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Abstract

The area of observer agreement has rapidly developed over the last half-century. A

substantial number of coefficients and approaches have been developed and used to

assess the agreement between different observers or methods of measurement. In this

dissertation, a new permutation-based coefficient for the evaluation of agreement be-

tween two observers making replicated and repeated binary or quantitative measure-

ments is introduced. The new coefficient of individual equivalence (CIE) compares

the observed disagreement between the observers to its expected value under the hy-

pothesis of individual equivalence. This hypothesis states that for each subject, the

conditional distributions of the readings of the two observers are identical. Therefore,

from a statistical viewpoint, it does not matter which observer makes the reading on

this subject. In other words, under individual equivalence the observers can be used

interchangeably.

Let K and L denote the number of replicated observations that are available from

observers X and Y, respectively, on a given subject. Then the expected disagreement

under individual equivalence for this subject is based on the K+L choose K possible

assignments of X ’s and Y ’s to the K+L observations made on this subject. Under in-

dividual equivalence, all these assignments have the same probability. Simple methods

for nonparametric estimation of the new coefficient and its standard error are derived

for both binary and continuous outcomes. Furthermore, model-based approaches are

developed for estimation of the CIE for binary and continuous assessments. Model-

based methods for estimation of the CIE from repeated binary outcomes are also

discussed. Simulation studies confirm the validity of the estimated coefficient and its

standard error. Finally, the new coefficient is compared with the coefficient of indi-

vidual agreement (CIA), Kappa statistic and the concordance correlation coefficient

(CCC). Examples with binary and continuous outcomes are used to illustrate the new

coefficient. One example involves the evaluation of mammograms by ten radiologists



and another one compares magnetic resonance angiography (MRA) techniques for

noninvasive screening of carotid stenosis to an invasive intra-arterial angiogram (IA)

method.
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1

Chapter 1

Background and Motivation

1.1 What is Agreement Study?

The topic of agreement among different raters is of importance in many domains of

our life. For example, in the Olympic Games, the medals and ranking in gymnastics

and diving are based on the scoring of several judges on several different disciplines.

Usually, the extreme ratings (highest and lowest) are removed from the pool of scores

and used for the ranking (Von Eye and Young Mun 2005).

In the academic area, for example, in Phase II cancer clinical trials, the effect of

treatment is measured by imaging devices like computed tomography (CT) or mag-

netic resonance imaging (MRI), and the success of the treatment is usually decided

by a team of radiologists, oncologists and surgeons. Obviously, agreement among the

radiologists plays a major role in cancer treatment. Consensus between members of

the diagnostic team is necessary in order to judge a treatment as a failure, a success,

or worthy of further consideration (Broemeling 2009).

The earliest mention of agreement can be traced back to 1889 and 1901 when

Pearson (Liao and Lewis 2000, Haggard 1958, Song 2003) studied fraternal assem-

blance in genetics by using the correlation coefficient. During that time, people could
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not tell the difference between agreement and correlation so that correlation coeffi-

cient is used as an index to assess agreement. Later, this question has been corrected

by several researchers (Lin 1989, Muller and Petra 1994). The correlation coefficient,

which measures the linear association between two variables, only provides partial

information about agreement. For example (Haber and Barnhart 2006), if the read-

ings from one rater are exactly twice of the second rater, the correlation of coefficient

between the two raters is 1. However, the actual agreement could be low.

Many agreement studies during the early times were in psychological research.

Cohen’s original kappa, which is the most popular coefficient to measure agreement

between two raters with binary or nominal scales of readings, was published in Ed-

ucational and Psychological Measurement in 1960. Furthermore, the weighted kappa

which can be extended to ordinal scales of measurements was presented in Psycho-

logical Bulletin in 1968.

Later on, agreement studies have been heavily used in medical related research.

In clinical studies, agreement is often concerned with assessing whether different ob-

servers, such as raters, methods or instruments for measuring both continuous and

discrete outcomes produce similar results. We are always interested in whether a new

rater can replace the standard rater if the new one is less expensive and can reproduce

the same or comparable outcome, or whether a new rater and the existing one can

be used interchangeably at individual level.

Traditionally, other terminologies such as validity, reliability, repeatability or re-

producibility may have been used in studies which are designed to measure agreement.

Those terminologies have been explicitly defined in Barnhart et al. (2007b). In gen-

eral, agreement is defined as an index to evaluate the magnitude of the conformity

of readings compared to a true value when the gold standard is available or the

consistency of multiple readings when the true value is unavailable (Song 2003). Van-

geneugden et al. (2005), Molenberghs et al. (2007), Barnhart et al. (2007b) compared
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agreement with reliability: agreement assesses the degree of closeness between read-

ings within a subject, while reliability assesses the degree of differentiation between

subjects; i.e., the ability to tell subjects apart from each other within a population.

In this dissertation, we motivate our research through two examples. Next, we

introduce a new coefficient, the coefficient of individual equivalence (CIE), which

measures agreement for both qualitative and quantitative replicated assessments. The

existing methods for measuring agreement for binary, continuous and repeated binary

outcomes are reviewed in the following sections. Later, a Bayesian approach and its

application to agreement studies are briefly illustrated.
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1.2 Motivating Examples

1.2.1 Mammogram Example

In a study described by Elmore et al. (1994), 150 female patients underwent a mam-

mography at the Yale-New Haven Hospital in 1987. Each of ten radiologists read

each patient’s mammogram and classified it into one of four diagnosis categories: (1)

normal, (2) abnormal - probably benign, (3) abnormal - intermediate or (4) abnor-

mal - suggestive of cancer. Four months later, the same films were reviewed again,

in a random order, by the same radiologists. We considered the two evaluations as

replications. In the present analysis, we considered a radiologist’s rating as “positive”

if the mammogram was classified into the fourth category, which was abnormal and

suggestive of cancer. Otherwise, the rating was considered as “negative”. Each of

the study participants was followed up for three years, and then a definitive diagnosis

was made. The definitive diagnosis was breast cancer if it was histopathologically

confirmed within the three years of follow-up. We considered this diagnosis as the

patient’s “true” breast cancer status. Based on this criterion, 27 of 150 patients (18%)

had breast cancer. Ten radiologists were involved. Table 1.1 presents the proportions

of positive ratings as well as sensitivity and specificity for the ten radiologist. Since

Table 1.1: Proportions of positive ratings, sensitivity and specificity for each radiol-
ogist in the mammography study

Radiologist Proportion rated positive Sensitivity Specificity

A 0.208 0.815 0.927
B 0.120 0.630 0.967
C 0.077 0.333 0.980
D 0.223 0.778 0.898
E 0.180 0.704 0.935
F 0.160 0.722 0.963
G 0.177 0.574 0.911
H 0.107 0.500 0.980
I 0.280 0.796 0.833
J 0.240 0.685 0.858



5

the total of sensitivity and specificity was highest for radiologist A, we illustrated the

new coefficients by estimating the agreement between radiologist A and each of the

remaining nine radiologists. Radiologist A was considered as the reference when we

used methods for comparing a new observer to a refence observer. A summary table

(Table 1.2) which showed the classification of diagnostic interpretation of patients

from all ten radiologists. Twenty seven patients were confirmed with cancer; while

123 patients did not present apparent symptoms of breast cancer.

Table 1.2: Diagnostic interpretation for Mammogramphy data

Diagnostic Interpretation
Cancer Absence of Cancer

(n = 27 (18%)) (n = 123 (82%))
Reading 1 Reading 2 Reading 1 Reading 2

Normal 22 16 507 480
Abnormal, probably benign 28 21 399 351
Abnormal, indeterminate 46 54 234 303
Abnormal, suggestive of cancer 174 179 90 94

1.2.2 Carotid Stenosis Example

This data set is from a carotid stenosis screening study conducted at Emory Uni-

versity from 1994 to 1996. The study was designed to determine the suitability of

magnetic resonance angiography (MRA) for noninvasive screening of carotid artery

stenosis, compared to invasive intra-arterial angiogram (IA). The main interest was in

comparing two MRA techniques, two-dimensional (MRA-2D) and three-dimensional

(MRA-3D) MRA time of flight, to the IA, which was considered as the “gold stan-

dard”. In this example, the three screening methods were considered as the “ob-

servers”. Readings were made by each of three raters using each of the three methods

to assess carotid stenosis on each of the 55 patients. For this illustration, the three

readings made by different raters were considered as replications. Separate readings

were made on the left and right carotid arteries. However, in this example, our interest

was restricted to the left side.
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1.3 Existing Methods for Discrete Outcomes

Qualitative outcomes often occur in both medical and social science. The observers

may be physicians who classify patients as having or not having a medical condition,

or competing diagnostic devices that classify the extent of disease in patients into

either nominal or ordinal categories. Cohen’s original Kappa coefficient (Cohen 1960)

was introduced half a century ago and it still serves as the most widely employed

coefficient to assess rater agreement for discrete outcomes. In this section, existing

techniques that are applied to discrete outcomes including binary, nominal and ordinal

measurements are discussed. The original Cohen’s Kappa is introduced, following

by the weighted Kappa. More importantly, the discussion of Kappa coefficients is

reviewed.

1.3.1 The Cohen’s Kappa Coefficient

The original Kappa is an extension of a chance-corrected measure introduced by

Scott (1955) and was extended by Cohen (1960). Originally, it was proposed to

measure the agreement between two observers, each of which classifies n subjects into

m mutually exclusive categories. Cohen’s Kappa coefficient is well known since it

takes chance agreement into consideration. It indicated that the observed cases of

agreement include some cases for which the agreement was by chance only.

Cohen’s Kappa was originally proposed for two observers and two or more nominal

classifications. Cohen (1968) later extended his method to multiple ordinal classifica-

tions. Fleiss (1971) extended Cohen’s Kappa to the case in which each of a sample of

subjects is rated on a nominal scale by the same number of raters, but in which the

raters rating one subject are not necessarily the same as those rating another (Fleiss

et al. 1979).

Let’s consider two raters 1 and 2 who made assignments of level of depression on
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m patients, each outcome can be represented by 1, 2 or 3 which are considered as

nominal levels. The cross-classification of two raters’ judgements can be depicted as

given in Table 1.3.

Table 1.3: Cross-Classification of Two Raters’ Judgements
Rater 1
1 2 3

Rater 2
1 m11 m12 m13

2 m21 m22 m23

3 m31 m32 m33

To estimate Cohen’s Kappa for two raters, we use the observed frequencies as

shown in Table 1.3 to calculate the probabilities of each observer. Let pij be the

probability of cell ij. Then the observed probability of those agreement cells can be

defined as θ1 =
∑I

i=1 pii, where I denotes the total number of categories, for instance,

I=3 in the above example. We also assume those two raters did not influence each

other when they assign scores to the depression level of those patients. Under such

assumption, we estimate the proportion when the two raters agreed by chance (under

independence) as θ2 =
∑I

i=1 pi.p.j, where . indicates the marginal summed across. If

θ1−θ2 is positive, then the two raters agree more often than expected by chance, while

if θ1 − θ2 is negative, then the two raters agree less often than expected by chance.

Cohen’s Kappa extended Scott (1955) index which defined θ2 using the underlying

assumption that the distribution of proportions overm categories for the population is

known and is equal for the two raters. Therefore, if the two raters are interchangeable,

which is equivalent to say that the marginal distributions are identical, then Cohen’s

Kappa and Scott’s index are the same (Banerjee 1999).

As a result,

κ =
θ1 − θ2

1− θ2

.
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An estimated κ under a multinomial sampling scheme can be defined as

κ̂ =
N
∑

imii −
∑

imi.m.i

N2 −
∑

imi.m.i

,

where i = 1, . . . , I are the categories used by the raters, N is the sample size and

m denotes the observed frequencies. κ = 1 corresponds to perfect agreement while

κ = 0 indicates lack of agreement (i.e. purely random coincidences of observers). A

negative value of κ would mean that θ1 − θ2 is negative. In this case, the two raters

agree less often than expected by chance.

To make inference and test the hypothesis to determine whether κ is significantly

different from zero, one can use the formula presented by Fleiss et al. (1969). Interest-

ingly, it’s a long story to achieve the correct variance estimation for Kappa. “Many

human endeavors have been cursed with repeated failures before final success. The

scaling of Mount Everest is one example. The discovery of the Northwest Passage

is a second. The derivation of a correct standard error for Kappa is a third” (Fleiss

et al. 1979). Fleiss et al. (1969) pointed out the standard error of Kappa published by

Cohen (1960), Cohen (1968), Everitt (1968) to be incorrect. Instead, they provided

an estimated asymptotic variance for κ̂, expressed as

V̂ar(κ) =
1

n(1− θ2)2

(
2∑

i=1

P̂ii

[
1− (P̂i. + P̂.i)(1− κ̂)

]2
+(1 + κ̂)2

2∑
i6=j

P̂ij(P̂i. + P̂.j)
2 − [κ̂− pc(1− κ̂)]2

)
(1.1)

Von Eye and Young Mun (2005) summarized some interesting characteristics of

κ.

� The range of κ is −∞ < κ ≤ 1; the smallest possible value of κ̂ is 1 −N/(1 −∑
imii), where N is the sample size and m denotes the frequency in cell ii.
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� κ = 1 only if the probability in the disagreement (off-diagonal) cells is zero.

� κ is defined only if at least two categories are used by both raters, that is, if

the probability, pij is greater than zero for at least two cells.

� Multiplied by 100, κ indicates the percentage by which two raters’ agreement

exceeds the agreement that could be expected from chance.

Landis and Koch (1977) provided a table for the interpretation of Kappa values

(Table 1.4). However, this table was produced mainly based on personal opinions with

no statistical evidence to support it. In fact, it has been noted that these guidelines

may be misleading, as the number of categories and subjects have impact on the

magnitude of the values. The Kappa value increases as the number of categories

decreases (Sim and Wright 2005).

Table 1.4: Interpretation of Kappa values by Landis and Koch (1977)
κ Interpretation
< 0 No agreement

0.0 – 0.20 Slight agreement
0.21 – 0.40 Fair agreement
0.41 – 0.60 Moderate agreement
0.61 – 0.80 Substantial agreement
0.81 – 1.00 Almost perfect agreement

In contrast, Fleiss (1981) suggests the categories (Von Eye and Young Mun 2005).

Table 1.5: Interpretation of Kappa values by Fleiss (1981)
κ Interpretation

< 0.4 Poor agreement
0.4 – 0.75 good agreement
> 0.75 excellent agreement
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Von Eye and Young Mun (2005) suggested researchers that make explicit which

guidelines they refer to when report poor, good or excellent agreement using κ. It is

well known that even small values of κ can be significant if the sample size is large.

Therefore, researchers typically report (1) κ itself, with 95% CI (2) the results from

significance tests and (3) other estimates such as the coefficient of raw agreement.

1.3.2 The Weighted Kappa Coefficient

In the above section, we discussed Cohen’s Kappa for binary and nominal scales.

Cohen (1968) also proposed the weighted Kappa statistic, which provides a measure

of agreement between two observers classifying observations into one of m (m > 2)

ordinal categories. The weighted Kappa coefficient is a generalization of the Kappa

statistic to the situations where the categories are weighted by an objective or sub-

jective function.

Recall in Table 1.3, if we redefine the three levels of scores of depression, where

1=“not depressed”, 2=“mildly depressed”, and 3=“clinically depressed”, weighted

Kappa needs to be involved to estimate the agreement between two psychiatrists if

we wish to assign unequal weights to each of the levels. We redefine θ∗1 as

θ∗1 =
I∑

i=1

J∑
j=1

wijpii

and θ∗2 as

θ∗2 =
I∑

i=1

J∑
j=1

wijpi.p.j,

where wij are the weights. A weight wij, 0 ≤ wij ≤ 1 is assigned to each cell

(i, j). The weight wij quantifies the degree of disagreement between the ith and jth

categories. The cells on the diagonal of the table of occurrences corresponding to

identical categorizations by both observers, receive weights of one, i.e. wii = 1. The
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cells (i, j) with highly different categories i and j are given relatively small weights

wij; whereas large weights wij are assigned when the respective classes i and j are

not far distant. Cohen (1968) requires for the weights that

� 0 ≤ wij ≤ 1, and

� they be ratios.

The second requirement means that if the wij = 0.8 indicates agreement that

weights twice that of wij = 0.4. Based on the defined θ∗1 and θ∗2, the weighted Kappa

can be written as

κ =
θ∗1 − θ∗2
1− θ∗2

.

while the estimation can be defined analogously as

κ̂w =
N
∑

i

∑
j wijmii −

∑
i

∑
j wijmi.m.i

N2 −
∑

i

∑
j wijmi.m.i

,

The maximum value for κw is one indicating a complete agreement between two

raters; whereas a value of zero corresponds to no agreement better than chance, and

negative values show worse than chance agreement. Cohen’s Kappa κ is a special

case of weighted Cohen’s Kappa with weights wii = 1 and wij = 0, i 6= j.

Agresti (1989) tried to model agreement with Kappa as parameter. He presented

a simple quasi-symmetric model for which Kappa contains all relevant information

about the structure of agreement and disagreement. As a measure of agreement, κ and

κw also have been extended to cases with dependent samples (Williamson et al. 2000,

Donner et al. 2000). Barnhart and Williamson (2002) presented an elegant method

to estimate and compare correlated Kappa coefficients using weighted least squares

(WLS). Their method applies to both Cohen’s Kappa and the weighted Kappa. Guo

and Manatunga (2005) used local Kappa coefficients to develop a method to assess the

agreement between two discrete survival times that are measured on the same subject
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by different raters or methods and their method can be extended to multivariate

discrete survival distributions.

1.3.3 Critiques on Kappa Coefficients

Besides the development of Kappa coefficients for measuring agreement on binary,

nominal and ordinal scales, numerous papers commented on this coefficient and tried

to find alternative methods to the study of interrater agreement. Banerjee (1999) pro-

vided us with a thorough review of methods beyond Kappa. Some authors (Hutchison

1993) believed that Cohen’s Kappa mixes two components of agreement that are in-

herently different, namely, disagreements which occur due to bias between the raters,

and disagreements which occur because the raters rank-order the subjects differently.

Thompson and Walter (1988) also stated that one of the limitations of Kappa is that

it does not distinguish various types and sources of disagreements.

Furthermore, Kraemer (1979) and Thompson and Walter (1988) showed that be-

sides the sensitivity and specificity for each observer, the prevalence of the charac-

teristic of interest such as the rareness of a disease greatly influence the values of

Kappa. Thompson and Walter (1988) showed that under the independence of the

errors of the two dichotomous categories, κ can be rephrased as an index of validity

using sensitivities, specificities and prevalence, that is

κ =
2θ(1− θ)(1− α1 − β1)(1− α2 − β2)

π1(1− π2) + π2(1− π1)
(1.2)
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where

θ = true proportion having the characteristic

1− αi = specificity for ith observer (i = 1, 2)

1− βi = sensitivity for ith observer (i = 1, 2)

πi = θ(1− βi) + (1− θ)αi (i = 1, 2)

Equation (1.2) reveals that κ strongly depends on the true prevalence of the con-

dition being diagnosed. As a result, since the true sensitivities, specificities and

prevalence are unknown in reality, the heavy dependence of Kappa on the prevalence

puts the interpretation and understanding of Kappa as a measurement for agreement

in a questionable position. The comparison of two Kappa values may be jeopardized

if the underlying prevalence for the situations are far apart. Particularly, it is sub-

stantially difficult to attain a high value of Kappa when the disease is considerably

rare.

Therefore, a relatively large observed agreement may still result in a relatively

small Kappa coefficient after adjusting for chance agreement which is determined

by marginal distributions. Feinstein and Cicchetti (1990) defined the term balanced

marginals for situation that the proportions of each category are close to 0.5. They

further described two paradoxes due to the presence of unbalanced marginals which

could produce either unreasonably high or low Kappa statistics, where “unbalance”

means that the marginal frequencies significantly differ.

For instance, Tables 1.6, 1.7, 1.8 and 1.9 present four two-by-two contingency

tables that illustrate the impact of unbalanced marginals on κ described by Feinstein

and Cicchetti (1990). Table 1.6 presents an example of balanced marginals where the

percentages of the row and the column are almost equal (52% versus 48% for columns

and 49% versus 51% for rows). Table 1.7, on the other hand, shows unbalanced
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marginals where the percentages of the row and column are roughly 85% versus 15%.

Both of the above tables have the same high percentage of agreement of 89% but

the Kappa statistics for the balanced marginals is 0.78, which is much higher than

that for the unbalanced marginals (κ=0.56 for Table1.7). Tables 1.8 and 1.9 also

present data with unbalanced marginals. When there is symmetric imbalance (70%

versus 30% in both the rows and columns), κ is only 0.05. When there is asymmetric

imbalance of the rows (45% versus 55%) and for the columns (65% versus 35%) then

κ is 0.22.

Therefore, the value of the Kappa statistic not only heavily depends on the preva-

lence, but also depends on the level of imbalance and asymmetry of the data.

Table 1.6: An example of data with balanced marginals, κ=0.78
Observer A
No Yes Total

Observer B
No 45 7 52
Yes 4 44 48

Total 49 51 100

Table 1.7: An example of data with unbalanced marginals, κ=0.56
Observer A
No Yes Total

Observer B
No 9 5 14
Yes 6 80 86

Total 15 85 100
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Table 1.8: An example of data with symmetric unbalance, κ=0.05
Observer A
No Yes Total

Observer B
No 50 20 70
Yes 20 10 30

Total 70 30 100

Table 1.9: An example of data with asymmetric unbalanced, κ=0.22
Observer A
No Yes Total

Observer B
No 35 10 45
Yes 30 25 55

Total 65 35 100
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1.4 Existing Methods for Continuous Outcomes

Numerous methods have been developed to evaluate rater agreement where contin-

uous outcomes are involved. For instance, Bland and Altman (1999) published an

interesting example, which includes systolic blood pressure measurements taken by

two experienced raters (denoted as raters J and R) using a sphygmomanometer and

by a semi-automatic blood pressure monitor (denoted as rater S). Three replicated

readings were made in quick succession, resulting in 9 readings for each subject. The

research interest is to assess the agreement among raters J, R and S.

Barnhart et al. (2007b) defined measures of agreement as either scaled or un-

scaled. Unscaled measures require that in agreement problems we decide what is an

“acceptable disagreement” in terms of the variable being measured. Scaled measures

compare the interobserver disagreement to some value that can be derived from the

data and does not depend on the variable of interest. In this dissertation, I will focus

on scaled measures. In this section, unscaled measures such as limits of agreement

(LOA) (Bland and Altman 1999, 2007), and scaled measures including the intraclass

correlation coefficient (ICC) (Bartko 1966, 1974, Shrout and Fleiss 1979, Eliasziw

et al. 1994, Muller and Petra 1994, McGraw and Wong 1996), the concordance cor-

relation coefficient (CCC) (Lin 1989, 1992, 2000a, Lin et al. 2002, 2007, King and

Chinchilli 2001a,b, King et al. 2007b, Barnhart et al. 2002, 2005, 2007c), and the

coefficient of individual agreement (CIA) (Haber et al. 2007, Haber and Barnhart

2006, Barnhart et al. 2007a, Haber and Barnhart 2008, Pan et al. 2010). All those

methods were reviewed carefully by Barnhart et al. (2007b) and the review in this

section mainly follows the notation used in Barnhart et al. (2007b).

Except for the coefficient of individual agreement (CIA), all the rest of the methods

for continuous measurements are originally designed for data without replication. For

example, in the different types of intraclass correlation coefficient (ICCs) presented by

McGraw and Wong (1996), and Shrout and Fleiss (1979), no replication is involved.
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This is the same for the original concordance correlation coefficient (CCC) introduced

by Lin (1989). Later, those methods are extended to accommodate replicated data.

Having replicated data is very important when designing the agreement studies. The

discussion will be continued when we introduce our new coefficient to measure the

agreement of replicated observations.

