
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and its
agents the non-exclusive license to archive, make accessible, and display my thesis or
dissertation in whole or in part in all forms of media, now or hereafter known, including
display on the world wide web. I understand that I may select some access restrictions as
part of the online submission of this thesis or dissertation. I retain all ownership rights
to the copyright of the thesis or dissertation. I also retain the right to use in future works
(such as articles or books) all or part of this thesis or dissertation.

Signature:

Yunxiao Li Date



DEVELOPMENT OF STATISTICAL METHODS

FOR MULTIPLE-HYPOTHESES TESTING

By

Yunxiao Li

Doctor of Philosophy

Biostatistics

Yijuan Hu, Ph.D.
Advisor

Glen A. Satten, Ph.D.
Co-advisor

Zhaohui Steve Qin, Ph.D.
Committee Member

Tianwei Yu, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date



DEVELOPMENT OF STATISTICAL METHODS

FOR MULTIPLE-HYPOTHESES TESTING

By

Yunxiao Li

M.S., Emory University, 2018

B.S., Peking University, 2014

Advisors: Yijuan Hu, Ph.D. and Glen A. Satten, Ph.D.

An Abstract of

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Biostatistics and Bioinformatics

2019



Abstract
Development of Statistical Methods for Multiple-Hypotheses Testing

By Yunxiao Li

In this dissertation, I develop three novel statistical methods for solving multiple-
hypotheses testing problems.

In the first topic, we propose a bottom-up approach to testing hypotheses that have
a tree-structured dependency structure. Our motivating example comes from testing the
associations between a trait of interest and groups of microbes that have been organized
into operational taxonomic units (OTUs). Given p-values from association tests for each
individual OTU, we would like to know if we can declare that a certain species, genus, or
higher taxonomic group can be considered to be associated with the trait. For this prob-
lem, a bottom-up testing algorithm that starts at the lowest level of the tree (OTUs) and
proceeds upward through successively higher taxonomic groups (species, genus, family
etc.) is required. We develop such a bottom-up testing algorithm that controls the error
rate of decisions made at higher levels in the tree, conditioning on findings at lower levels
in the tree. We further show that our algorithm controls the false discovery rate based on
the global null hypothesis that no taxa are associated with the trait. By simulation, we
also show that our approach is better at finding driver taxa, the highest level taxa below
which there are dense association signals. We illustrate our approach using data from a
study of the microbiome among patients with ulcerative colitis and healthy controls.

In the second topic, we consider the resampling-based multiple testing problems. In
multiple testing literature, the standard procedures for correcting multiplicity, such as
the Benjamini and Hochberg (1995) procedure, usually require knowledge of the ideal
p-values. In many biological applications such as microbiome studies, the ideal p-values
cannot be computed analytically but only approximated by resampling methods. The
resampling-based p-values coupled with a multiplicity-correction procedure generally pro-
duce different lists of rejections when the resampling algorithm is initiated by different
random seeds, hence lacking of reproducibility. The existing method of Gandy and Hahn
(2014, 2016) that aimed to control the Monte Carlo (MC) error (i.e., disagreement with
the decisions based on ideal p-values) rate is extremely conservative and tends to make
zero rejection. We focus on the type-I MC error which occurs when we reject a hypothesis
that should be accepted according to the ideal decisions (in other words, this rejection
is not reproducible). We develop a two-step algorithm based on resampling replicates to
make decisions while controlling the type-I MC error rate. Through extensive simulation
studies, we demonstrate substantial power improvement compared to the existing method.

In the third topic, we propose a class of algorithms for sequential resampling-based
multiple testing. Resampling-based tests are known to be computationally intensive. Se-
quential algorithms provide efficient and accurate estimation to ideal p-values in resampling-
based tests, by allowing early stopping of generating resampling samples as long as ev-
idence suggests that a hypothesis should be classified to rejection or acceptance region.
However, most existing sequential methods in this field (e.g., Sandve et al. (2011)) cannot
guarantee reproducibility of test decisions. The only sequential methods that addressed
this issue were developed by Gandy and Hahn (2014, 2016). We develop novel sequential
testing algorithms by incorporating a step-wise decision process and improved sequential
confidence intervals. Performances of our proposed methods are assessed through both
synthetic and real data.
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Multiple-hypotheses testing refers to the situation where we test more than one hy-

pothesis at the same time. In the classic problem of single-hypothesis testing, we usu-

ally find the distribution of test statistic, calculate a p-value that indicates significance

level, and compare the p-value to a pre-specified threshold α (e.g., 5%). If p-value ≤ α,

then we reject the null hypothesis H0. This approach can control the type-I error rate

Pr(reject H0|H0) ≤ α. However, it does not control the type-I error rate in multiple

testing problems. For example, we test m hypotheses H1,0, H2,0, · · · , Hm,0 and p-values

are p1, p2, · · · , pm. It could be a study for gene expression. Each hypothesis corresponds

to a gene, and rejecting a hypothesis means that the gene is differentially expressed under

two experimental conditions. We know that null p-values follow uniform distribution. If

we assume independence among pi, and the truth is that all hypotheses are under the

null, the type-I error using this approach would be:

Pr

(
m⋃
i=1

{pi ≤ α}

)
= 1− Pr

(
m⋂
i=1

{pi > α}

)
= 1−

m∏
i=1

Pr (pi > α)

= 1− (1− α)m
m→∞−→ 1.

In this case, we would almost surely reject at least one hypothesis, although any rejection

here must be an error. By no means these ‘significant’ findings can be replicated by other

laboratories or other researchers. New testing procedures must be developed to reduce

those erroneous discoveries that could be possibly concluded by multiple testing.

The solution to the multiplicity issue is usually controlling a stronger error criterion in

multiple testing. The first error rate of interest is called family-wise error rate (FWER)

which equals the probability of falsely rejecting at least one null hypothesis among the

entire family of hypotheses, or explicitly Pr(V ≥ 1) using the notations from Table 1.1.

The Bonferroni correction (Bonferroni, 1936) is the simplest way to control FWER. Ba-

sically the p-value in the example would be compared to α/m rather than α. However,

the Bonferroni correction is known to be conservative, and usually only works for small

m. When testing a large amount of hypotheses in genetics and genomics studies, false

discovery rate (FDR) (Benjamini and Hochberg, 1995) would usually be the ideal er-

ror criterion. FDR controlling procedures uniformly yield higher statistical power than
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FWER controlling procedures. FDR measures the average of the false discovery pro-

portion (FDP). Using notations in Table 1.1, FDR = E(FDP) = E( V
R∨1), where V is

called the number of false discoveries and R is called the number of total discoveries.

The Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995) is the most

popular and influential FDR controlling approach in past decades.

Table 1.1: Summary of all possible outcomes when testing multiple hypotheses

Acceptances Rejections Total

True null U V m0

Non-null T S m−m0

Total m−R R m

Since early 1960s, a significant amount of statistical methods have been developed for

multiple testing. However, there are still many open questions in this field. We discuss

several important ones in this dissertation. First, in general it is difficult for a multiple

testing method to achieve decent power while controlling the error rates under arbitrary

correlation or dependency structure among test statistics. We consider a special scenario

where multiple tree-structured hypotheses are tested. Our problem is particularly moti-

vated by applications in human microbiome studies. In Section 1.1 we introduce more

details of this problem. Our proposed solution is presented in Chapter 2. Second, many

existing multiple testing procedures (e.g., the BH procedure) can still apply to p-values

from resampling-based tests. However, uncertainty in resampling process usually causes

variation in the decisions from multiple testing procedures. A decision can easily change

even if we use a different random seed for resampling. We call this Monte Carlo (MC)

error. More introduction of MC error can be found in Section 1.2 and 1.3. In Chapter 3,

we propose powerful multiple testing procedures that provides theoretical guarantee on

type-I MC error rate control. Sequential algorithms can be helpful to reduce the inten-

sive computational cost of resampling-based multiple testing. The MC error also exists in

sequential resampling-based multiple testing procedures. We review existing methods in

Section 1.3, and propose novel sequential algorithms that address this problem in Chapter

4.
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1.1 Testing Tree-Structured Hypotheses in Microbiome Data

The FDR criterion has largely replaced FWER as a benchmark for testing many

hypotheses. Benjamini and Hochberg (1995) proposed a simple way to to control the

FDR when testing independent hypotheses, which extends easily to hypotheses having a

positive regression dependence structure (Benjamini and Yekutieli, 2001). More general

conditions for BH to asymptotically control FDR were discussed by Farcomeni (2007) and

Wu (2008). However, under the general dependency structure, Qiu et al. (2005), Efron

(2007) and Schwartzman and Lin (2011) showed that correlation among test statistics may

have a significant impact on FDR control. A log-factor adjustment to the Benjamini and

Hochberg procedure (Benjamini and Yekutieli, 2001) allows FDR control under arbitrary

correlation among tests. However, this procedure is very conservative in most settings.

Testing procedures that control FDR for specific patterns of dependence have also

been investigated. Sun and Cai (2009) developed multiple testing methods by assuming

that the dependency structure of test statistics can be characterized by a hidden Markov

model. Multiple testing procedures under the factor model were studied by Leek and

Storey (2008), Friguet et al. (2009), and Fan et al. (2012). Barber and Candès (2015)

and Candès et al. (2018) developed knockoff-filter, a powerful method to control FDR

when the dependency structure of test statistics is embedded in linear regression model.

In some problems, the dependency structure among test statistics can be characterized

by a tree structure. Yekutieli (2008) considered hypotheses tests organized in a branching

tree using an approach that starts by testing the hypothesis at the “top” of the tree;

if this hypothesis is rejected, hypotheses at the next lowest level are tested. Testing

continues from top to bottom until no further hypotheses can be rejected, at which point

no further tests are conducted. This approach is appropriate for some problems, such

as the motivating example in Yekutieli (2008) in which a genome-wide test for (genetic)

linkage was conducted, followed by tests for linkage separately on each chromosome,

then tests for linkage on the p or q arms of each chromosome, etc. Moving down the

tree corresponds to increasing localization of the linkage signal, making the top-down

strategy a natural choice. More top-down methods that test tree-structured hypotheses

were developed by Meinshausen (2008) and Rosenbaum (2008) when the goal is to control
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FWER; by Benjamini and Heller (2007), Benjamini and Bogomolov (2014), Peterson et al.

(2016) and Heller et al. (2018) when the goal is to control FDR or its generalizations;

and by Ramdas et al. (2017) for testing multiple hypotheses on directed acyclic graphs.

For those top-down tests, the null hypothesis being tested at each node in the tree is

usually the “global null hypothesis” which means that all tests below this node are under

their null conditions respectively. Methodologies of testing global nulls mainly include

the Fisher’s method (Fisher, 1992), Stouffer’s Z test (Stouffer et al., 1949), minimum

p-value approach, Pearson’s test (Pearson, 1938; Owen, 2009), and Sime’s test (Simes,

1986). Loughin (2004) comprehensively reviewed these approaches and concluded that

each method is only suitable and outperforms other methods in its own scenario. A global

testing method that works under arbitrary correlations was developed by Pillai and Meng

(2016) and Liu and Xie (2019), based on a nice property that the sum of Cauchy random

variables approximately follows Cauchy distribution regardless of correlation.

Our motivating data application comes from human microbiome research. We will

show that this example is not well-suited to the top-down approach. Microbiome refers

to small living organisms inhabiting on human bodies such as bacteria, viruses, archaea,

fungi and et cetera. Despite being so small, the population of human microbiome is

huge: it was estimated that human microbiome contains at least 10-100 trillion cells,

approximately 10-fold more than the number of human cells (Turnbaugh et al., 2007).

The collective genome of human microbiome contains approximately 150 times more

genes than the human genome (Qin et al., 2010). Recent studies have revealed important

connections between microbiome and human health. Microbiome has been found to

be associated with cardiovascular disease (Tang and Hazen, 2017), inflammatory bowel

diseases (Morgan et al., 2012; Halfvarson et al., 2017), type-II diabetes (Qin et al., 2012)

and pathophysiology of neurodevelopmental disorders (Hsiao et al., 2013). Microbiome

can be profiled by 16S ribosomal RNA sequencing technology (Chakravorty et al., 2007).

These 16S sequence reads can be grouped together with other reads from similar species

or sub-species. Such a group structure is usually recognized as an operational taxonomic

units (OTUs) or assigned to amplicon sequence variants (ASVs). For simplicity, we

restrict our discussion to OTUs with the understanding that the argument can apply to

either ASVs or OTUs. It is usually a natural scientific question to assess whether or
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not a microbiome marker is associated with a trait of interest such as disease phenotype.

Existing methods can either test the global composition among microbial communities

(Anderson, 2001; Zhao et al., 2015; Hu and Satten, 2017), or identify individual OTUs

that are associated with the trait (Robinson et al., 2010; Love et al., 2014; Paulson et al.,

2013; Chen and Li, 2016; Fang et al., 2016; Hu and Satten, 2017).

After testing association on each OTU, we may wish to determine if any species of

microbes are associated with the trait. Depending on our findings, we may wish to test

larger groups corresponding to successively higher taxonomic ranks (e.g., genus, family,

order, class, phylum, and kingdom). The natural ordering of hypotheses in this example

starts at the bottom of the tree and proceeds upward. Further, it may be desirable to

continue to test hypotheses at higher levels of the tree even if no findings have been made

at a lower level, since an accumulation of weak signals from lower levels may coalesce into

a detectable signal at a higher level. The scientific questions of interest thus motivate

development of a bottom-up approach to testing tree-structured hypotheses. In literature

only few methods (Tang et al., 2017, 2018) developed association testing procedures to

detect subtrees under which 16S read counts are unbalanced between the case and control

groups. However, these methods only take a näıve approach to address multiplicity issue,

in which dependency among taxa is not accounted for.

When considering if we should declare a certain node (say, a genus) to be associated

with the trait we are studying, we adopt the following approach: if a large proportion of

species from that genus influence the trait, we should conclude the genus influences the

trait. Conversely if only a few of the species from a genus are non-null, then a better

description of the microbes that influence occurrence of the trait is a list of associated

species. Finding taxa that can be said to influence a trait in this sense is the first goal

of our approach. The second goal is to locate the highest taxa in the tree for which

we can conclude many taxa below, but not any ancestors above, influence risk; we refer

to such taxa as driver taxa. We also consider a related criterion, the conjunction null

hypothesis, that would require that all species from the genus be associated with the trait

before declaring the genus is associated. The concept of conjunction null was proposed

by Nichols et al. (2005) and Friston et al. (2005). For a brain imaging application,
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Nichols et al. (2005) proposed an approach that considers the minimum of multiple t-

statistics. Equivalently the maximum p-value among all individual tests can be used as

the p-value for testing conjunction null. However, this could be extremely conservative in

most settings. A more liberal definition for null hypothesis is called partial conjunction

null, which was proposed by Benjamini and Heller (2008).

1.2 Resampling-Based Multiple Testing and Monte Carlo Error

Modern scientific studies often involve testing multiple hypotheses, in which individual

hypotheses are first tested and a procedure that corrects for multiplicity is then applied.

For example, in many applications, BH (Benjamini and Hochberg, 1995) procedure can

be used to control FDR. The Bonferroni (Bonferroni, 1936) or Holm’s (Holm, 1979)

procedure can control the FWER. In particular, the BH procedure has received most

attention, due to its use of the FDR criterion that tends to promote more scientific

discoveries.

The above multiplicity-correction procedures require knowledge of the ideal p-values

of all tests. The ideal p-values can be analytically calculated when the distribution of

test statistic (e.g., t-statistic) is simple. When the distribution of test statistic at each

hypothesis is intractable, resampling-based test (e.g., permutation test) would be usually

preferred. Resampling-based tests only require mild assumptions such as the exchange-

ability condition (De Finetti, 1992) for permutation tests. The resampling-based tests

are known to be more robust than likelihood-based tests under small sample size. In

principle, the ideal p-values of permutation tests can be obtained by running through

all permutation replicates. We refer to the decisions, either rejection or acceptance for

each test, based on the ideal p-values as ideal decisions. In many cases, the ideal p-values

are not available but can only be approximated by resampling methods which take a

small (compared to the enumerating all permutations or bootstrap replicates) random

sample of the possible replicates. For ease of presentation, we call such a resampling

replicate a permutation sample. A common practice is to collect a pre-specified number

of permutations, compute permutation p-values as the proportion of permutation test

statistics that are more “extreme” than the observed test statistic, and then apply one
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of the multiplicity-correction procedures; we refer to this approach as the näıve decision

rule. In general, it is a tricky question to choose an appropriate number of permutations.

For bootstrap resampling, the choice of total replicates has been widely discussed by

Hall (1986); Efron (1987); Davison and Hinkley (1997). Methods that enhance numerical

performances of bootstrap procedures were developed by Gleason (1988); Davison et al.

(1986); Hinkley (1988). However, the main focus is effectiveness (i.e., power and cover-

age) and computational efficiency of bootstrap methods. For permutation tests, it was

suggested that at least O(1/p∗) permutation samples are required for relatively accurate

estimation of ideal p-value p∗ (Kimmel and Shamir, 2006; Yu et al., 2011). This esti-

mated range may vary dramatically. Followed by the 100/p∗ rule mentioned in Yu et al.

(2011), we would require as many as 109 replicates when the ideal p-value = 10−7. It

can be shown that the näıve decision rule with the standard BH procedure still controls

FDR under permutation p-values as long as null permutation p-values are stochastically

greater than U[0, 1] (Benjamini and Hochberg, 1995). To satisfy this condition, usually

at each test we pick the permutation p-value which can be written as

1 +
∑n

j=1 I(Tj > t)

n+ 1
,

where n is the number of permutation samples, t is the test statistic from the observed

data, and Tj represents the permuted statistic from the j-th permuted data. In fact, us-

ing this set of permutation p-values and a valid multiple testing procedure (e.g., Holm’s

procedure), we are expected to control FWER as well. In addition to testing on permuta-

tion p-values, Li et al. (2012) proposed a more powerful approach that directly estimates

FDP with the test statistics from resampled data.

The term reproducibility or replicability has recently attracted immerse attention in

many scientific disciplines (e.g., Benjamini et al. (2009) and Baker (2016)). In a broader

sense, reproducibility of scientific research implies that a different researcher can repro-

duce the experiment and reach the exactly same or highly similar conclusions (Fidler and

Wilcox, 2018). In a narrower sense, it calls for reproducibility of computation (Peng,

2011). Given the same set of data and analysis pipeline, a different researcher should

always obtain the same numerical results, such as list of significant discoveries. In the
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context of this dissertation, we only focus on reproducibility in this narrower sense. Al-

though the näıve decision rule that we mentioned above controls FDR, it can produce

quite different lists of rejections (i.e., discoveries) when using a different permutation

process (i.e., initiated by different random seeds), which are also different from the ideal

decisions; in other words, it makes no effort to ensure reproducibility.

In literature, Gandy and Hahn (2014, 2016) were the only ones that have addressed

the issue of non-reproducibility for multiple testing that requires resampling. To enhance

reproducibility to a certain degree, they developed an algorithm based on resampling

replicates to make decisions that aims to control the family-wise Monte Carlo error rate

(MCER), an error rate closely related to reproducibility in terms of resampling process.

Their originally proposed algorithm is sequential, giving a decision as rejected, accepted, or

undecided to each test at each permutation step, and stopping sampling until there is no

undecided test. Suppose that we test m (e.g., m = 1000) hypotheses H1,0, H2,0, · · · , Hm,0.

An MC error is defined as a disagreement with the ideal decisions among only tests that

are determined as rejected or accepted:

V MC
i = I(D̂i = rejection, D∗i = acceptance) + I(D̂i = acceptance, D∗i = rejection), (1.1)

where D∗1, D
∗
2, . . . , D

∗
m and D̂1, D̂2, . . . , D̂m are ideal decisions and decisions made by a

certain resampling-based testing algorithm respectively. Let V MC =
∑m

i=1 V
MC
i . Then

the family-wise MCER is defined as Pr(V MC ≥ 1). Controlling this error rate by α fur-

ther implies that, two independent runs of this algorithm yield any disagreement among

the decisions of tests that are determined as either rejected or accepted in both runs,

with at most 1− (1− α)2 ≈ 2α chance. The undecided tests are those who require more

permutation samples to make a decision between rejection and acceptance. There is no

statement of reproducibility on undecided tests. Meanwhile, the methods of Gandy and

Hahn (2014, 2016) control family-wise MCER at a pre-specified level even at an inter-

mediate stage. Specifically, at each permutation step, they form a two-sided confidence

interval for each underlying ideal p-value and apply the BH procedure to the collection

of upper limits of intervals and lower limits separately. The tests whose both upper and

lower limits have been rejected by the BH procedure will be determined as rejected, those
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whose both limits have been accepted will be determined as accepted, and the remaining

tests (if any) will be determined as undecided. Although this algorithm has rigorous error

control, it is extremely conservative and tends to make zero rejection when the number

of permutation samples is not very large.

When the number of permutation samples is fixed, in Chapter 3 we propose an algo-

rithm that is more powerful than those algorithms under the framework of Gandy and

Hahn (2014, 2016). The power is gained from two differences between our algorithm and

the algorithms proposed by Gandy and Hahn. First, we control a different error rate

from the family-wise MCER, which we call the family-wise type-I MCER, or family-wise

MCER-I. A type-I MC error occurs when we reject a hypothesis which is accepted ac-

cording to the ideal decisions (so that our decision on the hypothesis is non-reproducible):

V MC-I
i = I(D̂i = rejection, D∗i = acceptance), (1.2)

where D̂1, D̂2, . . . , D̂m are decisions made by our algorithm. Similarly, a type-II MC error

occurs when D̂i = acceptance but D∗i = rejection. Let V MC-I =
∑m

i=1 V
MC-I
i . The family-

wise MCER-I is the probability of observing one or more type-I MC errors, Pr(V MC-I ≥ 1).

Thus our control of family-wise MCER-I is less stringent than the control of family-wise

MCER. By controlling the family-wise MCER-I at level α, we are sure that the chance

of any finding on our list being the result of MC error is less than α. Equivalently, the

list of rejections by our method is a subset of the ideal list of rejections on ideal p-values

with at least (1− α) probability. Although it is likely that we lose some rejections from

the ideal list (to resolve it we need to control type-II MCER), this subset statement is

surely a desirable property of resampling-based methods in a large-scale testing problem.

All findings in our list would be rediscovered with at least (1−α) level of confidence, if a

different researcher repeated this MC experiment using an infinite number of permutation

samples. Due to this reason, we will first focus on controlling the type-I MCER. The

second difference is that our algorithm is based on a fixed number of permutation samples.

Gandy and Hahn (2016) suggested to use the Robbins-Lai confidence interval (Darling

and Robbins, 1968; Robbins, 1970; Lai, 1976) to maintain exact coverage even when

different tests stop after different number of permutations, due to early stopping for some
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of the tests in the sequential procedure. However, the Robbins-Lai interval is generally

too wide, particularly wider than the intervals using fixed permutation samples (Coe and

Tamhane, 1993), and hence leads to loss of power. More details about this interval can

be found at Section 1.3 and Section 4.2.1. This motivates us to develop a multiple testing

procedure that controls MCER and is more powerful than the existing methods.

1.3 Sequential Resampling-Based Multiple Testing

Sequential algorithms provide an alternative solution to resampling-based multiple

testing. We assume that there are m null hypotheses H1,0, H2,0, · · · , Hm,0 and that

the ideal p-values for m tests are p∗1, p
∗
2, · · · , p∗m respectively. We rely on the standard

BH procedure to control FDR. To be coherent with Section 1.2, a resampling repli-

cate in either permutation or bootstrap test is called a permutation sample. With

resampling-based multiple testing, it can be computationally intensive to evaluate sig-

nificance accurately at each test. For instance, in genome wide association studies, we

would need to sample 2.5× 1013 permutation samples if we test m = 500, 000 SNPs and

run n = 100m = 50, 000, 000 permutations on each SNP. Sequential testing is a pow-

erful tool to reduce the computational cost. In a sequential testing procedure, usually

we specify a maximum number of permutations Nmax (e.g., 106) in advance. Otherwise

some resampling-based test possibly runs forever. Users can stop drawing further permu-

tation samples if evidence suggests that the current approximated permutation p-value

is sufficiently accurate. If for the i-th test the number of permutations that have been

already sampled at the stopping time is ni, the approximated permutation p-value p̂i can

be given by either:

∑ni

k=1 I(Ti,k > ti)

ni
or

1 +
∑ni

k=1 I(Ti,k > ti)

ni + 1
. (1.3)

In both estimators above, ti represents test statistic from the observed data, and Ti,k

represents the permuted statistic from the k-th permuted data.

