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Abstract

Fast Gaussian Process Solver

By Zhiqi Fu

Gaussian Process is a non-parametric, stochastic machine learning technique that has been widely utilized

in many fields, such as spatial statistics, geology and computer experiments. However, the application of

this powerful technique is limited by its cubic computational complexity. To solve this problem, we studied

the intrinsic structures inherent in the kernel matrix and developed linear-complexity solvers to quickly train

the Gaussian process model. In this study, we worked on the following aspects:

• Combining stochastic Lanczos Quadrature with density of states, which is a concept developed in

quantum physics, to develop a log-determinant solver

• Using the Sherman-Morrison-Woodbury preconditioned conjugate gradient to develop a linear system

solver

• Substituting the naive grid search with Bayesian optimization to quickly train the optimal hyper-

parameters

After the above steps, we applied it to the synthetic data set and global temperature data to compare our

predictions with the true temperature values in order to validate our algorithm.



Fast Gaussian Process Solver

By

Zhiqi Fu

Yuanzhe Xi
Advisor

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Department of Mathematics

2020



Acknowledgements

My thanks to Dr. Yuanzhe Xi, my advisor, who offers me this important opportunity to work with him and

introducing me to the field of machine learning. Dr. Xi not only guides me patiently through my research

process during Emory’s REU and honors program, but also provides me precious suggestions which help me

to determine my next goal after graduating from college. I would also like to thank Drs. Bree Ettinger, Rho

Seunghwa, and Benjamin Miller for taking time to attend my honor thesis defense as committee members.

Next, I would like to thank Emory honors program to support me along the way. Finally, I would thank my

parents for supporting my studies at Emory University and letting me choose my own career path.



Contents

1 Introduction 1

1.1 The Multivariate Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Kernel Function/Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Log Marginal Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Application of Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6.1 Application in Finance/Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6.2 Application in Robotic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6.3 Application in Biosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.4 Application in Weather Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Difficulties and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Log Determinant Solver 9

2.1 Matrix Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Stochastic Lanczos Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Hutchinson’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Lanczos Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Lanczos Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Limitations of DOS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Modified DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



2.4.1 Truncation of DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Linear System Solver 21

3.1 Conjugate Gradient (CG) Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Convergence of CG Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Preconditioned Conjugate Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 SMW Preconditioned Conjugate Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Hyper-parameter Training 26

4.1 Naive Grid Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Synthetic Data Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Experiment Outline 32

5.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Dataset Resize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Dataset Snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusions 38

Bibliography 39



Chapter 1

Introduction

1.1 The Multivariate Gaussian Distribution

The multivariate Gaussian (normal) distribution has the density function:

p(x|µ,Σ) = 1
(2π)n/2|Σ|1/2 exp

(
(x−µ)T

Σ
−1(x−µ)

)
(1.1)

where n is the dimension of x, µ and Σ denote the mean and covariance of x, respectively. In particular, Σ is

always symmetric positive definite.

Figure 1.1 illustrates the density function from a two dimensional Gaussian distribution, where the mean

and convariance matrix determine the center and the shape of the curve, respectively.

Figure 1.1: Density function of a multivariate Gaussian distribution.
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1.2 Gaussian Process

Gaussian Process (GP) is a very powerful non-parametric machine learning technique. It searches the rela-

tionships among measured data for making predictions. It is defined as follows:

Definition 1 A Gaussian Process is a stochastic process (a collection of random variables), such that every

finite number of the random variables has a multivariate Gaussian distribution.

A function f which is considered to be distributed as a GP is usually denoted as

f ∼ GP(µ,k),

where µ(x) : Rd → R is a mean field and k : Rd ×Rd → R is a symmetric and positive (semi)-definite co-

variance kernel. That is, for any set of locations X = {x1, . . . ,xn} ⊂ Rd , fX ∼ N(µX ,KXX), where fX and

µX represent the vectors of function values for f and µ evaluated at each xi ∈ X , and (KXX)i j = k(xi,x j),

respectively [1].

Let us first use a few one-dimensional examples to demonstrate the Gaussian Process. Here, we use the

red line to denote the mean field and the grey area to represent the confidence interval of GP. Figure 1.2

illustrates the Gaussian Process Regression when we do not have any training points. In this situation, we

will have a wide range of possible and diverse functions shapes on display.

Figure 1.2: Gaussian Process Regression with 0 training points

The mean field and the covariance will be updated once more data points become available. Figure 1.3
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shows the Gaussian Process Regression when we have 4 training points. The updated Gaussian process is

constrained to the possible functions that fit the training data we introduced.

Figure 1.3: Gaussian Process Regression after 4 training points

As we introduce more and more training points, the confidence interval keeps shrinking. We will finally

get a certain function with a pretty narrow confidence interval. In general, the mean field of GP works as

the datum line. Normally, we will assume the mean function as 0 to simplify the calculation and thus, y = 0

is the datum line. Even when the mean is not zero, we could still assume zero mean and add the mean value

back after we finished our predictions. Therefore, we will focus on defining the covariance/kernel function

which determines the shape of the distribution and captures the relationship between points. After we are

certain with the kernel function, we could then make predictions using those relationships.

In our study, and also in many previous works, people will split the data set into two parts, the training

points and the testing points. With training points, people could determine the kernel function and with this

kernel function, people will use testing points to make predictions.

Therefore, GP could be expressed in the following way:

 f

f∗

∼ N(0,

K(X ,X) K(X ,X∗)

K(X∗,X) K(X∗,X∗)

),
where X is the location of training points, K(X∗,X) is the covariance matrix between the GP evaluated at X∗

and X, and f is scalar observations for training points.
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1.3 Motivations

GP has been widely used in many fields because it enjoys many advantages over other machine learning

techniques:

• Gaussian process is a non-parametric model, which is defined in an infinite dimension Gaussian dis-

tribution f. Thus, as the number of data points increases, the amount of information the function f

could get will also increase, which makes it more flexible.

• Gaussian process directly captures the model uncertainty and reveals the confidence of the prediction.

