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Abstract

Spatial Optimization of 4-Poster Feeders for Tick-Borne Disease Management
By James D. Nance

Amblyomma americanum, the Lone Star tick, is the predominant tick species through-
out the southeast United States. Its significance as a threat to human health was not
realized until recently. Recognized as an important disease vector, Amblyomma carry
a serious bacteria, Ehrlichia chaffeensis, that causes human monocytic ehrlichiosis.
In 1995, eleven cases of ehrlichiosis due to E. chafeensis were identified in Fairfield
Glade, a retirement golf community near Crossivlle, Tennessee. The placement of 4-
poster acaricide feeders has be demonstrated to be a highly effective control method
for eliminating Amblyomma populations. Here we formulate an economic criterion
to evaluate various feeder placement scenarios within Fairfield Glade that minimize
infected ticks and that tend toward future projects in optimization of this system.
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Chapter 1

Introduction

In recent years there has been growing concern over tick-borne diseases such as

Lyme disease, rickettsiosis, and relapsing fever. These diseases are serious health

problems that affect both humans as well as domestic animals. Thanks to rising

awareness, our understanding of these diseases is constantly increasing. As a result,

many different control efforts have been studied to eliminate the disease(s) from tick

populations. This thesis optimizes one such method for a community in central

Tennessee. In this chapter we present the biological background of the problem, and

then discuss different approaches to modeling tick populations for effective disease

management.

1.1 Biological Background

While Amblyomma americanum, the Lone Star tick, has long been the predominant

tick species in the Southeast United States, its significance as a threat to human health

was not realized until recently. Initially noted for its aggressive nature, this tick is

now recognized as an important disease vector as well. Ten species of bacteria have

been isolated from Amblyomma including Ehrlichia chaffeensis, Ehrlichia ewingii,

Rickettsia rickettsii, Coxiella burnetii, Francisella tularensis, Borrelia lonestari, and

four other unnamed agents [4]. Perhaps the most serious bacteria among this group
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is E. chaffeensis, the causative agent of human monocytic ehrlichiosis (HME), due to

both the nature of the disease and the role of the lone star tick as its primary means

of transmission. The first human cases of ehrlichiosis were not described until 1987

[14], and the lone star tick was not identified as the vector of Ehrlichia chaffeensis

until 1995 [12]. It is now known that HME results in a general febrile illness and

leukopenia. Distinctive inclusion bodies of the rickettsial agent can be noted within

white blood cells of infected patients [4].

More recently, white-tailed deer (Odocoileus virginianus) were identified as the

natural reservoir host of E. chaffeensis, the only mammal known to date to transmit

the rickettsia back to ticks once infected [13]. It is within this tick-deer life cycle

that E. chaffeensis is preserved in the wild, resulting in occasional transmission to

humans following the bite of an infected lone star tick. While these ticks will feed

on a wide array of mammals, they demonstrate a predilection for white-tailed deer

throughout all three life stages. Lone star ticks are aggressive, and actively seek out

hosts. Eggs hatch in late spring, giving rise to larvae by mid-summer. Those larvae

that successfully obtain a blood meal will molt and remain dormant until the following

spring. During the spring, nymphs emerge, feed, and molt to adults. Male and female

adults then mate on the host and die following egg deposition. Overwintering, or this

period of dormancy, can be done by three of the life stages- unfed larvae, unfed adults,

or fed adults gravid with eggs. This two-year life cycle results in the emergence of

the more mature nymph and adult stages earlier in the year than the larval stage.

All three stages require blood meals to continue the life cycle, creating the potential

for disease transmission to the tick at any one of these stages [4].

Approximately 1000 HME cases have been identified over the past ten years since

the disease became reportable [7]. Yet even in endemic areas, only 5% - 15% of

lone star ticks carry the pathogen [4], and the annual incidence of human cases is
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as low as 0.003% - 0.005% [21]. However, rare clusters of ehrlichiosis due to E.

chafeensis have been reported. In 1995, eleven cases were identified in Fairfield Glade,

a retirement golf community near Crossville in eastern Tennessee, at an attack rate

nearly 100 times the national average for endemic areas. It was determined that this

elevated rate of E. chafeensis infection was due to both the community’s proximity

to a large, protected population of white-tailed deer and its suitability for outdoor

recreational activities [21]. Since then attempts have been made to control the tick

population with the use of 4-poster feeder systems that passively apply acaricide

to the deer hosts [18]. In research trials, this technique has been demonstrated as

a highly effective control method against Amblyomma, with nearly 100% reduction

rates of the nymphal population over five years in areas where deer repeatedly visit

the feeders [3]. The efficacy of the technique for large-area tick control is unclear;

presently the tick population at the site of interest near Crossville remains high (J.