1.4.1 Limits of Agreement

In medical research, the Bland and Altman plot is very popular due to its simplic-

ity. The associated limits of agreement (LOA) by Bland and Altman (1999, 2007)

are widely used for assessing agreement between two observers but can be extended

for pairwise comparison of J observers. The original LOA method estimates the

difference of single observations between two observers as well as the corresponding

(1 − α)100% probability interval (PI) that contains the middle 1 − α probability of

the distribution of difference. The limits of agreement are defined as the estimates

for the limits of this PI. The key implicit assumption for the method of estimation

is that the difference between the two observers is reasonably stable across the range

of measurements. Let Di = Yi1 − Yi2 be the difference between the single observa-

tions of the two observers. The 95% LOA are µD ± 1.96σD where µD = E(Di) and

σ2
D = V ar(Di), under a normality assumption on Di. For data without replication,

the LOA can be estimated by replacing µD with the sample mean D• and σ2
D with

the sample variance S2
D. If the absolute limit is less than an acceptable difference,

d0, then the agreement between the two observers is deemed satisfactory. But as

in the nature of unscaled measures of agreement, in practice, how to define the ac-

ceptable difference is subjective. Usually, we think the range depends on the clinical

justification.

The LOA is often displayed in the popular Bland and Altman plot (average,

(Yi1 + Yi2)/2, versus difference, Yi1 − Yi2) with two horizontal lines of the estimated
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LOA: D•±1.96SD and two horizontal lines of the 95% lower bound of the lower limit

and 95% upper bound of the upper limit:

D•−1.96SD−1.96

√(
1

n
− 1.962

2(n− 1)

)
S2

D, D•+1.96SD+1.96

√(
1

n
+

1.962

2(n− 1)

)
S2

D.

The LOA method has also been extended to data with repeated measures (Bland

and Altman 2007). Bland and Altman (2007) include two situations: (1) multiple

time-matched observations per individual by two observers where the true value of

the subject may or may not change over time; (2) multiple observations per individual

(not time-matched) by two observers where the true value of the subject is constant

at a prespecified length of time when the two observers take measurements. Further-

more, Bland and Altman (1999, 2007) described a method of moments approach to

estimating µD and σ2
D for data with multiple observations in both situations (Barn-

hart et al. 2007b) and a variance of σ2
ε . The effect of observer βj is considered a fixed

factor with
∑

j βj = 0, and σ2
β =

∑
j

∑
j′(βj − βj′)2/[J(J − 1)].

1.4.2 Intraclass Correlation Coefficient

For a very long time, the agreement of continuous outcomes has been assessed with

intraclass correlation coefficient (ICC). Under the assumptions of different types of

ANOVA models, ICC compares the variability of different ratings of the same subject

with the total variation across all ratings and all subjects. We consider three versions

of ICCs, under three types of ANOVA models. In the first model, we only include

the random subject effects; in the second model we add a fixed or random observer

effect; and the third model is a full model, where an interaction between observer and

subject effects is added.

As in Barnhart et al. (2007b), notations are unified for both cases when observer is

treated as an either fixed or random effect. Each observer j (j = 1, . . . , J) is assumed
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to have k (k = 1, . . . , K) readings on each subject i (i = 1, . . . , n). K = 1 means

no replications and K ≥ 2 indicates the number of replications for each observer

(Eliasziw et al. 1994). The estimates for the variance components are derived based

on the expected mean sums of squares (MSS) from the specified ANOVA model. The

definitions of the three kinds of ICCs and their corresponding estimates are shown

below:

� ICC1 is based on a one-way random effect model without observer effect

Yijk = µ+ αi + εijk

with assumptions: αi ∼ N(0, σ2
α); εijk ∼ N(0, σ2

ε ); and εijk is independent of αi.

ICC1 =
σ2

α

σ2
α + σ2

ε

, ÎCC1 =
MSα −MSε

MSα + (JK − 1)MSε

,

where MSα and MSε are the mean sums of squares from the one-way ANOVA

model for between and within subjects, respectively.

� ICC2 is based on a two-way mixed or random (depending on whether the ob-

servers are fixed or random) effect model without the observer-subject interac-

tion:

Yijk = µ+ αi + βj + εijk

with assumptions: αi ∼ N(0, σ2
α), εijk ∼ N(0, σ2

ε ), and εijk is independent

of αi. βj is treated as either as a fixed or a random effect, depending on

whether the observers are fixed or random. If observers are fixed, notation

σ2
β =

∑J
j=1 β

2
j /(J − 1) is used with constraint of

∑J
j=1 βj = 0. If observers are

random, additional assumptions are βj ∼ N(0, σ2
β) and αi, βj, εijk are mutually
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independent.

ICC2 =
σ2

α

σ2
α + σ2

β + σ2
ε

, ÎCC2 =
MSα −MSε

MSα + (JK − 1)MSε + J(MSβ −MSε)/n
.

� ICC3 is based on a two-way mixed or random effect model (depending on

whether the observers are fixed or random) with observer-subject interaction.

Yijk = µ+ αi + βj + γij + εijk

with assumptions: αi ∼ N(0, σ2
α), εijk ∼ N(0, σ2

ε ), and εijk is independent of αi.

If observers are fixed, notation σ2
β =

∑J
j=1 β

2
j /(J − 1) is used with constraint

of
∑J

j=1 βj = 0 and γij ∼ N(0, σ2
γ). If the observers are random, additional

assumptions are βj ∼ N(0, σ2
β), γij ∼ N(0, σ2

γ) and αi, βj, γij, εijk are mutually

independent. ICC3 can only be estimated when K > 1.

ICC3(fixed βj) =
σ2

α − σ2
γ/(J − 1)

σ2
α + σ2

β + σ2
γ + σ2

e

, ICC3(random βj) =
σ2

α

σ2
α + σ2

β + σ2
γ + σ2

e

ÎCC3 =
MSα −MSγ

MSα + J(K − 1)MSε + (J − 1)MSγ + J(MSβ −MSγ)/n
.

Above are the “agreement” ICCs (McGraw and Wong 1996) and the ICCs from

Bartko (1966) and Shrout and Fleiss (1979) for fixed observers do not include σ2
β

(consistency ICCs).

ICC3c(fixed βj) =
σ2

α − σ2
γ/(J − 1)

σ2
α + σ2

γ + σ2
e

,

McGraw and Wong (1996) provided a very detailed summary for the inference

about ICCs in terms of consistency and agreement when we don’t have replications.

The assumptions used to define ICC are the main disadvantages to using ICCs to as-
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sess agreement. Of note is the fact that all ICCs are increasing functions of between-

subject variability (represented here by σ2
α). Thus, it would attain a high value for a

population with substantial heterogeneity. Vangeneugden et al. (2004), Vangeneug-

den et al. (2005) and Molenberghs et al. (2007) argued that the ICC should be treated

as a reliability measure that assesses the degree of differentiation of subjects from a

population, rather than agreement. When we don’t have replicated data, in ICC3,

MSε = 0 and MSγ is reduced to the same value of MSε in ICC2. Therefore, it does

not make sense to estimate ICC3 if the data do not have replication.

The ICCs presented here may be used for data with repeated measures where

k denotes the time of the measurement. However, these ICCs may not be very

useful unless one modifies the assumptions on εijk in order to take into account the

time structure. A linear mixed-model approach to estimate reliability for repeated

measures has been proposed by Vangeneugden et al. (2004) and Molenberghs et al.

(2007). The ICC has also been extended for repeated measurements with multivariate

observer (Konishi et al. 1991). Chen and Barnhart (2008) compute the expected value

of the ICC estimator under a very general model to get a sense of the population

parameter that the ICC estimator provides.

1.4.3 Concordance Correlation Coefficient

The concordance correlation coefficient (CCC) is very popular for assessing agreement

of continuous outcomes. It was first published by Lin (1989) for the simpliest case

where there are two raters and each make one reading per subject. Lin’s CCC is

shown as follows: assume that the observations are from a bivariate distribution with

mean vector (µ1, µ2) and variance-covariance matrix

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

, Lin’s CCC
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between two observers Y1 and Y2 is proposed as

CCCLin = 1− E(Y2 − Y1)
2

E[(Y2 − Y1)2|ρ = 0]

=
2ρσ1σ2

σ2
1 + σ2

2 + (µ1 − µ2)2

where ρ is the Pearson correlation coefficient between two observers.

Later CCC was extended to J observers for data without replications (Lin 1989,

King and Chinchilli 2001a, Lin et al. 2002, Barnhart et al. 2002). Barnhart et al.

(2005), and Lin et al. (2007) extended CCC for data with replications where none of

the observers is treated as reference. Barnhart et al. (2007b) extended the CCC to the

situation where one of the multiple observers is treated as reference. Other extensions

include CCC for repeated measures for two or more observers (King et al. 2007b,

Quiroz 2005) and for multivariate observers (Jason and Olsson 2001, 2004). Recently,

Guo (2004), Guo and Manatunga (2009) introduced CCC to survival outcomes.

Since Barnhart et al. (2005) introduced intra, inter and total CCC with the repli-

cated data, we will introduce those three versions without reference. Note that total

CCC is the original CCC when there is no replication. Let Yijk be the kth replicated

measurements for the ith subject by the jth method and write Yijk = µij + εijk with

the similar assumptions as shown in defining ICCs.

The intra-CCC for observer j is

CCCj,intra = ρI
j = 1−

∑K−1
k=1

∑J
k′=k+1E(Yijk − Yijk′)2∑K−1

k=1

∑J
k′=k+1EI(Yijk − Yijk′)2

= ICC1j =
σ2

Bj

σ2
Bj + σ2

Wj

,
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CCCinter = ρc(µ) = 1−
∑J−1

j=1

∑J
j′=j+1E(µij − µij′)2∑J−1

j=1

∑J
j′=j+1EI(µij − µij′)2

=
2
∑J−1

j=1

∑J
j′=j+1 σBjσBj′ρµjj′∑J−1

j=1

∑J
j′=j+1[2σBjσBj′ + (µj − µj′)2 + (σBj − σBj′)2]

CCCtotal = ρc = 1−
∑J−1

j=1

∑J
j′=j+1E(Yijk − Yij′k′)2∑J−1

j=1

∑J
j′=j+1EI(Yijk − Yij′k′)2

=
2
∑J−1

j=1

∑J
j′=j+1 σjσj′ρjj′

(J − 1)
∑J

j=1 σ
2
j +

∑J−1
j=1

∑J
j′=j+1(µj − µj′)2

=
2
∑J−1

j=1

∑J
j′=j+1 σBjσBj′ρµjj′∑J−1

j=1

∑J
j′=j+1[2σBjσBj′ + (µj − µj′)2 + (σBj − σBj′)2 + σ2

Wj + σ2
Wj′ ]

,

where σ2
Bj′ denotes the between subject variance and σ2

Wj′ denotes the within subject

variance. But the CCC is known to depend on between-subject variability (Atkinson

and Nevill 1997) that may result from that fact that it is scaled relative to the max-

imum disagreement defined as the expected squared difference under independence.

Note that CCC = ICC2 under two-way model without interaction (without repli-

cation) (Carrasco and Jover 2003)and CCCtotal = ICC3 under two-way model with

interactions for replicated data (Barnhart et al. 2005, Song 2003).

1.4.4 Coefficient of Individual Agreement

Barnhart and colleagues(Haber and Barnhart 2008, Barnhart et al. 2007a, Haber et al.

2007, Wiener 2009, Gao 2010, Pan et al. 2010) began looking for a scaled agreement

index, the coefficient of individual agreement (CIA), which is scaled relative to an

acceptable disagreement, with the goal of establishing interchangeability of observers.

An acceptable disagreement requires that the differences between measurements of
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different observers are similar to the differences between replicated measurements of

the same observer. The concept of individual agreement is derived from the idea of

individual bioequivalence in bioequivalence studies (Anderson and Hauck 1990, Schall

and Luus 1993). Similar agreement indices have been proposed by Haber et al. (2005)

and Shao and Zhong (2004). The CIAs compare differences between measurements

from different observers to the differences of replicated measurements of the same

observer. Therefore, they require replications which allow us to estimate the within-

observer variability. The numbers of replications can be different across subjects

and observers. Before considering observers for comparison, one must assume that

the replication errors of the observers are acceptable. Replicated measurements by

observers are required for the CIAs for the purpose of estimation and inference.

Barnhart et al. (2007a) defined the CIAs for cases of no reference observer (ψN)

and for the case where the Jth observer is a reference (ψR), respectively, as follows:

ψN =

∑J
j=1E(Yijk − Yijk′)2/2∑J−1

j=1

∑J
j′=j+1E[(Yijk − Yij′k′)2]/(J − 1)

(where k 6= k′)

=

∑J−1
j=1

∑J
j′=j+1(σ

2
Wj + σ2

Wj′)∑J−1
j=1

∑J
j′=j+1[2(1− ρµjj′)σBjσBj′ + (µj − µj′)2 + (σBj − σBj′)2 + σ2

Wj + σ2
Wj′ ]

,

ψR =
E(YiJk − YiJk′)2/2∑J−1

j=1 E[(Yijk − YiJk′)2]/(J − 1)
(where k 6= k′)

=
σ2

WJ∑J−1
j=1 [2(1− ρµjJσBjσBJ + (µj − µJ)2 + (σBj − σBJ)2 + σ2

Wj + σ2
WJ ]

,

where as usual, σ2
Bj′ denotes the between subject variance and σ2

Wj′ denotes the within

subject variance.

In order to estimate the CIAs, one has to use data with replicated measurements.

The numbers of replications for observer X and Y , which do not have to be equal,

are denoted by K and L, respectively.

A more general definition of the CIAs uses the concept of a disagreement function

G(X, Y ). A disagreement function G(X, Y ) must satisfy (a) G(X, Y ) ≥ 0 and (b)



25

G(X, Y ) increases as the disagreement between X and Y . The disagreement function

can be defined and estimated for each subject. Let Ĝi(X, Y ), Ĝi(X,X
′) and Ĝi(Y, Y

′)

be the estimated values of the disagreement function for subject i.

Ĝi(X, Y ) =
1

KL

K∑
k=1

L∑
l=1

G(Xik, Yil)

Ĝi(X,X
′) =

2

K(K − 1)

K−1∑
k=1

K∑
k′=k+1

G(Xik, Xik′)

Ĝi(Y, Y
′) =

2

L(L− 1)

L−1∑
l=1

L∑
l′=l+1

G(Yil, Yil′)

Therefore Ĝi(X, Y ) is the averaged disagreement between observations between X

and Y for subject i; Ĝi(X,X
′) is the averaged disagreement between replications byX

for subject i and similarly Ĝi(Y, Y
′) is the averaged disagreement between replications

by Y for subject i. Let
¯̂
G(X, Y ),

¯̂
G(X,X ′),

¯̂
G(Y, Y ′) be the sample means of the Ĝi’s.

Then ψN
G and ψR

G are estimated as follows:

ψN
G =

[
¯̂
G(X,X ′) +

¯̂
G(Y, Y ′)]/2

¯̂
G(X, Y )

ψR
G =

¯̂
G(X,X ′)
¯̂
G(X, Y )

The CIAs can be extended to multiple raters. Barnhart et al. (2007a) proposed

a non-parametric approach for estimating the standard errors of the CIAs when

MSD(X, Y ) = E(X − Y )2 is used as the disagreement function. Haber et al. (2010)

generalized CIAs to data with matched repeated measurements.
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1.5 Existing Methods for Repeated Binary Out-

comes

In previous sections, agreement measurements of both continuous and categorical

cross-sectional data. Nowadays, we more often have repeated measurements. For

replicated measurements there is no change in the true values, while for repeated

measurements, true values may change according to different conditions. Here we

review some existing methods to assess agreement for repeated binary outcomes.

1.5.1 Logistic Regression Modeling Agreement Proportion

Coughlin et al. (1992) introduced logistic modeling of inter-observer agreement. The

dependent variable is defined to be 1 if the two raters agree and 0 otherwise. Co-

variates may be included in the regression equation in order to obtain adjusted or

subgroup-specific estimates of percent agreement. Besides the logistic regression with

covariates, repeated measurements on the same subject can be analyzed by general-

ized estimating equations (GEE). Model-based percent agreement is estimated.

If each of N subjects are assigned independently by two raters to one of the

categories, then the cell frequencies (nii) along the main diagonal of the two-way

contingency table represent the agreement between the raters. The crude agreement

is estimated as follows:

p =
1

N

I∑
i=1

nii.

By applying the logistic regression, the proportion agreement for particular subgroups

can be estimated. Suppose K explanatory variables (X1, X2, ..., Xk) , the model based

agreement is:

E(p|X1, X2, ..., Xk) =
1

1 + exp([−(α+
∑K

k=1 βkXk)])
.
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The variance of the logit of the proportion agreement can be estimated using the

sandwich estimation.

1.5.2 Extended Kappa Coefficient

Klar et al. (2000) proposed an approach for identifying covariates that are predictive

of agreement is to consider regression models for kappa. The authors considered

models for kappa that allow this chance-corrected measure of agreement to depend

on covariates. Klar et al. (2000) model kappa directly as a function of covariates, and

estimated the regression parameters using a generalized estimating equations (GEE)

approach. However, a drawback of their method is that it cannot be implemented

using existing statistical software.

Lipsitz et al. (2003) used two stage logistic regression to take chance agreement

into consideration. Let Yir denote the measurement of ith subject and rth rater.

Redefine Yi = Yi1Yi2 + (1− Yi1)(1− Yi2). The following two steps can be considered:

(1) Use the standard logistic regression of Yir on (xi, xir) , r=1, 2, to obtain p̂ir.

(2) Form the estimated offset, η̂i = logit[p̂i1p̂i2 + (1− p̂i1)(1− p̂i2)]. Finally the model

logit(pi) = ηi + x
′
i1β1 + x

′
i2β2 + x

′
iβ3. The model based kappa statistic is shown as

follows:

k̂i =
p̂i − eη̂/[1 + eη̂]

1− eη̂/[1 + eη̂]
=
p̂i − [p̂i1p̂i2 + (1− p̂i1)(1− p̂i2)]

1− [p̂i1p̂i2 + (1− p̂i1)(1− p̂i2)]

A bootstrap method is applied to estimate the standard error (SE).

Ma et al. (2008) introduced a novel approach based on a new class of kappa

estimates to tackle the complexities involved in addressing missing data and other

related issues arising from a general multi-rater and longitudinal data setting. In

classic approach, kappa is estimated by substituting the sample proportions in place

of the respective parameters. The asymptotic distribution of the kappa estimate is

derived by first considering the joint asymptotic distribution of π̂(g1, g2), then followed
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by an application of the Delta method. The limitations are as follows: first of all,

it involves estimating a large number of parameters. Second, it is quite complex to

extend this classic approach to address missing data. An alternative approach based

on the theory of U-statistics to address these limitations has been proposed (Ma et al.

(2008)).

1.5.3 Other Agreement Measurement for Repeated Binary

Measurements

Nelson and Edwards (2007) introduced a generalized linear mixed model for agree-

ment with covariates and probit link function has been used.

φ−1(pij) = η + βxij + diµi + djvj,

where xij is the vector of covariates associated with the ith item classified by the jth

rater. The vectors di and dj represent the design vectors of the random effects for the

ith item and jth rater respectively, and the vectors and contain the associated random

effects for the items and raters. Under the probit model, the authors proposed an

alternative measurement which can be compared to kappa statistic: ρ = σ2
u

σ2
v+σ2

u+σ2
w

where σ2
u=1 is the variance of the probit function. Furthermore, authors present

the model-based estimation of kappa statistics and its variance. The performance

of the model-based estimation of kappa with covariates was examined through the

simulation studies. Computationally, the datasets were individually fitted using a

Monte-Carlo expectation-maximization algorithm (MCEM) developed by McCulloch

(1997) to obtain almost-exact maximum likelihood estimates of the parameters in the

generalized linear mixed model. And the entire algorithm was implemented using a

program written in C programming language.

Furthermore, the intraclass correlation coefficient (ICC) can also be applied to
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binary data (Ridout et al. (1999)) and can be extended to repeated binary data.

King et al. (2007b) proposed a class of repeated measures concordance correlation

coefficient (CIA) including both continuous and categorical measurements.

Last but not the least, Gao (2010) applied three logistic models to estimate coef-

ficient of individual agreement (CIA) for binary data. Here, the same three logistic

models will be applied to estimate coefficient of individual equivalence (CIEA) in

Chapter 4.

1.5.4 Agreement Measurement for Repeated Continuous Mea-

surements

King et al. (2007a) proposed a repeated measures concordance correlation coefficient

between two raters or two methods of measuring a response in the presence of re-

peated continuous measurements. Carrasco et al. (2009) furthermore introduced the

concordance correlation coefficient for repeated measures estimated by variance com-

ponents. Haber et al. (2010) extended the coefficient of individual agreement using

a variance components approach. The variance components idea will be applied to

our estimation of coefficient of individual equivalence when we have replicated and

repeated binary measurements.
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1.6 Bayesian Approaches for Evaluating Agreement

In medicine and biology and even the social science, Bayesian methods are being used

frequently. For example, Bayesian sequential stopping rules are implemented in some

designs of clinical trials. As we know, Bayes’ theorem allows to incorporate previous

information with the current data. This is considered attractive for many areas

in medicine since Bayesian methods are based on prior information which is usually

available in the related previous studies. Gelman et al. (2004) shared that the primary

motivation for believing Bayesian thinking important is that it facilitates a common-

sense interpretation of statistical conclusions. They use interval estimation as an

example. The Bayesian (probability) interval for an unknown quantity of interest can

be directly regarded as having a high probability of containing the unknown quantity,

in contrast to a frequentist (confidence) interval, which may strictly be interpreted

only in relation to a sequence of similar inferences that might be made in repeated

practice (Gelman et al. 2004).

The application of a Bayesian approach to observer agreement studies is fairly

recent. Broemeling (2009) well summarized the existing Bayesian methods for mea-

sures of agreement on both discrete and continuous outcomes. In this section, the

basic foundation of Bayesian methods is reviewed as well as the existing application

to Kappa, limits of agreement (LOA) and intraclass correlation coefficient (ICC).

All Bayesian approaches are based on Bayes’ theorem, which provides the pos-

terior distribution as the basis for statistical inference, which includes estimation of

parameters and tests of hypothesis. Suppose X is a continuous observable random

vector and θ ∈ Ω ⊂ Rm is an unknown parameter vector, and we define f(x|θ) as the

conditional density of X given θ. The the conditional density of θ given X = x is

p(θ|x) = cf(x|θ)p(θ), θ ∈ Ω, x ∈ Rm.
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In the above equation, c > 0 is the normalizing constant, which is chosen so that the

integral of f(x|θ)p(θ) with respect to θ is unity. If X is discrete, f(x|θ) is the prob-

ability mass function of X. The density p(θ) is the prior density of θ and represents

the knowledge one possesses about the parameter before one observes the data X.

Here θ is considered a random variable so that Bayes theorem transforms one’s prior

knowledge of θ, which is the prior density, to the posterior density. Such transforma-

tion combines the prior information about θ with the sample information represented

by the likelihood f(x|θ).

Using the Bayesian approach, the posterior distribution and analysis of some mea-

sures of agreement, including Kappa, limits of agreement and intraclass correlation

coefficient have been presented recently. Basu et al. (2000), one of the few Bayesian

investigations of Kappa, determined the posterior density of Kappa by MCMC tech-

niques with WinBUGS and developed a test for the homogeneity of Kappa across

several different experiments. A very simple comparison between conventional and

Bayesian methods to estimate Kappa is given by Broemeling (2009). One study exam-

ines the agreement between two psychiatrists who are assigning degrees of depression

to 129 patients. Table 1.10 contains the summary of measures between two observers,

where 1=“not depressed”, 2=“mildly depressed”, and 3=“clinically depressed”. We

notice this set up is similar to Table 1.3.

Table 1.10: Example: Agreement for Depression
Psychiatrist 1
1 2 3 Total

Psychiatrist 2
1 11 2 19 32
2 1 3 3 7
3 0 8 82 90

Total 12 13 104 129

By conventional methods, Kappa=0.375 with 0.079 as its standard error. If

one adopts a Bayesian approach with a uniform prior density for the θij, where
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i = j = 1, 2, 3, then the parameters have a Dirichlet (12,3,20,2,4,4,1,9,83) poste-

rior distribution and the posterior mean and standard error of Kappa are 0.358 and

0.072, respectively. The raw agreement by itself indicates a strong association be-

tween psychiatrists, however the chance agreement if fairly strong also, which reduces

the overall agreement to only fair agreement. In this study, the Bayesian and con-

ventional analysis of Kappa agree quite well. Similarly, Bayesian methods can be

extended to Bland and Altman’s limits of agreement (LOA) (Broemeling 2009).

