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Abstract 

 

Genome-wide DNA methylation profile change 

in cancer cell lines under stresses 

 
By Qingyu Wang 

 
 
As one of the most studied epigenetic mechanisms, DNA methylation profile provides 
additional information beyond DNA sequence. Differentially methylated regions have been 
found to be associated with various diseases. DNA methylation has also been shown to be 
linked to tumorigenesis. In this study, we take HeLa cell line and D54 cell line as examples to 
analyze the genome-wide DNA methylation profile change in the cells when they go through 
different stress conditions including cold shock (TEMP), nutrition depletion (FBS, DPR), 
chemotherapy agent (MeP) and low glucose (GLUC). We conducted the experiment in two 
batches and collected the methylation status data (β values) from several replicated samples 
of each condition (control and stresses). After applying quality control and normalization to 
the data, we identified the differentially methylated positions (DMPs) in each pairwise 
comparison group (each stress vs. control) using the combinations of functions in the 
“minfi” package and a non-parametric test with balanced permutation, and found their 
nearby regions (genes). Then we tried to find the overlapped DMPs and overlapped 
differentially methylated (DM) genes among all these comparisons. 
 
Hundreds of DMPs were identified for each pairwise comparison. Since the methylation 
changes in CTRL vs. TEMP and CTRL vs. DPR group are not very consistent with other 
data, we only focused on the overlaps between HeLa MeP, HeLa FBS, HeLa Glucose and 
D54 MeP groups. Only one overlapped DMP was found between HeLa MeP and FBS 
groups, while there was none overlapped DMP was found between D54 MeP and other 
HeLa stresses. There are 72, 21 and 12 overlapped DM genes between HeLa MeP and FBS, 
HeLa Glucose and MeP and FBS, and D54 MeP and other HeLa, respectively. Thus, in our 
study, we conclude that HeLa and D54 cell lines share DMRs under different stress 
conditions. Also we found that the 12 overlapped DMRs is not related to the distribution of 
mutations in cancer cells. For further studies, we plan to find biological properties they share 
(such as pathways) and explore more about the functions and roles the overlapped genes 
have. 
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1. Introduction 

With the rapid development of high throughput biotechnologies over the past decades, 

people have paid more attention on Epigenetics to get more information that DNA 

sequence cannot provide. Among the epigenetic mechanisms, DNA methylation is the most 

studied one [1]. In mammals including human beings, DNA methylation is nearly only found 

in CpG dinucleotides sites, with methyl groups on the cytosine at position C5 usually [2, 3]. 

The differentially methylated regions (DMRs), which are the genomic regions with different 

DNA methylation status across samples, are observed to be related with various diseases [4]. 

Through the gain or loss of DNA methylation, imprinting disorders can happen [5], which 

are associated with many diseases, including Beckwith–Wiedemann syndrome, Prader–Willi 

syndrome, Angelman syndrome and transient neonatal diabetes mellitus [2]. Increased DNA 

methylation is considered to have a role in diseases associated with repeat instability such as 

Fragile X syndrome [2]. Also, researchers found three genomic regions with significant DNA 

methylation changes in postmortem brain tissues from patients with autism spectrum 

disorder [6]. The differential methylation in two clusters potentially increase the risk for 

rheumatoid arthritis [7]. 

 

Cancer is a global human health problem, and tied to stability of genes that control normal 

cell functions. DNA methylation is also a contributing factor to cancer with a specific 
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pattern: genome-wide hypomethylation and gene-specific hypermethylation happening at the 

same time in the same cell [2]. For example, differential methylation occurring in CpGs in 

gene DNMT3B contributes to the rising risk of cancers including breast and lung 

adenocarcinoma [8, 9]. Hypermethylation of promoter regions of several candidate genes has 

been suggested to be related to colon cancer carcinogenesis [10]. 

 

Although extensive research has been conducted on the association between differential 

methylation and the risk of cancer, few studies are on the differential methylation within 

cancer cells under external stress conditions. Due to the importance of DMRs in diseases, 

many studies have focused on developing statistical methods to identify them [11]. In this 

study, we take the HeLa cell line as an example to explore the differential methylations using 

statistical analysis methods. We will analyze the genome-wide DNA methylation profile 

change in the HeLa cell line when the cells go through different stress conditions including 

cold shock, nutrition depletion, chemotherapy agent and low glucose. We want to explore 

where differentially methylated regions are under these conditions and whether there is 

overlap among these regions. 
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2. Methods 

2.1. Methylation Data 

We did two parts of experiments to collect the methylation status data (β values) from 

replicated samples of each condition (control and stresses). 