For a single resampling-based test, Besag and Clifford (1991) proposed a simple stop-

ping rule which defines ni to be the smallest integer such that
∑ni

k=1 I(Ti,k > ti) ≥ n0
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where n0 is a fixed positive integer that ensures accurate approximation (Besag and Clif-

ford (1991) suggested n0 = 10 or 20), or ni = Nmax if such an integer does not exist. It

can be shown that given this sequential decision rule the estimator

p̂
(BC)
i =

 n0/ni if ni < Nmax

1+
∑ni

k=1 I(Ti,k>ti)
ni+1

if ni = Nmax,

is more conservative than U[0, 1] under the i-th null, meaning that Pr(p̂
(BC)
i ≤ u|Hi,0) ≤ u.

Sandve et al. (2011) considered a sequential multiple testing procedure in which this

stopping rule is applied on each individual test and permutation p-values are estimated

accordingly. The Sandve’s procedure controls the FDR that is calculated by truth (a test

being null or non-null). However, Gandy and Hahn (2014) reported that the Sandve’s

procedure may severely suffer from MC errors: many rejected or accepted tests are ac-

tually decided randomly; with the same data and testing algorithm, decisions change

easily once we choose a different random seed. Several papers discussed MC errors in the

context of resampling-based test, but were limited to testing single hypothesis, including

Fay and Follmann (2002), and Kim (2010). Guo and Peddada (2008) and Jiang and

Salzman (2012) considered a different question and developed sequential multiple testing

algorithms which produce the same set of decisions as the non-sequential problem with a

fixed number of permutation samples. Their procedures can be shown to control FDR up

to a small error term. Both methods cannot provide theoretical guarantee on MC error

rate control.

In the aspect of applied statistics, a procedure that cannot replicate its results is

usually unsatisfactory. Similar to the direction pursued by Gandy and Hahn, our goal

is to develop a sequential multiple testing procedure that enjoys high reproducibility on

the set of rejected or accepted tests. The problem of controlling MCER in sequential

resampling-based tests was first introduced by Gandy (2009). Gandy and Hahn (2014,

2016) further extended this concept to multiple testing problems. Gandy and Hahn

(2016) developed a general statistical framework to control the family-wise MCER in

resampling-based multiple testing. We sketch the main steps of the sequential testing

algorithm proposed by Gandy and Hahn (2016). First, without considering any stopping
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rule, simultaneous confidence intervals (p∗1, p
∗
2, · · · , p∗m) of ideal p-values are created by

the Bonferroni correction. Suppose we want to control the family-wise MCER by α. The

confidence interval for each p∗ is a (1 − α/m) level Robbins-Lai (sequential) confidence

interval, which is denoted by Ii = (pli, p
u
i ). The Robbins-Lai confidence interval can be

calculated by considering the roots of the equation below. We use the i-th test as an

example:

(k + 1)

(
k

Xi,k

)
p
Xi,k

i (1− pi)k−Xi,k =
α

m
. (1.4)

Here α ∈ (0, 1) and Xi,k =
∑k

k′=1 I(Ti,k′ > ti) means the number of permuted statistics

that are more extreme than the observed statistic at the time of collecting exactly k

permutation samples. Let Ii,k be the set

{
pi ∈ (0, 1)

∣∣∣∣ (k + 1)

(
k

Xi,k

)
p
Xi,k

i (1− pi)k−Xi,k >
α

m

}
. (1.5)

If Xi,k = 0, there is only one root pui,k in (1.4) and Ii,k = (0, pui,k); if Xi,k = k, there is only

one root pli,k, and Ii,k = (pli,k, 1); if 0 < Xi,k < k, there are two distinct roots pli,k < pui,k,

and Ii,k = (pli,k, p
u
i,k). According to Lai (1976), the coverage of the interval Ii = ∩ni

k=1Ii,k

is always above (1 − α/m) for any stopping time ni. After we obtain the simultaneous

confidence intervals, we have

Pr(p∗1 ∈ I1, p∗2 ∈ I2, · · · , p∗m ∈ Im) ≥ 1− α

which means that the ideal p-values being included by the rectangular region ×mi=1Ii =

I1×I2×· · ·×Im with at least (1−α) probability. The i-th test is decided to be rejected if

both upper limits and lower limits of Ii are rejected by standard BH, or accepted if both

upper limits and lower limits of Ii are accepted by standard BH. If both upper limits

and lower limits agree with the decision, any point inside ×mi=1Ii should yield the same

decision. This is why the probability of occurring none MC error is at least above the

simultaneous coverage probability (1 − α). Or equivalently the family-wise MCER is at

most α. After a decision being made, we will not further generate permutation samples

for that hypothesis. Usually at the middle and late stage of permutation testing, we only

need to draw samples on a small number of hypotheses. This is a reason why sequential
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resampling-based testing is quite computationally efficient. Details of this algorithm are

presented in Algorithm 1.

Initialize D̂1, D̂1, · · · , D̂m to be undecided.

Initialize I1, I2, · · · , Im to be (0, 1).

. Permutation begins

for k in 1 : Nmax do

for i in 1 : m do

if D̂i = undecided then
Update Ii = Ii ∩ Ii,k where Ii,k is defined in (1.5).

end

end

Apply standard BH on the upper limits of intervals I1, I2, · · · , Im and decisions are

du1 , d
u
2 , · · · , dum;

Apply standard BH on the lower limits of intervals I1, I2, · · · , Im and decisions are

dl1, d
l
2, · · · , dlm.

for i in 1 : m do

if dui = dli = acceptance then

Update D̂i =acceptance.

end

if dui = dli = rejection then

Update D̂i =rejection.

end

end

end

. Permutation ends

return (D̂1, D̂1, · · · , D̂m).

Algorithm 1: The sequential multiple resampling-based tests proposed by Gandy and

Hahn (2016)

Although the methods can be useful under many different scenarios, low statistical

power is usually a concern. Many tests cannot be decided even with a very large number

of permutations. One factor that may cause the loss of power is that they used the

Bonferroni correction to construct simultaneous confidence intervals for estimating ideal

p-values. It is known that the Bonferroni correction is extremely conservative in most

applications, especially when the number of tests is so large. A remedy to this problem

is replacing the Bonferroni correction with step-wise procedures which are known to

bring more power in multiple testing literature. The closure principle (Marcus et al.,

1976) and partition principle (Finner and Strassburger, 2002) are the two fundamental

principles related to general step-wise procedures. A series of multiple testing methods
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that control FWER, say Holm (1979); Bauer et al. (1998); Romano and Wolf (2005);

Hommel et al. (2007); Bretz et al. (2009); Dobriban (2018) can be developed with the

closure principle. The partition principle is primarily useful for constructing step-wise

simultaneous confidence intervals. Based on the partition principle, it can be shown

that the one-sided simultaneous confidence intervals that are compatible with the Holm’s

procedure always exist (Strassburger and Bretz, 2008).

We discussed two types of error rates, family-wise MCER-I and family-wise MCER

in section 1.2. Compared to family-wise MCER-I, family-wise MCER seems a more

reasonable error rate for sequential multiple testing. Unlike the scenario where we have a

fixed budget of generating permutation samples, in a sequential problem we can promise

to assign the majority of tests with either rejection or acceptance decisions as long as

Nmax is a large number.
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Chapter 2

A Bottom-up Approach to Testing

Hypotheses That Have a Branching

Tree Dependence Structure, with

False Assignment Rate Control
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2.1 Introduction

In this chapter we develop a bottom-up test to identify associated taxa in microbiome

data. In Section 2.2.2 we introduce a modified null hypothesis for bottom-up testing that

adjusts for selection decisions at lower levels of tree. We further develop an error criterion

we call the false assignment rate (FAR) that corresponds to this modified null hypothe-

sis. From Section 2.2.3 to 2.2.5, we propose an algorithm for assessing the significance of

association between taxonomic units (or, more generally, nodes in the tree) and a trait

under study that controls the FAR. In these three sections we introduce a procedure

for unweighted testing, a procedure for weighted testing, and a procedure that handles

incomplete trees. Section 2.2.6 is an extension to controlling error rates separately. In

Section 2.3, we compare our proposed methods with other existing methods using sim-

ulated data, and show that the FAR can approximate the FDR under the conjunction

null hypothesis. In Section 2.4, we apply our new methods to data on the human gut

microbiome from a study of inflammatory bowel disease (IBD), and detect driver taxa

that are associated with ulcerative colitis (UC).

2.2 Methods

2.2.1 Preliminaries

The hypotheses we test form the nodes of a branching tree; here, we review the

terminology we use. The root node is the “top” of the tree (in Figure 2.1(a), N4,1 is the

root node). For any two nodes that are directly connected, the node closest to (furthest

from) the root is the parent (child) node. The set of child nodes of a parent are its

offspring. A node is an inner node if it has at least one child node; otherwise it is a leaf

node. The ancestors of a node are all the nodes traversed in a path from that node to

the root. The descendents of a node are all nodes having that node as an ancestor. A

subtree is a tree rooted at an inner node of the full tree, comprised of the subtree root

and all its descendants. For example, in Figure 1(a), the tree rooted at N3,1 that includes

inner nodes N3,1, N2,1, N2,2, and leaf nodes N1,1, N1,2, N1,3, N1,4 is a subtree of the full
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(a)

(b)

Figure 2.1: (a) A hypothetical example of a set of hypotheses having a tree-structured rela-
tionship. Nodes are labeled by level (first subscript) and then numbered within level (second
subscript). Nodes highlighted with blue circles are truly associated. A node colored red indi-
cates it is detected (declared to be associated with the trait of interest by a testing method).
With the bottom-up methods, all nodes at the bottom level are tested at level 1, nodes inside
the black box are tested at level 2, and nodes inside the red box are tested at level 3. (b) A hy-
pothetical example illustrating a set of hypotheses having a dependence structure corresponding
to an incomplete tree. In this example, it makes scientific sense to assign nodes N1,3 and N1,4

to level 1 even though they have a different depth than the other leaf nodes. For example, these
two nodes could correspond to OTUs that are missing a species assignment but share a genus
with the other leaf nodes.

tree. The depth of a node is the number of edges between that node and the root node.

Because each node corresponds to a hypothesis, we will sometimes refer to testing a node

as shorthand for testing the hypothesis at that node.

We use the term level to describe sets of nodes that will be tested together. In the

simple case such as in Figure 2.1(a), nodes that have the same depth are assigned to

the same level; we call such a tree complete. For incomplete trees such as that shown in

Figure 2.1(b), level is assigned by the investigator and does not necessarily correspond

to depth. For example, in a phylogenetic (taxonomic) tree, level typically corresponds to

the taxonomic rank (species, genus, etc.); a phylogenetic tree is then incomplete when

the leaf nodes (OTUs) have missing assignment below a certain level. The tree shown in
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Figure 2.1(b) could be an example of this, where level 1 corresponds to OTUs and where

OTUs N1,1, N1,2, N1,5, and N1,6 have genus and species assignments but OTUs N1,3 and

N1,4 are only assigned at the genus level. We will sometimes refer to a node at which we

have rejected the null hypothesis as a detected node, and a detected node is a driver node

if none of its ancestors are detected. We further assume that p-values for the association

tests at all leaf nodes are available. The algorithm we describe here gives p-values for all

internal nodes as needed.

There are two ways to imagine calculating p-values for inner nodes in a bottom-

up testing algorithm for tree-structured hypotheses. In the first approach, p-values for

inner nodes are determined entirely from the p-values of their offspring (and hence, are

determined by the p-values at leaf nodes). In the second approach, p-values for inner nodes

are calculated by applying a test statistic to pooled data (Tang et al., 2017). The second

approach may be problematic as it may be hard to determine the null distribution of

the pooled data, given decisions about p-values at lower levels (e.g., removing data from

nodes having p-values less than a threshold from pooling for testing the modified null

defined in Section 2.2.3). Also, it is hard to know how the conjunction null hypothesis

could be tested using pooled data. In addition, pooling data may result in effects being

cancelled out if some offspring nodes are protective while others increase risk. For these

reasons, we seek an algorithm that operates entirely on the p-values of the leaf nodes.

2.2.2 Bottom-up Testing

The goals of our inference are to find nodes in the tree (e.g., taxa for the microbiome

example) which are associated with a trait of interest. We wish to avoid declaring a

node to be associated just because a few offspring nodes are strongly associated; thus we

restrict claims of association to nodes in which a large number of offspring are associated.

For this goal the global null hypothesis, which specifies a node is associated if even one

offspring node is associated, is not appropriate. Directly testing the conjunction null

hypothesis that not all offspring of a node are associated (Price and Friston, 1997) is

known to be conservative in many situations, as the p-value is determined by selecting

the largest p-value from the p-values at each offspring, and then comparing the selected
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p-value to the uniform distribution on [0, 1] (Friston et al., 2005). However, it does easily

lead to a bottom-up procedure; after propagating the largest p-value from offspring nodes

to their parent nodes, nodes are then detected using the standard BH (Benjamini and

Hochberg, 1995) procedure. We report results from this procedure even though we do

not recommend it, due to its low power.

To develop a bottom-up procedure that avoids the low power of the rigorous test of the

conjunction null hypothesis, but still finds taxa for which most offspring are associated,

we use the insight that, if an offspring node has already been found to be associated,

including it in our test for the parent adds no new information. This insight is reinforced

by the observation that, in an omnibus test of association for all offspring, a strong

association from already-detected children may lead to the parent node being detected

even if most other child nodes are truly null. Thus, as a surrogate for the conjunction

null hypothesis, we propose to test a modified null that, among the offspring that have

not been previously detected at a lower level, none are associated, against the alternative

that some previously-undetected offspring are associated. We then combine the p-values

of these previously-undetected nodes to form a test statistic for the parent node, using a

small modification of Stouffer’s Z test. Nodes for which all offspring are already detected

are not tested, but automatically detected and require special handling as described in

Section 2.2.4.

To illustrate these issues, consider the hypothetical example in Figure 2.1(a). Nodes

highlighted with blue circles are truly associated; N2,1 and N3,3 are driver taxa. Although

N3,1 is associated under the global null hypothesis because N1,1 and N1,2 are its descen-

dants, we would prefer to conclude that N2,1 rather than N3,1 explains the association

signal among the descendants of N3,1 because N3,1 has descendants that are not truly

associated. This is achieved by using the modified null hypothesis, because N3,1 is not

associated under the modified null hypothesis, because N2,2 is not associated.

The error rate of any testing algorithm depends on the null hypothesis used to ascer-

tain the true association status of each node. Thus, we distinguish between the FDR, for

which we use the global null hypothesis to determine true association status; the false

assignment rate (FAR), for which we use the modified null to determine true association
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status; and the FDRc, for which we use the conjunction null to determine true associa-

tion status. For all three error rates, a false discovery means that a node was detected

(i.e., found to be associated) that is in fact not associated, under the appropriate null.

We use the term FAR rather than modified FDR because the “assignment” of nodes

as being associated or not is influenced by decisions made at lower levels, and reserve

the term “discovery” for situations where decisions are based on a test statistic that is

calculated for each node without regard to decisions at other nodes. Thus, our procedure

must test all nodes at the lowest level, then the next lowest level and so on. Suppose the

tree has L levels, and let nl, l = 1, 2, . . . , L, be the number of nodes on level l and Nl,j,

j = 1, 2, . . . , nl, denote the jth node on level l. We then define

Rl,j = I (node Nl,j is detected) ,

where I (.) is the indicator function. We note that if node Nl,j is not tested, then Rl,j =

0 by default. Let Ul,j denote the set of undetected offspring of the jth node on level

l = 2, . . . , L; note that U1,j = ∅. We next define V x
l,j to indicate a false assignment was

made under null hypothesis x, where x = g for the global null hypothesis, x = m for the

modified null hypothesis, and x = c for the conjunction null hypothesis. Thus,

V m
l,j = I (Rl,j = 1 but the modified null hypothesis given Ul,j at node Nl,j is true) .

Similarly, for the global and conjunction null hypotheses, we define V g
l,j and V c

l,j as

V x
l,j = I (Rl,j = 1 but null hypothesis x at node Nl,j is true) , x = c, g.

The error rate under each null hypothesis is given by

E

 ∑L
l=1

∑nl

j=1 V
x
l,j(∑L

l=1

∑nl

j=1Rl,j

)∨
1

 .
If the global null hypothesis at Nl,j is true, then the modified null hypothesis at Nl,j must

also be true, which in turn implies the conjunction null hypothesis at Nl,j is true. Thus,

V g
l,j ≤ V m

l,j ≤ V c
l,j holds for all nodes. Thus, the three error rates FDR, FAR and FDRc
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defined above, are related by

FDR ≤ FAR ≤ FDRc.

This implies that controlling FAR is a more stringent criterion than controlling FDR, and

so a testing procedure that controls the FAR will automatically control the FDR. How-

ever, controlling FAR does not guarantee control of FDRc. Nevertheless, to the extent

that the test used to combine the p-values of previously-undetected nodes is powerful

when non-null effects appear in most or all individual tests, we can expect controlling

FAR should be similar to controlling FDRc. We return to this issue in section 2.2.3,

where this reasoning leads us to advocate use of Stouffers Z-score over Fisher’s method,

when testing the modified null hypothesis.

The modified null hypothesis we test has another important implication: a test at one

level may decide hypotheses at one or more higher levels. This occurs when a node has

no undetected offspring, i.e. Ul,j = ∅. For example, since both offspring of N2,6 in Figure

2.1(a) are detected, we should immediately conclude that N2,6 is associated. Similarly,

having already detected N2,6, if we determine that N2,5 is associated, then N3,3 would have

no undetected offspring and should be determined to be associated as well. We present

two approaches to account for the effect that this multiplicity has on the FAR. In the first

approach, we do not allow this propagation, and instead consider that the test of the last

undetected offspring of a parent node is in fact a test of the parent node (or, in general,

a test of the highest node decided by this single test). So, for example, in Figure 2.1(a),

if N2,6 had already been detected, rejecting the modified null at N2,5 would add N3,3 to

the list of detected nodes, but not N2,5. In this way, each hypothesis we test results in a

single addition to the list of detected nodes. Although this solution is unsatisfactory in

many ways, it leads to a simpler procedure that serves as a useful intermediate result in

developing our recommended approach (which we present in Section 2.2.4).
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2.2.3 Testing to Control FAR: Unweighted Proposal

We now construct a testing procedure that tests the nodes in the tree level by level,

starting at level l = 1. For each level l = 1, . . . , L, our testing procedures consist of two

elements: a set of thresholds to determine which nodes are detected at level l, and a way

of aggregating the p-values from the undetected nodes at level l to give p-values for the

(parent) nodes at level l+ 1 for those nodes at level l+ 1 that have undetected offspring.

Our goal is to control the error rate so that the FAR ≤ q. In analogy with the concept

of alpha spending in interim analysis (Demets and Lan, 1994), we allocate to each level

l a target level ql (l = 1, 2, . . . , L) chosen so that
∑L

l=1 ql = q. We note here that we do

not guarantee the FAR at each level is controlled at level ql, just that the overall FAR

is controlled at level q. Although it would be interesting to develop an optimal strategy

for choosing the qls, we choose ql = qnl/n, where nl is the number of nodes at level l and

n =
∑L

l=1 nl is the number of nodes in the tree.

We first consider how to assign p-value thresholds to control FAR. Recall that for

l > 1, tests at a lower level may have already resulted in detection of some of the nodes

at level l. Suppose that, of the nl total nodes at level l, there are n∗l nodes that have at

least one child node that has not been detected. Without loss of generality, assume the

p-values for each node at level l, pl,1, pl,2, . . . , pl,n∗l , have been sorted in ascending order,

and let the sorted values be denoted by pl,(1) ≤ pl,(2) ≤ · · · ≤ pl,(n∗l ). Let d∗l denote the (as

yet unknown) number of nodes detected at level l. We seek a set of ascending thresholds

αl,1 ≤ αl,2 ≤ · · · ≤ αl,n∗l by which we reject the modified null hypothesis at d∗l > 0

nodes (corresponding to pl,(1), . . . , pl,(d∗l )) if pl,(1) ≤ αl,1, pl,(2) ≤ αl,2, . . . , pl,(d∗l ) ≤ αl,d∗l

but pl,(d∗l +1) > αl,d∗l +1; we accept the modified null hypothesis at all nodes in level l if

pl,(1) > αl,1 in which case we take d∗l = 0, or reject the modified null hypotheses at all

nodes in level l if pl,(1) ≤ αl,1, pl,(2) ≤ αl,2, . . . , pl,(n∗l ) ≤ αl,n∗l in which case we take d∗l = n∗l .

We adopt the thresholds {αl,j} given by

αl,j
1− αl,j

=

(
Dl−1 + j

n∗l − j + 1
× ql

)∧ τ0
1− τ0

, (2.1)

where Dl−1 =
∑l−1

l′=1 d
∗
l′ for l ≥ 2 is the cumulative number of detection made up to and
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including the (l − 1)th level, D0 = 0, and τ0 is a pre-specified constant to prevent nodes

with large p-values from being detected if a large number (say, m) of null hypotheses

can be easily rejected because of very low p-values, in which case q×m nodes with large

p-values can be said to be detected, while still controlling the overall error rate at level

q; we set τ0 = 0.5 in this article, which follows the same choice in Storey (2002). At each

level, the thresholds (2.1) are a variant of the thresholds in the step-down test proposed

by Gavrilov et al. (2009), which have been used to control FDR in some applications as

they have been shown to be more powerful than the standard BH procedure. Theorem

2.1 asserts that our bottom-up procedure with thresholds (2.1) control the FAR at q.

Theorem 2.1. Assume the three conditions hold: (C1) nodes on the same level have

the same depth; (C2) p-values for null nodes follow the uniform distribution U[0, 1]; (C3)

at each level, the p-value for a null node is independent of the p-values at all other nodes.

Then the bottom-up procedure with thresholds (2.1) ensures that the FAR ≤ q.

The proof of this theorem is provided in Appendix A.1. Condition (C1) assumes that

nodes on the same level have the same depth, and will be relaxed in Section 2.2.5.

Conditions (C2) and (C3) can be satisfied by our proposal below for obtaining p-values

for parent nodes.

We now consider how to aggregate the p-values from level l that correspond to the

undetected offspring of a node at level l+1. Note that each undetected node at level l is a

member of exactly one of the sets Ul+1,j, j = 1, . . . , n∗l+1, the collections of the undetected

offspring of nodes at level l+ 1. Thus, for the jth node at level l+ 1, we pool information

from nodes in Ul+1,j. Note that the p-values of the undetected nodes at level l necessarily

exceed the threshold αl,d∗l +1, and are hence not uniformly distributed on the interval [0, 1].

However, since this is the only restriction on these p-values, it follows that, under either

the global or modified null hypothesis, the p-values for nodes that were not detected at

level l are uniformly distributed on the interval [αl,d∗l +1, 1]; equivalently, adjusted p-values

p′l,k = (pl,k − αl,d∗l +1)/(1 − αl,d∗l +1) are uniformly distributed on the interval [0, 1]. Thus,
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we form Stouffer’s Z score:

Zl+1,j =
1√
|Ul+1,j|

∑
k∈Ul+1,j

Φ−1(1− p′l,k), (2.2)

where Φ is the standard normal cumulative distribution function and |Ul+1,j| represents

the cardinality of Ul+1,j. The Zl+1,j calculated using the undetected null nodes in Ul+1,j

follows a standard normal distribution N(0, 1) under the modified null conditional on the

pattern of detection at level l. Thus, pl+1,j = 1− Φ(Zl+1,j); in addition, pl+1,j and pl+1,j′

are independent since, on any tree, Ul+1,j ∩ Ul+1,j′ = ∅.