Harmon, unpubl. data). The distribution of E. chaffeensis is highly dependent on

the presence of white-tailed deer, lone star ticks, and five critical variables: moisture,

temperature, habitat type, day length, and host density [22]. Abundance and growth

of the lone star tick are associated with warm months and wooded habitats such as

those found in Fairfield Glade.

1.2 Mathematical Models

There are several different approaches to modeling tick populations in the literature,

most of which involve disease dynamics. Haile and Mount (1987) have simulated

population dynamics of the lone star tick with a discrete time model that are applica-

ble to any environment depending on factors such as temperature, relative humidity,

and host density [11]. Sandberg et al provide a matrix model that seasonally varies
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population densities of questing ticks [19]. Awerbuch-Friedlander et al formulate

a nonlinear system of difference equations that model the three stage life cycle of

ticks and investigate consequences of environmental changes [1]. Ghosh and Pugliese

present a semi-discrete model for tick population and disease dynamics [10]. More

recent models such as that proposed by Barnard et al [17] have analyzed integrated

management strategies for both short- and long-term control of these ticks. Proposed

methods included area-wide acaricide application, vegetation reduction, acaricide self-

treatment of white-tailed deer, deer population density reduction, or any combination

of those techniques [17]. Here we consider self-treatment of deer via a topical rather

than systemic route, since recent FDA regulations have made the deer population

density reduction approach infeasible. The goal of this study is to optimize spatial

arrangements of 4-poster feeders to control E. chafeensis within the Fairfield Glade

retirement community. This thesis is a continuation of work done by a Research Expe-

rience for Undergraduates (REU) program at the National Institute for Mathematical

and Biological Synthesis (NIMBioS) at the University of Tennessee.

This thesis is outlined as follows: The model developed by the REU group is

described in Chapter 2. In Chapter 3 a new model is considered that gives more

realistic results and is more manageable to optimize. Optimization methods, test

cases and results are reported in Chapter 4. Finally, Chapter 5 discusses the results

and offers suggestions for future work with this project.
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Chapter 2

Original Method

In this section we present the model and findings developed by the NIMBioS

REU group in the summer of 2009 at the University of Tennessee. The model has

two components: a time model, and a space model.

2.1 Discrete Model

A discrete time and spatial model was developed by the REU group to model the tick

life cycle. The time model was designed to represent the rather complex three-host life

cycle of the Lone Star Tick (LST) and to investigate the optimal spatial arrangement

of 4-poster feeders within the Fairfield Glade (FFG) retirement community. The REU

group formulated an economic criterion to evaluate various feeder placement scenarios

that allow recommendations to be made to FFG for 4-poster feeder arrangements

that minimize both cost and ehrlichia cases, and that tend toward future projects in

optimization of this system.

2.1.1 Time model

A discrete time model was designed first to represent the rather complex three-host

life cycle of the LST. This model tracks the flow of individuals among each of the

seven life stages, as shown in Figure 2.1. Data collected by J. Harmon (unpubl.)
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are used to estimate some of the parameters, while others are based on previous

LST modeling work by Haile and Mount [11]. Because Haile and Mount’s model

parameters vary on habitat type, temperature and humidity, the values we used were

calculated based on the assumption that FFG is an upland wooded environment

[2]. Average temperature and humidity for each month were obtained from FFG’s

website (www.fairfieldglade.net). There is no literature for LST on-host survival rates,

so preliminary estimates were adjusted so that the model would better represent

field data provided by M. Rosen (unpubl. data). A complete list of parameters and

variables can be found in Table 2.1.

Table 2.1: Parameter values for disease model [2].