 

In the first part of this study, the first two batches of HeLa cells were divided to 4 groups 

respectively: for the first batch, there were one control group (CTRL) and three treatment 

groups under three different stress conditions (cold shock (TEMP), nutrition depletion 

(FBS), and chemotherapy agent (MeP)); for the second batch, there were one control group 

(CTRL) and another three treatment groups under three different stresses (nutrition 

depletion (FBS), chemotherapy agent (MeP), and nutrition restorage after depletion (DPR)). 

Examine methylation 
status of cancer cells 

under stresses

1st part of study

Batch 1

HeLa CTRL 
(4 replicates)

HeLa TEMP 
(4 replicates)

HeLa FBS 
(4 replicates)

HeLa MeP
(4 replicates)

Batch 2

HeLa CTRL 
(4 replicates)

HeLa FBS 
(4 replicates)

HeLa MeP
(4 replicates)

HeLa DPR 
(4 replicates)

2nd part of study

Batch 3

HeLa CTRL 
(2 replicates)

HeLa Glucose 
(2 replicates)

D54 CTRL 
(2 replicates)

D54 MeP
(2 replicates)
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In the control groups, HeLa (ATCC® CCL-2™) cervical carcinoma cells were grown in 

DMEM supplemented media with 10% fetal bovine serum, at 37oC with 5% CO2, which is 

the standard HeLa cell culture condition. Each group in the first part was replicated for four 

times. Then the third batch of experiment was conducted in the second part of this study. In 

this part, there were 2 groups of HeLa cell line and 2 groups of D54 cell line. To be specific, 

there were one control group of HeLa cells, one low Glucose group (0.78% Glucose) of 

HeLa cells, one control group of D54 cells and one group with chemotherapy agent (MeP) 

of D54 cells, with two replicated samples of each. Genomic DNA extraction was conducted 

for each sample and Infinium EPIC 850K methylation array (Illumina Inc.) was used to 

measure the methylation status of 865,859 CpG sites, with input requirements of 500ng high 

molecular weight gDNA per sample. Then the Bioconductor minfi package [14] was used to 

process the raw data (IDAT files), as well as to do quality control, normalization and 

analyses. 

2.2. Quality Control 

After reading in the raw data and loading the 850K Annotation, the control probes in the 

Annotation were removed and several matrices were calculated. Then six steps of data 

filtering process were conducted. The first step was based on detection p-values. A probe 

was considered as failed if its p-value is above 0.01. Second, probes with < 3 beads in at least 

5% of samples per probe were filtered out. Third, non-CpG probes contained in the dataset 

were filtered out. In the fourth and fifth steps, all SNP-related [12] probes and all multi-hit 
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probes [13] were filtered out. At last, all probes located in chromosome X and Y were 

filtered out because the difference between chromosome X and Y may make the differential 

CpG sites on them inaccurate. After filtering, 717,934 CpG sites remained for analyses. The 

beta values (β) of the CpGs denoted the estimate of their methylation level. 

2.3. Quantile Normalization 

Generally, probes can generate some biases (Figure 1). In this case, normalization is 

paramount to adjust the bias. Quantile normalization method was used in this study. First, 

the ranks of the beta-values were determined among each group. Second, the means of beta-

values from different groups for each rank were calculated. Third, the means were filled in to 

substitute the original values. 

2.4. Methylation Change Analyses 

After quantile normalization, two distinct methods for monitoring DMPs in pairwise 

comparisons were applied genome wide. The first method was to use the “dmpFinder” 

function in a minfi package to detect DMPs by testing each genomic position for association 

between methylation and a phenotype (control or stresses) with linear regression and the 

second method was to use a non-parametric test with balanced permutation, which 

resamples the data when doing tests.  
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For the first part of the study, both methods were applied. Balanced permutation method 

was used for resampling. For example, for the low FBS stress, two data frames, data 1 and 

data 2, were set up for the 4 control groups and 4 FBS groups in each batch. Firstly, 

permutation was done on data 1 and 70 combinations were generated. For each combination 

of data 1, secondly, all 70 combinations in data 2 were generated. Taken together, there were 

4900 permutation combinations in total. Then t statistics were calculated for each 

combination and p-values were calculated for the true group labels. The thresholds for the 

minfi method was false discovery rate q-value thresholds while a nominal permutation p-

value was used as the threshold for the non-parametric test. 