As an example, in regression, GP directly gives a distribution for the prediction value, rather than

simply one value as the prediction.

• When using GP, you can add prior knowledge and specifications about the shape of the model by

selecting different kernel functions. For example, we could choose priors that make the function

smooth, sparse, change drastically or differentiable.

On the other hand, the biggest disadvantage of GP is its expensive computational costs. The computational

costs of many other methods, such as linear regression and neural network, are only related to the number of

parameters. However, as GP is non-parametric, it needs to take into account all the training data each time

they make a prediction. That is, as the number of training samples increases, the computational cost will

increase cubically.

Before we go into more details and introduce our developed fast GP solver, we first give a brief introduction

to the kernel functions associated with GP.

1.4 Kernel Function/Matrix

Recall that in order to set up the distribution in GP, we need to define kernel matrix Σ by evaluating the

kernel function. Kernel function k(x,y) describes the relationship between point x and point y. Popular

kernels can be categorized into groups: stationary and non-stationary. Stationary kernel functions are used
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more often because their function values only depend on the distance ||x− y|| between two points x and y.

By evaluating k at every possible pair of the data points, we get the positive definite kernel matrix:

K(x,y) =



k(x1,y1) k(x1,y2) . . . . . . k(x1,yn)

k(x2,y1) k(x2,y2)

...
. . . . . . . . .

...

k(xn−1,yn)

k(xn,y1) . . . . . . k(xn,yn−1) k(xn,yn)


.

There are several common models for stationary kernels such as the Laplace kernel family and Matern

kernel family. In this thesis, we will focus on the Gaussian kernel from Matern kernel family and show how

to efficiently tune its hyper-parameters. The simplest Gaussian kernel has the form:

f (x,y) = se−
‖x−y‖22

2θ2 , (1.2)

where s is the scaling coefficient and θ is the length scale of the kernel. If the kernel function equation (1.2)

is used in GP, the kernel matrix is often denoted as:

K(x,y,θ ,s) =



k(x1,y1,θ ,s) k(x1,y2,θ ,s) . . . . . . k(x1,yn,θ ,s)

k(x2,y1,θ ,s) k(x2,y2,θ ,s)
...

. . . . . . . . .
...

k(xn−1,yn,θ ,s)

k(xn,y1,θ ,s) . . . . . . k(xn,yn−1,θ ,s) k(xn,yn,θ ,s)


.

In order to get a well-fitted kernel function for a given dataset, we need to tune these hyper-parameters,

which is the most time consuming part in the GP regression.

1.5 Log Marginal Function

Maximum Likelihood Estimation (MLE) is a popular approach used for parameter estimation in statistics.

The principle of this approach is to choose the parameters that fit the data the most. Using this approach, we
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are able to find the optimal hyper-parameters by maximizing the associated log-likelihood functions. The

formula of the log marginal function is:

L = log p(z|X) =−1
2

logdet(K)− 1
2
(z−µ)T K−1(z−µ)− n

2
log(2π) (1.3)

where K is kernel matrix parameterized by hyper-parameters, z is target value and µ is the mean where we

assumed to be zero. We use the term “marginal” to emphasize that we are dealing with a non-parametric

model.

1.6 Application of Gaussian Process

In recent years, Gaussian processes have been applied in many domains, both for regression and classifica-

tion tasks, such as spatio-temporal statistics, solving PDEs and etc,. Here, we will discuss a few representa-

tive applications.

1.6.1 Application in Finance/Portfolio

The portfolio is a major part of money management. However, it is extremely hard to choose the best

portfolio, since we should not only consider risk and many other factors, but also original assets and profits.

Thus, in this circumstance, people could apply the GP to find a minimal risk portfolio [2]. For example, if

we know information about a portfolio, including the mean and the variance of the returns of the assets, we

could using GP to select a optimal portfolio and help people to gain more profits.

1.6.2 Application in Robotic Techniques

Technological development has made robots more common. Many of those more common robots can walk

autonomously because they can detect features of the ground in from of them. Therefore, they can go up

and down over terrain and avoid obstructions. GP is a method that can help these autonomous robots model

terrain. Figure 1.4 is an example from Wolfram Burgard’s presentation [3] which shows how GP is used to

detect the stone block.
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Figure 1.4: Stone Block Detection Using GP [3].

1.6.3 Application in Biosystem

GP is also widely used in biology fields. In K. Azmana, J. Kocijan’s paper [4], they experiment a case study

about lagoon of Venice. Since the lagoon is shallow, the development of the biomass is crucial, especially

the excessive growth of algae. Thus, people want to build a model to predict the algae growth in the la-

goon. Due to the lack of data related to the number of selected regressors, data corrupted with noise and

measurement errors, and the need for the measure of model prediction confidence, GP Model is the model

they decided to choose because they only need to choose covariance function in that case. Figure 1.5 is the

resulting GP Regression they obtained.

Figure 1.5: Simulation of the GP model with validation data [4].

7



1.6.4 Application in Weather Forecasts

GP could also help people to make predictions, especially help people to forecast weather. One example is

the forecasting of wind power. Wind energy is a crucial resource that has been widely utilized around the

world. However, the uncontrollable and variability of wind always make it difficult to forecast. To solve this

problem, Mori, H., & Kurata, E applied GP to predict the wind power [5], which could help people solve

problems such as maintenance of wind power and reservation of energy.

1.7 Difficulties and Contributions

The kernel function is at the heart of GP. However, the computational cost of GP is often quoted as O(n3),

resulting from the need to compute the log-determinant of the n× n kernel matrix K and to solve a linear

system associated with K.

In the past, several efficient algorithms have been proposed to tackle these computational bottlenecks, in-

cluding those based on fast matrix-vector multiplication(MVMs) [1, 6], pivoted Choloesky preconditioning

[1], hierarchically compositional kernel [7] and stochastic Lanczos Quadrature(SLQ) [8].

