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Abstract

Centrality and Communicability Measures in Complex Networks: Analysis and
Algorithms

By Christine Klymko

Complex systems are ubiquitous throughout the world, both in nature and within
man-made structures. Over the past decade, large amounts of network data have be-
come available and, correspondingly, the analysis of complex networks has become
increasingly important. One of the fundamental questions in this analysis is to deter-
mine the “most important” elements in a given network. Measures of node importance
are usually referred to as node centrality and measures of how well two nodes are able
to communicate with each other are referred to as the communicability between pairs
of nodes. Many measures of node centrality and communicability have been proposed
over the years. Here, we focus on the analysis and computation of centrality and com-
municability measures based on matrix functions.

First, we examine a node centrality measure based on the notion of total communi-

cability, defined in terms of the row sums of the exponential of the adjacency matrix of
the network. We argue that this is a natural metric for ranking nodes in a network, and
we point out that it can be computed very rapidly even in the case of large networks.
Furthermore, we propose a measure of the total network communicability, based on the
total sum of node communicabilities, as a useful measure of the connectivity of the
network as a whole.

Next, we compare various parameterized centrality rankings based on the matrix
exponential and matrix resolvent with degree and eigenvector centrality. The central-
ity measures we consider are exponential and resolvent subgraph centrality (defined in
terms of the diagonal entries of the matrix exponential and matrix resolvent, respec-
tively), total communicability, and Katz centrality (defined in terms of the row sums
of the matrix resolvent). We demonstrate an analytical relationship between these
rankings and the degree and subgraph centrality rankings which helps to explain the
observed robustness of these rankings on many real world networks, even though the
scores produced by the centrality measures are not stable.

Finally, we propose an extension of subgraph centrality to directed networks, and
we apply this extension to the problem of ranking hubs and authorities. The extension
is achieved by bipartization, i.e., the directed network is mapped onto a bipartite undi-
rected network with twice as many nodes in order to obtain a network with a symmetric
adjacency matrix. We explicitly determine the exponential of this adjacency matrix in
terms of the adjacency matrix of the original, directed network, and we give an inter-
pretation of centrality and communicability in this new context, leading to a technique
for ranking hubs and authorities. This method is compared to the well-known HITS

algorithm as well as to several other ranking algorithms.
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1 Introduction

1.1 Background and motivation

1.1.1 Introduction to complex networks

Complex systems are ubiquitous throughout the world, both in nature and within man-

made structures. Over the past decade, large amounts of network data have become

available and, correspondingly, the analysis of complex networks has become increas-

ingly important. In response, researchers in diverse areas have focused their attention

on such problems and the study of complex systems has begun to develop into a disci-

pline in its own right [13, 21, 24, 40, 41, 84, 85]. Mathematicians, physicists, computer

scientists, biologists, and social scientists (among others) have approached these prob-

lems from various angles[2, 28, 42, 43, 67, 88]. This large amount of research within

diverse scientific communities has produced many interesting results, but there are still

many fundamental questions that are not fully answered. Additionally, as available

datasets become larger and larger, efficient data structures and computational meth-

ods become paramount.

One of the fundamental questions in network analysis is to determine the “most

important" elements in a given network. The interpretation of what is meant by “im-

portant" can change from application to application. Measures of node importance are

usually referred to as node centralities, and many centrality measures have been pro-

posed, starting with the simplest of all, the node degree. This crude metric has the

drawback of being too “local", as it does not take into effect the connectivity of the im-
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mediate neighbors of the node under consideration. A number of more sophisticated

centrality measures have been introduced that take into account the global connectivity

properties of the network. These include various types of eigenvector centrality for both

directed and undirected networks, betweenness centrality, and many others. Overviews

of various centrality measures can be found in [13, 16, 21, 40, 72, 84, 85]. The central-

ity scores can be used to provide rankings of the nodes in the network. There are many

different ranking methods in use (most of which depend on centrality measures), and

many algorithms have been developed to compute these rankings. Information about

the many different ranking schemes can be found in [8, 40, 67, 68, 72, 73, 74, 75].

1.1.2 Outline of thesis

This thesis investigates the use of matrix functions in the analysis of node centrality. In

the remainder of this chapter, we will provide background information from various ar-

eas of mathematics. Sections 1.2 and 1.3 present basic concepts from graph theory and

linear algebra that will be used in this thesis. Section 1.4 discusses properties found

in many complex networks. Section 1.5 provides an overview of commonly used cen-

trality and communicability measures, including HITS and PageRank while Section 1.6

discusses the comparison of rankings produced by different centrality measures. Sec-

tion 1.7 provides details on iterative methods that are used in this thesis to approximate

certain types of centrality scores.

Chapter 2 examines the use of a node centrality measure based on the notion of total

communicability, defined in terms of the row sums of the exponential of the adjacency

matrix of the network. We argue that this is a natural metric for ranking nodes in a

network, and we point out that it can be computed very rapidly even in the case of

large networks. Furthermore, we propose the total sum of node communicabilities as

a useful measure of network connectivity. Extensive numerical studies are conducted

in order to compare this centrality measure with the closely related ones of subgraph
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centrality and Katz centrality on both synthetic and real-world networks.

In Chapter 3, we demonstrate an analytical relationship between rankings produced

by parameterized centrality measures based on the matrix exponential and resolvent

with those produced by degree and eigenvector centrality. The centrality measures

considered are exponential and resolvent subgraph centrality (defined in terms of the

diagonal entries of the matrix exponential and matrix resolvent, respectively), total

communicability, and Katz centrality (defined in terms of the row sums of the matrix

exponential and resolvent). This analysis helps to explain the observed robustness of

these rankings on many real world networks, even though the scores produced by the

centrality measures are not stable. A number of numerical experiments on both di-

rected and undirected networks are conducted to analyze how this relationship affects

node rankings.

In Chapter 4, we propose an extension of the measures of subgraph centrality and

communicability to directed networks, and we apply them to the problem of ranking

hubs and authorities. The extension is achieved by bipartization, i.e., the directed net-

work is mapped onto a bipartite undirected network with twice as many nodes in order

to obtain a network with a symmetric adjacency matrix. We explicitly determine the

exponential of this adjacency matrix in terms of the adjacency matrix of the original,

directed network, and we give an interpretation of centrality and communicability in

this new context, leading to a technique for ranking hubs and authorities. The ma-

trix exponential method for computing hubs and authorities is compared to the well

known HITS algorithm, both on small artificial examples and on more realistic real-

world networks. A few other ranking algorithms are also discussed and compared with

our technique.

Finally, Chapter 5 contains concluding remarks and guidelines for future work.

The work presented in Chapters 2 and 3 is based on [10] and [8], respectively.
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1.2 Basic concepts from graph theory

In this section, we provide an overview of the basic concepts, definitions, and terminol-

ogy from graph theory that will be used throughout the thesis. A more comprehensive

presentation can be found in [15, 32].

A graph G = (V,E) is formed by a set of nodes (vertices) V and edges (links)

E formed by unordered pairs of vertices. Every network is naturally associated with

a graph G = (V,E) where |V | = n is the number of objects in the network and E

(|E| = m) is the collection of connections between objects, E = {(i, j) | there is an

edge between node i and node j}. Nodes represent the elements that make up the

network and edges represent various types of interactions among network elements.

The degree di of a vertex i is the number of edges incident to i. A graph is k-regular if

every node has degree di = k.

A directed graph, or digraph, G = (V,E) is formed by a set of vertices V and edges

E formed by ordered pairs of vertices. That is, (i, j) ∈ E 6⇒ (j, i) ∈ E. In the case of

digraphs, which model directed networks, there are two types of degree. The in-degree

of node i, dini , is given by the number of edges which point to i. The out-degree, douti , is

given by the number of edges pointing out from i.

The first result in graph theory, which was also the start of graph theory as a proper

mathematical discipline, related the number of nodes, n, in an undirected graph to

the number of edges, m. The following result, called the handshaking lemma, is from

Leonhard Euler [49] and has since been extended to directed graphs.

Lemma 1.2.1 Let G be a graph with n nodes and m edges. Then,

(i) if G is undirected, then
n
∑

i=1

di = 2m,
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(ii) if G is directed, then
n
∑

i=1

dini =
n
∑

i=1

douti = m.

A subgraph of G is a graph H = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ {(i, j) ∈

E | i, j ∈ V ′}. The subgraph H is said to be an induced subgraph if E′ = {(i, j) ∈

E | i, j ∈ V ′}, that is if all edges possible are present. A subgraph H is said to be

maximal in regards to a property if adding any additional nodes or edges to H would

result in that property no longer holding.

A walk of length k in G is a set of nodes i1, i2, . . . ik, ik+1 such that for all 1 ≤ l ≤ k,

there is an edge between il and il+1 (or a directed edge from il to il+1 in the case of a

digraph). A closed walk is a walk where i1 = ik+1. A path is a walk with no repeated

nodes. A cycle is a closed path. A graph G is walk-regular if the number of closed walks

of length k ≥ 0 starting at a given node is the same for every node in the graph. A

graph is simple if it has no loops (edges from a node i to itself), no multiple edges, and

unweighted edges.

The distance, d(i, j), between nodes i and j in a graph is given by the length of

the shortest path between them. If there is no path between two nodes, they are

considered to be at an infinite distance. The diameter of a graph, dG is given by the

maximum shortest path length in the graph: dG = maxi 6=j d(i, j). In an undirected

graph, the distance function forms a metric. That is, the following lemma holds.

Lemma 1.2.2 Given an undirected graph G, the distance function d : V ×V → R given

by d(i, j) = {the length of the shortest path between i and j} satisfies the following

properties and is therefore a metric: for all nodes i, j, and k,

(i) d(i, j) ≥ 0 and d(i, j) = 0⇔ i = j,

(ii) d(i, j) = d(j, i),

(iii) d(i, j) ≤ d(i, k) + d(k, j).
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In a directed graph, there is no guarantee that distances are symmetric and, thus, the

distance function does not define a metric.

An undirected graph is connected if there exists a path between every pair of nodes.

A digraph is weakly connected if the underlying undirected graph is connected. It is

strongly connected if, for every pair of vertices i and j, there is both a directed walk

from i to j and one from j to i. If an undirected graph G is not connected, then G can

be partitioned into its connected components. The number of connected components

is the number of maximal connected subgraphs. If G is directed, then we can distin-

guish between the strongly connected components and the weakly connected components.

When a graph is partitioned into its (weakly) connected components, every node and

edge is in exactly one component. When a digraph is partitioned into its strongly con-

nected components, every node is in exactly one component and every edge is in at

least one component. Often, in the analysis of complex networks we are concerned

with the largest connected component of an undirected network or the largest strongly

connected component of a directed network.

Often, we consider graphs with unweighted edges, but depending on the type of

interaction edges can be weighted or unweighted. Weights on edges can be used to

measure the amount of traffic between two nodes or other properties of data, such

as the vulnerability of the connection to attack or disruption or a physical distance

between two nodes. In the case of unweighted networks, we consider the weight of

each edge to be equal to one.

Every graph is naturally associated with an adjacency matrix. The adjacency matrix

of an unweighted graph G is given by the matrix A ∈ R
|V |×|V | defined in the following

way:

A = (aij); aij =











1, if (i, j) is an edge in G,

0, else.
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If G is weighted, then:

A = (aij); aij =











wij , if (i, j) is an edge in G,

0, else

where wij is the weight of edge (i, j). If G contains no loops, then A will have zeros

along the diagonal. If G is undirected, A will be a symmetric matrix.

If A is the adjacency matrix of a network with unweighted edges, then [Ak]ij counts

the number of walks of length k between nodes i and j. The diagonal entries, [Ak]ii

count the number of closed walks of length k centered at node i, although some of

these walks can be described as “illogical.” For example, the walk i → j → i → j → i

is a closed walk of length 4 centered at node i (see [32, 47] for more details).

1.3 Basic concepts from linear algebra

This section contains an overview of some basic concepts from linear algebra. A more

comprehensive guide can be found in many places, including [78, 90].

Given a matrix A ∈ R
n×n, let the eigenvalues of A be given by λ1, λ2, . . . , λn and

the eigenvectors be given by q1,q2, . . . qn where qi is the eigenvector associated with

eigenvalue λi. If the eigenvalues of A are real, we label them in non-increasing order:

λ1 ≥ λ2 ≥ . . . ≥ λn. If A has complex eigenvalues, they are labeled with non-increasing

modulus: |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

The spectrum of A is σ(A) = {λ1, λ2, . . . , λn} and the spectral radius of A is given

by ρ(A) = maxi(|λi|). The spectral gap of A is given by the difference between the two

largest eigenvalues of A: |λ1−λ2|. In the case of complex eigenvalues, it is given by the

difference between the moduli of the two largest eigenvalues: |λ1| − |λ2|. The range of

A is given by the span of the column space of A: R(A) = {v |Ax = v for some x ∈ R
n}.

The null space of A is given by N(A) = {x |Ax = 0}.
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The matrix A is said to be positive (written A > 0) if aij > 0 for all 1 ≤ i, j ≤ n. It

is said to be non-negative (written A ≥ 0) if aij ≥ 0 for all 1 ≤ i, j ≤ n. The adjacency

matrix of a graph G is non-negative if G is unweighted or if all the edge weights of G

are positive.

Definition 1 A matrix A is said to be reducible if there exists a permutation matrix P

such that

A = P TAP =







X Y

0 Z







where X and Z are both square [78, p. 671]. If A is not reducible, it is irreducible.

The adjacency matrix of an undirected graph G is irreducible if and only if G is con-

nected. The adjacency matrix of a directed graph is irreducible if and only if G is

strongly connected.

A non-negative, irreducible matrix A is said to be primitive if there is only one

eigenvalue λ with |λ| = ρ(A). Otherwise, it is imprimitive.

If A is a non-negative, irreducible matrix, the Perron-Frobenius Theorem gives useful

information on the eigenvalues and eigenvectors of A:

Theorem 1.3.1 (Perron-Forbenius Theorem, [78, p. 673]) If A ∈ R
n×n is non-negative

and irreducible, then the following are true:

(i) r = ρ(A) ∈ σ(A) and r > 0.

(ii) the algebraic multiplicity of r is 1.

(iii) There exists an eigenvector x > 0 such that Ax = rx.

(iv) The unique vector defined by Ap = rp, p > 0, and ‖p‖1 = 1 is called the Perron

vector. There are no non-negative eigenvectors of A except for positive multiples

of p, regardless of the eigenvalue.
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If G is a connected, undirected graph with adjacency matrix A, then λ1 > λ2 by

the Perron-Frobenius theorem. Since A is a symmetric, real-valued matrix, we can

decompose A into A = QΛQT where Λ = diag(λ1, λ2, . . . , λn) with λ1 > λ2 ≥ . . . ≥ λn

and Q = [q1,q2, . . . ,qn] is orthogonal.

If G is a strongly connected digraph with adjacency matrix A, then, by the Perron-

Frobenius theorem, λ1 = r is a simple eigenvalue of A and both the left and right

eigenvectors of A associated with λ1 are positive (as AT is also irreducible). If G is

also diagonalizable, then there exists an invertible matrix X such that A = XΛX−1

where Λ = diag(λ1, λ2, . . . , λn) with λ1 ≥ |λi| for 2 ≤ i ≤ n, X = [x1,x2, . . . ,xn], and

(X−1)∗ = [y1,y2, . . . ,yn]. The left eigenvector associated with λi is yi and the right

eigenvector associated with λi is xi. In the case where G is not diagonalizable, A can

be decomposed using its Jordan Canonical form:

A = XJX−1 = X







λ1 0

0 Ĵ






X−1

where J is the Jordan matrix of A, except that we place the 1× 1 block corresponding

to λ1 first. More information about the eigenvalues and eigenvectors associated with

graphs can be found in [30].

An M-matrix is a real, non-singular matrix A = (aij) such that aij ≤ 0 for all i 6= j

and A−1 ≥ 0. Many properties of non-singular M-matrices are known (see [86] for a

more comprehensive overview).

Theorem 1.3.2 Let A ∈ R
n×n have positive diagonal entries and non-positive off-

diagonal entries. Then, the following are equivalent [86]:

(i) A is a non-singular M-matrix.

(ii) there exists a matrix B ≥ 0 and a real number r > ρ(B) such that A = rI −B.

(iii) the real part of λ is positive for all λ ∈ σ(A).
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(iv) A−1 exists and is non-negative.

We now turn to functions of a matrix.

Definition 2 Given a scalar function f , f is said to be defined on the spectrum of A if

the values

f (j)(λi), j = 0 : ni − 1, i = 1 : s

exist, where s is the number of distinct eigenvalues of A and ni is the geometric multi-

plicity of λi. These are called the values of the function f on the spectrum of A ([65,

p. 3]).

Suppose f is defined on the spectrum of A. If A is symmetric or diagonalizable,

then we define f(A) = Qf(Λ)QT or f(A) = Xf(Λ)X−1, where

f(Λ) = diag(f(λ1), f(λ2), . . . , f(λn)).

If A is not diagonalizable, then

f(A) =
s

∑

i=1

ni−1
∑

j=0

f (j)(λi)

j!
(A− λiI)jGi

where Gi is the oblique projector onto N((A−λiI)ni) along R((A−λiI)ni) [78, p. 603].

In this thesis, we are primarily concerned with two matrix functions: the matrix

exponential and the matrix resolvent. The (parameterized) matrix exponential is given

by eβA, β > 0. In many applications, the parameter β is set to one, corresponding to the

unscaled matrix exponential. The eigenvalues of eβA are given by eβλ1 , eβλ2 , . . . , eβλn .

The power series expansion of eβA is given by:

eβA = I + βA+
β2A2

2!
+ · · ·+ βkAk

k!
+ · · · =

∞
∑

k=0

βkAk

k!
. (1.1)
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As [Ak]ij = [Ak]ji counts the number of walks of length k between nodes i and j, [eA]ij ,

counts the total number of walks from node i to node j, penalizing longer walks by

scaling walks of length k by the factor βk

k! .

The matrix resolvent is given by (I − αA)−1, 0 < α < 1
λ1

. It has eigenvalues

1
1−αλi

where λi ∈ σ(A). Similarly to the matrix exponential, the entries of the matrix

resolvent count the number of walks in the network, penalizing longer walks. This can

be seen by considering the power series expansion of (I − αA)−1:

(I − αA)−1 = I + αA+ α2A2 + · · ·+ αkAk + · · · =
∞
∑

k=0

αkAk. (1.2)

Here, [(I−αA)−1]ij , counts the total number of walks from node i to node j, weighting

walks of length k by αk. The bounds on α (0 < α < 1
λ1

) ensure that the matrix I − αA

is invertible and that the power series in (1.2) converges to its inverse. The bounds on

α also force (I − αA)−1 to be nonnegative, as I − αA is a nonsingular M -matrix.

A matrix A is Hermitian if it is equal to its own conjugate transpose, i.e AT = A∗.

Every real, symmetric matrix is Hermitian. A matrix is upper Hessenberg if all the entries

below the first subdiagonal are zero.

1.4 Properties of complex networks

Networks can be used to describe and analyze many different types of interactions,

from those between people (social networks), to the flow of goods across an area

(transportation networks), to links between websites (the WWW graph), to thermo-

dynamic interaction between particles (statistical mechanics), and so forth. Every net-

work is associated with both a graph and an adjacency matrix, allowing the use of tools

from graph theory and linear algebra to be used in their analysis. Although there is no

precise definition of a complex network, there are a number of properties that complex

networks tend to have in common. More information about complex networks can be
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found in many places, including [40, 83, 84]

Complex networks are fundamentally different from random networks generated

according to the Erdös-Rényi model [35, 36]. There are two closely related variants of

this model: in the G(n,m) model, a graph is chosen uniformly at random from the set

of all graphs with n nodes and m edges. In the G(n, p) model, a graph with n nodes is

constructed by randomly connecting each pair of nodes with probability p. If p is set to

p =
(

n
2

)

m, the two models behave similarly as n tends to infinity. Networks produced

by Erdös-Rényi random models tend to have a Poisson degree-distribution. That is, the

majority of nodes tend to have a degree close to the average degree, with relatively few

outliers.

However, this is not the case for complex networks. It has been shown that many

real-world networks follow a power law degree distribution, i.e. that the fraction of

nodes of degree k is approximately P (k) ≈ k−γ where often 2 < γ < 3 [5, 51]. Oth-

ers have a mixed degree distribution which follows an exponential degree distribution

for low-degree nodes and changes into a power law distribution once the node degree

increases sufficiently [80, 99]. Networks with these types of degree-distributions are

often called scale-free networks. Power law degree-distributions have been observed in

many types of networks including biological networks (such as protein-protein inter-

action and gene-regulation networks) [11, 42, 43], the internet and world-wide-web

[3, 5, 51], and social networks [26]. More information on scale-free networks can be

found in [24, 59].

The clustering coefficient of a network measures the propensity of the nodes in the

network to form triangles. The clustering coefficient of a node i is given by

Ci =
2|C3(i)|
di(di − 1)

,

where |C3(i)| is the number of triangles in which node i is involved. This measures the
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percentage of the paths of length two (wedges) centered at node i which have closed

into triangles [95]. The clustering coefficient of the network as a whole is given by

C̄ =
1

n
=

n
∑

i=1

Ci,

which gives the average node clustering coefficient across the network. A variation on

the clustering coefficient, known as the global clustering coefficient or network transitiv-

ity was introduced in [82]:

C =
3|C3|
|P2|

,

where |C3| is the number of triangles in the network and |P2| is the number of paths

of length two in the network. Networks formed using the Erdös-Rényi random models

have very low clustering coefficients while many real world networks tend to exhibit

high clustering coefficients.

One property common to both Erdös-Rényi random networks and many real-world

networks is the small-world property [95]. Informally, the existence of the small-world

property in a network means that all the nodes in the network are only a relatively

short distance from each other, creating a “small world” for the nodes to exist inside.

More formally, it states that the average path length,

l̄ =
1

n(n− 1)

∑

i,j∈V

d(i, j),

also known as the mean shortest distance between pairs of nodes, is small.

A variety of alternative generative models for complex networks have been pro-

posed to address the deficiencies of the Erdös-Rényi random models. These include the

preferential attachment model and variants [5, 71], the small-world model [95], and

the Block Two-Level Erdös-Renyi (BTER) model [69].
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1.5 Measures of centrality and communicability

Many measures of node centrality have been developed and used over the years. The

higher the measure of node centrality, the more “important” a given node is considered

to be in the network. In this section, we provide a brief overview of some of the

most commonly used centrality measures. More information about various centrality

measures can be found in [19, 40, 84, 94]

One of the simplest centrality measures is degree centrality [57]. In an undirected

network, the degree centrality of node i is given by Cd(i) = di = [A1]i, where 1 is

the vector of all ones. In a directed network, it is necessary to distinguish between the

in-degree centrality, Cin
d (i) = dini = [1TA]i, and the out-degree centrality, Cout

d (i) =

douti = [A1]i. Degree centrality is a local measure of node importance, counting the

number of nodes in the immediate neighborhood of a given node.

The eigenvector centrality of node i in a directed network is given by Cev(i) = q1(i)

[16]. It gives the limit as k goes to infinity of the percentage of walks of length k

which start at node i [30]. Thus, in contrast to degree-centrality, eigenvector central-

ity measures the global influence of nodes in the network. Variations on eigenvector

centrality have been proposed to measure slightly different aspects of node importance

[17]. In a directed network, the eigenvector centrality can be defined by both the dom-

inant left eigenvector and the dominant right eigenvector. These can be used to rank

nodes as authorities and hubs, respectively (see section 1.5.1 for definitions of hubs

and authorities).

The closeness centrality [57] of node i is given by

CC(i) =
n− 1

∑

j 6=i d(i, j)
.

It measures the overall closeness of node i to the rest of the network.