We use Stouffer’s Z-score as it is known to be powerful when small or moderate non-

null effects appear in the majority of individual tests as opposed to Fisher’s method, which

is additionally powerful when only a few large non-null effects are present (Loughin, 2004).

As a result, using Stouffer’s Z-score when controlling the FAR gives a better control of

FDRc than using Fisher’s method (the results based on Fisher’s method not shown).

To summarize our procedure, we start at level l = 1 with the p-values at the leaf nodes

(which are given). We determine which are detected and which are not detected using

thresholds α1,j calculated using (2.1). For any nodes at level l = 2 that have undetected

offspring (i.e., for which U2,j 6= ∅), we then aggregate these undetected p-values into a Z

score using (2.2) and convert the value of this statistic into a p-value, which then serves

as the p-value for the (parent) nodes on level l = 2. We continue in this manner until we

reach the root node of the tree. For this simplified approach, our list of detected nodes

consists of each node that was detected at level l for nodes that did not result in multiple

detection for a single test, or the highest node detected for those nodes whose detection

resulted in nodes at a higher level also being detected.

2.2.4 Testing to Control FAR: Weighted Procedure

The testing procedure described in Section 2.2.3 may be unsatisfactory to many users

because, when a test at a single node results in detection of multiple nodes, only one

can be included on the list of discoveries if we wish to control FAR. Thus, we consider

a modification of this algorithm which allows all the detected nodes to be considered
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discoveries.

The difficulty with including all discoveries made by the approach in Section 2.2.3 is

that an incorrect decision on a single node can result in multiple false discoveries. To

resolve this, we introduce weights ωl,j that count the number of detections that could

arise when testing node Nl,j under the modified null hypothesis (i.e., conditional on the

detections at lower levels). Consider the example shown in Figure 2.1(a). Assume at

level 1, nodes N1,11 and N1,12 have been determined to be significant. Then, at level

2, the remaining nodes to be tested are N2,1–N2,5 (inside the black box). We consider

testing nodes at each level in ascending order of p-values and assume p2,1 < p2,2 <

p2,3 < p2,4 < p2,5. Rejecting the modified null hypothesis at N2,1 only detects N2,1;

rejecting the null at N2,2 will detect N2,2 and N3,1 (2 nodes); rejecting the null at N2,3

will detect N2,3; rejecting the null at N2,4 will detect N2,4 and N3,2 (2 nodes); rejecting

the null at N2,5 will detect N2,5, N3,3, and N4,1 (3 nodes). Thus, for this ordering, we

define the weights (ω2,1, ω2,2, ω2,3, ω2,4, ω2,5) = (1, 2, 1, 2, 3). Now, suppose instead that

the p-values were ordered as p2,5 < p2,1 < p2,2 < p2,3 < p2,4; then the weights would be

(ω2,5, ω2,1, ω2,2, ω2,3, ω2,4) = (2, 1, 2, 1, 3). Although these weights are different, the sorted

weights (ω2,(1), ω2,(2), ω2,(3), ω2,(4), ω2,(5)) = (1, 1, 2, 2, 3) are the same. It is easy to verify

that the same set of sorted weights will be obtained with any other ordering of nodes.

Thus, the (unsorted) weights (ωl,1, ωl,2, . . . , ωl,n∗l ) depend on the p-values at level l and

are thus random (even conditional on the detection events below level l). However, for

complete trees (i.e., under Condition C1), we show in Appendix A.2 that the sorted

weights ωl,(1) ≤ ωl,(2) ≤ · · · ≤ ωl,(n∗l ) are unique regardless of the ordering of p-values.

Using the weights just defined, the FAR we wish to control becomes

FAR = E

 ∑L
l=1

∑n∗l
j=1 ωl,jV

m
l,j(∑L

l=1

∑n∗l
j=1 ωl,jRl,j

)∨
1

 . (2.3)

We modify the thresholds in (2.1) by replacing the count j with
∑j

k=1 ωl,(k) and n∗l −j+1

with
∑n∗l

k=j ωl,(k) to give:

αl,j
1− αl,j

=

(
Dl−1 +

∑j
k=1 ωl,(k)∑n∗l

k=j ωl,(k)
× ql

)∧ τ0
1− τ0

. (2.4)
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Theorem 2.2 (proved in Appendix A.2) asserts that the bottom-up procedure with thresh-

olds (2.4) controls FAR (2.3) at value ≤ q.

Theorem 2.2. Under Conditions (C1), (C2) and (C3) in Theorem 2.1, the bottom-up

procedure with thresholds (2.4) ensures that the value of the FAR given in equation (2.3)

is ≤ q.

2.2.5 Bottom-up Testing on Incomplete Trees

In Sections 2.2.3–2.2.4, we only considered complete trees where nodes on the same

level all have the same depth. Here we consider more general trees where depth and level

do not coincide. For example, in the tree from Figure 2.1(b), nodes N1,3 and N1,4 have

different depth from the other leaf nodes, although they are all on the same level. In

the microbiome example, this would occur whenever some of the lower taxonomic ranks

(e.g., species and genus) of an OTU are not known. One possible solution is to fill in the

missing levels by assigning each such OTU its own (unknown) species and (unknown)

genus. This is unsatisfactory both scientifically, as we then assert that the “correct”

species and genus for this OTU is different from any other OTU, and statistically, as

the p-value for the species and genus level tests are necessarily identical to the p-value

for the OTU. Although this may seem similar to the situation addressed in Section 2.2.4

where a single test could determine multiple hypotheses, it is actually different in that

there is no additional information gained at the species or genus level in this example.

A better alternative is to place each leaf node at the level just below the nearest inner

nodes. However, this strategy can still be unsatisfactory for applications such as the

microbiome, as it is scientifically questionable to treat some OTUs at the same level as

higher taxa such as families. As a result, we describe here how our approach can be

extended to incomplete trees.

For an incomplete tree, the sorted weights (ωl,(1), ωl,(2), . . . , ωl,(n∗l )) are no longer unique.

In Figure 2.1(b), when N1,6 has the largest p-value among all leaf nodes, the sorted

weights at level 1 are (1, 1, 1, 1, 2, 3); if N1,4 has the largest p-value, the sorted weights are

(1, 1, 1, 2, 2, 2). To account for this ambiguity, we seek a single set of sorted weights that
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will control FAR for any possible ordering of p-values. For the two sets of weights just

considered, note that the cumulative sums of sorted weights
∑j

k=1 ωl,(k) for the first set,

given by (1, 2, 3, 4, 6, 9) are all less than or equal to the cumulative sums of the sorted

weights of the second set, given by (1, 2, 3, 5, 7, 9). Thus, if we were to use the first set of

ordered weights in (4), the thresholds αl,j would be smaller than the thresholds calculated

using the second set of sorted weights. In Appendix A.3, we show how to find a unique

set of sorted weights ω̃l,(1) ≤ · · · ≤ ω̃l,(n∗l ) for level l that correspond to weights obtained

by some ordering of p-values and that satisfy the inequalities

j∑
k=1

ω̃l,(k) ≤
j∑

k=1

ωl,(k), j = 1, . . . , n∗l ,

for all possible sets of sorted weights (ωl,(1), . . . , ωl,(n∗l )) induced by different orderings of

p-values. We then adopt thresholds calculated using {ω̃l,(k)}, given by

αl,j
1− αl,j

=

(
Dl−1 +

∑j
k=1 ω̃l,(k)∑n∗l

k=j ω̃l,(k)
× ql

)∧ τ0
1− τ0

. (2.5)

Because these thresholds are the most stringent among those based on any possible

weights (ωl,(1), . . . , ωl,(n∗l )), we call them the least favorable weights. Theorem 2.3 en-

sures control of the FAR using the least favorable weights.

Theorem 2.3. Under Conditions (C2) and (C3) in Theorem 2.1, the bottom-up proce-

dure with thresholds (2.5) ensures the FAR defined in (2.3) is ≤ q.

The proof of Theorem 2.3 can be found in Appendix A.4. When a tree is complete, the

least favorable weights reduce to the unique sorted weights regardless of the ordering of

p-values. Thus the testing procedure presented here encompasses the one presented in

Section 2.2.4 as a special case.

2.2.6 Bottom-up Testing with Separate FAR Control

The testing procedures we have described so far assume that we wish to detect nodes

at all levels of the tree while controlling the overall FAR at some level q. In some situations
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we may want to conduct a separate analysis of leaf nodes and inner nodes. For example,

we may wish to first determine which OTUs are detected while controlling FAR at some

level q1; then we may wish to conduct a second, separate analysis of taxa starting at the

species level and continuing up the phylogenetic tree, while controlling the FAR of the

second analysis at some level q−1.

The procedures presented in Sections 2.2.4 and 2.2.5 do not guarantee that the FAR

at each level l is controlled at level ql because of the cumulative effect of Dl−1 in (2.1),

(2.4) and (2.5), which establishes a dependence between the nodes detected at each level.

If we break this dependence by re-starting the counter at some level, it is then possible

to separately control FAR above and below this level. Here, we illustrate our proposal by

showing how to control FAR at level 1 to have value ≤ q1 while simultaneously controlling

FAR at all remaining (higher) levels at value ≤ q−1. To accomplish this, we propose a

two-stage procedure. At stage 1, we perform the step-down test for level 1 with thresholds

{α1,j, j = 1, 2, . . . , n1} that satisfy

α1,j

1− α1,j

=

(∑j
k=1 ω̃1,(k)∑n1

k=j ω̃1,(k)

× q1

)∧ τ0
1− τ0

.

Note that, if the same value of q1 is used, these are the same thresholds for level 1 as

the one-stage procedure described in the previous section. The use of weights {ω̃1,(k)} to

account for multiplicity allows us to include in our list of detected nodes at level 1 all

higher-level nodes that are detected after testing level 1 nodes. Thus, the FAR at level 1

is written as

FARotu = E

 ∑n1

j=1 ω1,jV
m
1,j(∑n1

j=1 ω1,jR1,j

)∨
1

 ,
At stage 2, we then apply the one-stage procedure proposed in Section 2.2.4 or 2.1.5

to the tree obtained by removing all leaves (OTUs) as well as those higher-level taxa that

were detected at stage 1. In this tree, undetected nodes at level 2 are now the leaves,

and the p-values for these new leaves are calculated by aggregating the p-values from the
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undetected OTUs. We use the thresholds {αl,j, l = 2, . . . , L, j = 1, . . . , n∗l } that satisfy

αl,j
1− αl,j

=

(
D†l−1 +

∑j
k=1 ω̃l,(k)∑n∗l

k=j ω̃l,(k)
× ql

)∧ τ0
1− τ0

,

where D†l−1 =
∑l

l′=2 d
∗
l′ differs from Dl−1 in that D†l−1 counts the detected nodes starting

from the 2nd level. Using D†l−1 in place of Dl−1 cuts the dependence between level 1 and

the remaining levels and also makes the thresholds more stringent if qls stay the same as

those in the one-stage procedure. Thus, the FAR we wish to control at the remaining

(higher) levels is

FARtaxa = E

 ∑L
l=2

∑n∗l
j=1 ωl,jV

m
l,j(∑L

l=2

∑n∗l
j=1 ωl,jRl,j

)∨
1

 ,
where, as before, n∗l excludes nodes detected using information from level 1 to l − 1.

Theorem 2.4 states that this two-stage procedure serves our purpose.

Theorem 2.4. Under Conditions (C2) and (C3) in Theorem 2.1, the above two-stage

procedure ensures that FARotu ≤ q1 and FARtaxa ≤ q−1 =
∑L

l=2 ql.

The proof of Theorem 2.4 is proved in Appendix A.5. Note that the choice of (q1, q2, . . . , qL)

is at the user’s discretion and not necessary to match those in the one-stage procedure.

For example, we can set q1 = q−1 = 5% and choose ql = q−1nl/
(∑L

l′=2 nl

)
for l = 2, . . . , L.

Although we have presented the example in which the FAR for leaf nodes are controlled

separately from the FAR for inner nodes, in principal the approach described here could

be used to divide the nodes into two groups at any level, simply by choosing where to

zero the counter in Dl. We could even apply the approach recursively to control FAR for

more than two sets of levels, if desired.

2.3 Simulation Studies

We conducted simulation studies to assess the performance of our bottom-up tests,

and to compare with three competing approaches: (1) the näıve approach that calculates

the p-value for an inner node by aggregating p-values from all leaf nodes that are its de-

scendents, using Stouffer’s Z-score method and applies the BH procedure on the collection
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of p-values from all nodes; (2) the top-down approach of Yekutieli (2008) as implemented

in the R package structSSI (Sankaran and Holmes, 2014), with p-values for inner nodes

calculated in the same way as in the näıve approach; and (3) the conjunction-null test

that assigns a p-value to an inner node by the largest p-value from all offspring nodes

(equivalently, the largest p-value from all corresponding leaf nodes) and applies the BH

procedure as in the näıve approach. All methods take p-values at leaf nodes as input.

The nominal level for all error rates was set to 10%.

All simulations were conducted under the conjunction null. We first selected a num-

ber of inner or leaf nodes to be driver nodes. Under the conjunction null, all offspring

of driver nodes (including all its leaf nodes) are associated with the trait of interest. We

independently sampled p-values for associated leaf nodes from distributions that have

enriched probability at values close to zero. We used the Beta distribution Beta(1/β, 1)

where β > 1, which has a relatively heavy right tail (Figure A.1) and mimics the empirical

distributions of p-values observed in the IBD data (Figure A.2). To assess the robust-

ness of our results, we also considered sampling p-values from a Gaussian-tailed model

frequently used to study the performance of FDR procedures (Storey, 2002; Barber and

Ramdas, 2017; Javanmard and Montanari, 2018), which has a smaller right tail (Figure

A.1). Specifically, we first drew values Xl,j ∼ N(β, 1) and then obtained the p-value

pl,j = 1 − Φ(Xl,j), where Φ is the standard normal cumulative distribution function. In

both models, β characterizes the effect size of the trait on the microbiome. For all sim-

ulations we assumed that all leaf nodes that were not descendants of driver nodes were

null with p-values sampled independently from the U[0, 1] distribution.

We considered three tree structures, shown in Figure 2.2. The first is a complete

binary tree with 2 children for each inner node and 10 levels, which has 1023 nodes of

which 512 are leaves. The second is a complete ‘bushy’ tree with 10 children for each

inner node and 4 levels, which has 1111 nodes of which 1000 are leaves. The third is a

real phylogenetic tree (Halfvarson et al., 2017) that we apply our methods to in Section

2.4. This tree has 8 levels, 249 inner nodes, and 2360 leaf nodes, with large variation in

the number of child nodes at different inner nodes. It is incomplete, having extensive (>

50%) missing assignments at the genus and species levels, and a few at the family level.
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C1 C2 C3

Figure 2.2: The three tree structures (binary, bushy, and real) and three causal patterns (C1,
C2, and C3) for simulation studies. The real phylogenetic tree structure was obtained from
the IBD data and, for simplicity of exposition, skipped the genus and species levels which have
extensive missing assignments. The root node is always located at the center of each tree and the
leaf nodes are represented by the outermost ring. The top of each blue subtree is a designated
driver node, which can be an inner or leaf node.
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For each tree structure, we then considered three causal patterns, differentiated by

the level of the selected driver nodes (Figure 2.2). The first pattern (C1) is characterized

by sparse driver nodes located at the leaf nodes; the second (C2) by several driver nodes

located at an intermediate level, chosen so that ∼10% of leaf nodes were associated;

and the third (C3) by a single driver node at a higher level, inducing association with

a large subtree. In particular, for C1 we randomly selected 10/20/36 leaf nodes for the

binary/bushy/real trees. For C2, we randomly chosen 10 out of 64 nodes at level 4 for

the binary tree, 10 out of 100 nodes at level 2 for the bushy tree, and 5 out of 48 nodes

at the family level (level 4) for the real tree. For C3, we randomly picked one node at

level 7 for the binary tree, one node at level 3 for the bushy tree, and for the real tree,

the class Clostridia from level 6 (covering ∼80% of all leaf nodes). Each of the 3× 3 = 9

scenarios was replicated 1000 times.

2.3.1 Error Rates

We evaluated each procedure by calculating its FAR (under the modified null), FDR

(under the global null), and its FDRc (under the conjunction null). The FAR of the

top-down and näıve approaches were calculated by using the list of detected nodes (as

determined by Benjamini and Hochberg (1995) for the näıve method and Yekutieli (2008)

for the top-down method), then proceeding level by level as if these detections were the

result of tests of the modified null hypothesis. The FAR was then calculated using the

weighted procedures of Section 2.2.4 for the binary and bushy trees and Section 2.2.5 for

the real tree.

Figure 2.3 displays these results for the nine (= 3 × 3) scenarios we considered, for

the simulations that used the beta distribution for non-null leaves. In all 9 scenarios

our methods, whether unweighted or weighted, always controlled FAR. In contrast, the

näıve and top-down methods typically had inflated FAR, with the most severe inflation

occurring in C1, where the driver nodes were simulated exclusively at leaf nodes, caus-

ing many higher-level nodes to be falsely detected by these methods. As expected, our

methods also controlled FDR. The top-down method, although designed to control FDR,
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still yielded slightly inflated FDR occasionally; this is likely due to violation of the inde-

pendence assumption between the p-value at a node and the p-values of all its ancestors,

which is required by the top-down method (Yekutieli, 2008). The näıve method always

controlled FDR because the BH procedure is known to be robust to such positive corre-

lations. Despite a lack of theoretical results, we found that our methods (especially the

weighted approach of Section 2.2.4) controlled FDRc reasonably well in all scenarios we

considered. The näıve and top-down methods typically had inflated FDRc, and FDRc for

these methods resembled their FAR, consistent with the notion that FAR approximates

FDRc. The conjunction-null test controlled all error rates, as expected. Figure A.3 shows

the same patterns of FAR, FDR, and FDRc for simulations based on the Gaussian-tailed

model.

2.3.2 Accuracy and Pinpointing Driver Nodes

As our simulations were conducted under the conjunction null hypothesis, the driver

nodes and all of its descendants are the truly associated nodes. We measured accuracy

by calculating a Jaccard similarity between the set of truly associated nodes and the

nodes that are detected, for each method. We used a weighted Jaccard similarity to

account for the branching-tree topology of the hypotheses we test, because detecting a

node with offspring implies the offspring are detected in some sense, even if they were not

individually detected. For example, identifying a genus as being associated with the trait

of interest implies the species and OTUs that belong to this genus are associated, even

if we did not detect them (and hence are not included in the list of detected nodes). For

this reason, we calculated the Jaccard similarity by weighting each node by the number

of leaf nodes that are its descendants. The weighted Jaccard similarity is then the sum

of the weights of correctly-detected nodes, divided by the total weight assigned to either

detected or truly associated nodes.

Examining Figure 2.4 we see that the weighted bottom-up approach has the best or

second-best accuracy (as measured by the weighted Jaccard similarity) in all cases we ex-

amined, making it the best overall choice. The test of the conjunction hypothesis slightly



35

0.0

0.2

0.4

0.6

0.8

5 10 15 20

Bi
na

ry
 tr

ee
C1

5 10 15 20

C2

5 10

Unweighted bottom-up
Weighted bottom-up
Naive
Top-down
Conjunction

C3

0.0

0.2

0.4

0.6

0.8

5 10 15 20

Bu
sh

y 
tre

e

10 20 30 5 10

0.0

0.2

0.4

0.6

0.8

4 8 12

R
ea

l t
re

e

3 6 9 3 6 9

0.0

0.2

0.4

0.6

0.8

5 10 15 20

Bi
na

ry
 tr

ee

5 10 15 20 5 10

0.0

0.2

0.4

0.6

0.8

5 10 15 20

Bu
sh

y 
tre

e

10 20 30 5 10

0.0

0.2

0.4

0.6

0.8

4 8 12

R
ea

l t
re

e

3 6 9 3 6 9

0.0

0.2

0.4

0.6

0.8

5 10 15 20

Bi
na

ry
 tr

ee

5 10 15 20 5 10

0.0

0.2

0.4

0.6

0.8

5 10 15 20

Bu
sh

y 
tre

e

10 20 30 5 10

0.0

0.2

0.4

0.6

0.8

4 8 12

Effect size  b

R
ea

l t
re

e

3 6 9

Effect size  b

3 6 9

Effect size  b

FD
R

FA
R

FD
R
c

Figure 2.3: Error rates for testing all nodes in the tree. The non-null p-values at leaf nodes
were simulated from the beta distribution.
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Figure 2.4: Accuracy (weighted Jaccard similarity) for detecting all associated nodes (including
the driver nodes and all of their descendants at all levels). The non-null p-values at leaf nodes
were simulated from the beta distribution.

outperforms our bottom-up tests when only leaf nodes (OTUs) are truly associated (sim-

ulation C1) as its natural conservatism is an advantage in this case. As soon as inner

nodes are truly associated, as in C2 or C3, the conjunction test becomes very conser-

vative. The bottom-up approaches performed best for C2 and C3 except for the binary

tree in C3, where the näıve and top-down approaches performed better at low parameter

values. When considering these results, it should also be noted the näıve method (but not

the top-down method) had elevated FAR and FDRc for this simulation. In general, the

performance of our weighted bottom-up procedure was either equivalent to or superior

to the unweighted procedure, presumably reflecting the ability of the weighted procedure

to include all nodes that are identified when all offspring of some node are detected.

Our methods are most different from existing methods in their ability to pinpoint

driver nodes. We say a driver node is “pinpointed” if it is detected to be associated and
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none of its ancestors are detected. We evaluated the percentage of driver nodes that

were pinpointed and showed the results in Figures 2.5 and A.5. In general, our weighted

and unweighted methods pinpointed a similar number of driver nodes, and both detected

many more driver nodes than the näıve, top-down, and conjunction-null methods. The

näıve method pinpointed some driver nodes when the association signals were weak, but

inevitably detected their ancestors as the signals became stronger. By definition, the

top-down method must fail to pinpoint any driver node since it only tests nodes below

the root node if the root node is detected. Note that the percentage of driver nodes

pinpointed by our methods sometimes decreased as the effect size increased, because

more (but not all) descendants were detected and removed from the statistic for the

driver nodes, which thus aggregated less information. For the beta-based simulations,

undetected driver nodes remained a possibility regardless of the effect size, as the beta

distribution always generates a non-negligible portion of p-values that were close to one

even when the effect size was extremely large. For the Gaussian-tailed simulation, all

driver nodes were eventually detected, as large p-values became more infrequent as the

effect size increased. We note that the conjunction-null test can easily fail to detect

higher-level nodes (including driver nodes) when some offspring of these nodes have large

p-values, as in our beta-based simulations. Additionally, we note that the good accuracy

(as measured by the weighted Jaccard similarity) of our approaches is related to their

ability to pinpoint driver nodes.

2.4 IBD Data

IBD is a chronic disease accompanied by inflammation in the human gut. The two

most common subtypes are ulcerative colitis (UC) and Crohn’s disease. Halfvarson et al.

(2017) investigated the longitudinal dynamics of the microbial community in an IBD

cohort of 60 subjects with UC and 9 healthy controls. The microbial community was

profiled by sequencing the V4 region of the 16S rRNA gene. Sequence data were processed

into an OTU table through the QIIME pipeline. Our goal was to identify taxa that have

differential abundance between the UC and control groups at baseline.

We removed OTUs that were present in fewer than 10 samples and dropped 4 OTUs
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that failed to be assigned any taxonomy. The assigned taxonomy grouped the 2360 OTUs

into 249 taxonomic categories (i.e., inner nodes) corresponding to kingdom, phylum, class,

order, family, genus, and species levels. Note that 15.2%, 56.9%, and 91.3% OTUs have

missing assignment at the family, genus, and species level, respectively. As there were

no obvious confounders provided with these data, we used the Wilcoxon rank-sum test

to compare the OTU frequencies between case and control groups to obtain p-values for

each OTU.