In this thesis, we develop an efficient linear complexity matrix-free approach which needs to access the

kernel matrix implicitly through matrix-vector multiplications. In Chapter 2, we propose a density of states

based algorithm for computing the logarithm of the determinant and bilinear form. In Chapter 3, we present

a fast linear system solver based on the Sherman-Morrison-Woodbury preconditioned conjugate gradient

algorithm. In Chapter 4, we substitute the naive grid search with Bayesian optimization to quickly train the

hyper-parameters. In Chapter 5, we provide some experiments to validate our fast GP solver and draw some

conclusions in Chapter 6.
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Chapter 2

Log Determinant Solver

In this chapter, we will propose a fast algorithm for computing the logarithm of the determinant term in

equation (1.3).

2.1 Matrix Functions

The logarithm of the determinant of a matrix A is defined based on its eigendecomposition. Every symmetric

matrix A admits an eigendecomposition

A =V ΛV T ,

with its eigenvalues λi along the diagonal of Λ = diag(λ1, . . . ,λn) and the columns of V being the eigenvec-

tors. Figure 2.1 shows the eigendecomposition of a symmetric matrix A.

Figure 2.1: Eigendecomposition of a symmetric matrix A.

Based on the eigendecomposition, one can define various matrix functions. Suppose f is a scalar func-
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tion f : R→ R, applying f on A is equivalent to applying f on each eigenvalue of A in its eigendecomposi-

tion:

A =V ΛV T → f (A) =V f (Λ)V T ,

with f (Λ) = diag( f (λ1), . . . , f (λn)). See Figure 2.2 for an illustration.

Figure 2.2: Application of f on a symmetric matrix A.

In Gaussian processes, we are interested in the logarithm function f (x) = log(x):

log(K) = log(QΛQT ) = Q



logλ1

logλ2

. . .

logλn


QT .

This is because the logarithm of the determinant of matrix K is equal to the trace of the logarithm of the

given matrix:

logdet(K) = log(
n

∏
i=1

λi) = tr(log(K)) =
n

∑
i=1

log(λi). (2.1)

To estimate the trace of log(K), we could sum the log of all the eigenvalues of matrix K. Another popular

method is based on Cholesky decomposition. Using the Cholesky decomposition K = LLT , where L is a

lower triangular matrix, we could obtain the log-determinant of K by logdet(K) = 2∑
n
i=1 log(Lii). However,

both methods are only applicable when the matrix size is small due to the cubic computational complexity.

This computational bottleneck motivates us to study a fast algorithm to approximate the trace of log(K) for

large matrices.
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2.2 Stochastic Lanczos Quadrature

Stochastic Lanczos Quadrature is a method that combines the stochastic trace estimator with the Lanczos

Quadrature method for estimating the trace of the inverse and the determinant of matrices [8]. This method

can approximate the trace of f (A) by only accessing A through matrix-vector multiplications.

2.2.1 Hutchinson’s Method

Stochastic trace estimator was first proposed by Hutchinson in [9]:

Lemma 1 Let A be an n × n symmetric matrix with trace(A)6= 0. Let x be a random vector whose entries

are i.i.d Rademacher random variables (Pr(xi =± 1) = 1/2). xT Ax is an unbiased estimator of trace(A) i.e.,

E(xT Ax) = trace(A) (2.2)

and

Var(xT Ax) = 2(‖A‖2
F −

n

∑
i=1

A2
ii) (2.3)

Later, people show that the method can estimate the tr( f (A)) with random vectors x following either

Rademacher distribution (xi =±1 with probability 0.5) or Gaussian distribution (xi ∼N(0,1)) as long as the

probe vector x has independent random entries with zero mean and unit variance.

Definition 2 An Hutchinson trace estimator for a symmetric positive-definite matrix A ∈ Rn×n is

HM =
1
M

M

∑
i=1

xT
i Axi,

where the zi’s are M independent random vectors whose entries are i.i.d Rademacher random variables.

Thus, a Hutchinson trace estimator can be used directly to approximate logdet(A):

logdet(A) = tr(log(A)) = ∑ log(λi) = E(xT
i log(A)xi)≈

1
nv

nv

∑
i=1

xT
i log(A)xi. (2.4)
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As a result, the computation of logdet(A) boils down to computing xT
i log(A)xi.

2.2.2 Lanczos Algorithm

Lanczos Quadrature is a method designed for computing matrix bilinear forms. It is based on the famous

Lanczos algorithm. For a given real symmetric matrix A ∈ Rn×n and a starting vector v1 of unit 2-norm, the

Lanczos Algoirthm generates an orthornormal basis Vm for the Krylov subspace Span{v1,Av1, . . . ,Avm−1
1 }

such that V T
m AVm = TM, where Tm is a m×m tridiagonal matrix and is useful for approximating eigenvalues

and eigenvectors of A.

2.2.3 Lanczos Quadrature

Lanczos Quadrature uses the information from the Lanczos decomposition to approximate xT
i log(A)xi:

xT
i log(A)xi ≈ xT

i Vm log(Tm)V T
m xi

= βeT
1 log(Tm)βe1

= β
2eT

1 Q log(Λ)QT e1

= β
2Q(1, :) log(Λ)QT (1, :)

= ∑β
2Q(1, i)2 log(λi),

where β is the 2-norm of the Rademacher random vector xi, the columns of Q are the eigenvectors of matrix

Tm and the diagonal entries of Λ are the eigenvalues of matrix Tm. Here we assume v1 = xi/‖xi‖2.

Repeating the above operation for nv random vectors xi leads to an approximation to logdet(A):

logdet(A)≈ 1
nv

nv

∑
i=1

m

∑
j=1

β
2Q(i)(1, j)2 log(λ (i)

j ). (2.5)

The Stochastic Lanczos Quadrature (SLQ) algorithm for approximating the logdet(A) is summarized in the

following algorithm [8].
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Algorithm 1 Trace estimation by SLQ
Input: SPD matrix A ∈ Rn×n, function f , degree m and nv.