Another commonly used centrality measure is betweenness centrality [56]. The be-
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tweenness centrality of node i is given by

BC(i) =
∑

j 6=i 6=k

σjk(i)

σjk

where σjk is the total number of shortest paths between nodes j and k and σjk(i) is

the number of those shortest paths which pass through node i. Thus, the betweenness

centrality of node i measures how important i is for fast communication across the

network as a whole. Variations of betweenness centrality have also been proposed

[22].

The matrix resolvent (I − αA)−1, 0 < α < 1
λ1

, was first used to rank nodes in

a network in the early 1950s, when Katz used the column sums to calculate node

importance [67]. The Katz centrality score of node i is given byKi(α) = [(I−αA)−11]i.

This counts the total number of walks between node i and every other node in the

network, weighting walks of length k by a penalization factor of αk. Closely related

to Katz centrality is resolvent subgraph centrality [47, 48]. The resolvent subgraph

centrality of node i is given by RCi(α) = [(I − αA)−1]ii. This counts the number of

closed walks centered at node i, again weighting walks of length k by αk.

A more commonly used form of subgraph centrality is exponential subgraph central-

ity [47, 48]. The exponential subgraph centrality of node i is given by SCi(β) = [eβA]ii.

This counts the number of closed walks centered at node i, weighting walks of length

k by βk

k! . In Chapter 2, we introduce a new centrality measure based on exponential

subgraph communicability [10, 45, 46].

Many centrality measures were originally developed for use on undirected networks

and later needed to be extended for use on directed networks. In Sections 1.5.1 and

1.5.2, we describe HITS and PageRank, two rankings methods that were developed

specifically for directed networks. Both HITS and PageRank were originally developed

as web search algorithms. However, as they provide a ranking of the nodes in directed
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networks, they can also be used as centrality measures in general digraphs.

The communicability between a pair of nodes i and j measures how well the two

nodes can exchange information with each other. A (relatively) large communicability

between a pair of nodes i and j indicates that information flows more easily between

those two nodes than between pairs of nodes with lower communicability. In other

words, a low communicability indicates that the two nodes cannot easily exchange

information. Network communicability can also be interpreted in terms of the correla-

tions between different components of physical systems; see, e.g., [46].

Two of the most commonly used communicability measures are (exponential) sub-

graph centrality and resolvent subgraph centrality [45, 47]. The subgraph communica-

bility between nodes i and j is given by [eβA]ij , β > 0 (note that in the case of an

undirected network, A is symmetric and [eβA]ij = [eβA]ji). This counts the total num-

ber of walks between nodes i and j, weighting walks of length k by 1
k! . The resolvent

subgraph communicability between nodes i and j is given by [(I−αA)−1]ij , 0 < α < 1
λ1

.

As in the case of exponential subgraph centrality, this counts the total number of walks

between nodes i and j, but here walks of length k are weighted by αk.

1.5.1 HITS

The classical Hypertext Induced Topics Search (HITS) algorithm, first introduced by

J. Kleinberg in [68] is based on the idea that in the World Wide Web, and indeed

in all document collections which can be represented by directed networks, there are

two types of important nodes: hubs and authorities. Hubs are nodes which point to

many nodes of the type considered important. Authorities are these important nodes.

From this comes a circular definition: good hubs are those which point to many good

authorities and good authorities are those pointed to by many good hubs.

Thus, the HITS ranking relies on an iterative method converging to a stationary

solution. Each node i in the network is assigned two non-negative weights, an authority
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weight xi and a hub weight yi. To begin with, each xi and yi is given an arbitrary

nonzero value. Then, the weights are updated in the following ways:

x
(k)
i =

∑

j:(j,i)∈E

y
(k−1)
j and y

(k)
i =

∑

j:(i,j)∈E

x
(k)
j for k = 1, 2, 3... (1.3)

The weights are then normalized so that
∑

j(x
(k)
j )2 = 1 and

∑

j(y
(k)
j )2 = 1.

The above iterations occur sequentially and it can be shown that, under mild condi-

tions, both sequences of vectors {x(k)} and {y(k)} converge as k →∞. In practice, the

iterative process is continued until there is no significant change between consecutive

iterates.

This iteration sequence shows the natural dependence relationship between hubs

and authorities: if a node i points to many nodes with large x-values, it receives a large

y-value and, if it is pointed to by many nodes with large y-values, it receives a large

x-value.

In terms of matrices, the equation (3.1) becomes: x(k) = ATy(k−1) and y(k) =

Ax(k), followed by normalization in the 2-norm. This iterative process can be expressed

as

x(k) = ckA
TAx(k−1) and y(k) = c′kAA

Ty(k−1), (1.4)

where ck and c′k are normalization factors. A typical choice for the initizialization

vectors x(0), y(0) would be the constant vector

x(0) = y(0) = [1/
√
n, 1/

√
n, . . . , 1/

√
n],

see [52]. Hence, HITS is just an iterative power method to compute the dominant

eigenvector for ATA and for AAT . The authority scores are determined by the entries

of the dominat eigenvector of the matrix ATA, which is called the authority matrix

and the hub scores are determined by the entries of the dominant eigenvector of AAT ,
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called the hub matrix. Recall that the eigenvalues of both ATA andAAT are the squares

of the singular values of A. Also, the eigenvectors of ATA are the right singular vectors

of A, and the eigenvectors of AAT are the left singular vectors of A. See Algorithm 1

in Appendix A for a pseudocode implementation of the HITS algorithm.

A number of variations on the HITS algorithm have been proposed, for example

[8, 20, 33, 72]

1.5.2 PageRank

The PageRank algorithm [23] is perhaps the most famous (and lucrative) algorithm in

the world. It was developed to rank authoritative webpages in search engine results.

Although PageRank, and its variant Reverse PageRank, described below, were originally

developed to rank webpages, they have since been used to rank nodes in many diverse

types of networks [11, 12, 55, 70, 81, 96].

In the PageRank algorithm, the importance of a webpage is determined by “votes,”

i.e., the number of links to that webpage. The main idea is that votes from more

important sites count more than votes from less important sites and the significance of

any vote is weighed by how many votes the “voting” webpage makes. At its most basic,

given a directed network, the PageRank of node i is given by

PRi =
∑

{j | (j,i)∈E}

PRj

doutj

.

As the PageRank of a node depends on the PageRank of its neighbors, the rankings

are calculated in an iterative manner. To begin, each node is given an initial ranking.

Often, PR(0)
i = 1

n
. Then,

PR
(k)
i =

∑

{j | (j,i)∈E}

PR
(k−1)
j

doutj

for k = 1, 2, 3... (1.5)



1. INTRODUCTION 21

Setting π(k)T = (PR
(k)
1 , PR

(k)
2 , . . . , PR

(k)
n ), (1.5) becomes

π(k)T = π(k−1)TP (1.6)

where P =











1
|douti |

, if (i, j) ∈ E

0, else.

Equation (1.6) almost corresponds to the power method applied to a finite state

space Markov chain with transition probability matrix P . A Markov chain is a stochastic

process that satisfies the Markov property [78, p. 687]. That is, given a family of random

variables {Xt} in which every Xt has the same range {S1, S2, . . . , Sn} (called the state

space), the following holds:

P (Xt+1 = Sj |Xt = Sit ,Xt−1 = Sit−1 , . . . ,X0 = Si0) = P (Xt+1 = Sj |Xt = Sit).

This implies that the probability of entering state Sj at step t + 1 only depends on the

state at time t and not on previous states. If the time parameter is discrete, the Markov

chain is a discrete-time Markov chain.

The transition probability pij(t) = P (Xt+1 = Sj |Xt = Sit) measures the probability

of moving from state Si to Sj at time t. The transition probability matrix of a discrete-

time Markov chain is given by P (t) ∈ R
n×n with P (t) = (pij(t)). If the transition

probabilities are fixed, the Markov chain is said to be homogenous and P (t) = P .

The transition probability matrix P is a (row-)stochastic matrix. That is, P ≥ 0 and
∑n

j=1 pij = 1 for all 1 ≤ i ≤ n.

A Markov chain is irreducible if the transition probability matrix is irreducible.

Equivalently, a Markov chain is irreducible if every state can be reached from every

other state. The following theorem presents results on the convergence of irreducible

Markov chains [78, p. 693]:

Theorem 1.5.1 Let P be the transition matrix for an irreducible Markov chain on states
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{S1, S2, . . . , Sn}, i.e. P ∈ R
n×n is an irreducible stochastic matrix. Let πT denote

the left-hand Perron vector of P . The following statements are true for every initial

distribution π(0)T :

(i) The kth step transition matrix is P k, i.e, [P k]ij is the probability of moving from

Si to Sj in exactly k steps.

(ii) The kth step transition vector is given by π(k)T = π(0)TP k.

(iii) If P is primitive, then

lim
k→∞

P k = 1πT and lim
k→∞

π(k)T = πT .

(iv) If P is imprimitive, then

lim
k→∞

I + P + . . .+ P k−1

k
= 1πT and lim

k→∞

π(0)T + π(1)T + . . . + π(k−1)T

k
= πT .

(v) For both the primitive and imprimitive cases, πj, the jth component of π, repre-

sents the long-run fraction of time that the chain is in Sj.

(vi) πT is often called the stationary distribution vector for the chain because it is the

unique distribution vector satisfying πTP = πT

Equation (1.6) is not quite the power method applied to a finite state space Markov

because the matrix P used is not necessarily stochastic. If node i has no out-edges, then

the ith row of P will be all zeros. This is addressed by replacing zero rows with eT

n
,

forming the matrix P̄ . In terms of web surfing, this corresponds to jumping to a random

web-page when a page with no out-links is reached. However, P̄ is still not guaranteed

to be an irreducible matrix and, thus, the results from Theorem 1.5.1 do not guarantee

converge to a unique stationary vector. This is addressed in the PageRank algorithm by
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forming a matrix E = 1
n
11T and setting

¯̄P = αP̄ + (1− α)E for 0 < α < 1. (1.7)

Often, the values α = 0.85 is used. The matrix ¯̄P , often referred to as the “Google”

matrix, is stochastic and irreducible. Therefore, by Theorem 1.5.1, it has a unique

stationary distribution vector π. The PageRank centrality of node i is given by πi, the

ith entry of π. See Algorithm 2 in Appendix A for a pseudocode implementation of the

PageRank algorithm.

It was pointed out in [54] that applying PageRank to the digraph obtained by revers-

ing the direction of the edges provides a natural way to rank the hubs; this is usually

referred to as Reverse PageRank. In other words, authority rankings are obtained by ap-

plying PageRank to the “Google” matrix derived from A, and hub rankings are obtained

by the same process applied to AT .

A more comprehensive overview of the PageRank algorithm can be found in [73].

Many studies have been done to analyze various aspects of the PageRank algorithm

[4, 55, 58, 66, 74, 79].

1.6 Comparing centrality measures

There are many way to compare two sets of ranked lists. See [74] for an overview.

In this thesis, we use (Pearson) correlation coefficients and the intersection distance

method (see [50] as well as [14, 27]) on both the full set of nodes of a network G and

on partial lists of nodes to measure similarities between the rankings obtained with two

methods. The correlation coefficients are computed using lists of nodes in rank order.

The intersection distances are computed using the lists of centrality values.

Given two ranked lists x and y, the intersection distance between the two lists is

computed in the following way: let xk and yk be the top k ranked items in x and y
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respectively. Then the top k intersection distance (or intersection similarity) is given by

isimk(x, y) :=
1

k

k
∑

i=1

|xi∆yi|
2i

(1.8)

where ∆ is the symmetric difference operator between the two sets. If the lists are

identical, then isimk(x, y) = 0 for all k. If the two sequences are disjoint, then isimk =

1. Thus, a small value of isimk(x, y) indicates a strong similarity between the two

rankings.

Throughout the thesis, we denote by cc the correlation coefficient between the two

vector rankings, and by cc p the correlation coefficient between the top p% of nodes

under two ranking systems. We denote by isim the intersection distance between two

complete sets of rankings and by isimp% the intersection distance between the top p%

of nodes.

1.7 Approximations of centrality scores

In this section, we will provide an overview of two iterative methods used in this thesis

to approximate centrality measures based on matrix functions. The matrix exponential

and resolvent are computationally expensive and exact computations are not possible

for large networks. Several approaches are available for computing the matrix ex-

ponential [65]. A commonly used scheme is the one based on Padé approximation

combined with the scaling and squaring method [64, 65], implemented in Matlab by

the expm function. For an n× n matrix, this method requires O(n2) storage and O(n3)

arithmetic operations; current implementations are geared toward small, dense matri-

ces. Evaluation of the matrix exponential based on diagonalization also requiresO(n2)

storage andO(n3) operations. Furthermore, these methods cannot be easily adapted to

the case where only selected entries (e.g., the diagonal ones) of the matrix exponential

are of interest.
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1.7.1 Approximation of diagonal entries of matrix functions

To compute the exponential (resolvent) subgraph centralities of the nodes in a network,

only the diagonal entries of the matrix exponential (resolvent) are needed. Efficient,

accurate methods for estimating (or, in some cases, bounding) arbitrary entries in a

matrix function f(A) have been developed by Golub, Meurant and collaborators (see

[60] and references therein) and first applied to problems of network analysis by Benzi

and Boito in [7]; see also [18]. They have been implemented in the Matlab toolbox

mmq [77]. Here we provide a brief description of these methods. Additional details can

be found in [7] and [60].

Let A be a real, symmetric, n × n matrix and let f be a function defined on the

spectrum of A. Consider the eigendecomposition A = QΛQT and f(A) = Qf(Λ)QT ,

where Q = [q1, . . . ,qn] and Λ = diag (λ1, . . . , λn). For notational simplicity, here we

assume that the eigenvalues of A are ordered as λ1 ≤ . . . ≤ λn. For given vectors u and

v we have

uT f(A)v = uTQf(Λ)QTv = wT f(Λ)z =

n
∑

k=1

f(λk)wkzk, (1.9)

where w = QTu = (wk) and z = QTv = (zk). In particular, for f(A) = eA we obtain

uT eAv =

n
∑

k=1

eλkwkzk. (1.10)

Choosing u = v = ei (the vector with the ith entry equal to 1 and all the remaining

ones equal to 0) we obtain an expression for the subgraph centrality of node i:

SC(i) :=

n
∑

k=1

eλkqk(i)
2 ,

where qk(i) denotes the ith component of vector qk. Likewise, choosing u = ei and

v = ej we obtain the following expression for the communicability between node i and
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node j:

C(i, j) :=
n
∑

k=1

eλkqk(i)qk(j).

Analogous expressions hold for other matrix functions, such as the resolvent. Hence,

the problem is reduced to evaluating bilinear expressions of the form uT f(A)v. Such

bilinear forms can be thought of as Riemann- Stieltjes integrals with respect to a

(signed) spectral measure:

uT f(A)v =

∫ b

a

f(λ)dµ(λ), µ(λ) =























0, if λ < a = λ1,

∑i
k=1wkzk, if λi ≤ λ < λi+1,

∑n
k=1wkzk, if b = λn ≤ λ.

This integral can be approximated by means of a Gauss-type quadrature rule:

∫ b

a

f(λ)dµ(λ) =

p
∑

j=1

cjf(tj) +

q
∑

k=1

vkf(τk) +R[f ], (1.11)

where R[f ] denotes the error. Here the nodes {tj}pj=1 and the weights {cj}pj=1 are

unknown, whereas the nodes {τk}qk=1 are prescribed. We have

• q = 0 for the Gauss rule,

• q = 1, τ1 = a or τ1 = b for the Gauss–Radau rule,

• q = 2, τ1 = a and τ2 = b for the Gauss–Lobatto rule.

For certain matrix functions, including the exponential and the resolvent, these

quadrature rules can be used to obtain lower and upper bounds on the quantities of

interest; prescribing additional quadrature nodes leads to tighter and tighter bounds,

which (in exact arithmetic) converge monotonically to the true values [60]. The eval-

uation of these quadrature rules is mathematically equivalent to the computation of

orthogonal polynomials via a three-term recurrence, or, equivalently, to the computa-
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tion of entries and spectral information of a certain tridiagonal matrix via the Lanczos

algorithm (see Algorithm 3 in Appendix A). More information on the Lanczos algo-

rithm can be found in [76]. Here we briefly recall how this can be done for the case of

the Gauss quadrature rule, when we wish to estimate the ith diagonal entry of f(A).

It follows from (1.11) that the quantity of interest has the form
∑p

j=1 cjf(tj). This can

be computed from the relation [60, p. 28]:

p
∑

j=1

cjf(tj) = eT1 f(Jp)e1,

where

Jp =

























ω1 γ1

γ1 ω2 γ2
. . . . . . . . .

γp−2 ωp−1 γp−1

γp−1 ωp

























is a tridiagonal matrix whose eigenvalues are the Gauss nodes, whereas the Gauss

weights are given by the squares of the first entries of the normalized eigenvectors of

Jp. The entries of Jp are computed using the Lanczos algorithm with starting vectors

x−1 = 0 and x0 = ei. Note that it is not required to compute all the components of the

eigenvectors of Jp if one uses the Golub–Welsch QR algorithm; see [60].

For small p (i.e., for a small number of Lanczos steps), computing the (1, 1) entry of

f(Jp) is inexpensive. The main cost in estimating one entry of f(A) with this approach

is associated with the sparse matrix-vector multiplies in the Lanczos algorithm applied

to the adjacency matrix A. If only a small, fixed number of iterations are performed for

each diagonal element of f(A), as is usually the case, the computational cost (per node)

is at most O(n) for a sparse graph, resulting in a total cost of O(n2) for computing the

subgraph centrality of every node in the network. If only k < n subgraph centralities
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are wanted, with k independent of n, then the overall cost of the computation will be

O(n) provided that sparsity is carefully exploited in the Lanczos algorithm and that

only a small number p of iterations (independent of n) is carried out. Note, however,

that depending on the connectivity characteristics of the network under consideration,

the prefactor in the O(n) estimate could be large. The algorithm can be implemented

so that the storage requirements are O(n) for a sparse network—that is, a network in

which the total number of links grows linearly in the number n of nodes.

Additionally, in most applications one is not so much interested in computing an

exact ranking of all the nodes in a network, but only in identifying the top k ranked

nodes, where the integer k is small compared to n (for example, k = 10 or k = 20).

Research has been done to develop methods that are capable of quickly identifying the

top k nodes without having to compute accurate subgraph centrality scores for each

node [8, 53]. We return to this topic in Section 4.8.

1.7.2 Approximation of row sums of matrix functions

To compute Katz centrality or total communicability (which is introduced in Chapter 2),

all that is needed is the row sums of the matrix resolvent or exponential: (I−αA)−11 or

eβA1. For digraphs, AT may be used in place of A. In recent years, efficient algorithms

have been developed for computing the action of a matrix function on a vector, that is,

for computing the vector f(A)b for a given matrix A (usually large and sparse), vector

b, and function f . A particularly important case is that of the matrix exponential,

since this provides a solution method for initial value problems for first-order systems

of linear ordinary differential equations. These algorithms, based on variants of the

Lanczos, Arnoldi or other Krylov subspace method, access the matrix A only in the

form of (sparse) matrix-vector products and have O(n) storage cost for a sparse n × n

matrix A [65, Chapter 13]. When b = 1, the vector with all its entries equal to 1, the
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ith entry of the resulting vector f(A)1 contains the ith row sum of f(A):

[f(A)1]i =

n
∑

j=1

[f(A)]ij , 1 ≤ i ≤ n .

This quantity can be computed much faster than the diagonal entries of a matrix func-

tion using current computational techniques. Indeed, computing individual entries of

matrix functions f(A) is generally costly for large A even with the best available algo-

rithms [7, 46]. Of course, the same is true if the vector 1 is replaced by some other

vector—typically, an “external importance vector” which can be used to take into ac-

count intrinsic, not network-related contributions to the centrality of each node [84,

pp. 174–175].

An efficient algorithm for evaluating f(A)v using a restarted Krylov method has

been presented in [1, 34]. In this approach, the basic operation is represented by

matrix-vector products with A. This method has been implemented in the Matlab tool-

box funm_kryl by Stefan Güttel [63].

Given A ∈ R
n×n, b ∈ R

n, and f analytic on a neighborhood containing σ(A), the

evaluation of

f(A)b (1.12)

using Krylov subspace methods is based on an Arnoldi-like decomposition of A into

AVm = Vm+1H̃m = VmHm + h(m+1,m)vm+1e
T
m (1.13)

where H̃ = hij is an (m + 1) × m upper Hessenberg matrix, Hm = [Im 0]H̃m, and

em ∈ R
m is the mth unit vector. The columns of Vm form a basis of the Krylov subspace:

Km(A,b) = span{b, Ab, . . . , Am−1b}. (1.14)
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If A is Hermitian, then Hm in (1.13) is Hermitian tridiagonal and the basis {vm} of

Km(A,b) is orthogonal. In this case, the Arnoldi approximation of (1.13) is given by:

f(A)b ≈ Vmf(Hm)V ∗
mb = Vmf(Hm)e1. (1.15)

The evaluation of (1.15) requires that all m basis vectors of Km(A,b) be available,

which can be computationally infeasible for large A and/or m. A restarted Krylov

subspace algorithm repeatedly generates a basis of fixed dimension m̂, producing a

sequence of approximations to f(A)b. At the end of each iteration, all basis vectors

but the last, vm̂, are discarded and vm̂ becomes the initial vector for the next Krylov

subspace.

For many network of practical interest, the cost is typically O(n), although the

prefactor can vary considerably for different types of networks. A more comprehensive

overviews of Krylov subspace methods for approximating f(A)b can be found in [65,

Ch 13]. Additional uses of Krylov subspace methods can be found in [78, Ch. 7] and

[61, Ch. 9 and 10].



2 Total Communicability as a Cen-

trality Measure

2.1 Introduction

A standard method of measuring node importance is subgraph centrality [48], which is

based on the diagonal entries of a matrix function applied to the adjacency matrix A of

the network in question. Here, the matrix exponential eA is frequently used. While this

approach has been successfully used in a number of problems [40, 46, 47], obtaining

estimates of the diagonals of eA for a large network with adjacency matrix A can be

quite expensive.

In this chapter, we consider the implications of instead using the row sums of eA

or similar matrix functions as a measure of node centrality, focusing for the sake of

brevity on undirected networks. The interpretation of this measure in terms of total

communicability of a node is given, and compared to the one for subgraph centrality in

section 2.2. In section 2.3, the concept of total network communicability is introduced

and discussed. Section 2.4 contains experimental comparisons of subgraph centrality

and total communicability using various synthetic and real-world networks. Sections

4.8 and 2.6 discuss computational aspects and the use of row sum centrality with other

standard matrix functions, respectively. We offer some conclusive remarks in section

2.7.

Centrality measures based on the row sums of matrix functions have long been in
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use in network analysis. Note that for the case of the “identity function” f(A) = A, and

symmetric A (undirected networks), we recover degree centrality. The off-diagonal

row sums of eA have been used in social network analysis to measure the resilience of

an individual in the face of hostile attacks from within the network [40, Chapter 6].

More recently, row and column sums of eA have been applied to the identification of

hubs and authorities in directed networks [8]. For resolvent-type functions, such as

f(A) = (I − αA)−1 (with I the n× n identity matrix), for suitable values of α > 0, we

recover the well-known Katz centrality and its variants, also known as α-centrality; see,

e.g., [67] and [16, 17, 19, 62]. None of these previous studies, however, considered

algorithmic aspects such as computational cost, storage, and so forth.

2.2 Diagonal entries vs. row sums

In [48], the authors introduce the concept of subgraph centrality as a centrality mea-

surement for nodes in a network. This provides a ranking based on the diagonal entries

of a matrix function applied to the adjacency matrix. Although there are various choices

of function to use, the most common is the matrix exponential. The subgraph central-

ity of node i is given by [eA]ii where A is the adjacency matrix of the network. This

counts the number of closed walks centered at node i weighting a walk of length k by a

penalty factor of 1
k! . In this way, shorter walks are deemed more important than longer

walks.

