. [19, P. 241]). Thus R̂U is also a domain. Note

that the same is true if U is empty. The fraction fields of the

domains R̂U, R̂P and R̂p will be denoted by FU, FPand Fp.

If p is a branch at P lying on the closure of U ⊂ X0, then

there are natural inclusions of R̂P and R̂U into R̂p, and hence

of FP and FU into Fp. The inclusion of R̂P was observed

above; for R̂U, note that the localization of RU and of Rp at

14



the generic point of X0 are the same; and this localization is

naturally contained in the t-adically complete ring R̂p. Thus

so is RU and hence its t-adic completion R̂U.

3.2 main results from patching over fields

We will use the following notation p = (U,Q) when p is a

branch at Q lying on the closure of U.The inclusions of R̂U

and of R̂Q into R̂p, for p = (U,Q), induce inclusions of the

corresponding fraction fields FU and FQ into the fraction

field Fp of R̂p. Let I be the index set consisting of all U,Q, p

described above. Via the above inclusions, the collection

of all Fξ, for ξ ∈ I, then forms an inverse system with

respect to the ordering given by setting U � p and Q � p if

p = (U,Q).

Under the above hypotheses, suppose that for every field

extension L of F, we are given a category A(L) of algebraic

structures over L(i.e. finite dimensional L-vector spaces with

additional structure, e.g. associative L-algebras), along with

base-change functors A(L) → A(L ′) when L ⊆ L ′. An A-

patching problem for (X̂,S) consists of an object Vξ in A(Fξ) for

each ξ ∈ I, together with isomorphisms φU,p : VU ⊗FU Fp →

Vp and φQ,p : VQ ⊗FQ Fp → Vp in A(Fp). These patching

problems form a category, denoted by PPA(X̂,S), and there

is a base change functor A(F)→ PPA(X̂,S).

15



If an object V ∈ A(F) induces a given patching problem

up to isomorphism, we will say that V is a solution to that

patching problem, or that it is obtained by patching the objects

Vξ. We similarly speak of obtaining a morphism over F by

patching morphisms in PPA(X̂,S). The next result is given

by Harbater and Hartmann [17, Theorem 7.2].

Theorem 3.1. Let T be a complete discrete valuation ring. Let

X̂ be a smooth connected projective T -curve with closed fibre

X. Let U1,U2 ⊆ X, let U0 = U1 ∩U2, and let Fi := FUi(i =

0, 1, 2). Let U = U1 ∪U2 and form the fibre product of groups

Br(F1)×Br(F0) Br(F2) with respect to the maps Br(Fi)→ Br(F0)

induced by Fi ↪→ F0. Then the base change map β : Br(F
U
) →

Br(F1)×Br(F0) Br(F2) is a group isomorphism.

The above Theorem says that giving a Brauer class over a

function field F is equivalent to giving compatible Brauer

classes over the patches. The nice thing about patching

Brauer classes over a function field F is that we have good

control of the index, which is stated in Harbater et al. [19,

Theorem 5.1].

Theorem 3.2. Under the above notation, letA be a central simple

F-algebra. Then ind(A) = lcmξ∈P∪U(ind(AFξ)).

To conclude this section, we record a variant of Hensel’s

Lemma from Harbater et al. [19, Lemma 4.5] that will be

used over and over again in the index computation.

16



Lemma 3.3. Let R be a ring and I an ideal such that R is I-

adically complete. Let X be an affine R-scheme with structure

morphism φ : X → SpecR. Let n > 0. If sn : Spec(R/In) →

X×R (R/In) is a section of φn : φ×R (R/In) and its image lies

in the smooth locus of φ, then sn may be extended to a section of

φ.
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4
S P L I T T I N G M A P

Let T be a complete discrete valuation ring with uniformizer

t and residue field k. By a smooth curve X̂ over T , we

will mean a scheme X̂ which is projective and smooth of

relative dimension 1 over Spec(T). In particular, X̂ is flat

and of finite presentation over Spec(T). Let F = K(X̂) be

the function field of X̂. Note that since X̂ is smooth, the

closed fibre X is smooth, integral and of codimension 1. In

addition, X is connected (c.f. Grothendieck and Dieudonné

[14, 18.5.19]) , hence X determines a discrete valuation ring

on F. Let F̂ = K̂(X̂) be the completion of F with respect to

this discrete valuation.

Throughout the paper, n will denote an integer which

is prime to the characteristic of k. We will be using the

following notation for cohomology groups in the sequel:

For an integer r, we let

µrn =


µ⊗rn for r > 0,

hom(µ⊗−rn ,µn) for r < 0.
For a fixed integer n, and for any field K, we will let

Hq(K, r) = Hq(K,µrn). In the more special case when r =

q− 1, we can shorten the notation even further as follows:
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Hq(K) = Hq(K,q− 1) = Hq(K,µq−1n ). In particular, H2(K) =

nBr(K) will be the n-torsion part of the Brauer group of K;

and H1(K) will be the n-torsion part of the character group

of K.

Adopting the above notation, in this section we will de-

fine a map s : H2(F̂) → H2(F) and show that s has the

following properties:

• s is a group homomorphism;

• s splits the restriction;

• s preserves index of Brauer classes.

Once such a map s is defined, we could use it to construct

indecomposable division algebras and noncrossed product

division algebras over F, as in Chapter 6.