Output: Approximate trace of f (A).

1: for l = 1 to nv do

2: Generate a Rademacher random vector ul and form a unit vector vl = ul/
√

n

3: T = Lanczos(A,vl,m); that is, apply m steps of Lanczos algorithm on A with vl as the starting vector

4: [Y,Θ] = eig(T ) and compute τk = [eT
1 yk] for k = 1, ...,m

5: Γ← Γ+∑
m
k=1 τ2

k f (θk) , where θk’s are eigenvalues of Tm

6: end for

7: Output Γ = n
nv

Γ.

The approximation error of Algorithm 1 has been studied in the following theorem [8]:

Theorem 1 Consider a symmetric positive definite matrix A ∈ Rn×n with eigenvalues in [λmin,λmax] and

condition number k = λmax
λmin

, and let f be a function that is analytic and either positive or negative (does not

cross zero) inside this interval, and whose absolute maximum and minimum values in the interval are Mρ

and mρ , respectively. Let ε,η be constants in the interval (0,1). Then for SLQ parameters satisfying:

• m≤
√

k
4 log K

ε
number of Lanczos steps, and

• nv ≤ 24
ε2 log( 2

η
) number of starting Rademacher vectors,

where K =
(λmax−λmin)(

√
k−1)2Mρ√

kmρ

, the output Γ of the Stochastic Lanczos Quadrature method satisfies:

Pr[ |tr( f (A))−Γ| ≤ ε|tr( f (A))|] ≤ 1−η . (2.6)

Although SLQ can provide very accurate approximations, it usually requires a sufficiently large number of

Lanczos steps m. Since the cost of SLQ is O((nnz(A)m+nm2)nv), the computational cost of SLQ increases

quadratically with respective to m. In the next section, we will show how to use Density Of States (DOS) to

alleviate this issue.
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2.3 Density of States

Given a n× n real symmetric matrix A, scientists in various disciplines often want to compute its density

of states (DOS), also known as spectral density. DOS is a probability distribution function which describes

the probability of finding eigenvalues of a matrix in a given interval near t. Being a distribution, the spectral

density of a matrix can be written as a sum of Dirac δ -functions centered at eigenvalues [8]:

φ(t) =
1
n ∑δ (t−λi), (2.7)

where δ is the Dirac δ -function or Dirac distribution and λ j’s are the eigenvalues of A.

There are many applications of density of states. One of the major uses is that we could count the

number of eigenvalues in a certain interval [a,b] using DOS [10]:

v[a,b] =
∫ b

a
∑

j
δ (t−λ j)dt ≡ n

∫ b

a
φ(t)dt. (2.8)

Similarly, one could approximate log determinant of A as follows:

logdet(A) = tr(log(A)) =
n

∑
i=1

log(λi) = n
∫

λmax

λmin

log(t)φ(t)dt. (2.9)

To estimate φ(t), the most straightforward way is to compute all the eigenvalues of matrix A. However,

the computation of its entire spectrum is prohibitively expense. Therefore, in our study, we choose to

approximate a smoothed version of φ(t) [11]:

φ(t)≈ φσ (t) =
1
n

n

∑
j=1

hσ (t−λ j), (2.10)

where hσ (t) could be any function that has a peak at zero and has area equal to one below the curve. Here,

we choose Gaussian as our function:

hσ (t) =
1

(2πσ2)1/2 e−
t2

2σ2 (2.11)

In practice, we find that σ = h
2
√

2log(κ)
works well for many problems, where h is the resolution and κ is a
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parameter greater than 1.

2.3.1 Limitations of DOS algorithm

A naive application of DOS algorithm does not always yield satisfactory results. This is due to the flexibility

of θ used to define kernel functions. In this section, we first use a few numerical experiments to demonstrate

this issue.

For example, when the hyper-parameter θ is set to 100, there are relatively few large eigenvalues and most

eigenvalues are gathered around 0. As we decrease θ to 10, we could see that the number of large eigenval-

ues increases. This is a hard case for DOS because the matrix becomes more diagonally dominant and thus,

reduce the singularity of the matrix. Figure 2.3 and Figure 2.4 illustrate the eigenvalues of the kernel matrix

when the hyper-parameter θ is to 100 and 10, respectively.

Figure 2.3: Eigenvalues for kernel matrix when hyper-parameter = 100.

Figure 2.4: Eigenvalues for kernel matrix when hyper-parameter = 10.
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In our study, we normally have to tune the hyper-parameter θ ranging from 0 to 100.

Since most of the eigenvalues are extremely small and are clustered around a small value (10−10), even

they have subtle difference, after we take the log of those small eigenvalues, the differences will be ampli-

fied. Therefore, SLQ/DOS algorithms need to approximate those small eigenvalues accurately enough if an

accurate estimation of logdet(A) is required. Unfortunately, both SLQ and DOS algorithms have difficulties

for approximating small eigenvalues.

Let us use a few examples to show this limitation associated with the DOS algorithm. Figure 2.5 plots

both the exact density of states and our estimated DOS. The red line is the exact density of states, while the

blue line indicates the estimated DOS with 50 Lanczos step.

Figure 2.5: Estimated DOS (blue) with 50 Lanczos steps.

It is easy to see that most of the eigenvalues are clustered around 10−10. However, the estimated DOS

predicts the cluster of eigenvalues around 10−6. One simple remedy to fix this is to dramatically increase

the Lanczos steps. Figure 2.6 shows the estimated DOS when we increase the Lanczos steps to 300.

16



Figure 2.6: Estimated DOS (blue) with 300 Lanczos steps.

After we increase the Lanczos steps, our estimated DOS becomes much more accurate. However, in-

creasing the Lanczos steps significantly increase the computational costs and storage, which is not what we

want. In the next section, we will propose a modified DOS algorithm which can achieve high accuracy with

relatively small Lanczos steps.