By contrast, the row sum of eA for node i is given by
∑n

j=1[e
A]ij , which counts all

walks between node i and all the nodes in the network (node i included), weighting

walks of length k by a penalty factor of 1
k! . Thus, the ith row sum of eA can be in-

terpreted as the total subgraph communicability of node i, and can be interpreted as

a measure of the importance of the ith node in the network, since a node with high

communicability with a large number of other nodes in the network is likely to be an
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important node, and certainly a more important node than one characterized by low

total communicability.

An immediate question is how this centrality measure compares with the subgraph

centrality of node i in the network. In general, the rankings produced by the total

communicability measure will not be the same as those produced by the subgraph

centrality measure. The difference between the two rankings is

n
∑

j=1

[eA]ij − [eA]ii =
∑

j 6=i

[eA]ij =
∑

j 6=i

n
∑

k=1

eλkvkivkj , (2.1)

where vik is the ith element of the normalized eigenvector vk of A associated with the

eigenvalue λk. Note that eA is always positive definite and that its diagonal entries

are often large compared to the off-diagonals. If the diagonal entries of eA vary over a

wide range while its off-diagonal sums remain confined within a more narrow range,

the rankings produced by the two methods will not differ by much. However, this

depends both on the spectrum of A and the entries of the eigenvectors.

While it appears to be difficult, in general, to establish a relation between the rank-

ings produced by the subgraph centrality and total communicability, for certain types

of simple graphs it is easy to show that the two methods will give identical rankings.

These include complete graphs and cycles (where each node has the exact same ranking

under both systems), paths and star graphs. A star graph on n nodes has one central

node that is connected to each of the n−1 remaining nodes and no other edges. Under

both ranking systems, the central node is ranked highest and the remaining nodes all

have the same scores. This can be shown either using graph theory or by examining the

eigenvalues and eigenvectors of the star graph (more information about the spectra of

star graphs can be found in [2]).

One case where the two measures could be expected to give similar rankings is that

of networks with a large spectral gap, λ1 − λ2, between the first (largest) and second



34 2.3 Total network communicability

eigenvalue. We have:
[

eA
]

ii
= eλ1v21i +

n
∑

k=2

eλkv2ki

and
[

eA1
]

i
= eλ1

(

vT
1 1

)

v1i +
n
∑

k=2

eλk
(

vT
i 1

)

vki.

Dividing both expressions by the constant eλ1 (which does not affect the rankings)

and observing1 that vT
1 1 = ‖v1‖1 shows that for λ1 ≫ λ2 the two rankings are largely

determined by the quantities v21i and ‖v1‖1v1i, respectively, and therefore by the entries

v1i of the dominant eigenvector of A. Thus, if the difference λ1−λ2 is sufficiently large,

the two centrality measures reduce to eigenvector centrality [16] and therefore can be

expected to result in very similar rankings, especially for the top nodes. Numerical

experiments (not shown here) performed on Erdös–Renyi graphs with large spectral

gaps have confirmed this fact.

However, it is difficult to quantify a priori how large the spectral gap needs to be

for all these rankings to be identical (or even approximately the same). In the sec-

tion on computational experiments we will see that there can be significant differences

between the rankings obtained using subgraph centrality and those using total commu-

nicability centrality, even for networks with a relatively large spectral gap.

2.3 Total network communicability

The total communicabilities of individual nodes give a measure of how well each node

communicates with the other nodes of the network. In order to measure how effectively

communication takes place across the network as a whole, we consider the sum of all

1By the Perron–Frobenius Theorem, the dominant eigenvector can be chosen to have nonnegative
entries, and positive entries when the graph G is connected.
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the total communicabilities. For a network with adjacency matrix A, this is given by

C(A) =

n
∑

i=1

[

eA1
]

i
=

n
∑

i=1

n
∑

k=1

eλk
(

vT
i 1

)

vki = 1T eA1 , (2.2)

where, as in section 2.2, λk is the kth eigenvalue of A and vik is the ith element of

the normalized eigenvector vk associated with λk. Here we propose to use the total

network communicability, C(A), as a global measure of the ease of sending information

across a network. We emphasize that while C(A) is defined as the sum of all the entries

of eA, it is not necessary to know any of the individual entries of eA to compute C(A);

indeed, very efficient methods exist to compute quadratic forms of the type vT f(A)v

for a given function f(x), matrix A and vector v, see [7, 9, 60] and the discussions in

Sections 1.7.2 and 4.8.

It is instructive to compare the total communicability of a network with the Estrada

index, an important graph invariant defined as the sum of all the subgraph centralities:

EE(A) =
n
∑

i=1

[

eA
]

ii
=

n
∑

i=1

eλi = Tr(eA).

The following proposition provides simple lower and upper bounds for C(A) in terms

of EE(A) and other spectral quantities associated with the underlying network.

Proposition 2.3.1 Let A be the adjacency matrix of a simple network on n vertices.

Then,

EE(A) ≤ C(A) ≤ n e‖A‖2 ,

where ‖A‖2 denotes the spectral norm of A. In particular, for an undirected network

we have

EE(A) ≤ C(A) ≤ n eλ1 .
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Proof: The lower bound is trivial, as

EE(A) =

n
∑

i=1

[

eA
]

ii
≤

n
∑

i=1

n
∑

j=1

[

eA
]

ij
=

n
∑

i=1

[

eA1
]

i
= C(A).

The upper bound follows from noticing that C(A) = 1T eA1 =
(

eA1
)T

1 = 〈eA1,1〉 and

applying the Cauchy–Schwarz inequality to the quadratic form 〈eA1,1〉:

|〈eA1,1〉| ≤ ‖eA1‖2‖1‖2 ≤ ‖eA‖2‖1‖2‖1‖2 ≤ n e‖A‖2 .

For an undirected network A is symmetric and λ1 = ‖A‖2. �

Note that the lower bound is attained in the case of the “empty” graph with adja-

cency matrix A = 0, while the upper bound is attained on the complete graph, whose

adjacency matrix is A = 11T − I.

The bounds from Proposition 2.3.1 also hold for eβA, β > 0. For any connected

graph with adjacency matrix A, the bounds get tighter as β → 0+, since both the lower

and upper bound tend to 1. The parameter β can be interpreted as an inverse temper-

ature and is a reflection of external disturbances on the network (see, e.g., [46] for

details); taking β → 0+ is equivalent to “raising the temperature” of the environment

surrounding the network.

When appropriately normalized, C(A) can be used to compare the ease of informa-

tion exchange on different networks. This could be useful, for instance, in the design

of communication networks. In the following sections we compute the total communi-

cability for various types of networks. The question arises of what would constitute a

reasonable normalization factor. There are several possibilities. Normalizing C(A) by

the number n of nodes corresponds to the average total communicability of the network

per node. Similarly, normalizing C(A) by the number m of edges would correspond

to the average total communicability of the network per edge. We note also that the
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minimum value of C(A) is n, corresponding to the empty graph on n nodes (E = ∅),

while the maximum value is n2en−1 − n, corresponding to the complete graph on n

nodes. The expression

Ĉ(A) :=
C(A)− n
nen−1 − n

takes its values in the interval [0, 1], with Ĉ(A) = 0 for “empty” graphs (no communi-

cation can take place on such graphs) and Ĉ(A) = 1 on complete graphs (for which

the ease of communication between nodes is clearly maximum). Unfortunately, the de-

nominator in this expression grows so fast that for most sparse graphs evaluating Ĉ(A)

results in underflow.

In the experiments below we chose to normalize C(A) by n, the number of nodes,

and by m, the number of edges; for the network used in our tests we found that com-

paring networks based on C(A)/n or on C(A)/m yields exactly the same rankings,

therefore we only include results for the former measure.

2.4 Computational studies

In this section we carry out extensive centrality computations for a variety of networks,

with the aim of comparing subgraph centrality with total communicability centrality.

In particular, we are interested in determining if, or for what type of networks, the two

centrality measures provide similar rankings. Moreover, for those networks where the

two measures result in rankings that differ significantly, we would like to obtain some

insights on why this is the case. Of course it would be desirable to know when one

measure should be preferred to the other, but this is a difficult problem since it is not

easy to come up with objective criteria for comparing ranking methods (see the discus-

sion in [74, Chapter 16]). We will compare the two methods in terms of computational

cost in section 4.8. To measure similarities between the rankings obtained with the two

methods, we use the methodology described in Chapter 1, Section 1.6.
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Unless otherwise specified, all experiments were performed using Matlab version

7.9.0 (R2009b) on a MacBook Pro running OS X Version 10.6.8, a 2.4 GHZ Intel Core

i5 processor and 4 GB of RAM. In this section, we use the Matlab built-in function expm

for computing the matrix exponential.

2.4.1 Test matrices

The synthetic examples used in the tests were produced using the CONTEST toolbox

in Matlab [91, 92]. The graphs tested were of two types: preferential attachment

(Barabási–Albert) model and small world (Watts–Strogatz) model. In CONTEST, these

graphs and the corresponding adjacency matrices can be built using the functions pref

and smallw, respectively.

The preferential attachment model was designed to produce networks with scale-

free degree distributions as well as the small world property [5]. In CONTEST, prefer-

ential attachment networks are constructed using the command pref(n,d) where n

is the number of nodes in the network and d ≥ 1 is the number of edges each new node

is given when it is first introduced to the network. The network is created by adding

nodes one by one (each new node with d edges). The edges of the new node connect

to nodes already in the network with a probability proportional to the degree of the

already existing nodes. This results in a scale-free degree distribution. Note that with

this construction, the minimum degree of the network is d. When d > 1 this means that

the network has no dangling nodes (nodes of degree 1), whereas in many real-life net-

works one often observes a high number of dangling nodes. In the CONTEST toolbox,

the default value is d = 2.

In our experiments, we tested various values of d on a network of size n = 1000:

twenty networks were tested for all values 1 ≤ d ≤ 10, as well as for a few larger

values. In Table 2.1, the averages of the correlation coefficients between the subgraph

centrality rankings and the total subgraph communicability rankings can be found for
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Table 2.1: Comparison, using the correlation coefficient, of rankings based on the diagonal
entries and row sums of eA for 1000-node scale-free networks of various parameters built
using the pref function in the CONTEST Matlab toolbox. The values reported are the
averages over 20 matrices with the same parameters. The parameter d is the initial degree
of nodes in the network (and consequently the minimum degree of the network).

d cc

1 0.224
2 0.343
3 0.517
4 0.905
5 0.993
6 0.999
7 0.999
≥ 8 1

Table 2.2: Intersection distance comparisons of rankings based on the diagonal entries
and row sums of eA for 1000-node scale-free networks of various parameters built using
the pref function in the CONTEST Matlab toolbox. The values reported are the averages
over 20 matrices with the same parameters. The parameter d is the initial degree of nodes
in the network (and consequently the minimum degree of the network).

d isim isim10%

1 0.174 0.199
2 0.036 0.031
3 0.003 0.005
4 2.04e-4 2.79e-4
5 1.30e-5 1.71e-5
6 9.83e-7 0
7 4.93e-7 0
≥ 8 0 0

various values of d. The intersection distance values can be found in Table 2.2. The

intersection distance values were calculated both for the full set of rankings and for the

top 10% of ranked nodes.

The results show that correlation between the two metrics increases and the in-

tersection distance value decreases quickly with the value of the parameter d. The

intersection distance values for the top 10% of nodes are very close to those for the

complete set of nodes. For sufficiently dense networks, the two measures provide essen-



40 2.4 Computational studies

tially identical rankings, producing correlation coefficients close to 1 and intersection

distances close to 0.

A second class of synthetic test matrices used in our experiments corresponds to

small-world networks (Watts–Strogatz model). The small world model was developed

as a way to impose a high clustering coefficient onto classical random graphs [95]. The

name comes from the fact that, like classical random graphs, the Watts–Strogatz model

produces networks with the small world (that is, small graph diameter) property. To

build these matrices, the input is smallw(n,d,p) where n is the number of nodes in

the network, which are arranged in a ring and connected to their d nearest neighbors

on the ring. Then each node is considered independently and, with probability p, a

link is added between the node and one of the other nodes in the network, chosen

uniformly at random. At the end of this process, all loops and repeated edges are

removed. For this set of experiments, the size of the network was fixed at n = 1000

and the probability of an extra link was left at the default value of p = 0.1 while d was

varied.

The values of d tested were: all values 1 ≤ d ≤ 10, along with all multiples of

10 up to 200. In each case, twenty networks were created with each value of d. The

average correlation coefficients between the subgraph centrality rankings and the total

communicability rankings are given in Table 2.3. As before, the correlation coefficients

were computed between the complete sets of rankings. The intersection distances,

reported in Table 2.4, were computed on both the complete sets of rankings and the

top 10% of ranked nodes.

It is evident from these results that for this class of small world networks, the sim-

ilarity between the two ranking measures is much weaker than for the preferential

attachment model, at least as long as the networks remain fairly sparse. The inter-

section distances are also relatively large, further indicating that the two measures are

much more weakly related than in the case of the preferential attachment model. For
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Table 2.3: Comparison, using the correlation coefficient, of rankings based on the diagonal
entries and row sums of eA for 1000-node small world networks of various parameters
made using the smallw function in the CONTEST Matlab toolbox. The values reported
are the average over 20 matrices with the same parameters.

d cc

1 0.177
2 0.089
3 0.037
4 0.033
5 0.031
6 0.048
7 0.039
8 0.046
9 0.031
10 0.054

d cc

20 0.156
30 0.222
40 0.240
50 0.310
60 0.426
70 0.431
80 0.747
90 0.926
100 0.997
≥ 110 1

Table 2.4: Intersection distance comparison of rankings based on the diagonal entries and
row sums of eA for 1000-node small world networks of various parameters made using the
smallw function in the CONTEST Matlab toolbox. The values reported are the averages
over 20 matrices with the same parameters.

d isim isim10%

1 0.015 0.071
2 0.056 0.160
3 0.089 0.252
4 0.117 0.350
5 0.151 0.479
6 0.178 0.621
7 0.218 0.709
8 0.243 0.731
9 0.262 0.705

10 0.284 0.725

d isim isim10%

20 0.311 0.713
30 0.239 0.535
40 0.133 0.351
50 0.111 0.214
60 0.039 0.120
70 0.014 0.041
80 0.002 0.007
90 1.71e-4 4.05e-4
100 5.88e-6 1.09e-5
≥ 110 0 0

some values of d, the intersection distance between the top 10% of nodes is above 0.7,

indicating that there is little consistency among the rankings of the top 10% of nodes

under the two measures. As the networks become increasingly dense, however, the

correlation between the two measures becomes stronger and the intersection distance

eventually decreases.
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Table 2.5: Comparison of the total network communicability C(A) of a ring lattice and
small world rings with increasing probability of a shortcut. The computed values were
averaged over 20 instances.

Graph number of edges C(A) normalized C(A)

5000 node ring lattice 5000 3.69e04 7.4
smallw(5000,1,.1) 5492 4.83e04 9.7
smallw(5000,1,.2) 6222 6.22e04 12.4
smallw(5000,1,.3) 6495 7.92e04 15.8
smallw(5000,1,.4) 6990 9.90e04 19.8
smallw(5000,1,.5) 7496 1.24e05 24.8
smallw(5000,1,.6) 7999 1.53e05 30.6

2.4.2 Total communicability in small world networks

For networks with low connectivity (or high locality), the total network communicabil-

ity can be expected to be low compared with networks with higher connectivity. For

instance, on a 5000 node ring lattice, the total network communicability is C(A) =

3.69e04 and the normalized C(A) is 7.4. However, when even a few shortcuts are

added across the lattice using the Watts–Strogatz small world model, this value jumps

considerably. If the probability of a shortcut is p = 0.1, the normalized total network

communicability (averaged over 20 networks created using input smallw(5000,1,

p)) is 9.7. If the probability of a shortcut is increased to p = 0.2, the normalized total

network communicability increases to 12.4. These and additional results can be found

in Table 2.5 and Fig. 2.1.

2.4.3 Discussion of test results using synthetic data

The results reported so far can be explained as follows. In a (regular) ring-shaped

network, no node is more central than the other nodes and no reasonable centrality

measure would be able to assign a (strict) ranking of the nodes. In a small world

network obtained by perturbing a regular ring-shaped network, all the nodes have ap-

proximately the same importance, with the nodes with extra links (“shortcuts”) being
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Figure 2.1: Plot of of the total network communicability C(A) for small world graphs
with increasing probability d of a shortcut. The computed values were averaged over 20
instances.

slightly more important than the others. When d is small, these shortcuts matter more,

but the subgraph centrality scores and the total communicability scores do not have a

large range. Due to this, the change in the scores due to moving from the subgraph

centrality measure to the total communicability measure can have a high impact on

node rankings. This leads to a low correlation and a relatively large intersection dis-

tance between the two rankings. When d gets very large, the shortcuts matter less and

cause less perturbations between the two sets of rankings. By contrast, in a scale-free

preferential attachment network both the subgraph centrality scores and total com-

municability scores are spread out over a large range, even for small d, and adding

the corresponding off-diagonal row sums to the diagonal entries does not change the

rankings as much.

normalizedCA.eps
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2.4.4 Real data

Next, we study correlations between the two ranking methods using various networks

corresponding to real data. The networks in this section come from a variety of

sources. The Zachary Karate Club network is a classic example in network analysis

[98]. The Intravenous Drug User and Yeast PPI networks were provided to us by

Prof. Ernesto Estrada. The Yeast PPI network has 440 ones on the diagonal due to

the self-interactions of certain proteins. The remainder of the networks can be found in

the University of Florida Sparse Matrix Collection [31] under different “groups”. The

Erdös networks are from the Pajek group. They represent various subnetworks of the

Erdös collaboration network. The ca-GrQc and ca-HepTh from the SNAP group are col-

laboration networks for the arXiv General Relativity and High Energy Physics Theory

subsections, respectively. The as-735 network, also from the SNAP group, contains the

communication network of a group of Autonomous Systems (AS) measured over 735

days between November 8, 1997 and January 2, 2000. Communication occurs when

routers from two Autonomous Systems exchange information. The Minnesota network

from the Gleich group represents the Minnesota road network. The order n and num-

ber of nonzeros nnz of the corresponding adjacency matrices are given in Table 2.7.

These networks exhibit a wide variety of structural properties and together constitute

a rather heterogeneous sample of real-world networks. All networks except the Yeast

PPI network are simple and all are undirected. The Yeast PPI network is undirected

but does have several ones on the diagonal, representing the self-interaction of certain

proteins. Table 2.6 reports the correlation coefficients between the two sets of rankings

for all the nodes, the top 10% of the nodes and the top 1% of the nodes (limited to the

cases where the two methods rank the same nodes in the top 10% and top 1%), as well

as the value of the two largest eigenvalues λ1 and λ2 of the adjacency matrix.

Table 2.7 reports the correlation coefficients between the two sets of rankings for

all the nodes, the top 10% of the nodes and the top 1% of the nodes (limited to the



2. TOTAL COMMUNICABILITY AS A CENTRALITY MEASURE 45

Table 2.6: Basic data on the real-world networks examined.

Graph n nnz λ1 λ2

Zachary Karate Club 34 156 6.726 4.977
Drug User 616 4024 18.010 14.234
Yeast PPI 2224 13218 19.486 16.134

Pajek/Erdos971 472 2628 16.710 10.199
Pajek/Erdos972 5488 14170 14.448 11.886
Pajek/Erdos982 5822 14750 14.819 12.005
Pajek/Erdos992 6100 15030 15.131 12.092
SNAP/ca-GrQc 5242 28980 45.617 38.122

SNAP/ca-HepTh 9877 51971 31.035 23.004
SNAP/as-735 7716 26467 46.893 27.823

Gleich/Minnesota 2642 6606 3.2324 3.2319

Table 2.7: Comparison of rankings based on the diagonal and row sum of eA for various
real-world networks.

Graph cc cc 10 cc 1

Zachary Karate Club 0.420 – 1
Drug User 0.083 0.976 1
Yeast PPI 0.108 – 1

Pajek/Erdos971 0.523 1 1
Pajek/Erdos972 0.122 – –
Pajek/Erdos982 0.128 – –
Pajek/Erdos992 0.143 – –
SNAP/ca-GrQc 0.021 – 0.995

SNAP/ca-HepTh 0.007 – –
SNAP/as-735 0.904 0.771 1

Gleich/Minnesota 0.087 – –
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Table 2.8: Intersection distance comparison of rankings based on the diagonal and row
sum of eA for various real-world networks.

Graph isim isim10% isim1%

Zachary Karate Club 0.044 0.111 0
Drug User 0.102 0.002 0
Yeast PPI 0.025 0.056 0

Pajek/Erdos971 0.004 0 0
Pajek/Erdos972 0.081 0.075 0.047
Pajek/Erdos982 0.079 0.065 0.044
Pajek/Erdos992 0.077 0.055 0.034
SNAP/ca-GrQc 0.043 0.091 5.49e-4

SNAP/ca-HepTh 0.142 0.319 0.134
SNAP/as-735 1.81e-4 0.001 0

Gleich/Minnesota 0.096 0.341 0.709

cases where the two methods rank the same nodes in the top 10% and top 1%), as

well as the value of the two largest eigenvalues λ1 and λ2 of the adjacency matrix. A

“–" in the table signifies that different lists of top nodes where produced under the two

rankings, hence correlation coefficients could not be computed in such cases. Table 2.8

reports the intersection distances between the two sets of rankings for all, for the top

10%, and for the top 1% of the nodes. Table 2.9 reports the normalized Estrada index

and normalized total network connectivity for each of the networks. For the Zachary

Karate Club, which only has 34 nodes, cc 1 = 1 and isim1% = 0 indicate that the top

two ranked nodes under the two rankings are the same. The top node is node 34,

which corresponds to the president of the karate club, and the second is node 1, which

corresponds to the instructor. These were the two most influential members of the club

and fought with each other to the point that eventually the club split into two factions

aligned around each of them [98].

The results indicate that there is a good deal of variation between the correlation

coefficients for these networks. The correlation coefficient between the rankings of all

the nodes ranges from a low of 0.007 for the SNAP/ca-HepTh network to a high of 0.904

for the SNAP/as-735 network. Even for networks that come from similar datasets, the
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Table 2.9: Comparison of the normalized Estrada index EE(A)/n, the normalized total
network connectivity C(A)/n, and e‖A‖2 (= eλ1) for various real-world networks.

Graph normalized EE(A) normalized C(A) e‖A‖2

Zachary Karate Club 30.62 608.79 833.81
Drug User 1.12e05 1.15e07 6.63e07
Yeast PPI 1.37e05 3.97e07 2.90e08

Pajek/Erdos971 3.84e04 4.20e06 1.81e07
Pajek/Erdos972 408.23 1.53e05 1.88e06
Pajek/Erdos982 538.58 2.07e05 2.73e06
Pajek/Erdos992 678.87 2.50e05 3.73e06
SNAP/ca-GrQc 1.24e16 8.80e17 6.47e19

SNAP/ca-HepTh 3.05e09 1.06e11 3.01e13
SNAP/as-735 3.00e16 3.64e19 2.32e20

Gleich/Minnesota 2.86 14.13 35.34

correlation coefficients can be very different. For example, the networks in the Pajek

group are all subsets of the Erdös collaboration network, but correlations between the

two sets of rankings range between 0.122 for the Erdos972 network and 0.583 for the

Erdos971 network.

For most of the networks, the correlation coefficient (when defined) increases when

only the top 1% of nodes are considered (cc 1), sometimes greatly. Five of the networks

(Zachary Karate Club, Drug User, Yeast PPI, Pajek/Erdos971, and SNAP/as-735) pro-

duce the exact same rankings on the top 1% of nodes. Another network (SNAP/ca-

GrQc) has a correlation coefficient greater than 0.9 on the top 1% of nodes.