We applied the two bottom-up methods with the nominal FAR of 10% as well as the

näıve and top-down methods with the nominal FDR of 10%. The detected taxa can be

visualized in Figure 2.6. The weighted bottom-up test identified 127 OTUs, 6 species,

9 genera, 7 families, 5 orders, 6 classes and 1 phylum, among which the driver taxa

were pinpointed at phylum Verrucomicrobia, classes Chloroplast, Clostridia, Coriobac-

teriia, Erysipelotrichi and RF3 ; families Prevotellaceae and S24-7 ; genera Morganella

and [Prevotella]; and species ovatus and radicincitans ; see Table A.1 for more details.

The unweighted procedure yielded a very similar list of driver taxa. In contrast, both

the näıve and top-down methods identified the root node and many taxa at high lev-

els, suggesting their inability to pinpoint the real driver taxa. In addition, the top-down

method did not detect some lower-level taxa in phylum Proteobacteria that were detected

by all other methods. The conjunction test detected 142 OTUs but only 5 taxa, each of

which contained a single OTU. All these results are consistent with the findings of our

simulation studies.

We also applied the two-stage (weighted) bottom-up procedure to control FAR sep-

arately at the OTU level and the remaining taxa levels. We considered splitting the

overall FAR 10% into 5% and 5% for OTU and taxon analyses. At stage 1, we detected

79 OTUs and also included in our detection list 1 species, 1 genus, 1 order, and 1 class

because they all contain only 1 OTU and those OTUs were detected; among these OTUs

and taxa we can declare we control FAR at 5% (∼ 4 OTUs or taxa). At stage 2, we

detected 4 species, 4 genera, 5 families, 4 orders, 3 classes, and 2 phyla, among which we

can declare we control FAR at 5% (∼ 1 taxon). The detected driver taxa were phyla Bac-

teroidetes and Verrucomicrobia, classes Chloroplast, Coriobacteriia and Erysipelotrichi,
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order Clostridiales, and species radicincitans. Note that the two FARs (for OTUs and

taxa) do not have to add up to 10% nor be equal.

2.5 Discussion

In this chapter, we presented a bottom-up approach to testing hypotheses that have

a branching tree dependence structure. These procedures test hypotheses in a tree level

by level, starting from the bottom and moving up, rather than starting from the top and

moving down. We developed a novel modified null hypothesis, which is more suitable

for our goal of detecting nodes in which a dense set of child nodes are associated with

the trait of interest. Accordingly, we developed a novel error criterion, the FAR, and

provided procedures that we proved control FAR. Our simulation studies confirmed the

control of FAR and demonstrated good performance of our methods compared to existing

methods using a measure of accuracy based on a weighted Jaccard similarity. Further,

our bottom-up methods are more successful at pinpointing driver nodes, offering highly

interpretable results, while the existing methods frequently fail at this task. Finally,

although our methods were not designed to control FDRc, our simulations showed that

use of Stouffer’s Z score to combine information leads to approximate control of FDRc

as well.

Our methods can easily be extended to very general tree structures. We can easily

handle trees in which the leaf nodes are not all at level 1. With some modifications, our

methods can also be applied to trees with multiple (correlated) root nodes such as trees

generated by pathways, by using our bottom-up testing procedure up to the level right

below the root level and applying to the root level the standard BH procedure, which is

robust to positive correlations. We expect this modified procedure to control FAR (and

hence FDR and, approximately, FDRc).

Although our approach is very general, it does have some limitations or aspects that

could benefit from further development. First, we treated p-values at leaf nodes with

equal weight. In some applications, different leaf nodes may have varying importance

and may be weighted differently. Second, we partitioned the total error rate q into
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q1, . . . , qL in proportion to the number of nodes at each level. It is unclear what the

optimal partition would be. We have done a sensitivity analysis comparing our partition

with a number of alternative ones and found that our partition achieved the most robust

performance in detecting associated nodes as well as driver nodes over all scenarios that

we have considered in simulation (Figure A.6). It is also of interest to consider alternative

partitioning that can improve performance at pre-specified levels of particular importance

if, for example, finding genera that were associated with a trait was of particular interest.

Further, we assumed independence between null leaf nodes because it is required by both

Stouffer’s method for combining p-values and the step-down procedure for controlling the

error rate of decisions. It may also be of interest to extend our methods to account for

correlations between leaf nodes, e.g., correlations between (null) OTUs.

Our methods have been implemented in the R package BOUTH (BOttom-Up Tree

Hypothesis testing), available on GitHub links.. Our program is computationally efficient

as it only involves building the tree structure, calculating the thresholds, aggregating p-

values for parent nodes, and sorting p-values. For example, for the one-stage weighted

procedure on the IBD data, it took 1.3 seconds on a laptop with a 2.5 GHz Intel Core i7

processor and 8 GB RAM.

https://github.com/yli1992/BOUTH
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Chapter 3

Controlling Type-I Monte Carlo

Error Rate in Resampling-Based

Multiple Testing
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3.1 Introduction

In this chapter, we discuss the problem of controlling family-wise type-I Monte Carlo

error rate (MCER-I) in resampling-based multiple testing. In Section 3.2.1, we discuss

a potentially useful approach motivated by bootstrap heuristics, as we observe that a

decision on ideal p-values usually matches the majority voting under bootstrap empirical

distribution. However, we notice that the error rate cannot be controlled in some bad

scenarios. In Section 3.2.2, we propose a two-step approach that divides the problem

into two sub-problems that are more tractable. This two-step approach achieves better

error rate control and is more computational efficient. Hence we recommend this method.

In Section 3.3, properties of the proposed methods are comprehensively studied through

numerical experiments. Performances of our proposed methods are demonstrated through

a prostrate cancer gene expression dataset in Section 3.4.

3.2 Methods

We denote the m (e.g., m = 1000) null hypotheses by H1,0, H2,0, . . . , Hm,0, and the

ideal p-values for testing these hypotheses by p∗1, p
∗
2, . . . , p

∗
m. Consider that the BH proce-

dure with nominal FDR q is applied to the ideal p-values. The ideal p-values are sorted

in an ascending order p∗(1) ≤ p∗(2) ≤ · · · ≤ p∗(m). If k is the largest integer such that

p∗(k) ≤ q × k/m, then the null hypotheses corresponding to p∗(1), . . . , p
∗
(k) are rejected and

the remaining hypotheses are accepted. Thus, we call τ ∗ = q × k/m that separates re-

jected and accepted p-values the BH cutoff. If τ ∗ is known a priori, we can rewrite the

original multiple testing problem to be

Hi,0 : p∗i > τ ∗ versus Hi,1 : p∗i ≤ τ ∗.

In reality, τ ∗ is unknown. In space [0, 1]m, both events {p∗i > τ ∗} and {p∗i ≤ τ ∗} have

quite complex geometric structures. Testing these hypotheses would be a major challenge

in our methods development.

Before we give our solutions to this problem, we first describe the input of the whole
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procedure. Suppose that n permutation replicates have been collected. For every hypoth-

esis Hi,0 and every permutation replicate indexed by j, we can obtain the test statistic

Tij and then the corresponding exceedance indicator Iij = I(|Tij| ≥ |ti|), where ti is the

observed statistic. Our input is the matrix I = {Iij}m×n. From this matrix, we can

obtain the total number of exceedances for each test, Xi =
∑n

j=1 Iij. As the replicates

are sampled independently from the null distribution, we have Iij ∼ Bernoulli(p∗i ) and

then Xi ∼ Binomial(n, p∗i ).

3.2.1 The Empirical Strength Probability (ESP) Approach

The näıve ESP procedure

In this section, we first consider an approach that directly uses the bootstrap empirical

distribution of permutation p-values. We rewrite the hypothesis testing problem Hi,0 :

p∗i > τ ∗ versus Hi,1 : p∗i ≤ τ ∗ to be:

Hi,0 : p∗ ∈ Ai versus Hi,1 : p∗ ∈ Ri,

where Ai and Ri represent the acceptance region and rejection region respectively for

classifying p∗i , with standard BH procedure under FDR nominal level q. The acceptance

region Ai = [0, 1]m \ Ri. In general, for two distinct i1 < i2, the corresponding rejection

regions Ri1 6= Ri2 , but their structures are highly similar. There exists an one-to-one

mapping f such that Ri1 = f(Ri2): basically any p∗ = (p∗1, · · · , p∗i1 , · · · , p
∗
i2
, · · · p∗m) ∈ Ri1

becomes f(p∗) = (p∗1, · · · , p∗i2 , · · · , p
∗
i1
, · · · p∗m) ∈ Ri2 by switching the two coordinates.

An example of rejection and acceptance regions when m = 2 is illustrated in Figure 3.1

(a).

Let B be the number of bootstrap samples for this ESP approach. For each b =

1, 2, . . . , B, we propose to obtain the b-th bootstrap sample of (X1, . . . , Xm), denoted

as (X
(b)
1 , X

(b)
2 , . . . , X

(b)
m ), by sampling n columns of I with replacement to obtain a new

matrix I(b) and to sum up the rows. To improve computational efficiency, we adopted

a sampling strategy based on column blocks (so the columns in one block are in or out

together). Using the r-column blocks can reduce the time of bootstrap sampling by r fold,
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which is very useful when n and B are very large. After sampling (X
(b)
1 , X

(b)
2 , . . . , X

(b)
m ),

we construct the bootstrap p-values from each bootstrap sample:

p̂
(b)
i =

X
(b)
i + 1

n+ 1
,

where i = 1, . . . ,m. Then we apply the standard BH procedure to (p̂
(b)
1 , p̂

(b)
2 , . . . , p̂

(b)
m ) and

obtain the decisions (D̂
(b)
1 , D̂

(b)
2 , . . . , D̂

(b)
m ). We assess whether each of (H1,0, H2,0, . . . , Hm,0)

can be stably rejected over the majority of B bootstrap samples.

More specifically, define ωi to be the proportion of B bootstrap samples in which Hi,0

is accepted:

ωi =
1

B

B∑
b=1

I
(
D̂

(b)
i = acceptance

)
.

A small ωi value shows strong evidence for rejecting Hi,0. Such an ωi is called empiri-

cal strength probability (ESP) in literature (Liu and Singh, 1997; Davison et al., 2003)

because the strength in support of the null hypothesis comes from the observed data,

which is known to behave like p-value asymptotically (Liu and Singh, 1997) under mild

conditions. In particular, for Hi,0 which should not be rejected based on the ideal p-

value, ωi is expected to asymptotically follow uniform distribution U[0, 1], or be more

conservative than U[0, 1] (i.e., lim supn→∞ Pr(ωi ≤ t) ≤ t). Therefore, we propose to

calculate ω1, ω2, . . . , ωm and then performs Holm’s procedure (Holm, 1979) on them to

asymptotically control the FWER by α.

There are two major advantages of this algorithm. First, it enjoys significantly im-

proved power (i.e., number of discoveries) compared to the existing methods. Second,

the ESP approach provides a confidence measure for each rejection it makes. A smaller

ωi indicates a higher confidence in rejecting the i-th hypothesis.

However, the ESP approach may occasionally inflate the family-wise MCER-I in finite

samples. In some bad scenarios, it can reject more hypotheses than it should be. It is

known that the ESP value ωi can be substantially biased (Efron and Tibshirani, 1998;

Davison et al., 2003) when the null region Ai has nonsmooth boundary points and the

ideal p-values are close to at least one of these nonsmooth corners. Particularly in our case,

when some ideal p-values are close to multiple BH check points (i.e., q/m, 2q/m, . . . , q), it
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will require an extremely large amount of permutations to ensure that this approximation

is sufficiently accurate. It becomes even worse if more ideal p-values are near the BH check

points. The BH decision boundary for testing p∗i is a surface Si = Ri∩Ai. The Ai means

the closure of Ai. Every point on the surface Si can be classified into two categories: Si,0

is the collection of ordinary (boundary) points such that Si is differentiable at the point;

and Si,1 is the collection of singular (boundary) points such that the boundary surface

cannot take derivatives there. In Figure 3.1, there are only 2 singular points which are

the two corners. When m ≥ 3, the number of singular points would be infinity.

Next we consider classification of singular points. However, this question would be-

come very complicated under the general dependency structure among m tests. Here we

assume that all tests are independent. We define a metric V for any p ∈ the collection

of boundary points:

V (p) = lim
r→0+

vol(B(p, r) ∩Ri)

vol(B(p, r) ∩ [0, 1]m)
,

where B(p, r) means an m-dimensional ball centering at p with radius = r, and vol

means the volume of an closed object. Under this independence assumption and in the

asymptotic sense, the V (p) is proportional to the probability of i-th test falling into the

rejection region given ideal p-values = p. When p is an ordinary boundary point, V (p) is

always 1/2. Then we use the metric V to further classify singular points into two classes.

The type-I singular points satisfy V (p) > 1/2. It is easy to verify that Ps1 in Figure 3.1

(a) is such a singular point. When the ideal p-values are in Ai but too close to a type-I

singular point, typically Pr(ωi ≤ t) > t and the type-I error of testing Hi,0 : p∗i ∈ Ai is

inflated. The type-II singular points satisfy V (p) ≤ 1/2. The other singular point Ps2 in

Figure 3.1 (a) belongs to this class. We should not observe type-I error inflation, if the

ideal p-values we mentioned above is only close to type-II singular points.

The other limitation of this algorithm is related to its computational complexity.

Because the Holm’s procedure requires us to compare ESP values to the thresholds

{α/m, α/(m − 1), · · · , α}. However, ESPs can only be chosen from discrete values

0, 1/B, 2/B, · · · , 1. Therefore B should be at least in the order of O(m) to ensure that

the estimates of ESP values are accurate enough.
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Figure 3.1: An illustrative example of ESPs and regions classified by BH decisions. In figure (a)
we consider the decision for p∗1 when there are two tests. According to Liu and Singh (1997),
the ESP value ω1 would asymptotically follow U[0, 1] distribution if ideal p-values are chosen
from ordinary boundary points, for instance, “Po”. At these points the BH decision boundary
is smooth. In contrast, the decision boundary is not smooth at the type-I singular point“Ps1”.
The ω1 based on a limited number of permutations would be anti-conservative to U[0, 1] if the
ideal p-values are close to “Ps1”. Under that scenario, bootstrap samples are more likely to
fall in the rejection region, which causes the ESP value to be enriched around 0. The other
singular point in figure (a) is “Ps2”. However, it is a type-II singular point and hence will not
cause inflated ω1. In figure (b) we consider the decision for p∗1 when there are three tests. The
combination of gray cuboids represents the rejection region by BH for p∗1. All type-I and type-II
singular points are colored by red and blue respectively.
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Algorithm 2 The Empirical Strength Probability (ESP) approach

The näıve ESP procedure

1. For each bootstrap sample (X
(b)
1 , X

(b)
2 , . . . , X

(b)
m ), calculate bootstrap p-values (p̂

(b)
1 , p̂

(b)
2 , . . . , p̂

(b)
m ),

and apply the BH procedure to obtain decisions (D̂
(b)
1 , D̂

(b)
2 , . . . , D̂

(b)
m )

2. Calculate (ω1, ω2, . . . , ωm), treat them as p-values, and apply the Holm’s procedure: for ordered
ω(1) ≤ ω(2) ≤ · · · ≤ ω(m), find k to be the largest integer such that ω(i) ≤ α/(m − i + 1) for all
i ≤ k, and reject the corresponding k hypotheses H(1),0, . . . ,H(k),0

The validation test for bad scenarios
Assume m+ is the number of rejected hypotheses with ESP procedure. The hypotheses with respect to
X(1), X(2), . . . , X(m+) are rejected.

1. Begin with l = 1.

2. Stop testing if l > m+. For l = 1, 2, . . . ,m+, calculate q̂(l), the l-th smallest q-value of the observed
permutation p-value p̂, using formula (3.1).

3. Sample the empirical version of permutation p-values, p̂(b), which is defined in ESP procedure.

4. Find p̈ = (p̈1, p̈2, . . . , p̈m) = (max(p̂1, q×1/m),max(p̂2, q×2/m), . . . ,max(p̂m, q)) which is the can-
didate singular point near p̂. Create the empirical distribution of permutation p-values centering at

p̈ by the collection of p̈(b) = (p̂
(b)
1 , p̂

(b)
2 , . . . , p̂

(b)
m )−(r1, r2, . . . , rm)+(p̈1−p̂1, p̈2−p̂2, . . . , p̈m−p̂m), b =

1, 2, . . . , B, where r1, r2, . . . , rm are randomly sampled from U[0, 1
n+1 ] distribution for smoothing.

5. Find the empirical distribution of q̈
(b)
(l) , the l-th smallest q-value of each p̈(b) using formula 3.1.

Calculate the validation test p-value pvall = #{b ∈ {1, 2, . . . , B}, such that q̈
(b)
(l) ≤ q̂(l)}/B.

6. If pvall ≤ α, reject the test that corresponds to X(l) and continue to step 2 with the updated l = l+1.
Otherwise stop any further testing and claim tests that correspond to X(l), X(l+1), . . . , X(m) are
accepted.
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Validation test for ESP procedure

Our next question is that can we fix the inflated family-wise MCER-I with the näıve

ESP procedure? A possible solution is to consider corrected ESP values. There have been

discussions on performing corrections on ESP values when the boundary of null region be-

ing tested is non-smooth. Liu and Singh (1997) suggested using max{ESP, p1, p2, · · · , ps}

as the corrected ESP value, where there are finite singular points a1, a2, · · · , as on the

boundary of null region and for i ∈ {1, 2, · · · , s}, pi is the p-value of testing point-wise

nulls H0 : p∗ = ai versus H1 : p∗ 6= ai. at those singular points. However, in our case

when m ≥ 3, the number of both type-I and type-II singular points can reach infinity.

See an example for m = 3 in Figure 3.1, where all points from those colored edges are

singular. It is impossible to enumerate all p-values from testing those singular points

and find their supremum. Therefore their methods are not applicable here. Shimodaira

(2008) considered a multiple scale bootstrap approach to find the corrected ESP values

and proved the corrected values are approximately unbiased. It is very similar to those

simulation-extrapolation methods which were originally developed to solve measurement

error problems (Stefanski and Cook, 1995; Carroll et al., 1996). However, it may require

an extensive amount of computing resources for large m.

We propose a novel correction procedure called validation test to handle the bad

scenarios in ESP procedure that are caused by singular points. The validation test

helps us to decide whether or not a rejection decision given by näıve ESP procedure is

convincing in presence of singular points. If the corresponding validation test cannot be

rejected, we should be alerted that the rejection decision made by ESP is likely due to

the effects from nearby singular points.

Without loss of generosity, we assume the ordered counts X1 ≤ X2 ≤ . . . ≤ Xm,

and hence permutation p-values p̂1 ≤ p̂2 ≤ . . . ≤ p̂m. Due to the property of BH that

deciding rejection on any larger permutation p-values must imply deciding rejection on a

smaller permutation p-value. we again develop a step-wise testing method under the same

framework of Romano and Wolf (2005), testing from the smallest to largest permutation

p-values. Including the first null hypothesis, the more general i-th validation hypothesis
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we test is,

Hval
i,0 : p∗i ∈ Ai and there is an influential singular point nearby

Hval
i,a : p∗i ∈ Ri or there is not an influential singular point nearby.

As our testing strategy, we create the empirical null distribution centering at a singular

boundary point, and reject the validation null hypothesis if the observed permutation

p-value does not seem likely to be drawn from that empirical null distribution.

In particular, we consider the point estimator p̈ = (p̈1, p̈2, . . . , p̈m), where p̈i =

max(p̂i, q × i/m). The point estimator enjoys following properties. First, p̈ is always

located at BH decision boundary. This is because the at least one permutation p-value

has been rejected by ESP approach, there must be at least one p̂i ≤ q × i/m. The

estimator p̈ could be approximately viewed as MLE of p∗ constrained by the closure

of acceptance region, if we believe the correlation in the binomial likelihood is negligi-

ble. Further more, a p̈ value is singular, if there exist two different indices i1, i2 such

that p̂i1 ≤ q × i1/m and p̂i2 ≤ q × i2/m. Now we test Hval
1,0 through testing against

point wise null p̈. Since in ESP procedure we already have the empirical distribution of

p̂(b) = (p̂
(b)
1 , p̂

(b)
2 , . . . , p̂

(b)
m ), we are able to approximately obtain the empirical null distribu-

tion centering at (p̈1, p̈2, . . . , p̈m) by mean shifting: the b-th bootstrap sample around the

p̈ is generated by (p̂
(b)
1 , p̂

(b)
2 , . . . , p̂

(b)
m ) + (p̈1− p̂1, p̈2− p̂2, . . . , p̈m− p̂m)− (r1, r2, . . . , rm). In

addition to mean shifting, here r1, r2, . . . , rm are randomly sampled from U[0, 1
n+1

] distri-

bution. These small perturbations will add smoothness to those p̂
(b)
1 , p̂

(b)
2 , . . . , p̂

(b)
m because

they can only be one of the discrete values in 1/(n+ 1), 2/(n+ 1), . . . , n/(n+ 1), 1. Then

we use q-value (Storey, 2003) as the validation test statistic. In FDR literature, q-value

usually serves as a statistic that measures significance level. A hypothesis is rejected

under FDR nominal level q (i.e., 10%) is equivalent to say its corresponding q-value ≤ q.

For the standard BH procedure, the q-value for p-value pi would be written as

qi = q(pi) = min
t≥pi

F̂DR(t), where for any t, F̂DR(t) =
mt

#{pi ≤ t}
, i = 1, 2, . . . ,m.

(3.1)
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We notice that q-values are always sorted in the same order as p-values. We calculate the

smallest q-value, q̈
(b)
(1), based on the b-th null replicate, p̈(b), and obtain a validation test

p-value by comparing the smallest q-value of p̂ to the collection of q̈
(b)
(1). If the validation

test p-value is smaller than α, then we reject p̂1 as the same decision made by the näıve

ESP procedure. Otherwise, the rejection by näıve ESP might be unreliable. After we

decide whether or not to reject the first validation hypothesis, we move to the next step

for testing p̂2. Details for this general step-wise procedure are presented in Algorithm

2. The validation test will stop at the first time when we fail to reject a validation null.

For those tests that are rejected by näıve ESP approach but cannot be rejected by the

validation test, we will report them as acceptance decisions in output.

3.2.2 The Two-Step Approach

In the previous section, we point out that the näıve ESP procedure may sometimes

fail to control the family-wise MCER-I. Now we reexamine the original multiple testing

problems:

Hi,0 : p∗i > τ ∗ versus Hi,1 : p∗i ≤ τ ∗.

Because {V MC-I ≥ 1} = {there exists at least one Hi,0 that is true but rejected}, a rule

that controls the FWER of this multiple-testing problem at α will automatically control

the family-wise MCER-I at α.

Because τ ∗ is unknown, testing these hypotheses can be intractable. We propose

a two-step procedure that separates the problem into two sub-problems that are more

tractable. In the first step, we develop a method that can be used to construct an at

least (1− β) level one-sided confidence interval [τl, 1] for τ ∗, where β is chosen such that

0 < β < α. In the second step, we consider a revised multiple-testing problem, treating

τl as fixed:

H̃i,0 : p∗i > τl vs. H̃i,1 : p∗i ≤ τl, i = 1, 2, . . . ,m. (3.2)

We develop a method to test H̃1,0, . . . , H̃m,0 that controls the FWER at level (α − β).

Here each H̃i,0 is a surrogate for the original hypothesis Hi,0, and the decision on Hi,0 is
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made by the same decision on H̃i,0. Then, by the fact that

{V MC-I ≥ 1} = {τl > τ ∗, V MC-I ≥ 1} ∪ {τl ≤ τ ∗, V MC-I ≥ 1}

⊂ {τl > τ ∗} ∪ {τl ≤ τ ∗, at least one Hi,0 are rejected but p∗i > τ ∗}

⊂ {τl > τ ∗} ∪ {τl ≤ τ ∗, at least one H̃i,0 are rejected but p∗i > τl},

the family-wise MCER-I Pr(V MC-I ≥ 1) is always bounded by the sum of Pr(τl > τ ∗) and

the FWER in testing (H̃1,0, . . . , H̃m,0), which is β + (α − β) = α. As the default choice,

we choose β = α/2, i.e., the total error rate is equally partitioned to the two steps. We

show in Appendix B.2 that the equal partition scheme generally yields the highest power.