Parameter Description
ε eggs
λ unfed larvae
λ̂ fed larvae
ν unfed nymphs
ν̂ fed nymphs
α unfed adults
α̂ fed adults
b mortality rates (mr)
h host-finding rates (hfr)
σ on-host survival rates (ohsr)
k monthly time step

The model equations are listed below:

εk+1 = εk(1 − bε)

λk+1 = λk(1 − bλ) − hλλk

λ̂k+1 = σλhλλk

νk+1 = νk(1 − bν) − hννk + .85λ̂k

ν̂k+1 = σνhννk

αk+1 = αk(1 − bα) − hααk + .85ν̂k

α̂k+1 = α̂k(1 − bα̂) + σαhααk

(2.1)

Several assumptions were made with this model. A tick is not ”fed” unless it
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Figure 2.1: Diagram of the factors and rates determining movement between the
LSTs seven life stages. The discrete time model equations were based upon this flow.
The model’s parameters are defined in Table 2.1 [2].

survives the complete feeding process. Over the course of a month, fed larvae and fed

nmphs either moult and survive to the next stage, or they die. Fed adults can survive

for more than a month. All engorged females lay eggs at the beginning of April, and

52% of those eggs hatch 2 months later. Survival rates remain constant throughout

the year, whereas host-finding rates change based on month. The population at the

beginning of each year (April) consists of: eggs, unfed adults, and unfed nymphs. In

Figure 2.2 we show tick dynamics during a 50 month time period without the use of

a feeder.

2.1.2 Space model

The model also takes into account the geography of the Fairfield Glade (FFG) re-

tirement community (Figure 2.3). The property of FFG and the surrounding forest
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Figure 2.2: Tick dynamics for an undeveloped patch without a feeder for 50 months.
All life stages of the ticks are shown (e=eggs, uL=unfed larvae, fL=fed larvae,
uN=unfed nymphs, fN=fed nymphs, uA=unfed adults and fA=fed adults). The
’+’ correspond to unfed populations, the ’*’ correspond to fed populations, and the
’o’ correspond to the egg population.
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Figure 2.3: Fairfield Glade Retirement Community. Current feeder sites are labeled
with red circles. This area was put on a grid where each square of the grid has its
own tick population. Satellite image obtained from www.earth.google.com.
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areas were put on a grid, with each square on the grid assumed to have its own tick

population. Each square in the grid was given values to represent the type of area

(developed or undeveloped) and the proximity of feeders (no feeder, feeder(s) in adja-

cent squares, or a feeder in the square). Note that for safety purposes, feeders are only

allowed to be placed in undeveloped areas. Forest areas without any feeders result

in the ”baseline” tick population represented by the discrete time model described

previously. The model is designed to predict how successful a given arrangement

of 4-poster feeders would be at reducing tick populations and, consequently, cases of

ehrlichiosis among Fairfield Glade residents. If the tick population was in a residential

area, the initial conditions were decreased to 10,000 eggs, 80 unfed nymphs, and 35

unfed adults so that the tick population was smaller. If there is a feeder in the square,

on-host survival rates for all life stages was 0.05; if there is a feeder in an adjacent

square, on-host survival rates for all life stages was 0.50. We based these values on

the assumption that 95% of deer will receive acaricide treatment from a feeder in

their own grid square, and about 50% of deer will be treated by a feeder in a square

adjacent to the one in which they primarily reside [2]. Figure 2.4 shows the same tick

population from Figure 2.2, but now with acaricide feeders. The results show that

the presence of feeders greatly reduces the numer of ticks over the 50 month time

period.

2.1.3 Cost-Effectiveness Analysis

The output of the model is an estimate of the total cost of managing tick-borne

disease at FFG. It comprises the cost associated with human cases of ehrlichiosis,

plus the cost of acaricide feeder program. We assumed that without any feeders there

would be, on average, 10 cases of ehrlichiosis among the FFG residents per year.
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Figure 2.4: Tick dynamics for an undeveloped patch with a feeder for 50 months. All
life stages of the ticks are shown (e=eggs, uL=unfed larvae, fL=fed larvae, uN=unfed
nymphs, fN=fed nymphs, uA=unfed adults and fA=fed adults). The ’+’ correspond
to unfed populations, the ’*’ correspond to fed populations, and the ’o’ correspond
to the egg population.
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Each case of ehrlichiosis was assumed to cost $10,000 for medical treatment and lost

productivity. Each feeder was assumed to cost $2,000 per year to construct, install

and maintain [2]. The model compares the tick population in July of year 4 on the

control grid (i.e. when feeders are present) versus the population on the grid when

feeders are not used, such that
controlled population

uncontrolled population
in that month represents the

percent of ticks remaining despite the feeder program. Only ticks on developed grid

squares are included in this calculation since ticks in undeveloped areas are assumed

to have no contact with FFG residents. The REU group assumed that the number of

Figure 2.5: Total tick dynamics with current arrangement of feeders used by Fairfield
Glade. The ’*’ represent the population with feeders in place, and the ’o’ represent a
control population without feeders.