The intersection distance values behave in a similar way, although there is not as

much variation in the values. Among all the nodes, the smallest intersection distance

is 1.81e-4 for the as-735 network and the largest is 0.142 for the ca-HepTh network.

These networks also had the largest and smallest correlation coefficients, respectively,

for the full set of nodes. For 5 of the 11 networks examined, the intersection distance

value decreases when only the top 10% of nodes are considered and for all cases ex-

cept for the Minnesota road network, it decreases when only the top 1% of nodes are

considered.
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It is interesting to note that the similarity between the two ranking methods is

very different on the ca-GrQc and the ca-HepTh networks. The two networks are both

arXiv collaboration networks from subsections of physics so, intuitively, one would as-

sume that they behaved similarly. However, the two rankings are very different on the

ca-HepTh network and are highly correlated on the ca-GrQc network. The ca-GrQc

network has a spectral gap of approximately 7.5 while the spectral gap of ca-HepTh is

approximately 8, only slightly larger. The relative spectral gaps are also comparable.

Thus, it is clear that the spectral gap alone cannot be used to differentiate between the

two ranking methods. It appears that while the two networks are both physics collab-

oration networks, there are significant structural differences between the two groups

which cause the two ranking systems to behave very differently. Some insight can be

gleaned by looking at the degree distributions of the two networks. Although the ca-

HepTh network is almost twice as large as the ca-GrQc, the maximum degree on the

network is only 65 while the maximum degree on the ca-GrQc network is 81. See

Fig. 2.2 for the degree distributions of the two networks. Additionally, the total com-

municability scores achieved by nodes in the ca-GrQc network range from 2.7 to 8.5e19

(the subgraph centrality scores range from 1.5 to 1.6e18). In contrast, even with many

more nodes, the total communicability scores of the ca-HepTh network have a smaller

range, from 2.7 to 3.2e13 (the subgraph centrality scores range from 1.5 to 9.7e11). It

appears that the wider range of scores in the ca-GrQc network helps to prevent rank-

ings from being changed when the scores are perturbed by the addition of off-diagonal

communicabilities. This can be observed when looking at the intersection distances

between the two sets of rankings on the networks, which are plotted in Fig. 2.3. Over-

all, the intersection distances are much lower for the ca-GrQc network than for the

ca-HepTh network. Additionally, for k ≤ 34, isimk(ca-GrQc)= 0, indicating that the

first 34 nodes are ranked exactly the same. In contrast, isimk(ca-HepTh)= 0 only for

k ≤ 5, after which there is a large jump in the intersection distances.
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Figure 2.2: The degree distributions of the ca-GrQc (left) and the ca-HepTh (right) collab-
oration networks.
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Figure 2.3: The intersection distance values (isimk) of the ca-GrQc (left) and the ca-HepTh
(right) collaboration networks.

Similar behavior can be observed on the various instances of the Erdös collabora-

tion network. Erdos971, which is very small, shows a high correlation between the two

rankings; indeed, the rankings of the top 10% of nodes are exactly the same. On the

other instances of the collaboration network, however, the rankings are somewhat dif-

ferent, as can be seen from the relatively low values of the correlation coeffcients. The

intersection distance values, while not very high, are somewhat higher than for most

other networks. The maximum subgraph centrality and total communicability scores

deg_dist_GrQc.eps
deg_dist_HpTh.eps
isk_GrQc.eps
isk_HepTh.eps
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of the Erdos972 network are the smallest of any of the Erdös collaboration subgraphs.

The maximum subgraph centrality score is 1.18e05 and the maximum total centrality

score is 9.20e06. By comparison, on the (much smaller) Erdos971 network, the max-

imum subgraph centrality score is 1.11e06. On the Erdos982 network, the maximum

subgraph centrality score is 1.71e05 and on the Erdos992 network it is 2.47e05. Al-

though the top 5 nodes of the Erdos972 network are exactly the same under the two

ranking schemes, the relatively narrow range of possible scores means that the addition

of off-diagonal values to the diagonal ones perturbs the rankings of the other nodes so

much as to result in a relatively high value of the intersection distance among the top

1% of nodes.

As before, the spectral gap for these networks does not give much insight into the

behavior of the two ranking schemes, unless it is really large; the largest spectral gap for

this set of test problems occur for SNAP/as-735, and indeed here we observe a strong

correlation and a small intersection distance between the two metrics. Conversely, for

the (planar, fairly regular) Gleich/Minnesota network, the spectral gap is smallest and

not surprisingly the correlation is very weak and the intersection distance for the top

1% of the nodes, isim1%, is very high at 0.709.

When examining the (normalized) total network connectivities of the various net-

works (see Table 2.9), it can be seen that the ease of information sharing across the

networks varies widely. Some networks, such as the collaboration networks ca-HepTh

and ca-GrQc, have a high normalized C(A) (8.80e17 and 1.06e11, respectively). The

value is even higher for the SNAP/as-735 router network (C(A)/n =3.64e19). The

Minnesota road network, on the other hand, has a normalized C(A) of only 14.13,

indicating that the network is relatively poorly connected, as one would expect in a

graph characterized by wide diameter, small bandwidth and high locality.
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2.4.5 Identification of essential proteins in PPI network of yeast

One important application of node centrality measures is to rank nodes in protein-

protein interaction networks (PPIs) in an attempt to determine which proteins are

essential, in the sense that their removal would result in the death of the cell. The

goal of such rankings is for as many of the top-ranked nodes as possible to correspond

to essential proteins. In [42], various centrality measures were tested on their abil-

ity to identify essential proteins in the Yeast PPI network. It was shown that, among

the centrality measures tested, subgraph centrality identified the highest percentage

of essential proteins ranked in the top 30 nodes, identifying 18 essential proteins (in

[42], subgraph centrality was said to identify 19 essential proteins, but this was later

corrected [37]). When total communicability is used instead, the top 30 nodes are

the same, so the same percentage of essential proteins are identified. The intersection

distances between the two sets of rankings are displayed in Fig. 2.4. Here, it can be

seen that the intersection distances are small for approximately the top 50 nodes, then

they begin to rise. The two rankings are least similar for nodes ranked 200-500, then

their similarity increases again. As already noted, total communicability rankings can

be calculated much more quickly than subgraph centrality rankings (see also section

4.8). Although there are currently methodologies which do better in protein ranking

(see [43] for example), our findings suggest that total communicability does provide

valuable information about the relative importance of nodes in the network.

2.4.6 Further discussion of test results using real networks

The results just described indicate that in general the two centrality measures can pro-

duce significantly different rankings, even when one restricts the attention to the top

1% of nodes, and even for networks belonging to the same “family”. As in the case

of synthetic networks, a wider range of values in the two sets of centralities leads to
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Figure 2.4: The intersection distance values (isimk) of the Yeast PPI network.

stronger correlations between the corresponding rankings than in the case of a narrow

range.

Two extreme cases are represented by the SNAP/as-735 and Gleich/Minnesota data

sets. The first one exhibits a large value of the spectral gap, and thus (as expected) a

strong correlation between the two rankings; the second one has tiny spectral gap

and results in very weakly correlated rankings. For networks that fall somewhere in

between these two extremes, the observed correlation coefficients can vary significantly.

The subgraph centrality scores measure how “well-connected” a node is in the network

as a whole while the communicability score between nodes i and j measures how well

information travels between node i and node j. Thus, the total communicability of

node i is a measure of how well information travels between node i and any node in

the network (node i itself included). Although these two measures are closely related,

they are not quite the same. This observation suggests that the two centrality measures

reflect somewhat different structural properties of the networks. Thus, they should

be applied in concert rather than in alternative of one another, unless computational

considerations dictate otherwise.

isk_yeast.eps
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2.5 Computational aspects

Table 2.10 lists the timings for calculating the matrix exponential directly using expm

and for estimating the row and diagonal entries as described in Chapter 1, Section

1.7. The subgraph centralities were estimated using the mmq toolbox (with 5 iterations

of the Lanczos algorithm per node), and the total communicabilities were estimated

using the funm_kryl toolbox to estimate eA1 (using a very stringent stopping toler-

ance of 1e-16). These computations have been performed using Matlab Version 7.9.0

(R2009b) on a 2.4 GHZ Intel Core i5 processor with 4 GB of RAM. In general, the

timings with expm increase for increasing number of nodes, but structural properties

of the underlying graph, like the network diameter, can have a very significant im-

pact on the computing times. For example, the yeast PPI network and the Minnesota

road network have approximately the same number n of nodes (2224 and 2642, re-

spectively), yet computing the matrix exponential for the yeast network takes almost

25 times longer than for the Minnesota road network. This appears to be due to the

fact that the yeast network has a much smaller diameter than the Minnesota network,

therefore the powers Ak of the adjacency matrix fill up much more quickly. Since the

algorithm implemented in expm involves solving linear systems with polynomials in

A as coefficient matrices, the execution time for sparse matrices with small diameter

tends to be much higher than for matrices exhibiting a high degree of locality.

For the majority of the networks tested, using the mmq toolbox to estimate subgraph

centrality was faster than using expm, frequently by far. The exceptions (Zachary

Karate Club, Drug User, Erdos971, and Minnesota) were the networks with a small

number of nodes and/or a high diameter.

The computation of the total communicabilities using funm_kryl was by far the

fastest method for all networks tested, with the only exception of the tiny Zachary

Karate Club network. In principle, this is a clear advantage of total communicability
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Table 2.10: Timings (in seconds) to compute centrality rankings based on the diagonal
and row sum of eA for various test problems using different methods.

Graph expm mmq funm_kryl

Zachary Karate Club 0.062 0.138 0.120
Drug User 0.746 2.416 0.363
Yeast PPI 47.794 9.341 0.402

Pajek/Erdos971 0.542 2.447 0.317
Pajek/Erdos972 579.214 35.674 0.410
Pajek/Erdos982 612.920 39.242 0.393
Pajek/Erdos992 656.270 53.019 0.325
SNAP/ca-GrQc 281.814 23.603 0.465

SNAP/ca-HepTh 2710.802 58.377 0.435
SNAP/as-735 2041.439 75.619 0.498

Gleich/Minnesota 1.956 10.955 0.329

over subgraph centrality. However, as we saw, the two methods often result in rather

different rankings, therefore we cannot simply replace subgraph centrality with total

communicability.

2.5.1 A large-scale example

In addition to the test results discussed above, we performed tests with the digraph

of Wikipedia (as of June 6, 2011), where nodes correspond to entries and directed

links to hyperlinks from one entry to another. In this case, the entries of eA1 provide

a ranking of the hubs in the networks, see [8]. This graph contains 4,189,503 nodes

and 67,197,636 links, and it is prohibitively large for centrality measures based on

estimating the diagonals of the matrix exponential. For this reason, we limit ourselves

to computations using the funm_kryl toolbox to estimate the row sum vector eA1.

The restart parameter was set to 10 and we allowed a maximum of 50 restarts. The

run time to obtain the rankings on a parallel system comprising 24 Intel(R) Xeon(R)

E5-2630 2.30GHz CPU(s) was 216.7 seconds. This shows that centrality calculations

using total communicability are quite feasible even for large networks.
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2.6 Resolvent-based centrality measures

There are matrix functions other than the matrix exponential that may be used to

calculate subgraph centrality and subgraph communicability scores. The most common

of these is the matrix resolvent. Like the matrix exponential, [(I − αA)−1]ii counts the

number of closed walks centered at node i and
∑n

j=1[(I − αA)−1]ij counts all walks

between node i and all other nodes in the network. In this case, however, a walk of

length k is penalized by a factor of αk. One drawback of the use of the matrix resolvent

in determining centrality rankings is the need to choose the value of α; also, different

values of α can lead to different rankings. For the purposes of the experiments below,

we select α = 0.85
λmax(A) (similar to the choice of parameter in PageRank [73]).

Resolvent-based total network communicability can also be evaluated. As when

using the matrix exponential (cf. section 2.3), the resolvent-based total network com-

municability is an upper bound for the resolvent-based Estrada index. In the following,

Cr(A) =
∑n

i=1

∑n
j=1

[

(I − αA)−1
]

ij
denotes the resolvent-based total communicability

of a network. The following Proposition can be easily proved along the same lines as

Proposition 4.4.1.

Proposition 2.6.1 Let A be the adjacency matrix of a simple, undirected network on

n vertices. Then for any 0 < α < 1
‖A‖2

,

EEr(A) := Tr
[

(I − αA)−1
]

≤ Cr(A) ≤
n

1− α‖A‖2
.

For an undirected network, λmax(A) = λ1 can replace ‖A‖2 in the upper bound above.

The resolvent-based subgraph centrality and total communicability rankings were

compared on the same two sets of synthetic networks used for the tests in Section 2.4.1.

Table 2.11 lists the average correlation coefficient between the subgraph centrality

and total communicability rankings for the nodes in networks constructed using the
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Table 2.11: Comparison using correlation coefficients of rankings based on the diagonal
entries and row sums of (I − αA)−1 for 1000-node scale-free networks of various param-
eters built using the pref function in the CONTEST Matlab toolbox. For each instance,
the results are measured for α = 0.85

λmax(A) . The values reported are the averages over 20
matrices with the same parameters.

d cc

1 0.292
2 0.370
3 0.442
4 0.486
5 0.536
6 0.583
7 0.607
8 0.638
9 0.667

d cc

10 0.691
20 0.840
30 0.890
40 0.917
50 0.933
60 0.942
70 0.949
80 0.954
90 0.958
100 0.962

d cc

110 0.964
120 0.965
130 0.968
140 0.970
150 0.971
160 0.973
170 0.973
180 0.975
190 0.976
200 0.976

Table 2.12: Intersection distance comparison of rankings based on the diagonal entries
and row sums of (I−αA)−1 for 1000-node scale-free networks of various parameters built
using the pref function in the CONTEST Matlab toolbox. For each instance, the results
are measured for α = 0.85

λmax(A) . The values reported are the averages over 20 matrices with
the same parameters.

d isim isim10%

1 0.186 0.491
2 0.205 0.364
3 0.192 0.235
4 0.179 0.173
5 0.163 0.126
6 0.150 0.102
7 0.137 0.082
8 0.124 0.068
9 0.115 0.059

d isim isim10%

10 0.105 0.051
20 0.055 0.020
30 0.035 0.012
40 0.025 0.007
50 0.019 0.005
60 0.015 0.004
70 0.012 0.003
80 0.010 0.002
90 0.009 0.002

100 0.007 0.001

d isim isim10%

110 0.006 0.001
120 0.005 7.12e-4
130 0.005 6.98e-4
140 0.004 5.74e-4
150 0.004 5.62e-4
160 0.003 3.69e-4
170 0.003 4.25e-4
180 0.003 3.11e-4
190 0.003 3.16e-4
200 0.002 4.00e-4

preferential attachment model (function pref in CONTEST) and Table 2.12 lists the

intersection distances for all the nodes and for the top 10% of the nodes. For small

values of d (1 ≤ d ≤ 3), the correlation coefficients between the two sets of rankings

using the matrix resolvent are close to those using the matrix exponential. However,

when using the matrix exponential the average correlation coefficient was found to be
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Table 2.13: Comparison using correlation coefficients of rankings based on the diagonal
entries and row sums of (I − αA)−1 for 1000-node small world networks of various pa-
rameters built using the smallw function with p = 0.1 in the CONTEST Matlab toolbox.
For each instance, the results are measured for α = 0.85

λmax(A) . The values reported are the
averages over 20 matrices with the same parameters.

d cc

1 0.065
2 0.023
3 0.052
4 0.052
5 0.052
6 0.051
7 0.062
8 0.037
9 0.050

d cc

10 0.063
20 0.078
30 0.080
40 0.135
50 0.144
60 0.141
70 0.144
80 0.133
90 0.248

100 0.190

d cc

110 0.294
120 0.246
130 0.275
140 0.311
150 0.312
160 0.321
170 0.301
180 0.293
190 0.354
200 0.300

greater than 0.9 for all d ≥ 4, and exactly 1 for all d ≥ 8. Using the matrix resolvent

the correlation coefficient grows as d increases, but somewhat more slowly than for the

matrix exponential. The intersection distances are also larger for all values of d when

the matrix resolvent is used, although they also decrease as d increases. Moreover,

we did not find a single instance where the two methods produced exactly the same

rankings.

For the small world networks, all values 1 ≤ d ≤ 10 as well as as all multiples of

10 with 20 ≤ 10 ≤ 200 were tested. For each d, twenty networks were tested. The

averages of the correlation coefficients between the subgraph centrality and total com-

municability rankings can be found in Table 2.13 and the average intersection distances

for both all the nodes and the top 10% of the nodes can be found in Table 2.14. As was

the case for the matrix exponential, the two methods (diagonal entries and row sums)

using the matrix resolvent exhibit much weaker correlations for this class of networks

than for the preferential attachment networks; indeed, the correlations tend to be even

smaller for the resolvent than for the exponential. For d = 1, the average correlation is

0.065 and the average intersection distance was 0.040 using the resolvent, compared
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Table 2.14: Intersection distance comparison of rankings based on the diagonal entries
and row sums of (I − αA)−1 for 1000-node small world networks of various parameters
built using the smallw function with p = 0.1 in the CONTEST Matlab toolbox. For each
instance, the results are measured for α = 0.85

λmax(A) . The values reported are the averages
over 20 matrices with the same parameters.

d isim isim10%

1 0.040 0.149
2 0.070 0.189
3 0.085 0.241
4 0.091 0.269
5 0.098 0.301
6 0.104 0.318
7 0.126 0.361
8 0.135 0.414
9 0.149 0.413

d isim isim10%

10 0.156 0.435
20 0.207 0.508
30 0.198 0.517
40 0.204 0.571
50 0.207 0.621
60 0.191 0.588
70 0.181 0.582
80 0.189 0.607
90 0.156 0.597
100 0.179 0.585

d isim isim10%

110 0.147 0.541
120 0.148 0.553
130 0.160 0.554
140 0.142 0.560
150 0.123 0.542
160 0.121 0.539
170 0.124 0.517
180 0.125 0.512
190 0.114 0.504
200 0.123 0.504

to a correlation of 0.177 and an intersection distance of 0.015 using the exponential.

For the values of d tested, the highest average correlation coefficient was 0.354, for

d = 190. When looking at the intersection distances for other values of d, the picture

is somewhat different. Comparing Table 2.14 with Table 2.4, we see that for small

d the intersection distance between the two ranking schemes tends to be somewhat

higher with the matrix exponential than with the resolvent. However, as d increases

the intersection distance eventually drops with the matrix exponential, but not with

the resolvent. This is true both when looking at the ranking of all the nodes and when

looking at only the top 10%.

Next, we consider tests with real-world networks. As shown in Table 2.15, the

correlation coefficients between the two ranking systems for the whole set of nodes

were higher (in a majority of cases) using the matrix resolvent than they were using

the matrix exponential. (Again, a “–” signifies that correlation coefficients could not

be computed due to the fact that the two ranking schemes produced different lists of

nodes.) Only the Erdos971, as-735, and the Minnesota networks had a higher correla-

tion coefficient between the two ranking systems under the exponential than under the
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Table 2.15: Comparison using correlation coefficients of rankings based on the diagonal
entries and row sums of (I − αA)−1 with α = 0.85

λmax(A) for various real-world networks.

Graph cc cc 10 cc 1

Zachary Karate Club 0.589 1 1
Drug User 0.189 – –
Yeast PPI 0.177 – –

Pajek/Erdos971 0.233 – 1
Pajek/Erdos972 0.215 – –
Pajek/Erdos982 0.207 – –
Pajek/Erdos992 0.197 – —
SNAP/ca-GrQc 0.070 – –

SNAP/ca-HepTh 0.072 – –
SNAP/as-735 0.204 – —

Gleich/Minnesota 0.019 – –

Table 2.16: Intersection distance comparison of rankings based on the diagonal entries
and row sums of (I − αA)−1 with α = 0.85

λmax(A) for various real-world networks.

Graph isim isim10% isim1%

Zachary Karate Club 0.061 0 0
Drug User 0.125 0.145 0.069
Yeast PPI 0.204 0.363 0.187

Pajek/Erdos971 0.080 0.050 0
Pajek/Erdos972 0.110 0.273 0.263
Pajek/Erdos982 0.109 0.269 0.264
Pajek/Erdos992 0.109 0.271 0.247
SNAP/ca-GrQc 0.047 0.122 0.033

SNAP/ca-HepTh 0.058 0.159 0.236
SNAP/as-735 0.247 0.513 0.271

Gleich/Minnesota 0.102 0.301 0.557
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Table 2.17: Comparison of the normalized resolvent-based Estrada index EEr(A)/n and
total network connectivity Cr(A)/n for various real-world networks. Here, f(A) = (I −
αA)−1 with α = 0.85

λmax(A) .

Graph normalized EEr(A) normalized Cr(A)

Zachary Karate Club 1.21 5.13
Drug User 1.03 2.36
Yeast PPI 1.03 2.17

Pajek/Erdos971 1.03 2.44
Pajek/Erdos972 1.01 1.70
Pajek/Erdos982 1.01 1.66
Pajek/Erdos992 1.01 1.60
SNAP/ca-GrQc 1.00 1.21

SNAP/ca-HepTh 1.01 1.24
SNAP/as-735 1.00 1.86

Gleich/Minnesota 1.27 3.44

matrix resolvent. This can be understood when looking at the normalized Estrada in-

dexes and total network communicabilities in Table 2.17. The smaller the factor α, the

more it minimizes the contribution of the network data from A to the scores produced

by the diagonal entries or row sums of (I − αA)−1. This can also be seen by noticing

that as α → 0, (I − αA)−1 approaches the identity. In these experiments, α = 0.85
λmax(A) .

However, this also means that for the networks tested with a large maximum eigen-

value (such and ca-GrQc, ca-HepTh, and as-735) α is quite small, causing the resulting

subgraph centrality scores to be small and, consequently, close together. In the case

of a network with a small maximum eigenvalue (such as the Minnesota network), the

effect of α is not as pronounced. The compression of the score values means that a per-

turbation of the scores (such as occurs when switching from subgraph centrality scores

to total communicability scores) has a large effect on the node rankings, especially for

the higher ranked nodes.

When only the top 1% of nodes were considered, the exponential subgraph cen-

trality and exponential total communicability rankings were much closer together than

their resolvent counterparts, where often the top 1% of nodes were not even the same.
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This seems to indicate that when using the resolvent, the subgraph centrality and total

communicability tend to rank the less important nodes more similarly than they do

under the matrix exponential. Under the matrix exponential, the two rankings seem to

agree more closely on the important nodes than they do when using the resolvent. This

can also be seen when looking at the intersection distance, which gives more weight to

differences in the top ranked nodes than in the lower ranked nodes. For all networks

except ca-HepTh, the intersection distance between the two rankings is smaller when

using the exponential than when using the resolvent. When looking at the top 1%

of nodes, the intersection distances are also smaller (often much smaller) in the case

of the exponential, for all except three of the networks. The exceptions are the Min-

nesota road network (which has a large intersection distance on the top 1% of nodes

for both the exponential and the resolvent) and the Zachary Karate Club and Erdos971

networks (which have isim1% = 0 for both cases).

Another observation that can be made is that the resolvent-based total network

communicability Cr(A) is unable to discriminate between highly connected networks

and poorly connected ones, in stark contrast with the exponential-based one. For in-

stance, in the case of the Minnesota road network α is relatively large (since λ1 is small

for this graph), hence the off-diagonal contributions to Cr(A) are more significant than

for other networks where λ1 is large (thus forcing a small value of α, leading to a resol-

vent very close to the identity matrix). Thus, only the exponential-based total network

communicability should be used when comparing different networks in terms of ease

of communication.