We also want to point out that, although we focus on controlling the type-I MCER

in this work, we can easily extend this two-step algorithm to control the type-II MCER

as well. We will present this extension at the end of Appendix B.

Step 1

In step 1, we construct an at least (1−β) level one-sided confidence interval [τl, 1] for

τ ∗. We find τl from a series of cutoffs that are obtained by applying the BH procedure on

a series of values that are more conservative than p̂1, p̂2, . . . , p̂m, which are permutation

p-values p̂i = (Xi + 1)/(n+ 1) (Phipson and Smyth, 2010). To this aim, we consider the

following shrinkage estimator for p∗i (i = 1, . . . ,m) indexed by a positive tuning parameter

c:

pc,i =
Xi + c

√
Xi + 1

n+ c
√
Xi + 1

. (3.3)

The penalty term
√
Xi + 1 in (3.3) is an approximation to

√
Xi(1−Xi/n) which is the

standard deviation of Xi. We omit 1 − Xi/n for ease of computation, since for those

Hi,0 that should be rejected the term should be very close to 1. In addition, we add

one to guarantee that the penalty term is always positive. Obviously pc,i is a consistent

estimator of p∗i .
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The empirical distribution functions of (p∗1, . . . , p
∗
m) and (pc,1, . . . , pc,m) are

F ∗(t) = m−1
m∑
i=1

I(p∗i ≤ t)

Fc(t) = m−1
m∑
i=1

I(pc,i ≤ t),

respectively, for t ∈ [0, 1]. Because limc→∞ pc,i = 1, when c is sufficiently large, we

expect that the smallest shrinkage estimators are consistently more conservative than the

smallest ideal p-values, i.e., pc,(i) ≥ p∗(i) for i = 1, . . . , l, where l is the smallest integer

such that p∗(l) ≥ q. We can rewrite this statement in terms of the empirical distribution

functions, i.e., Fc(t) ≤ F ∗(t) for t ⊂ [0, q]. It is known that the BH cutoff can also be

obtained by using the empirical distribution function (Storey et al., 2004; Genovese and

Wasserman, 2004). Thus the BH cutoffs for (p∗1, . . . , p
∗
m) and (pc,1, . . . , pc,m), denoted by

τ ∗ and τc, can be written as

τ ∗ = max{t : F ∗(t) ≥ t/q, t ∈ [0, 1]}

τc = max{t : Fc(t) ≥ t/q, t ∈ [0, 1]}.

As Figure 3.2 illustrates, the intersection of either F ∗(t) or Fc(t) with the line t/q (if

the intersection exists) is always within [0, q], so the BH cutoff is fully determined by the

empirical distribution function of p-values on [0, q]. If Fc(t) is always no greater than

F ∗(t) on [0, q] as depicted in Figure 3.2, we must have τc ≤ τ ∗. Thus we have

Pr(τc ≤ τ ∗) ≥ Pr

(
max
t∈[0,q]

{Fc(t)− F ∗(t)} ≤ 0

)
,

where τc and Fc(t) are random terms due to (X1, . . . , Xm) through {pc,i}. To construct

a (1− β) confidence interval for τ ∗, we want to find a tuning parameter c such that

Pr

(
max
t∈[0,q]

{Fc(t)− F ∗(t)} ≤ 0

)
≥ 1− β. (3.4)

The probability on the left hand side of (3.4) is an increasing functional of c as c increases,

because each pc,i increases and thus Fc(t) for a given t decreases as c increases. In order



55

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p-value

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

BH decision boundary

ideal p-values

shrinkage p-values

Figure 3.2: An illustrative example of the empirical distribution function of shrinkage p-values
Fc versus the empirical distribution function of ideal p-values F ∗. Under the standard BH
procedure with the FDR nominal level q = 10%, the X-coordinate of the point where BH
decision line intersects with Fc is τc. The other crossing with F ∗ corresponds to τ∗, which must
be ≥ τc in this example. The red line is t/q.

to have the tightest confidence interval for τ ∗, we pick the smallest c that satisfies (3.4),

and use the corresponding τc as the low bound τl.

The smallest c among all c that satisfy the inequality (3.4), denoted by cl, does not

have a closed form. Alternatively, we can obtain cl by applying the bootstrap princi-

ple. We obtain the b-th bootstrap sample of (X1, . . . , Xm), (X
(b)
1 , X

(b)
2 , . . . , X

(b)
m ) using

the same bootstrap sampling scheme in the previous section. The number of bootstrap

samples B in this section also needs to be large, but does not have to increase with m.

For instance, we can choose B = 104. Similar to (3.3), we define the shrinkage estimator

with the b-th bootstrap sample:

p
(b)
c,i =

X
(b)
i + c

√
X

(b)
i + 1

n+ c

√
X

(b)
i + 1

,
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where i = 1, 2, . . . ,m. Define the empirical distribution functions

F (b)
c (t) = m−1

m∑
i=1

I(p(b)c,i ≤ t)

F̂ (t) = m−1
m∑
i=1

I(p̂i ≤ t).

Then we obtain cl as the smallest c that satisfies

1

B

B∑
b=1

I
(

max
t∈[0,q]

{
F (b)
c (t)− F̂ (t)

}
≤ 0

)
≥ 1− β, (3.5)

which is the empirical version of (3.4). The bootstrap reasoning is sketched in Fig-

ure 3.3. To this aim, we find, for every b = 1, . . . , B, the smallest c that satisfies

maxt∈[0,q]

{
F

(b)
c (t)− F̂ (t)

}
≤ 0. Then we find cl as the (1−β) quantile of (c(1), c(2), . . . , c(B)),

which ensures that a proportion (1 − β) of c(b)s have the indicator function being 1 in

(3.5). Finally, we find the low bound of the confidence interval τl from cl. We summarize

the entire two-step approach in Algorithm 3.

The real world < p∗i , F
∗(t) > < p̂i, F̂ (t) > < pc,i, Fc(t) >

The bootstrap world < p̂i, F̂ (t) > < p̂
(b)
i , F̂ (b)(t) > < p

(b)
c,i , F

(b)
c (t) >

binomial shrinkage

inequality (3.4)

inequality (3.5)

Figure 3.3: Use bootstrap principle to calculate optimal tuning parameter cl. The bootstrap
version of permutation p-value is denoted by p̂i, and the empirical distribution function is
denoted by F̂ (b)(t).

Step 2

Now we present a method to test the hypotheses (3.2) controlling the FWER at level

(α−β). It is well known that, for testing multiple hypotheses, step-wise procedures such

as Holm’s are more powerful than single-step procedures such as Bonferroni’s. Similar
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to the validation test in previous section, we develop a step-wise procedure following the

proposal in Romano and Wolf (2005).

We sort X1, X2, . . . , Xm in an ascending order X(1) ≤ X(2) ≤ . . . ≤ X(m). We first test

the global null, H̃(1),0 ∩ H̃(2),0 ∩ . . . ∩ H̃(m),0, which means that all p∗i are greater than τl.

We use X(1) as the statistic. The asymptotic p-value for this test is given by

Pr
{
∃ at least one Bin[n, p̃(i′)] ≤ X(1), i

′ = 1, . . . ,m
∣∣H̃(1),0, H̃(2),0, . . . , H̃(m),0

}
,

where p̃(i) is an estimator of max(τl, p(i)), and Bin(n, θ) represents a binomial random

variable with the n trials and success rate θ. Followed by the law of the iterated logarithm

(Khintchine, 1924), we pick the estimator

p̃(i) =


τl, if

X(i)−nτl√
τl(1−τl)

≤
√

2n log(log(n)),

X(i)

n
, otherwise,

which was proposed in the work of Hansen (2005) and Hsu et al. (2010). According to

the Bonferroni inequality, the p-value is less than

m∑
i′=1

Pr
{

Bin[n, p̃(i′)] ≤ X(1)

}
. (3.6)

Therefore it works under any dependence structure among the m original tests. If the

term in (3.6) is less than (α − β), we reject H̃(1),0 and move to X(2); otherwise, we stop

testing any larger X(i) and declare that none of the null hypotheses should be rejected. In

general, when it comes to X(i) for i > 1, we use X(i) to test the joint null H̃(i),0∩. . .∩H̃(m),0.

If
m∑
i′=i

Pr
{

Bin[n, p̃(i′)] ≤ X(i)

}
is less than (α − β), we reject H̃(i),0 and move to X(i+1); otherwise, we stop further

testing and accept the remaining hypotheses. Because of the closure principle (Marcus

et al., 1976), this step-wise procedure controls the FWER in tests (3.2) by (α−β). More

technical presentation can be found in Algorithm 3.
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Algorithm 3 The two-step approach for controlling type-I MCER

Input: the matrix I, nominal FDR rate q, nominal family-wise MCER-I α

Step 1: Constructing the (1− β) level confidence interval [τl, 1] for τ∗.

(1.1) For each b ∈ (1, 2, . . . , B), generate a bootstrap sample (X
(b)
1 , X

(b)
2 , . . . , X

(b)
m ) based on I(b).

(1.2) Find c(b) to be the smallest c that satisfies maxt∈[0,q]

{
F

(b)
c (t)− F̂ (t)

}
≤ 0.

(1.3) Find cl as the (1− β) quantile of (c(1), c(2), . . . , c(B)).

(1.4) Find τl by applying the BH procedure on shrinkage estimators indexed by cl.

Step 2: Testing multiple hypotheses (3.2) given τl.

(2.1) For i = 1, 2, . . . ,m, if
∑m
i′=i Pr

{
Bin[n, p̃(i′)] ≤ X(i)

}
≤ α − β, reject H̃(i),0, update i = i + 1, and

rerun (2.1); otherwise, accept all remaining hypotheses and stop.

(2.2) If i > m then stop.

(2.3) Whenever H̃i,0 is rejected, Hi,0 is rejected.

Output: a list of rejected hypotheses.

3.3 Simulation Studies

3.3.1 Setup

We evaluated the following four methods: (i) the two-step procedure, (ii) the näıve

ESP procedure only, (iii) applying the ESP procedure and the validation test, and (iv) a

variant of the methods proposed by Gandy and Hahn (2016) to ensure a fair comparison

to our methods with fixed n. We call this variant GH-fixed method. It differs from

the original method in the following aspects. First, since we only wish to control the

error rates of making non-reproducible rejection, a one-sided confidence interval (0, pu
′
i ]

at (1 − α/m) level for each p∗i would be sufficient. Second, Gandy and Hahn (2016)

suggested to use the Robbins-Lai confidence interval (Lai, 1976) to maintain the exact

coverage even when different tests stop after different number of permutations due to early

stopping in the sequential procedure. However, the Robbins-Lai interval is usually too

wide, particularly wider than the intervals using fixed sample sizes (i.e., non-sequential)

(Coe and Tamhane, 1993), and hence leads to loss of power. Also, the Robbins-Lai

interval cannot be one-sided. In our implementation, we used Wilson confidence interval

(Wilson, 1927), which is robust and accurate under very general situations, although

not applicable to the sequential problem, and is recommended by Brown et al. (2001,
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2002). Third, we apply the standard BH on the upper limits of confidence intervals,

pu
′

1 , p
u′
2 , . . . , p

u′
m, obtain the rejection set R′ ⊂ {1, 2, . . . ,m}, and decide the hypotheses in

set R′ to be rejected and the remaining hypotheses to be accepted; there would not be

undecided hypotheses. This way, we also obtain an algorithm for a fixed n. One can use

similar arguments to those in Gandy and Hahn (2014, 2016) to prove that this procedure

controls the family-wise MCER-I defined for our method.

We considered m = 1000 tests. In the first set of experiments, we evaluated perfor-

mances of the methods under a general scenario in which ideal p-values were sampled

from a parametric distribution. Specifically, we assumed that a proportion π0 of m tests

are under the null hypothesis and the remaining tests are under the alternative. We set

π0 = 80%. Different choice of π0 will not change the results of simulations. The p-values

for tests under the null were sampled independently from the uniform distribution U[0, 1].

Those under the alternative were sampled independently from the Gaussian right-tailed

probability model, p∗i = 1 − Φ(Zi), where Zi ∼ N(β, 1) and Φ is the standard normal

cumulative distribution function. Here β represents the strength of association, and was

chosen to be 1.5, 2 and 2.5. A larger value of β implies a greater chance for a non-null

hypothesis to be rejected. Given a fixed set of m, π0 and β, we sampled 100 different

realizations of (p∗1, p
∗
2, . . . , p

∗
m). We generated the rejection table I by drawing Bernoulli

samples with success probabilities (p∗1, p
∗
2, . . . , p

∗
m) instead of generating actual permuta-

tions. We varied the number of permutations n from 5,000 to 160,000. The nominal level

of family-wise MCER-I α was set to 10%; the nominal FDR q was set to 10%.

In the second set of experiments, ideal p-values were chosen to be close to those singular

points at BH decision boundary. It is easy to verify that for any integer 1 < k ≤ m,

p̈s1 = (q/m, 2q/m, · · · , kq/m, (k+ 1)/m, (k+ 2)/m, · · · , 1) is a type-I singular point

and p̈s2 = (kq/m, kq/m, · · · , kq/m, (k + 1)/m, (k + 2)/m, · · · , 1) is a type-II singular

point. Here we point out that k is the number of coordinates that are right at the BH

check points in either p̈s1 or p̈s2 . In the set of experiment k is chosen from 10, 80 and 150

respectively. Then ideal p-values p∗ were given by (1 + ε)p̈s1 ∧ 1 which could be viewed

as a subtle shift from a type-I singular point; or (1 + ε)p̈s2 ∧ 1 which is shifted from a

type-II singular point. We chose ε to be 10−1, 10−2, 10−3. A smaller ε implies a shorter
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distance to the singular points.

We used two metrics to evaluate the performance of each method. One is the empir-

ical family-wise MCER-I and the other one is the average proportion of “ground truth”

rejections that are rejected by each method, i.e.,

∑m
i=1 I(D̂i = rejection, D∗i = rejection)

1 ∨
∑m

i=1 I(D∗i = rejection)
.

We refer to the second metric as detection sensitivity. Both metrics were based on 1,000

simulation replicates.
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Figure 3.4: The empirical family-wise MCER-I under different number of permutations (from
5k to 160k). The non-null ideal p-values were simulated from the Gaussian right-tailed model
with β = 1.5, 2.0 and 2.5.
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3.3.2 Simulation Results

The results of the first set of simulations are shown in Figure 3.4 and 3.5. The

empirical family-wise MCER-I and detection sensitivity are shown in boxplots where the

top and bottom of the box are 75% and 25% quantiles and the middle band indicates

the median. Figure 3.4 shows that in all scenarios the two-step approach, ESP procedure

with validation test, and the GH-fixed method controlled family-wise MCER-I below the

nominal level. The ESP procedure without validation cannot always control the error

rate. In particular, there is inflation of family-wise MCER-I in three realizations when

β = 1.5 and n = 5, 000. The error rate with the GH-fixed method is always the most

conservative among all methods. That method turns out to be the least powerful one.

Compared to that method, both two-step and ESP methods demonstrated substantial

improvement in detection sensitivity. The ESP approach seems usually the most powerful

one, although it cannot always control error rates. The ESP procedure with validation

test is usually the second most powerful method, except the cases in which the number

of replicates is small (n = 5, 000) and the two-step method gains more power there.

The results of the second set of simulations are shown in Table 3.1, 3.2 and 3.3. The

two-step method and GH-fixed method always control family-wise MCER-I by 10% in

all scenarios. The ESP approach shows severe error rate inflation when the ideal p-values

are close to type-I singular points (corresponds to ε = 10−2, 10−3). The worst scenarios

are shown in the Table 3.2 and Table 3.3, where 80 or 150 coordinates of ideal p-values

are right above the BH check points: the empirical family-wise MCER-I can reach 100%

and on average we observe a significant amount of type-I MC errors. The validation test

is helpful to eliminate most of the inflated errors. In another experiment where the ideal

p-values are close to type-II singular points, none error is observed in all cases. These

results suggest that type-I singular point is an important factor that causes inflated error

rates with näıve ESP procedure.



62

5000 10000 20000 40000 80000 160000

b
=

1.5
b
=

2
b
=

2.5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

D
et

ec
tio

n 
se

ns
iti

vi
ty

method

GH-fixed

two-step

ESP

ESP+validation

Figure 3.5: Detection sensitivity in all 100 different realizations under different number of
permutations (from 5k to 160k). The non-null ideal p-values were simulated from the Gaussian
right-tailed model with β = 1.5, 2.0 and 2.5.

Table 3.1: The family-wise MCER-I, and the average number of type-I MC errors when the
ideal p-values are close to type-I singular points and k = 10 coordinates are close to the BH
check points.

ε #replicates
two-step ESP ESP+validation GH-fixed

MCER-I EV MC-I MCER-I EV MC-I MCER-I EV MC-I MCER-I EV MC-I

10−1
10,000 0% 0 43.1% 0.495 5.6% 0.099 0% 0
40,000 1.5% 0.017 4.7% 0.06 2.9% 0.03 0% 0
160,000 0.2% 0.002 1.0% 0.011 0.9% 0.009 0% 0

10−2
10,000 0% 0 50.4% 0.609 7.3% 0.132 0% 0
40,000 3.3% 0.038 18.6% 0.334 6.7% 0.092 0% 0
160,000 1.1% 0.014 32.7% 0.744 8.8% 0.14 0% 0

10−3
10,000 0% 0 48.9% 0.589 8.0% 0.137 0% 0
40,000 2.1% 0.027 21.7% 0.428 6.8% 0.083 0% 0
160,000 2.3% 0.056 36.0% 0.918 9.2% 0.157 0% 0
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Table 3.2: The family-wise MCER-I, and the average number of type-I MC errors when the
ideal p-values are close to type-I singular points and k = 80 coordinates are close to the BH
check points.

ε #replicates
two-step ESP ESP+validation GH-fixed

MCER-I EV MC-I MCER-I EV MC-I MCER-I EV MC-I MCER-I EV MC-I

10−1
10,000 0% 0 48.5% 0.801 5.2% 0.094 0% 0
40,000 1.2% 0.014 10.0% 0.179 4.0% 0.051 0% 0
160,000 0.9% 0.010 1.8% 0.026 0.8% 0.011 0% 0

10−2
10,000 0% 0 96.4% 14.667 7.8% 0.148 0% 0
40,000 1.3% 0.017 100% 28.24 9.6% 0.143 0% 0
160,000 2.3% 0.041 100% 38.899 12.5% 0.237 0% 0

10−3
10,000 0.1% 0.004 98.2% 19.075 7.5% 0.146 0% 0
40,000 3.1% 0.037 100% 37.437 11.0% 0.188 0% 0
160,000 1.8% 0.038 100% 52.671 14.1% 0.284 0% 0

Table 3.3: The family-wise MCER-I, and the average number of type-I MC errors when the
ideal p-values are close to type-I singular points and k = 150 coordinates are close to the BH
check points.

ε #replicates
two-step ESP ESP+validation GH-fixed

MCER-I EV MC-I MCER-I EV MC-I MCER-I EV MC-I MCER-I EV MC-I

10−1
10,000 0% 0 48.6% 0.816 5.2% 0.094 0% 0
40,000 0.9% 0.010 7.8% 0.131 3.4% 0.04 0% 0
160,000 0.5% 0.007 1.8% 0.022 1.2% 0.014 0% 0

10−2
10,000 0% 0 99.8% 40.467 7.8% 0.148 0% 0
40,000 2.5% 0.030 100% 61.778 11.4% 0.173 0% 0
160,000 2.4% 0.042 100% 74.328 13.8% 0.259 0% 0

10−3
10,000 0.1% 0.004 100% 55.498 6.6% 0.12 0% 0
40,000 2.1% 0.025 100% 89.352 10.6% 0.159 0% 0
160,000 2.6% 0.073 100% 112.19 12.2% 0.252 0% 0
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3.4 Application to Prostate Cancer Data

We considered a benchmark dataset (Singh et al., 2002) which contains microarray

gene expression data for 6,033 genes and 102 subjects (52 prostate cancer patients and

50 healthy controls); more details of this dataset can be found in Efron (2012). The goal

is to detect genes that are differentially expressed between prostate cancer patients and

healthy controls. To this end, we adopted the two-sample t-statistic with equal variance

for each gene. We calculated the t-statistic for the observed dataset and n permutation

datasets, and obtained the matrix I as input for downstream analysis.

We applied the näıve, GH-fixed, and two-step methods. The ESP method was not

compared here because it took even more run-time than permutation sampling. For

the näıve method, we calculated the permutation p-value for each gene and applied the

standard BH procedure with nominal FDR = 10%. This method does not make any effort

to control type-I MCER. For the two-step method, the nominal family-wise MCER-I was

set to 10% and the nominal FDR was also set to 10%. For comparison purposes, we

obtained the results for 10 runs.

In each run, the two-step procedure yields more rejections than the GH-fixed method.

For each experiment, among the detected genes by the two-step method, the chance that

there exists a detection which would not be detected if we run the permutation for an

infinite number is less than 10%. Note that each list of detection is just a subset of the

ideal list of discoveries.

The two-step method costs about 20 minutes (not including permutation) for n =

1, 000, 000. However, bootstrap resampling in step 1 is the most computationally intensive

part in our algorithm. The run-time of bootstrap resampling can be significantly reduced

by implementing our algorithm under a parallel computing framework. Our program

costs about 2.5 minutes when we use 10 cores for execution. The run-time can be further

reduced with more cores.
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Table 3.4: The number of detected genes that are determined to be differentially expressed.
α = 10%.

Run 1 2 3 4 5 6 7 8 9 10

n = 100, 000
Näıve 64 62 60 63 63 60 61 59 60 62
Two-step 51 52 52 55 52 54 50 49 51 49
GH-fixed 0 0 0 0 20 0 0 0 0 19

n = 500, 000
Näıve 62 62 62 62 61 60 61 60 60 62
Two-step 58 58 58 57 57 58 57 57 58 57
GH-fixed 53 56 56 51 52 52 56 54 51 53

n = 1, 000, 000
Näıve 62 62 61 62 62 60 62 59 60 62
Two-step 58 58 57 58 57 58 58 58 58 57
GH-fixed 57 57 57 57 57 58 57 58 57 57

3.5 Discussion

In this work, we considered the problem of controlling type-I MCER on multiple

resampling-based tests. We focused on a common situation in application, where the

number of permutations is a fixed number n (i.e., = 100, 000). However, in many real

studies, the n that a practitioner picks may not be sufficiently large to account for the

variability in decisions by testing a large scale of hypotheses. It is known that the com-

putational cost of permutations increases with the number of tests. For instance, it

is usually infeasible to generate millions of permutations on whole genome sequencing

data. For some applications, the procedure to obtain permutation statistics (e.g., matrix

decomposition) may be time-consuming, so it may not be possible to run millions of

permutations. With a moderate size of n, it is likely that some rejections given by the

näıve methods should be accepted on ideal p-values, which brings us type-I MC error.

Our methods are designed to avoid those non-reproducible rejections and try to confirm

as many true rejections as possible.

In addition to multiple permutation tests with a fixed n, it is known that sequential

algorithms can also be useful in reducing the overall computational costs of multiple

permutation tests. We will further investigate the problem related to sequential multiple

resampling-based tests in the next chapter.
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Chapter 4

Sequential Resampling-Based

Multiple Testing Procedure That

Controls Monte Carlo Error Rate
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4.1 Introduction

In this chapter we propose a class of methods for sequential resampling-based multiple

testing called MCTGS (Monte Carlo Tests with Group Sequential approaches). In Section

4.2.1, we point out the connection between the Robbins-Lai interval and a well-known

sequential testing procedure. By virtue of the duality principle between confidence set and

hypothesis testing, we develop novel sequential confidence intervals in Section 4.2.2. In

Section 4.2.3, we show that the Bonferroni correction to construct simultaneous confidence

intervals is not necessary, and propose an alternative step-wise procedure that enhances

power. Our methods can be shown to control family-wise MCER. In Section 4.3, we

demonstrate improved power with our methods through synthetic data. In Section 4.4, we

revisit the gene expression data from Section 3.4 with the proposed sequential resampling-

based testing approaches.