The application of Bayesian approaches to the research of intraclass correlation

coefficient (ICC) started around 2000. Turner et al. (2001) introduced Bayesian hier-

archical modeling for the analysis of randomized trials with binary outcome data. This

approach provides us with a credible interval for the ICC for binary outcome data.

Several approaches to constructing informative priors from empirical ICC values are

described in their paper. The authors pointed out that a Bayesian approach allows us

to assume distributions other than normality for the random effects used to model the

clustering and this enables us to gain insight into the robustness of our parameter es-

timates to the classical normality assumption. Those authors extended their research

in 2006 and they described Bayesian Markov chain Monte Carlo (MCMC) modeling

approaches to interval estimation of the ICC, which offered greater flexibility than

existing approaches (Turner et al. 2006). It is known that the ANOVA estimator un-

derestimated the true ICC when the diagnostic test was imperfect. Branscum et al.

(2005) examined the effect of substituting diagnostic test outcomes for true infection

status on an ANOVA estimator of ICC through Monte Carlo simulation. They also

proposed a Bayesian model for estimating the ICC that incorporated imperfect sensi-

tivity and specificity. A similar Bayesian method has been extended to estimate ICC

where ordinal scales measurements are involved (Gajewski et al. 2007). Ahmed and

Shoukri (2010) extended ICC to correlated binary outcomes using Bayesian methods.
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1.7 Discussion

As discussed in the previous sections, there are many different measures of agreement

in terms of qualitative and quantitative outcomes. However, the ICC and the CCC

are originally defined for quantitative data and these coefficients have been shown to

be equivalent to the weighted kappa for categorical data (Fleiss and Cohen 1973, Lin

et al. 2002). In addition, Shoukri (2004) and King and Chinchilli (2001a) also defined

ICC and CCC for qualitative data. Those are also carefully reviewed by Gao (2010).

While both ICC and CCC are popularly used for continuous outcomes with or

without replications, there are literatures comparing the similarity and the difference

between them. In some special cases, for instance, when there are no replications

and the observer is treated as fixed effect in ICC, Carrasco and Jover (2003) showed

the equality of ICC2 and the total CCC without the ANOVA model assumptions.

Also, when there are replications, the total CCC is equivalent to ICC3 (Barnhart

et al. 2005, Song 2003). The differences between ICCs and CCCs were summarized

in Barnhart et al. (2007b) as: (1) the ICC has been proposed for fixed and random

observers, while the CCC usually treats the observers fixed; (2) the ICC requires

ANOVA model assumptions, while the CCC does not. Chen and Barnhart (2008)

compared ICC and CCC when there are data without and with replications. They

computed the expected value of ICC estimator under a very general model to get a

sense of the population parameter of the ICC and then compared the expected value

to CCC, which is defined without ANOVA assumptions. They reported their results

for data without replication and with replication for three types of ICCs as defined in

section 1.4.2, and recommended to use ICC3 as its estimate is similar to the estimate

of CCC regardless whether the ANOVA assumptions are met or not.

It’s also of interest to compare CCC and CIA when we want to compare agreement

with continuous measurements. Barnhart et al. (2007b) did a brief review. The

CCC and the CIA were compared for quantitative data with replications when none
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of the observers is considered as the reference (Barnhart et al. 2007c). When two

observers are involved and the between-subject and within-subject variabilities across

two observers are assumed equal, i.e. σ2
B1

= σ2
B2

= σ2
B; and σ2

W1
= σ2

W2
= σ2

W . Then

the total CCC and the CIA are restated as

ρc =
2σ2

Bρµ12

(µ1 − µ2)2 + 2(σ2
B + σ2

W )

and

ψN =
2σ2

W

(µ1 − µ2)2 + 2(1− ρµ12)σ
2
B + 2σ2

W

Therefore, both coefficients increase as the correlation (ρµ12) increases and decrease

as the difference of the means (µ1 − µ2) increases. Due to the difference in the

numerators (σ2
B for ρc and σ2

W for ψN), the CCC increases when the between-subject

variability (σ2
B) increases and the within-subject (σ2

W ) variability decreases. However,

the CIA, on the other hand, increases when the within-subjects variability increases

and when the between-subjects variability decreases. Furthermore, Barnhart et al.

(2007c) found that the CCC is more dependent on the relative magnitude of the

between- and within-subject variabilities, σ2
B/σ

2
W , than the CIA.

Finally, since Bayesian approaches are pretty new to the area of observer agree-

ment, the literature is fairly limited. Further discussion including the possible Bayesian

modeling of the coefficient of individual equivalence (CIE) which is introduced since

next chapter, is coming in the later Chapter.

Here is the brief outline of my dissertation. In Chapter 2, the basic idea of the

coefficient individual equivalence (CIE) as well as its nonparametric estimation, are

introduced. In Chaper 3, the application of this new coefficients to replicated binary

measurements is discussed. In Chapter 4, we extend this approach to replicated

quantitative data. Comparisons between the new coefficient and the existing Kappa,

CIA and CCC follow in Chapter 5. Models for replicated and repeated binary data
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are investigated in Chapter 6. This dissertation is summarized in Chapter 7, where

we also present ideas for future work.
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Chapter 2

Introduction of the Coefficient of

Individual Equivalence

2.1 Motivation for introducing the Coefficient of

Individual Equivalence (CIE)

The number of coefficients proposed to assess agreement is large, but the number

used in practise is small. For binary, nominal and ordinal measurements, Cohen’s

kappa (Cohen 1960) and weighted kappa (Cohen 1968) are the most commonly used

method. However, kappa has been criticized since its value heavily depends on the

prevalence (Kraemer 1979, Thompson and Walter 1988) and is also affected by the

data structure, i.e., imbalance or asymmetry (Feinstein and Cicchetti 1990). Among

the scaled agreement indices for quantitative data, the intraclass correlation coefficient

(ICC) and the concordance correlation coefficient (CCC) are the most popular. Under

certain conditions, the CCC is equivalent to one version of the ICC. Specifically, if

the ANOVA model assumptions are satisfied, the CCC reduces to the agreement ICC

defined by this ANOVA model (Barnhart et al. 2007b, McGraw and Wong 1996,

Barnhart et al. 2002). The CCC is based on comparing the mean squared deviation
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(MSD) to its value under independence. However, independence and disagreement are

two different concepts (Haber and Barnhart 2006). Furthermore, the CCC depends

on the between-subject variability. Atkinson and Nevill (1997) pointed out that an

increase in the between-subject variability results in a larger value of CCC even if the

individual differences between measurements by the two methods remain the same.

Barnhart et al. (2007c) also showed that the CCC depends on the between-subject

variability due to the fact that it is scaled relative to the maximum disagreement

defined as the expected MSD under independence.

The introduction of coefficients of individual agreement (CIAs), which are scaled

relative to an acceptable disagreement, was motivated by the desire to establish inter-

changeability of observers. However, these coefficients are not suitable in case one or

both observer have an unacceptably large within-observer disagreement (repeatabil-

ity). Furthermore, ψN is not estimable when we have only one observation on either

observer and ψR is not defined when there is no replicated reading for the reference

observer, for example when the reference observer is a perfect gold standard.

In this dissertation we propose a new criterion, coefficient of individual equiva-

lence (CIE), for “reasonable” or “acceptable” agreement with replicated data. The

importance of having replicated data has been presented before by Bland and Alt-

man (1999) when they introduced limits of agreement (LOA). If we have only one

measurement using each method on each subject we cannot tell which method is

more repeatable (precise). Lack of repeatability can interfere with the comparison of

two methods because if one method has poor repeatability, in the sense that there is

considerable variation in repeated measurements on the same subject, the agreement

between the two methods is bound to be poor. Even if the measurements by the two

methods agreed very closely on average, poor repeatability of one method would lead

to poor agreement between the methods for individuals. When the old method has

poor repeatability even a new method which was perfect would not agree with it.
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Lack of agreement in unreplicated studies may suggest that the new method cannot

be used, but it might be caused by poor repeatability of the standard method. If

both methods have poor repeatability, then poor agreement is highly likely. Bland

and Altman (1999) recommended the simultaneous estimation of repeatability and

agreement by collecting replicated data. Further justifications for the use of CIE can

be found in Section 2.5.

2.2 Overview and Definition of the Coefficient of

Individual Equivalence

For simplicity, suppose that there are only two observers, and let the readings of the

two observers be represented by the random variablesX and Y . Further, let fX(u) and

fY (u), denote the respective probability mass functions (for categorical observations)

or the probability density functions (for quantitative observations). Hawkins (2002)

called two observers equivalent if for each study subject, the conditional distribution

of X and Y , given each subject, are identical: i.e., fX(u|i) = fY (u|i), for every u and

every i = 1, . . . N . In our opinion, if observers are equivalent then we can argue that

their agreement is at least ’acceptable’ because from a statistical point of view, it does

not matter whether the next observation on a given subject will be made by observer

X or by observer Y . In other words, the two observers can be used interchangeably,

or one observer can be replaced by the other at any time during the study.

We assume that the magnitude of disagreement between two readings, x and y, on

the same subject is quantified via a disagreement function G(x, y). A disagreement

function G(X, Y ) must satisfy (a) G(X, Y ) ≥ 0 and (b) G(X, Y ) increases as the

disagreement between X and Y , according to a specific criterion, increases. The

most commonly used disagreement function is the mean squared deviation (MSD):

G(X, Y ) = E(X − Y )2. A more meaningful disagreement function is G(X, Y ) =
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E|X −Y |, the mean absolute difference, which can be expressed in the same units as

the individual observations. Other possible choices are the mean relative difference:

MRD = E[|X − Y |/X] or the mean of the Winsorized squared distance:

d(x− y) =

 (x− y)2 when |x− y| ≤ a;

a2 when |x− y| > a.

for a pre-selected positive constant a (King and Chinchilli 2001a). The last disagree-

ment function is more robust to the effects of outliers.

The objective of this dissertation is to introduce a method to determine whether

the disagreement between observers is in line with or is substantially larger than

“acceptable” disagreement, which we define as the disagreement that can be expected

if the observers are equivalent. Therefore we define a new coefficient of individual

equivalence based on comparing the observed value of the disagreement function to

its expected value under the hypothesis of equivalence. This expected disagreement

under equivalence can be viewed as disagreement by chance, i.e., the magnitude of the

disagreement function that would be observed if, in fact, all the readings on the same

subject were made by the same observer and later someone randomly assigned the

letter X to some of the observations and the letter Y to the remaining observations

on this subject. This concept of disagreement by chance is very different from the

concept of agreement by chance, which is often used to obtain scaled agreement

measures (e.g., kappa or the CCC). Agreement by chance is the expected agreement

under independence of the observers.

The coefficient of individual equivalence (CIE) for subject i is then defined as

ηi = GE
i /Gi(X,Y ), where GE

i denotes the disagreement under equivalence in the

individual level and Gi(X, Y ) is the observed disagreement for subject i. The overall

CIE is obtained as the ratio of the means (over i) of the numerators and denominators
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in the subject-specific coefficients:

η = CIE =
Ei(Gi(X,Y ) under equivalence)

Ei(Gi(X, Y ))
=

GE

G(X, Y )
.

In order to assess the magnitude of departure from equivalence, replicated readings

of at least one observer on each subject should be available. Suppose that for a given

subject there are K replicated readings by observer X and L replicated readings by

observer Y (K,L ≥ 1 and K + L ≥ 3). Under the hypothesis of equivalence, all the

CK+L
K allocations of the K+L readings, so that K readings are assigned to observer X

and the remaining L readings are assigned to observer Y , are equally likely. Therefore,

the expected disagreement under equivalence will be estimated as the mean of the

values of the disagreement function over all the possible CK+L
K allocations. Values

close to 1 indicate that the observed disagreement is similar to the disagreement

that can be expected if the two observers are “equivalent” in the sense that for each

subject, the (conditional) distributions of the values they would report are identical.

In other words, under equivalence one would not expect any systematic difference if

observer Y would replace X for some or all the subject. Small values of η indicate

that there is some systematic difference between the two observers.

We believe that it makes much more sense to compare the observed disagreement

to its expected value under good (or acceptable) agreement because we want the co-

efficient to quantify the deviation (if any) from good agreement. We also believe that

equivalence of observers is an appropriate model for good agreement because under

this model, the distribution of an observation made by observer X is the same as that

of an observation made by observer Y on the same subject. With CIA, the acceptable

inter-observer disagreement is the average intra-observer disagreement or the intra-

observer disagreement of a reference. With CIE it is the expected disagreement by

chance, i.e. under the hypothesis of equivalence.
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2.3 An Alternative Expression for the CIE

As described before, the CIE compares the observed disagreement to the expected

disagreement under individual equivalence, GE i.e., to disagreement by chance. We

now define an explicit expression for GE, which can be used to estimate the CIE

and to explore its properties. If we denote the K + L measurements on a given

subject as Z1, Z2, Z3, . . . , ZK+L, then the value of GE for the subject is the mean

of all CK+L
2 terms G(Zh, Zh′), 1 ≤ h < h′ ≤ K + L. We define G(X,X’) as the

disagreement function between two replicated measurements made by observer X,

G(Y, Y ′) is analogously defined for observer Y , and G(X, Y ) as the disagreement

between X and Y . Then among all the pairs (Zh, Zh′), there are CK
2 pairs (X,X ′),

CL
2 pairs (Y, Y ′) and K · L pairs (X,Y ). Hence

GE =

∑
h<h′ G(Zh, Zh′)

CK+L
2

=
CK

2 G(X,X ′) + CL
2 G(Y, Y ′) +K · L ·G(X, Y )

CK+L
2

. (2.1)

Thus CIE can be written as:

η = CIE =
CK

2 G(X,X ′) + CL
2 G(Y, Y ′) +K · L ·G(X, Y )

CK+L
2 G(X, Y )

=
CK

2 G(X,X ′) + CL
2 G(Y, Y ′)

CK+L
2 G(X, Y )

+
K · L
CK+L

2

(2.2)

The CIE is defined and estimable if K ≥ 1, L ≥ 1 and K + L ≥ 3.

2.4 Nonparametric Estimation of the CIE

In order to estimate the CIE we need replicated observations of at least one of the

observers on each subject. Suppose that on subject i, there are K and L replicated

readings by X and Y , respectively, where K, L ≥ 1 and K + L ≥ 3. Denote the ob-
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served values for subject i by Xi = (Xi1, . . . , XiK) , Yi = (Yi1, . . . , YiL). Then the es-

timated disagreement for this subject is Ĝi(X, Y ) = G(Xi, Yi) = meank,l[G(Xik, Yil)]

(the mean over all K ·L pairs of an observation from X and an observation from Y ).

The average observed disagreement is Ĝ(X, Y ) = meani[Ĝi(X, Y )]. The estimated

disagreement between two observations of observer X on subject i is Ĝi(X,X
′) =

meank<k′ [G(Xik, Xik′ ] and the overall disagreement is Ĝ(X,X ′) = meani[Ĝi(X,X
′)].

Ĝ(Y, Y ′) is defined in a similar way. Turning now to the estimation of the numer-

ator of η we again begin with a single subject i. In order to estimate the expected

disagreement for this subject under equivalence, consider all the CK+L
K possible as-

signments of K X ′s and L Y ′s to the K + L observations made on this subject.

Under equivalence, all these assignments are equally likely, and hence the expected

value of the disagreement function for this subject is the mean of Gi(X, Y ) over all

CK+L
K assignments. Thus, we estimate the expected disagreement for subject i under

equivalence as Ĝi
E

= meanA[G(XA
i , Y

A
i )], where A is one of the CK+L

K assignments,

and (XA
i , Y

A
i ) is the array of K X ′s and L Y ′s corresponding to this assignment.

Then the estimate of GE is ĜE = meani(Ĝi

E
) and the estimate of the CIE is

ĈIE = η̂ =
ĜE

Ĝ(X, Y )
.

Alternatively, we plug these estimates into (6.5) to obtain

η̂ = ĈIE =
CK

2 Ĝ(X,X ′) + CL
2 Ĝ(Y, Y ′)

CK+L
2 Ĝ(X, Y )

+
K · L
CK+L

2

(2.3)

Note that the definition and estimation of CIE can be easily extended when K and L

vary across subjects.
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2.5 Discussion

In general, there are two types of coefficients (indices) used to assess agreement be-

tween two observers or measurement methods. Unscaled coefficients are usually based

on the distribution of the differences (D = X − Y ) of the readings of both observers

on the same subject. For example, the coverage probability (CP, Lin et al. (2002))

is defined as CP (d) = Pr(|D| ≤ d), i.e., the probability that the absolute difference

does not exceed a pre-determined value d. Hence, a value of d that represents “ac-

ceptable” or “good” agreement has to be determined in advance, and the selection of

the appropriate value is usually subjective. All unscaled coefficients share a similar

limitation, in the sense that they require an a-priori definition of what constitutes

“acceptable agreement” in terms of the magnitude of the difference D.

Scaled coefficients of agreement, on the other hand, compare the observed value

of a disagreement function to a baseline value that is obtained from some assump-

tion or model that represents either “poor agreement” or “good agreement”. Most

of the existing scaled coefficients, such as kappa for categorical data and CCC for

quantitative data, compare the observed agreement to the expected agreement when

the observers are independent. Here, the expected agreement under independence

represents a worst-case scenario, or simply a case of poor agreement. We have two

reservations related to this approach. (a) Independence and lack of agreement are

different concepts (see Haber and Barnhart (2006)), hence the expected agreement

under independence does not necessarily corresponds to poor agreement. (b) Compar-

ing the observed agreement to the expected under poor agreement does not provide

any information regarding how close or far we are from good agreement. For example,

suppose that for a given dataset CCC = 0.8. This means that the observed value

of the disagreement function, MSD = E(X − Y )2, is five times smaller than the

expected MSD under independence. While this may be considered an important

finding, it does not contain information on whether or not the two observers are in
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good agreement.

We believe that it makes much more sense to compare the observed disagreement

to its expected value under good (or acceptable) agreement because we want the

coefficient to quantify the deviation (if any) from good agreement. We also believe

that individual equivalence of observers, as defined in Section 2.2, is an appropriate

model for good agreement because under this model, the distribution of an observation

made by observer X is the same as that of an observation made by observer Y on

the same subject. Therefore we propose the coefficient of individual equivalence,

which compares the observed disagreement to its expected values under individual

equivalence, as an alternative to kappa (in the binary case) or the CCC (in the

continuous case).

The coefficients of individual agreement (CIA’s, Haber et al. (2007), Barnhart

et al. (2007a), Haber and Barnhart (2008), Pan et al. (2010)) are also based on

comparing the observed value of a disagreement function to its expected value under

“good agreement”, where the latter value is based on the notion that under good

agreement, the disagreement between the observers is similar to the disagreement

between replicated readings of the same observer. The approach underlying CIA’s

have two limitations: (a) they require that the within-observer disagreement, which

is used as a baseline for “good agreement” is acceptable, and (b) the CIA comparing

an observer to a reference or a gold standard, i.e. ψR defined in Chapter 1.4.4, cannot

be estimated when replicated readings on the reference observer are unavailable (as

is the case when the reference value of each subject can be determined without an

error). CIE and the adjusted CIE do not share these limitations.

Both CIE and CIA’s require replicated readings on the same subject by the same

observer. In addition, CIE can be applied when we don’t have replication from one of

the observers. We believe it’s important to have replicated measurements. The impor-

tance of replications has been emphasized by Bland and Altman (1999). Even if the
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measurements by the two methods agreed very closely on average, poor repeatability

of one method would lead to poor agreement between the methods. Furthermore,

when comparing a new method and a standard method, lack of agreement in un-

replicated studies may suggest that the new method cannot be used, but it might

be caused by poor repeatability of the standard method. Therefore, we recommend

having at least one replication for the new method. In some cases replicated readings

cannot be obtained, or involve logistic problems. We believe that when replications

are unavailable then one should use an unscaled coefficient for evaluating agreement

between two observers.
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Chapter 3

Coefficient of Individual

Equivalence for Replicated Binary

Measurements
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3.1 Introduction

The coefficient of individual equivalence (CIE), which compares the observed value

of disagreement function to its expected value under the hypothesis of equivalence,

was introduced in Chapter 2 as a tool to assess agreement for replicated data. While

the idea of using equivalence as a criterion for acceptable agreement is valid for any

measurement scale (binary, ordinal, nominal and quantitative), this chapter focuses

on binary observations. In Section 3.2, we present an alternative way to define and

estimate CIE for binary outcomes when mean squared error (MSD) is used as the

disagreement function. An adjusted CIE, as well as its estimation, is discussed in

Section 3.3. Simulation results are presented in Section 3.4, while in Section 3.5

we apply the new concepts and methods to data from a study designed to assess

the agreement between ten radiologists’ readings of mammograms. A discussion in

Section 3.6 concludes this Chapter.

3.2 The Coefficient of Individual Equivalence for

Binary Observation

3.2.1 Non-Parametric Estimation of CIE for G(X, Y ) = E(X−

Y )2 = P (X 6= Y )

While the general expression (2.3) for ĈIE can be used for any disagreement function

G, we now propose a computationally simpler method for the most commonly used

disagreement function for binary readings, G(X, Y ) = E(X − Y )2 = P (X 6= Y ). An

alternative expression for estimating the numerator in equation (2.1) is described be-

low and this expression is shown in appendix B to be equivalent to the non-parametric

estimator of the numerator of CIE, when MSD(X,Y) is chosen for the disagreement

function G in (2.2). The denominator, Ĝ(X, Y ), is estimated as described in Section
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2.3. Note that Ĝi(X, Y ) = 1 when (X,Y)=(1,0) or (X,Y)=(0,1). Define Ti as the

number of “1”s for observer X and Ui as the number of “1”s for observer Y . The

numbers of pairs (1,0) and (0,1) are Ti(L − Ui) and Ui(K − Ti), respectively. While

averaging across all the K ·L pairs, Ĝi(X, Y ) = [Ti(L−Ui) + (K − Ti)Ui]/KL. Let’s

define TA
i as the number of “1”s in the permutation assignment for observer X and

UA
i as the number of “1”s in the same permutation assigment for observer Y . If we

consider all the assignments of K X ′s and the L Y ′s to the K+L observations made

on subject i, we note that Wi = TA
i + UA

i is fixed in all the assignments and the

conditional distribution of TA
i is hypergeometric given K and L. ĜE

i can be written

as:

Ĝi

E
= EH [2(TA

i )2 + (L−K − 2Wi)T
A
i +KWi]/(KL). (3.1)

where EH stands for the expectation under the hypergeometric distribution. We can

calculate the last expression for Ĝi

E
from the first two moments of the hypergeometric

distribution:

EH(TA
i ) = E(TA

i |Wi) = WiK/M. (3.2)

EH(TA
i )2 = E[(TA

i )2|Wi]

= [(WiKL(M −Wi) +W 2
i K

2(M − 1)]/[M2(M − 1)]. (3.3)

where M = K +L is the total number of observations on this subject. Therefore, by

(3.1), (3.2) and (3.3), ĜE
i can be simplified as follows:

ĜE
i =

2Wi(M −Wi)

M(M − 1)
=

2Wi(K + L)− 2W 2
i

(K + L)(K + L− 1)
. (3.4)



49

The average value of equation (3.4) provides an estimate for the numerator of CIE.

Thus, the non-parametric estimate of CIE can be written as

ĈIE =

∑N
i=1 Ĝ

E
i∑N

i=1 Ĝi(X, Y )
. (3.5)

3.2.2 Minimum and Maximum Values of CIE

3.2.2.1 Minimum Value of CIE

Denote πi = P (Xik = 1) and λi = P (Yil = 1), CIE achieves its minimum when πi = 0

and λi = 1 or πi = 1, λi = 0 for each subject i. Then for subject i, assuming πi = 0

and λi = 1:

GE
i =

2KL

(K + L)(K + L− 1)
,

and

GE =

∑N
i G

E
i

N
=

2KL

(K + L)(K + L− 1)
.

Obviously, in the denominator of CIE, Gi(X, Y ) = πi + λi − 2πiλi = 1 when πi = 0

and λi = 1. Therefore G(X, Y ) = 1 and hence

CIEmin =
2KL

(K + L)(K + L− 1)
.

For example, when K=L=3, CIEmin = 0.6; when K=4 and L=2, CIEmin = 0.533;

when K=1 and L=2, CIEmin = 0.667.