2.4 Modified DOS

The modified DOS algorithm works as follows. First, we divide the eigenvalues into two subintervals:

one for large eigenvalues and one for small eigenvalues. Since the DOS estimation of large eigenvalues is

quite accurate, we keep this part unchanged and compute the number of eigenvalues located in this interval.

For the DOS estimation corresponding to small eigenvalues, we estimate the number of eigenvalues in this

interval from the difference between the size of the matrix and the estimated number of large eigenvalues.

Then, we assume the logarithm of all the small eigenvalues are centered at one point log(λmin) and give a

density at this point based on the estimated number of small eigenvalues. This process can be described by

the following equation:

tr(log(A)) = n
∫ 10λmin

λmin

f (x)φ(x)dx+n
∫

λmax

10λmin

f (x)φ(x)dx

≈ (n−n
∫

λmax

10λmin

f (x)φ(x)dx)× log(λmin)+n
∫

λmax

10λmin

f (x)φ(x)dx.

This modified DOS can quickly capture the cluster of small eigenvalues and thus improve the approxi-
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mation accuracy of the estimated logdet(A). Figure 2.7 shows the estimated DOS from the standard DOS

algorithm where the matrix has the size of 4,000× 4,000, hyper-parameter θ is 20 and Lanczos step is 7.

The relative error of the estimated logdet(A) is 0.725 due to the failure to capture the right cluster around

10−6.

Figure 2.7: DOS, Relative Error:0.725

With the same matrix size, hyper-parameter and Lanczos step, we apply our modified DOS and generate

Figure 2.8:

Figure 2.8: Modified DOS, Relative Error:0.007

For the same test problem, the modified DOS could reduce the relative error to 0.007 with only 7 Lanc-

zos steps.

In the above equation and also in this example, we choose 10λmin as the cut-off point of small eigenval-

ues and large eigenvalues. However, instead of choosing the cut-off point manually, we can automatically
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find an optimal cut-off point.

2.4.1 Truncation of DOS

To decide where to truncate DOS, we need to remove the bulk of volume using finite differences to compute

where the curve tapers off. We take xdos which records the x-coordinates of the points used to discretize

[λmin,λmax] and ydos which records the function values of the estimated DOS at xdos locations. We first find

the peak of the curve via the maximum ydos value. Then, we start from this point and calculate the slope

magnitude. Finally, we find our cut-off point which is where the curve tapers off and is to the right of the

maximum point.

The truncation procedure is sketched in Algorithm 2.

Algorithm 2 truncateDOS
Input: xdos, ydos

Output: index = x-index of truncation point

1: argmax = max(ydos);

2: preallocate array to store differences

3: for the next index after argmax to the last index do

4: calculate the slope

5: end for

6: Find the index where the slope magnitude is maximal(argmax2)

7: for each slope index i in the array do

8: if the slope at i and i+1 < tolerance value, and i > argmax2 then

9: increment index of maximum slope by i

10: end if

11: end for

2.4.2 Comparison

To validate the efficiency of the proposed log-determinant solver, we compare its performance with that of

stochastic Lanczos Quadrature:
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Table 2.1: n = 5,000, s = 99, sigma = 1e−6

modified DOS SLQ

k k hut error time error time

50 1 2.475 0.54 37.91 0.51

100 1 1.678 1.23 18.30 1.22

150 1 0.997 1.91 5.504 1.88

200 1 0.897 2.75 0.815 2.73

250 1 0.372 3.83 0.266 3.78

300 1 0.121 4.94 0.158 4.90

350 1 0.027 6.04 0.244 6.23

From this table, we could see that modified DOS and SLQ take roughly the same amount of time because

they perform the same number of Lanczos iterations. However, we could say that DOS is more accurate in

most cases. On the other hand, if you want both algorithms to reach the same accuracy, SLQ will definitely

take a longer time.
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Chapter 3

Linear System Solver

3.1 Conjugate Gradient (CG) Algorithm

Conjugate Gradient is an iterative method for solving large linear systems Ax = b, when A is symmetric

positive definite. Since the covariance matrix in GP is SPD, we decide to develop a fast linear system solver

based on some variants of the preconditioned CG method.

3.1.1 Convergence of CG Algorithm

The A-norm of a vector x is defined as:

‖x‖A = (Ax,x)1/2.

The following lemma indicates the approximation obtained from the CG Algorithm.

Lemma 2 Let xm be the approximate solution obtained from the m-th step CG algorithm, and let dm =

x∗− xm where x∗ is the exact solution. Then, xm is of the form

xm = x0 +qm(A)r0

where qm is the polynomial of degree m−1 such that

‖(I−Aqm(A))d0‖A = min
q∈Pm−1

‖(I−Aq(A)d0‖A
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.

From the above lemma, people have proved the convergence rate of CG algorithm.

Theorem 2 Let xm be the approximate solution obtained at the m-th step of the Conjugate Gradient algo-

rithm, and x∗ be the exact solution. Define

η =
λmin

λmax−λmin
. (3.1)

Then,

‖x∗− xm‖A ≤
‖x∗− x0‖A

Cm(1+2η)
, (3.2)

in which Cm is the Chebyshev polynomial of degree m of the first kind.

Since Cm(t)≥ 1
2(1+2η +2

√
η(η +1))m =

√
λmax+

√
λmin√

λmax−
√

λmin
=
√

κ+1√
κ−1 [12], in which κ is the spectral condition

number κ = λmax/λmin. Therefore, the bound in (3.2) can be rewritten as

‖x∗− xm‖A ≤ 2[
√

κ−1√
κ +1

]m‖x∗− x0‖A.

This theorem shows that the convergence rate of CG can be extremely slow if A is ill-conditioned.

3.2 Preconditioned Conjugate Gradient

In most cases, preconditioning is crucial to ensure a fast convergence of CG. If a good preconditioner

M ∈ Rn×n can be found for A, then Preconditioned CG (PCG) can converge much faster. Theoretically, a

relative error ε can be obtained within 1
2

√
κ(M−1A) ln 2

ε
+1 number of PCG iterations, where κ(M−1A) is

now the condition number of the preconditioned matrix M−1A [13].