When the identification of essential proteins in the Yeast PPI network is considered

using resolvent-based total communicability, the results are comparable to those using

the exponential. The resolvent-based total communicability rankings with α = 0.85
λmax(A)

identified 17 essential proteins in the top 30 (as compared to 18 identified by expo-

nential subgraph centrality and total communicability). The resolvent-based subgraph
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centrality, however, identified 19 essential proteins in the top 30, slightly outperforming

the other methods.

Concerning the computational complexity, when dealing with large networks the

use of the conjugate gradient method (possibly with some type of preconditioning) to

solve the linear system (I − αA)x = 1 is orders of magnitude faster than trying to

estimate the diagonal entries of (I − αA)−1. For certain networks, Chebyshev semi-

iteration can be even faster [11]. Thus, as was the case for the matrix exponential,

rankings based on total communicability (row sums) are a lot cheaper than the rank-

ings based on subgraph centrality (diagonals). Once again, however, the two ranking

methods in general produce different rankings, so one should not choose between the

two based solely on computational cost.

2.7 Summary and conclusions

We have examined the use of total communicability as a method for ranking the impor-

tance of nodes in a network. Like the subgraph centrality ranking, the total communi-

cability ranking using the matrix exponential counts the number of walks starting at a

given node, weighing walks of length k by a penalization factor of 1
k! . However, instead

of only counting closed walks, it counts all walks between the given node and every

node in the network. If the matrix resolvent is used, the weight on the walks becomes

αk for a chosen parameter α in a certain range. There are various classes of graphs

on which it can be shown that the two exponential-based rankings are always identical

or in very good agreement; for instance, certain types of simple regular graphs and

Erdös–Renyi random graphs with large spectral gap. However, as is well known, these

classes are not realistic models of real-world complex networks.

The two sets of rankings (total communicability and subgraph centrality) have been

used to rank the nodes of networks corresponding to both real and synthetic data sets.
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The synthetic data sets were constructed using the preferential attachment (Barabási–

Albert) and the small world (Watts–Strogatz) models, corresponding to the functions

pref and smallw of the CONTEST toolbox for Matlab. Good agreement between the

two ranking methods was observed on the networks obtain with the preferential at-

tachment method, especially as the density of the graphs increased. More pronounced

differences between the rankings produced with the two methods were observed in the

case of small world networks. Overall, the two importance rankings matched more

closely when the matrix exponential was used than when under the matrix resolvent.

We also presented the results of experiments with real-world networks including so-

cial networks, citation networks, PPI networks, and infrastructure (transportation) net-

works. Here we found that overall, the two (complete) sets of rankings were closer to

each other when the matrix resolvent was used instead of the matrix exponential. How-

ever, when only the top 1% of nodes was examined, the rankings matched more closely

when the matrix exponential was used. This suggests that, for the networks tested, the

resolvent-based rankings match more closely on “unimportant” (low-ranked) nodes

and the exponential-based rankings exhibit more agreement on the “important” (top-

ranked) nodes.

In general, there is no simple way to compare two ranking schemes and determine

that one is “better” than the other. However, the total communicability rankings take

into account more of the network topology than the subgraph centrality rankings (all

walks starting at node i versus all closed walks starting at node i). This added infor-

mation often (but not always) changes the ranking of the nodes to a certain degree,

although there are many cases where there is still a strong similarity between the two

sets of rankings. The main benefit of using total communicability to rank the nodes is

that the ranking can be estimated very quickly using Krylov subspace methods. Indeed,

as the Wikipedia graph calculation described in section 2.5.1 shows, for very large net-

works only the total communicability (row sum) method is computationally feasible,
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the subgraph centrality ranking being prohibitively expensive to compute. Even if total

communicability cannot always be recommended as a cheaper alternative to subgraph

centrality, it provides valuable information about the network and can be used along

with other ranking schemes.

Finally, we have introduced the total communicability of a network as a global

measure of connectivity and of the ease of information flow on a given network. This

measure can be computed quickly even for very large networks, and could be of interest

in the design of communication networks.



3 Robustness of Parameterized Cen-

trality Rankings

3.1 Introduction

It has been observed that often the rankings produced by various centrality measures

are strongly correlated on many real-world networks [8, 10, 62]. In this chapter, we

analyze the relationships between the following centrality measures:

• degree centrality: Cd(i) = di,

• eigenvector centrality: Cev(i) = q1(i),

• exponential subgraph centrality: SCi(β) = [eβA]ii,

• resolvent subgraph centrality: RCi(α) = [(I − αA)−1]ii,

• total communicability: TCi(β) = [eβA1]i = eTi e
βA1

• Katz centrality: Ki(α) = [(I − αA)−11]i = eTi (I − αA)−11

There are many more ranking methods we could have considered for this analysis

(including some that are considered in other parts of this thesis), yet we restricted our

analysis to the above six. The choice of which of the many centrality measures to study

and why is something that must be considered carefully (see [25], for example). In

this chapter, we restricted our analysis to commonly (and successfully) used centrality

measures that had a formulation in terms of a function on the adjacency matrix of the
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network, and that were analytically tractable. We additionally restricted our scope to

centrality measures that we could demonstrate were related to each other.

We show that the parameters α (in the case of resolvent subgraph and Katz central-

ity) and β (in the case of exponential subgraph centrality and total communicability)

act as tunable parameters, interpolating between degree and eigenvector centrality.

This interpolation stabilizes to eigenvector centrality very quickly when the spectral

gap, λ1−λ2, is large. This results helps to explain why degree and eigenvector central-

ity are strongly correlated on many real-world networks.

3.2 Relationship between various centrality measures

One difficulty in measuring the “importance” of a node in a network using centrality is

that it is not clear which of the many centrality measures should be used. Additionally,

it is not clear a priori whether two centrality measures will give the same node rankings

on a given network. When using exponential or resolvent based centrality measures,

the need to choose the value of a parameter (β and α respectively) adds another layer

of difficulty. Different choices of α and β produce different centrality scores and can

lead to different node rankings. However, experimentally, it has been seen that differ-

ent centrality measures often provide rankings that are highly correlated [8, 10, 62].

Moreover, in most cases, the rankings do not change too much for different choices of

α and β.

This robustness of certain centrality rankings can be explained, in part, by the fol-

lowing two theorems, which relate degree and eigenvector centrality to exponential

subgraph and resolvent centrality, respectively:

Theorem 3.2.1 Let G = (V,E) be a connected, undirected network with adjacency

matrix A. Let SCi(β) = [eβA]ii be the subgraph centrality of node i and SC be the

vector of subgraph centralities. Then,
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(i) as β → 0+, the rankings produced by SC(β) converge to those produced by Cd,

the vector of degree centralities,

(ii) as β →∞, the rankings produced by SC(β) converge to those produced by Cev,

the vector of eigenvector centralities.

Proof: To prove (i), consider the Taylor expansion of SCi(β):

SCi(β) = [eβA]ii = 1+βAii+
β2[A2]ii

2!
+
β3[A3]ii

3!
+ · · · ]ii = 1+0+

β2

2!
di+

β3

3!
[A3]ii+ · · ·

Let φ(β) = 2!
β2 [SC(β) − 1]. The rankings produced by φ(β) will be the same as those

produced by SC(β), as the scores for each node have been shifted and scaled in the

same way. Now,

φi(β) =
2!

β2
[SCi(β)− 1] = di +

2β

3!
[A3]ii +

2β2

4!
[A4]ii + · · ·

which tends to di as β → 0+. Thus, as β → 0+, the rankings produced by the subgraph

centrality scores reduce to those produced by the degrees.

To prove (ii), consider the expansion of SCi(β) in terms of the eigenvalues and

eigenvectors of A:

SCi(β) =

n
∑

k=1

eβλkqk(i)
2 = eβλ1q1(i)

2 +

n
∑

k=2

eβλkqk(i)
2.

Let ψ(β) = 1
eβλ1

SC(β). As in the proof of (i), the rankings produced by ψ(β) are the

same as those produced by SC(β), since the scores for each node have been scaled in

the same way. Next,

ψi(β) = q1(i)
2 +

n
∑

k=2

eβ(λk−λ1)qk(i)
2.

Since λ1 > λk for 2 ≤ k ≤ n, as β → ∞, ψi(β) → q1(i)
2. By the Perron-Frobenius
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Theorem, q1 > 0, so the rankings produced by q1(i)
2 are the same as those produced

by q1(i). Thus, as β →∞, the rankings produced by SC(β) converge to those produced

by Cev. �

Theorem 3.2.2 Let G = (V,E) be a connected, undirected network with adjacency

matrix A. Let the resolvent subgraph centrality of node i be given by RCi(α) = [(I −

αA)−1]ii and RC be the vector of resolvent centralities. Then,

(i) as α→ 0+, the rankings produced by RC(α) converge to Cd, the vector of degree

centralities,

(ii) as α → 1
λ1
−, the rankings produced by RC(α) converge to Cev, the vector of

eigenvector centralities.

The proof of Theorem 3.2.2 follows the same arguments as that of Theorem 3.2.1

Similar relationships hold between degree and eigenvector centralities and the cen-

trality measures based on row sums (exponential total communicability and Katz cen-

trality). These relationships can be found in the following two theorems.

Theorem 3.2.3 Let G = (V,E) be a connected, undirected network with adjacency

matrix A. Let TCi(β) = [eβA1]i be the total communicability of node i and TC(β) be

the vector of total communicabilities. Then,

(i) as β → 0+, the rankings produced by TC(β) converge to those produced by Cd,

the vector of degree centralities,

(ii) as β →∞, the rankings produced by TC(β) converge to those produced by Cev,

the vector of eigenvector centralities.
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Theorem 3.2.4 Let G = (V,E) be an connected, undirected network with adjacency

matrix A. Let the Katz centrality of node i be given by Ki(α) = [(I − αA)−11]i and let

K(α) denote the vector of Katz centralities. Then,

(i) as α→ 0+, the rankings produced by K(α) converge to Cd, the vector of degree

centralities,

(ii) as α → 1
λ1
−, the rankings produced by K(α) converge to Cev, the vector of

eigenvector centralities.

The proofs of Theorems 3.2.3 and 3.2.4 follow similar arguments as the proof of

Theorem 3.2.1.

3.3 Interpretation

The centrality scores which we are considering in this paper are all based on walks in

the network. The degree centrality of a node i counts the number of walks of length

one starting at i (the degree of i). In contrast, the eigenvector centrality of node i gives

the limit as k goes to infinity of the percentage of walks of length k which start at node

i (see [40, p. 127] and [30]). Thus, the degree centrality of node i measures the local

influence of i and the eigenvector centrality measures the global influence of i.

Exponential subgraph centrality and total communicability take both local and

global influence into account, weighting walks of length k by βk

k! , β > 0. As β tends

toward 0, the weights corresponding to larger k decay faster and shorter walks be-

come more important in the centrality rankings. In the limit as β → 0, walks of length

one dominate the centrality scores and the rankings converge to the degree centrality

rankings. As β increases to infinity, given a fixed walk length k, the weights of walks of

length k increase more rapidly than those of shorter walks. In the limit as β →∞, walks

of infinite length dominate and the centrality rankings converge to those of eigenvec-
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tor centrality. When resolvent subgraph centrality and Katz centrality are considered,

walks of length k are weighted by a factor of αk, 0 < α < 1
λ1

. Again, as α→ 0, shorter

walks dominate the rankings and, in the limit, the rankings converge to those produced

by degree centrality. As α→ 1
λ1

, longer walks dominate and, in the limit, the rankings

converge to those produced by eigenvector centrality.

In these parameterized centrality rankings, the parameters α and β should be

viewed as a method for tuning between rankings based on local influence (short walks)

and those based on global influence (long walks). In applications where local influence

is most important, degree centrality will often be equivalent to any of the parameter-

ized centrality rankings with α or β very small. Similarly, when global influence is the

only important factor, parameterized centrality rankings with α or β large will often be

equivalent to eigenvector centrality. Exponential subgraph centrality and total commu-

nicability, along with resolvent subgraph centrality and Katz centrality, are most useful

when both local and global influence need to be considered in the ranking of nodes in

a complex network. In order to achieve this, moderate values of β and α must be used.

Differences between the rankings produced by these methods with various choices of

parameter and those produced by degree and eigenvector centrality in both synthetic

and real world networks can be found in Section 3.5.

The rate at which these rankings converge to eigenvector centrality (as α→ 1
λ1

and

β → ∞) depends on the spectral gap, λ1 − λ2. If the (relative) spectral gap is large,

all four of the parameterized centrality rankings will converge to eigenvector centrality

very quickly as α and β increase. Thus, in networks with a large enough spectral gap,

eigenvector centrality should be used instead of a method based on the exponential or

resolvent of the adjacency matrix. However, it is difficult to tell a priori when λ1 − λ2
is “large enough”.
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Figure 3.1: A 3-regular graph on 8 nodes which is not walk-regular.

3.4 A small example

Consider the eight vertex, 3-regular graph shown in Figure 3.1. This graph is not walk-

regular. This can be verified by noting that nodes 1, 7, and 8 make up a triangle, as do

nodes 2, 3, and 4, but nodes 5 and 6 are not involved in any triangles. Consequently,

for all nodes i 6= 5, 6, there are two closed walks of length 3 beginning at node i while

nodes 5 and 6 are not involved in any closed walks of length three.

Due to the regularity of this network, all nodes are equivalent under degree central-

ity and under eigenvector centrality. That is, both on the local level (walks of length

one) and the global level (walks of infinite length), all nodes have the same impor-

tance. Furthermore, since all the powers Ap of the adjacency matrix A of a k-regular

graph have constant row sums (= kp), Katz and total communicability centrality are

also unable to discriminate between nodes, regardless of α and β.

In contrast, due to the fact that the graph is not walk-regular, subgraph centrality

(whether exponential or resolvent-based) is able to discriminate between the nodes

and thus to provide rankings. For example, using the diagonals of eA leads to a 4-way

tie at the top (nodes 3,4,7,8), followed by nodes 1 and 2 (tied) followed by nodes 5

and 6 (tied). The same ranking is obtained using the diagonal entries of (I − αA)−1

with, say, α = 0.25 (the dominant eigenvalue of A is λ1 = 3).

regular8nodes.eps
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Hence, this simple academic example shows that subgraph centrality has greater

discriminatory power than the other ranking methods considered here.1

3.5 Numerical Experiments on real data

In this section, we examine the relationship between the centrality measures under

consideration on a selection of real world networks from a variety of sources. Unless

otherwise specified, all of the numerical experiments were performed in Matlab version

7.9.0 (R2009b) on a MacBook Pro running OS X Version 10.7.5 with a 2.4 GHZ Intel

Core i5 processor and 4GB of RAM. The networks used are those described in Section

2.4.4. Basic data on these networks can be found in Table 2.6.

3.5.1 Exponential subgraph centrality and total communicability

We examined the effects of changing β on the exponential subgraph centrality and total

communicability rankings of nodes in a variety of undirected real world networks, as

well as their relation to degree and eigenvector centrality. The measures were calcu-

lated for eleven networks (descriptions of which can be found in Table 2.6). Although

the only restriction on β is that it must be greater than zero, there is often an implicit

upper limit that may be problem dependent. For the analysis in this section, we impose

the following limits: 0.1 ≤ β ≤ 10. To examine the sensitivity of the exponential sub-

graph centrality and total communicability rankings, we calculate both sets of scores

and rankings for various choices of β. The values of β tested are: 0.1, 0.5, 1, 2, 5, 8

and 10.

The rankings produced by the matrix exponential based centrality measures for all

choices of β were compared to those produced by degree centrality and eigenvector

1It is obvious that if a graph is walk-regular, none of the centrality measures considered in this paper
can discriminate between its nodes. For subgraph centrality, the converse of this statement is an open
conjecture of Estrada; see, e.g., [38, 44, 87, 89] as well as [6] for further discussion of this and related
questions.
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centrality, using the intersection distance method as described in Section 3.5. Plots of

the intersection distances for the rankings produced by various choices of β with those

produced by degree or eigenvector centrality can be found in Figures 3.2 and 3.3. The

intersection distances for rankings produced by successive choices of β can be found in

Figure 3.4.

In Figure 3.2, the rankings produced by exponential subgraph centrality and to-

tal communicability are compared to those produced by degree centrality. For small

values of β, both sets of rankings based on the matrix exponential are very close to

those produced by degree centrality (low intersection distances). When β = 0.1, the

largest intersection distance between the degree centrality rankings and the exponen-

tial subgraph centrality rankings for the networks examined is slightly less than 0.2

(for the Minnesota road network). The largest intersection distance between the total

communicability rankings with β = 0.1 and the degree centrality rankings is 0.3 (for

the as-735 network). In general, the (diagonal based) exponential subgraph centrality

rankings tend to be slightly closer to the degree rankings than the (row sum based)

total communicability rankings for low values of β. As β increases, the intersection

distances increase then level off. The rankings of nodes in networks with a very large

(relative) spectral gap, such as the karate, Erdos971 and as-735 networks, stabilize ex-

tremely quickly, as expected. The one exception to the stabilization is the intersection

distances between the degree centrality rankings and exponential subgraph centrality

(and total communicability rankings) of nodes in the Minnesota road network. This

is expected, as the small spectral gap for the Minnesota road network means that it

will take longer for the exponential subgraph centrality (and total communicability)

rankings to stabilize as β increases.

The rankings produced by exponential subgraph centrality and total communicabil-

ity are compared to those produced by eigenvector centrality for various values of β in

Figure 3.3. When β is small, the intersection distances are large but, as β increases, the
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Figure 3.2: The intersection distances between degree centrality and the exponential sub-
graph centrality (top) or total communicability (bottom) rankings of the nodes in the net-
works in Table 2.6.

intersection distances quickly decrease. When β = 2, they are essentially zero for all

but one of the networks examined. Again, the outlier is the Minnesota road network.

real_exp_diag_deg.eps
real_exp_sum_deg.eps
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Figure 3.3: The intersection distances between eigenvector centrality and the exponential
subgraph centrality (top) or total communicability (bottom) rankings of the nodes in the
networks in Table 2.6.

For this network, the intersection distances between the matrix exponential based cen-

trality rankings and the eigenvector centrality rankings still decrease as β increases,

real_exp_diag_eig.eps
real_exp_sum_eig.eps
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but at a much slower rate than for the other networks. This is also expected, as the

spectral gap for the Minnesota road network is extremely small (< 0.001). Again, the

rankings of the nodes in the karate, Erdos971, and as-735 networks, which have very

large relative spectral gaps, stabilize extremely quickly.

In Figure 3.4, the intersection distances between the rankings produced by ex-

ponential subgraph centrality and total communicability are compared for successive

choices of β. Overall, these intersection distances are quite low (the highest is 0.25 and

occurs for the exponential subgraph centrality rankings of the as-735 network when β

increases from 0.1 to 0.5). For all the networks examined, the largest intersection dis-

tances between successive choices of β occur as β increases to two. For higher values of

β, the intersection distance drops, which corresponds to the fact that the rankings are

converging to those produced by eigenvector centrality. In general, there is less change

in the rankings produced by the total communicability scores for successive values of β

than for the rankings produced by the exponential subgraph centrality scores.

If the intersection distances are restricted to the top 10 nodes, they are even lower.

For the karate, Erdos992, and ca-GrQc networks, the intersection distance for the top

10 nodes between successive choices of β is always less than 0.1. For the DrugUser,

Yeast, Erdos971, Erdos982, and ca-HepTh networks, the intersection distances are

somewhat higher for low values of β, but by the time β = 2, they are all equal to

0 as the rankings have converged to those produced by the eigenvector centrality. For

the Erdos972 network, this occurs slightly more slowly. The intersection distances be-

tween the rankings of the top 10 nodes produced by β = 2 and β = 5 are 0.033 and

for all subsequence choices of β are 0. In the case of the Minnesota Road network,

the intersection distances between the top 10 ranked nodes never stabilize to 0, as is

expected (see Figure B.1 in Appendix B).

For the networks examined, when β < 0.5, the exponential subgraph centrality and

total communicability rankings are very close to those produced by degree centrality.
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Figure 3.4: The intersection distances between the exponential subgraph centrality (top)
or total communicability (bottom) rankings produced by successive choices of β. Each line
corresponds to a network in Table 2.6.

When β ≥ 2, they are essentially identical to the rankings produced by eigenvector

centrality. Thus, the most additional information about node rankings (i.e. information

real_exp_diag.eps
real_exp_sum.eps
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that is not contained in the degree or eigenvector centrality rankings) is obtained when

0.5 < β < 2. This supports the intuition developed in Section 3.3 that moderate values

of β should be used to gain the most benefit from the use of matrix exponential based

centrality rankings.

3.5.2 Resolvent subgraph and Katz centrality

In this section, we investigate the effect of changes in α on the resolvent subgraph

centrality and Katz centrality in the networks listed in 2.6, as well as the relationship of

these centrality measures to degree and eigenvector centrality. We calculate the scores

and node rankings produced by Cd and Cev, as well as those produced by RC(α) and

K(α) for various values of α. The values of α tested are given by α = 0.01 · 1
λ1

, 0.05 · 1
λ1

,

0.1 · 1
λ1

, 0.25 · 1
λ1

, 0.5 · 1
λ1

, 0.75 · 1
λ1

, 0.9 · 1
λ1

, 0.95 · 1
λ1
, and 0.99 · 1

λ1
.

As in Section 3.5.1, the rankings produced by degree centrality and eigenvector

centrality were compared to those produced by matrix resolvent based centrality mea-

sures for all choices of α using the intersection distance method. The results are plotted

in Figures 3.5 and 3.6. The rankings produced by successive choices of α are also com-

pared and these intersection distances are plotted in Figure 3.7.

Figure 3.5 shows the intersection distances between the degree centrality rankings

and those produced by resolvent subgraph centrality or Katz centrality for the values

of α tested. When α is small, the intersection distances between the matrix resolvent

based centrality rankings and the degree centrality rankings are low. For α = 0.01 · 1
λ1

,

the largest intersection distance between the degree centrality rankings and the re-

solvent subgraph centrality rankings is slightly less than 0.2 (for the Minnesota road

network). The largest intersection distance between the degree centrality rankings

and the Katz centrality rankings is also slightly less than 0.2 (again, for the Minnesota

road network). The relatively large intersection distances for the node rankings on the

Minnesota road network when α = 0.01 · 1
λ1

is due to the fact that both the degree
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Figure 3.5: The intersection distances between degree centrality and the resolvent sub-
graph centrality (top) or Katz centrality (bottom) rankings of the nodes in the networks in
Table 2.6.

centrality and the resolvent subgraph (or Katz) centrality scores for the nodes are very

close. Thus, small changes in the score values can lead to large changes in the rank-
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ings. As α increases towards 1
λ1

, the intersection distances increase. This increase is

more rapid for the Katz centrality rankings than for the resolvent subgraph centrality

rankings.

In Figure 3.6, the resolvent subgraph centrality and Katz centrality rankings for var-

ious values of α are compared to the eigenvector centrality rankings on the networks

described in Table 2.6. For small values of α, the intersection distances tend to be

large. As α increases, the intersection distances decrease for both resolvent subgraph

centrality and Katz centrality on all of the networks examined. This decrease is faster

for the (row sum based) Katz centrality rankings than for the (diagonal based) resol-

vent subgraph centrality rankings. The network with the highest intersection distances

between the eigenvector centrality rankings and those based on the matrix resolvent,

and slowest decrease of these intersection distances as α increases, is the Minnesota

road network. As was the case when matrix exponential based scores were examined,

this is expected due to this network’s small spectral gap. The node rankings in networks

with large relative spectral gaps (karate, Erdos971, as-735) converge to the eigenvector

centrality rankings most quickly.

The intersection distance between the resolvent subgraph and Katz centrality rank-

ings produced by successive choices of α are plotted in Figure 3.7. All of these intersec-

tion distances are extremely small (the largest is < 0.08), indicating that the rankings

do not change much as α increases. However, as α increases, the rankings correspond-

ing to successive values of α tend to be slightly less similar to each other. The exception

to this is the Katz centrality rankings for the as-735 network which become more similar

as α increases.