3.2.2.2 Maximum Value of CIE

Let’s take a look at the individual level first. By the general expression,

GE
i =

CK
2 Gi(X,X

′) + CL
2 Gi(Y, Y

′) +K · L ·Gi(X, Y )

CK+L
2

.
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We know

Gi(X,X
′) = 2πi(1− πi)

Gi(Y, Y
′) = 2λi(1− λi)

Gi(X, Y ) = πi + λi − 2πiλi

Therefore, we can rewrite the general expression as

GE
i =

2K(K − 1)πi(1− πi) + 2L(1− L)λi(1− λi) + 2KL(πi + λi − 2πiλi)

(K + L)(K + L− 1)

=
2K2πi(1− πi) + 2L2λi(1− λi)− 2[Kπi(1− πi) + Lλi(1− λi)] + 2KL(πi + λi − 2πiλi)

(K + L)(K + L− 1)

CIE achieves its maximum when πi = λi for all subjects, which indicates perfect

agreement. Then

GE
i =

2(K2 + L2)πi(1− πi)− 2(K + L)πi(1− πi) + 2KL · 2πi(1− πi)

(K + L)(K + L− 1)
.

Also, when πi = λi,

Gi(X,Y ) = 2πi(1− πi).

GE =
1

n

N∑
i=1

GE
i

=
2(K2 + L2)

∑N
i=1 πi(1− πi)− 2(K + L)

∑N
i=1 πi(1− πi) + 2KL · 2

∑N
i=1 πi(1− πi)

n(K + L)(K + L− 1)

and G(X,Y ) =
∑N

i=1Gi(X, Y ) = 2
∑N

i=1 πi(1− πi)/n. Therefore,

CIEmax =

∑N
i=1G

E∑N
i=1G(X, Y )

=
K2 + L2 −K − L+ 2KL

(K + L)(K + L− 1)
= 1.
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3.3 The Adjusted CIE (Definition and Estimation)

3.3.1 General Definition

As discussed in the previous section, the minimum of CIE isn’t equal to 0 and in

almost all the cases it’s greater than 0.5. To force the index to range from 0 to 1, we

define the adjusted CIE. The adjusted CIE is denoted as CIEA and defined as:

CIEA =
CIE − CIEmin

1− CIEmin

. (3.6)

Thus the true value of CIEA ranges from 0 to 1. The estimate of CIEA can be

obtained from ĈIE because CIEA is a linear function of CIE.

3.3.2 The Standard Error of the Adjusted CIE

Let’s first consider the standard error of CIE. Assume that for each i, the pair (πi, λi)

is randomly drawn from a large hypothetical population. Then π̂i is the maximum

likelihood estimator (MLE) of πi and similarly, λ̂i is the MLE of λi. Since Ĝi
E

and Ĝi(X,Y ) are functions of π̂i and λ̂i, the asymptotic normality of the estimate

of CIE can be established by applying the multivariate central limit theorem and

multivariate delta method. As CIEA is just a linear transformation of CIE, the

asymptotic property holds for ĈIEA.

Let A = ĜE = 1
N

∑N
i=1 Ĝ

E
i and B = Ĝi(X, Y ) = 1

N

∑N
i=1 Ĝi(X,Y ).Then ĈIE =

A/B. The sample variance of A is S2(A)= 1
N−1

∑N
i=1(Ĝ

E
i − ĜE)2 and then V̂ ar(A) =

S2(A)/N . Similarly, V̂ ar(B) = S2(B)/N , where S2(B)= 1
N−1

∑N
i=1(Ĝi(X, Y )−Ĝ(X, Y ))2.

Also, ˆCov(A,B) = [
∑N

i=1(Ĝ
E
i − ĜE)(Ĝi(X, Y )− Ĝ(X, Y ))]/N(N − 1). Finally

V ar(ĈIE) = V̂ ar(
A

B
) ≈ A2

B2
[
V̂ ar(A)

A2
+
V̂ ar(B)

B2
− Ĉov(A,B)

A ·B
].
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The standard error of the adjusted CIE is obtained as:

SE(ĈIEA) =
1

(1− CIEmin)

√
V ar(ĈIE).

3.3.3 Asymptotic Property of CIE

Denote πi = Pr(Xik = 1) and λi = Pr(Yil = 1). Assume

 πi

λi

 iid∼ P, where P denotes a known population.

Denote Ti is the number of “1”s for observer X on subject i and K is the total number

of replications observer X made per subject. Thus, π̂i = Ti

K
is the maximum likelihood

estimator of πi. Similarly, λ̂i = Ui

L
is the MLE of λi, where Ui is the number of “1”s

for observer Y on subject i and L is the total number of replications over observer Y

per subject. Therefore,

 π̂i

λ̂i

 iid∼ distributed.

CIE =
Ei(G

E
i )

Ei(Gi(X, Y ))
.

ĈIE =
1
N

∑N
i=1 Ĝi

E

1
N

∑N
i=1 Ĝi(X, Y )

.

Assume A =
¯̂
GE

i and B =
¯̂
Gi(X, Y ). Let

Z =

 A

B
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Since Ĝi

E
and Ĝi(X, Y ) are functions of the joint distribution of (π̂i, λ̂i) which

are iid distributed, by multivariate central limit theorem,

Z → N


E(A)

E(B)

 ,

 V ar(A) Cov(A,B)

Cov(A,B) V ar(B)


 .

Assume f(Z) = A
B

, where f(Z) = ĈIE. The asymptotic normality of ĈIE will

be established by multivariate Delta method.

∂f(Z)

∂A
=

1

B

∂f(Z)

∂B
= − A

B2

f ′(Z) =

 1
B

− A
B2

 .

Therefore,

V ar(
A

B
) =

(
1
B

− A
B2

) V ar(A) Cov(A,B)

Cov(A,B) V ar(B)


 1

B

− A
B2


=

(
1
B
V ar(A)− A

B2Cov(A,B) 1
B
Cov(A,B)− A

B2V ar(B)

) 1
B

− A
B2


=

1

B
V ar(A)− A

B3
Cov(A,B) +

A2

B4
V arB

=
A2

B
[
V ar(A)

A2
+
V ar(B)

B2
− Cov(A,B)

A.B
].
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3.3.4 Interpretation of CIEA

As with every new agreement coefficient, it is necessary to specify criteria for “good”

or “acceptable” agreement in a given application. Intuitively CIE compares the ob-

served disagreement to disagreement under equivalence and CIEA is the adjusted

CIE using the minimum value of CIE. Based on our experience, we suggest the rule

of thumb that the true CIEA value should be greater than and equal to 0.8 in order to

have good agreement. This implies that the lower confidence limit of CIEA needs to

be greater than or equal to 0.8 when analyzing data in order to claim good agreement.

3.4 Simulation Studies

3.4.1 Data Generation

We assume that observers’ binary readings are based on the value of a “true” variable

T (observed or unobserved), where T ∼ N(µT , σ
2
T ) and σ2

T is the between subjects

variability. Let Ai and Bi be the biases for observerX and Y , respectively. We assume

that Ai ∼ N(µA, σ
2
A), Bi ∼ N(µB, σ

2
B) and T , A and B are mutually independent.

For subject i, let Ti = ti, Ai = ai, Bi = bi. We use Ui and Vi to denote the

observers’ readings on the subject’s true value, and we assume Ui ∼ N(ti+ai, σ
2
U), Vi ∼

N(ti + bi, σ
2
V ), where σ2

U and σ2
V are the within-observer error variances for observers

X and Y , respectively. Denote by Uik the kth replicated reading of Ui, i = 1, . . . K.

Similarly, Vil is the lth replicated reading of Vi, l = 1, . . . L. Finally, for a fixed

common threshold C, we generate binary readings Xi1, . . . , XiK and Yi1, . . . , YiL by

the criterion that if Uik > C then Xik = 1, else then Xik = 0, and if Vil > C then

Yil = 1, else then Yil = 0. Note that X’s and Y ’s are conditionally independent given

the subject.

For given ti, ai, bi, the values of P (Xik = 1) and P (Yil = 1) are πi and λi, as
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follows:

πi = P (Xik = 1) = P (Uik > C) = 1− Φ

(
C − (ti + ai)

σU

)

λi = P (Yil = 1) = P (Vil > C) = 1− Φ

(
C − (ti + bi)

σV

)
,

where Φ is the CDF of a standard normal.

3.4.2 Simulation Process

Suppose T stands for the systolic blood pressure and we consider a hypothetical pop-

ulation of obese type II diabetes, i.e., persons with µT = 138mmHg and a between-

subjects σT = 5mmHg. The usual cut-off point for hypertension is 140mmHg for

systolic blood pressure, which is the threshold C in our model. We set the within-

observers standard errors to 3 (σU = σV = 3). Furthermore, we set the average

bias of observer X, µA, to 0 and gradually increase the average bias of observer Y ,

µB, from 1 to 3 to 5 in order to accommodate good, moderate and poor agreement,

respectively. The closer µA and µB, the better the agreement when other conditions

remain unchanged. Standard deviation for biases in observers X and Y were set to 1

(σA = σB = 1).

For each value of µB, we used three values of the sample size (N=50, 100 and 200)

along with four combinations of the numbers of replications (K,L)=(1,2), (3,3), (4,2)

and (10,10). The K = 1 and L = 2 combination was used because (a) K + L = 3

is the smallest number of replicates that is allowed for the CIE and adjusted CIE

(CIEA); (b) the CIA without a reference, ψN in Chapter 1.4.4, is not defined when

K = 1 or L = 1; (c) The CIA with observer X as the reference, ψR in Chapter 1.4.4,

cannot be estimated when there are no replicated observation by X (K = 1). Hence

only the CIE or CIEA can be estimated when K = 1, L = 2.

In our simulation study, we assessed the accuracy and precision of the estimated

CIEA relative to the true CIEA. We estimated the CIEA and its standard error from
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each sample. The average of the bias, the average estimated standard error and the

coverage probabilities of the 95% confidence interval were reported for each set-up.

One thousand simulations were conducted for each parameter set.

3.4.3 Simulation Results

Table 3.1 presents the true values, biases, standard errors and the coverage probability

of the estimates for all the combinations of (N,K,L) for poor, moderate and good

agreement cases defined earlier. As shown in Table 3.1, the bias was minimal for all

combinations and it decreased with the increase of sample size. Both standard errors

based on simulations of CIE and the mean of estimated standard errors calculated

from SE estimator are presented. The similarity between those two standard errors

confirms the robustness of our standard error estimates. For moderate sample sizes,

the coverage probability was very close to the nominal 95% level. Even when sample

size was 50, the coverage probabilities were above 91% for almost all the combinations.
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Table 3.1: Simulation Results: Estimation of CIEA when (K,L)=(1,2), (3,3), (4,2)
and (10,10)

Sample Size K L µB True Value Bias SEa SEb CP
50 1 2 1 0.942 0.022 0.243 0.246 0.943
100 1 2 1 0.942 0.007 0.178 0.173 0.938
200 1 2 1 0.942 0.007 0.120 0.123 0.950
50 3 3 1 0.922 0.006 0.099 0.095 0.912
100 3 3 1 0.922 0.003 0.070 0.070 0.926
200 3 3 1 0.922 0.000 0.051 0.050 0.935
50 4 2 1 0.908 0.007 0.115 0.115 0.923
100 4 2 1 0.908 0.004 0.082 0.083 0.941
200 4 2 1 0.908 0.001 0.061 0.059 0.940
50 10 10 1 0.922 0.001 0.020 0.019 0.892
100 10 10 1 0.922 0.000 0.014 0.013 0.927
200 10 10 1 0.922 0.000 0.010 0.010 0.935
50 1 2 3 0.783 0.020 0.228 0.215 0.918
100 1 2 3 0.783 0.005 0.146 0.151 0.946
200 1 2 3 0.783 0.006 0.102 0.107 0.960
50 3 3 3 0.766 0.005 0.094 0.097 0.947
100 3 3 3 0.766 0.004 0.069 0.069 0.939
200 3 3 3 0.766 0.001 0.050 0.050 0.941
50 4 2 3 0.755 0.012 0.111 0.111 0.934
100 4 2 3 0.755 0.003 0.077 0.079 0.951
200 4 2 3 0.755 0.003 0.057 0.056 0.938
50 10 10 3 0.766 0.002 0.024 0.024 0.920
100 10 10 3 0.766 -0.001 0.017 0.017 0.938
200 10 10 3 0.766 0.000 0.012 0.012 0.944
50 1 2 5 0.554 0.015 0.176 0.170 0.933
100 1 2 5 0.554 0.005 0.119 0.119 0.935
200 1 2 5 0.554 0.005 0.081 0.084 0.963
50 3 3 5 0.576 0.009 0.084 0.085 0.942
100 3 3 5 0.576 0.005 0.059 0.061 0.945
200 3 3 5 0.576 0.002 0.043 0.043 0.943
50 4 2 5 0.592 0.010 0.096 0.099 0.946
100 4 2 5 0.592 0.005 0.069 0.070 0.945
200 4 2 5 0.592 0.003 0.050 0.049 0.938
50 10 10 5 0.576 0.002 0.023 0.023 0.945
100 10 10 5 0.576 0.000 0.017 0.016 0.936
200 10 10 5 0.576 0.001 0.012 0.011 0.942

aStandard errors based on simulations of CIEA
bMean of estimated standard errors calculated from SE estimator in Section 3.2
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3.5 An Example

Data from a mammography study (Haber et al. (2007), Elmore et al. (1994)) and

Section 1.2 in this dissertation was used to illustrate the new coefficient of agreement.

Each of the study participants was followed up for three years, and then a definitive

diagnosis was made. The definitive diagnosis was breast cancer if it was histopatho-

logically confirmed within the three years of follow-up. We considered this diagnosis

as the patient’s “true” breast cancer status. Since the total of sensitivity and speci-

ficity was highest for radiologist A, we illustrated the new coefficients by estimating

the agreement between radiologist A and each of the remaining nine radiologists. One

observation with missing data in radiologist A was removed from the analysis.

The estimates, standard errors and 95% confidence intervals of CIEA are pre-

sented in Table 3.2 for the nine comparisons. Among all those pairwise comparisons,

the estimated CIEA of radiologists A and F was the highest (0.763) with 95% CI

(0.475, 1.051). However, the lower limit of 95% CI is less than 0.8, which means

that radiologist A and F failed to achieve a good agreement. In this example, since

K = L = 2 for every subject, our estimates of CIEA’s are almost identical to the

estimates of CIA’s (ψN) reported in Haber et al. (2007) for the same data. (The

small differences result from the deletion of a patient who was missing one reading

by radiologist A from our analysis.) Since our estimates of the standard error of

CIEA are based on the method in Section 3.3.2, while the estimates of the SE of CIA

in Haber et al. (2007) were obtained via the bootstrap, the confidence intervals are

not the same. The bootstrapped CIs, compared to the one based on the proposed

expression in Section 3.3.2, were right shifted a little bit.

As we mentioned earlier, CIEA can be estimated when some of the subjects have

only one reading by one of the observers. CIA cannot be estimated in this case. To

illustrate this advantage of CIEA over CIA, we randomly select 30 patients (20%),

and deleted at random the first or the second reading by radiologist A. We kept the
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complete data on the remaining 119 patients. Table 3.3 presents the estimates, SEs

and the 95% CIs of CIEA with one of the readings of radiologist A missing in 20%

of the patients. Similar estimates and slightly larger SEs of CIEA were obtained for

each comparison. As before, the comparison of radiologist A and F had the largest

ĈIEA but the lower limit 95% confidence limit is less than 0.8 that fails to conclude

good agreement by CIEA.

Table 3.2: Estimated CIEA’s for Nine Pairs of Radiologists
Radiologist CIEA SE(CIEA) 95% CI(CIEA)

(A,B) 0.646 0.141 (0.370 0.922)
(A,C) 0.358 0.093 (0.176 0.540)
(A,D) 0.697 0.126 (0.450 0.944)
(A,E) 0.643 0.141 (0.367 0.919)
(A,F) 0.763 0.147 (0.475 1.051)
(A,G) 0.541 0.111 (0.323 0.759)
(A,H) 0.486 0.108 (0.274 0.699)
(A,I) 0.739 0.111 (0.521 0.957)
(A,J) 0.619 0.108 (0.407 0.831)
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Table 3.3: Estimated CIEA’s for Nine Pairs of Radiologists with 20% of Patients are
Missing One of the Readings of Radiologist A

Radiologist CIEA SE(CIEA) 95% CI(CIEA)
(A,B) 0.677 0.149 (0.385 0.969)
(A,C) 0.333 0.098 (0.142 0.524)
(A,D) 0.719 0.135 (0.453 0.984)
(A,E) 0.600 0.153 (0.300 0.900)
(A,F) 0.762 0.182 (0.406 1.118)
(A,G) 0.553 0.122 (0.313 0.793)
(A,H) 0.459 0.115 (0.235 0.684)
(A,I) 0.744 0.121 (0.506 0.982)
(A,J) 0.682 0.136 (0.414 0.949)

3.6 Discussion

In this Chapter, we presented an approach to defining and estimating a new index

of agreement, CIE, for the comparison of two fixed observers or methods with repli-

cated binary measurements. This coefficient compares the observed disagreement to

its expected value under individual equivalence, i.e., when the distribution of the

readings of both observers on the same subject are identical. We used the conditional

version of CIEA given K and L. The dependence of CIEA on K and L results from

the permutation-based approach. Figure 3.1, 3.2 and 3.3 show the relations among

CIEA, K and L where K and L ranges from 2 to 50 under good, moderate and

poor agreement, respectively, with the same parameter setups in Section 3.4.2. When

K and L are small, there are some curvatures on the surface plot. When K and

L increase, the surfaces seem to be flat. Furthermore, Table 3.4 presents the true

values of CIEA under the simulation model described in Section 3.4.1. We observed

the dependency of CIEA on the number of replications seems to depend on the ratio

K/L. There is a differences of about 0.02 in CIEA when the ratio of K/L decreases

from 1.0 to 0.1. As shown in Figure 3.4 (L=1000), for all the good, moderate and
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poor agreement scenarios, CIEA stays approximately constant across different values

of K/L.
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Figure 3.1: Surface Plot of CIEA, K and L for Replicated Binary Measurements
under Good Agreement
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Figure 3.2: Surface Plot of CIEA, K and L for Replicated Binary Measurements
under Moderate Agreement
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Figure 3.3: Surface Plot of CIEA, K and L for Replicated Binary Measurements
under Poor Agreement
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Table 3.4: Dependence of CIEA on K and L under Simulation Set up
µb L K/L

0.1 0.3 0.5 0.7 0.9 1.0
1 10 0.9419 0.9394 0.9376 0.9292 0.9241 0.9219
1 100 0.9416 0.9387 0.9340 0.9288 0.9240 0.9219
1 1000 0.9415 0.9386 0.9339 0.9287 0.9240 0.9219
3 10 0.7826 0.7806 0.7767 0.7723 0.7683 0.7665
3 100 0.7823 0.7800 0.7762 0.7720 0.7682 0.7665
3 1000 0.7823 0.7799 0.7762 0.7720 0.7682 0.7665
5 10 0.5537 0.5567 0.5620 0.5681 0.5738 0.5763
5 100 0.5543 0.5575 0.5628 0.5686 0.5739 0.5763
5 1000 0.5543 0.5576 0.5628 0.5686 0.5739 0.5763
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Sample size calculations are essential in agreement studies because it’s important

to determine the number of subjects and the number of replications needed in order

to achieve a desired precision when estimating CIEA. For binary data, Gao (2010)

obtained the standard error (SE) of CIA in terms of N,K and L. One can get a similar

expression of the SE of CIEA so that the corresponding sample size of interest can

be calculated.

In Chapter 6, we will introduce a model-based approach to estimating CIEA from

replicated and repeated binary data.
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Chapter 4

Coefficient of Individual

Equivalence for Quantitative

Replicated Measurements
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4.1 Introduction

In Chapters 2 and 3 as well as in Pan et al. (2011), CIE has been introduced and

discussed when two observers make binary readings on each subject. In this Chapter

we focus on the properties of the new approach when the observations are quanti-

tative. In addition to the nonparametric approach, which is described in Chapter

2, we introduce a parametric approach, based on ANOVA mixed effects models, for

estimation and inference. The parametric model is discussed in Section 4.2. And

adjusted CIE, based on the minimum value of CIE, is introduced in Section 4.3. Sim-

ulation results are presented in Section 4.4, while in Section 4.5 we apply the new

concepts and methods to data from a study designed to determine the suitability of

magnetic resonance angiography (MRA) for noninvasive screening of carotid artery

stenosis, compared to invasive intra-arterial angiogram (IA). A discussion in Section

4.6 concludes this Chapter.

4.2 Definition and Estimation of the Coefficient of

Individual Equivalence (CIE)

4.2.1 Estimation of CIE with G(X, Y ) = E(X −Y )2 using Lin-

ear Mixed Effects Models for Normally Distributed

Observations

When X and Y are normally distributed and G(X, Y ) = E(X − Y )2, a parametric

approach for estimation and inference on CIE can be based on a two-way mixed linear

model with subject effect αi, observer effect βj as well as the interaction between

subject and observer γij. The residual term, εijk, represents the within-observer

replication variability. When there are J ≥ 2 observers (j = 1, · · · , J) we model the
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kth replication of observer j on subject i as

Yijk = µ+ αi + βj + γij + εijk, (4.1)

where the subject effect is random and the observer effect is fixed. We assume that the

random effects distributions are αi ∼ N(0, σ2
α), γij ∼ N(0, σ2

γ) and εijk ∼ N(0, σ2
εj

).

We also assume that αi, γij and εijk are independent. Note that each observer may

have a different within-observer variance σεj
. Since the observer is treated as a fixed

effect, define σ2
β as σ2

β = 1
J−1

∑J
j=1(βj − β̄)2.

Suppose now that there are only two observers, X and Y , and denote X = Y1 and

Y = Y2. Let G(X, Y ) = MSD(X, Y ) = E(X − Y )2. It is easy to see that

MSD(X,X ′) = E(Yi1k − Yi1k′)2 = E(εi1k − εi1k′)2 = 2σ2
ε1

MSD(Y, Y ′) = E(Yi2k − Yi2k′)2 = E(εi2k − εi2k′)2 = 2σ2
ε2

MSD(X, Y ) = E(Yi1k − Yi2k′)2 = E(β1 − β2)
2 + E(γi1 − γi2)

2 + E(εi1k − εi2k′)2

= 2σ2
β + 2σ2

γ + σ2
ε1

+ σ2
ε2
.

As we have seen, the expression of CIE can be simplified as

CIE =
CK

2 G(X,X ′) + CL
2 G(Y, Y ′)

CK+L
2 G(X, Y )

+
K · L
CK+L

2

.

When G = MSD is used as the disagreement function, G(X,X’), G(Y,Y’) and G(X,Y)

can be written in terms of the parameters of the mixed model as shown before. Hence,

CIE =
CK

2 σ
2
ε1

+ CL
2 σ

2
ε2

CK+L
2 · (σ2

β + σ2
γ + σ2

ε1
+ σ2

ε2
)

+
K · L
CK+L

2

. (4.2)

The CIE can be estimated by replacing the parameters by their REML estimates.
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In the special case K = L, the estimate of CIE can be written as

ĈIE =
K

2K − 1
· σ̂2

ε

σ̂2
β + σ̂2

γ + σ̂2
ε

+
K

(2K − 1)
.

where σ̂2
ε = (σ̂2

ε1
+ σ̂2

ε2
)/2.

4.2.2 Minimum and Maximum Values of CIE

4.2.2.1 Minimum Value of CIE

In order to derive a coefficient ranging from zero to one, we need to look at the mini-

mum of CIE and make an adjustment if necessary. In (2), if G(X,X ′) = G(Y, Y ′) = 0

while keeping G(X, Y ) > 0, CIE achieves its minimum as follows:

CIEmin =
K · L
CK+L

2

=
2K · L

(K + L)(K + L− 1)
. (4.3)

4.2.2.2 Maximum Value of CIE

CIE can be written as shown in (4.2). Notice that acceptable within-observer dis-

agreement is required when estimating CIE. We assume that the within observer

disagreement should not be greater than the between observer disagreement, that

is, G(X,X ′) ≤ G(X, Y ) and G(Y, Y ′) ≤ G(X, Y ). Under these assumptions, CIE

achieves its maximum when G(X,X ′) = G(X,Y ) and G(Y, Y ′) = G(X, Y ).