4.2 Methods

4.2.1 Duality Between Sequential Testing and Confidence Set

It is well known that there is duality (Lehmann and Romano, 2006) between confidence

set and hypothesis testing. The follow Lemma 4.1 shows that, for any α ∈ (0, 1), a

confidence set (or region) that provides at least (1 − α) coverage probability can be

derived from the acceptance region of a hypothesis test that controls type-I error by α,

regardless of sequential or non-sequential procedures.

Lemma 4.1. Suppose that for every value p ∈ [0, 1], there is a test at level αi of the

hypothesis H0 : p∗i = p. The observed data are denoted by X. Denote the acceptance

region of the test by A(p) = {X| Hi,0 : p∗i = p cannot be rejected}. Then the acceptance

region inversion A(X) = {p| X ∈ A(p)} is a (1− αi) level confidence set for p∗i .

Proof. First we know that type-I error Pr(X 6∈ A(p∗i )|p∗i ) ≤ αi and then equivalently

Pr(X ∈ A(p∗i )|p∗i ) ≥ (1 − αi) when p∗i is used to sample data X. Based on definitions,

p∗i ∈ A(X) is equivalent to X ∈ A(p∗i ). Hence Pr(p∗i ∈ A(X)|p∗i ) = Pr(X ∈ A(p∗i )|p∗i ) ≥
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(1 − αi), which implies that A(X) satisfies the definition of a (1 − αi) level confidence

set.

In this section we show that the Robbins-Lai interval described by (1.5) is closely

connected to the mixture sequential probability ratio test (mSPRT) which was first pro-

posed by Wald (1945). The mSPRT is known as a benchmark procedure in sequential

hypothesis testing, which has wide applications such as industrial process control and

continuous surveillance. Robbins and Siegmund (1972) further showed that mSPRT is a

power-1 testing procedure as long as sufficient samples are collected. Suppose we consider

the i-th test: H0 : p∗i = p v.s Ha : p∗i 6= p. For any p′ 6= p and at the time of collecting

j permutation samples, we can define a likelihood ratio between the alternative and null

hypotheses:

Λi,k[p
′ : p] =

p′Xi,k(1− p′)k−Xi,k

pXi,k(1− p)j−Xi,k
.

Recall that in Section 1.3 we defined Xi,k =
∑k

k′=1 I(Ti,k′ > ti) which is the number of

permuted statistics greater than observed statistic within the first k permutations. In

mSPRT the apriori mixing distribution for p′ under alternative hypothesis can be picked

arbitrarily. When the mixing distribution is U[0, 1], the integrated likelihood ratio can

be written as

Λ̃i,k(p) =

∫
[0,1]

Λi,k[p
′ : p]×1 dp′ =

∫
[0,1]

p′Xi,k(1− p′)k−Xi,k

pXi,k(1− p)k−Xi,k
dp′ =

1

(k + 1)
(

k
Xi,k

)
px(1− p)k−Xi,k

.

The denominator in this formula is exactly the same as the left hand side of equation

(1.4). Similar to other mSPRT procedures, the integrated likelihood ratio Λ̃i,k(p) is a

martingale with respect to filter σ(∪{Xi,k, k}), and under the null condition marginal

expectation EΛ̃i,k(p) = 1 holds for every k. The Doob’s martingale inequality (Doob,

1953) implies that under the null (p∗i = p),

Pr(sup
k

Λ̃i,k(p) ≥
1

αi
}) ≤ 1

1/αi
= αi.
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The acceptance region inversion of the test above is

Arl
i = {sup

k
Λ̃i,k(p) ≥

1

αi
}

= {Λ̃i,1(p) <
1

αi
} ∩ {Λ̃i,2(p) <

1

αi
} ∩ · · · ∩ {Λ̃i,k(p) <

1

αi
} · · · .

With the Bonferroni correction approach for simultaneous error control, we choose all

αi = α/m. It is easy to notice that Ii,k defined in (1.5) equals {Λ̃i,k(p) <
1
αi
}, which

further implies that the Robbins-Lai interval presented in Section 1.3, is a special case of

acceptance region inversion Arl
i .

4.2.2 Sequential Confidence Intervals Based on Group Sequential Approaches

In this section, we attempt to improve the sequential algorithm of Gandy and Hahn

(2016) by replacing the Robbins-Lai interval with another type of interval that can be ob-

tained using the duality principle but with a more powerful sequential testing procedure.

Although one can gain more power by replacing the non-informative mixing distribution

U[0, 1] with an optimal mixing distribution, little information is known about the dis-

tribution of p-values under the alternative hypotheses. In addition to the framework of

mSPRT, the other natural choice is to consider the testing procedures based on group

sequential approaches. These sequential methods have been developed for decades (Ar-

mitage, 1958; Pocock, 1977; O’Brien and Fleming, 1979; Gordon Lan and DeMets, 1983),

mainly for decision making in clinical trial. We want to develop confidence intervals based

on group sequential tests because some of them can be more powerful than mSPRT. Sup-

pose the total Nmax permutation samples can be partitioned to G groups. Each group

consists of Nmax/G samples. The first group corresponds to the first Nmax/G samples;

the second group are the (Nmax/G+ 1)-th, (Nmax/G+ 2)-th, · · · , and 2Nmax/G-th sam-

ples; · · · ; the last group corresponds to the last Nmax/G samples. For the i-th test, we

use

Zi,j =

Nmax/G∑
k=1

I(Ti, k+(j−1)Nmax/G > ti) (j = 1, 2, · · · , G) (4.1)
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to denote the number of permuted statistics that are more extreme than the observed

statistic within the j-th group. We know that Zi,1, Zi,2, · · · , Zi,G are independent and fol-

low Bin(Nmax/G, p
∗
i ) distribution. When the number of samples within a group, Nmax/G,

is sufficiently large, by central limit theorem Zi,j marginally converges to a Gaussian dis-

tribution. Similar to existing group sequential methodologies (Pocock, 1977; O’Brien and

Fleming, 1979) for Gaussian outcome, we consider the standardized cumulative summa-

tion:

Si,j(p) =
1√

Nmax × p× (1− p)

j∑
l=1

(Zi,l −Nmax/G× p) (j = 1, 2, · · · , G), (4.2)

such that under null condition p = p∗i , the last term Si,G(p∗i ) follows N(0, 1). Moreover,

Var(Si,j(p
∗
i )) =

j

G
, and for j1 6= j2, Cov(Si,j1(p

∗
i ), Si,j2(p

∗
i )) = min(

j1
G
,
j2
G

).

The dependency structure among G statistics is known. Note that this null condi-

tion is used to derive two-sided confidence sets. Otherwise, the null condition p ≥ p∗i

or p ≤ p∗i leads to one-sided sets. Due to the property of independent increment

in Si,j(p) and the asymptotic normality we mentioned above, the joint distribution

of (Si,1(p
∗
i ), Si,2(p

∗
i ), · · · , Si,G(p∗i )) converges to (B(1/G), B(2/G), · · · , B(1)), where B(·)

represents a standard Brownian motion. To control the type-I error of group sequential

test by αi, we hope to find a series of positive thresholds c1, c2, · · · , cG such that:

Pr(∃ j ∈ {1, 2, · · · , G} such that |Si,j(p∗i )| ≥ cj)

≈ Pr(∃ j ∈ {1, 2, · · · , G} such that |B(j/G)| ≥ cj) ≤ αi. (4.3)

There are many possible choices of cj that satisfy this inequality. Each set of cj uniquely

defines a group sequential test. However, the simplest set of thresholds would be c1 =

c2 = · · · = cG = c, which can be viewed as an approximation of the decision rules
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proposed in O’Brien and Fleming (1979). Then we rewrite

Pr(∃ j ∈ {1, 2, · · · , G} such that |B(j/G)| ≥ c)

≤ Pr(∃ j such that B(j/G) ≥ c) + Pr(∃ j such that B(j/G) ≤ −c)

= 2 Pr(∃ j such that B(j/G) ≥ c)

≤ 2 Pr(∃t ∈ (0, 1] such that B(t) ≥ c)

= 2 Pr( sup
t∈(0,1]

B(t) ≥ c) = 4 Pr(B(1) ≥ c).

The last equality is known as the reflection principle (Durrett, 2019) of Brownian motion.

To control this probability by αi, we can easily calculate the constant thresholds

cj = c = Φ−1(1− αi/4), (4.4)

because B(1) ∼ N(0, 1). In simulations, we will show that this set of thresholds achieve

high power. For the purpose of comparison, we also consider another set of thresholds

which satisfy

cj =

√
j + 1

G

[
2 log(

1

αi
) + log(j + 1)

]
. (4.5)

It is known that for standard Brownian motion, both

exp(θBt −
1

2
θ2t) and

∫
θ

exp(θBt −
1

2
θ2t)π(θ)dθ

are martingales with respect to the filter σ({B(s) : 0 ≤ s ≤ t}), where θ is a parameter

and π is an arbitrary mixing distribution for parameter θ. Followed by the results of

Robbins (1970) and ’s martingale inequality (Doob, 1953), it can be shown that the

inequality (4.3) still holds for standard Brownian motion under the thresholds in (4.5).

Approximately these thresholds have an parabolic shape. Because the log term log(j+1)

is less dominant compared to the constant 2 log(1/αi), cj in (4.5) increases in an order of
√
j. These thresholds mimic the behaviours of the group sequential approach by Pocock

(1977), but differ from the the original proposal. In Pocock (1977), cj/
√
j must be a

constant but there is no closed-form solution to this constant. When it comes to the



72

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

4

Confidence level 1 - a = 0.99999 

j / G

st
an

da
rd

iz
ed

 c
um

ul
at

iv
e 

su
m

m
at

io
n

Confidence level

0.9

0.999

I

II

III

Thresholds in group sequential test

Figure 4.1: Standardized cumulative summation under three parameters {Si,j(p1) : j =
1, 2, · · ·G}, {Si,j(p2) : j = 1, 2, · · ·G}, {Si,j(p3) : j = 1, 2, · · ·G} are denoted by paths I II
III respectively. Only p1 is under the null condition (equals to the truth from sampling dis-
tribution), while 0 < |p2 − p1| < |p3 − p1|. For the first time when sample path meets these
thresholds, we reach a conclusion that the values (e.g., p2 and p3) are outside the confidence
sets. If the difference from null condition is sufficiently large (i.e., path III), the sample path
will first exceed the ‘parabolic’ thresholds and later meet with the ‘flat’ thresholds. However, if
difference is small (i.e., path II), using the ‘flat’ thresholds can be more efficient.

end of sequential permutation tests, these thresholds in (4.5) should be larger than the

thresholds in (4.4). Figure 4.1 gives an illustrative example for two types of thresholds.

So far we have found an αi level group sequential test for testing null hypothesis

Hi,0 : p∗i = p using the sequential test statistics Si,j(p), j = 1, 2, · · · , G. We reject Hi,0 if

there exists one |Si,j(p)| ≥ cj(αi). This notation cj(αi) here is essentially cj, but we want

to emphasize that these thresholds will be later used to construct (1−αi) level confidence

sets. According to the duality between hypothesis test and confidence set, this (1 − αi)

level two-sided confidence set can be obtained by the acceptance region inversion of this

group sequential test:

Ags
i =

G⋂
j=1

{|Si,j(p)| < cj(αi)} .

Note that this confidence set is calculated at the end of the permutation tests. We hope

that our confidence sets are all intervals. When this is true, followed by the monotonicity

property (Tamhane and Liu, 2008; Gandy and Hahn, 2014) of BH procedure, an upper

limit of interval being rejected by BH implies all elements from the interval are rejected by
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BH; and a lower limit being accepted implies all elements from the interval are accepted.

We can prove the following result related to the shape of Ags
i .

Theorem 4.1. For thresholds c1(αi), c2(αi), · · · , cG(αi) that satisfy (4.3), an individual

acceptance region inversion {|Si,j(p)| < cj(αi)}, {Si,j(p) < cj(αi)}, or {Si,j(p) > −cj(αi)}

must be an interval.

A corollary of this theorem is that their intersection Ags
i must be an interval as well. It

maintains the coverage probability over the nominal level for any stopping time that is

arbitrarily chosen at j from {1, 2, · · · , G}. In addition, with some additional derivation,

it is easy to show that Ags
i = Ags+

i ∩ Ags−
i where the lower bound interval

Ags+
i =

G⋂
j=1

{Si,j(p) < cj(αi)} ,

and the upper bound interval

Ags−
i =

G⋂
j=1

{Si,j(p) > −cj(αi)}

are two (1 − αi/2) level one-sided confidence intervals. It is worth mentioning that in

our sequential algorithm, the one sided confidence interval estimated at the j-th group

is written as ∩jl=1{Si,l < cl(αi)} or ∩jl=1{Si,l > −cl(αi)}. For any stopping time, the

coverage probability of these intervals should exceed the nominal level. Using upper

bound interval as an example, this is because

Pr

(
G⋂
j=1

{
p∗i ∈

j⋂
l=1

{Si,l > −cl(αi)}

})
= Pr

(
p∗i ∈

G⋂
j=1

{Si,j > −cj(αi)}

)
≥ 1− αi/2.

This result also works for lower bound interval. With some abuse of notation, Ags+
i and

Ags−
i represent confidence intervals that we obtain throughout the process of permutation

tests. From now on, they are not necessarily limited to the final intervals at the end of

permutation tests. For both sets of thresholds from (4.4) and (4.5), it is easy to verify that

cj(αi) monotonically increases when αi decreases to 0. This implies that the interval Ags+
i

or Ags−
i becomes wider with a smaller αi. In the next section, we show that we need to
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frequently update these intervals because of a step-wise decision process. At each testing

group αi is adjusted by the number of confirmed rejections and acceptances. Fortunately

due to the closed-form thresholds in (4.4) and (4.5), it will only takes minimal time in

computing these intervals.

4.2.3 Step-Wise Procedure to Control Family-Wise MCER

In addition to replacing Robbins-Lai interval with the ones developed by group se-

quential methods, the Bonferroni correction in Gandy and Hahn (2014, 2016) to achieve

simultaneous coverage is actually not necessary. Alternatively we consider a step-wise

procedure to construct simultaneous confidence intervals. Two-sided simultaneous inter-

vals would be the best fit for our problem because MC error is a type of directional error.

However, the general step-wise approach to develop two-sided simultaneous intervals has

not been developed, or even possibly it does not exist. A famous counterexample was

given by Shaffer (1980) to show that step-wise decision procedure could possibly fail to

control a directional error rate. Concerning the theoretical difficulty, here we construct

two sets of (1− α/2) level one-sided simultaneous intervals. The first set provides upper

bound estimates for p∗ and the second set provides lower bound estimates. Obviously

the intersection of the two sets yields (1−α) level two-sided simultaneous intervals. This

step-wise procedure is developed with the partition principle (Finner and Strassburger,

2002; Strassburger and Bretz, 2008).

We present our methods to compute one-sided (upper bound) simultaneous intervals

×mi=1A
gs−
i = ×mi=1(0, p

u
i ), assuming that we are now at the end of the first group (j = 1) of

generating permutations. One-sided (lower bound) intervals ×mi=1A
gs+
i can be computed

analogously. In the first step, we create (1− α/2) level one-sided simultaneous intervals

×mi=1A
gs−
i for all m tests with Bonferroni correction. Each Ags−

i is computed at (1 −

α/(2m)) level, using permutations from the first group. Then standard BH is applied

on the upper limits of each Ags−
1 ,Ags−

2 , · · · ,Ags−
m . We classify a test into the rejection

category, if the corresponding upper limit is rejected by standard BH. Suppose that mr,j

is the cumulative number of rejections at the end of the j-th group. If mr,1 = 0 meaning

that none test can be rejected, the process of step-wise interval estimation under j = 1
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Initialize D̂1, D̂1, · · · , D̂m to be undecided.

Initialize I1, I2, · · · , Im to be (0, 1).

Initialize mu to be m, and mu′ to be (m+ 1).

. Permutation begins

for j in 1 : G do

while mu 6= mu′ do

mu = #{i ∈ {1, 2, · · · ,m} | D̂i = undecided}.
mr = #{i ∈ {1, 2, · · · ,m} | D̂i = rejection}.
ma = #{i ∈ {1, 2, · · · ,m} | D̂i = acceptance}.

. The sum mu +mr +ma is always m

mu′ = mu

for i in 1 : m do

if D̂i = undecided then

Find α+ = α/(m−ma).

Assign one-sided lower bound interval Ags+
i =

⋂j
l=1 {Si,l(p) < cl(α

+)} .
Find α− = α/(m−mr).

Assign one-sided upper bound interval Ags−
i =

⋂j
l=1 {Si,l(p) > −cl(α

−)} .
The two-sided group sequential interval Ii = Ags+

i ∩ Ags−
i .

end

end

Apply standard BH on the upper limits of intervals I1, I2, · · · , Im and decisions

are du1 , d
u
2 , · · · , dum.

Apply standard BH on the lower limits of intervals I1, I2, · · · , Im and decisions

are dl1, d
l
2, · · · , dlm.

for i in 1 : m do

if dui = dli = acceptance then

Update D̂i =acceptance.

end

if dui = dli = rejection then

Update D̂i =rejection.

end

end

end

end

. Permutation ends

return (D̂1, D̂1, · · · , D̂m).

Algorithm 4: Monte Carlo tests with group sequential approaches, which are our pro-

posed methods for sequential resampling-based multiple testing.
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will be terminated, and we will further estimate intervals under j = 2 after permutations

of the second group arrive. If mr,1 > 0, the simultaneous intervals can be estimated

with more than one step for j = 1. In the second step, the one-sided simultaneous

confidence intervals will be updated by a (1 − α/(2m − 2mr,1)) level interval for each

of those remaining (m − mr,1) tests that are not rejected previously. Standard BH is

applied again on the upper limits of the updated confidence intervals. For those tests

that are rejected in the first step and not estimated again in the second step, we assign

their upper limits based on the previous (first) step. If we observe at least one more

rejection except those have been counted in mr,1, we will classify them into rejection

category, and proceed to a third step. The number of rejections mr,1 will be updated at

the same time. We keep with this rule. Excluding rejected tests in earlier steps, in a new

step we only construct one-sided simultaneous confidence intervals on the remaining set

of tests using the Bonferroni correction. A next step is performed if more rejections can

be found. Otherwise we stop this step-wise process. At the time of exiting the step-wise

process for the first (j = 1) group, we move to the second (j = 2) group with initializing

mr,2 = mr,1. The step-wise procedure for j > 1 is similar to the one for j = 1. We stop

our algorithm after we reach the last group of permutations, or at an intermediate group

if all hypotheses have been classified to rejection or acceptance category. More details

can be found in Algorithm 4. The following theorem justifies the valid error rate control

of our algorithm.

Theorem 4.2. Given that both Ags+
i and Ags−

i defined in Section 4.2.2 are (1 − αi/2)

level one-sided confidence intervals, the MCTGS (Algorithm 4) controls the family-wise

MCER by α, and controls both family-wise MCER-I and family-wise MCER-II by α/2.
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4.3 Simulation Studies

4.3.1 Setup

We compared MCTGS-flat: our proposed MCTGS algorithm that implemented the

flat thresholds defined in (4.4), MCTGS-parabolic: MCTGS algorithm that imple-

mented the parabolic thresholds defined in (4.5), and GH16: the sequential resampling-

based testing methods proposed by Gandy and Hahn (2016). The GH16 method can be

adapted to our group sequential scheme. Suppose that G groups were considered in se-

quential resampling-based tests. With all methods we can decide rejection, acceptance, or

undecided after collecting every (Nmax/G) permutation samples on each hypothesis. We

considered m = 1000 tests. We chose Nmax = 100, 000 which is usually a large number

in a real setting. The number of groups, G could range from 20, 100, 500. The nominal

level of family-wise MCER α was set to 20%; the nominal FDR q was set to 10%.

Except group design, we considered the similar simulation settings in Chapter 3.

We chose the proportion of nulls π0 = 80%: mπ0 = 800 null p-values were sampled

independently from U[0, 1] distribution, and m(1 − π0) = 200 non-null p-values were

sampled independently from the Gaussian right-tailed probability model:

p∗i = 1− Φ(Zi), Zi ∼ N(β, 1), i = mπ0 + 1, mπ0 + 2, . . . , m.

The effect size β could be 1.5, 2 and 2.5. Given a fixed set of m,π0 and β for sam-

pling ideal p-values, we sampled 100 different realizations of p∗. We showed in Chapter

3 that the number of rejections based on different realizations may vary from 0 to 160.

Instead of generating I(Ti,k > Ti) in equation (1.3) through real permutations, we in-

dependently draw Bernoulli samples with success probability p∗i for i = 1, 2, · · · ,m and

k = 1, 2, · · · , Nmax.

We evaluated two types of error rates empirically at the end of sequential resampling-

based tests: the family-wise MCER and family-wise MCER-I. In addition to the error
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rates, detection sensitivity defined in Chapter 3 and the percentage of decided tests

100%− 1

m

m∑
i=1

I(D̂i = undecided),

were compared among our proposed methods and the competing methods. A higher

percentage of decided tests can also suggest that a method is more powerful in terms

of concluding rejection or acceptance decisions. Lastly, we compared the computational

cost in permutation through the following metric called

percentage of permutations =
1

m

m∑
i=1

Ni

Nmax

,

where Ni is the number of permutation samples that have been generated until the

stopping time specifically for the i-th test. If we could assume that the time complexity

of either MCTGS or GH16 is negligible compared to permutation, and treat time spent

on permutation per sample per test as a constant, this metric would represent the ratio

of actual running time between a sequential testing algorithm and the respective non-

sequential testing algorithm that we have discussed in the last chapter. Each metric was

evaluated by the average over 1,000 simulation replicates.

4.3.2 Simulation Results

We found that both empirical family-wise MCER and MCER-I were usually conser-

vative compared to the nominal level. We observed none error in most cases.

Figure 4.2 displays that our method with either flat or parabolic thresholds is more

powerful than the GH16 method in all scenarios. Adopting the flat thresholds achieves

best detection sensitivity. In most cases, those tests which were only rejected by MCTGS-

flat were undecided with other two approaches. We noticed that detection sensitivity

under β = 1.5 is usually lower than β = 2 and 2.5, which is similar to the pattern of

Figure 3.5. In addition, it seems that the choice of G does not have a strong impact

on detection sensitivity. Possibly this is because the sequential confidence intervals are

similar to the ones under a different size of groups.

From Figure 4.3, we observed that our MCTGS method significantly improves the
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number of decided tests compared to the existing method. Using the flat thresholds yields

more decided tests compared to the parabolic thresholds. Similar to the observation in

Figure 4.2, the percentage of decided tests does not vary among different choices of G.

Usually fewer than 2% of the tests cannot be decided to either rejection or acceptance

region with MCTGS-flat, as p-values of these tests are very close to the BH cutoff.

Figure 4.4 shows the computational cost in generating permutation samples. MCTGS-

parabolic usually takes the smallest number of permutations. Assuming that permutation

contributes to the majority of the overall computational cost in sequential resampling-

based tests, this further implies that MCTGS-parabolic is the most computationally

efficient algorithm among our comparison, MCTGS-flat usually costs slightly more than

the GH16 method. Possibly this type of sequential confidence interval is wider than

its alternatives when we start running our algorithm. Recall that we mentioned the

connection between thresholds (4.4) and group sequential literature. The group sequential

test developed by O’Brien and Fleming (1979) is also known to perform similarly, usually

being quite conservative at the early stages. However, as we accumulate more permutation

samples, the cost in generating permutation samples should be similar between the two

MCTGS methods.