4.1 construction over an open affine subset

Given an element γ̂ ∈ H2(F̂), we will define a lift γU to FU

of γ̂. Note that since F̂ is a complete discretely valued field

with t a unifomizer, and with k(X) the residue field. We

have an exact Witt Sequence as in Garibaldi et al. [10, II.7.10

and II.7.11],

0→ H2(k(X))→ H2(F̂)→ H1(k(X))→ 0. (4.1)

20



The sequence is is split (non-canonically) by the cup prod-

uct with (t) ∈ H1(k(X), 1). Hence each element γ̂ ∈ H2(F̂)

can be written as a sum γ0 + (χ0, t), with γ0 ∈ H2(k(X))

and χ0 ∈ H1(k(X)) (Note that we are identifying Hr(k(X))

as a subgroup of Hr(F̂), for r = 1, 2, as in Garibaldi et al. [10,

II.7.10 and II.7.11]). Here we use the notation (χ0, t) to de-

note the cup product χ0 ∪ (t), and we will use this notation

throughout the paper without further explanation. Also we

will fix the decomposition γ̂ = γ0 + (χ0, t) throughout the

sequel.

Let U be an open affine subset of X so that neither γ0 nor

χ0 ramifies at any closed point of U. This implies that γ0 ∈

H2(k[U]) and χ0 ∈ H1(k[U]) by purity(cf, Colliot-Thélène

[8] ), where k[U] denotes the ring of regular functions of

the affine scheme U.

By Cipolla [7], there exists a canonical isomorphism

H2(R̂U) → H2(k[U]) since R̂U is t-adically complete and

k[U] ∼= R̂U/(t); therefore there is a unique lift of γ0 to

H2(R̂U). According to Harbater et al. [19], Grothendieck and

Raynaud [12, Théorèm 8.3] implies that there is a unique

lift of χ0 to H1(R̂U) as well. Taking γ̃0 and χ̃0 as the lifts of

γ0 and χ0 to R̂U, we will let

γU = γ̃0 + (χ̃0, t) (4.2)
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be the lift of γ̂ to H2(FU).

4.2 construction over closed points

Fix an open affine subset U of X and let P = X\U. In

order to apply the patching result we recalled in Chapter

3, we need to define a γP for each P ∈ P in such a way

that when p = (U,P) is the unique branch of U at P, the

restriction to Fp of γP and γU agree with each other, i.e.,

resFp(γP) = resFp(γU) (Recall there are field embeddings

FP ↪→ Fp and FU ↪→ Fp for p = (U,P), as in Chapter 3,

hence there are restrictions res : H2(FU) → H2(Fp) and

res : H2(FP)→ H2(Fp). For more details on these restriction

maps, see Serre [33]).

Note that since X̂ is regular and the closed fibre X is

smooth, the maximal ideal of the local ring RP is generated

by two generators, t and π. So is R̂P.

We define γP in the following way: There is a field embed-

ding FU → Fp, hence a canonical restriction res : H2(FU)→

H2(Fp). Let γp be the image of γU under this restriction.

Observe that Fp is a complete discretely valued field with

residue field κ(p); furthermore, κ(p) is also a complete dis-

cretely valued field with residue field κ(P). Therefore, ap-
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plying Garibaldi et al. [10, II.7.10 and II.7.11] twice, we get

the following decomposition of H2(Fp):

H2(Fp) ∼= H2(κ(P))⊕H1(κ(P))⊕H1(κ(P))⊕H0(κ(P)). (4.3)

In other words, each element γp ∈ H2(Fp) can be writ-

ten as γp = γ0,0 + (χ1,π) + (χ2 + (π) ∪ ξr, t), where γ0,0 ∈

H2(κ(P)),χ1,χ2 ∈ H1(κ(P)), ξr ∈ H0(κ(P)). Note that here

(π)∪ ξr ∈ H1(κ(P)) is a character.

In order to define a lift for γp to FP, we first show that all

characters in H1(κ(p)) can be lifted by proving the following

lemma.

Lemma 4.1. Let χ ∈ H1(κ(p)) be a character. Then there is a

unique χ̃ ∈ H1(FP) that lifts χ.

Proof. Since κ(p) is a complete discretely valued field with

residue field κ(P), we have the classical Witt’s decomposi-

tion for χ,

χ = χ0 + (π)∪ ξr,

where χ0 ∈ H1(κ(P)), ξr ∈ H0(κ(P)) and (π) ∈ H1(κ(P), 1)

denotes the image of π under the Kummer map. Note that

χ0 can be lifted without any difficulty by Grothendieck and

Raynaud [12, Théorèm 8.3]; the only trouble comes from

the totally ramified part, (π)∪ ξr.
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Let L,L0/κ(p) be the field extension determined by χ,χ0

respectively. Then L0 is the maximal unramified subexten-

sion of κ(p) inside L and L/L0 is a totally ramified extension

determined by the character (π) ∪ ξr. Note that Fesenko

and Vostokov [9, Theorem II.3.5] implies that (π)∪ ξr can

be lifted to H1(FP) in a unique way as well, since κ(p) is a

complete discretely valued field.

Now we are ready to define a lift for γ̂ in H2(FP). Again

Cipolla [7] implies that H2(κ(P)) ∼= H2(R̂P) and Lemma

4.1 implies that χ1,χ2 + (π) ∪ ξr can be lifted to H1(R̂P)

uniquely. Hence each component of H2(Fp) can be lifted to

R̂P, and thus we will set

γP = γ̃0,0 + (χ̃1,π) + (χ̃2 + χ̃
′, t). (4.4)

where γ̃, χ̃1, χ̃2, χ̃ ′ are the lifts of γ0,0,χ1,χ2, (π) ∪ ξr to R̂P

(and hence to FP), respectively. Therefore this γP is a unique

lift of γp to FP. The assignment of sP(γp) = γP will yield a

map sP : H2(Fp)→ H2(FP). It is not hard to see that sP is a

group homomorphism, since it is a group homomorphism

on each of the components.
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4.3 the map is well defined

In this section we show that γU and γP that we constructed

in Section 4.1 and Section 4.2 are compatible in the sense

of patching, that is resFp(γU) = resFp(γP) for each P ∈ P =

X\U when p = (U,P) is the unique branch of U at P.