CIEmax =
CK

2 + CL
2 +K · L

CK+L
2

=
K(K−1)

2
+ L(L−1)

2
+K · L

(K+L)(K+L−1)
2

=
K(K − 1) + L(L− 1) + 2K · L

(K + L)(K + L− 1)
=

(K + L)2 − (K + L)

(K + L)(K + L− 1)
= 1
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Therefore, the maximum value of CIE for continuous measurement under reason-

able assumptions is 1.

4.3 Adjusted CIE

4.3.1 Definition

As we see, the minimum of CIE is greater than 0 and in almost all cases it’s greater

than 0.5. To force the index to range from 0 to 1, we define an adjusted CIE. The

adjusted CIE is denoted as CIEA and defined as:

CIEA =
CIE − CIEmin

1− CIEmin

, (4.4)

where CIEmin is defined in (4.3).The estimate of CIEA can be easily obtained from

ĈIE because CIEA is a linear function of CIE.

4.3.2 Large Sample Distribution and Standard Error of ĈIEA

Let’s first consider the nonparametric estimators of CIE. Since both estimator of

GE and G(X, Y ) are means overall all N subjects, the asymptotic normality of the

estimate of CIE can be established by applying the multivariate central limit theorem

and multivariate delta method when the sample size is large enough.

Let A = ĜE = 1
N

∑N
i=1 Ĝ

E
i and B = Ĝi(X,Y ) = 1

N

∑N
i=1 Ĝi(X, Y ). Then ĈIE =

A/B. The sample variance of A is S2(A)= 1
N−1

∑N
i=1(Ĝ

E
i − ĜE)2 and then ˆV ar(A) =

S2(A)/N . Similarly, ˆV ar(B) = S2(B)/N , where S2(B)= 1
N−1

∑N
i=1(Ĝi(X, Y )−Ĝ(X, Y ))2.

Also, ˆCov(A,B) = [
∑N

i=1(Ĝ
E
i − ĜE)(Ĝi(X, Y )− Ĝ(X, Y ))]/N(N − 1). Finally

ˆV ar(ĈIE) = ˆV ar(
A

B
) ≈ A2

B2
[

ˆV ar(A)

A2
+

ˆV ar(B)

B2
−

ˆCov(A,B)

A ·B
].
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For the parametric estimation of CIE from a linear mixed model, bootstrap SE’s

and normalized confidence interval based on bootstrap SE’s can be used.

As CIEA is just a linear transformation of CIE, the above asymptotic properties

hold for ĈIEA. The standard error of ĈIEA for both nonparametric method and

linear mixed model estimation is obtained as:

SE(ĈIEA) =
1

(1− CIEmin)

√
V ar(ĈIE).

4.3.3 Interpretation of CIEA

As with every new agreement coefficient, it is necessary to specify criteria for “good”

or “acceptable” agreement in a given application. Intuitively CIE compares the ob-

served disagreement to disagreement under individual equivalence and CIEA is the

adjusted CIE using the minimum value of CIE. We suggest that the true CIEA value

should be greater than or equal to 0.8 in order to have good agreement based on

empirical experience. This implies that the lower confidence limit of CIEA needs to

be greater than or equal to 0.8 when analyzing data in order to claim good agreement.

4.4 Simulation Studies

Simulation studies were conducted to evaluate the performance of both nonparametric

and parametric approaches for estimation and inference on the adjusted coefficient

of individual equivalence (CIEA). For nonparametric estimation, simulations were

performed for small (n=50), moderate (n=100) and large sample sizes (n=200). For

the parametric method, only sample size n=100 was included. In all settings, we

look at balanced number of replications for both raters (K=L=3) and unbalanced

scenarios (K=1, L=2) and (K=2, L=3). The (K=1, L=2) scenario correspondents to

the case where X is a perfect gold standard that does not require replications. The
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disagreement function G = MSD was used in all the simulations.

In the first set of simulations, we assume that the true value Ti ∼ N(µT , σ
2
T ). Fur-

thermore, we assume the conditional means and standard deviations of the observers’

readings given subjects’ true value are linear functions of t: µX|t = a + bt, µY |t =

c + dt, σX|t = e + ft, σY |t = g + ht. Then for subject i, K replicated measurements

of observer X were generated from N(µX|ti , σ
2
X|ti) and L replicated measurements of

observer Y were from N(µY |ti , σ
2
Y |ti). The three MSD functions can be expressed as

Haber and Barnhart (2008):

MSD(X, Y ) = (a− c)2 + e2 + g2 + 2[(a− c)(b− d) + ef + gh]µT

+ [(b− d)2 + f 2 + h2](µ2
T + σ2

T )

MSD(X,X ′) = 2e2 + 4efµT + 2f 2(µ2
T + σ2

T )

MSD(Y, Y ′) = 2g2 + 4ghµT + 2h2(µ2
T + σ2

T )

Data from a carotid stenosis study (see Section 1.2.2) were used to investigate the

behavior of the new coefficient. The distribution of T was defined using the sample

moments from the data, µT = 43.29, σT = 29.87. We used two sets of parameters

for the conditional means and variance, in order to explore the effect of difference

in variances of X and Y given T : (1) b = 1, d = 1, e = g = 1.5, f = h = 0.3; (2)

b = 1, d = 1, e = 1.5, g = 1, f = h = 0.3. To accommodate good, moderate and poor

agreement, we used a = 0 and let c = 3.8, 16.3 and 28.1. To investigate the perfor-

mance of nonparametric and parametric approaches when the distribution of the true

value is skewed, we conducted a second set of simulation as the true value T followed

an exponential distribution Ti ∼ EXP (λT ) with the mean and standard deviation

parameter as 29.87. The numbers of simulations when we have equal variances was

1000. For scenarios with unequal variances, the number of simulations was reduced

to 100 since we had to fit the ANOVA mixed model with heteroscedastic error terms.
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The number of bootstrap samples in estimating the standard error for the parametric

approach was 100.

Tables 4.1, 4.2, 4.3 and 4.4 present the true values, biases, standard errors, root

mean squared errors (RMSE) and the coverage probabilities of the estimates of CIEA

for all the combinations of (N,K,L) for the poor, moderate and good agreement

cases defined earlier when T was normally distributed. We considered nonparamet-

ric estimation with equal variance, nonparametric estimation with unequal variance,

parametric estimation with equal variance and parametric estimation with unequal

variance. As shown in Tables 1 to 4, the bias was minimal for all combinations and

it decreased when the sample size increased. Both standard errors based on simula-

tions of CIE and the mean of estimated standard errors are presented. The similarity

between those two standard errors confirms the robustness of our standard error es-

timates. For moderate and large sample sizes, the coverage probabilities were very

close to the nominal 95% level.

Furthermore, we noticed that when equal variances were used, the true values of

CIEA were not affected by the choice of K and L. When the variance parameters were

not the same, the true values of CIEA varied in a limited amount. In addition, root

mean square error (RMSE) was used for comparing the efficiency of the nonparametric

and parametric estimates. For all the scenarios we considered, the RMSE of the

parametric estimates was consistently smaller than that of the nonparametric method.

This indicates that when the data were generated from normal distributions, linear

mixed models produced more efficient estimates than the nonparametric method.

Similar simulation results were obtained when T was exponentially distributed (results

not shown) but the coverage probabilities under all scenarios were smaller than when

T was normally distributed.
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Table 4.1: Nonparametric Simulation results: estimation of CIEA with (K,L)=(1,2),
(2,3) and (3,3) when T is normal and variances are equal (e=g=1.5)

Sample size k l c True Bias SE1 SE2 RMSE3 CP 4

50 1 2 0.0 1.000 0.04 0.300 0.262 0.264 0.884
100 1 2 0.0 1.000 0.015 0.205 0.195 0.195 0.924
200 1 2 0.0 1.000 0.006 0.146 0.141 0.141 0.931
50 2 3 0.0 1.000 0.008 0.141 0.125 0.125 0.894
100 2 3 0.0 1.000 0.008 0.100 0.093 0.094 0.906
200 2 3 0.0 1.000 0.002 0.072 0.068 0.068 0.928
50 3 3 0.0 1.000 0.000 0.099 0.092 0.092 0.905
100 3 3 0.0 1.000 0.004 0.068 0.068 0.068 0.934
200 3 3 0.0 1.000 0.004 0.051 0.05 0.05 0.936
50 1 2 3.8 0.976 0.038 0.293 0.255 0.258 0.879
100 1 2 3.8 0.976 0.014 0.2 0.19 0.191 0.926
200 1 2 3.8 0.976 0.005 0.143 0.138 0.138 0.931
50 2 3 3.8 0.976 0.008 0.139 0.124 0.124 0.896
100 2 3 3.8 0.976 0.007 0.099 0.092 0.093 0.909
200 2 3 3.8 0.976 0.002 0.071 0.067 0.067 0.931
50 3 3 3.8 0.976 0.000 0.099 0.092 0.092 0.899
100 3 3 3.8 0.976 0.004 0.069 0.068 0.068 0.93
200 3 3 3.8 0.976 0.004 0.051 0.05 0.05 0.932
50 1 2 16.3 0.686 0.017 0.204 0.185 0.186 0.904
100 1 2 16.3 0.686 0.005 0.142 0.136 0.136 0.922
200 1 2 16.3 0.686 0.000 0.101 0.098 0.098 0.93
50 2 3 16.3 0.686 0.003 0.111 0.104 0.104 0.914
100 2 3 16.3 0.686 0.003 0.079 0.075 0.076 0.932
200 2 3 16.3 0.686 0.000 0.057 0.054 0.054 0.925
50 3 3 16.3 0.686 -0.002 0.088 0.084 0.084 0.922
100 3 3 16.3 0.686 0.001 0.062 0.062 0.062 0.934
200 3 3 16.3 0.686 0.001 0.046 0.044 0.044 0.933
50 1 2 28.1 0.424 0.006 0.126 0.117 0.117 0.899
100 1 2 28.1 0.424 0.001 0.089 0.086 0.086 0.921
200 1 2 28.1 0.424 -0.001 0.063 0.061 0.061 0.931
50 2 3 28.1 0.424 0.001 0.076 0.073 0.073 0.91
100 2 3 28.1 0.424 0.001 0.055 0.053 0.053 0.923
200 2 3 28.1 0.424 -0.001 0.039 0.038 0.038 0.925
50 3 3 28.1 0.424 -0.001 0.064 0.063 0.063 0.93
100 3 3 28.1 0.424 0.000 0.046 0.046 0.046 0.928
200 3 3 28.1 0.424 0.000 0.034 0.033 0.033 0.936

1Standard errors based on simulations of CIE
2Mean of estimated standard errors calculated from SE estimator
3Root mean squared error
4coverage probability of 95% confidence interval
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Table 4.2: Nonparametric Simulation results: estimation of CIEA when (K, L)=(1,2),
(2,3) and (3,3) when T is normal and variances are unequal (e=1.5, g=1)

Sample size k l c TRUE Bias SE1 SE2 RMSE3 CP 4

50 1 2 3.8 0.951 0.038 0.290 0.252 0.255 0.878
100 1 2 3.8 0.951 0.014 0.198 0.188 0.188 0.926
200 1 2 3.8 0.951 0.005 0.142 0.136 0.136 0.931
50 2 3 3.8 0.963 0.008 0.138 0.123 0.124 0.894
100 2 3 3.8 0.963 0.007 0.098 0.092 0.092 0.909
200 2 3 3.8 0.963 0.002 0.070 0.067 0.067 0.934
50 3 3 3.8 0.975 0.000 0.100 0.092 0.092 0.9
100 3 3 3.8 0.975 0.004 0.069 0.068 0.068 0.928
200 3 3 3.8 0.975 0.004 0.051 0.05 0.05 0.933
50 1 2 16.3 0.663 0.017 0.201 0.181 0.182 0.901
100 1 2 16.3 0.663 0.005 0.140 0.134 0.134 0.921
200 1 2 16.3 0.663 0.000 0.099 0.096 0.096 0.931
50 2 3 16.3 0.672 0.003 0.110 0.102 0.103 0.914
100 2 3 16.3 0.672 0.003 0.078 0.075 0.075 0.93
200 2 3 16.3 0.672 -0.001 0.056 0.054 0.054 0.924
50 3 3 16.3 0.681 -0.002 0.088 0.084 0.084 0.921
100 3 3 16.3 0.681 0.001 0.062 0.062 0.062 0.934
200 3 3 16.3 0.681 0.001 0.046 0.044 0.044 0.933
50 1 2 28.1 0.407 0.006 0.123 0.114 0.114 0.901
100 1 2 28.1 0.407 0.001 0.087 0.083 0.083 0.921
200 1 2 28.1 0.407 -0.001 0.061 0.06 0.06 0.931
50 2 3 28.1 0.412 0.001 0.075 0.072 0.072 0.905
100 2 3 28.1 0.412 0.001 0.054 0.052 0.052 0.923
200 2 3 28.1 0.412 -0.001 0.039 0.037 0.037 0.923
50 3 3 28.1 0.418 -0.001 0.064 0.063 0.063 0.931
100 3 3 28.1 0.418 0.000 0.046 0.045 0.045 0.928
200 3 3 28.1 0.418 0.000 0.034 0.033 0.033 0.934

1Standard errors based on simulations of CIE
2Mean of estimated standard errors calculated from SE estimator
3Root mean squared error
4coverage probability of 95% confidence interval
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Table 4.3: Parametric Simulation results: estimation of CIEA when (K, L) = (1, 2),
(2, 3) and (3, 3) when T is normal and variances are equal (e=g=1.5)

Sample size K L c TRUE Bias SE1 SE2 RMSE3 CP 4

100 1 2 0 1.000 -0.08 0.101 0.093 0.122 0.946
100 2 3 0 1.000 -0.037 0.054 0.047 0.06 0.964
100 3 3 0 1.000 -0.028 0.040 0.038 0.048 0.977
100 1 2 3.8 0.975 -0.078 0.102 0.095 0.122 0.936
100 2 3 3.8 0.975 -0.036 0.056 0.050 0.062 0.953
100 3 3 3.8 0.975 -0.028 0.042 0.041 0.05 0.964
100 1 2 16.3 0.686 -0.050 0.088 0.086 0.100 0.899
100 2 3 16.3 0.686 -0.022 0.059 0.057 0.061 0.910
100 3 3 16.3 0.686 -0.018 0.051 0.050 0.053 0.933
100 1 2 28.1 0.424 -0.029 0.062 0.061 0.067 0.889
100 2 3 28.1 0.424 -0.012 0.046 0.044 0.046 0.898
100 3 3 28.1 0.424 -0.010 0.041 0.040 0.041 0.918

1Standard errors based on simulations of CIE
2Mean of estimated standard errors calculated from bootstrap SE estimator
3Root mean squared error
4coverage probability of 95% confidence interval

Table 4.4: Parametric Simulation results: estimation of CIEA when (K, L) = (1, 2),
(2, 3) and (3, 3) when T is normal and variances are unequal (e=1.5, g=1)

Sample size K L c TRUE Bias SE1 SE2 RMSE3 CP 4

100 1 2 3.8 0.951 -0.006 0.206 0.171 0.171 0.920
100 2 3 3.8 0.963 -0.031 0.061 0.068 0.075 0.940
100 3 3 3.8 0.975 -0.036 0.041 0.046 0.058 0.960
100 1 2 16.3 0.663 -0.005 0.135 0.118 0.118 0.940
100 2 3 16.3 0.672 -0.022 0.064 0.061 0.065 0.900
100 3 3 16.3 0.681 -0.026 0.051 0.051 0.058 0.880
100 1 2 28.1 0.407 -0.004 0.083 0.074 0.074 0.940
100 2 3 28.1 0.412 -0.010 0.050 0.046 0.047 0.900
100 3 3 28.1 0.418 -0.013 0.044 0.040 0.042 0.900

1Standard errors based on simulations of CIE
2Mean of estimated standard errors calculated from bootstrap SE estimator
3Root mean squared error
4coverage probability of 95% confidence interval
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4.5 Carotid Stenosis Example

The carotid stenosis example, introduced in Section 1.2.2, comparing two MRA tech-

niques, two-dimensional (MRA-2D) and three-dimensional (MRA-3D) MRA time of

flight, to the IA, which was considered as the “gold standard”. We treated three

readings from three raters as the replication and 55 patients were recruited.

The estimates, standard errors and 95% confidence intervals of the CIEA by non-

parametric and parametric estimation methods are presented in Tables 4.5 for all

the pairwise comparisons of the three screening methods. For nonparametric estima-

tion, the estimated CIEA of MRA-2D and the gold standard IA method was 0.592

with the 95% CI (0.348, 0.835), which indicated moderate agreement. Similarly, a

moderate agreement was obtained when compare MRA-3D to IA with CIEA=0.452

(95%=(0.242, 0.661)). Even the comparison between MRA-2D and MRA-3D with

CIEA=0.881 and 95% CI (0.688, 1.000) failed to show good agreement since the 95%

lower limit is below 0.8. The parametric approach produced compatible estimations

of CIEA.

Table 4.5: Estimation of Agreement in the Carotid Stenosis Study using CIEA

Methods Compared Estimate SE of CIEA 95% CI for CIEA
Nonparametric Estimation
(IA, MRA-2D) 0.592 0.124 (0.348,0.835)
(IA, MRA-3D) 0.452 0.107 (0.242,0.661)
(MRA-2D, MRA-3D) 0.881 0.099 (0.688,1.000)
Parametric Estimation
(IA, MRA-2D) 0.585 0.133 (0.373,0.874)
(IA, MRA-3D) 0.447 0.100 (0.290,0.671)
(MRA-2D, MRA-3D) 0.875 0.091 (0.634,0.998)
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4.6 Discussion

In this chapter we introduced the coefficient of individual equivalence (CIE) for repli-

cated quantitative measurements. CIE compares the observed disagreement to its ex-

pected value under individual equivalence, i.e., when the probability density function

of the readings of both observers on the same subject are identical. Both nonpara-

metric and parametric estimators were introduced and validated through a simulation

study and applied in the carotid stenosis example. We concluded that a nonparamet-

ric approach always gives us robust estimation. The parametric method also works

well and gives us smaller RMSE when the true values are normally distributed (i.e.

when the parametric assumptions are valid).

As a scaled index, CIE has the advantage of judging the degree of agreement based

on standardized value. For other scaled agreement coefficients, such as ICCs and

CCCs, the values of the coefficients are not comparable across different populations,

and sometimes artificially high or low agreement values may be obtained due to

the dependence of those indices on the population heterogeneity. Both CIA and

CIE are fundamentally different from ICCs and CCCs because CIA uses the within-

subject, rather than between-subject, variability as the scaling factor. CIE, on the

other hand, introduces the idea of permutations to estimate the disagreement under

individual equivalence while sharing the same denominator as CIA for the observed

disagreement.

The CIA with MSD as the disagreement functions compares the observed dis-

agreement to the expected when E(Xi|T ) = E(Yi|T ) for every subject i Haber and

Barnhart (2008). The CIE compares the observed disagreement to the expected when

X and Y have the same conditional distribution (given T ) for every subject, which

is a stronger requirement. When we compare the definition of CIA to the expression

for CIE involving the between and within observer disagreement (1), we see that the

approaches differ by the weights they assign to G(X,X ′) and G(Y, Y ′). Basically, in
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CIA equal weights were assigned to G(X,X ′) and G(Y, Y ′), while in CIE, where we

applied the permutation-based method, CK
2 and CL

2 were used as weights for G(X,X ′)

and G(Y, Y ′) respectively. The comparison between CIEA and CIA and the relation

among CIEA, CIA and CCC will be discussed in Chapter 5.

In general we do not expect that either G(X,X ′) or G(Y, Y ′) to exceed G(X,Y)

and thus CIE or CIEA is generally less or equal to 1. However, in practice it is possible

for the estimated value of G(X,X ′) or G(Y, Y ′) (or both) to exceed the estimated

value of G(X,Y). Therefore, in practice it is possible to have estimated CIE or CIEA

greater than 1. In this case, we will set the estimates of CIE and CIEA to one.

Furthermore, in this Chapter we used the conditional version of CIEA given K

and L. The dependence of CIEA on K and L results from the permutation-based

approach. Figure 4.1, 4.2 and 4.3 show the relations among CIEA, K and L under

good, moderate and poor agreement, respectively, with the setups in Section 4.4

with unequal variances. Furthermore, we observed the dependency of CIEA on the

number of replications seems to be a function of the ratio K/L. CIEA does not depend

on K, L when the conditional variances of both observers are the same (Figure 4.4

(a)). In general, there is a difference of about 0.02 in CIEA when the ratio of K/L

increases from 0.1 to 1.0 when we have different variances. As shown in Figure 4.4

(b) (L=1000), for all the good, moderate and poor agreement scenarios, CIEA stays

approximately constant across different values of K/L.
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Figure 4.1: Surface Plot of CIEA, K and L for Continuous Measurements with Un-
equal Variances under Good Agreement
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Figure 4.2: Surface Plot of CIEA, K and L for Continuous Measurements with Un-
equal Variances under Moderate Agreement
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Figure 4.3: Surface Plot of CIEA, K and L for Continuous Measurements with Un-
equal Variances under Poor Agreement
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Figure 4.4: Dependence of True CIEA on the ratio of K/L when L=1000
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Sample size calculations are essential in agreement studies because it is important

to determine the number of subjects and the number of replications needed in order to

achieve a desired precision when estimating CIEA. Gao (2010) obtained the standard

error (SE) of CIA in terms of N, K and L. One can get a similar expression for the

SE of CIEA, so that the corresponding sample size of interest can be calculated. In

addition, the definition and nonparametric estimation of CIE can be easily extended

when the number of replications on each subject by the same observer is not fixed.
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Chapter 5

Comparison of CIE/CIEA to CIA,

Kappa and CCC

5.1 Introduction

As stated in Chapter 1, Kappa and weighted Kappa are the most popular agreement

coefficients for binary and categorical measurements. When we have continuous out-

comes, the concordance correlation coefficients (CCC) is often applied. Besides those

coefficients, the coefficient of individual agreement (CIA) can also be used for both

categorical and continuous measurements when replications are available. In this

chapter, the comparison between CIEA and CIA, Kappa and CCC are discussed.
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5.2 CIEA vs. CIA

5.2.1 Equality of ĈIEA and ĈIA when K=L

5.2.1.1 Binary Measurements

When we have binary outcomes, the equality of ĈIEA and ĈIA when K = L can

be shown as follows. Here we consider CIA=ψN .

ĈIEA =
ĈIE − CIEmin

1− CIEmin

=

ĜE

Ĝ(X,Y )
− CIEmin

1− CIEmin

=
ĜE − Ĝ(X, Y )CIEmin

(1− CIEmin)
· 1

Ĝ(X, Y )

Since K = L, CIEmin = K
2K−1

, which is a constant. By the estimation of CIA:

ĈIA =
[Ĝ(X,X ′) + Ĝ(Y, Y ′)]

2Ĝ(X, Y )
.

Therefore we need to show:

ĜE − Ĝ(X,Y )CIEmin

(1− CIEmin)
≡ (Ĝ(X,X ′) + Ĝ(Y, Y ′))

2
(5.1)

Since all the estimates Ĝ in (5.1) are means over all study subjects, it is sufficient to

show that the contributions of every subject to the two sides of (5.1) are euqal, i.e.

for every i:

ĜE
i − Ĝi(X, Y )CIEmin

(1− CIEmin)
≡ (Ĝi(X,X

′) + Ĝi(Y, Y
′))

2
(5.2)

For subject i, we first look at the r.h.s. of (5.1). Assuming K = L,

(Ĝi(X,X
′) + Ĝi(Y, Y

′))

2
=
Kπ̂i(1− π̂i)

(K − 1)
+
Kλ̂i(1− λ̂i)

(K − 1)
=
K[π̂i(1− π̂i) + λ̂i(1− λ̂i)]

K − 1
.
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Regarding l.h.s. of (5.1), when K = L:

ĜE
i =

2KWi −W 2
i

K(2K − 1)
.

We know that Ti is the number of “1”s for observer X and Ui is the number of “1”s

for observer Y . π̂i = Ti

Ki
and λ̂i = Ui

Li
. Since Ki = Li = K and Wi = Ti + Ui, then

Wi = K(π̂i + λ̂i).