4.4 Application to Prostate Cancer Data

We evaluated performances of the two versions of our MCTGS algorithm using the

same prostrate cancer gene expression data from Chapter 3. We first picked parameter

Nmax = 500, 000 and 1, 000, 000 based on the power results of Section 3.4. In addition, the

number of groups was set to 500. We also applied the GH16 method and the Sandve’s

MCFDR algorithm to this dataset. In terms of the Sandve’s MCFDR algorithm, the

only tuning parameter h was chosen to be 20 which is the default value suggested by

Sandve et al. (2011). This implies that permutation sampling would not be stopped

until we observe 20 permuted statistics that are larger than the observed test statistic.

The nominal FDR for all methods was set to 10%. For MCTGS-flat, MCTGS-parabolic

and the GH16 method, the nominal family-wise MCER was set to 20%. For comparison

purposes, we obtained the testing results for 10 runs.
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Figure 4.2: Detection sensitivity in all 100 different realizations using sequential resampling-
based tests. The non-null ideal p-values were simulated from the Gaussian right-tailed model
with β = 1.5, 2.0 and 2.5. The number of group was chosen from 20, 100 and 500.
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Figure 4.3: Percentage of decided tests in all 100 different realizations using sequential
resampling-based tests. The non-null ideal p-values were simulated from the Gaussian right-
tailed model with β = 1.5, 2.0 and 2.5. The number of group was chosen from 20, 100 and
500.
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Figure 4.4: Percentage of actual permutation samples generated in sequential resampling-
based tests compared to Nmax in all 100 different realizations. The non-null ideal p-values were
simulated from the Gaussian right-tailed model with β = 1.5, 2.0 and 2.5. The number of group
was chosen from 20, 100 and 500.
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Under the scenarios where Nmax = 500, 000 or Nmax = 1, 000, 000, we observed 17

tests that flipped their decisions (from rejection to acceptance or vice versa) at least once

among the 10 runs with Sandve’s MCFDR, which indicates the occurrence of MC errors.

None flipped decision was observed with the remaining three methods. In Table 4.1 and

4.2, among the list of significant DE genes and not significant genes by the two versions

of MCTGS, the chance that there exists a rejection or acceptance decision which would

not be reproduced if we run the permutation for an infinite number is less than 20% in

each experiment.

In each run, both MCTGS-flat and MCTGS-parabolic methods yield more rejection

and acceptance decisions than the GH16 method. The number of undecided tests with

MCTGS-flat is here at most half of the number with GH16 method. In addition, the

MCTGS-flat method yields a fewer number of undecided tests than MCTGS-parabolic.

Finally, MCFDR always demonstrates the lowest computational cost in permutation

sampling. However, as a trade-off, there is no promise on the precision of their decisions.

Among the two MCTGS methods and the GH16 method, the computational costs in

terms of permutation sampling are similar.

Table 4.1: The number of detected DE genes, non-DE genes, undecided genes, and the compu-
tational costs in permutation when Nmax = 500, 000 and α = 20%.

Run 1 2 3 4 5 6 7 8 9 10

MCTGS-flat
rejected 56 54 56 51 52 53 56 54 51 53
accepted 5965 5969 5964 5967 5969 5970 5968 5965 5969 5968
undecided 12 9 13 15 12 10 9 14 13 12
perm. cost 1.6% 1.5% 1.5% 1.5% 1.5% 1.6% 1.6% 1.5% 1.5% 1.5%

MCTGS-para.
rejected 48 51 54 51 50 50 51 50 50 51
accepted 5962 5967 5964 5966 5966 5966 5964 5965 5966 5963
undecided 23 15 15 16 17 17 18 18 17 19
perm. cost 1.0% 0.9% 0.9% 0.9% 1.0% 1.0% 1.0% 0.9% 0.9% 0.9%

GH16
rejected 47 47 48 49 50 47 49 48 50 49
accepted 5960 5959 5959 5961 5961 5961 5959 5960 5962 5960
undecided 26 27 26 23 22 25 25 25 21 24
permu. cost 1.2% 1.2% 1.1% 1.1% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2%

Sandve’s MCFDR
rejected 61 63 62 56 61 61 63 60 58 64
accepted 5972 5970 5971 5977 5972 5972 5970 5973 5975 5969
undecided 0 0 0 0 0 0 0 0 0 0
perm. cost 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3%
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Table 4.2: The number of detected DE genes, non-DE genes, undecided genes, and the compu-
tational costs in permutation when Nmax = 1, 000, 000 and α = 20%.

Run 1 2 3 4 5 6 7 8 9 10

MCTGS-flat
rejected 57 57 57 57 57 58 57 58 57 57
accepted 5967 5970 5971 5971 5971 5971 5971 5971 5969 5970
undecided 9 6 5 5 5 4 5 4 7 6
perm. cost 1.2% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1%

MCTGS-para.
rejected 55 56 57 57 57 56 57 57 57 56
accepted 5967 5970 5966 5971 5966 5971 5968 5968 5969 5968
undecided 11 7 10 5 10 6 8 8 7 9
perm. cost 0.7% 0.6% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7%

GH16
rejected 53 55 57 52 55 54 52 52 51 54
accepted 5962 5963 5964 5964 5965 5963 5964 5964 5964 5963
undecided 18 15 12 17 13 16 17 17 18 16
permu. cost 0.9% 0.8% 0.8% 0.8% 0.8% 0.9% 0.9% 0.8% 0.8% 0.8%

Sandve’s MCFDR
rejected 62 63 62 56 61 61 63 60 58 64
accepted 5971 5970 5971 5977 5972 5972 5970 5973 5975 5969
undecided 0 0 0 0 0 0 0 0 0 0
perm. cost 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2%

4.5 Discussion

In this work, we derived a class of sequential resampling-based multiple testing al-

gorithms. For sequential multiple testing, we are able to stop resampling in an early

stage as long as the hypothesis has been assigned a rejection or acceptance decision.

Meanwhile, our sequential procedure provides theoretical guarantee on reproducibility on

those tests that are either rejected or accepted. It can be shown to control the same

error rate, family-wise MCER, defined by Gandy and Hahn (2014, 2016). Most impor-

tantly, our methods achieve higher power at the end of permutation tests compared to

the existing methods. The improved power is related to two factors: more powerful se-

quential confidence intervals which are based on group sequential testing, as well as the

step-wise decision procedure. In terms of the concept of reproducibility, some researchers

might expect that with an algorithm which enjoys a perfect property of reproducibility,

two separate runs of the algorithm should generate the exactly same results with a high

probability, even on those undecided tests. Unfortunately, none of the existing methods

(including our methods) can provide such a strong promise with theoretical justification.

However, it should be an interesting question for future research.

Our methods can incorporate many other types of group sequential approaches. In
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addition to the standard designs of Pocock (1977) and O’Brien and Fleming (1979), more

types of designs could be generated by the so called α-spending functions (Demets and

Lan, 1994). The thresholds cj can be solved by numerical integration approaches (Genz

and Bretz, 2009), although it would take much more computational cost compared to our

current algorithms that only consider closed-form thresholds. It would be an interesting

question to find the optimal set of thresholds which can achieve best detection sensitivity

under general situations. Classic group sequential methods require specifying the number

of groups and the decision threshold for each group at the design stage (the period before

running an actual test). In our case, however, this requirement implies that we cannot

generate extra permutation samples at the end of tests even when some hypotheses still

remain undecided. In literature, solutions to such a problem are usually called adaptive

group sequential approaches (Bauer and Kohne, 1994; Lehmacher and Wassmer, 1999;

Müller and Schäfer, 2001). The sequential confidence interval based on these more flexible

alternatives was considered by Mehta et al. (2007), which we believe can be incorporated

into our methods. We are extending our framework in these promising directions.
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Chapter 5

Summary and Future Directions
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In this dissertation I proposed three novel statistical methods for multiple-hypotheses

testing. The main contribution of this dissertation is three-folded. First, we translated

complex scientific problems into well-defined multiple testing problems and clarified an

error rate we hoped to control in each problem. Second, we theoretically showed that our

proposed methods control the error rates below the desired level. Third, our proposed

methods always demonstrate higher statistical power than both existing methods and

näıve solutions to the problem.

In Chapter 2, we discussed the problem of testing associated taxa in microbiome data.

We defined a novel error rate called false assignment rate that is an intermediate surrogate

between FDR under the global null and FDR under the conjunction null. Both versions of

FDR have their own limitations and thus are not the ideal candidate for this problem. We

proposed a bottom-up decision rule and proved that under certain conditions, this rule

provides the exact control of false assignment rate. We used simulation studies and real

data application to show that our methods are more capable of identifying driver nodes

of a microbial community than those existing methods which test global null hypothesis

at each high level node. It also provides a framework for testing tree-structured multiple

hypotheses, especially when global null does not define the right scientific question. We

mentioned that the independence assumption is required for this framework. First, we

need this assumption to obtain the exact p-values of Stouffer’s Z tests at upper levels.

Liu and Xie (2019) proposed a Cauchy combination test for aggregating individual p-

values. The Cauchy combination test was shown to be robust under arbitrary dependence

structures. In preliminary studies, we observe that replacing Stouffer’s test with Cauchy

combination test achieves much better error rate control under our existing bottom-up

framework, even when there are strong pairwise correlations among leaf nodes. Second,

the step-down multiple testing procedures usually requires independence to control FDR

rigorously. Some simulation results in Gavrilov et al. (2009) suggested that empirical FDR

would be inflated under strong pairwise correlation between test statistics. Therefore,

developing a bottom-up test that can be adapted to general dependency structure is

a meaningful but challenging question. A weaker question is to control the error rate

asymptotically. It seems that bootstrap and subsampling methods (Romano et al., 2008)

could be used to account for dependency structure and control FDR in the asymptotic
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sense, although large computational complexity is still a concern.

In Chapter 3 and Chapter 4, we focused on the problem of controlling Monte Carlo

errors for multiple resampling-based testing. We showed that existing methods based

on the Bonferroni’s simultaneous confidence intervals are conservative and lack of power.

We proposed two improved alternatives in both sequential and non-sequential scenarios.

However, we observed in simulation studies that the empirical distribution of MCER is

highly skewed. For most p∗, the error rates are nearly 0, which means the methods are

still conservative. Under very sporadic cases, the error rates could be close to the nominal

level. Similar phenomena occur in many other multiple testing problems (such as testing

directions of multiple treatment effects) where the null hypotheses are not point-wise but

composite nulls. To avoid this issue, we could possibly consider the average MCER or

MCER-I as the error rate that we would like to control. In many scientific problems

(Pounds and Morris, 2003; Chung et al., 2014), we can assume the ideal p-values of

individual tests follow certain parametric distribution. When the parametric assumption

can be justified, the family-wise MCER-I could be replaced by error rate
∫
V MC-Idπ(p∗)

which is an integral of type-I MC error over π(p∗), the sampling distribution of ideal

p-values p∗. This can be viewed as a starting point towards an empirical Bayes solution.

The next step would be finding a systematic way in estimating the distribution function

of p∗. In Efron (2016), this type of estimation was called Bayesian deconvolution.

Testing multiple omnibus hypotheses can be useful in many biomedical applications.

For example, when testing association in microbiome data, it is known that one type

of association test is usually more powerful in some scenarios whereas it could be less

powerful in other scenarios. The omnibus association test which combines multiple types

of association tests into one, significantly enhances power (Koh et al., 2017; Hu and

Satten, 2017). However, the most powerful procedure is usually unknown, especially

under the scenarios we do not necessarily emphasize type-I error control on individual

tests but instead hope to control FDR on the list of discoveries. A multiple testing

procedure that directly tests multivariate statistics can be more powerful than a univariate

procedure (e.g., BH procedure) that is applied on the p-values of omnibus tests. Some

related discussions could be found in Du et al. (2014); Zhao (2015); Alishahi et al. (2016).
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Appendix A

Appendix for Chapter 2

A.1 Proof of Theorem 2.1

The following lemma is essentially the summation by parts formula and will be used

in the proof of Theorem 2.1.

Lemma A1. Suppose {a1, . . . , an} and {b1, . . . , bn} are two sets of real numbers. Then,

n∑
k=1

akbk =
n∑
k=1

(ak − ak−1)Bk,

where Bk =
∑n

i=k bi and a0 = 0.

Proof of Theorem 2.1. This proof is adapted from Gavrilov et al. (2009) with modifica-

tions for our multi-level, bottom-up procedure. Let Rl and Vl denote the number of

detection and false detection, respectively, under the modified null hypothesis at level l.

Then the false assignment proportion (FAP) is written as

FAP =

∑L
l=1 Vl

(
∑L

l=1Rl)
∨

1
≤

L∑
l=1

Vl

(
∑l

l′=1Rl′)
∨

1
=

L∑
l=1

Vl
(Dl−1 +Rl)

∨
1

=
L∑
l=1

Vl
Dl−1 + (Rl

∨
1)
.

The key step to prove Theorem 2.1 is to show that for every level l

E
[

Vl
Dl−1 + (Rl

∨
1)

∣∣∣∣Gl−1] ≤ ql, (A1)
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where Gl−1 represents detection events below level l. The inequality (A1) does not guar-

antee the control of FAR at each level l because of the cumulative effect of Dl−1, which

establishes a dependence between the nodes detected at different levels. However, it leads

to the control of overall FAR at q:

FAR = E(FAP) ≤
L∑
l=1

E
{
E
[

Vl
Dl−1 + (Rl

∨
1)

∣∣∣∣Gl−1]} ≤ L∑
l=1

ql = q.

To prove (A1), we omit the level index l for simplicity of exposition. Thus we redefine

the lth-level p-values to be p1, . . . , pn∗ , ordered p-values p(1) ≤ · · · ≤ p(n∗), and thresholds

defined in (2.1) α1 ≤ · · · ≤ αn∗ . We useD−1 forDl−1. We also omit Gl−1 by acknowledging

that the ensuing arguments are always conditional on the detection events below level

l. Further, we denote the set
{
p(1) ≤ α1, . . . , p(k) ≤ αk

}
by Ak (k = 1, . . . , n∗), which

represents the case that the first k ordered p-values are each below the first k thresholds.

To start, we use the definitions of Vl and Rl and rewrite the left hand side of (A1) to

be ∑
j∈H0

n∗∑
k=1

E

[
I
(
Ak, p(k+1) > αk+1, pj ≤ αk

)
D−1 + k

]
, (A2)

where H0 denotes the set of modified null hypotheses at level l. Then, we replace the

expectation by double expectations that first conditions on pj and apply Lemma A1

with ak = I (pj ≤ αk) /(D−1 + k), bk = Pr
(
Ak, p(k+1) > αk+1

∣∣pj), and n = n∗; note that

bn∗ = Pr
(
An∗

∣∣pj). Thus, (A2) becomes

∑
j∈H0

n∗∑
k=1

E
{

Pr
(
Ak
∣∣pj)× [I (pj ≤ αk)

D−1 + k
− I (pj ≤ αk−1)

D−1 + k − 1

]}
,

which can be reorganized as

∑
j∈H0

n∗∑
k=1

[
Pr (Ak, αk−1 < pj ≤ αk)

D−1 + k
− Pr (Ak, pj ≤ αk−1)

(D−1 + k)(D−1 + k − 1)

]
. (A3)

Let p
(−j)
(1) ≤ · · · ≤ p

(−j)
(n∗−1) be the ordered p-values after excluding pj. We denote the set{

p
(−j)
(1) ≤ α1, . . . , p

(−j)
(k−1) ≤ αk−1

}
by B(−j)

k−1 , which represents the case that the first (k− 1)

ordered p-values after excluding pj are each below the first (k − 1) thresholds. We note
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two facts that relate Ak and B(−j)
k−1 . First, Ak and {αk−1 < pj} together imply that pj

cannot be among the first (k − 1) smallest p-values and thus the first (k − 1) ordered

p-values before and after excluding pj remain the same set. In addition, for any j ∈

{(k), . . . , (n∗)}, {pj ≤ αk} implies
{
p(k) ≤ αk

}
. Thus we have Pr (Ak, αk−1 < pj ≤ αk) =

Pr
(
B(−j)
k−1 , αk−1 < pj ≤ αk

)
. Second, B(−j)

k−1 is a subset of Ak when pj ≤ αk−1, which yields

Pr (Ak, pj ≤ αk−1) ≥ Pr
(
B(−j)
k−1 , pj ≤ αk−1

)
. By the two facts, we see that expression (A3)

is less than

∑
j∈H0

n∗∑
k=1

Pr
(
B(−j)
k−1 , αk−1 < pj ≤ αk

)
D−1 + k

−
Pr
(
B(−j)
k−1 , pj ≤ αk−1

)
(D−1 + k)(D−1 + k − 1)

 ,
which, by the independence assumption between pj and all other p-values given Gl−1,

becomes ∑
j∈H0

n∗∑
k=1

Pr
(
B(−j)
k−1

)
×
[

Pr (pj ≤ αk)

D−1 + k
− Pr (pj ≤ αk−1)

D−1 + k − 1

]
.

Applying Lemma A1 with ak = Pr (pj ≤ αk) /(D−1 + k) and bk = Pr
(
B(−j)
k−1 , p

(−j)
(k) > αk

)
,

the foregoing expression reduces to

∑
j∈H0

n∗∑
k=1

Pr
(
B(−j)
k−1 , p

(−j)
(k) > αk

)
× Pr (pj ≤ αk)

D−1 + k
. (A4)

Now we find (A4) to be an upper bound for (A2).

By the uniform distribution of pj for j ∈ H0 and the definition of the thresholds

{αk}, we have Pr (j ≤ αk) /(D−1 + k) = αk/(D−1 + k) ≤ ql(1 − αk)/(n
∗ + 1 − k) =

ql Pr (pj > αk) /(n
∗ + 1 − k). In addition, replacing

∑
j∈H0

by
∑n∗

j=1 in (A4) yields an

upper bound for (A4):

ql

n∗∑
k=1

(n∗ + 1− k)−1
n∗∑
j=1

Pr
(
B(−j)
k−1 , p

(−j)
(k) > αk, pj > αk

)
.

We see that B(−j)
k−1 and {pj > αk} imply that pj is not among the top (k − 1) smallest p-

values. For either j = (k) or j ∈ {(k+1), . . . , (n∗)}, we infer from p
(−j)
(k) > αk and pj > αk

that p(k) > αk. Therefore, Pr
(
B(−j)
k−1 , p

(−j)
(k) > αk, pj > αk

)
= Pr

(
Ak−1, p(k) > αk

)
for

j ∈ {(k), . . . , (n∗)} and 0 for j ∈ {(1), . . . , (k− 1)}, which simplifies the above expression
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to

ql

n∗∑
k=1

Pr
(
Ak−1, p(k) > αk

)
= ql [1− Pr (An∗)] ≤ ql.

We complete the proof of (A1).

A.2 Proof of Theorem 2.2

We first find the mathematical form for weight ωj (after omiting the level index l

from the original notation ωl,j) for node j at level l. Recall that the p-value at node

j is denoted by pj. Let T1, T2, . . . , Tt represent all subtrees that contain node j. For

example, the node N1,1 in Figure 2.1(a) is contained in subtrees rooted at N2,1, N3,1 and

N4,1, which are denoted by T1, T2 and T3, respectively. Let p
(−j)
Ts

be the set of p-values

of all level-l nodes that are contained in subtree Ts excluding node j. First, each weight

ωj always starts with 1 indicating the node itself. Then for each subtree Ts, if pj is the

(only) maximum p-value, i.e., pj > p
(−j)
Ts

, rejecting node j will entail the root node of that

subtree to also be rejected and thus add 1 indicating that root node to ωj. Therefore, we

can write ωj as summation of a series of indicator functions:

ωj = 1 +
t∑

s=1

I
(
pj > p

(−j)
Ts

)
. (A5)

Note that ωj is dependent on p-values at level l and thus considered to be random (even

given the detection events below level l).

Lemma A2 states a property of ωj, which will be useful in the proof of Theorem 2.2.

Lemma A2. Suppose node j has weight ωj as defined in (A5). Assume that node j

is under the null hypothesis and so its p-value pj follows the uniform distribution. Also

assume that pj is independent of all other p-values at level l. Let B(−j) denote the case

that all other p-values excluding pj belong to a Borel set. For any α ∈ (0, 1), we have

E
[
ωjI
(
B(−j), pj ≤ α

)]
≤ α

1− α
E
[
ωjI
(
B(−j), pj > α

)]
.

Proof of Lemma A2. Assume that there is no tie in p-values. By the independence

assumption of pj and the other p-values and the uniform distribution of pj, we have
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E
[
I
(
B(−j), pj ≤ α

)]
/α = Pr

(
B(−j)) = E

[
I
(
B(−j), pj > α

)]
/(1 − α). Due to the linear-

ity of ωj, it then suffices to show for any subtree Ts that

E
[
I
(
B(−j), pj > p

(−j)
Ts

, pj ≤ α
)]

Pr (pj ≤ α)
≤

E
[
I
(
B(−j), pj > p

(−j)
Ts

, pj > α
)]

Pr (pj > α)
. (A6)

By the mean value theorem, there exist p∗j and p∗∗j , where 0 < p∗j < α < p∗∗j < 1, such

that the left hand side of (A6) becomes

∫ α

0

Pr
(
B(−j), pj > p

(−j)
Ts

∣∣ pj) dF (pj)
/∫ α

0

1dF (pj) = Pr
(
B(−j), p∗j > p

(−j)
Ts

)
and the right hand side becomes

∫ 1

α

Pr
(
B(−j), pj > p

(−j)
Ts

∣∣ pj) dF (pj)
/∫ 1

α

1dF (pj) = Pr
(
B(−j), p∗∗j > p

(−j)
Ts

)
.

The fact that p∗j ≤ p∗∗j gives us (A6).

Proof of Theorem 2.2. We introduce some new notation related to the weights ω1 . . . , ωn∗

for level-l nodes. We denote the relative ordering of p-values p1, . . . , pn∗ by O. The

weights defined in (A5) are thus uniquely determined given the detection events at lower

levels Gl−1 as well as the ordering O. Let ω[j] be the weight corresponding to the j-th

smallest p-value p(j) and Ck =
∑k

j=1 ω[j] for k = 1, . . . , n∗. Thus, Ck is also deterministic

given {Gl−1,O}. Let ω(1) ≤ ω(2) ≤ · · · ≤ ω(n∗) denote the sorted weights by their own

values; note that ω(j) is often different from ω[j]. As illustrated in Section 2.1.4, ω(j)

is deterministic given Gl−1 only under Condition (C1), regardless of the ordering of p-

values. Denote ck =
∑k

j=1 ω(j) and ck =
∑n∗

j=k ω(j). Hence, ck ≤ Ck, ck ≥ Cn∗−k+1, and

the threshold αk satisfies

αk
1− αk

≤
D−1 +

∑k
j=1 ω(j)∑n∗

j=k ω(j)

ql =
D−1 + ck

ck
ql. (A7)

Like the proof of Theorem 2.1, the key step is to show that for every level l

E
[

Vl
Dl−1 + (Rl

∨
1)

∣∣∣∣Gl−1] ≤ ql. (A8)
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Again, we omit the index l and the condition Gl−1 and denote the set
{
p(1) ≤ α1, . . . , p(k) ≤ αk

}
by Ak. The left hand side of (A8) can be rewritten as

∑
j∈H0

n∗∑
k=1

E

[
ωjI
(
Ak, p(k+1) > αk+1, pj ≤ αk

)
D−1 + Ck

]
,

where Ck by definition counts the number of all rejections that are entailed by rejecting

the k-th smallest p-value. Replacing the expectation by double expectations that first

conditions on O yields

∑
j∈H0

n∗∑
k=1

EO

{
ωjE

[
I
(
Ak, p(k+1) > αk+1, pj ≤ αk

)
D−1 + Ck

∣∣∣∣O
]}

, (A9)

where Ck becomes a constant given O.