Again, if the analysis is restricted to the top 10 nodes, the intersection distances

between the rankings produced by successive choices of α are very small. For the

karate, Erdos971, Erdos982, Erdos992, ca-GrQc, and Minnesota road networks, the

intersection distances between the top 10 ranked nodes for successive choices of α are
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Figure 3.6: The intersection distances between eigenvector centrality and the resolvent
subgraph centrality (top) or Katz centrality (bottom) rankings of the nodes in the networks
in Table 2.6.

always less than or equal to 0.1 and often equal to zero. For the ca-HepTh network, the

top 10 ranked nodes are exactly the same for all choices of α. For the DrugUser, Yeast,
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Figure 3.7: The intersection distances between resolvent subgraph centrality (top) or Katz
centrality (bottom) rankings produced by successive choices of α. Each line corresponds
to a network in Table 2.6.

and Erdos972 networks, they are always less than 0.2 (see Figure B.2 in Appendix B).

For the eleven networks examined, the resolvent subgraph and Katz centrality rank-
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ings tend to be close to the degree centrality rankings when α < 0.5· 1
λ1

. It is interesting

to note that as α increases, these rankings stay close to the degree centrality rankings

until α is approximately one half of its upper bound. Additionally, the matrix resolvent

based rankings are close to the eigenvector centrality rankings when α > 0.9 · 1
λ1

. Thus,

the most information is gained by using matrix resolvent based centrality measures

when 0.5 · 1
λ1 ≤ α ≤ 0.9 · 1

λ1
. This supports the intuition from Section 3.3 that moderate

values of α provide the most additional information about node ranking beyond that

provided by degree and eigenvector centrality.

3.6 Centrality robustness in directed networks

In Section 3.2, we examined the relationship between the rankings produced by cen-

trality measures based on the matrix exponential and resolvent with those produced by

degree and eigenvector centrality on undirected networks. However, the measurement

of node “importance” becomes more complicated on directed networks. In addition to

the difficulties associated with ranking nodes in undirected networks (which centrality

measure to use, how various centrality measures are related, etc.), the fact that A is

no longer symmetric means that all adjacency matrix based centrality measures can be

applied to either A or AT . In terms of degree centrality, nodes now have both in- and

out-degrees and, in terms of eigenvector centrality, A now has both a dominant left and

a dominant right eigenvector.

The application of centrality measures to A and AT correspond to two different

types of node importance in directed networks. Since edges can only be traversed in

one direction, in terms of information flow there is a difference between the ability of

a node to spread information and its ability to gather information. In [8, 68], these

different abilities were captured by assigning each node a hub and authority score. In

[39], the two aspects of information spread are referred to as broadcast and receive
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centrality. Broadcast centralities measure the ability of nodes in a network to broadcast

information along directed walks. Here, we will examine broadcast centralities based

on the row sums of f(A) where f is the matrix exponential or resolvent. Receive

centralities measure the ability of nodes in a network to receive information along

directed walks. We will examine receive centralities based on the column sums of f(A)

(which correspond to the row sums of f(AT )), where f is, again, the matrix exponential

or resolvent.

We do not consider broadcast and receive centralities based on the diagonal entries

of matrix functions. This is due to the fact that the diagonal entries of f(A) and f(AT )

are the same. Thus, these centralities measures cannot distinguish between the two

types of node “importance” in a directed network.

The relationship between the broadcast and receive total communicabilities with

the in- and out-degrees and left and right eigenvectors of A are described in the fol-

lowing theorem:

Theorem 3.6.1 Let G = (V,E) be a strongly connected, directed network with adja-

cency matrix A. Let TCb
i (β) = [eβA1]i be the broadcast total communicability of node i

and TCb(β) be the vector of broadcast total communicabilities. Let TCr
i (β) = [eβA

T

1]i

be the receive total communicability of node i and TCr(β) be the vector of receive

total communicabilities. Then,

(i) as β → 0+, the rankings produced by TCb(β) converge to those produced by the

out-degrees of the nodes in the network,

(ii) as β → 0+, the rankings produced by TCr(β) converge to those produced by the

in-degrees of the nodes in the network,

(iii) as β → ∞, the rankings produced by TCb(β) converge to those produced by x1,

where x1 is the dominant right eigenvector.
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(iv) as β → ∞, the rankings produced by TCr(β) converge to those produced by y1,

where y1 is the dominant left eigenvector.

Proof: The proofs of (i) and (ii) follow the same procedure as the proof of Theorem

3.2.1 applied to A and AT , respectively.

If A is diagonalizable, the proof of (iii) can be seen by considering the expansion of

TCb
i (β) in terms of X and Λ:

TCb
i (β) = [eβA1]i = [XeβΛX−11]i =

n
∑

k=1

eβλkxk(i)(y
∗
k1)

= eβλ1x1(i)(y
T
1 1) +

n
∑

k=2

eβλkxk(i)(y
∗
k1).

Let ψb(β) = 1
eβλ1(yT

1 1)
TCb(β). Similarly to the proof of (i), the rankings produced by

ψb(β) are equivalent to those produced by TCb(β), since the scores for each node have

been scaled in the same way. Now,

ψb
i (β) = x1(i) +

n
∑

k=2

eβ(λk−λ1)

yT
1 1

xk(i)(y
∗
k1).

As β →∞, ψb
i (β) → x1(i). Note that by the Perron-Frobenius Theorem, x1 > 0, so the

rankings produced by x1(i) are all real and positive.

If A is not diagonalizable, then from 1.3, we know:

TCi(β) =

s
∑

k=1

lk−1
∑

j=0

βjeβλk

j!
[(A− λkI)jGk1]i

where s is the number of distinct eigenvalues of A, lk is the geometric multiplicity of

the kth distinct eigenvalue, and Gk is the oblique projector onto N((A − λkI)lk) along

R((A− λkI)lk). Due to the fact that λ1 is simple by the Perron-Frobenius theorem, this
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becomes:

TCi(β) = eβλ1x1(i)(y
T
1 1) +

s
∑

k=2

lk−1
∑

j=0

βjeβλk

j!
[(A− λkI)jGk1]i.

Again, let ψb(β) = 1

e
βλ1(y

T
1

1)
TCb(β). The rankings produced by ψb(β) will be the same

as those produced by TCb(β). Now,

ψb
i (β) = x1(i) +

s
∑

k=2

lk−1
∑

j=0

βjeβ(λk−λ1)

j!(yT
1 1)

[(A− λkI)jGk1]i

which converges to x1(i) as β →∞. �

A similar theorem holds for the broadcast and receive Katz centralities.

3.7 Numerical experiments on directed networks

In this section, we examine the relationship between the matrix exponential and resol-

vent based broadcast centrality measures with the out-degrees and the dominant right

eigenvectors of two real world directed networks. A similar analysis can be done on the

relationship between the receive centrality measures and the in-degrees and dominant

left eigenvectors. Both networks can be found in the University of Florida Sparse Matrix

Collection [31]. As was done in Section 3.5, the rankings are compared using the inter-

section distance method. The first network we examine is wb-cs-Stanford, a network

of hyperlinks between the Stanford CS webpages in 2001. It is in the Gleich group of

the UF collection. The second network is the wiki-Vote network, which is a network of

who votes for whom in elections for Wikipedia editors to become administrators. It is

in the SNAP group of the UF collection.

Since the theorems in Section 3.6 only hold for strongly connected networks with

irreducible adjacency matrices, our experiments were performed on the largest strongly

connected component of the above networks. Basic data on these strongly connected
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Table 3.1: Basic data on the largest strongly connected component of the real-world di-
rected networks examined.

Graph n nnz λ1 λ2

Gleich/wb-cs-Stanford 2759 13895 35.618 12.201
SNAP/wiki-Vote 1300 39456 45.145 27.573

components can be found in Table 3.1. In both of the networks examined, the two

largest eigenvalues of the largest strongly connected component were real. However,

this is not always the case. Both networks are simple.

3.7.1 Total communicability

As in Section 3.5.1, we examined the effects of changing β on the broadcast total

communicability rankings of nodes in two directed real world networks, as well as

their relation to the out-degrees and dominant right eigenvectors of the networks. The

measures were calculated for the networks described in Table 3.1. To examine the

sensitivity of the broadcast total communicability rankings, we calculate the scores and

rankings for various choices of β. The values of β tested are: 0.1, 0.5, 1, 2, 5, 8 and 10.

The broadcast rankings produced by total communicability for all choices of β were

compared to those produced by the out-degree rankings and the rankings produced

by x1 using the intersection distance method as described in Section 3.5. Plots of the

intersection distances for the rankings produced by various choices of β with those

produced by the out-degrees and right dominant eigenvector can be found in Figures

3.8 and 3.9. The intersection distances for rankings produced by successive choices of

β can be found in Figure 3.10.

In Figure 3.8, the intersection distances between the rankings produced by broad-

cast total communicability are compared to those produced by the out-degrees of nodes

in the network. As β approaches 0, the intersection distances decrease for both net-

works. As β increases to 10, the intersection distances initially increase, then stabilize
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Figure 3.8: The intersection distances between the out-degree rankings and the broadcast
total communicability rankings of the nodes in the networks in Table 3.1.

as the rankings converge to those produced by x1.

The intersection distances between the rankings produced by broadcast total com-

municability are compared to those produced by x1 in Figure 3.9. For both networks,

the intersection distances quickly decrease as β increases. In the wiki-Vote network, the

intersection distances between the compared rankings are 0 by the time β = 0.5. For

the wb-cs-Stanford network, by the time β has reached five, the intersection distance

between the broadcast total communicability rankings and those produced by x1(i)

have decreased to about 0.04. The rankings then stabilize at this intersection distance.

This is due to a group of nodes that have nearly identical total communicability scores.

In Figure 3.10, the intersection distances between the broadcast total communica-

bility rankings for successive choices of β are plotted. These intersection distances are

slightly lower than those observed in the undirected case, with a maximum of approx-

imately 0.14, which occurs in the wb-cs-Stanford network when β increases from 0.01

to 0.05. By the time β = 0.5, the of rankings on the wiki-Vote network have stabilized
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Figure 3.9: The intersection distances between the rankings produced by x1 and the broad-
cast total communicability rankings of the nodes in the networks in Table 3.1.
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Figure 3.10: The intersection distances between the broadcast total communicability rank-
ings produced by successive choices of β. Each line corresponds to a network in Table 3.1.
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and all subsequent intersection distances are 0. For both the broadcast total commu-

nicability rankings on the wb-cs-Stanford network, the intersection distances decrease

(non-monotonically) as β increases until they stabilize at approximately 0.02.

When this analysis is restricted to the top 10 nodes, the intersection distances are

extremely small. For the wb-cs-Stanford network, the largest intersection distance be-

tween the top 10 ranked nodes for successive choices of β is 0.11 (when β increases

from 0.1 to 0.5). For the wiki-Vote network, the intersection distance between the top

10 total communicability scores is 0.01 when β increases from 0.1 to 0.5 and zero

otherwise (see Figure B.3 in Appendix B).

The differences between the out-degree rankings and the broadcast total communi-

cability rankings are greatest when β ≥ 0.5. The differences between the left and right

eigenvector based rankings and the broadcast rankings are greatest when β < 2 (al-

though in the case of the wiki-Vote network, they have converged by the time β = 0.5).

Thus, like in the case of the undirected networks, moderate values of β give the most

additional ranking information beyond that provided by the out-degrees and the left

and right eigenvalues.

3.7.2 Katz centrality

In this section, we investigate the effect of changes in α on the broadcast Katz centrality

rankings of nodes in the networks listed in Table 3.1 and relationship of these centrality

measures to the rankings produced by the out-degrees and the dominant right eigen-

vectors of the network. We calculate the scores and node rankings produced by Kb(α)

for various values of α. The values of α tested are given by α = 0.01 · 1
λ1

, 0.05 · 1
λ1

,

0.1 · 1
λ1

, 0.25 · 1
λ1

, 0.5 · 1
λ1

, 0.75 · 1
λ1

, 0.9 · 1
λ1

, 0.95 · 1
λ1
, and 0.99 · 1

λ1
.

The rankings produced by the out-degrees and the dominant right eigenvectors

were compared to those produced by Katz centrality for all choices of α using the

intersection distance method, as was done in Section 3.7.1. The results are plotted in
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Figure 3.11: The intersection distances between the rankings produced by the out-degrees
and those produced by broadcast Katz centrality rankings of the nodes in the networks in
Table 3.1.

Figures 3.11 and 3.12.

As α increases from 0.01 · 1
λ1

to 0.99 · 1
λ1

, the intersection distances between the

scores produced by the broadcast Katz centralities and the out-degrees increase. When

α is small, the broadcast Katz centrality rankings are very close to those produced

by the out-degrees (low intersection distances). On the wb-cs-Stanford network, when

α = 0.01 · 1
λ1

, the intersection distance between the two rankings is approximately 0.06.

On the wiki-Vote network, it is approximately 0.01. As α increases, the intersection

distances also increase. By the time α = 0.99 · 1
λ1

, the intersection distance between

the two sets of node rankings on the wb-cs-Stanford network is above 0.2 and on the

wiki-Vote network it is approximately 0.1.

In Figure 3.12, the rankings produced by broadcast Katz centrality are compared

to those produced by x1. Overall, The intersection distances between the two sets

of rankings are lower on the wiki-Vote network than they are on the wb-cs-Stanford
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Figure 3.12: The intersection distances between the rankings produced by x1 and the
broadcast Katz centrality (right) rankings of the nodes in the networks in Table 3.1.

network. As α increases from 0.01 · 1
λ1

to 0.99 · 1
λ1

, the intersection distances between

the two sets of rankings on the wiki-Vote network decrease from 0.1 to essentially 0.

On the wb-cs-Stanford network, they decrease from approximately 0.47 to 0.24.

The intersection distances between the rankings produced by the broadcast Katz

centralities for successive values of α are plotted in Figure 3.13. As was the case in the

undirected networks examined, these rankings are more stable in regards to the choice

of α than the total communicability rankings were in regards to the choice of β. Here,

the maximum intersection distance is less than 0.1. When only the top 10 ranked nodes

are similar, the intersection distances have a maximum of 0.06 (on the wb-cs-Stanfrod

network when α increases from 0.25 · 1
λ1

to 0.5 · 1
λ1

). For both networks,the intersection

distances between the rankings on the top 10 nodes for successive choices of α are

quite small (see Figure B.4 in Appendix B).

The broadcast Katz centrality rankings are only far from those produced by the out-
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Figure 3.13: The intersection distances between the broadcast Katz centrality rankings
produced by successive choices of α. Each line corresponds to a network in Table 3.1.

degrees when α ≥ 0.5 · 1
λ1

. They are farthest from those produced by the dominant

right eigenvector of A when α < 0.9 · 1
λ1

. Thus, as was seen in the case of undirected

networks, the most additional information is gained when moderate values of α, 0.5 ·
1
λ1
≤ α < 0.9 · 1

λ1
, are used to calculate the matrix resolvent based centrality scores.

3.8 Summary and conclusions

We have analyzed the relationship between centrality measures based on the diago-

nal entries and row sums of the matrix exponential and resolvent with degree and

eigenvector centrality. We have shown that the parameters α (in the case of matrix

resolvent-based centrality rankings) and β (in the case of matrix exponential-based

centrality ranks) act as tunable parameters between the degree centrality rankings and

eigenvector centrality rankings. That is, when α and β tend toward their lower bounds,

the rankings produced by exponential subgraph centrality, total communicability, re-

real_res_sum_dir.eps
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solvent subgraph centrality, and Katz centrality converge to those produced by degree

centrality. Similarly, as α and β tend to their upper bounds, these rankings converge to

those produced by eigenvector centrality. We also demonstrated a similar relationship

between the broadcast and receive centralities (based on the row and column sums

of the matrix exponential and resolvent) and the rankings produced by the in- and

out-degrees and the left and right eigenvectors. This relationship helps to explain the

observed correlation between the degree and eigenvector centrality rankings on many

real-world complex networks (which often have a large spectral gap).

Additionally, we have presented the results from experiments that used a large vari-

ety of choices of α and β to compute rankings on a number of directed and undirected

real world networks. We computed the intersection distances of these rankings with

those produced by degree and eigenvector centrality and with each other. Here, we

found that, as expected, the rankings were close to degree centrality when α and β

were close to their lower bounds and were close to eigenvector centrality when α and

β were close to their upper bounds. The rankings were the least similar to both degree

and eigenvector centrality when 0.5 · 1
λ1 ≤ α ≤ 0.9 · 1

λ1
and 0.5 < β < 2.

Our results also allow us to provide guidelines for the choice of the parameters α

and β in order to produce rankings that are the most different from the degree and

eigenvector centrality rankings and, therefore, most useful in terms of adding more in-

formation to the analysis of a complex network. Although the question of the optimal

choice of parameter is not, and may never be, completely resolved, the results pre-

sented in this chapter contribute to the ability to make intelligent parameter choices.



4 Ranking Hubs and Authorities us-

ing Matrix Functions

4.1 Introduction

As we have seen previously, subgraph centrality is one of the most commonly used

centrality measures. The interpretation of centrality described in [47] applies mostly

to undirected networks. However, many important real-world networks (the World

Wide Web, the Internet, citation networks, food webs, certain social networks, etc.) are

directed. One goal of this chapter is to extend the notions of centrality and commu-

nicability described in [45, 47] to directed networks, with an eye towards developing

new ranking algorithms for, e.g., document collections, web pages, and so forth. We

further compare our approach with some standard algorithms, such as HITS (see [68])

and a few others. Methods of quickly determining hub and authority rankings using

Gauss-type quadrature rules are also discussed.

4.2 HITS reformulation

One of the classical methods for ranking nodes in a directed network is the Hypertext

Induced Topics Search (HITS) algorithm, first introduced by J. Kleinberg in [68], which

ranks nodes as hubs and authorities. This algorithm provides the motivation for the

extension of subgraph centrality to directed graphs given in section 4.4. The standard

presentation of the HITS algorithm can be found in Chapter 1, Section 1.7.
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In a digraph the adjacency matrix A is generally nonsymmetric, however, the two

matrices used in the HITS algorithm (ATA and AAT ) are symmetric. Note that, setting

A =







0 A

AT 0






,

a symmetric matrix is obtained. Now,

A
2 =







AAT 0

0 ATA






; A

3 =







0 AATA

ATAAT 0






.

In general,

A
2k =







(AAT )k 0

0 (ATA)k






; A

2k+1 =







0 A(ATA)k

(ATA)kAT 0






.

Applying HITS to this matrix A, AT = A so ATA = AAT = A2 and introducing the

vector u(k) =







y(k)

x(k)






for k = 1, 2, 3, . . ., equation (3.2) becomes

u(k) = A
2u(k−1) =







AAT 0

0 ATA






u(k−1), (4.1)

followed by normalization of the two vector components of u(k) so that each has 2-

norm equal to 1. Now, if A is an n × n matrix, A is 2n × 2n and vector u(k) is in R
2n.

The first n entries of u(k) correspond to the hub rankings of the nodes, while the last

n entries give the authority rankings. Under suitable assumptions (see the discussion

in [73, Chapter 11.3]), as k → ∞ the sequence {u(k)} converges to the dominant

nonnegative eigenvector of A, which yields the desired hub and authority rankings.

Hence, in HITS only information obtained from the dominant eigenvector of A is
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used. It is natural to expect that taking into account spectral information corresponding

to the remaining eigenvalues and eigenvectors of A may lead to improved results.

Among the limitations of HITS, we mention the possible dependence of the rankings

on the choice of the initial vectors x(0), y(0), see [52] for examples of this.

4.3 Subgraph centralities and communicabilities

In [47], the authors review the use of (exponential) subgraph centrality and com-

municability for ranking nodes in undirected networks. However, these measures are

less meaningful when applied to directed networks. Although the matrix exponen-

tial is certainly well-defined for any matrix, whether symmetric or not, the interpreta-

tion of the notion of subgraph centrality for directed networks can be problematic.

To see this, consider the directed path graph consisting of n nodes, with edge set

E = {(1, 2) , (2, 3) , . . . , (n− 1, n)} and adjacency matrix

A =

























0 1 0 · · · 0

0 0 1 · · · 0

...
. . . . . . . . .

...

0 0 0 · · · 1

0 0 0 · · · 0

























. (4.2)

The entries of eA are given by

[eA]ij =











1/(j − i)!, if j ≥ i,

0, else.

In particular, the diagonal entries of eA are all equal to 1. Therefore, it is impossible to

distinguish any of the nodes from the others on the basis of this centrality measure; yet,

it is clear that the first and last node are rather special, and certainly more “peripheral”
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(less “central”) than the other nodes. Part of the problem, of course, is that the path

digraph contains no closed walks. In the next section we show one way to extend the

notion of subgraph centrality to digraphs that is immune from such shortcomings, and

correctly differentiates between nodes in the example above. (On the other hand, it is

interesting to note that the interpretation of the off-diagonal entries of eA in terms of

communicabilities is straightforward for the directed path. All entries of eA below the

main diagonal are zero, reflecting the fact that information can only flow from a node

to higher-numbered nodes. Also, the entries of eA decay rapidly away from the main

diagonal, reflecting the fact that the “ease" of communication between a node and

a higher numbered one decreases rapidly with the distance.) Although the diagonal

entires of eA do not provide a meaningful ranking of the nodes in the network, here

the row and column sums are able to identify nodes as hubs and authorities.

Another issue when extending the notions of subgraph centrality and communica-

bility to directed graphs is that computational difficulties may arise. While the compu-

tations involved do not pose a problem for small networks, many real-world networks

are large enough that directly computing the exponential of the adjacency matrix is

prohibitive. In [7], techniques for bounding and estimating individual entries of the

matrix exponential using Gaussian quadrature rules are discussed; see also [18] and

section 4.8 below. The ability to find upper and lower bounds for the entries requires

that the matrix be symmetric, thus these bounds cannot be directly computed using the

adjacency matrix of a directed network. Again, these difficulties can be circumvented

using the approach discussed in the next section.
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4.4 An extension to digraphs

Although the techniques described in [7] cannot be directly applied to non-symmetric

matrices, setting

A =







0 A

AT 0






(4.3)

produces a symmetric matrix A and, thus, upper and lower bounds of individual entries

of eA can be computed. In Proposition 4.4.1 below we relate eA to the underlying hub

and authority structure of the original digraph. By B† we denote the Moore–Penrose

generalized inverse of matrix B.

Proposition 4.4.1 Let A be as described in equation (4.3). Then,

eA =







cosh
(√

AAT
)

A
(√

ATA
)†

sinh
(√

ATA
)

sinh
(√

ATA
)(√

ATA
)†
AT cosh

(√
ATA

)






.

Proof: Let A = UΣV T be the SVD of the original (non-symmetric) adjacency matrix

A. Then, A can be decomposed as A =







U 0

0 V













0 Σ

Σ 0













UT 0

0 V T






. Hence,

eA =







U 0

0 V






exp







0 Σ

Σ 0













UT 0

0 V T






. (4.4)

Now,

exp







0 Σ

Σ 0






= cosh







0 Σ

Σ 0






+ sinh







0 Σ

Σ 0







=







cosh(Σ) 0

0 cosh(Σ)






+







0 sinh(Σ)

sinh(Σ) 0






.
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Thus,

exp







0 Σ

Σ 0






=







cosh(Σ) sinh(Σ)

sinh(Σ) cosh(Σ)






. (4.5)

Putting together equations (4.4) and (4.5),

eA =







U 0

0 V













cosh(Σ) sinh(Σ)

sinh(Σ) cosh(Σ)













UT 0

0 V T







=







cosh
(√

AAT
)

A
(√

ATA
)†

sinh
(√

ATA
)

sinh
(√

ATA
)(√

ATA
)†
AT cosh

(√
ATA

)






.