Therefore,

ĜE
i =

2K(π̂i + λ̂i)−K(π̂i + λ̂i)
2

2K − 1
.

ĜE
i − Ĝi(X, Y )CIEmin

1− CIEmin

=
2K(π̂i + λ̂i)−K(π̂i + λ̂i)

2

K − 1
− (π̂i − λ̂i + 2π̂iλ̂i)K

=
K[π̂i(1− π̂i) + λ̂i(1− λ̂i)]

K − 1

Hence we established the equality (5.1) for every subject, which is sufficient for

the equality of ĈIEA and ĈIA.

5.2.1.2 Continuous Measurements: Nonparametric Estimation

When K = L, the mean over i of ĜE is [CK
2 (G(X,X ′)+G(Y, Y ′))+K2G(X, Y )]/C2K

2 .

Compare this to the numerator of ψN : [G(X,X ′) +G(Y, Y ′)]/2 = W , the numerator

of CIE is [2CK
2 W +K2G(X, Y )]/C2K

2 . Divided by G(X, Y ) to get

η = CIE = [K(K − 1)ψN +K2]/C2K
2 .

Note when K = L, CIEmin = K/(2K − 1). Then it’s straightforward to show

that CIEA=CIA. Similarly, we establish the equality between ĈIEA and ĈIA.
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5.2.1.3 Continuous Measurements: Parametric Estimation using Full Model

Only

To estimate CIAs using MSD as the disagreement function, either ψN or ψR, we can

use a two-way effects model. Applying the same two-way effects ANOVA model in

Chapter 4, when there is no reference,

Yijk = µ+ αi + βj + γij + εijk.

we assume those random effects αi ∼ N(0, σ2
α), γij ∼ N(0, σ2

γ) and εijk ∼ N(0, σ2
εj

).

Also we assume that αi, γij and εijk are independent. The overall error variance is

defined as σ2
ε = mean of σ2

ε1
, · · · , σ2

εJ
. When observer is treated as the fixed effect,

then σ2
β is a sum of squares, σ2

β = 1
J−1

∑J
j=1(βj − β̄)2. Therefore,

ψN =
σ2

ε1
+ σ2

ε2

2σ2
β + 2σ2

γ + σ2
ε1

+ σ2
ε2

.

σ̂2
β, σ̂2

γ, σ̂
2
ε1

and σ̂2
ε2

are used to estimate ψN . The SE estimator of ψ̂N was obtained

with delta method, by establishing the variances and covariances matrix of random

effects first (Wiener 2009).

Recall under the same model set up, we estimate CIEA using estimations from

the full model,

CIE =
CK

2 σ
2
ε1

+ CL
2 σ

2
ε2

CK+L
2 · (σ2

β + σ2
γ + σ2

ε1
+ σ2

ε2
)

+
K · L
CK+L

2

.

when K = L, CIE = [K(K−1)CIA+K2]/C2K
2 . Then CIE can be obtained through
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CIA. It’s not hard to show that under this case, CIEA is identical to CIA.

CIEA =
CIE − CIEmin

1− CIEmin

=
[K(K − 1)CIA+K2]/C2K

2 − CIEmin

1− CIEmin

=
K(K − 1)CIA+K2]/(K(2K − 1))−K/(2K − 1)

1−K/(2K − 1)

= CIA.

The equality between ĈIEA and ĈIA follows the same way.

We found that CIEA=CIA when K=L. However, unlike CIA, CIEA can be used

when K=1 or L=1, i.e., the scenario when we do not have replicated measurements

on a gold standard that is measured without error.

5.2.2 Comparison between ĈIEA and ĈIA when K 6= L

After establishing the equality between ĈIEA and ĈIA under the assumptionK = L,

it’s also interesting to compare ĈIEA to ĈIA when K 6= L, especially when sample

sizes are small. CIEA is based on a permutation method which is a nonparametric

approach and could result in better estimation for small sample size. Tables 5.1 and

5.2 present the simulation results when K=4 and L=2 for good, moderate and poor

agreement with sample sizes 10, 20 and 50 for binary outcomes, following the same

simulation set up in Chapter 3. And Tables 5.3 and 5.4 showed the same comparison

when we have continuous outcomes with a normally distributed true value. Generally,

when K 6= L, CIA experienced smaller bias than CIEA while CIEA archived better

coverage probabilities under many scenarios. Furthermore, CIA (ψN) is not estimable

when there is no replication by either observer and ψR is not estimable when there is

no replicated data for the gold standard, whereas CIEA is always estimable when at

least one of K, L is greater than 1.
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Table 5.1: Simulation Results: Estimation of CIEA when (K,L)=(4,2) for Binary
Outcomes

Sample Size K L µB Bias SEa SEb CP
10 4 2 1 0.041 0.280 0.214 0.767
10 4 2 3 0.046 0.276 0.219 0.819
10 4 2 5 0.031 0.241 0.207 0.853
20 4 2 1 0.019 0.192 0.171 0.878
20 4 2 3 0.023 0.187 0.170 0.890
20 4 2 5 0.019 0.168 0.153 0.884
50 4 2 1 0.007 0.115 0.115 0.923
50 4 2 3 0.012 0.111 0.111 0.934
50 4 2 5 0.010 0.096 0.099 0.946

aStandard errors based on simulations of CIEA
bMean of estimated standard errors calculated from SE estimator

Table 5.2: Simulation Results: Estimation of CIA when (K,L)=(4,2) for Binary Out-
comes

Sample Size K L µB Bias SEa SEb CP
10 4 2 1 0.034 0.265 0.196 0.744
10 4 2 3 0.042 0.264 0.205 0.759
10 4 2 5 0.025 0.230 0.191 0.810
20 4 2 1 0.019 0.187 0.166 0.837
20 4 2 3 0.027 0.184 0.168 0.873
20 4 2 5 0.021 0.164 0.147 0.880
50 4 2 1 0.006 0.116 0.115 0.906
50 4 2 3 0.010 0.117 0.112 0.911
50 4 2 5 0.009 0.094 0.097 0.944

aStandard errors based on simulations of CIA
bMean of estimated standard errors calculated from SE estimator
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Table 5.3: Simulation Results: Estimation of CIEA when (K,L)=(2,3) for Continuous
Outcomes

Sample Size K L c Bias SEa SEb CP
10 2 3 3.8 0.038 0.253 0.197 0.828
10 2 3 16.3 0.022 0.209 0.173 0.847
10 2 3 28.1 0.008 0.139 0.121 0.860
20 2 3 3.8 0.024 0.183 0.159 0.890
20 2 3 16.3 0.014 0.149 0.133 0.900
20 2 3 28.1 0.006 0.100 0.091 0.910
50 2 3 3.8 0.008 0.138 0.123 0.894
50 2 3 16.3 0.003 0.110 0.102 0.914
50 2 3 28.1 0.001 0.075 0.072 0.905

aStandard errors based on simulations of CIEA
bMean of estimated standard errors calculated from SE estimator

Table 5.4: Simulation Results: Estimation of CIA when (K,L)=(2,3) for Continuous
Outcomes

Sample Size K L c Bias SEa SEb CP
10 2 3 3.8 0.031 0.235 0.181 0.808
10 2 3 16.3 0.020 0.205 0.171 0.837
10 2 3 28.1 0.008 0.143 0.125 0.859
20 2 3 3.8 0.018 0.174 0.150 0.868
20 2 3 16.3 0.011 0.148 0.133 0.881
20 2 3 28.1 0.005 0.102 0.094 0.891
50 2 3 3.8 0.000 0.100 0.092 0.900
50 2 3 16.3 -0.002 0.088 0.084 0.921
50 2 3 28.1 -0.001 0.064 0.063 0.931

aStandard errors based on simulations of CIA
bMean of estimated standard errors calculated from SE estimator

5.3 CIEA vs. Kappa for Binary Observations

For this comparison, a latent class model for dialogistic agreement is introduced and

comparisons between CIEA and Cohen’s kappa are considered in the context of this
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model. Let 1 indicate presence of illness while 0 indicates absence of illness. Let X

and Y be two observers or disgnostic tests and T be the true binary illness status:

ω = P (T = 1), πt = P (X = 1|T = t), λt = P (Y = 1|T = t), t = 0, 1

where ω is the disease prevalence, π1, λ1 are the sensitivities of X and Y respec-

tively, and π0, λ0 are the complement of their specificities. Under this latent model,

introduced by Dawid and Skene (1979), the disagreement functions were derived as

in Haber et al. (2007):

G(X, Y ) = ω(π1 + λ1 − 2π1λ1) + (1− ω)(π0 + λ0 − 2π0λ0)

G(X,X ′) = 2ωπ1(1− π1) + 2(1− ω)π0(1− π0)

G(Y, Y ′) = 2ωλ1(1− λ1) + 2(1− ω)λ0(1− λ0)

Thus, CIEA can be obtained from (3.5) and (3.6) when plugging in the above G

functions. On the other hand, by assuming the errors of the two bianry classifications

to be independent, kappa can be written as follows:

κ =
2ω(1− ω)(π1 − π0)(λ1 − λ0)

π∗(1− λ∗) + π∗(1− λ∗)
,

where π∗ = ωπ1 + (1− ω)π0 and λ∗ = ωλ1 + (1− ω)λ0 (Kraemer (1979), Thompson

and Walter (1988) and Shoukri (2004)). For example, assume K = L = 3, π1 = 0.95,

π0=0.15, λ1 = 0.9 and λ0 = 0.1. In other words, the sensitivities and specificities

of both observers are high and close to each other. Figure 5.1 shows the CIEA and

κ when the prevalence, ω, varies from 0 to 1. We see that CIEA is close to 1 and

remains constant across 0 < ω < 1 while κ varies dramatically with the changes in

ω. This is not surprising since we know that κ heavily depends on the prevalence

(Kraemer (1979), Thompson and Walter (1988)).
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Figure 5.1: CIEA and κ as functions of prevalence ω.
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5.4 CIEA, CIA vs. CCC for Quantitative Data

The concordance correlation coefficient (CCC) is commonly used for assessing agree-

ment for continuous outcomes. It was first published by Lin Lin (1989) for the simplest

case where there are two raters and each make one reading per subject. Lin’s CCC is

defined as follows: assume that the observations (X, Y ) are from a bivariate distribu-

tion with mean vector (µx, µy) and variance-covariance matrix

 σ2
x ρσxσy

ρσxσy σ2
y

.

Lin’s CCC is defined as

CCCLin = 1− E(X − Y )2

E[(X − Y )2|ρ = 0]

=
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
,

where ρ is the Pearson correlation coefficient between two observers.

Following the introduction of the adjusted coefficient of individual equivalence

(CIEA) for quantitative measurements, it is of interest to compare this coefficient

to CCC, which shares the same denominator as CIE with G=MSD. Since we have

replicated observations from each observer, we compare the CIEA to the total CCC

Barnhart et al. (2005) defined as

CCCtotal = 1− E(Xik − Yil)
2

EI(Xik − Yil)2
,

where EI is the expectation given independence of X, Y . Barnhart et al. (2007c)

compared the total CCC and CIA when the between-subject variability is increased

and found that the CCC is inflated when the between-subject variability is large. We

will follow the same strategy to compare the CIEA with the total CCC.

Let’s use the simple latent class model introduced in Section 4.4. Obviously,

all three MSDs increase with the between-subject variability σ2
T . We’re going to
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explore the dependence of total CCC, CIA and CIEA on σ2
T . In Section 4.4, the

distribution of T was defined using the sample moments from the stenosis data,

µT = 43.29, σT = 29.87. To investigate the dependence of the coefficients on the

between-subjects variability, we now keep µT fixed at 43.29 but let σT vary from 0

to 60. The parameters defining the conditional means and standard deviations of

the observers’ measurements given T are: b = d = 1, e = 1.5, g = 1, f = h = 0.3.

We keep a = 0 and let c = 3.8, 16.3, 28.1 to account for good, moderate and poor

agreement. From the previous section, we know that when K = L, CIA and CIEA

are identical. Therefore, we consider K=L=3 and K=2, L=3 as the two scenarios in

our comparison.

In Figure 5.2, the total CCC, CIA and CIEA were plotted while varying σT . With

K=L=3, we consider good, moderate and poor agreement (cases ((a), (b) and (c) in

Figure 5.2, respectively). As we showed earlier when K=L, CIEA and CIA coincide.

Therefore we also consider case (d) where K=2, L=3 for moderate agreement. In

(a), where we have good agreement, both CIEA and CIA were constant with the

increment in σT , while total CCC increased rapidly with σT . Similarly, when we

have moderate and poor agreement (cases (b) and (c)), CIEA and CIA increased at

a modest rate with σT while total CCC increased very rapidly. Furthermore, when

σT ≥ 20, total CCC was much higher than CIEA and CIA. When K and L are not

equal, similar trend was observed except that CIA was a little bit higher than CIEA

(Figure 5.2(d)). Therefore, we believe that CCC is inflated with the between subject

variability is large, while CIEA and CIA are more stable.
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Figure 5.2: Agreement coefficients with varying σT
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Chapter 6

Model-based Estimation of the

Coefficient of Individual

Equivalence for Replicated and

Repeated Binary Measurements

A nonparametric approach for estimating CIE/CIEA from replicated binary out-

comes was presented in Chapter 3 , while in Chapter 4, a parametric method has

been proposed for estimating CIE/CIEA with replicated continuous measurements.

There are several advantages for using a parametric random effects model to estimate

CIE/CIEA. First, it’s quite convenient to generate all the estimations from random

effects models although usually modeling requires more assumptions. Second, it will

be easier to extend this coefficient to the scenario with multiple raters. Last but not

the least, in this chapter, we extend the coefficient of individual equivalence (CIE)

to repeated binary outcomes. It is then easy to use model-based estimation when

we have more complex data structure. In this exploratory chapter, several different

modeling approaches will be introduced and investigated to estimate the adjusted
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coefficient of individual equivalence (CIEA) for binary data.

6.1 Model-Based Estimation of CIEA for Repli-

cated Binary Outcomes

The identity link is not the canonical link function when we have binary outcomes.

However, the identity link has been widely used for binary outcome in agreement

studies when the proportion of agreement does not approach to the extreme values,

such as 0 or 1. Anderson and Aitkin (1985) discussed using variance components to

estimate intraclass correlation for binary response. In estimating the variance com-

ponents, the categorical or binary nature of the response is usually ignored, and the

analysis is carried out using analysis of variance. This is not a maximum likelihood

method, but analysis of variance has some desirable properties when the error vari-

ables are non-normal. The rule of thumb generally applied is that analysis of variance

is reasonably accurate as long as the proportions in each of the response categories

are between 0.1 and 0.9.

Dunn (2004) and Ridout et al. (1999) introduced an ANOVA model with iden-

tity link to estimate the intraclass correlation coefficient (ICC) with binary or even

categorical measurements. Lin et al. (2007) used the GEE method with identity

link to extend the concordance correlation coefficient (CCC) to replicated categorical

measurements. In the following sections, random effects models with both identity

and the canonical logit links are discussed. Variance components linear and general-

ized linear mixed models are investigated. When the logit link is applied, different

methods, including first and second order Taylor expansions, delta method, cumula-

tive Gaussian approximation and Adaptive Gauss-Hermite Quadrature were explored.

However, only the cumulative Gaussian approximation and Adaptive Gauss-Hermite

Quadrature are included in this dissertation to approximate the marginal likelihood
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in order to estimate the variance components estimators. Furthermore, a Bayesian

approach is applied to estimate CIEA when we have replicated binary outcomes.

6.1.1 Identity Link

A parametric approach to estimating and making inference on CIE can be based on

a mixed two-way linear model with subject effect αi, observer effect βj as well as

the interaction between subject and observer γij. Finally, the residual term is εijk,

assuming the replication index is k. Since we’re focusing on applying the identity

link, we define the model as

Yijk = µ+ αi + βj + γij + εijk (6.1)

We assume that the subject effect is random, the observer effect is fixed, and that

the random effects αi ∼ N(0, σ2
α), γij ∼ N(0, σ2

γ) and εijk ∼ N(0, σ2
ε) are independent.

Since the observer is treated as a fixed effect, we define σ2
β as σ2

β = 1
(J−1)

∑J
j=1(βj−β̄)2,

βj = µj−µ is the difference between the mean of observer j with respect to the overall

mean, and J is the number of observers (Carrasco 2003).

6.1.1.1 Estimation of CIEA using identity link

The estimation of the CIEA using the identity link for binary outcomes is similar

to the case of continuous measurements in Chapter 4. To simplify our notation, we

consider two observers X and Y and denote X = Y1 and Y = Y2. It is easy to see
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that

MSD(X,X ′) = E(Yi1k − Yi1k′)2 = E(εi1k − εi1k′)2 = 2σ2
ε

MSD(Y, Y ′) = E(Yi2k − Yi2k′)2 = E(εi2k − εi2k′)2 = 2σ2
ε

MSD(X, Y ) = E(Yi1k − Yi2k′)2 = E(β1 − β2)
2 + E(γi1 − γi2)

2 + E(εi1k − εi2k′)2

= 2σ2
β + 2σ2

γ + 2σ2
ε .

As we have seen, the expression of CIE can be simplified as

CK
2 ·G(X,X ′) + CL

2 ·G(Y, Y ′) +K · L ·G(X, Y )

CK+L
2 ·G(X, Y )

.

When MSD is used as the G function, MSD(X,X ′), MSD(Y, Y ′) and MSD(X,Y )

can be estimated from the saturated parametric mixed model as shown above.

In general,

CIE =
2CK

2 σ
2
ε

CK+L
2 · (σ2

β + σ2
γ + 2σ2

ε

) +
K · L
CK+L

2

.

As before, σ̂2
β, σ̂2

γ, σ̂
2
ε are used to estimate ĈIE.

6.1.1.2 Variance Components Approach with Identity Link

Still under the model 6.1, assume u is a vector containing all the random effects,

including random subject effect and the interaction between subject and observer.

Therefore, u ∼MVN(0, G) where G is a block diagonal matrix with components σ2
α

and σ2
γ in the diagonal and 0 otherwise. Furthermore,

E[Yijk|u] = πijk = g−1(µ+ αi + βj + γij) = µ+ αi + βj + γij

and V ar[Yijk|u] = φh(πijk). φ denotes the dispersion parameter and h is the variance

function associated with the conditional probability distribution of Y |u. Then we



103

can derive the following equations:

E(Yijk) = E(E(Yijk|u)) = E(πij) = µ

V ar(Yijk) = V aru(E(Yijk|u)) + Eu(V aru(Yijk|u))

= V aru(πij) + Eu(φh(πij))

Cov(Yijk, Yij′k) = Covu(E(Yijk|u), E(Yij′k|u)) + Eu(Cov(Yijk, Yij′k|u))

= Covu(E(Yijk|u), E(Yij′k|u)) = Covu(πij, πij′) = σ2
α

Cov(Yijk, Yijk′) = Covu(E(Yijk|u), E(Yijk′|u)) + Eu(Cov(Yijk, Yijk′|u))

= Covu(E(Yijk|u), E(Yijk′|u)) = Covu(πij, πij)

= V ar(µij) = σ2
α + σ2

β + σ2
γ

Therefore, when constructing three MSDs,

MSD(Yijk, Yijk′) = E(Yijk − Yijk′)2 = 2E(Yijk)
2 − 2[Covu(πij, πij) + E(Yijk)E(Yijk′)]

= 2σ2
α + 2σ2

β + 2σ2
γ + 2σ2

ε − 2σ2
α − 2σ2

β − 2σ2
γ

= 2σ2
ε

On the other hand,

MSD(Yijk, Yij′k) = E(Yijk − Yij′k)
2

= E(Yijk)
2 + E(Yij′k)

2 + E(−2[Covu(πij, πij′) + E(Yijk)E(Yij′k)]

= 2σ2
α + 2σ2

β + 2σ2
γ + 2σ2

ε − 2σ2
α

= 2σ2
β + 2σ2

γ + 2σ2
ε

Therefore, we achieve the same estimation as in Section 6.1.1.1. In the following

section, the variance components approach will be applied when we have a logit link.
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6.1.2 Logit Link

The above section demonstrated the scenario when the error term is considered nor-

mally distributed and the identity link is specified. However, in practice this is prob-

lematic when the proportions for any category are approaching the extreme values

such as 0 or 1.

Alternatively, we can try to derive the coefficient under the logit link, which is the

canonical link for binary outcomes. Under the logit link, we want to follow the same

strategy to derive the three MSD functions. We know that Yijk|u ∼ Bernoulli(πijk)

and logit(πijk) = µ+ αi + βj + γij. Therefore,

πijk =
1

1 + exp(−(µ+ αi + βj + γij))
,

in addition, E(Yijk|u) = πijk and V ar(Yijk|u) = πijk(1−πijk), where u ∼MVN(0, G)

and G is a block diagonal matrix with components σ2
α and σ2

γ in the diagonal and 0

otherwise. In order to construct three MSD functions, we need to get the analytic

forms of E(Yijk), V ar(Yijk), Cov(Yijk, Yijk′) and Cov(Yijk, Yij′k). How to approximate

the marginal moments in order to estimate the three MSD functions and CIE is of

interest.

For instance,

E(Yijk) = E(E(Yijk|u)) = E(πijk) = E(
1

1 + exp(−(µ+ αi + βj + γij))
) (6.2)



105

and generally,

V ar(πijk) = E(π2
ijk)− (E(πijk))

2

V ar(Yijk) = V ar(πijk) + E((πijk)(1− πijk)) = E(πijk)− (E(πijk))
2

Cov(Yijk, Yijk′) = Cov(πijk, πijk) = V ar(πijk)

Cov(Yijk, Yij′k) = Cov(πijk, πij,k) = E(πijk · πij′k)− E(πijk)E(πij′k)

Finally the above components can be used to construct the MSD functions as

follows:

MSD(Yijk, Yijk′) = 2E(Yijk)
2 − 2[Cov(Yijk, Yijk′) + E(Yijk)E(Yijk′)]

MSD(Yij′k, Yij′k) = 2E(Yij′k)
2 − 2[Cov(Yij′k, Yij′k) + E(Yij′k)E(Yij′k)]

MSD(Yijk, Yij′k′) = E(Yijk)
2 + (E(Yij′k′))2 − 2[Cov(Yijk, Yij′k′) + E(Yijk)E(Yij′k′)

= V ar(Yijk) + (E(πijk))
2 + V ar(Yij′k′) + (E(πij′k′))2

−2[Cov(πijk, πij′k′) + E(πijk)E(πij′k′)]

The following methods to estimate the marginal moments of this generalized linear

mixed model are under consideration: cumulative Gaussian approximation to logistic

function and Adaptive Gauss-Hermite Quadrature with SAS PROC GLIMMIX.

6.1.2.1 Cumulative Gaussian Approximation

Let’s redefine our problem under a generalized linear mixed model instead of ANOVA.

logit(πijk) = β0 + β1Xij + b0i + b1iXij.

Here, Xij denotes the dichotomous fixed (method) effect with Xij = 1 and Xij′ = 0.

Using a cumulative Gaussian approximation to the logistic function (Johnson and
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Kotz (1970), Zeger et al. (1988) and Lin and Breslow (1996)), we have the expression

logit(πijk) ≈ al(D) · (µij +βij) where al(D) = |c2Dzijz
′
ij +I|−q/2 and c = 16

√
3/(15π).

The details of such approximation is presented as follows.

In the above notation, D is the variance matrix of random effects. Under our set

up,

D =

σ2
α 0

0 σ2
γ


q is the dimension of random effects, here q = 2. zij denotes the design vector of

random effects zij =

1

1

 and z′ij is the corresponding transpose. I is the identity

matrix, xij is design matrix of fixed effects and β =

β0

β1

.