With a SPD preconditioner M, there are three ways to implement PCG algorithm [12]:

• The preconditioner can be applied on the left hand side:

M−1Ax = M−1b; (3.3)
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• It could also be applied on the right hand side:

AM−1u = b,x≡M−1u; (3.4)

• When the preconditioner is available in the factored form

M = MLMR

where, typically ML and MR are triangular matrices. In this situation, the preconditioning can be split:

M−1
L AM−1

R u = M−1
L b,x≡M−1

R u. (3.5)

In this thesis, we adopt the first approach to precondition the linear system. In the next section, we will

introduce an approximate inverse type preconditioner.

3.3 SMW Preconditioned Conjugate Gradient

The proposed preconditioner is based on the Sherman-Morrison-Woodbury (SMW) formula. This formula

provides a way to quickly compute the inverse of a rank k update of a matrix A ∈ Rn×n.

Lemma 3 (Sherman-Morrison-Woodbury formula (SMW-formula)) Let A ∈ Rn×n, and U,V ∈ Rn×k be two

matrices such that both A and C−1 +VA−1U are nonsingular. Then A+UCV is nonsingular and it holds

that:

M−1 = (A+UCV )−1 = A−1−A−1U(C−1 +VA−1U)−1VA−1. (3.6)

Recall that the Lanczos algorithm returns a tridiagonal matrix Tm and a matrix Vm which has orthonormal

columns such that Tm =V T
m AVm. By calculating the eigenpairs of matrix Tm, we have two matrices Q and Λ

where the columns of Q are eigenvectors of Tm and entries of Λ are the eigenvalues of Tm.

In order to apply Lemma 3 to develop our preconditioner, we treat A as a diagonal matrix σ I, U as Q, C

as Λ and V as QT . The application of M−1 on a vector x is described in Algorithm 3:
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Algorithm 3 Application of SMW preconditioner on a vector x
Input: V , Λ, σ , x

Output: y

1: M = inv(Λ−1 + 1
σ

I)

2: tmp1 = A−1x = (σ I)−1x = x
σ

3: tmp2 = QT × tmp1

4: tmp3 = M× tmp2

5: tmp4 = Q× tmp3

6: y = tmp1− 1
σ

tmp2

With the propsed SMW-preconditioner, we can quickly compute the second term in equation (1.3)

1
2 zT K−1z.

3.4 Comparison

To validate the performance of SMW PCG algorithm, we compare its performance with two other preconti-

tioners: naive inverse pcg, which directly using the inv() function in Matlab to form the preconditioner, and

unpreconditioned conjugate gradient, which does not utilize any preconditioner.

Table 3.1 and Table 3.2 illustrate running time, number of iterations used until convergence and relative er-

ror for CG algorithm with three preconditioners when the matrix size is 4,000×4,000 and 10,000×10,000.
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Table 3.1: n = 4,000, s = 100, Mdeg = 100

SMW PCG Naive Inverse PCG Unpreconditioned CG

sigma time iter res time iter res time iter res

1e-6 0.755 136 9.2e-5 5.379 300+ 0.002 1.392 223 6.9e-5

1e-5 0.374 67 8.8e-5 46.36 257 9.7e-5 1.111 223 6.9e-5

1e-4 0.223 41 9.2e-5 34.79 132 8.5e-5 1.075 223 6.9e-5

0.001 0.239 41 9.2e-5 28.74 69 8.1e-5 1.094 223 6.9e-5

0.01 0.239 41 9.2e-5 29.75 41 9.2e-5 1.166 223 6.9e-5

0.1 0.238 41 9.2e-5 26.29 43 6.5e-5 1.148 223 6.9e-5

Table 3.2: n = 10,000, s = 100, Mdeg = 100

SMW PCG Naive Inverse PCG Unpreconditioned CG

sigma time iter res time iter res time iter res

1e-6 5.051 174 8.4e-5 49.76 300+ 0.0127 4.600 156 8.7e-5

1e-5 3.209 87 7.8e-5 46.36 295 0.0001 4.510 156 8.7e-5

1e-4 1.947 44 9.7e-5 34.79 163 9.0e-5 4.367 156 8.7e-5

0.001 2.042 44 8.9e-5 28.74 86 9.0e-5 4.464 156 8.7e-5

0.01 1.591 44 8.9e-5 29.75 44 8.9e-5 4.448 156 8.7e-5

0.1 1.458 44 8.9e-5 26.29 38 9.5e-5 4.393 156 8.7e-5

1 1.419 44 8.9e-5 26.66 32 9.3e-5 4.615 156 8.7e-5

5 1.430 44 8.9e-5 35.19 43 9.6e-5 4.459 156 8.7e-5

It is easy see that SMW PCG performs the best. Taking Table 3.2 as an example. When sigma is 1e−4,

SMW PCG converges within only 44 iterations and takes 1.95 seconds to converge. However, the naive

inverse PCG takes 163 iterations to converge, which takes 37.79 seconds. For unpreconditioned conjugate

gradient, although it converges much faster than naive inverse PCG, it is still slower than SMW PCG and

takes many more iterations to converge.

Even when the naive inverse PCG takes the same number of iterations to converge as the SMW PCG takes,

it takes much longer time to converge since its computational cost is much higher at each iteration.
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Chapter 4

Hyper-parameter Training

In previous chapters, we introduce a fast GP solver which could help us calculate the log-likelihood function

value. However, this only improves the efficiency of calculating the log-likelihood. In order to train the

optimal hyper-parameters, we need to try with multiple hyper-parameters. To simplify the discussion in this

section, we fix the parameter s and only show how to train the parameter θ .

4.1 Naive Grid Search

When we first start our study, we choose to use the naive grid search. We provide a boundary for θ and try

with a bunch of numbers inside the interval. This could be seen in the following synthetic data experiment.