We claim that the compatibility will be proved if we

can show that sP splits the restriction map resFp : H2(FP)→

H2(Fp), or equivalently, resFp ◦ sP is the identity map. This is

true because γP = sP(γp) = sP ◦ resFp(γU), hence we would

have that resFp(γP) = resFp(γU) if resFp ◦ sP is the identity

map. So it suffices to prove the following

Proposition 4.2. sP as defined in 4.2 splits the restriction res :

H2(FP)→ H2(Fp), that is, res ◦ sP is the identity map.

Proof. Take an arbitrary element γp ∈ H2(Fp). As in section

4.2, we write γp = γ0,0+(χ1,π)+ (χ2+(π)∪ξr, t). Therefore

it is easily checked that

res ◦ sP(γp) = res ◦ sP(γ0,0 + (χ1,π) + (χ2 + (π)∪ ξr, t))

= res(γ̃0,0 + (χ̃1,π) + (χ̃2 + χ̃
′, t))

= γ0,0 + (χ1,π) + (χ2 + (π)∪ ξr, t)

= γp.
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Thus γU,γP will patch and yield γ ∈ H2(F), by Harbater

and Hartmann [17, Theorem 7.2]. To see that we do have

a map s : H2(F̂) → H2(F), it remains to show that γ is

independent of the choice of the open affine subset U of X.

In order to do this, we prove the following

Lemma 4.3. Let T be a complete discrete valuation ring with

residue field k; let X̂ be a smooth projective T -curve with function

field F and closed fibre X. Let F̂ be the completion of F with respect

to the discrete valuation induced by X, and denote by k(X) the

corresponding residue field. Take an element γ̂ = γ0 + (χ0, t) ∈

H2(F̂), where γ0 ∈ H2(k(X)) and χ0 ∈ H1(k(X)). Assume

that U1,U2 are two open affine subsets of X so that neither

γ0,χ0 is ramified on any point of U1 ∪U2. Let P1,P2 be the

complements of U1,U2 respectively. We construct two Brauer

classes γ,γ ′ ∈ H2(F) by patching as we did above, while usingU1

and U2 as the open affine subset in the construction, respectively,

then γ,γ ′ denote the same Brauer class in H2(F).

Proof. We first deal with the case where U1 is contained

in U2. In this case we have RU2 ↪→ RU1 and consequently

a field embedding FU2 ↪→ FU1 . Let γ1 be the restriction of

γ to H2(FU1) and γ2 be the restriction of γ ′ to H2(FU1 , re-

spectively. We must have γ1 = γ2 by the construction in

Section 4.1. Also by the construction in Section 4.2, it fol-

lows that for every P ∈ P2, resFP(γ) = resFP(γ
′). Therefore

it follows that γ = γ ′, by Harbater and Hartmann [17, The-
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orem 7.1 & 7.2]. This proves the Lemma in the case where

U1 is contained in U2.

In the general case, let U3 be an open affine subset of

U1 ∩U2. Clearly γ0 and χ0 are both unramified at every

point of U3. Let γ ′′ ∈ H2(F) be the Brauer class constructed

by patching as above, using U3 as the open affine subset in

the construction. It follows that γ ′′ = γ and γ ′′ = γ ′ since

U3 is contained in both U1 and U2, by what we just proved

for the case where one open affine subset is contained in

the other. Hence γ = γ ′ = γ ′′ ∈ H2(F), which proves the

Lemma in the general case.

4.4 s splits the restriction map

Recall the notation: let T be a complete discrete valuation

ring with residue field k and uniformizer t. Let X̂ be a

smooth projective T -curve with function field F and closed

fibre X. Let F̂ be the completion of F with respect to the

discrete valuation induced by X. Let s : H2(F̂)→ H2(F) be

the map defined by patching as in section 4.1 and section 4.2.

We will show that s splits the restriction map res : H2(F)→

H2(F̂). Hence index of Brauer classes cannot go down under

the map s, because restriction can never raise index. In

particular, we prove Proposition 4.4. But we need to recall

unramified cohomology first: For a field E, H2
nr(E) denotes

the unramified part of H2(E), or equivalently, H2
nr(E) =
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∩vH2(Ev), where v runs through all discrete valuations on

E, and Ev denotes the completion of E at v. See Colliot-

Thélène [8] for more details on the unramified cohomology.

Proposition 4.4. The map s is a section to the restriction map

resF̂ : H2(F)→ H2(F̂).

Proof. It suffices to show that res ◦ s is the identity map

on H2(F̂). Since H2(F̂) ∼= H2(k(X))⊕H1(k(X)), it suffices to

show that resF̂ ◦ s is the identity map on both components;

that is, given γ̂ = γ0 + (χ0, t) where γ0 ∈ H2(k(X)) and

χ0 ∈ H1(k(X)), the Proposition will follow if we can show

that resF̂ ◦ s(γ0) = γ0 and resF̂ ◦ s((χ0, t)) = (χ0, t).

Let’s first show that s splits restriction on H2(k(X)). Let’s

call the restriction of s to H2(k(X)) s ′ to simplify notation.