 

For the second part of the study, since there were only one batch with two samples in each 

group, there are too few combinations for the balanced permutation to generate satisfying 

results. Thus, only the “dmpFinder” function in the minfi package was used to detect DMPs 

with the threshold of p-value < 0.01.  

 

Since we wanted to know whether different stresses affect same DMPs and genes, we 

examined the overlaps of results from different pairwise comparison groups. Once we had 

identified the DMPs, we annotated them with their nearest genes. Then we explored the 

DMPs and differentially methylated genes shared among stresses.  
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3. Results 

In the first part of the study, after using minfi package and the balanced permutation 

method, according to the threshold that q-value (calculated by test from “minfi”) < 0.05 and 

p-value (calculated by balanced permutation test) < 0.001, there are 348 DMPs for CTRL vs. 

FBS comparison, and 475 DMPs for CTRL vs. MeP. Most of DMPs in the comparisons of 

HeLa FBS and HeLa MeP are hypomethylation. According to the threshold that q-value < 

0.05 and p-value < 0.05/number of observations, there are 6009 DMPs for CTRL vs. 

temperature comparison, and 57078 DMPs for CTRL vs. DPR. Since the methylation data 

of low temperature have much more risks to be biased, and the data of DPR might not be 

consistent with other stresses, we focus on the overlaps between CTRL vs. MeP group and 

CTRL vs. FBS group. The numbers of genes found to be differentially methylated are 579 

for CTRL vs. FBS, 772 for CTRL vs. MeP and 72 genes are overlapped between the two 

comparisons. The p-value distribution plots and QQ plots are shown for CTRL vs. FBS 

(Figure 2(a)), CTRL vs. MeP (Figure 2(b)) and CTRL vs. DPR (Figure 2(c)) 

comparisons. There is only one CpG site, named “cg24166386” in Chromosome 13, found 

as DMP in both CTRL vs. MeP and CTRL vs. FBS. 

 

In the second part, at the beginning, correlation plots are generated to show the consistency 

of the experiment with the first part (Figure 3). Then according to the threshold that p-

value < 0.01, 5748 DMPs for HeLa CTRL vs. Glucose and 7131 DMPs for D54 CTRL vs. 
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MeP were found. The numbers of nearby genes are 3717 genes for HeLa and 4445 genes for 

D54. As for the overlaps between the second part of the study and the first part, we 

switched to identifying overlapping DMRs (the nearest genes of the DMPs) instead of 

DMPs since few overlapped DMPs exist. For instance, there is no overlapped CpG site 

found as DMP in all HeLa stresses (Glucose, FBS and MeP). Thus, the differentially 

methylated genes from HeLa Glucose pairwise comparison group vs. HeLa FBS, HeLa 

Glucose vs. HeLa MeP, and HeLa Glucose vs. Other HeLa stresses (72 overlapped 

differentially methylated genes between HeLa FBS group and HeLa MeP group, from 

previous results) are compared. Respectively, 154, 190 and 21 differentially methylated genes 

are found to be overlapped. There are 207 overlapped differentially methylated genes 

between D54 MeP vs. D54 CTRL comparison group from the second part of the study and 

the HeLa MeP vs. HeLa CTRL group from the first part. There are 12 overlapped 

differentially methylated genes (Table 1) in total for all stresses in HeLa (Glucose, FBS, 

MeP) and D54 (MeP). In order to see whether the number of the global overlaps (12 genes) 

is higher than the expected number of overlaps by chance, we applied a hypergeometric test 

and obtained a p-value of 0.0018. Since the p-value is smaller than 0.05 (significant level), we 

could say that the number of overlaps is significantly higher than expected. DMPs from D54 

MeP vs. HeLa MeP in the first part (475 DMPs, from previous results) are compared and 6 

overlaps have been found. 
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4. Discussion 

4.1. Interpretation of Results 

In this study, we aim to identify the differentially methylated CpG sites and regions when the 

cancer cells (HeLa cell line and D54 cell line) went through several stress conditions (TEMP, 

FBS, MeP, DPR and 0.78% Glucose). In addition, we would like to find the overlapped 

DMPs or DMRs between different stress conditions. We wonder if there are shared DMPs 

or DMRs under each stress and within both HeLa and D54 cell lines. As a result, we found a 

large number of DMPs and differential methylated genes (treated as DMRs here) for each 

stress vs. CTRL. However, there is no DMP that is common for all comparison groups. As 

for differential methylated genes, we found 12 overlaps between every comparison groups in 

both HeLa and D54 cell lines. 