Once we condition on the order O and the weights {wj} become constants, similar

arguments used in steps between expressions (A2) and (A4) in proof of Theorem 2.1 can

also be used to obtain an upper bound for (A9):

∑
j∈H0

n∗∑
k=1

EO

ωjE
I
(
B(−j)
k−1 , p

(−j)
(k) > αk, pj ≤ αk

)
D−1 + Ck

∣∣∣∣∣O
 . (A10)

Next, we combine the double expectations in (A10) into one and use ck ≤ Ck to find that

(A10) is less than

∑
j∈H0

n∗∑
k=1

(D−1 + ck)
−1 E

[
ωjI
(
B(−j)
k−1 , p

(−j)
(k) > αk, pj ≤ αk

)]
. (A11)

Now the weight ωj is considered random again. According to Lemma A2 with B(−j) ={
B(−j)
k−1 , p

(−j)
(k) > αk

}
, α = αk, and a null p-value pj, we obtain

E
[
ωjI
(
B(−j)
k−1 , p

(−j)
(k) > αk, pj ≤ αk

)]
≤ αk

1− αk
E
[
ωjI
(
B(−j)
k−1 , p

(−j)
(k) > αk, pj > αk

)]
.

Using (A7) and replacing
∑

j∈H0
by
∑n∗

j=1, we see (A11) is less than

ql

n∗∑
k=1

(ck)
−1 E

[
n∗∑
j=1

ωjI
(
B(−j)
k−1 , p

(−j)
(k) > αk, pj > αk

)]
.
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By the same arguments as in proof of Theorem 2.1, I
(
B(−j)
k−1 , p

(−j)
(k) > αk, pj > αk

)
=

I
(
Ak−1, p(k) > αk

)
for j ∈ {(k), . . . , (n∗)} and 0 for j ∈ {(1), . . . , (k− 1)}. Therefore, the

above expression simplifies to

ql

n∗∑
k=1

(ck)
−1 E

[
skI
(
Ak−1, p(k) > αk

)]
≤ ql

n∗∑
k=1

Pr
(
Ak−1, p(k) > αk

)
= ql [1− Pr (An∗)] ≤ ql.

We complete the proof of (A8).

A.3 Least Favorable Weights

We obtain ω̃ = (ω̃l,(1), · · · , ω̃l,(n∗l )) in a recursive manner. Recall that a weight ωl,j

counts the number of nodes that are simultaneously rejected if node j is rejected, which

includes node j and some of its ancestors. Let ω̃(l+h) (h = 0, 1, 2, . . .) denote the least

favorable set of weights against any possible set of weights ω(l+h) when nodes between

level l and level (l+ h) (including levels l and l+ h) are counted. Trivially, ω̃(l) = ω(l) =

(1, . . . , 1) with 1 for every node when only nodes at level l are counted, and this serves as

the starting point of the recursive algorithm. At the root node level, denoted by (l+h∗),

ω̃(l+h∗) is the least favorable set of weights ω̃ that we wish to obtain, and is the end point

of the algorithm. We find that ω̃(l+h) can be derived from ω̃(l+h−1) by traversing over

every node at level l + h, locating the subset of elements in ω̃(l+h−1) that correspond to

the level-l descendants of that node, and adding 1 to the largest element of that subset;

if there exist multiple largest elements, randomly pick one and add 1. For example, to

calculate least favorable weights for the bottom level of the tree in Figure 2.1(b), we

obtain ω̃(l) = (1, 1, 1, 1, 1, 1), ω̃(l+1) = (1, 2, 1, 1, 1, 2), and ω̃(l+2) = (1, 2, 1, 1, 1, 3), and

ultimately the sorted version ω̃ = (1, 1, 1, 1, 2, 3). Note that we ordered the individual

weights in intermediate ω̃(l+h) by the physical position of the bottom-level nodes in the

displayed tree, and only sort the weights in the last step. This procedure guarantees that

every ω̃(l+h) (h = 0, 1, . . . , h∗) is the least favorable against any arbitrary ω(l+h) in which

the count 1 is added to one element other than the largest one for at least one subset. It

also ensures the uniqueness of sorted ω̃, which leads to a unique set of thresholds. Finally,

the least favorable weights ω̃ corresponds to the ordering of p-values that is equal to the

ordering of depths at level-l nodes, e.g., the node with the largest p-value is the node
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with the largest depth.

A.4 Proof of Theorem 2.3

Proof of Theorem 2.3. Let ω̃(1) ≤ ω̃(2) ≤ · · · ≤ ω̃(n∗) denote sorted least favorable weights

after omitting the level index l. Denote c̃k =
∑k

j=1 ω̃(j) and c̃k =
∑n∗

j=k ω̃(j). The same

arguments in the proof of Theorem 2.2 can be used except that we use c̃k in place of ck,

c̃k in place of ck, and the thresholds (2.5) in place of thresholds (2.4).

A.5 Proof of Theorem 2.4

Proof of Theorem 4. The OTU-level testing in the two-stage procedure is exactly the

same as the OTU-level testing in the one-stage procedure, so we immediately have

FARotu ≤ q1. Then we rewrite the FAP among all taxa (inner) levels as

FAPtaxa =

∑L
l=2 Vl

(
∑L

l=2Rl)
∨

1
≤

L∑
l=2

Vl

(
∑l

l′=2Rl′)
∨

1
=

L∑
l=2

Vl

(D†l−1 +Rl)
∨

1
=

L∑
l=2

Vl

D†l−1 + (Rl

∨
1)
.

We note that D†l−1 is deterministic conditioning on the detection events at lower levels,

denoted by G†l−1, which excludes the OTU level. Then we follow the same steps in the

proofs of Theorems 2.2 and 2.3, replacing Dl−1 by D†l−1 and Gl−1 by G†l−1 to obtain

E
[
Vl/
{
D†l−1 + (Rl

∨
1)
} ∣∣∣G†l−1] ≤ ql for l = 2, . . . , L. Finally,

FARtaxa = E (FAPtaxa) ≤
L∑
l=2

E

{
E

[
Vl

D†l−1 + (Rl

∨
1)

∣∣∣∣G†l−1
]}
≤

L∑
l=2

ql = q−1,

which implies that FAR among all taxa levels are controlled by q−1. Indeed, this is the

same as applying the one-stage testing at FAR q−1 to the subtree after removing the whole

OTU level and the higher-level taxa that are detected because all of their corresponding

OTUs are detected.
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Supplementary Materials for Simulations and Real Data
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Figure A.1: Density functions of p-values generated from the Beta distribution Beta(1/r, 1)
(upper panel) and the Gaussian-tailed model (lower panel). The two plots in each column have
comparable “height” at around zero but the upper ones always have heavier right tails.
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Figure A.2: Empirical distributions of p-values for OTUs in class Clostridia and family Pre-
votellaceae in the IBD data. These two taxa were detected to be driver taxa by the weighted
bottom-up test and contain the most OTUs.
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Figure A.3: Error rates for testing all nodes in the tree. The non-null p-values at leaf nodes
were simulated from the Gaussian-tailed model.
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Figure A.4: Accuracy (weighted Jaccard similarity) for detecting all associated nodes (including
the driver nodes and all of their descendants at all levels). The non-null p-values at leaf nodes
were simulated from the Gaussian-tailed model.
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Figure A.5: Percentage of driver nodes that were pinpointed. The non-null p-values at leaf
nodes were simulated from the Gaussian-tailed model.
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Appendix B

Appendix for Chapter 3

B.1 The Comparison between Robbins-Lai Interval and Wilson Interval

We chose ideal p-values p∗ ranging from 0 to 0.2. Large p-values were not shown here

because usually they are not recognized by BH as significant ones. We considered n =

100, 000 permutations. We implemented (1−α) level two-sided Wilson confidence interval

and (1− α) level two-sided Robbins-Lai interval at the time of ending all permutations.

For each p∗, we calculated the expected upper limits of both confidence intervals with

1,000 simulations, and then found the ratio of two expected values.

In Figure B.1, the ratio of two expected upper limits is always above 1, which means

that Wilson confidence interval always has a shorter expected upper limit than the

Robbins-Lai interval. When p∗ is approaching 0, the difference of length between two

intervals are more significant. For large p∗, the upper limits of two intervals seem similar.

B.2 Splitting the Error Rate in the Two-Step Approach

We repeated the simulation studies with different ways of allocating error rates in the two

steps. In this example, the total error rates is 10%. We considered 5 different plans to

assign error rates separately to each step. First, the ‘1+9’ plan means that the nominal

error rates assigned to the first step = 1% and the nominal error rates assigned to the

second step = 9%. Followed by this rule, we can similarly define other four plans, namely

‘3+7’, ‘5+5’, ‘7+3’ and ‘9+1’ plans. Obviously, our default choice of error rates split is

the same as this ‘5+5’ plan.
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Figure B.1: The ratio of expected upper limits of two-sided Robbins-Lai and Wilson interval
for p∗ ∈ (0, 0.2). We considered 99% level two-sided confidence interval in the left panel and
95% interval in the right panel.
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Figure B.2: The detection sensitivity under different splitting of the error rate between the two
steps. The non-null ideal p-values were simulated from the Gaussian right-tailed model with
m = 1000, β = 1.5.

Simulation results can be found in Figure B.2 and B.3. Apparently either ‘1+9’ or

‘9+1’ plan usually shows the lowest power. We see that there is more variation in power

with all different allocation plans, if the number of permutations is relatively small. Under

that scenario, our default choice, ‘5+5’ shows the best power. However, when the number

of replicates increases, all five allocation plans give quite similar power. As mentioned in

previous sections, we would recommend to use the ‘5+5’ plan in most cases.
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Figure B.3: The detection sensitivity under different splitting of the error rate between the two
steps. The non-null ideal p-values were simulated from the Gaussian right-tailed model with
m = 1000, β = 2.0.
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tailed model with π0 = 0.8. From left to right, effect size β = 1.5, 2.0, 2.5. (b) The empirical
distribution of number of rejected hypotheses in the first set of simulations, given 1,000 ideal
p-values simulated from the Gaussian right-tailed model.
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B.4 The Extension of Two-Step Algorithm That Controls Family-Wise Type-

II MCER

Algorithm 4 The two-step approach for controlling type-II MCER

Input: the matrix I, nominal FDR rate q, nominal family-wise MCER-I α

Step 1: Constructing the (1− β) level confidence interval [0, τu] for τ∗.

(1.1) For each b ∈ (1, 2, . . . , B), generate a bootstrap sample (X
(b)
1 , X

(b)
2 , . . . , X

(b)
m ) based on I(b).

(1.2) Find c(b) to be the smallest c that satisfies mint∈[0,q]

{
F

(b)
c (t)− F̂ (t)

}
≥ 0, where the shrinkage

estimator pc,i = Xi−c
√
Xi+1

n−c
√
Xi+1

and F
(b)
c is now the empirical distribution function of

X
(b)
i −c

√
X

(b)
i +1

n−c
√
X

(b)
i +1

.

(1.3) Find cu as the (1− β) quantile of (c(1), c(2), . . . , c(B)).

(1.4) Find τu by applying the BH procedure on shrinkage estimators indexed by cu.

Step 2: Testing multiple hypotheses H̃i,0 : p∗i ≤ τu versus H̃i,1 : p∗i > τu given τu.

(2.1) If
X(i)−nτu√
τu(1−τu)

≥ −
√

2n log(log(n)), assign p̃(i) = τu. Otherwise p̃(i) =
X(i)

n . For i = m, (m −

1), . . . , 1, if
∑i
i′=1 Pr

{
Bin[n, p̃(i′)] ≥ X(i)

}
≤ α−β, reject H̃(i),0, update i = i−1, and rerun (2.1);

otherwise, accept all remaining H̃i,0 and stop.

(2.2) If i < 1 then stop.

(2.3) Whenever H̃i,0 is rejected, Hi,0 is accepted.

Output: a list of accepted hypotheses by standard BH.

We evaluated its performance in the context of type-II MC error control using an

almost identical simulation setup in Section 3.3, except that the number of permutation

samples was here chosen from 2500, 5000 and 10000. In addition, we considered two

competing methods. First, we slightly modified the GH-fixed method to fit this problem.

It only differs from the version of Section 3.3.1 in that here we need the simultaneous

lower bound intervals instead of upper bound intervals. We apply the standard BH on

these lower limits, obtain the acceptance set A0 and decide the hypotheses in A0 to
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be accepted. Second, we considered a variant of the proposed method in Chapter 4

which adopts the step-wise decision procedure. However, we no longer need sequential

confidence intervals because in this problem the number of permutation samples is fixed.

We call this method MCTGS-fixed. To be more specific, in the first step of this method,

we construct one-sided simultaneous lower bound confidence intervals on all hypotheses

with the Bonferroni correction. By applying BH, we accept those hypotheses whose

corresponding upper limits of intervals are accepted by BH. In the k-th step, we only

construct one-sided simultaneous lower bound intervals on the set of hypotheses that

have not been accepted before. Using the updated confidence intervals, we similarly

conclude hypotheses to be accepted. If there exists a hypothesis that is accepted in the

k-th step but not in the (k − 1)-th step, we continue to the (k + 1)-th step; otherwise

we terminate the entire step-wise procedure. In the final output, a hypothesis is claimed

to be accepted if it is accepted in at least one step of running this algorithm. For both

competing methods, all simultaneous confidence intervals are Wilson intervals. Similar to

the notion of detection sensitivity in Section 3.1.1, we considered non-detection sensitivity

NS =

∑m
i=1 I(D̂i = acceptance, D∗i = acceptance)

1 ∨
∑m

i=1 I(D∗i = acceptance)
.

It represents the average proportion of “ground truth” accepted hypotheses that are found

by each method.

The results of non-detection sensitivity with all three methods are shown in Figure

B.5. The two-step method achieved the highest non-detection sensitivity in all 9 scenarios,

while GH-fixed was always the least powerful method among the three. For the two-

step and MCTGS-fixed methods, we also assessed the enhancement of non-detection

sensitivity compared to GH-fixed (i.e., (NS/NS0 − 1) × 100% where NS0 is the non-

detection sensitivity with GH-fixed). Results are shown in Figure B.6.

It is worthy noting that we can combine both Algorithm 3 and Algorithm 4 to control

the family-wise MCER by 2α. Then a test will be assigned a rejection decision only if

the output of Algorithm 3 indicates rejection; and will be assigned an acceptance decision

only if the output of Algorithm 4 indicates acceptance. All remaining tests (if any) are

labeled with undecided.
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Figure B.5: The non-detection sensitivity in all 100 different realizations. The non-null ideal
p-values were simulated from the Gaussian right-tailed model with m = 1000, β = 1.5, 2 and
2.5.
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Figure B.6: The percentage of change in non-detection sensitivity compared to the GH-fixed
method in all 100 different realizations. The non-null ideal p-values were simulated from the
Gaussian right-tailed model with m = 1000, β = 1.5, 2 and 2.5.
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Appendix C

Appendix for Chapter 4

C.1 Proof of Theorem 4.1

Proof of Theorem 4.1. We need to show that for any j, {|Si,j(p)| < z} is always an

interval. let z = Φ−1(1− αi/4) Then |Si,j(p)| < z is equivalent to

f(p) =

(
j∑
l=1

Zi,l − (j ×Nmax/G)p

)2

− z2Nmaxp(1− p) < 0.

It is easy to see that f(p) is a quadratic polynomial of p and equation f(p) = 0 has

at most two distinct roots. Consider p0 = (
∑j

l=1 Zi,l)/(j × Nmax/G). First because

0 ≤
∑j

l=1 Zi,l ≤ j × Nmax/G, 0 ≤ p0 ≤ 1. The only occasion where p0 = 1 is that

Zi,l = Nmax/G for every l = 1, 2, · · · , j. The only occasion where p0 = 0 is that Zi,l = 0

for every l = 1, 2, · · · , j. Excluding these two scenarios, 0 < p0 < 1 and

f(p0) = 0− z2Nmaxp0(1− p0) < 0.

At the same time, f(0) = (
∑j

l=1 Zi,l)
2 > 0 and f(1) = (

∑j
l=1 Zi,l − (j ×Nmax/G))2 > 0.

This further implies that there exist two distinct roots 0 < p1 < p2 < 1 such that

f(p)



> 0, p ∈ [0, p1) ∪ (p2, 1]

= 0, p = p1 or p = p2

< 0, p ∈ (p1, p2)
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Hence we know that the interval {|Si,j(p)| < z} can be written as (p1, p2). We also see that

{Si,j(p) < Φ−1(1− αi/4)} can be written as (p1, 1) and that {Si,j(p) > −Φ−1(1− αi/4)}

can be written as (0, p2). Next, when p0 = 1,

f(p) = (j ×Nmax/Gp)
2 − z2Nmaxp(1− p) = p

(
(j ×Nmax/G)2p− z2Nmax(1− p)

)
= ((j ×Nmax/G)2 + z2Nmax)p

(
p− z2Nmax

(j ×Nmax/G)2 + z2Nmax

)
.

The interval {|Si,j(p)| < z} can be now written as (0, z2Nmax/((j×Nmax/G)2+z2Nmax) ⊂

(0, 1). This happens to be the same interval for acceptance region inversion {Si,j(p) >

−Φ−1(1−αi/4)}. The other one-sided interval is (0, 1). Similarly we can show the result

under p0 = 1.

C.2 Proof of Theorem 4.2

Before proving the main results in Theorem 4.2, we first establish a connection between

Algorithm 2 and a version using fixed number of replicates (Algorithm 5). Assume the

final set of decisions based on algorithm 4 and 5 are D(2) = (D
(2)
1 , D

(2)
2 , · · · , D(2)

m ) and

D(3) = (D
(3)
1 , D

(3)
2 , · · · , D(3)

m ) respectively. It is easy to see that D
(2)
i = acceptance implies

D
(3)
i = acceptance and D

(2)
i = rejection implies D

(3)
i = rejection, because the ons-sided

(lower bound) sequential confidence at the end of group j

j⋂
l=1

{Si,l(p) < cl(αi)} ⊃
G⋂
l=1

{Si,l(p) < cl(αi)},

and similarly the other (upper bound) sequential interval

j⋂
l=1

{Si,l(p) > −cl(αi)} ⊃
G⋂
l=1

{Si,l(p) > −cl(αi)}.

In other words, the rejection and acceptance decisions with Algorithm 4 must be a subset

of the rejection and acceptance decisions with Algorithm 5. Hence we only need to show

the family-wise MCER with Algorithm 5 is controlled by α.

Proof of Theorem 4.2. Recall that the definition of family-wise MCER = Pr(V ME ≥ 1),



112

Initialize D̂1, D̂1, · · · , D̂m to be undecided.

Initialize I1, I2, · · · , Im to be (0, 1).

Initialize mu to be m, and mu′ to be (m+ 1).

. Resampling begins

while mu 6= mu′ do

mu = #{i ∈ {1, 2, · · · ,m} | D̂i = undecided}.
mr = #{i ∈ {1, 2, · · · ,m} | D̂i = rejection}.
ma = #{i ∈ {1, 2, · · · ,m} | D̂i = acceptance}.

. The sum mu +mr +ma is always m

mu′ = mu

for i in 1 : m do

if D̂i = undecided then

Find α+ = α/(m−ma).

Assign one-sided group sequential interval Ags+
i =

⋂G
j=1 {Si,j(p) < cj(α

+)} .
Find α− = α/(m−mr).

Assign one-sided group sequential interval Ags−
i =

⋂G
j=1{Si,j(p) > −cj(α−)}.

The two-sided group sequential interval Ii = Ags+
i ∩ Ags−

i .

end

end

Apply standard BH on the upper limits of intervals I1, I2, · · · , Im and decisions are

du1 , d
u
2 , · · · , dum.

Apply standard BH on the lower limits of intervals I1, I2, · · · , Im and decisions are

dl1, d
l
2, · · · , dlm.

for i in 1 : m do

if dui = dli = acceptance then

Update D̂i =acceptance.

end

if dui = dli = rejection then

Update D̂i =rejection.

end

end

end

. Resampling ends

return (D̂1, D̂1, · · · , D̂m).

Algorithm 5: The MC tests with fixed number of replicates and group sequential intervals
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where

V MC =
m∑
i=1

{
I(D̂i = rejection, D∗i = acceptance) + I(D̂i = acceptance, D∗i = rejection)

}
.

=
m∑
i=1

I(D̂i = rejection, D∗i = acceptance) +
m∑
i=1

I(D̂i = acceptance, D∗i = rejection)

= V MC-I + V MC-II.

This implies that {V MC ≥ 1} ⊂ {V MC-I ≥ 1} ∪ {V MC-II ≥ 1} and Pr(V MC ≥ 1) ≤

Pr(V MC-I ≥ 1) + Pr(V MC-II ≥ 1). The first term Pr(V MC-I ≥ 1) is exactly family-wise

MCER-I. If we can show the Algorithm 5 controls Pr(V MC-I ≥ 1) and Pr(V MC-II ≥ 1) by

α/2 respectively, we prove the desired results.

Now we show the family-wise MCER-I, Pr(V MC-I ≥ 1) is bounded by α/2. The

other inequality can be proved with the same technique. For the i-th test, the null

hypothesis is H>
i : p∗i in BH’s acceptance region and the alternative hypothesis is H≤i : p∗i

in BH’s rejection region. The key of this proof is using the partition principle (Finner

and Strassburger, 2002; Strassburger and Bretz, 2008) to create the one-sided (upper

bound) compatible simultaneous confidence intervals for ideal p-values. We define such

a partition of all possible ideal p-values P on the space [0, 1]m:

P =

{
PI

∣∣∣∣PI = {i ∈ I , p∗i accepted by BH , i ∈ {1, 2, · · · ,m}/I , p∗i rejected by BH }
}
.

Basically each element PI corresponds to a region in [0, 1]m. In this region, p-values with

indices in I ⊂ {1, 2, · · · ,m} are rejected by BH . Remaining p-values are accepted. Due

to the uniqueness of decisions by BH, for two different I1 and I2 we have PI1 ∩PI2 = ∅.

Therefore the partition P satisfies the disjoint assumption of the partition principle in

Finner and Strassburger (2002). The compatible confidence intervals of p∗ can be written

as

C =
⋃
I

{
PI

⋂
i∈I

{p∗i ∈ A
gs−
i (1− α

2|I |
)}
⋂
i 6∈I

{p∗i ∈ [0, 1]}

}
. (C1)

Here we slightly modify the notation ofAgs−
i , the sequential confidence intervals at the last
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Figure C.1: An illustrative example (m = 2) of using partition principle for constructing
simultaneous confidence intervals for (p∗1, p

∗
2) that are compatible with the decisions of standard

BH procedure. The highlighted regions by different colors represent the local simultaneous
confidence intervals within different regions from I to IV. In region I, both p∗1 and p∗2 should
rejected by BH. In region II (IV), only p∗1 (p∗2) should be rejected. In region III, none can
be rejected. The union of all local intervals will be the proposed simultaneous upper bound
intervals. The shape may vary a lot, depending on different combination of (p̂1, p̂2).

group. Inside the parenthesis indicates the confidence level. Basically given the indices

I for acceptance, set
⋂
i 6∈I {p∗i ∈ A

gs−
i (1− α

2|I |)} represents the simultaneous confidence

intervals using the Bonferroni correction for those ideal p-values in the acceptance (null)

region. Based on partition principle, we know that the coverage probability exceeds

(1− α/2), or in other words Pr(p∗ ∈ C ) ≥ 1− α/2. We claim a test to be rejected, only

if by the BH rule every element within C rejects at this test. This approach must control

family-wise MCER-I by α.

The final step is then to show that the union of rejections using Algorithm 5 is a

subset of the rejections that are decided based on compatible confidence intervals C . If

this claim is not true, there must be an index i† such that D̂i† = rejection using Algorithm

3, but there exists an I such that i† ∈ I and

PI

⋂
i∈I

{p∗i ∈ A
gs−
i (1− α

2|I |
)} 6= ∅. (C2)

The indices of all p∗i in the acceptance region are denoted by I ∗. It can be shown

that |I | ≤ |I ∗|, otherwise the LHS in (C2) must be an empty set. However, when

|I | ≤ |I ∗|, we know that Ags−
i†

(1 − α
2|I |) ⊂ A

gs−
i†

(1 − α
2|I ∗|). Because D̂i† = rejection,

then both on-sided intervals must be in the rejection region of BH. This contradicts with

the fact that i† is an index of the acceptance region.
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