Therefore,

logit(πij) ≈ |c2Dzijz
′
ij + I|−q/2 · (µij + βij)

=

∣∣∣∣∣c2
σ2

α 0

0 σ2
γ

 ·

1

1

 ·
(

1 1

)
+

1 0

0 1

∣∣∣∣∣
(−1)

·
(

1 1

)
·

β0

β1


=

β0 + β1

c2σ2
α + c2σ2

α

Similarly,

logit(πij′k) ≈
β0

c2σ2
α + 1

.
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In terms of the variance covariance matrix, we still can follow Zeger et al. 1988,

cov(Yi) =

 V ar(Yijk) Cov(Yijk, Yij′k)

Cov(Yijk, Yij′k) V ar(Yij′k)


=

 V ar(πijk) Cov(πijk, πij′k)

Cov(πijk, πij′k) V ar(πij′k)

+

E((πijk)(1− πijk)) 0

0 E((πij′k)(1− πij′k))


≈ LiZiDZ

′
iLi + φAi

where Li = diag ∂h(π)
∂(π)

and h(π) is the logit link, π = x′ijβ; Zi =

1 1

1 0

; D has been

defined as above. φ is the overdispersion parameter and for simplicity we assume it’s

1 here. Ai = diag(g∗(πijk), g
∗(πij′k)) and g∗(πijk) = πijk(1− πijk).

Therefore,

Cov(Yi)

=

πijk(1− πijk) 0

0 πij′k(1− πij′k)

 ·

1 1

1 0

 ·

σ2
α 0

0 σ2
γ

 ·

1 1

1 0


·

πijk(1− πijk) 0

0 πij′k(1− πij′k)

+

πijk(1− πijk) 0

0 πij′k(1− πij′k)


=

 π2
ijk(1− πijk)

2(σ2
α + σ2

γ) πijk(1− πijk)πij′k(1− πij′k)σ
2
α

πijk(1− πijk)πij′k(1− πij′k)σ
2
α π2

ij′k(1− πij′k)
2(σ2

α)


+

πijk(1− πijk) 0

0 πij′k(1− πij′k)
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Finally we have

V ar(πijk) = π2
ijk(1− πijk)

2(σ2
α + σ2

γ)

V ar(πij′k) = π2
ij′k(1− πij′k)

2σ2
α

V ar(Yijk) = V ar(πijk) + πijk(1− πijk)

V ar(Yij′k) = V ar(πij′k) + πij′k(1− πij′k)

Cov(Yijk, Yijk′) = Cov(πijk, πijk) = V ar(πijk)

Cov(Yij′k, Yij′k) = Cov(πij′k, πij′k) = V ar(πij′k)

Cov(Yijk, Yij′k′) = Cov(πijk, πij′k′) = πijk(1− πijk)πij′k(1− πij′k)σ
2
α

where πijk and πij′k can be estimated using the Gaussian approximation.

6.1.2.2 Adaptive Gauss-Hermite Quadrature

The cumulative Gaussian approximation was not satisfactory even when we have

big sample size (results were shown through simulations for cumulative Gaussian

approximation). In this section, we introduce Adaptive Gauss-Hermite Quadrature

to estimate the marginal likelihood in order to estimate CIE using logistic random

effects models.

Gauss-Hermite Quadrature (GHQ) is often used for numerical approximation of

integrals with Gaussian kernels. In generalized linear mixed models, random ef-

fects are assumed to have Gaussian distributions, but often the marginal likelihood,

which has the key role in parameter estimation and inference, is analytically in-

tractable. Gaussian quadrature is particularly well suited to numerically evaluate

integrals against probability measures. And Gauss-Hermite quadrature is appropri-

ate when the density has kernel exp(−x2) and integration extends over the real line,

as is the case for the normal distribution. Suppose that p(x) is a probability density

function and the function f(x) is to be integrated against it. Then the quadrature
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rule is ∫ ∞

−∞
f(x)p(x)dx =

N∑
i=1

wif(xi).

where N denotes the number of quadrature points. The Gaussian quadrature

chooses abscissas in areas of high density, and if p(x) is continuous, the quadrature

rule is exact if f(x) is a polynomial of up to degree 2N − 1. In the generalized linear

mixed model the roles of f(x) and p(x) are played by the conditional distribution

of the data given the random effects, and the random-effects distribution, respec-

tively. Quadrature abscissas and weights are those of the standard Gauss-Hermite

quadrature (SAS,2009).

However, with the complex of adaptive Gauss-Hermite Quadrature approximation,

three simpler logistic random effects models were applied to estimate MSD(Y1, Y
′
1),

MSD(Y2, Y
′
2) and MSD(Y1, Y2). Let Yijk be the observation made on the ith subject

by the jth observer under the kth replication. To estimate MSDi(Y1, Y2), we con-

sider subject as a random factor; while observer is fixed factor. We construct three

generalized linear mixed models

ηi1 = µ1 + α1i (6.3)

ηi2 = µ2 + α2i (6.4)

ηijk = µ+ αi + βj (6.5)

where ηijk is the linear predictor under logit link, i.e. logit(πijk) = ηijk; µ, µ1 and µ2

are constants; βj is fixed observer effect in (6.5) and α1i, α2i and αi stand for random

subject effects in the above three models. All three models contribute to estimate

MSDi(Y1, Y
′
1), MSDi(Y2, Y

′
2) and MSDi(Y1, Y2). πi1 can be estimated using the

measurement of the first observer as shown in (6.4). Similarly, πi2 can be obtained
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by (6.5). Furthermore, πi1′ and πi2′ can be estimated by (6.5), such as:

πi1 =
exp(µ1 + α1i)

1 + exp(µ1 + α1i)

πi2 =
exp(µ2 + α2i)

1 + exp(µ2 + α2i)

πi1′ =
exp(µ+ αi + β1)

1 + exp(µ+ αi + β1)

πi2′ =
exp(µ+ αi + β2)

1 + exp(µ+ αi + β2)

Therefore

MSDi(Y1, Y
′
1) = 2πi1(1− πi1) (6.6)

MSDi(Y2, Y
′
2) = 2πi2(1− πi2) (6.7)

MSDi(Y1, Y2) = Pr(Yi1 6= Yi2|i) = πi1′ + πi2′ − 2πi1′πi2′ (6.8)

In PROC GLIMMIX procedure of SAS 9.2, “ilink” option in “output” state-

ment gives the inverse of logit function and “blup” option also in “output” statement

gives the predicted values based on both fixed and random effects. Besides that,

METHOD=QUAD in a generalized linear mixed model approximates the marginal

log likelihood with an adaptive Gauss-Hermite quadrature. And points=1000 were

specified with “QUAD” method to improve estimation precision. A numerical inte-

gration rule is called adaptive when it uses a variable step size to control the error

of the approximation. For example, an adaptive trapezoidal rule uses serial split-

ting of intervals at midpoints until a desired tolerance is achieved. Furthermore, the

GLIMMIX procedure centers and scales the quadrature points by using the empirical

Bayes estimates (EBEs) of the random effects and the Hessian (second derivative)

matrix from the EBE suboptimization. This centering and scaling improves the like-
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lihood approximation by placing the abscissas according to the density function of

the random effects (SAS,2009).

6.1.3 Bayesian Method

Following the estimating CIEA with three logit models (6.3-6.5), Bayesian method

can be alternatively used for estimation, besides the mixed effects models. The cor-

responding bayesian set up for equation(6.3) is shown as follows:

� Likelihood: Yi1k ∼ Bernoulli(πi1)

logit(πi1) = β0 + b0

� priors: β0 ∼ Normal(0, 0.0001)

b0i ∼ Normal(0, s)

s ∼ Gamma(0.001, 0.001)

Similarly we can derive the set up for Yi2k. In equation (6.5), we have

� Likelihood: Yijk ∼ Bernoulli(πij′)

logit(πi1′) = β′0 + β′1 + b′0i

logit(πi2′) = β′0 + b′0i

� priors: β′0i ∼ Normal(0, 0.0001)

β′1i ∼ Normal(0, 0.0001)

b′0i′ ∼ Normal(0, s)

s ∼ Gamma(0.001, 0.001)

WinBUGS has been used to perform this Bayesian analysis. Due to the computational

intensity, simulation studies applying the Bayesian method have not been done, but

the results for the mammogram data are presented and compared in Table 6.4.
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6.1.4 Simulations

Different exploratory approaches has been investigated using simulations as well as

with the real data analysis. We found that only the identity link and the logit link

with Adaptive Gauss-Hermite Quadrature using PROC GLIMMIX give satisfactory

results. In this simulation study, the same data generation and true value setups

were applied as introduced in Chapter 3. Good, moderate as well as poor agreement

scenarios were considered. Identity link, Gaussian approximation and the logit link

with Adaptive Gauss-Hermite Quadrature using PROC GLIMMIX were considered.

Table 6.1 presents the result from the identity link. Sample sizes 50,100 and 200 were

included. The biases were small, the two standard error estimations were similar and

the coverage probability approached the nominal 0.95 when the sample size increase.

Due to the limitation of using identity link on binary outcomes, the proportions of

extreme πi and λi in the simulation population were calculated. We define the ex-

treme proportions as the percentages less than 0.1 or greater than 0.9. Under the

setup of good agreement, the extreme proportions of πi and λi were 14.1% and 13.4%,

respectively. Similarly, under moderate and poor agreement, the extreme proportions

of π where the same due the way we generated the data. The extreme proportions of

λ were 11.6% under moderate agreement and 10.9% under poor agreement. Figure

6.1 and 6.2 show the histogram of true values of π and λ under moderate agreement,

respectively. Table 6.2 presents the simulation results of cumulative gaussian approx-

imation. Apparently the cumulative gaussian approximation dose not work very well,

especially when the sample size is small. The coverage probabilities of cumulative

gaussian approximation were much very lower than 95% when the agreement is poor.

Simulation results for the logit link with Adaptive Gauss-Hermite Quadrature are

shown in Table 6.3. Only sample size 100 was included due to the computational

intensity.
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Table 6.1: Simulation of Replicated CIEA using Identity Link

Sample size k l µB True Bias SE1 SE2 CP
50 1 2 1 0.942 -0.084 0.139 0.136 0.958

100 1 2 1 0.942 -0.062 0.117 0.103 0.949
200 1 2 1 0.942 -0.038 0.083 0.078 0.955
50 3 3 1 0.922 -0.017 0.078 0.070 0.932

100 3 3 1 0.922 -0.008 0.059 0.055 0.931
200 3 3 1 0.922 -0.004 0.046 0.043 0.923
50 4 2 1 0.908 -0.007 0.083 0.075 0.916

100 4 2 1 0.908 0.003 0.065 0.059 0.926
200 4 2 1 0.908 0.007 0.051 0.045 0.919
50 1 2 3 0.783 -0.049 0.157 0.138 0.926

100 1 2 3 0.783 -0.033 0.114 0.109 0.936
200 1 2 3 0.783 -0.016 0.086 0.083 0.955
50 3 3 3 0.766 -0.004 0.087 0.085 0.946

100 3 3 3 0.766 0.000 0.066 0.065 0.942
200 3 3 3 0.766 0.000 0.050 0.048 0.939
50 4 2 3 0.755 0.008 0.097 0.089 0.919

100 4 2 3 0.755 0.008 0.071 0.069 0.950
200 4 2 3 0.755 0.010 0.054 0.051 0.923
50 1 2 5 0.554 0.007 0.151 0.135 0.939

100 1 2 5 0.554 0.010 0.111 0.105 0.941
200 1 2 5 0.554 0.016 0.080 0.079 0.951
50 3 3 5 0.576 0.005 0.083 0.082 0.930

100 3 3 5 0.576 0.003 0.058 0.060 0.940
200 3 3 5 0.576 0.001 0.043 0.043 0.937
50 4 2 5 0.592 -0.007 0.086 0.086 0.947

100 4 2 5 0.592 -0.009 0.062 0.063 0.948
200 4 2 5 0.592 -0.010 0.045 0.045 0.931

SE1Standard errors based on simulations of CIE
SE2Mean of estimated standard errors calculated from SE estimator
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Figure 6.1: Histogram of π under Moderate Agreement
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Figure 6.2: Histogram of λ under Moderate Agreement
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Table 6.2: Simulation of Replicated CIEA with Logit Link using Variance Compo-
nents with Cumulative Gaussian Approximation

Sample size k l µB True bias SE1 SE2 CP
100 1 2 1 0.942 -0.030 0.090 0.108 0.813
200 1 2 1 0.942 -0.015 0.065 0.080 0.900
400 1 2 1 0.942 -0.006 0.049 0.059 0.952
100 3 3 1 0.922 -0.002 0.086 0.074 0.792
200 3 3 1 0.922 0.010 0.054 0.056 0.900
400 3 3 1 0.922 0.017 0.038 0.040 0.890
100 4 2 1 0.908 -0.012 0.114 0.095 0.744
200 4 2 1 0.908 0.012 0.070 0.073 0.866
400 4 2 1 0.908 0.022 0.047 0.054 0.904
100 1 2 3 0.783 0.086 0.119 0.136 0.660
200 1 2 3 0.783 0.105 0.088 0.102 0.618
400 1 2 3 0.783 0.119 0.062 0.072 0.516
100 3 3 3 0.766 0.116 0.106 0.087 0.550
200 3 3 3 0.766 0.134 0.066 0.066 0.451
400 3 3 3 0.766 0.142 0.043 0.047 0.214
100 4 2 3 0.755 0.103 0.133 0.110 0.616
200 4 2 3 0.755 0.133 0.084 0.084 0.546
400 4 2 3 0.755 0.145 0.053 0.061 0.344
100 1 2 5 0.554 0.234 0.152 0.166 0.499
200 1 2 5 0.554 0.257 0.119 0.133 0.432
400 1 2 5 0.554 0.274 0.088 0.098 0.252
100 3 3 5 0.576 0.236 0.124 0.107 0.387
200 3 3 5 0.576 0.254 0.091 0.081 0.231
400 3 3 5 0.576 0.268 0.054 0.060 0.061
100 4 2 5 0.592 0.195 0.156 0.129 0.495
200 4 2 5 0.592 0.228 0.101 0.101 0.396
400 4 2 5 0.592 0.243 0.070 0.075 0.196

SE1Standard errors based on simulations of CIE
SE2Mean of estimated standard errors calculated from SE estimator
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Table 6.3: Simulation of Replicated CIEA with Logit Link by Adaptive Gauss-
Hermite Quadrature when Sample size=100

Sample size k l µB True Bias SE1 SE2 CP
100 1 2 1 0.942 -0.005 0.153 0.14 0.92
100 3 3 1 0.922 0.049 0.053 0.054 0.81
100 4 2 1 0.908 0.031 0.057 0.061 0.90
100 1 2 3 0.783 -0.01 0.134 0.135 0.91
100 3 3 3 0.766 0.035 0.063 0.064 0.91
100 4 2 3 0.755 0.021 0.068 0.071 0.96
100 1 2 5 0.554 -0.035 0.113 0.118 0.92
100 3 3 5 0.576 0.017 0.055 0.06 0.94
100 4 2 5 0.592 0.017 0.063 0.069 0.95

SE1Standard errors based on simulations of CIE
SE2Mean of estimated standard errors calculated from SE estimator
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6.1.5 Mammogram Study

Pairwise agreement was assessed between radiologist A and each of the other 9 ra-

diologists in the Mammogram study. Nonparametric estimation was introduced in

Chapter 3. Here Table 6.4 presents the estimation results using identity link, logit

link with the Adaptive Gauss-Hermite Quadrature as well as the Bayesian approach.

All methods yield similar results compared to nonparametric estimation. The identity

link seemed to be closet to nonparametric estimation in terms of the result in this

Mammogram study. Standard error estimations of nonparametric approach, logic

link and identity link were presented in Table 6.5. In most comparisons, the identity

link yielded the smallest SE estimations among the three methods.

Table 6.4: Comparison of Estimations of CIEA in Mammogram Study

Comparison Nonparametric Logit Link Identity Link Bayesian
(A,B) 0.646 0.626 0.643 0.593
(A,C) 0.358 0.305 0.356 0.379
(A,D) 0.697 0.739 0.695 0.651
(A,E) 0.643 0.669 0.641 0.608
(A,F) 0.763 0.713 0.760 0.658
(A,G) 0.541 0.587 0.553 0.565
(A,H) 0.486 0.450 0.486 0.482
(A,I) 0.739 0.798 0.745 0.676
(A,J) 0.619 0.685 0.617 0.614

Table 6.5: Comparison of Standard Error Estimations of CIEA in Mammogram Study

Comparison Nonparametric Logit Link Identity Link
(A,B) 0.141 0.130 0.134
(A,C) 0.093 0.098 0.082
(A,D) 0.126 0.213 0.105
(A,E) 0.141 0.253 0.115
(A,F) 0.147 0.108 0.128
(A,G) 0.111 0.185 0.083
(A,H) 0.108 0.143 0.103
(A,I) 0.111 0.293 0.103
(A,J) 0.108 0.235 0.104



119

6.2 CIEA for Repeated Binary Outcomes

So far, we estimated the CIE from data with unmatched replications which are mea-

sured under the “same” condition, i.e. when the true values remain fixed. This is

the ideal scenario. More often, in practice, the number of readings made by each

observer on each subject is fixed and these readings correspond to the levels of an

additional factor whose levels can be considered as “conditions”. In this case, the

agreement study may be designed such that multiple matched observations with two

(or more) observers are conducted on each subject under specific “conditions” where

the subjects’ true values may change across conditions. These observations are then

considered matched repeated measurements. Here we distinguish “replicated” mea-

surements and “repeated” measurements where for “replicated” measurements, the

true values of subjects are assumed to be the same over replications, while for “re-

peated” measurements, the true values of the subject can vary under different condi-

tions.

In this section, we extend the concepts and ideas of the CIE for assessing observer

agreement from data consisting of matched repeated binary observations made with

the same observer under different conditions. These conditions may correspond to

different time points, laboratories, devices, treatments and so forth. Our approach

allows the values of the measured variables and the magnitude of disagreement to vary

across the conditions. First, a variance components linear mixed model with identity

link will be used. Next, a variance components generalized linear mixed model, using

adaptive Gaussian Hermite Quadrature is applied to estimate CIE. Simulation studies

with K = L = 2 and K = L = 3 are conducted. The mammogram study are used

again, treating the two readings of the same radiologist as repeated measurements,

taken at two different time points.



120

6.2.1 Repeated Outcomes with the Identity Link

Since the binary measurements considered here do not include replicated observa-

tions, Yj and Y ′
j , made with the same method on the same subject under the same

condition, we cannot apply the nonparametric approach proposed in chapter 2 to

estimate MSDh(Yj, Y
′
j ) were used, where h denotes the repeated condition, i.e. time

point (h = 1, ..., K). Instead, we propose estimating MSDs from linear mixed models

for repeated binary outcomes. For simplicity, we start with identity link function.

Let Yijh be the observation made on the ith subject with the jth observer under

the hth condition. To estimate M̂SDih(Y1, Y2), we consider subject as a random factor

while observer and condition are fixed factors. We construct a mixed ANOVA model

as

Yijh = µ+ αi + βj + γh + (αβ)ij + (βγ)jh + εijh (6.9)

The α’s are the subjects’ random effects while the β’s and γ’s are the fixed effects

of the observers and the conditions, respectively. We assume that the random main

effects, interactions and errors are independent and normally distributed with mean

0 and Var(αi) = σ2
α, Var[(αβ)ij] = σ2

αβ, and Var(εijh) = σ2
ε . Regarding the fixed

effects, we make the common assumption that the sum of the coefficients over every

index is zero, i.e.,
∑

j βj =
∑

h γh =
∑

j(βγ)jh =
∑

h(βγ)jh = 0. This model is very

similar to the one used to estimate CIA for repeated continuous outcomes (Haber

et al. (2010)). Interaction between the subject and the condition was not included

due to the concern of model convergence.

It is important to note that this model allows the measurements Yijh for the same

subject-method combination (i, j) to vary across the h conditions. If we consider two

(hypothetical) replicated observations, Yjh and Y ′
jh, that could be made by method j
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on the same subject under the same condition, then

MSDh(Yj, Y
′
j ) = E(Yijh − Y ′

ijh)
2

= 2σ2
ε

as we assume that E(Yj) = E(Y ′
j ) and Var(Yj) = Var(Y ′

j ) = σ2
ε , as we assume homo-

geneity of the error terms across observer. It leads to MSD(Y1, Y
′
1) = MSD(Y2, Y

′
2).

From the above model, it is evident that the disagreement between the two ob-

servers may depend on the condition. The MSDh(Y1, Y2) for the hth condition can be

obtained from the parameters of the model as follows

MSDh(Y1, Y2) = E(Yi1h − Yi2h)
2

= E {[µ+ αi + β1 + γh + (αβ)i1 + (βγ)1h + εi1h]

−[µ+ αi + β2 + γh + (αβ)i2 + (βγ)2h + εi2h]}2

= E {(β1 − β2) + [(αβ)i1 − (αβ)i2]

+[(βγ)1h − (βγ)2h] + (εi1h − εi2h)}2

= (β1 − β2)
2 + [(βγ)1h − (βγ)2h]

2
+ 2σ2

αβ + 2σ2
ε

Also, as derived before, with K = L

CIE =
CK

2 G((X,X ′) +G(Y, Y ′))

C2K
2 G(X,Y )

+
K2

C2K
2

As a result, the CIEs for repeated binary observations under the hth condition as

CIEh =
CK

2 (MSD(Y1, Y
′
1) +MSD(Y2, Y

′
2))

C2K
2 MSDh(Y1, Y2)

+
K2

C2K
2
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Therefore,

CIEAh =
CIEh − CIEmin

1− CIEmin

,

where CIEmin = K/(2K − 1). One can then estimate the CIEAs from the estimated

parameters and variances from fitting the mixed model.

6.2.2 Repeated Outcomes with the Logit Link

In this section, we further apply the logit link with adaptive Gaussian-Hermite Quadra-

ture to estimate the CIEAs for evaluating agreement between observers when the

measured variables are binary and the data consist of matched repeated observations

made by different observers under different conditions. The idea of using three ran-

dom effects logistic regression models are similar to what we described in estimating

CIE/CIEA for replicated binary outcomes. We consider the cases where each of N

subjects is evaluated by multiple observers under the same K conditions, where the

condition is a categorial factor.

Oftentimes, for data with matched repeated measurements, replicated observa-

tions under each condition are not available. Then we propose to estimate the indi-

vidual disagreement probabilities from fitted generalized linear mixed models.

Let Yijh be the observation made on the ith subject with the jth observer under the

hth condition. To estimate MSDih(Y1, Y2), we consider subject as a random factor

while observer and condition are fixed factors. We construct a generalized linear

mixed model

ηijh = µ+ αi + βj + γh (6.10)

where ηijh is the linear predictor under the logit link function, i.e. logit(πijh) = ηijh

(i = 1, . . . , N – subject; j = 1, 2 – observer, h = 1, . . . , H – condition), and µ is a

constant, βj, γh are fixed effects and αi is an independent normal random variable
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with expectation zero and variance σ2
α.

The individual between-observer disagreement for the hth condition h can be writ-

ten as

MSDih(Y1, Y2) = Pr(Yi1h 6= Yi2h|i, h)

= Pr(Yi1h = 1|i, h) Pr(Yi2h = 0|i, h) + Pr(Yi1h = 0|i, h) Pr(Yi2h = 1|i, h)

= πi1h + πi2h − 2πi1hπi2h (6.11)

as πi1h = Pr(Yi1h = 1|i, h) and πi2h = Pr(Yi2h = 1|i, h) for (i = 1, . . . , N ; h =

1, . . . , H).

For linear mixed models, the likelihood function has a closed form. Consequently,

efficient computational algorithms have been proposed for maximum likelihood and

restricted maximum likelihood estimations. However, in the case of generalized linear

mixed models, the likelihood function usually cannot be expressed as in a closed form

which causes problems in estimating parameters. Similar to Section 6.1.3, where we

have replicated binary outcomes, adaptive Gauss-Hermite quadrature has been used

to approximates the marginal log likelihood.

The MSD in (6.11) can be estimated as

M̂SDih(Y1, Y2) = π̂i1h + π̂i2h − 2π̂i1hπ̂i2h

=
exp(µ̂+ α̂i + β̂1 + γ̂h)

1 + exp(µ̂+ α̂i + β̂1 + γ̂h)
+

exp(µ̂+ α̂i + β̂2 + γ̂h)

1 + exp(µ̂+ α̂i + β̂2 + γ̂h)

−2
exp(µ̂+ α̂i + β̂1 + γ̂h)

1 + exp(µ̂+ α̂i + β̂1 + γ̂h)
× exp(µ̂+ α̂i + β̂2 + γ̂h)

1 + exp(µ̂+ α̂i + β̂2 + γ̂h)

To estimate MSDh(Y1, Y
′
1) and MSDh(Y2, Y

′
2), we fit two additional models sepa-
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rately

ηi1h = µ1 + α1i + γ1h (6.12)

ηi2h = µ2 + α2i + γ2h (6.13)

where logit(πi1h) = ηi1h and logit(πi2h) = ηi2h, subject is a random factor and condition

is a fixed factor. Moreover, α1i and α2i are independent normal with zero expectations

respectively.