4.2. Further Studies 

Some previous studies were focused on how certain differential methylated genes affect the 

risk of a healthy individual getting a cancer [8]. However, few study was about what genome-

wide DNA methylation profile could be changed by outside stresses in a cancer cell. Our 

study addressed more about this problem, which could be meaningful for further treatment 

researches of human cancer. 
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For further studies, we should explore whether the differentially methylated genes share a 

common pathway. If so, it will get us a better knowledge about cancer and human genes. In 

addition, to further investigate the related properties and meanings of the overlapped DMPs 

and DMRs, we can also examine the counts of SNPs nearby the overlapped CpG sites. We 

can divide the DNA into distinct “bins” of a 5 kb length each and use the data of SNP 

counts from 1000 Genomes Project to obtain the number of SNPs in the bins that 

contained the overlapped DMPs. We will get more information about the overlaps by 

comparing the SNP counts in each “DMP bin” with the average SNP counts. We can try 

other cancer cell lines to compare with the current ones to verify the connection between 

DNA methylation and cancer as well. 

4.3. Limitations 

One limitation for the current study is that the results for now were not sufficient for us to 

conclude that the 12 overlapped genes play an important role in human cancer. We did not 

see whether the DMPs are “stable” in the standard condition or they would change their 

methylation status from time to time. Another limitation is that the amount of replicated 

samples of each group was not enough. Based on only two replicates for each group in the 

second part of the study, it was hard to calculate the convincing q-values (showing the false 

discovery rate). That might cause some biases when we were looking for DMPs. 
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Appendix. Figures and Tables 

Figure 1. Beta-value distribution Plot  

  
 
 
 
 
 
 
 
 
 

     (a). for batch 1 & 2          (b). for batch 3 – HeLa cell line 
 

 
 
 
 
 
 
 
 
 
 

(c). for batch 3 – D54 cell line 
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Figure 2. P-value distribution Plot and QQ plot  

     

 

 

 

 

 

(a). for HeLa CTRL vs. FBS 

      

 

 

 

 

 

 

(b). for HeLa CTRL vs. MeP 

     

 

 

 

 

 

 

 

(c). HeLa CTRL vs. DPR 
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Figure 3. Correlation Plots between the 1st part experiments and the 2nd part experiments 

 

 

 

 

 

 

(a). correlations between CTRL groups in the 1st part of study and the 2nd part of study 

 

 

 

 

 

 

(b). correlations between HeLa MeP group and D54 MeP group 
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(c). correlations between methylation changes (beta difference compare to CTRL) of 

different stresses; the left one is the correlation plot of beta differences of D54 MeP vs. beta 

differences of HeLa MeP group; the right one is the correlation plot of beta differences of 

HeLa Glucose vs. beta differences of HeLa FBS group 

  



17 

Table 1. The 12 overlapped DM genes and their nearby DMPs 

Gene 
Name 

CpG Name 
Methylation Change (Beta difference compared to CTRL) 

HeLa MeP HeLa FBS HeLa GLUC D54 MeP 

CDH11 

cg10853728 0.0091 0.0249 -0.0139 0.0580 
cg11271299 0.0256 0.0546 0.0929 0.0379 
cg18265326 0.0137 0.0175 -0.0145 0.0002 
cg18637626 0.0138 0.0130 -0.0521 0.0102 

CDKAL1 

cg06851325 -0.0224 -0.0118 -0.0852 -0.0050 
cg07196044 -0.0125 0.0072 0.0632 -0.0214 
cg08559711 -0.0287 0.0031 0.0322 -0.0326 
cg10474435 0.0341 0.0211 0.0158 0.0589 
cg14546778 0.0146 0.0244 -0.0048 -0.0027 
cg16076758 -0.0019 0.0134 0.0509 -0.0607 
cg17154807 0.0124 0.0369 -0.0008 -0.0765 
cg20790163 -0.0035 0.0724 -0.0252 -0.0122 
cg21909643 0.0487 0.0515 0.0481 0.0783 