We have the following commutative diagram:

H2(R̂U)
� � f //

_�

g

��

H2(k(X))

s ′
��

H2(FU) H2(F)resFU
oo

In the above diagram, f is the composition of the restric-

tion H2(k[U])→ H2(k(X)) and the isomorphism H2(R̂U)→

H2(k[U]) as in Cipolla [7]; and g is the inflation. The com-

mutativity of the diagram follows from the construction we

outlined in Section 4.1. Note that since γ0 ∈ H2(k(X)) is

unramified at any point of U, we have that resFU ◦ s ′(γ0) has

to lie in H2(R̂U). This implies that we can find an inverse

image under g for resFU ◦ s(γ0) even though in general, g

does not have an inverse. Using g−1 as a shorthand nota-
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tion(keep in mind g−1 does not exist at all), we could define

a map f ◦ g−1 ◦ resFU from the subgroup of H2(F) consisting

of images of elements of H2(R̂U) under the composition

s ′ ◦ f. This map is a restriction; and s ′ splits this composi-

tion by commutativity of the diagram. This proves that s

splits the restriction on the unramified part H2(k(X)).

Now we will show that s splits the restriction on H1(k(X))

as well. By construction of s, we know that res ◦ s((χ0, t)) =

(χ ′, t) for some χ ′ ∈ H1(F̂). Therefore in order to show that

resF̂ ◦ s((χ0, t)) = (χ0, t), it suffices to show that ram(resF̂ ◦

s((χ0, t))) = χ0, where ram : H2(F̂)→ H1(k(X)) denotes the

ramification map on H2(F̂) with respect to the valuation

determined by the closed fibre X. Since χ0 ∈ H1(k[U]), we

have ram(resF̂ ◦ s((χ0, t))) = ram((χ̃0, t)) where χ̃0 denotes

the lift of χ0 to H1(R̂U), as we did in Section 4.1 (Since

H1(R̂U) ∼= H1(k[U]), χ̃0 can be viewed as as element of

H1(k[U]), and hence element of H1(k(X)) via the injection

H1(k[U]) ↪→ H1(k(X)), and finally element of H1(F̂) via the

injection H1(k(X)) ↪→ H1(F̂)). Therefore the image in H1(F̂)

of χ̃0 under the composition of these maps is in fact χ0,

since all these maps are injective. Then it is easy to see that

ram((χ̃0, t)) = χ̃0 = χ0 ∈ H1(k[X]), as desired.

The following corollary is immediate:

Corollary 4.5. Index of Brauer classes cannot go down under

the map s.
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Proof. Take γ̂ ∈ H2(F̂) and let γ = s(γ̂). By Proposition

4.4 we must have that γ̂ = resF̂(γ), therefore ind(γ̂)|ind(γ).

This proves that s can never lower index of Brauer classes.
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5
T H E S P L I T T I N G M A P P R E S E RV E S I N D E X

In this section, we will show that the splitting map s that

we defined in Chapter 4 has one more property that is

crucial to the construction of indecomposable and non-

crossed product division algebras over p-adic curves, that

is, s preserves index of Brauer classes. In other words,

ind(γ̂) = ind(γ) = ind(s(γ̂)). We make the following el-

ementary observation, which is true for Brauer classes over

an arbitrary field.

Proposition 5.1. Let k be an arbitrary field. Let γ ∈ H2(k) be a

Brauer class with the following decomposition: γ = γ0 + (χ, t),

where γ0 ∈ H2(k), χ ∈ H1(k) and t is an arbitrary element of

k. Then ind(γ)|ind(γ0,l) · exp(χ), where γ0,l denotes the base

extension of γ0 to l/k, where l is the field extension determined

by χ.

Proof. Let E/l be a minimal extension that splits γ0,l. Then

[E : l] = ind(γ0,l). Also there is some E ′/k with [E ′ :

k] = exp(χ) which splits χ and hence (χ, t); therefore EE ′

will split γ, furthermore it is not hard to see that [EE ′ :

k]|ind(γ0,l) · exp(χ) and hence ind(γ)|ind(γ0,l) · exp(χ).
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We will apply Harbater et al. [19, Theorem 5.1], which

states that ind(γ) = lcm(ind(γU), ind(γP)) for each P ∈ P.

Since we already showed that s can never lower index

of Brauer classes as in Chapter 4, we will be done if we

could show that ind(γ)|ind(γ̂); therefore it suffices to show

that ind(γU)|ind(γ̂) and ind(γP)|ind(γ̂) for each P ∈ P,

respectively. We will deal with them in order.

We start by recalling the notion of Azumaya algebras and

their generalized Severi-Brauer varieties. The notion of a

central simple algebra over a field can be generalized to the

notion of an Azumaya algebra over a domain R (cf. Saltman

[31, Chapter 2], or Grothendieck [11, Part I, Section 1]). The

degree of an Azumaya algebra A over R is the degree of

A⊗R F as a central simple algebra over the fraction field F

over R. The Brauer group of a domain R is defined as the set

of equivalence classes of Azumaya algebras with the anal-

ogous operations, where one replaces the vector spaces Vi

with projective modules in the definition of Brauer equiv-

alences. If A is an Azumaya algebra of degree n over a

domain R, and 1 6 i < n, there is a functorially associated

smooth projective R-scheme SBi(A), called the i-th gener-

alized Severi-Brauer variety of A (cf. Van den Bergh [35, p.

334]). For each R-algebra S, the S-points of SBi(A) are in

bijection with the right ideals of AS = A⊗R S that are di-

rect summands of the S-module AS having dimension (i.e.