The identities involving the off-diagonal blocks can be easily checked using the SVD of

A. �

4.4.1 Interpretation of diagonal entries

In the context of undirected networks, the interpretation of the entries of the matrix

exponential in terms of subgraph centralities and communicabilities is well-established,

see e.g. [47]. In the case of directed networks and eA, things are not as clear. The

network behind A can be thought of as follows: take the vertices from the original

network A and make two copies of them, V and V ′. Then, undirected edges exist

between the two sets based on the following rule: E′ = {(i, j′)|there is a directed edge

from i to j in the original network}. This creates a bipartite graph with 2n nodes:

1, 2, . . . , n, n + 1, n + 2, . . . , 2n. We denote by V (A) this set of nodes. The use of

bipartization to treat rectangular and structurally unsymmetric matrices is of course

standard in numerical linear algebra.

In the undirected case, each node had only one role to play in the network: any

information that came into the node could leave by any edge. In the directed case,

there are two roles for each node: that of a hub and that of an authority. It is unlikely
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that a high ranking hub will also be a high ranking authority, but each node can still be

seen as acting in both of these roles. In the network A, the two aspects of each node

are separated. Nodes 1, 2, . . . , n in V (A) represent the original nodes in their role as

hubs and nodes n + 1, n + 2, . . . , 2n in V (A) represent the original nodes in their role

as authorities.

Given a directed network, an alternating walk of length k, starting with an out-edge,

from node v1 to node vk+1 is a list of nodes v1, v2, ..., vk+1 such that there exists edge

(vi, vi+1) if i is odd and edge (vi+1, vi) if i is even:

v1 → v2 ← v3 → · · ·

An alternating walk of length k, starting with an in-edge, from node v1 to node vk+1 in

a directed network is a list of nodes v1, v2, ..., vk+1 such that there exists edge (vi+1, vi)

if i is odd and edge (vi, vi+1) if i is even:

v1 ← v2 → v3 ← · · ·

From graph theory (see also [29]), it is known that [AATA . . .]ij (where there are k

matrices being multiplied) counts the number of alternating walks of length k, starting

with an out-edge, from node i to node j, whereas [ATAAT . . .]ij (where there are k

matrices being multiplied) counts the number of alternating walks of length k, starting

with an in-edge, from node i to node j. That is, [(AAT )k]ij and [(ATA)k]ij count the

number of alternating walks of length 2k.

In the original network A, if node i is a good hub, it will point to many good

authorities, which will in turn be pointed at by many hubs. These hubs will also point

to many authorities, which will again be pointed at by many other hubs. Thus, if i is

a good hub, it will show up many times in the sets of hubs described above. That is,

there should be many even length alternating walks, starting with an out-edge, from
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node i to itself. Giving a walk of length 2k a weight of 1
(2k)! , these walks can be counted

using the (i, i) entry of the matrix

I +
AAT

2!
+
AATAAT

4!
+ · · ·+ (AAT )k

(2k)!
+ · · ·

Letting A = UΣV T be the SVD of A, this becomes:

U

(

I +
Σ2

2!
+

Σ4

4!
+ · · ·+ Σ2k

(2k)!
+ · · ·

)

UT

= U cosh(Σ)UT = cosh(
√
AAT ) .

The hub centrality of node i (in the original network) is thus given by

[eA]ii = [cosh(
√
AAT )]ii.

This measures how well node i transmits information to the authoritative nodes in the

network.

Similarly, if node i is a good authority, there will be many even length alternating

walks, starting with an in-edge, from node i to itself. Giving a walk of length 2k a

weight of 1
(2k)! , these walks can be counted using the (i, i) entry of cosh(

√
ATA).

Hence, the authority centrality of node i is given by

[eA]n+i,n+i = [cosh(
√
ATA)]ii.

It measures how well node i receives information from the hubs in the network.

Note that the traces of the two diagonal blocks in eA are identical, so each accounts

for half of the Estrada index of the bipartite graph. Also, recalling the well-known fact
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that the eigenvalues of A are ±σi where σi denotes the singular values of A, we have

Tr (eA) =

n
∑

i=1

eσi +

n
∑

i=1

e−σi = 2

n
∑

i=1

cosh (σi),

an identity that can also be obtained directly from the expression for eA given in Propo-

sition 4.4.1.

Returning to the example of the directed path graph with adjacency matrix A given

by (4.2), one finds that using the diagonal entries of eA to rank the nodes gives node 1

as the least authoritative node, and node n as the one with the lowest hub ranking, with

all the other nodes being tied. Thus we see that, while eA fails to differentiate between

the nodes of this graph, using eA yields a very reasonable hub/authority ranking of the

nodes.

4.4.2 Interpretation of off-diagonal entries

Although not used in the remainder of this paper, for the sake of completeness we give

here an interpretation of the off-diagonal entries of eA. As we will see, this interpreta-

tion is rather different from the one usually given for the off-diagonal entries of eA, and

provides information of a different nature on the structure of the underlying graph.

In discussing the off-diagonal entries of A, there are three blocks to consider. First,

there are the off-diagonal entries of the upper-left block, cosh(
√
AAT ), then there are

the off-diagonal entries of the lower-right block, cosh(
√
ATA). Finally, there is the off-

diagonal block, A
(√

ATA
)†

sinh
(√

ATA
)

(the fourth block in eA being its transpose).

From section 4.4.1, [eA]ij = [cosh(
√
AAT )]ij , 1 ≤ i, j ≤ n, counts the number

of even length alternating walks, starting with an out-edge, from node i to node j,

weighting walks of length 2k by a factor of 1
(2k)! . When i 6= j, these entries measure

how similar nodes i and j are as hubs. That is, if nodes i and j point to many of the

same nodes, there will be many short even length alternating walks between them.
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The hub communicability between nodes i and j, 1 ≤ i, j ≤ n, is given by

[eA]ij = [cosh(
√
AAT )]ij

This measures how similar nodes i and j are in their roles as hubs. That is, a large

value of hub communicability between nodes i and j indicates that they point to many

of the same authorities. In other words, they point to nodes which are authorities on

the same subjects.

Similarly, [eA]n+i,n+j = [cosh(
√
ATA)]ij , 1 ≤ i, j ≤ n, counts the number of even

length alternating walks, starting with an in-edge, from node i to node j, also weighing

walks of length 2k by a factor of 1
(2k)! . When i 6= j, these entries measure how similar

the two nodes are as authorities. If i and j are pointed at by many of the same hubs,

there will be many short even length alternating walks between them.

The authority communicability between nodes i and j, 1 ≤ i, j,≤ n, is given by

[eA]i+n,j+n = [cosh(
√
ATA)]ij

This measures how similar nodes i and j are in their roles as authorities. That is, a

large value of authority communicability between nodes i and j means that they are

pointed to by many of the same hubs and, as such, are likely to contain information on

the same subjects.

Let us now consider the off-diagonal blocks of A. Here, [sinh(
√
ATA)]ij counts the

number of odd length alternating walks, starting with an out-edge, from node i to

node j, weighing walks of length 2k+1 by 1
(2k+1)! . This measures the communicability

between node i as a hub and node j as an authority.

The hub-authority communicability between nodes i and j (that is, the communica-
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bility between node i as a hub and node j as an authority) is given by:

[eA]i,n+j = [A
(√

ATA
)†

sinh
(√

ATA
)

]ij

= [sinh
(√

ATA
)(√

ATA
)†
AT ]ji = [eA]n+j,i.

A large hub-authority communicability between nodes i and j means that they are

likely in the same “part” of the directed network: node i tends to point to nodes that

contain information similar to that on which node j is an authority.

4.4.3 Relationship with HITS

As described in 4.2, the HITS ranking of nodes as hubs and authorities uses only in-

formation from the dominant eigenvector of A. Here we show that when using the

diagonal of eA, we exploit information contained in all the eigenvectors of A; more-

over, the HITS rankings can be regarded as an approximation of those given by the

diagonal entries of eA.

Assume the eigenvalues of A can be ordered as λ1 > λ2 ≥ λ3 ≥ · · · ≥ λ2n. Then,

A can be written as A =
∑2n

i=1 λiuiu
T
i where u1,u2, . . . ,u2n are the normalized eigen-

vectors of A. Taking the exponential of A, we get:

eA =
2n
∑

i=1

eλiuiu
T
i = eλ1u1u

T
1 +

2n
∑

i=2

eλiuiu
T
i .

Now, the hub and authority rankings come from the diagonal entries of eA:

diag (eA) = eλ1diag (u1u
T
1 ) +

2n
∑

i=2

eλidiag (uiu
T
i ).

Rescaling the hub and authority scores by eλ1 does not alter the rankings; hence, we
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can instead consider

diag (e−λ1eA) = diag (eA−λ1I) = diag (u1u
T
1 ) +

2n
∑

i=2

eλi−λ1diag (uiu
T
i ).

Now, the diagonal entries of the rank-one matrix u1u
T
1 are just the squares of the

(nonnegative) entries of the dominant eigenvector of A; hence, the rankings provided

by the first term in the expansion of eA in the eigenbasis of A are precisely those given

by HITS.

It is also clear that if λ1 ≫ λ2, then the rankings provided by the diagonal entries

of eA are unlikely to differ much from those of HITS, since the weights eλi−λ1 will

be tiny, for all i = 2, . . . , 2n. Conversely, if the gap between λ1 and the rest of the

spectrum is small (λ1 ≈ λ2), then the contribution from the remaining eigenvectors,
∑2n

i=2 e
λi−λ1diag (uiu

T
i ), may be non-negligible relative to the first term and therefore

the resulting rankings could differ significantly from those obtained using HITS. In

section 4.7 we will see examples of real networks illustrating both scenarios.

Summarizing, use of the matrix exponential for ranking hubs and authorities amounts

to using the (squared) entries of all the eigenvectors of A, weighted by the exponential

of the corresponding eigenvalues. Of course, in place of the exponential, a number of

other functions could be used; see the discussion in the next section. As shown above,

the HITS ranking scheme uses the leading term only, corresponding to the approxima-

tion eA ≈ eλ1u1u
T
1 . Between these two extremes one could also use approximations of

the form

eA ≈
k

∑

i=1

eλiuiu
T
i , (4.6)

where 1 < k < n; indeed, in most cases of practical interest a modest value of k (≪ n)

will be sufficient for a very good approximation, since the eigenvalues of A are often

observed to decay rapidly from a certain index k onward. We return on this topic in

section 4.8.
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4.5 Other ranking schemes

In this section we discuss a few other schemes that have been proposed in the litera-

ture, and compare them with the hub and authority centrality measures based on the

exponential of A.

4.5.1 Resolvent-based measures

As already noted, another function that has been successfully used to define central-

ity and communicability measures for an undirected network is the matrix resolvent,

(I − αA)−1. This approach was pioneered early on by Katz [67], and variants thereof

have since been used by numerous authors; see, e.g., [18, 21, 46, 47, 55, 94]. It is

hardly necessary to mention the close relationship existing between the resolvent and

the exponential function, which can be expressed via the Laplace transform. For the ad-

jacency matrix A of a bipartite graph given by (4.3), the resolvent is easily determined

to be

(I − αA)−1 =







(I − α2AAT )−1 αA(I − α2ATA)−1

α(I − α2ATA)−1AT (I − α2ATA)−1






. (4.7)

The condition on α can be expressed as 0 < α < 1/σ1, where σ1 = ‖A‖2 denotes

the largest singular value of A, the adjacency matrix of the undirected network. This

ensures that the matrix in (4.7) is well-defined and nonnegative, with positive diago-

nal entries. The diagonal entries of (I − α2AAT )−1 provide the hub scores, those of

(I − α2ATA)−1 the authority scores. A drawback of this approach is the need to select

the parameter α, and the fact that different values of α may lead to different rankings.

We have performed numerical experiments with this approach and we found that for

certain values of α, particularly those close to the upper limit 1/σ1, the hub and au-

thority rankings obtained with the resolvent function are not too different from those

obtained with the matrix exponential, which is not surprising in light of the results
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from Chapter 3. Moreover, not surprisingly, as the value of α is reduced, one obtains

hub and authority rankings that are strongly correlated with the out- and in-degree of

the nodes, respectively. Overall, because the resolvent tends to weigh short walks more

heavily than the exponential, and since longer walks contribute relatively little to the

centrality scores, it is fair to say that the exponential is less “degree biased” than the

resolvent function. Also, since (for β = 1) the exponential rankings do not depend on

a tunable parameter, they provide unambiguous rankings.

We note that “Katz” authority and hub scores may also be obtained by considering

the column and row sums of the (nonsymmetric) matrix resolvent (I − αA)−1, where

A is the adjacency matrix of the original digraph and α > 0 is again assumed to be

small enough for the corresponding Neumann series to converge. Indeed, the row

sums of (I −αA)−1 count the number of (weighted) walks out of each node, while the

column sums count the number of (weighted) walks into each node. Denoting by 1 the

vector of all ones, hub and authority rankings can be obtained by solving the two linear

systems

(I − αA)y = 1 and (I − αAT )x = 1 , (4.8)

respectively. Here the parameter α must satisfy 0 < α < 1/ρ(A), where ρ(A) denotes

the spectral radius of A. The results of numerical experiments comparing the Katz

scores with those based on the exponential of A are given in section 4.7. Here we

observe that these Katz scores are also dependent on the choice of the parameter α,

and similar considerations to those made for (I − αA)−1 apply.

A natural analogue to this approach is the use of row and column sums of the ex-

ponential eA to rank hubs and authorities. Some results obtained with this approach

are discussed in section 4.7. We note that this method is different from the Exponen-

tiated Inputs HITS Method of [52]. This method is a modification to HITS, which was

developed in order to correct the issue of non unique results in certain networks. If
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the dominant eigenvalue of ATA (and, consequently of AAT ) is not simple, then the

corresponding eigenspace is multidimensional. This means that the choice of the initial

vector affects the convergence of the HITS algorithm and different hub and authority

vectors can be produced using different initial vectors. This can occur when ATA is

reducible, that is when the original network is not strongly connected. In [52], Farahat

et. al. propose a modification to the HITS algorithm which amounts to replacing A and

AT with eA − I and (eA − I)T in the HITS iteration. They prove that, as long as the

original network is weakly connected, the dominant eigenvalue of (eA − I)T (eA − I) is

simple. Thus, HITS with this exponentiated input produces unique hub and authority

rankings. However, a result of this replacement is that nodes with 0 in-degree (or a low

in-degree) are less important in the calculation of authority scores than nodes with a

high in-degree. When there are many nodes with 0 in-degree or whose edges point to

only a few other nodes, dropping these edges can greatly affect the HITS rankings.

An obvious disadvantage of this algorithm is its cost, since it requires iterating with

a matrix exponential and its transpose. It can be implemented using only matrix- vector

products involving Ã and ÃT by means of techniques, like Krylov subspace methods,

for evaluating the action of a matrix function on a given vector; see, e.g., [65, Chapter

13]. This approach leads to a nested iteration scheme, with HITS as the outer iteration

and the Krylov method as the inner one.

4.5.2 PageRank and Reverse PageRank

As mentioned in Section 1.5.2, the (now) classical PageRank algorithm provides a

means of finding the authoritative nodes in a digraph. Details about the PageRank algo-

rithm can be found in Chapter 1, Section 1.7. It was pointed out in [54] that applying

PageRank to the digraph obtained by reversing the direction of the edges provides a

natural way to rank the hubs; this is usually referred to as Reverse PageRank. In other

words, authority rankings are obtained by applying PageRank to the “Google” matrix
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derived from A, and hub rankings are obtained by the same process applied to AT . Like

HITS, PageRank and Reverse PageRank are eigenvector-based ranking algorithms that

do not take into account information about the network contained in the non-dominant

eigenvectors. As already mentioned, it has been argued [79] that eigenvector-based al-

gorithms tend to be degree-biased. Furthermore, like the Katz-type algorithms, the

rankings obtained depend on the choice of a tuneable damping parameter. While the

success of PageRank in finding authoritative nodes is well known and very well docu-

mented, much less is known about the effectiveness of Reverse PageRank in identifying

hubs; some references are [4, 28, 96, 97]. We present the results of a few numerical

experiments with PageRank and Reverse PageRank in section 4.7.

4.6 Examples on small digraphs

In this section and the next we illustrate the proposed method on some simple networks

of small size, as well as on some larger data sets corresponding to real networks. We

also compare our approach with HITS and other rankings schemes, including Katz,

PageRank and Reverse PageRank. Here, we compare out and in-degree counts, HITS,

and our proposed method to obtain hub and authority rankings in a few small digraphs.

The purpose of this section is mostly pedagogical.

4.6.1 Example 1

Consider the small directed network in Fig. 4.1 (left panel). The adjacency matrix is

given by

A =



















0 1 1 0

1 0 1 0

0 1 0 1

0 1 0 0



















.
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5

Figure 4.1: The original directed network from Example 1, with adjacency matrix A (left)
and the bipartite network with adjacency matrix A (right).

The corresponding bipartite graph is shown in Fig. 4.1 (right panel). If hubs and

authorities are determined simply using in-degree and out-degree counts, the result is

as follows:

node out-degree in-degree

1 2 1

2 2 3

3 2 2

4 1 1

Under this ranking, the hub ranking of the nodes is: {1, 2, 3 (tie); 4}. The authority

ranking of the nodes is: {2; 3; 1, 4 (tie)}. We obtain somewhat different results using

the HITS algorithm. The eigenvectors of AAT and ATA corresponding to the largest

eigenvalue λmax ≈ 3.9563, which is simple, yield the following rankings for hubs and

authorities:

digraph.eps
newbipartite1.eps
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node hub rank authority rank

1 .3383 .0965

2 .1729 .4618

3 .2798 .2854

4 .2091 .1562

Here, the ranking for hubs is: {1; 3; 4; 2}. The ranking for authorities is: {2; 3; 4; 1}.

Note that node 2, which was given a top hub score by looking just at the out-degrees,

is judged by HITS as the node with the lowest hub score.

Using eA as described above, the rankings for hub centralities and authority cen-

tralities are:

node hub centrality = [eA]ii authority centrality = [eA]4+i,4+i

1 2.3319 1.5906

2 2.2289 3.0209

3 2.2812 2.2796

4 1.6414 1.5922

With this method, the hub ranking of the nodes is: {1; 3; 2; 4}. The authority ranking

is: {2; 3; 4; 1}. On this example, our method produces the same authority ranking as

HITS. The hub ranking, however, is slightly different: both methods identify node 1 as

the one with the highest hub score, followed by node 3; however, our method assigns

the lowest hub score to node 4 rather than node 2. This is arguably a more meaningful

ranking.
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Figure 4.2: The original directed network from Example 2, with adjacency matrix A (left)
and the bipartite network with adjacency matrix A (right).

4.6.2 Example 2

Consider the small directed network in Fig. 4.2 (left panel). The adjacency matrix is

given by

A =



















0 0 1 0

1 0 0 1

0 1 0 0

0 1 0 0



















.

The corresponding bipartite graph is shown in Fig. 4.2 (right panel). If hubs and

authorities are determined only using in-degrees and out-degrees, the result is as fol-

lows:

node out-degree in-degree

1 1 1

2 2 2

3 1 1

4 1 1

Under this criterion, the hub and authority rankings are both {2; 1, 3, 4 (tie)}. While

it is intuitive that node 2 should be given a high score (both as an authority and as

digraph2.eps
newbipartite2.eps
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a hub), just looking at the degrees does not allow one to distinguish the remaining

nodes.

Consider now the use of HITS. The largest eigenvalue of AAT (and ATA) is λmax =

2 and it has multiplicity two. Thus, different starting vectors for the HITS algorithm

may produce different rankings, as discussed in [52]. Starting from a constant author-

ity vector x(0), as suggested in [68], produces the following scores:

node hub rank authority rank

1 .0000 .3333

2 .5000 .3333

3 .2500 .0000

4 .2500 .3333

The ranking for hubs is: {2; 3, 4 (tie); 1}. The ranking for authorities is the following:

{1, 2, 4 (tie); 3}.

If the ranking is determined using eA as described above, the resulting scores are:

node hub centrality = [eA]ii authority centrality = [eA]4+i,4+i

1 1.5431 1.5891

2 2.1782 2.1782

3 1.5891 1.5431

4 1.5891 1.5891

With this method, the hub ranking of the nodes is the same as in HITS: {2; 3, 4 (tie); 1}.

However, in the authority ranking, node 2 is the clear winner rather than being part

of a three-way tie for first place: {2; 1, 4 (tie); 3}. In this example, the method based

on the matrix exponential is able to identify a top authority node by making use of

additional spectral information.



4. RANKING HUBS AND AUTHORITIES USING MATRIX FUNCTIONS 115

1

2 3 4 5

6

1

2

3

4

5

6

7

8

9

11

12

10

Figure 4.3: The original directed network from Example 3, with adjacency matrix A (left)
and the bipartite network with adjacency matrix A (right).

4.6.3 Example 3

Let G be the small directed network in Fig. 4.3. The adjacency matrix is given by

A =

































0 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 1 1 1 1 0

































.

If hubs and authorities are determined using only in-degrees and out-degrees, the

result is:

node out-degree in-degree

1 0 4

2 1 1

3 1 1

4 1 1

5 1 1

6 4 0

example3.eps
example3b.eps
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The hub ranking of the nodes using degrees is: {6; 2,3,4,5 (tie); 1}. The authority

ranking is {1; 2,3,4,5 (tie); 6}.

If the HITS algorithm is used, the resulting rankings are similar, but not exactly the

same. Starting with a constant authority vector x(0), the results are:

node hub rank authority rank

1 .000 .200

2 .125 .200

3 .125 .200

4 .125 .200

5 .125 .200

6 .500 .000

The hub ranking of the nodes is: {6; 2, 3, 4, 5 (tie); 1}. The authority ranking is:

{1,2,3,4,5 (tie); 6}. Here, HITS does not differentiate between node 1 and nodes 2,

3, 4, and 5 in terms of the authority score, even though node 1 has by far the highest

in-degree. This appears as a failure of HITS, since it is intuitive that node 1 should be

regarded as very authoritative.

When eA is used to calculate the hub and authority scores, node 1 does get a higher

authority ranking than all the other nodes:

node hub centrality = [eA]ii authority centrality = [eA]6+i,6+i

1 1.0000 3.7622

2 1.6905 1.6905

3 1.6905 1.6905

4 1.6905 1.6905

5 1.6905 1.6905

6 3.7622 1.0000
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Note that, if desired, the value 1 can be subtracted from these scores since it does

not affect the relative ranking of the nodes. The hub ranking is {6; 2,3,4,5 (tie); 1},

and the authority ranking is: {1; 2,3,4,5 (tie); 6}.

4.7 Application to web graphs

Similarly to HITS, and in analogy to subgraph centrality for undirected networks, the

rankings produced by the values on the diagonal of eA can be used to rank websites

as hubs and authorities in web searches (many other applications are of course also

possible). Three of the data sets considered here are small web graphs consisting of

web sites on various topics and can be found at [93] along with the website associ-

ated with each node; see also [20]. The experiments for this paper were run on the

“Expanded" version of the data sets. Each data set is named after the corresponding

topic.1 In addition, we include results for the wb-cs-stanford data set from the Univer-

sity of Florida Sparse Matrix Collection [31]. This digraph represents a subset of the

Stanford University web. In this section, the hub and authority rankings obtained from

eA are compared with those from HITS, Katz (using (4.8) with α = 1/(ρ(A) + 0.1)),

the row and column sums of the exponential eA of the nonsymmetric matrix A, and

PageRank/Reverse PageRank. For the latter we use the standard value α = 0.85 for

the damping parameter. All experiments are performed using Matlab Version 7.9.0

(R2009b) on a MacBook Pro running OS X Version 10.6.8, a 2.4 GHZ Intel Core i5

processor and 4 GB of RAM. For the purpose of these tests we use the built-in Matlab

function expm to compute the matrix exponentials, and backslash to compute the Katz

scores. Other approximations of eA are discussed in section 4.8.