DLGAP2 

cg00837987 0.0198 0.0032 -0.0003 0.0364 
cg02709139 0.0010 0.0052 0.0148 -0.0303 
cg11734845 0.0092 0.0009 -0.0667 0.0200 
cg11966432 0.0154 0.0298 0.0478 -0.0017 
cg20791311 0.0207 0.0215 0.0312 0.0353 
cg23042540 -0.0184 0.0017 -0.0539 0.0071 

GALNT9 

cg00012529 0.0426 0.0348 -0.0266 -0.0104 
cg01421019 0.0161 0.0129 -0.0115 0.0152 
cg07782603 0.0086 -0.0016 -0.0282 -0.0283 
cg09085411 -0.0471 -0.0300 0.1333 -0.0765 
cg10047181 0.0445 0.0278 0.0214 0.0372 
cg16767842 -0.0285 -0.0069 0.0273 -0.0253 
cg19325331 0.0362 0.0219 -0.0229 0.0600 
cg19748840 0.0090 -0.0203 -0.0722 0.0397 
cg23777173 -0.0092 0.0083 0.0080 0.0799 
cg23914694 0.0420 -0.0097 -0.1030 0.0200 

MCF2L 

cg07310677 0.0112 0.0059 -0.0057 0.0486 
cg12829183 0.0160 0.0245 0.0137 0.0326 
cg16959787 -0.0012 -0.0067 -0.0280 0.0641 
cg19641924 0.0010 -0.0052 -0.0156 -0.0612 
cg20487860 0.0022 -0.0026 -0.0595 0.0977 
cg20908740 0.0343 0.0075 -0.0329 0.0052 
cg26269162 0.0047 0.0089 -0.0096 0.0660 
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NFIA 

cg07310946 -0.0375 -0.0374 -0.0767 0.0326 
cg12115385 0.0391 0.0670 0.0025 -0.0142 
cg14093103 -0.0038 -0.0091 -0.0459 0.0055 
cg24403479 0.0404 0.0994 0.0240 0.0372 
cg25369553 0.0088 0.0005 -0.0233 0.0805 

SEMA3A 

cg01571974 -0.0247 -0.0137 -0.0358 0.0602 
cg09943050 0.0496 0.0186 0.0091 -0.0077 
cg12862820 0.0092 0.0870 0.0262 -0.0034 
cg16346212 0.0119 0.0096 -0.0784 0.0184 
cg27307829 -0.0355 0.1231 0.0779 0.0180 

TENM2 

cg06659019 -0.0011 0.0187 0.0423 -0.0423 
cg17525385 0.0287 0.0011 -0.0349 0.0094 
cg19450817 -0.0099 0.0017 0.0772 0.0129 
cg23998048 0.0148 0.0050 -0.0342 0.0085 

TNS1 

cg01089914 0.0002 -0.0052 -0.0644 -0.0163 
cg05434674 0.0227 0.0238 -0.0425 0.0527 
cg07072618 0.0402 0.0154 -0.0268 0.0118 
cg20217899 0.0308 0.0320 -0.0380 -0.0061 
cg25928629 0.0374 0.0101 -0.0295 0.0010 

TRIM2 

cg08444115 0.0636 0.0316 -0.0309 -0.0122 
cg08651153 -0.0156 -0.0234 -0.0388 -0.0639 
cg16910246 -0.0307 -0.0249 0.0882 -0.0340 
cg20347377 0.0033 0.0128 -0.0009 -0.0439 

UBASH3B 

cg12883617 0.0305 -0.0048 0.0557 0.0531 
cg15826891 -0.0271 0.0701 0.1052 0.0081 
cg19535509 0.0597 0.0098 -0.0330 0.0303 
cg24387544 0.0129 0.0038 0.0866 0.0255 

UNC5C 
cg12832751 0.0025 0.0077 0.0104 0.0565 
cg13177026 0.0297 0.0421 0.0468 0.0058 
cg20947434 0.0269 0.0097 0.0271 -0.0151 

 