4.1.1 Synthetic Data Experiment

After we develop the log determinant solver and the linear system solver, we tried to apply our solvers on

the synthetic data. We set a 150× 150 grid size and θ = 40 as the true hyper-parameter. We also provide

a search range for the hyper-parameter which is [10,100]. Our goal is to tune the optimal hyper-parameter θ .

To have a direct visualization, we scale the value to generate figures for this example. Figure 4.1 is the

Gaussian Process random field we generated:
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Figure 4.1: Synthetic dataset.

After generating the GP sample on the grid, we randomly choose 20 percent of data points as our training

data. Figure 4.2 illustrates the training data, which are non-white pixels, for hyper-parameter estimation.

Figure 4.2: 20 percent data points from synthetic data (training data).

Using those 20 percent training data, we try with different hyper-parameters and compute the log-

likelihood function. By plotting the log-likelihood function value at each point, we generate a log-likelihood

curve which is shown in Figure 4.3. The horizontal axis denotes the length-scale parameter θ .
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Figure 4.3: Computed log-likelihood function values where the true hyper-parameter θ = 40.

By selecting the one which leads to the maximum log-likelihood, we obtain the optimal hyper-parameter

which is 40. We could also see it from graph: when the parameter value is 40, the log-likelihood function

reaches the maximum point. Finally, we use the estimated parameters to perform predictions and fill the

missing data(test points). Figure 4.4 illustrates the prediction by using the estimated hyper-parameter.

Figure 4.4: Recovered GP sample (training point+prediction).

We basically completely recover the original graph. Also, by calculating the relative error between the

predicted target value and the true target value, we validate that our algorithm could achieve 3 digits of

accuracy, which is around 0.0035.

Then, we try with different true hyper-parameter values and also get very precise results.
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Table 4.1: n = 22,500, klan = 100, sigma = 1e−3

Setting Result

True parameter Initial Guess (interval) Estimated parameter Relative Error

20 [10,100] 20 0.0050

40 [10,100] 40 0.0035

60 [10,100] 60 0.0028

In this experiment, we choose to try 10 grid points between 10 to 100 and find the optimal hyper-

parameter successfully. In real cases, however, it is almost impossible for us to choose an interval that

includes the optimal hyper-parameter. We could indeed set a wide range and the more numbers we try, the

more accurate our result will be in general. Nevertheless, it is extremely expensive to search at each point,

especially when we need to train two hyper-parameters jointly. Therefore, we want to exploit Bayesian

Optimization to help us tune the hyper-parameters.

4.2 Bayesian Optimization

Bayesian Optimization is an approach that could help us find the maximum point of a continuous objective

function f(x). Normally, we will choose to use Bayesian Optimization to approximate the maximum point

when the input x is in Rd where d ≤ 20 and the evaluations of f are expensive or maybe perturbed.

In order to use Bayesian statistical model, we first have to choose some prior measure over the space of

possible objective function values. Then we need to combine prior and the likelihood to get a posterior

measure over the objective given some observations. Then, according to the acquisition function, we need

to decide where to take the next evaluation. To pick the hyperparameters of the next experiment, one can op-

timize the expected improvement(EI) over the current best result or the Gaussian process upper confidence

bound (UCB).

In our study, we first construct log-likelihood function with two hyper-parameters as our objective func-

tion f . We also set an array called hypercube which contains the boundaries for two hyper-parameters.

Then, we construct a few sample points based on the objective function f and returned a 2 by num rand (the
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number of random points) cell array filled with random points uniformly sampled from hypercube. The BO

algorithm is illustrated in the following algorithm.

Algorithm 4 Bayesian Optimization
Input: f, hypercube, num rand, ell, sigma, num iter, num search

Output: minimum and minimizer of objective function f

1: Constructed a few sample points based on the objective function f

2: Create a discrete grid in hypercube

3: Find the cur min and arg min of samples points

4: running covariance matrix of samples points to get statistical model K

5: for i = 1, ..., number of iterations do

6: calculate mean and covariance of all points

7: for j = 1, ..., length of all points do

8: calculate mean and covariance based on Gaussian process

9: end for

10: set Upper Confidence Bound(UCB) Acquisition Function: mean - κ× covariance

11: Optimize the acquisition function

12: Objective function evaluation: obj = f(arg min)

13: if obj < cur min then

14: updates arg cur min and cur min

15: end if

16: Augment data(prev inputs, prev labels) and update statistical model (k)

17: end for

4.3 Comparison

To validate Bayesian optimization is better than the naive grid search, we utilize both methods on the syn-

thetic dataset. We change the grid size and record their running times of two methods. From Table 4.2, we

notice that when the number of data points is not that large, there is no huge difference between those two

methods. However, when the grid size becomes larger and we get many more data points in our analysis,

the differences become larger and larger. When the grid size is 750× 750, the running time of Bayesian
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Optimization is only half of the running time of Naive Grid Search.

Table 4.2: Running time of two hyper-parameter tuning methods

Grid Size

250×250 350×350 450×450 550×550 650×650 750×750

Naive Grid Search (sec) 28.08 58.28 98.21 150.7 210.6 278.9

Bayesian Optimization (sec) 12.33 25.05 42.60 64.33 89.57 120.3

We could also see the trend directly from Figure 4.5:

Figure 4.5: Running Time Comparison between Naive Grid Search and BO

From the above comparison, we could see that when the grid size is large, BO performs much better

than the naive grid search. What’s more, the above experiment utilizes a synthetic dataset which means we

know the true hyper-parameters, so we set fewer search steps and could still get the true hyper-parameter.

However, when we apply the algorithm to the real dataset and do not have any information about the value

of optimal hyper-parameter, the naive grid search will take many more steps to find the hyper-parameter

than Bayesian optimization and thus, have much higher computational cost.
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Chapter 5

Experiment Outline

After we complete our fast Gaussian process solver, we apply it to the real dataset to validate it on some

real-world problems.