cases is directly related to the number of ticks, so the expected number of cases per

year will be (percent of ticks remaining)×10 [2]. Our resulting equation for cost per
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year in the 4th year is:

Cost per year = $2, 000 × number of feeders + $10, 000 × cases in year 4

Since the model handles only one arrangement of 4-posters at a time, the REU

group individually tested 6 different scenarios of feeder arrangements and then com-

pared the cost and percent reduction of each scenario. For example, the current

arrangement of feeders (see Figure 2.3) gives a 63% reduction and costs approxi-

mately $7700 per year. Figure 2.5 plots the sum of all tick populations in the grid.

The initial goal of this thesis was to continue work on this model and spatially opti-

mize the arrangement of feeders. However, as discussed in the next section, we found

that better results could be obtained by considering an alternative model.

2.2 Seeking a New Model

The model described in the previous section has many advantages over other modeling

methods. Since it is discrete in time and space, it does not require solving computa-

tionally expensive differential equations. This model also provides dynamics of each

life stage of the tick, and successfully models the two year life cycle. However, several

problems exist with the model. First, each square’s tick population was independent

from other populations. Ticks could not migrate between squares. This is not realistic

because ticks could easily move amongst the squares while feeding on a host. Second,

hosts and the disease itself were left out of the model. Minimizing the disease was

assumed to correlate with minimizing the tick population. However, one may want to

minimize the infected tick population and maximize the healthy tick population, so

this assumption is not justifiable. Third, the dynamics of the tick population became
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unrealistic as time progressed. For these reasons and to obtain more computationally

efficient methods, we sought an alternate approach to the space-time model.
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Chapter 3

Population Model

While researching other tick population models, we came across a paper discussing

the same Fairfield Glade problem that was published prior to the REU group’s work.

Gaff and Gross developed a space-time model for ticks, hosts, and Ehrlichia chaffeensis

in the retirement community. Instead of working to fix the old model, we decided

to pick up where this model left off. The model is described in detail in [8], and

summarized here. To model tick-borne disease, Gaff models the dynamics of host (N)

and tick (V ) population densities as well as the densities of infected hosts and ticks

(Y and X, respectively) at six different sites in the Fairfield Glade community. The

sites were chosen to mimic a study done by Marsland [15]. Marsland investigated the

effect of feeding ivermectin treated corn to a free-ranging, unrestricted white-tailed

deer population on free-living stages of the Lone Star Tick. The study found a 61%

reduction in average number of adult females, 61% reduction in adult males, 80%

reduction in nymphs and 44% reduction in larvae from 1994 to 1996 [15]. Each site in

the model has a grassy patch and a wooded patch, with parameters varying depending

on patch type. The sites are named as follows: CEM, BGSM, BPIT, CHAT, GRAV

and LAKE. Note that Gaff does not break the ticks up into separate life stages,

but models only the dynamics of a single tick population. This simplification is

justifiable given that all life stages of the tick prefer the white-tailed deer as their

host [8]. Therefore individuals of different locations, ages, and sizes are equivalent,
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and it is unnecessary to model the tick life cycle. This is an important distinction

between the aforementioned model.

3.1 Parameter Estimation

Because many model parameters for tick populations are seasonally variable [1], the

growth and the external death rate of ticks vary over the course of the year (see

Figure 3.1 for external death rates for ticks in both wooded and grassy patches). The

growth and death rates are impacted by the following factors: the annual reproductive

output of ticks, host finding rates, on-host and off-host survival rates. Host-finding

rates and weather conditions are the two most influential factors of lone-star tick

dynamics [5]. Host-finding rates depend on host density, area type, tick and host

movement patterns. Haile and Mount [11] point out that ticks in grassy areas are

much more susceptible to temperature and humidity changes than ticks in wooded

areas. Depending on habitat type, deer population densities can vary from 7.5 to

40.0 per km2. Lockhart et al [13] and Mount et al [16] estimate the average density

of ticks per deer to be 50 and 400, respectively. As Gaff and Gross [8] point out,

there is no consensus for any of the parameters used in this model, so many were

estimated by averaging values from geographic regions similar to the Fairfield Glade

retirement community. The tick growth rate was calculated as a product of many

factors present in the model presented by Haile and Mount [11]. The deer growth

rate is arbitrary, and is allowed to be non-zero assuming the area allows hunting [8].