1It should be noted, however, that in the node list for the adjacency matrix, the node labeling begins
with 1 and in the list of websites associated with the nodes found at [93], node labeling begins at 0. Thus,
node i in the adjacency matrix is associated with website i− 1.
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Figure 4.4: Plot of the eigenvalues of the expanded abortion matrix A.

4.7.1 Abortion data set

The abortion data set contains n = 2293 nodes and m = 9644 directed edges. The ex-

panded matrix A =







0 A

AT 0






has order N = 2n = 4586 and contains 2m = 19288

nonzeros. The maximum eigenvalue of A is λN ≈ 31.91 and the second largest eigen-

value is λN−1 ≈ 26.04. In this matrix, the largest eigenvalue is fairly well-separated

from the second largest so that one would expect the HITS rankings (which only use

information from the dominant eigenpair of A) to be reasonably close to the rankings

from eA (which use information from all of the eigenvalues and corresponding eigen-

vectors). A plot of the eigenvalues of the expanded abortion data set matrix can be

found in Fig. 4.4. Note the high multiplicity of the zero eigenvalue in this matrix, as

well as in the adjacency matrices of the computational complexity and death penalty

data sets considered below. Due to this, the numerical rank of the matrix is very low

and, as such, the diagonal values of eA can be estimated using only a few eigenvalues

(see section 4.8 for further discussion on this).

evaluesofnewabortion.eps
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Table 4.1: Top 10 hubs of the abortion web graph, ranked using [eA]ii, HITS, Katz, eA row
sums and Reverse PageRank with α = 0.85.

[eA]ii HITS Katz eA rs RPR
48 48 80 80 125

1021 1006 1431 1431 2184
1007 1007 1432 1432 79
1006 1021 1387 1426 81
1053 1053 1388 1425 48
1020 1020 1389 1415 1424
987 960 1397 1388 1447
990 968 1425 1389 78
985 969 1426 1397 134
989 970 1415 1387 1445

Table 4.2: Top 10 authorities of the abortion web graph, ranked using [eA]ii, HITS, Katz,
eA column sums and PageRank with α = 0.85.

[eA]ii HITS Katz eA cs PR
967 939 1430 1430 1609
958 958 1387 1387 1941
939 967 1425 1425 1948
962 961 1426 1426 1608
963 962 1429 1417 587
964 963 1396 1409 1610
961 964 1405 1429 2045
965 965 1406 1406 317
966 966 1409 1396 2191
587 1582 1417 1405 753

The top 10 hubs and authorities of the abortion data set, as determined using

the diagonal entries of eA, HITS with constant initial vector, the row/column sums

of (I − cA)−1 (“Katz”), the row/column sums of eA and Reverse PageRank/PageRank

are shown in Tables 4.1 and 4.2. We observe that there is a good deal of agreement

between the eA rankings and the HITS ones: indeed, both methods identify the web-

sites labeled 48, 1021, 1007, 1006, 1053, 1020 as the top 6 hubs, and both pick web

site 48 as the top one. Also, there are 7 web sites identified by both methods as being

among the top 10 authorities. The top authority identified by HITS is ranked third by



120 4.7 Application to web graphs

0 200 400 600 800 1000 1200 1400 1600 1800
−15

−10

−5

0

5

10

15

Figure 4.5: Plot of the eigenvalues of the expanded computational complexity matrix A.

eA, and conversely the top authority identified by eA is third in the HITS ranking. The

Katz rankings and those based on eA show considerable agreement with one another,

but are very different from the HITS ones and from those based on eA. Node 48, which

is the top-ranked hub according to HITS and eA, is now not even among the top 100.

Conversely, node 80, which is ranked the top hub by Katz and eA, is not in the top 100

nodes according to HITS or to eA. This is not too surprising, since the metrics based on

A and those based on A are obtained by counting rather different types of graph walks.

Finally, for this network Reverse PageRank and PageRank return rankings with almost

no overlap with any of the other methods.

4.7.2 Computational complexity data set

The computational complexity data set contains n = 884 nodes and m = 1616 directed

edges. The expanded matrix A has order N = 2n = 1768 and contains 2m = 2232

nonzeros. The maximum eigenvalue of A is λN ≈ 10.93 and the second largest eigen-

evaluesofnewCompComplex.eps
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value is λN−1 ≈ 9.86. Here, the (relative) spectral gap between the first and the second

eigenvalue is smaller than in the previous example; consequently, we expect the rank-

ings produced using eA and HITS to be less similar than for the abortion data set. A

plot of the eigenvalues of the expanded computational complexity data set matrix can

be found in Fig. 4.5.

The top 10 hubs and authorities of the computational complexity data set, deter-

mined by the various ranking methods, can be found in Tables 4.3 and 4.4. As expected,

we see less agreement between HITS and the diagonals of eA. Concerning the hubs,

both methods agree that the web site labelled 57 is by far the most important hub on

the topic of computational complexity. However, the method based on eA identifies as

the second most important hub the web site corresponding to node 17, which is ranked

only 39th by HITS. The two methods agree on the next three hubs, but after that they

return completely different results. The difference is even more pronounced for the

authority rankings. The method based on eA clearly identifies web site 1 as the most

authoritative one, whereas HITS relegates this node to 8th place. The top authority

acording to HITS, web site 719, places 5th in the ranking obtained by eA. The two

methods agree on only two other web sites as being in the top 10 authorities (717 and

727). The Katz rankings and those based on eA show little overlap for this data set,

although node 57 is clearly considered an important hub by all measures. A natural

question is how much these results are affected by the choice of the parameter c used

to compute the Katz scores. We found experimentally that, in contrast to the situation

for the other data sets, small changes in the value of α can significantly affect the Katz

ranking for this particular data set. Changing the value of c to α = 1/(ρ(A) + 0.3)

results in hub and authority rankings that are much closer to those given by the col-

umn/row sums of eA. The potential sensitivity to α is a clear drawback of the Katz-

based approach compared to the methods based on the matrix exponential. Coming to

(Reverse) PageRank, it is interesting to note that for this data set it provides rankings
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Table 4.3: Top 10 hubs of the computational complexity web graph, ranked using [eA]ii,
HITS, Katz, eA row sums and Reverse PageRank with α = 0.85.

[eA]ii HITS Katz eA rs RPR
57 57 56 57 57
17 634 709 56 56
644 644 57 17 17
643 721 697 51 51
634 643 705 634 21
106 544 690 21 11
119 632 714 255 255
529 801 708 173 12
86 640 712 709 13
162 639 715 45 45

Table 4.4: Top 10 authorities of the computational complexity web graph, ranked using
[eA]ii, HITS, Katz, eA column sums and PageRank with α = 0.85.

[eA]ii HITS Katz eA cs PR
1 719 688 673 673

315 717 685 1 664
673 727 673 664 534
148 723 690 534 45
719 808 56 45 2
717 735 686 473 1

2 737 664 315 376
45 1 1 376 341

727 722 45 688 50
534 770 534 599 51

that are at least in partial agreement with some of the other measures, especially those

based on eA. Looking at the authority scores, we also notice a good degree of overlap

among all methods, except HITS. Due to the small spectral gap, HITS is probably the

least reliable of all ranking methods on this particular data set.

4.7.3 Death penalty data set

The death penalty data set contains n = 1850 and m = 7363 directed edges. The

expanded matrix A has order N = 2n = 3700 and contains m = 14726 nonzeros. The
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Figure 4.6: Plot of the eigenvalues of the expanded death penalty matrix A.

maximum eigenvalue of A is λN ≈ 28.02 and the second largest eigenvalue λN−1 ≈

17.68. In this case, the largest and second largest eigenvalues are quite far apart, and

the relative gap is larger than in the previous examples. A plot of the eigenvalues of

the expanded death penalty matrix can be found in Fig. 4.6.

Due to the presence of a large spectral gap, much of the information used in forming

the rankings of eA is also used in the HITS ranking, and we expect the two methods

to produce similar results; see section 4.4.3. Indeed, as shown in Table 4.5 (hubs) and

Table 4.6 (authorities), in this case the top 10 rankings produced by the two methods

are actually identical.

Looking at the Katz scores and those based on eA, we see in this case a great deal

of overlap between these two, but almost completely different rankings compared to

HITS and eA (although node 210 is clearly an important hub by any standard). Note

that node 1632 is both the top hub and the top authority according to Katz and to

eA. PageRank and Reverse PageRank show a limited amount of overlap with the other

measures; nevertheless, nodes 210 and 1632 are also found to be important hubs and

evaluesofnewdeathpenalty.eps
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Table 4.5: Top 10 hubs of the death penalty web graph, ranked using [eA]ii, HITS, Katz,
eA row sums and Reverse PageRank with α = 0.85.

[eA]ii HITS Katz eA rs RPR
210 210 1632 1632 210
637 637 133 133 1632
413 413 1671 1671 70

1586 1586 552 552 95
552 552 1651 1651 135
462 462 1673 210 133
930 930 1328 1673 55
542 542 1653 1653 958
618 618 210 1328 1077

1275 1275 1709 1709 315

nodes 1632, 1 and 4 are found to be authoritative, in agreement with some of the other

measures.

4.7.4 Stanford web graph

The wb-cs-stanford data set from the University of Florida sparse matrix collection con-

tains n = 9914 nodes and m = 36854 directed edges. The expanded matrix A has order

N = 2n = 19828 and contains m = 73708 nonzeros. The maximum eigenvalue of A

is λN ≈ 38.38 and the second largest is λN−1 ≈ 32.12, hence there is a sizeable gap.

Tables 4.7-4.8 report the results obtained with the various ranking schemes.

The first thing to observe is the remarkable agreement between the HITS, eA, Katz,

and eA rankings of both hubs and authorities. This in stark contrast with the re-

sults for the previous three data sets. Moreover, many of the nodes that are ranked

highly as hubs are also ranked highly as authorities. A plausible explanation of these

observations is that the adjacency matrix A for this digraph is much closer to being

symmetric than in the other cases. Indeed, the percentage of “bidirectional” edges in

the wb-cs-stanford graph is 47.63%; the corresponding percentages for the abortion,

computational complexity and death penalty graphs are just 2.72%, 2.97% and 4.02%,
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Table 4.6: Top 10 authorities of the death penalty web graph, ranked using [eA]ii, HITS,
Katz, eA column sums and PageRank with α = 0.85.

[eA]ii HITS Katz eA cs PR
4 4 1632 1632 993
1 1 1662 1662 667
6 6 1697 1697 3
7 7 1689 1689 736
10 10 1653 1653 735
16 16 1671 1671 1632
2 2 1675 1675 42
3 3 1684 1684 1
44 44 798 789 4
27 27 1652 1654 1212

Table 4.7: Top 10 hubs of the wb-cs-stanford web graph, ranked using [eA]ii, HITS, Katz,
eA row sums and Reverse PageRank with α = 0.85.

[eA]ii HITS Katz eA rs RPR
6562 6562 6562 6562 251
6838 6838 6837 6837 252
6840 6837 6838 6838 253
6837 6839 6839 6839 254
6839 6840 6840 6840 271
6616 6616 6669 6669 2240
6765 6615 6668 6668 2241
6615 6765 6670 6670 2242
6669 6669 6616 6616 2243
6731 6731 6615 6615 348

respectively.

Interestingly, the (Reverse) PageRank results are now drastically different fron the

ones provides by all the other measures in nearly all cases. The only (partial) exception

is that PageRank finds nodes 6837, 6839 and 6840 to be among the top 10 authorities;

these three nodes are identified as the three most authoritative ones by the remaining

methods.
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Table 4.8: Top 10 authorities of the wb-cs-stanford web graph, ranked using [eA]ii, HITS,
Katz, eA column sums and PageRank with α = 0.85.

[eA]ii HITS Katz eA cs PR
6837 6837 6837 6837 2264
6840 6839 6839 6839 8226
6839 6840 6840 6840 8059
6838 6838 6838 6838 8057
6617 6617 6573 6573 4485
6615 6615 6574 6575 5707
6766 6614 6575 6576 8225
6764 6616 6576 6577 6837
6616 6764 6577 6578 6839
6614 6766 6578 6579 6840

4.8 Approximating the matrix exponential

For the purpose of ranking hubs and authorities in a directed network, only the main

diagonal of eA is required. As was discussed in Chapter 1, Section 1.7, this can be done

without having to compute all the entries in eA. When applying the approach based on

Gauss quadrature rules to the 2n×2n matrix A, only matrix-vector products with A and

its transpose are required, just like in the HITS algorithm. If only the hub scores are

wanted, it is also possible to apply the described techniques to the symmetric matrix

AAT using the function f(λ) = cosh(
√
λ); the same applies if only the authority scores

are wanted, working this time with the matrix ATA. The problem with this approach is

that only estimates (rather than increasingly accurate lower and upper bound) can be

obtained, due to the fact that the function f(λ) = cosh(
√
λ) is not strictly completely

monotonic on the positive real axis. We refer to [9] for details. In our experiments

we always work with the matrix A, since we are interested in computing both hub and

authority scores.
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Table 4.9: The number of iterations necessary for the top 10 hubs or authorities to be
determined (not necessarily in the correct order).

Dataset hub (lower bound) hub (upper bound)
Abortion > 40 > 40

Comp. Complex. 3 3
Death Penalty 5 3

Stanford 8 8

Dataset authority (lower bound) authority (upper bound)
Abortion 2 2

Comp. Complex. 4 5
Death Penalty 4 2

Stanford 7 8

4.8.1 Test results

Accurate evaluation of all the diagonal entries of eA using quadrature rules may be

too expensive for truly large-scale graphs. In most applications, fortunately, it is not

necessary to rank all the nodes in the network: only the top few hubs and authorities

are likely to be of interest. When using quadrature rules, the number of quadrature

nodes (Lanczos iterations) required to correctly rank the nodes as hubs or authorities

varies and depends on both the eigenvalues of eA and how close the diagonal entries are

in value. If the rankings of the nodes are very close, it can take many iterations for the

ordering to be exactly determined. However, since estimates for diagonal entries are

calculated individually, once the top 10 (say) nodes have been identified, additional

iterations can be performed only on these nodes in order to determine their exact

ranking.

Our approach exploits the monotonicity of the Gauss-Radau bounds: as soon as

the lower bound for node i is above the upper bounds for other nodes, we know that

node i will be ranked higher than those othe nodes. This observation leads to a sim-

ple algorithm for identifying the top-k nodes. The number of Lanczos iterations per

node necessary to identify the top k = 10 hubs and authorities, using Gauss-Radau
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Table 4.10: The number of iterations necessary for the top 10 hubs or authorities to be
ranked in the top 30.

Dataset hub (lower bound) hub (upper bound)
Abortion 5 4

Comp. Complex. 2 2
Death Penalty 2 2

Stanford 7 4

Dataset authority (lower bound) authority (upper bound)
Abortion 2 2

Comp. Complex. 4 2
Death Penalty 2 2

Stanford 2 4

lower and upper bounds, for the four data sets from section 4.7 is given in Table 4.9.

Our implementation is based on Meurant’s Matlab code [77], From the table it can be

seen that, in most cases, only 2-5 iterations per node are needed. An exception is the

determination of the top 10 hubs of the abortion data set, for which the number of it-

erations is large (> 40). This is due to a cluster of nodes (nodes 960 and 968-990) that

have nearly identical hub rankings. These nodes’ scores agree to 15 significant digits.

However, for most applications, if a subset of nodes are so closely ranked, their exact

ordering may not be so important. Table 4.10 reports the number of Lanczos iterations

neeeded for the top k = 10 hubs and authorities to be ranked at least in the top 30.

Here, the number of iterations per node needed is never more than 7. The total cost

is thus O(n) Lanczos iterations, again leading to an O(n2) overall complexity. Various

enhancements can be used to reduce costs, including the use of sparse-sparse mat-vecs

in the Lanczos iteration, and the exclusion of nodes with zero out-degree (for hub com-

putations) and zero in-degree (for authority computations) from the top-k calculations.

It is also safe to assume that in most cases of interest, one can also exclude nodes with

in- and out-degree 1 from the computations, leading to further savings.
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4.9 Conclusions and outlook

In this chapter we have presented a new approach to ranking hubs and authorities in

directed networks using functions of matrices. Bipartization is used to transform the

original directed network into an undirected one with twice the number of nodes. The

adjacency matrix of the bipartite graph is symmetric, and this allows the use of sub-

graph centrality (and communicability) measures for undirected networks. We showed

that the diagonal entries of the matrix exponential provide hub and authority rankings,

and we gave an interpretation for the off-diagonal entries (communicabilities). Unlike

HITS, the results are independent of any starting vectors; and unlike the Katz-based

ranking schemes, there is no dependency on an arbitrary parameter.

Several examples, both synthetic and corresponding to real data sets, have been

used to demonstrate the effectiveness of the proposed ranking algorithms relative to

HITS and to other ranking schemes based on the matrix resolvent and on the expo-

nential of the adjacency matrix of the original digraph. Our experiments indicate that

our method results in rankings that are frequently different from those computed by

HITS, at least in the absence of large gaps between the dominant singular value of the

adjacency matrix A and the remaining ones. This is to be expected, since our method

uses information from all the singular spectrum of the network, not just the dominant

singular triplets.

As usual in this field, there is no simple way to compare different ranking schemes,

and therefore it is impossible to state with certainty that a ranking scheme will give

“better” results than a different scheme in practice. It is, however, certainly the case that

the method based on the exponential of A takes into account more spectral information

than HITS does; moreover, the rankings so obtained are unambiguous, in that they do

not depend on the choice of an initial guess or on a tuneable parameter. As we saw, the

latter is a weak spot of Katz-like methods, and a similar case can be made for PageRank
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and Reverse PageRank.

Compared to HITS, the new technique has a higher computational cost. We showed

how Gaussian quadrature rules can be used to quickly identify the top ranked hubs and

authorities for networks involving thousands of nodes. We note that such schemes

require a symmetric input matrix and are not readily applicable to nonsymmetric ma-

trices, since in this case one can only hope for estimates instead of lower and upper

bounds.

Future work should include a more efficient implementation and tests on larger

networks. It is likely that the proposed approach based on Gaussian quadrature will

prove to be too expensive for truly large-scale networks with millions of nodes. We

hope to explore techniques similar to those presented in [18, 53] and [88] in order to

extend our methodology to truly large-scale networks. Another relevant question is the

study of the rate of convergence of the Lanczos algorithm for estimating bilinear forms

associated with adjacency matrices of graphs of different types.



5 Conclusions

In this thesis, we have studied problems arising from the calculation of node centrality

rankings, specifically those based on functions of matrices. We introduced the total

communicability of a node i, given by the ith row sum of the exponential of the adja-

cency matrix of the network, as a viable centrality method. We demonstrated that the

rankings provided by total communicability are often in strong agreement with those

produced by subgraph centrality, especially for highly ranked nodes. This was shown

through extensive numerical tests on both synthetic and real-world networks. These

tests also demonstrated that total communicability is as good as subgraph centrality in

identifying essential nodes in a Yeast PPI network [10, 42, 43]. We also showed that

total communicability scores can be estimated extremely quickly using Krylov subspace

methods, allowing total communicability to be used to rank nodes on very large net-

works where the use of subgraph centrality is infeasible. Additionally, we introduced

the total communicability of a network, given by the average node total communica-

bility, as a global measure of network connectivity. Future work in this area includes

providing more precise guidelines on when subgraph centrality and total communi-

cability rankings will be in strong agreement as well as investigating the use of total

network communicability in the design of communication networks.

We also analyzed the relationship between four parameterized centrality measures

based on the matrix exponential and resolvent with degree and eigenvector centrality.

The centrality measures examined were subgraph centrality and total communicability

(given by [eβA]ii and [eβA1]i, respectively, with β > 0) and resolvent and Katz central-
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ity (given by [(I − αA)−1]ii and [(I − αA)−11]i, 0 < α < 1
λ1

). We proved that as α

and β approach 0, the rankings produced by all four centrality measures converge to

those produced by degree centrality. As α approaches 1
λ1

and β approaches infinity,

the rankings converge to those produced by eigenvector centrality. The speed of this

convergence is based on the size of the spectral gap λ1 − |λ2|. These results help to

explain the observed correlation between degree and eigenvector centrality on many

real-world complex networks. We also conducted extensive numerical experiments to

determine how the convergence to degree and eigenvector centrality rankings behaved

on real-world networks. Based on these experiments, we were able to provide guide-

lines on the choice of α and β to ensure the rankings produced are as different as

possible from those produced by degree and eigenvector centrality.

We propose an extension of the measure of subgraph centrality to directed networks

based on a bipartization of the network and explicitly determine the exponential of

this bipartized network. We show how this extension can be used to rank hubs and

authorities using the diagonal entries of the exponential of the bipartized network. We

also show that the off-diagonal entries contain information about the ability of pairs

of nodes to communicate in various manners. We used this method to rank hubs and

authorities on a variety of directed web networks and compared the rankings to those

produced by HITS, PageRank, and Reverse PageRank. Our proposed method is more

expensive than the other methods tested. Although there are currently methods to

estimate the centralities based on Gaussian quadrature, they are still too expensive

to use on very large networks. Future work includes the investigation of techniques

to more quickly estimate these centralities and their use in the study of real-world

applications.
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A Algorithms

HITS algorithm, adapted from [73, p. 118]

Input: A: adjacency matrix; x(0): starting vector; ε: convergence tolerance

Output: x: authority vector; y: hub vector

initialization: x = x(0);

r = 1 ;

while r ≥ ε do

xo = x ;

x = Ax ;

x = ATx ;

x = 1
‖x‖2

x ;

r = ‖x− xo‖1;

end

y = Ax;

Algorithm 1: HITS Algorithm
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PageRank Algorithm, adapted from [73, p. 42]

Input: H: a row normalized hyperlink matrix; π(0): starting vector; α: scaling

parameter ; ε: convergence tolerance

Output: π: PageRank vector

initialization: π = π(0);

r = 1 ;

Replace zero rows of H with 1
n
1T ;

while r ≥ ε do

x = π ;

πT = απTH + (1− α) 1
n
1T1 ;

r = ‖π − x‖1 ;

end

Algorithm 2: PageRank Algorithm
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Lanczos Algorithm, adapted from [76, p. 8] Input: A: a real, symmetric

matrix; v: starting vector

Output: entries of a symmetric tridiagonal matrix Tk: αk = [Tk]k,k and

µk = [Tk]k,k−1

v1 =
1

‖v‖v ;

α1 = vT
1 Av1 ;

ṽ2 = Av1 − α1v1 ;

for k = 2, 3, . . . do

µk = ‖ṽk‖ ;

vk = 1
µk

ṽk ;

uk = Avk − µkvk−1 ;

αk = vT
k uk ;

˜vk+1 = uk − αkvk ;

end

Algorithm 3: Lanczos Algorithm
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B Additional experiments

Here, we present plots of of the intersection distances between the top 10 nodes, ranked

by a variety of centrality measures, for a selection of real-world networks. More details

can be found in Chapter 3.
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Figure B.1: The intersection distances between the exponential subgraph centrality (left)
or total communicability (right) rankings produced by successive choices of β on the top
10 ranked nodes of each network. Each line corresponds to a network in Table 2.6.
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Figure B.2: The intersection distances between resolvent subgraph centrality (left) or Katz
centrality (right) rankings produced by successive choices of α on the top 10 ranked nodes
of each network. Each line corresponds to a network in Table 2.6.
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Figure B.3: The intersection distances between the total communicability rankings of the
top 10 nodes of each network produced by successive choices of β. Each line corresponds
to a network in Table 3.1.
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Figure B.4: The intersection distances between the Katz centrality rankings produced by
successive choices of α. Each line corresponds to a network in Table 3.1.
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