S-rank) ni. If R is a field F, so that A is a central simple F-
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algebra, and if E/F is a field extension, then SBi(A)(E) 6= φ

if and only if ind(AE) divides i (cf. Knus et al. [24, Propo-

sition 1.17]). Here AE ∼= Matm(DE) for some E-division

algebra DE and some m > 1, and the right ideals of E-

dimension ni are in natural bijection with the subspaces of

DmE of DE-dimension i/ind(AE) (cf. Knus et al. [24, Proposi-

tion 1.12, Definition 1.9]). Thus the F-linear algebraic group

GL1(A) = GLm(DF) acts transitively on the points of the

F-scheme SBi(A). We record Knus et al. [24, Proposition

1.17] here since we will be using it over and over again in

the sequel.

Proposition 5.2. Let A be a central simple algebra over a field

F. The Severi-Brauer variety SBr(A) has a rational point over

an extension K/F if and only if the index ind(AK) divides r. In

particular, SB(A) has a rational point over K if and only if K

splits A.

5.1 index computation over affine open set

We compute ind(γU) in this section; in particular, we show

that ind(γU)|ind(γ̂). Thanks to Lemma 4.3, it suffices to

show that there exists an open affine subset V ⊂ X so that

ind(γV)|ind(γ̂) since we could replace U by V if necessary

in the construction we outlined in section 4.1 and this would

not change γ ∈ H2(K(X̂) by Lemma 4.3. Therefore we will
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prove the following proposition, which shows that there

exists such an open affine subset V .

Proposition 5.3. Let T be a complete discrete valuation ring.

Let X̂ be a smooth projective T -curve with closed fibre X. Let

F be the function field of X̂ and F̂ the completion of F with re-

spect to the discrete valuation determined by X. Then for every

γ̂ ∈ H2(F̂), there exists an affine open subset V ⊂ X such that

ind(γV)|ind(γ̂), where γV is the lift of γ̂ to FV as defined in

section 4.1.

Proof. Recall that γ̂ = γ0 + (χ0,t) ∈ H2(F̂) where γ0 ∈

H2(k(X)) and χ0 ∈ H1(k(X)). Therefore ind(γ̂) = ind(γ0,l) ·

exp(χ0), where l/k(X) is the field extension determined by

χ0, by Jacob and Wadsworth [22, Theorem 5.15], since F̂ is a

complete discretely valued field.

Let U be an open affine subset of X such that neither

γ0 nor χ0 ramifies on any point of U. Recall that γU =

γ̃0 + (χ̃0, t) where γ̃0 ∈ H2(R̂U) and χ̃0 ∈ H1(R̂U). Note that

exp(χ̃0) = exp(χ0) since H1(R̂U) ∼= H1(k(X)). By Proposi-

tion 5.1, we have ind(γU)|ind(γ̃0,S) · exp(χ̃0), where S/R̂U

denotes the Galois cyclic extension determined by χ̃0. Note

when V ⊆ U, we have Hr(k[U]) ⊆ Hr(k[V]) by purity, and

hence Hr(R̂U) ⊆ Hr(R̂V); so we have γ̃0 ∈ H2(R̂V) and

χ̃0 ∈ H1(R̂V). Therefore it suffices to find some affine open

subset V ⊂ U such that ind(γ̃0,S ′)|ind(γ0,l), where S ′/R̂V

denotes the Galois cyclic extension determined by χ̃0.
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Let i = ind(γ0,l) be the index of the restriction of γ0

to l. Then Proposition 5.2 implies that SBi(γ0)(l) 6= φ; in

other words, there is an l-rational point in the i-th gen-

eralized Severi-Brauer variety of γ0. Therefore the mor-

phism π : SBi(γ0)×k(X) l→ Spec(l) has a section Spec(l)→

SBi(γ0) ×k(X) l over Spec(k(X)), the generic point of the

closed fibre U of Spec(R̂U). Choose a Zariski dense open

subset V ⊆ U such that this section over Spec(k(X)) ex-

tends to a section over V , and such that the image of this

latter section lies in an open subset of SBi(γ0)×k(X) l that

is affine. Then by Lemma 3.3, the section over V lifts to a

section over Spec(R̂V), thus we obtain an L-rational point

of SBi(γ̃0)×R̂V S
′, where L/FV is the Galois cyclic extension

determined by χ̃0; or equivalently, L is the fraction field of

S ′. This implies that ind(γ̃0,S ′)|i = ind(γ0,l) by Proposition

5.2 again.

5.2 index computation over closed points

It remains to show ind(γP)|ind(γ̂). This is what we are

going to do in this section. Note that γP is defined as sP ◦

resFp(γU), where resFp can only lower index of γU. Since

we have already shown that ind(γU)|ind(γ̂), we have that

ind(γ) will be completely determined by ind(γU) if we

could show that ind(γp) does not go up under the map
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sP. Therefore we just need to show that sP cannot increase

index of Brauer classes, or, ind(γP) = ind(sP(γp))|ind(γp) .

We compute ind(γp) first. Since Fp is a complete discretely

valued field, we have ind(γp) = ind((γ0,0 + (χ1,π))M) ·

exp(χ2 + (π) ∪ ξr), where M/κ(p) is the Galois cyclic ex-

tension determined by χ2 + (π) ∪ ξr ∈ H1(κ(p)) by Jacob

and Wadsworth [22, Theorem 5.15]. It is not hard to com-

pute ind((γ0,0 + (χ1,π))M): Since M is a finite extension of

κ(p), which is a complete discretely valued field, we have

that M is a complete discretely valued field as well. Let e

be the ramification index of M/κ(p) and M̄ the residue

field of M. Then by Serre [33, Exercise XII.3.2], (γ0,0 +

(χ1,π))M = (γ0,0)M̄ + (e · χ1,π ′), where π ′ is some uni-

formizer of M. Let L/κ(p) be the field extension deter-

mined by e ·χ1 and L̄ the residue field of L. Then ind((γ0,0+

(χ1,π))M) = ind((γ0,0)M̄+(e ·χ1,π ′)) = ind((γ0,0)M̄L̄) ·exp(e ·

χ1).