Disease transmission rates have not been explicitly estimated, and are estimated here

based on research by Ewing et al, 1995 [6]. More detailed explanation of parameter

estimation can be found in [8].
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The population densities in the ith patch are described as follows:

dNi

dt
= βi

(
Ki −Ni

Ki

)
Ni − biNi +

∑
j

mij(Nj −Ni) (3.1)

dVi
dt

= β̂i

(
MiNi − Vi
MiNi

)
Vi − biVi +

∑
j

mij(Vj − Vi) (3.2)

dYi
dt

= Ai

(
Ni − Yi
Ni

)
Xi − βi

NiYi
Ki

− (bi + vi)Yi +
∑
j

mij(Yj − Yi) (3.3)

dXi

dt
= Âi

(
Yi
Ni

)
(Vi −Xi) − β̂i

ViXi

MiNi

− b̂iXi +
∑
j

mij(Xj −Xi) (3.4)

where mij is the migration term as described in Table 3.2. Each patch can have its

own unique set of parameters, but for simplification all grass patch parameters are

equivalent and likewise for wooded patches. For a complete list of parameters see

Table 3.1.

Table 3.1: Parameter values for disease model taken from [8].

Name Description Value
β Growth rate for hosts 0.200

β̂ Growth rate for ticks varies (see 3.1)

K Carrying capacity for hosts per m2 0.002 (woods), 0.001 (grass)
M Maximum number of ticks per host 225
b External death rate of hosts 0.010

b̂ External death rate of ticks varies (see 3.1)
A Transmission rate from hosts to ticks 0.020

Â Transmission rate from ticks to hosts 0.070
v Recovery rate of hosts 0.000
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Figure 3.1: Graph of monthly growth and death rates for the Lone Star Tick recon-
structed from [8]. Death rates differ depending on patch type; death rates in grassy
patches are slightly higher than those in wooded patches.

Table 3.2: Migration rates for the six data collection sites. These rates are based
upon the geographic distance between sites and the presence of Lake Dartmoor. The
migration rates between the grass and wooded patch at each site are assumed to be
90%, and the migration rates are applied to both patches at each site.

Site CEM BGSM BPIT CHAT GRAV LAKE
CEM 1.00 0.75 0.00 0.01 0.01 0.01
BGSM 0.75 1.00 0.75 0.01 0.01 0.01
BPIT 0.00 0.75 1.00 0.01 0.01 0.01
CHAT 0.01 0.01 0.01 1.00 0.80 0.80
GRAV 0.01 0.01 0.01 0.80 1.00 0.80
LAKE 0.01 0.01 0.01 0.80 0.80 1.00
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3.2 Without Control

This model describes the interaction of lone star ticks and white-tailed deer, and

tracks infections of E. chaffeensis ricksettsia in both populations. The time unit is 1

month, and the spatial unit is per m2. The disease is transmitted from tick to host

or from host to tick during a tick’s blood meal on a host. The model assumes that

the disease does not spread from tick to tick or from deer to deer. Also, the ticks

and deer do not transmit the disease from one generation to the next, and neither

ticks nor hosts can recover from the disease. Because the system of ODEs given in

equations (3.1–3.4) is fairly stiff, that is, the solution consists of a slowing varying

part and a quickly varying part, the system is solved using MATLAB’s ode15s solver.

ode15s is based on numerical differentiation formulas and is a multistep solver, and is

recommended by Shampine et al. when ode45 fails or is inefficient, as it is here [20].

The solution computed by ode45 produces undesirable oscillations as the population

densities approach 0, and ode15s successfully eliminates this problem. Each patch

had equivalent initial conditions of .00001 hosts, .0025 ticks, 0 infected hosts, and

.000025 infected ticks. While each patch could have unique initial conditions, they

are kept uniform here for simplicity.