5.1 Data Description

We apply our approach to the National Centers for Environmental Prediction Climate Forecast System Re-

analysis (CFSR) data released by the National Oceanic and Atmospheric Administration (NOAA) [7]. We

choose the hourly and monthly mean temperature data, over a period of eight years, from 2011 to 2019, but

only include July at 550 mbar isobaric surface. The grid is 0.5-deg × 0.5-deg from 0E to 359.5E and 90N

to 90S and has 720 different values for longitude, 361 different values for latitude. Therefore, the dataset is

of size 720×361×1×8.

5.2 Dataset Resize

For this study, we compress the dimension to two by calculating the average temperature for each grid points

over 8 years, which results in 259,920 observations with two variables: longitude and latitude (720 × 361

Longitude/Latitude).

Also, instead of directly working on the temperature, we focus on the demeaned temperature which helps

us to see the global temperature changes trend better. In our study, we choose 2011 as the year we want to
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work on. Therefore, we subtract the average temperature of all eight years from the temperature in 2011 at

each grid point and worked on the demeaned temperature in the rest of our analysis.

5.3 Dataset Snapshot

To have a more direct view of the global temperature data, we create the dataset snapshot. Figure 5.1 shows

the global temperature at 550 mbar in July, 2011.

Figure 5.1: Global Temperature at 550 mbar, July 2011

We could see an extremely usual phenomenon that the area near the equator has the highest temperature,

while as it gets closer and closer to the Arctic and Antarctic, the temperature becomes colder and colder.

Figure 5.2 shows the resulting data after the subtraction of pixelwise mean for July over 8 years at 550 mbar

in July, 2011.
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Figure 5.2: Demeaned Global Temperature at 550 mbar, July 2011

From the above graph, we could see an obvious global warming trend. For most areas, the temperature

in 2011 is much lower than the average temperature from 2011-2019. It is consistent with common sense

that the global temperature has been gradually increased. However, we could also see that there are some

areas that have a higher temperature in 2011. From the graph, we could conjure it is Tibet in China and the

southern part of the Pacific ocean.

However, in most cases, it is hard to collect all the temperature data at each location, or there will have

some situations when the data is destroyed. At that time, we will use our developed GP solver to fill the

missing fields. For example, in this experiment, we only take 70 percent of data points as our training data.

Figure 5.3 illustrates the training points, which are non-white pixels, for our hyper-parameter tuning.

Figure 5.3: 70 percent data points(Training Data)
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5.4 Result

Recall that the Gaussian kernel function has two hyper-parameters θ and s. Table 5.1 illustrates the hyper-

parameters we tuned and also the log-likelihood value we obtained using those two hyper-parameters. After

we use the estimated hyper-parameters to perform prediction, we compare the predicted value with the real

value and get the prediction errors which are also included in the table.

Table 5.1: Prediction Result

Hyper-parameters Prediction Error

Log-Likelihood θ s Relative Error MSE Root MSE

-82377.8 3 0.04 0.0192 0.0008 0.0278

Also, using the predicted temperature value, we combine it with the training data to recover the figures.

Figure 5.4 shows the predicted demeaned temperature at 550 mb in July, 2011 and Figure 5.5 illustrates the

resulting predicted average temperature after adding the pixel mean.

Figure 5.4: Predicted Demeaned Average Temperature at 550mbar, July 2011

35



Figure 5.5: Predicted Average Temperature at 550mbar, July 2011

Thus, even when we do not have enough data points, like Figure 5.3 shows, we could still make predic-

tions on those missing values and recover the whole data sets like Figure 5.4 shows.

5.5 Comparison

Although we compared Bayesian Optimization with Naive grid search in the previous section, we want to

test the performance of these two methods on the real dataset. However, the dataset we used in the previous

section is so large that it will run about five hours if we use the grid search. Therefore, we decide to use a

smaller dataset to compare two methods.

This dataset is also provided by NOAA. It is hourly and monthly mean temperature data, over 32 years,

from 1979 to 2011 and only include July at 500 mbar isobaric surface. However, we choose a smaller grid

size which is 144×73 meaning it has 144 different values for longitude and 73 different values for latitude.

In this experiment, we will have 144×73 = 10,512 data points.

We do the same dataset resize procedure and tune the hyper-parameters using both Bayesian Optimiza-

tion and naive grid search. Table 5.2 compares the results of these two methods:
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Table 5.2: Prediction Result Comparison

Estimation Result Prediction Result

θ s Elapsed Time(s) Relative Error MSE

Bayesian Optimization 3.5 0.02 72.12 0.0063 0.0003

Naive Grid Search 1.72 0.04 792.9 0.0156 0.0018

We could see that the naive grid search takes far more time to tune the optimal hyper-parameters com-

pared to Bayesian Optimization. Also, the result is even worse than the result we obtain using Bayesian

Optimization. Therefore, using the real temperature dataset to compare these two methods, we could con-

firm that Bayesian Optimization works more efficiently.
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Chapter 6

Conclusions

In this thesis, we develop a fast Gaussian process solver. Since the heart of the Gaussian process, the kernel

function, is determined by the hyper-parameters, we need to calculate the log-likelihood function of different

hyper-parameters to tune the optimal ones. Since the computational cost of log-likelihood is extremely high

due to the log determinant of the kernel matrix and the inverse of it, we have developed some novel methods

to quickly evaluate those terms. After knowing the value of those two terms, we could then calculate the

log-likelihood function, which helps us to tune the optimal hyper-parameters.

For the log determinant of the kernel matrix, we combine the Stochastic Lanczos Quadrature with the Den-

sity of States to approximate it. For the inverse of the kernel matrix, which in turn is equivalent to solving

a linear system, we apply the SMW-preconditioned conjugate gradient to quickly solve it. Then, to quickly

tune the hyper-parameters which lead to the maximum log-likelihood function, we substitute the naive grid

search with Bayesian Optimization.

Finally, to validate our developed algorithm, we test it on a synthetic dataset and a real global tempera-

ture dataset. We find that the Bayesian optimization can find optimal hyper-parameters much faster.
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