Now that we have an index formula for Brauer classes

over Fp, we are ready to show the following

Proposition 5.4. Let T be a complete discrete valuation ring. Let

X̂ be a smooth projective T -curve with closed fibre X. Suppose

that U is an open affine subset of X and P ∈ X\U is a closed

point. Let p = (U,P) be the unique branch of U at P and let γP

and γp be defined as above. Then we have ind(γP)|ind(γp).

Proof. By Proposition 5.1 we have that ind(γP)|ind((γ̃0,0 +

(χ̃1,π))M̃) · exp(χ̃2), where M̃/FP is the Galois cyclic exten-
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sion determined by χ̃2 + χ̃ ′. We claim that exp(χ̃2 + χ̃ ′) =

exp(χ2 + (π)∪ ξr): we have that

exp(χ̃2 + χ̃ ′) = lcm(exp(χ̃2), exp(χ̃ ′))

and exp(χ2 + (π)∪ ξr) = lcm(exp(χ2), exp((π)∪ ξr)). Since

exp(χ̃2) = exp(χ2) and exp(χ̃ ′) = exp((π) ∪ ξr), we have

that exp(χ̃2+ χ̃ ′) = exp(χ2+(π)∪ ξr). Therefore this propo-

sition will follow if we can show that

ind((γ̃0,0 + (χ̃1,π))M̃)|ind((γ0,0)M̄ + (e · χ1,π ′)).

Next we compute

(γ̃0,0 + (χ̃1,π))M̃ = (γ̃0,0)M̃ + (χ̃1,π)M̃

= (γ̃0,0)M̃ + ((χ̃1)M̃,π)

= (γ̃0,0)M̃ + ((χ̃1)M̃, (π ′)e)

= (γ̃0,0)M̃ + (e · (χ̃1)M̃,π ′)

By Proposition 5.1 again we immediately see ind((γ̃0,0 +

(χ̃1,π))M̃)|ind((γ̃0,0)M̃L̃) ·exp(e · (χ̃1)M̃), where L̃/FP denotes

the Galois cyclic extension determined by e · χ̃1. Clearly

exp(e · (χ̃1)M̃)| exp(e · (χ1)), so we will be done if we can

show that ind((γ̃0,0)M̃L̃)|ind((γ0,0)M̄L̄), which we will do in

the following Lemma 5.5.

Lemma 5.5. In line with the notation in 5.4, we have that

ind((γ̃0,0)M̃L̃)|ind((γ0,0)M̄L̄).
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Proof. Let M̃ ′/FP be the Galois cyclic extension determined

by χ2. Clearly it suffices to prove ind((γ̃0,0)M̃ ′L̃)|ind((γ0,0)M̄L̄)

since ind((γ̃0,0)M̃L̃)|ind((γ̃)M̃ ′L̃). Let i = ind((γ0,0)M̄L̄). By

Proposition 5.2, we have that SBi(γ0,0)(M̄L̄) 6= φ, or equiva-

lently, that the morphism SBi(γ0,0)×κ(P) M̄L̄ has a section

Spec(M̄L̄) → SBi(γ0,0)×κ(P) M̄L̄. By Lemma 3.3, this sec-

tion lifts to a section over Spec(R̂P); thus we obtain a M̃ ′L̃-

rational point of SBi(γ̃0,0)×R̂P S (note that γ0,0 ∈ H2(R̂P)),

where S is the integral closure of R̂P in M̃ ′L̃; or equiva-

lently, a M̃ ′L̃-rational point of SBi(γ̃0,0)×FP M̃ ′L̃. Therefore

ind((γ̃0,0)M̃ ′L̃)|i again by Proposition 5.2, which proves this

lemma.

The following Corollary is immediate:

Corollary 5.6. The homomorphism s : H2(F̂) → H2(F) pre-

serves index of Brauer classes.

Proof. This is simply Corollary 4.5 plus Proposition 5.4.
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6
I N D E C O M P O S A B L E A N D N O N C R O S S E D

P R O D U C T D I V I S I O N A L G E B R A S O V E R

C U RV E S O V E R C O M P L E T E D I S C R E T E

VA L U AT I O N R I N G S

Let T be a complete discrete valuation ring. Note that

throughout this chapter, we will assume that T has finite

residue field k. Let X̂ be a smooth projective T -curve with

closed fibre X. Let F be the function field of X̂ and F̂ the

completion of F with respect to the discrete valuation deter-

mined by X. We construct indecomposable division algebras

and noncrossed product division algebras over F of prime

power index for all primes q where q is different from the

characteristic of the residue field of T . Note that the exis-

tence of such algebras are already known when residue

field of T is a finite filed, cf. Brussel et al. [6]. Our construc-

tion here is almost identical to Brussel et al. [6, Section 4],

we list it here for the reader’s convenience.
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6.1 indecomposable division algebras over f

First we recall the construction of indecomposable division

algebras over F̂, this is done in Brussel et al. [6, Proposition

4.2].

Proposition 6.1. Let T be a complete discrete valuation ring

with finite residue field and let X̂ be a smooth projective curve

over Spec(T) with closed fibre X. Let F be the function field of X̂

and F̂ the completion of F with respect to the discrete valuation

induced by X. Let e, i be integers satisfying l 6 e 6 2e− 1. For

any prime q 6= char(k), there exists a Brauer class γ̂ ∈ H2(F̂)

satisfying ind(γ̂) = qi, exp(γ̂) = qe and whose underlying

division algebra is indecomposable.