As shown in Figure 3.2, the population takes around 300 months, or roughly 25

years to reach equilibrium. At equilibrium, the tick densities oscillate between .04

and .18 ticks per m2 and infected ticks oscillate 0.004 and 0.007 ticks per m2. This

implies that between 4% and 12% of ticks are infected at any given time of year, with

peaks in the summer. The more alarming result of this model is that the percent

of infected deer densities oscillate between approximately 28% and 31%. Figure 3.3

shows tick densities during a year after the model has reached equilibrium.
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Figure 3.2: Population dynamics for ticks, host and disease without 4-poster feeders
using the 12-patch model.
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Figure 3.3: A year of tick population dynamics after the model reaches equilibrium.

3.3 With Control

By varying the external death rate term, b̂, we can introduce time-dependent control

into the system. If a site uses control, both the wooded and grassy patches at that site

have 4-poster feeders, and thus control can be applied for different amounts of time in

wooded and grassy patches. Since the natural tick death rate is higher in open fields,

one may not need to apply acaricide in grassy patches for as long as wooded patches.

The acaricide has a decay time as it leaves the hosts’ systems that was not included

in the model. Instead, the death rate, b̂, returns to the original value 1 month after

the feeding is stopped. We allow the system to reach equilibrium before the control

is applied.

With acaricide feeders in place it is clear that infected tick and host densities

are significantly reduced (see Figure 3.4). For this case the control was applied in
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Figure 3.4: Population dynamics for ticks, host and disease with 4-poster feeders in
3 of 6 sites using the 12-patch model. Acaricide was applied for arbitrary values of
22 years in wooded patches and 8 years in grassy patches.
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3 random sites for arbitrary values of 22 years in wooded patches, and for 8 years

in grassy patches. After acaricide is removed from the system, tick densities return

to equilibrium approximately 400 months (33.3 years) before infected tick densities

return to equilibrium. Gaff and Gross observe that varying the number of years the

control is applied affects the time it takes for the disease to return, and thus an

optimal length of time may exist. In [9], Gaff et al optimize the length of time to

apply control in one patch with three different objective functionals, and this work

will be summarized in the next chapter. There is no published work for optimizing

the 12-patch case. As one could imagine, adding patches to the model could affect

the optimal length of time, but for the purposes of this study we assume that it would

not.
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Chapter 4

Optimization

There are two components of optimization for this model. First, the temporal as-

pect will tell us how long to apply acaricide in grassy and wooded patches for optimal

results. Second, the spatial aspect tells us in which of the six sites we should place

feeders. The two components are done independently for this study. As described

in the following section, the temporal optimization was computed using only a sin-

gle patch. The spatial optimization is computed for 12 patches using results of the

temporal optimization for a single patch.

4.1 Temporal Optimization

Gaff et al. investigate a variety of frameworks for optimal control for a single patch

model [9]. The results of the study show similar strategies are created across all

frameworks and objective functionals within the closed environment, and that tick-

borne disease risk can be minimized without eliminating the tick population. Here we

chose two of the frameworks tested in Gaff’s study as our control level and duration.

Both scenarios chosen use a bang-bang control; the control is applied at maximum

for a certain number of months, then oscillates seasonally between the maximum

and minimum until stopping all treatment [9]. Other frameworks presented by Gaff

et al. involve varying the strength of the control. The bang-bang scenario is perhaps
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easier to manage since implementers of the 4-poster feeders only have to worry about

”when?” as opposed to ”when and how much?”.

First we will summarize the work by Gaff et al. that was used to optimize acaricide

application in a single patch. Gaff et al. investigate results of three different objective

functionals, but the equation used in both of the scenarios mentioned above is as

follows:

J(δ(t)) =

∫ T

0

(C0X(t) − C1V (t) + C2δ(t))dt (4.1)

where C1, C2 and C3 are balance terms and δ(t) is the control. The equation was

minimized using an iterative method developed by W. Hackbush for solving parabolic

equations with opposite orientations [9] . In their results for all scenarios with seasonal

rates, control needed to be applied for as little as 11 years with an average of 13.5

years at maximum treatment [9].

Scenario 1: This scenario’s objective is to maximize disease-free ticks. For grassy

patches, the optimal number of years to apply control at maximum is 3.5833, and all

treatment is stopped after 13.0833 years. For wooded patches, the optimal number

of years to apply control at maximum is 20.5000, and all treatment is stopped after

27.0000 years [9].