Consequently, CIEAs under different conditions can be estimated based on the

three MSD functions.

MSDih(Yj, Y
′
j ) = E[(Yijh − Y ′

ijh)
2|i, j, h]

= Pr(Yijh 6= Y ′
ijh|i, j, h)

= Pr(Yijh = 1|i, j, h) Pr(Yijh = 0|i, j, h)

+ Pr(Yijh = 0|i, j, h) Pr(Yijh = 1|i, j, h)

= 2πijh(1− πijh) (6.14)

where πijh = Pr(Yijh = 1|i, j, h) for (i = 1, . . . , N ; j = 1, 2; h = 1, . . . , K), i.e. the

probability of the outcome being one for subject i under condition h for a specific

observer j.

Consequently, CIEAs under different conditions can be estimated based on the
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three MSD functions.

MSDih(Yj, Y
′
j ) = E[(Yijh − Y ′

ijh)
2|i, j, h]

= Pr(Yijh 6= Y ′
ijh|i, j, h)

= Pr(Yijh = 1|i, j, h) Pr(Yijh = 0|i, j, h)

+ Pr(Yijh = 0|i, j, h) Pr(Yijh = 1|i, j, h)

= 2πijh(1− πijh) (6.15)

where πijh = Pr(Yijh = 1|i, j, h) for (i = 1, . . . , N ; j = 1, 2; h = 1, . . . , K), i.e. the

probability of the outcome being one for subject i under condition h for a specific

observer j.

We do not initially include interaction terms in the models with logit link due

to the concern of common convergence issue in generalized linear mixed models with

limited number of subjects. As a result, the within MSD’s can be estimated as

M̂SDih(Y1, Y
′
1) = 2

exp(µ̂1 + α̂1i + γ̂1h)

[1 + exp(µ̂1 + α̂1i + γ̂1h)]2
(6.16)

M̂SDih(Y2, Y
′
2) = 2

exp(µ̂2 + α̂2i + γ̂2h)

[2 + exp(µ̂2 + α̂2i + γ̂2h)]2
(6.17)

Denote

MSDh(Yj, Y
′
j ) =

1

N

N∑
i=1

MSDih(Yj, Y
′
j ) (j = 1, 2) (6.18)

MSDh(Y1, Y2) =
1

N

N∑
i=1

MSDih(Y1, Y2) (6.19)

Then, the CIEs for binary observations under the hth condition as

CIEh =
CK

2 (MSD(Y1, Y
′
1) +MSD(Y2, Y

′
2))

C2K
2 MSDh(Y1, Y2)

+
K2

C2K
2
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Therefore,

CIEAh =
CIEh − CIEmin

1− CIEmin

,

where CIEmin = K/(2K − 1). Confidence intervals for the estimated coefficients can

be computed using the nonparametric bootstrap approach.

6.2.3 Simulation Studies

6.2.3.1 Data Generation

We assume that observers’ binary readings are based on the value of a ’true’ unob-

served variable T , where T ∼ N(µT , σ
2
T ) and σ2

T is the between subjects variability.

Suppose we’re interested in looking at the agreement of repeated binary outcomes

under two conditions. Let A1i, B1i and A2i, B2i be the biases for observers X and

Y under conditions 1 and 2, respectively. We assume that A1i ∼ N(µA, σ
2
A), B1i ∼

N(µB, σ
2
B). Furthermore, A2i ∼ N(A1i, σA2), B2i ∼ N(B1i, σB2). And T , A1 and B1

as well as T , A2 and B2 are mutually independent.

For subject i, let Ti = ti, A1i = a1i, B1i = b1i, A2i = a2i, B2i = b2i. We use Ui1

and Vi1 to denote the observers’ readings on the subject’s true value for condition

1, Ui1 ∼ N(ti + a1i, σ
2
U), Vi1 ∼ N(ti + b1i, σ

2
V ) where σ2

U and σ2
V are the within-

observer error variances for observers X and Y , respectively. Similarly we can define

Ui2 ∼ N(ti + a1i, σ
2
U), Vi2 ∼ N(ti + b1i, σ

2
V ) for condition 2.

Finally, for a fixed common threshold C, we generate binary readings Xi1, Xi2 and

Yi1, Yi2 by the criterion that if Uik > C then Xik = 1, else then Xik = 0, and if Vil > C

then Yil = 1, else then Yil = 0. Note that X ′s and Y ′s are conditionally independent

given the subject.

For given ti, a1i, b1i, a2i, b2i the values of P (Xi1 = 1) and P (Yi1 = 1) are π1i and
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λ1i, P (Xi2 = 1) and P (Yi2 = 1) are π2i and λ2ias follows:

π1i = P (Xi1 = 1) = P (Ui1 > C) = 1− Φ

(
C − (ti + a1i)

σU

)

λ1i = P (Yi1 = 1) = P (Vi1 > C) = 1− Φ

(
C − (ti + b1i)

σV

)
,

π2i = P (Xi2 = 1) = P (Ui2 > C) = 1− Φ

(
C − (ti + a2i)

σU

)

λ2i = P (Yi2 = 1) = P (Vi2 > C) = 1− Φ

(
C − (ti + b2i)

σV

)
,

where Φ is the CDF of a standard normal.

Similarly, this can be extended to scenarios with three or more repeated conditions.

6.2.3.2 True Values

Suppose T stands for the systolic blood pressure and we consider a hypothetical pop-

ulation of obese type II diabetes, i.e., persons with µT = 138mmHg and a between-

subjects σT = 5mmHg. The usual cut-off point for hypertension is 140mmHg for

systolic blood pressure, which is the threshold C in our model. We set the within-

observers standard errors to 3 (σU = σV = 3). Furthermore, we set the average

bias of observer X, µA, to 0 and gradually increase the average bias of observer Y ,

µB, from 1 to 3 to 5 in order to accommodate good, moderate and poor agreement,

respectively. The closer µA and µB, the better the agreement when other conditions

remain unchanged. Standard deviation for biases in observers X and Y were set to 1

(σA = σB = 1). And also σA2 = σB2 = 1. For example, under good agreement with a

random sample (n=100), the mean of the readings from the first observer under con-

dition 1, Ȳ11 = 0.377. Furthermore, Ȳ12 = 0.375, denoting the mean of measurements

from the first observer under condition 2. Similarly, Ȳ21 = 0.438 and Ȳ22 = 0.420.

Tables 6.6 and 6.7 present the simulation results for CIEA estimation with re-



128

peated binary data using the identity link under 2 conditions (K=L=2) and three

conditions (K=L=3). Generally, satisfactory simulation results were obtained. Ta-

bles 6.8 and 6.9 present the results for CIEA with repeated binary data under logit

link when K=L=2 and K=L=3 for sample sizes 100 and 200, respectively. Minimal

biases were obtained and the similarity between two standard error estimates indi-

cates the robustness of standard error estimations. With the increase of sample size,

we tend to have satisfactory coverage probabilities.
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Table 6.6: Simulation Results For CIEA Estimation with Repeated Binary Data
under Identity Link, K=L=2

Sample size K L Condition µB True Bias SE1 SE2 CP
50 2 2 1 1 0.922 -0.077 0.115 0.116 0.924
50 2 2 2 1 0.878 -0.005 0.112 0.113 0.932
100 2 2 1 1 0.922 -0.037 0.082 0.084 0.960
100 2 2 2 1 0.878 0.022 0.080 0.079 0.943
200 2 2 1 1 0.922 -0.018 0.066 0.061 0.940
200 2 2 2 1 0.878 0.034 0.065 0.062 0.942
50 2 2 1 3 0.766 -0.029 0.119 0.115 0.928
50 2 2 2 3 0.740 0.018 0.122 0.119 0.941
100 2 2 1 3 0.766 -0.010 0.096 0.088 0.930
100 2 2 2 3 0.740 0.028 0.097 0.095 0.933
200 2 2 1 3 0.766 -0.002 0.073 0.067 0.928
200 2 2 2 3 0.740 0.030 0.074 0.068 0.931
50 2 2 1 5 0.575 -0.004 0.112 0.107 0.913
50 2 2 2 5 0.565 0.020 0.116 0.113 0.927
100 2 2 1 5 0.575 0.007 0.086 0.083 0.917
100 2 2 2 5 0.565 0.025 0.088 0.086 0.920
200 2 2 1 5 0.575 0.009 0.063 0.061 0.922
200 2 2 2 5 0.565 0.023 0.064 0.063 0.923

SE1 Standard errors based on simulations of CIE
SE2 Mean of estimated standard errors calculated from SE estimator
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Table 6.7: Simulation Results for CIEA Estimation with Repeated Binary Data under
Identity Link, K=L=3

Sample size K L Condition µB True Bias SE1 SE2 CP
50 3 3 1 1 0.921 -0.057 0.092 0.116 0.955
50 3 3 2 1 0.910 -0.045 0.094 0.103 0.934
50 3 3 3 1 0.899 -0.006 0.086 0.103 0.933

100 3 3 1 1 0.921 -0.031 0.068 0.084 0.977
100 3 3 2 1 0.910 -0.019 0.068 0.078 0.946
100 3 3 3 1 0.899 0.007 0.065 0.078 0.940
200 3 3 1 1 0.921 -0.018 0.052 0.062 0.963
200 3 3 2 1 0.910 -0.005 0.052 0.059 0.933
200 3 3 3 1 0.899 0.013 0.051 0.059 0.925
50 3 3 1 3 0.766 -0.027 0.109 0.115 0.953
50 3 3 2 3 0.759 -0.019 0.109 0.115 0.944
50 3 3 3 3 0.752 0.010 0.111 0.115 0.946

100 3 3 1 3 0.766 -0.010 0.078 0.089 0.964
100 3 3 2 3 0.759 -0.002 0.078 0.089 0.959
100 3 3 3 3 0.752 0.015 0.079 0.089 0.959
200 3 3 1 3 0.766 -0.004 0.058 0.067 0.968
200 3 3 2 3 0.759 0.003 0.058 0.068 0.965
200 3 3 3 3 0.752 0.016 0.058 0.068 0.958
50 3 3 1 5 0.576 -0.004 0.101 0.107 0.948
50 3 3 2 5 0.573 0.000 0.101 0.113 0.964
50 3 3 3 5 0.571 0.016 0.106 0.113 0.963

100 3 3 1 5 0.576 -0.001 0.073 0.082 0.966
100 3 3 2 5 0.573 0.002 0.073 0.085 0.972
100 3 3 3 5 0.571 0.011 0.074 0.085 0.973
200 3 3 1 5 0.576 0.003 0.052 0.061 0.974
200 3 3 2 5 0.573 0.006 0.052 0.063 0.976
200 3 3 3 5 0.571 0.012 0.053 0.063 0.976

SE1 Standard errors based on simulations of CIE
SE2 Mean of estimated standard errors calculated from SE estimator
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Table 6.8: Simulation Results for CIEA Estimation with Repeated Binary Data under
Logit Link, K=L=2

Sample size k l Condition µB True Bias SE1 SE2 CP
100 2 2 1 1 0.922 0.044 0.090 0.092 0.85
100 2 2 2 1 0.878 0.053 0.090 0.090 0.87
200 2 2 1 1 0.924 0.056 0.059 0.062 0.86
200 2 2 2 1 0.887 0.063 0.060 0.062 0.88
100 2 2 1 3 0.766 0.035 0.096 0.094 0.93
100 2 2 2 3 0.740 0.040 0.093 0.094 0.90
200 2 2 1 3 0.766 0.041 0.062 0.066 0.92
200 2 2 2 3 0.740 0.028 0.060 0.067 0.93
100 2 2 1 5 0.575 0.019 0.093 0.084 0.91
100 2 2 2 5 0.565 0.033 0.091 0.084 0.91
200 2 2 1 5 0.575 0.014 0.064 0.061 0.93
200 2 2 2 5 0.565 0.029 0.063 0.062 0.94

SE1 Standard errors based on simulations of CIE
SE2 Mean of estimated standard errors calculated from SE estimator
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Table 6.9: Simulation Results for CIEA Estimation with Repeated Binary Data under
Logit Link, K=L=3

Sample size k l Condition µB True Bias SE1 SE2 CP
100 3 3 1 1 0.958 0.040 0.061 0.062 0.84
100 3 3 2 1 0.956 0.049 0.062 0.062 0.84
100 3 3 3 1 0.957 0.054 0.063 0.062 0.80
200 3 3 1 1 0.963 0.045 0.052 0.051 0.87
200 3 3 2 1 0.963 0.046 0.053 0.051 0.87
200 3 3 3 1 0.963 0.051 0.053 0.051 0.88
100 3 3 1 3 0.800 0.035 0.075 0.069 0.87
100 3 3 2 3 0.794 0.038 0.075 0.069 0.89
100 3 3 3 3 0.795 0.041 0.075 0.069 0.89
200 3 3 1 3 0.793 0.028 0.045 0.048 0.91
200 3 3 2 3 0.790 0.034 0.046 0.048 0.88
200 3 3 3 3 0.792 0.037 0.048 0.048 0.88
100 3 3 1 5 0.586 0.008 0.074 0.065 0.92
100 3 3 2 5 0.582 0.010 0.069 0.066 0.95
100 3 3 3 5 0.586 0.015 0.070 0.065 0.93
200 3 3 1 5 0.589 0.011 0.040 0.045 0.96
200 3 3 2 5 0.587 0.016 0.041 0.045 0.94
200 3 3 3 5 0.590 0.018 0.043 0.045 0.97

SE1 Standard errors based on simulations of CIE
SE2 Mean of estimated standard errors calculated from SE estimator

6.2.4 Mammogram Study

Tables 6.10 and 6.11 present the estimates of CIEA from the Mammogram study with

two time points as conditions. Also, results from the nonparametric replicated binary

method are shown for comparison. The p-values testing for homogeneity of CIEA

under both conditions are also presented. Wald type test was used and bootstrap SE

was applied to obtain those p-values. From both estimation approaches, homogeneity

of CIEA’s was established for all comparisons.
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Table 6.10: Results of Repeated Binary at Two Time Conditions in Mammogram
Study with Identity Link

Comparison CIEA1 CIEA2 SE1 SE2 Replicated Nonparametric P-value
(A,B) 0.624 0.628 0.133 0.136 0.646 0.63
(A,C) 0.347 0.348 0.086 0.087 0.358 0.64
(A,D) 0.640 0.671 0.094 0.100 0.697 0.93
(A,E) 0.642 0.642 0.124 0.125 0.643 0.50
(A,F) 0.732 0.740 0.125 0.126 0.763 0.70
(A,G) 0.547 0.556 0.098 0.099 0.541 0.76
(A,H) 0.490 0.501 0.095 0.108 0.486 0.71
(A,I) 0.693 0.713 0.093 0.094 0.739 0.77
(A,J) 0.611 0.614 0.109 0.109 0.619 0.60

CIEA1 CIEA Estimation under Time Condition 1
CIEA2 CIEA Estimation under Time Condition 2
SE1 Standard Errors Estimation under Time Condition 1
SE2 Standard Errors Estimation under Time Condition 2
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Table 6.11: Results of Repeated Binary at Two Time Conditions in Mammogram
Study with Logit Link

Comparison CIEA1 CIEA2 SE1 SE2 Replicated Nonparametric P-value
(A,B) 0.584 0.619 0.211 0.207 0.646 0.69
(A,C) 0.269 0.301 0.096 0.112 0.358 0.78
(A,D) 0.690 0.669 0.219 0.238 0.697 0.35
(A,E) 0.619 0.707 0.203 0.207 0.643 0.89
(A,F) 0.624 0.711 0.185 0.216 0.763 0.88
(A,G) 0.563 0.569 0.185 0.187 0.541 0.56
(A,H) 0.400 0.439 0.152 0.150 0.486 0.82
(A,I) 0.761 0.787 0.202 0.232 0.739 0.71
(A,J) 0.661 0.697 0.196 0.203 0.619 0.86

CIEA1 CIEA Estimation under Time Condition 1
CIEA2 CIEA Estimation under Time Condition 2
SE1 Standard Errors Estimation under Time Condition 1
SE2 Standard Errors Estimation under Time Condition 2
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6.3 Discussion

This chapter introduced model-based estimation of CIE with replicated and repeated

binary outcomes. Variance components linear mixed models as well as variance com-

ponents generalized linear mixed models were applied with the identity and logit links,

respectively. The cumulative Gaussian approximation was used to approximate the

marginal likelihood in order to estimate CIE when using logit link. However, it cannot

achieve satisfactory results . Adaptive Gaussian-Hermite Quadrature was also used

within SAS PROC GLIMMIX, using three simpler logistic random effects models.

Model-based estimation requires more model assumptions compared to the nonpara-

metric method. However, as shown in Table 6.12, compared to the nonparametric

approach, estimates of model-based CIE with identity link have smaller root mean

squared errors (RMSE) when we have a medium sample size of 100. On the other

hand, RMSEs of model-based CIE estimates with logit link seem to be similar to

nonparametric method. Model-based methods require more assumptions than non-

parametric methods so that we expect better RMSEs from model-based approach.

In the numerical approximation for CIE estimates with logit link, we fitted models

without the interaction term. This may decrease the precision and result in a larger

RMSEs as observed in our estimation.

It is also interesting to further investigate the scenario when fitting the generalized

linear mixed model with adaptive gaussian hermite quadrature and include the inter-

action term. The simulation results of CIEA are shown as follows in Tables 6.13 with

sample size=100 only. As compared to Table 6.2, where the Cumulative Gaussian

Approximation algorithm has been applied in approximating the parameters from the

generalized linear mixed model with logit link, we found that both approaches did not

gave us overall good coverage probabilities. The biases were bigger with the AGHQ

approximation approach. Standard error estimations were smaller with Cumulative

Gaussian approximation.
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Table 6.12: Comparison of Estimations with Replicated Binary Outcomes

Sample size k l µB True RMSE1 RMSE2 RMSE3

100 1 2 1 0.942 0.178 0.120 0.140
100 3 3 1 0.942 0.070 0.056 0.073
100 4 2 1 0.942 0.083 0.059 0.068
100 1 2 3 0.922 0.151 0.114 0.135
100 3 3 3 0.922 0.069 0.065 0.073
100 4 2 3 0.922 0.079 0.069 0.074
100 1 2 5 0.908 0.119 0.105 0.123
100 3 3 5 0.908 0.061 0.060 0.062
100 4 2 5 0.908 0.070 0.064 0.071

RMSE1 Root Mean Squared Error of Nonparametric Estimation
RMSE2 Root Mean Squared Error of Model-Based Estimation with Identity Link
RMSE3 Root Mean Squared Error of Model-Based Estimation with Logit Link
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Table 6.13: Simulation Results of CIEA using Logit Link (AGHQ), one model with
interaction

Sample size K L µB TRUE Bias SE1 SE2 CP
100 1 2 1 0.942 -0.129 0.105 0.111 0.66
100 3 3 1 0.922 -0.217 0.108 0.117 0.59
100 4 2 1 0.908 -0.359 0.166 0.149 0.38
100 1 2 3 0.783 -0.197 0.129 0.148 0.76
100 3 3 3 0.766 -0.127 0.159 0.153 0.56
100 4 2 3 0.755 -0.137 0.115 0.113 0.48
100 1 2 5 0.554 -0.03 0.061 0.057 0.851
100 3 3 5 0.576 -0.076 0.093 0.089 0.807
100 4 2 5 0.592 -0.109 0.102 0.105 0.77

SE1 Standard errors based on simulations of CIEA
SE2 Mean of estimated standard Errors

When we have repeated measurements where the true values can change across

different conditions, it is much easier to estimate CIE using model-based estimations

with either the identity link or the logit link. We can estimate CIE under each

conditions and test the homogeneity across different conditions.
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Chapter 7

Summary and Future Research

In this dissertation, we first introduced the concept of agreement and the motivation

for agreement studies. Then we reviewed existing methods for assessing agreement

with both qualitative and quantitative measurements, as well as agreement for re-

peated outcomes. For categorical outcomes, we reviewed Kappa and weighted Kappa.

Although we admit that Kappa is the most popular statistic for agreement studies

with categorical data, the Kappa coefficient has been criticized for a very long time

as it is very likely to attain unreasonable values. Feinstein and Cicchetti (1990) sum-

marized two paradoxes for Kappa statistic: (i) the marginal distributions of the two

observers are highly asymmetric unbalanced, and (ii) there exists a large discrepancy

between the marginal distributions. Furthermore, because of the heavy dependence

of Kappa on the prevalence of a condition being studied, a high value of Kappa is

nearly unachievable for a rare disease with a low prevalence.

For continuous measurements, we reviewed both unscaled (LOA) and scaled in-

dices of agreement (ICC, CCC and CIA). Unscaled indices have the advantage of

interpretation based on the original units of measurement, but it may prove diffi-

cult to ascertain the limit for acceptable agreement without sufficient knowledge of

the measured variable and measurement unit. Scaled indices have the advantage of
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judging the degree of agreement based on a standardized value, but the agreement

values may not be compared across very different populations, and sometime artifi-

cially high or low agreement values may be obtained due to the dependence of these

indices (except the CIA) on between-subject variability.

In detail, the scaled agreement indices ICC, CCC, CIA are all standardized to

have values between -1 and 1 (for CIA, it’s 0 to 1). The ICC, CCC are related

and depend on between-subject variability, hence they may produce high values for

heterogeneous populations (Atkinson and Nevill (1997)). The inflation of CCC when

we increase the between subjects variability was demonstrated in Chapter 5. The ICC

can accommodate multiple fixed and random observers, but is not suited for cases

with a reference observer or for data with repeated measures, without additional

assumptions. The CCC is mainly used for fixed observers and reduces to the ICC

for fixed observers under additional assumptions. The CCC formulation may be used

for the case with random observers (Chen and Barnhart 2008), but additional care

is needed for inference. The CIA is fundamentally different from the ICC, CCC

because it uses within-subject variability, rather than between-subject variability, as

the scaling factor. It is possible to have high ICC/CCC value and low CIA value (and

vice versa) from the same data set.

This dissertation focuses on a new coefficient, the coefficient of individual equiva-

lence (CIE), to assess agreement for binary and continuous outcomes. Both CIA and

CIE are fundamentally different from ICC and CCC because CIA uses the within-

subject, rather than between-subject, variability as the scaling factor. CIE, on the

other hand, uses the expected disagreement under individual equivalence as the scal-

ing factor, while sharing the same denominator as the CIA. Under individual equiv-

alence, the conditional distribution of two observers are equal for each subject. The

approach underlying the CIA’s has two limitations: (a) it requires that the within-

observer disagreement, which is used as a baseline for “good agreement”, is accept-
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able, and (b) the CIA comparing an observer to a reference or a gold standard, i.e.

ψR, cannot be estimated when replicated readings on the reference observer are un-

available (as is the case when the reference value of each subject can be determined

without an error). The CIE does not share these limitations. Similar to CIA, CIE can

also be extended to repeated outcomes. In this dissertation, CIE has been extended

to assess agreement on repeated binary outcomes.

Possible future research based on my dissertation are as follows: (1) The current

approach for defining and estimating CIE is based on permutations. One may consider

more gerneral approaches based on the requirement that the conditional distributions

of the observers will be equal. (2) Currently, we only consider the fixed observer case

through the 2-way linear mixed model. It is also possible to consider the case when

the observer effect is treated as random. (3)It is useful to extend this index when

there are multiple observers. (4) It is also useful to extend CIE to nominal and ordinal

outcomes. (5) For continuous outcomes, the possibility of ranking the outcomes and

performing the estimation using the ranks instead of the real measurements, can be

explored. This method may provides more robust results. (6) Consider agreement

studies with missing data. (7) Indices for continuous data with repeated measure-

ments, censoring, outliers, and covariates. (8) Sample size calculation for design of

agreement study. (9) How to better implement Bayesian approach to observer agree-

ment studies with replicated and repeated measurements. (10) Whether it is possible

to estimate CIE using one replication per rater based on random effects models, and

(11) compare the estimated CIEA and CIA with respect to their root mean square

error when the number of replications is not the same for different observers.
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