Then we lift γ̂ to F by using the splitting map swe defined

in section 4, and show that the lift is in fact indecomposable.

Theorem 6.2. In the notation of Theorem 6.1. Then there exists

an indecomposable division algebra D over F such that ind(D) =

qi and exp(D) = qe .

Proof. By Proposition 6.1, there exists γ̂ ∈ Br(F̂) with ind(γ̂) =

qi and exp(γ̂) = qe and whose underlying division algebra

is indecomposable. By Corollary 5.6, γ = s(γ̂) has index qi

too. Since s splits the restriction map, we have exp(γ) = qe.

We show the division algebra underlying γ is indecompos-

able.
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We proceed by contradiction. Assume γ = β1 + β2 rep-

resents a nontrivial decomposition, then γ̂ = resF̂(β1) +

resF̂(β2). Since the index can only go down under restric-

tion, we have that ind(γ̂) = ind(resF̂(β1)) · ind(resF̂(β2)),

which represents a nontrivial decomposition of the division

algebra underlying γ̂, a contradiction.

6.2 noncrossed products over f

Again we will construct noncrossed product division alge-

bras over F̂ and use the splitting map s to lift it to F and

show that the lift represents a noncrossed product division

algebra over F.

The construction over F̂ is in line with Brussel [5] where

noncrossed products over Q(t) and Q((t)) are constructed.

In order to mimic the construction in Brussel [5], we need

only note that both Chebotarev density theorem and the

Gruwald-Wang theorem hold for global fields which are

characteristic p function fields. Then the arguments in Brus-

sel [5] apply directly to yield noncrossed products over

K̂(X̂) of index and exponent given below:

The following is Brussel et al. [6, Theorem 4.7].

Theorem 6.3. Let T be a complete discrete valuation ring with

finite residue field k and let X̂ be a smooth projective curve over

Spec(T). Let F be the function field of X̂ and let F̂ be the com-

pletion of F with respect to the discrete valuation induced by
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the closed fibre. For any positive integer a, let εa be a primitive

a-th root of unity. Set r and s to be maximum integers such that

µqr ⊂ k(X)× and µqs ⊂ k(X)(εqr+1). Let n,m be integers such

that n > 1,n > m and n,m ∈ r ∪ [s,∞). Let a, l be integers

such that l > n+m+ 1 and 0 6 a 6 1− n. (See Brussel [5,

Page 384-385] for more information regarding these constraints.)

Let q 6= char(k) be a prime number. Then there exists noncrossed

product division algebras over F̂ with index ql+1 and exponent

ql.

Corollary 6.4. Let R,k, X̂,X, F, F̂,q,a, l be as in Theorem 6.3.

Then there exists noncrossed product division algebras over F of

index ql+a and exponent ql.

Proof. Let γ̂ be the Brauer class representing a noncrossed

product over F̂ of index ql+a and exponent ql. Let D be

the division algebra underlying the Brauer class s(γ̂). By

Corollary 5.6, we know that ind(D) = ind(γ̂).

Assume that D is a crossed product with maximal Galois

subfield M/F. Then MF̂ splits γ̂, is of degree ind(γ̂) and

is Galois. This contradicts the fact that γ̂ is a noncrossed

product.

42



B I B L I O G R A P H Y

[1] A. A Albert and H. Hasse. A determination of all

normal division algebras over an algebraic number

field. Transactions of the American Mathematical Society,

34(3):722–726, 1932. (Cited on page 11.)

[2] S. A Amitsur. On central division algebras. Israel

Journal of Mathematics, 12(4):408—420, 1972. (Cited on

pages 2 and 11.)

[3] E. S Brussel. Decomposability and embeddability of

discretely henselian division algebras. Israel Journal of

Mathematics, 96(1):141–183, 1996. (Cited on page 12.)

[4] E. S Brussel. Noncrossed products over kp(t). Trans-

actions of the American Mathematical Society, page

2115–2129, 2001. (Cited on page 2.)

[5] Eric Brussel. Noncrossed products and nonabelian

crossed products over Q(T) and Q((T)). American

Journal of Mathematics, 117(2):377–393, April 1995.

ISSN 00029327. URL http://www.jstor.org/stable/

2374919. ArticleType: primary_article / Full publica-

tion date: Apr., 1995 / Copyright © 1995 The Johns

43

http://www.jstor.org/stable/2374919
http://www.jstor.org/stable/2374919


Hopkins University Press. (Cited on pages 2, 11, 41,

and 42.)

[6] Eric Brussel, Kelly McKinnie, and Eduardo Tengan.

Indecomposable and noncrossed product division al-

gebras over function fields of smooth p-adic curves.

0907.0670, July 2009. URL http://arxiv.org/abs/

0907.0670. (Cited on pages 3, 39, 40, and 41.)

[7] M. Cipolla. Remarks on the lifting of algebras

over henselian pairs. Mathematische Zeitschrift, 152(3):

253–257, 1977. (Cited on pages 21, 24, and 28.)

[8] J. L. Colliot-Thélène. Birational invariants, purity and

the Gersten conjecture, in “K-theory and algebraic ge-

ometry: connections with quadratic forms and division

algebras (Santa barbara, CA, 1992)”, 1-64. In Proc. Sym-

pos. Pure Math, volume 58, Santa Barbara,CA, 1992.

(Cited on pages 21 and 28.)

[9] I. B Fesenko and S. V. Vostokov. Local fields and their

extensions. Amer Mathematical Society, 2002. (Cited

on page 24.)

[10] S. Garibaldi, A. Merkurjev, and J. P Serre. Cohomolog-

ical invariants in galois cohomology, university lecture

series, vol. 28. In Amer. Math. Soc, 2003. (Cited on

pages 20, 21, and 23.)

44

http://arxiv.org/abs/0907.0670
http://arxiv.org/abs/0907.0670


[11] Alexander Grothendieck. Le groupe de Brauer I, II,

III. Dix exposés sur la cohomologie des schémas, Adv. Stud.

Pure Math, 3:46–188, 1968. (Cited on page 32.)

[12] Alexander Grothendieck and Michele Raynaud.

Revêtements étales et groupe fondamental (SGA 1).

math/0206203, June 2002. URL http://arxiv.org/abs/

math/0206203. (Cited on pages 21 and 23.)

[13] Alexandre Grothendieck and Jean Dieudonné.

Éléments de géométrie algébrique (rédigés avec

la collaboration de jean dieudonné) : IV. Étude

locale des schémas et des morphismes de sché-

mas, seconde partie. Publications Mathématiques de

l’IHÉS, 24:5–231, 1965. URL http://www.numdam.org:

80/numdam-bin/feuilleter?id=PMIHES_1965__24_.

(Cited on page 14.)

[14] Alexandre Grothendieck and Jean Dieudonné. Élé-

ments de géométrie algébrique (rédigés avec la col-

laboration de jean dieudonné) : IV. Étude locale des

schémas et des morphismes de schémas, quatriéme

partie. Publications Mathématiques de l’IHÉS, 32:5–361,

1967. (Cited on page 19.)

[15] T. Hanke. An explicit example of a noncrossed product

division algebra. Mathematische Nachrichten, 271(1):

51–68, 2004. (Cited on page 2.)

45

http://arxiv.org/abs/math/0206203
http://arxiv.org/abs/math/0206203
http://www.numdam.org:80/numdam-bin/feuilleter?id=PMIHES_1965__24_
http://www.numdam.org:80/numdam-bin/feuilleter?id=PMIHES_1965__24_


[16] D. Harbater. Patching and galois theory. Galois groups

and fundamental groups, page 313, 2003. (Cited on

page 3.)

[17] D. Harbater and J. Hartmann. Patching over fields.

preprint arXiv, 710, 2007. (Cited on pages 3, 13, 16,

and 26.)

[18] D. Harbater, J. Hartmann, and D. Krashen. Patching

subfields of division algebras. Imprint, 2009. (Cited on

pages 3 and 13.)

[19] David Harbater, Julia Hartmann, and Daniel

Krashen. Applications of patching to quadratic

forms and central simple algebras. Inventiones

Mathematicae, 178(2):231–263, November 2009. ISSN

00209910. doi: 10.1007/s00222-009-0195-5. URL

http://search.ebscohost.com/login.aspx?direct=

true&db=a9h&AN=44311896&site=ehost-live. (Cited

on pages 3, 13, 14, 16, 21, and 32.)

[20] H. Hasse, R. Brauer, and E. Noether. Beweis eines

hauptsatzes in der theorie der algebren. Journal fdrua

Mathematik, 167:399–404, 1932. (Cited on page 11.)

[21] B. Jacob. Indecomposible division algebras of prime

exponent. Journal für die reine und angewandte Mathe-

matik (Crelles Journal), 1991(413):181–197, 1991. (Cited

on page 12.)

46

http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=44311896&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=44311896&site=ehost-live


[22] B. Jacob and A. Wadsworth. Division algebras over

henselian fields. J. Algebra, 128(1):126–179, 1990. (Cited

on pages 12, 34, and 36.)

[23] B. Jacob and A. R Wadsworth. A new construction of

noncrossed product algebras. Transactions of the Ameri-

can Mathematical Society, 293(2):693–721, 1986. (Cited

on pages 2 and 11.)

[24] M. A. Knus, A. S. Merkurjev, M. Rost, and J. P. Tignol.

The book of involutions. Number 44 in Colloquium Publ.

Amer. Math. Soc., Providence, RI, 1998. (Cited on

page 33.)

[25] K. McKinnie. Indecomposable p-algebras and galois

subfields in generic abelian crossed products. Journal

of Algebra, 320(5):1887–1907, 2008. (Cited on page 12.)

[26] Z. Reichstein and B. Youssin. Splitting fields of G-

varieties. Arxiv preprint math/9910034, 1999. (Cited on

page 2.)

[27] I. Reiner. Maximal orders. Bull. Amer. Math. Soc. 82

(1976), 526-530. DOI: 10.1090/S0002-9904-1976-14083-9

PII: S, 2(9904):14083–9, 1976. (Cited on page 10.)

[28] L. H. Rowen. Polynomial identities in ring theory, acad.

Press, New York, 1980. (Cited on page 11.)

[29] David J. Saltman. Noncrossed products of small expo-

nent. Proceedings of the American Mathematical Society,

47



68(2):165–168, February 1978. ISSN 00029939. URL

http://www.jstor.org/stable/2041764. ArticleType:

primary_article / Full publication date: Feb., 1978

/ Copyright © 1978 American Mathematical Society.

(Cited on pages 2 and 11.)

[30] David J. Saltman. Indecomposable division algebras.

Communications in Algebra, 7(8):791–817, 1979. (Cited

on page 12.)

[31] David J. Saltman. Lectures on division algebras. American

Mathematical Society, 1999. (Cited on page 32.)

[32] A. Schofield and M. Van den Bergh. The index of a

brauer class on a Severi-Brauer variety. Trans. Amer.

Math. Soc, 333:729–739, 1992. (Cited on page 12.)

[33] J. P Serre. Local fields. Translated from the French by

Marvin Jay Greenberg, volume 67 of Graduate Texts in

Mathematics. 1979. (Cited on pages 22 and 36.)
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