Scenario 2: This scenario’s objective is to minimize diseased ticks. For grassy

patches, the optimal number of years to apply control at maximum is 3.5833, and all

treatment is stopped after 12.0000 years. For wooded patches, the optimal number

of years to apply control at maximum is 22.3333, and all treatment is stopped after

22.2500 years [9].

The model for this thesis was designed to apply the control at maximum for 1 year

at a time, so we simplified Gaff et al. ’s results by applying the control at maximum for

9 years in wooded patches and 24 years in grassy patches and stopping all treatment
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afterwards for Scenario 1, and for 8 and 22 years analogously for Scenario 2. These

were found by averaging the two numbers for each patch type and rounding to the

nearest integer. Since the optimal number of years were computed using only a single

patch, they may not be optimal for the full 12 patch model. However, they will suffice

for the purposes of this study.

4.2 Spatial Optimization

As mentioned in the model description, there are six sites that were chosen to mimic

a study done by Marsland [15] (See Figure 4.1). With six sites there are a total of 64

possible combinations of feeder arrangements, ranging from 0 feeders to 6 feeders. It is

important to note that Gaff labels 3 sites as ”treated” and the other 3 as ”untreated”

for experiments in [8]. We make no such distinction here, as each site is a possible

location for a feeder. Since there are a finite number of possibilities, it is feasible

to test each scenario and compare them directly to find the optimal arrangement.

For each arrangement the model calculates the percent of infected ticks, pj =
Xj

Vj
, for

each patch. The average value of pj, p̄j, is then calculated on the entire time interval

for each patch. The average percent of ticks infected for all 12 patches, η, of each

arrangement was evaluated by averaging each patch’s value of p̄. Thus, the average

percent of ticks infected for the ith arrangement of feeders is:

ηi =
1

12

12∑
j=1

p̄j

We want to minimize η over all possible arrangements of feeders. This is done by

a brute force approach; model each arrangement individually then directly compare

the results. The cost for each scenario is also computed by multiplying the number
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Figure 4.1: 6 feeder sites, labeled by white circles, in Fairfield Glade Retirement Com-
munity. These sites were chosen to mimic a study done by Marsland [15]. Satellite
image obtained from www.earth.google.com.
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of years acaricide is applied in each patch, the number of feeders and $2,000, the

estimated cost to maintain a feeder for one year. Keep in mind that if a site has

feeders there is a feeder in both its grassy patch and wooded patch.

Table 4.1: Number of years acaricide was applied in each patch for different scenarios

Scenario Duration (grassy patches) Duration (wooded patches)
1 9 24
2 8 22
3 17 17
4 15 15
5 10 10

We tested 5 scenarios: the 2 derived from [9] in the previous section and 3 more.

For scenarios 3, 4 and 5 we apply acaricide for equal amounts of time in grassy and

wooded patches. The durations for scenarios 3 and 4 are found by averaging the

durations from scenarios 1 and 2, respectively. Scenario 5 is an arbitrary number of

years. See Table 4.1 above for a complete list of scenarios. To compute each scenario’s

optimal η, the model is run for 84 years and acaricide is applied after 25 years.

4.3 Results

Table 4.2: Optimal arrangement of feeders and average value of percent of ticks
infected (allowing 6 feeders).

Scenario Optimal Arrangement η Cost (thousands)
1 All sites .0146 $792

2 All sites .0199 $720

3 All sites .0135 $816

4 All sites .0130 $720

5 All sites .0290 $480

For all 5 scenarios, our results show that placing feeders in all 6 sites is optimal
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(see Table 4.2). As we can see from Figures 4.3, 4.5, 4.7, 4.9 and 4.11 the disease is

almost completely eliminated from the tick population with the optimal arrangements.

However, the disease does eventually come back because the infected tick densities of

each patch will never equal 0. Note also that η is the average value of the functions in

the aforementioned Figures. One might expect that applying the acaricide too long

would cause too many healthy ticks to die, and thus result in a suboptimal η. While

each individual scenario does not show this, scenarios 3 and 4 exemplify this result.

Scenario 3 applies acaricide in all 6 sites for 17 years for both patch types and results

in η = .0135. Scenario 4 applies acaricide for two years less in both patch types and

results in a slightly lower η = .0130. Thus our expectations are confirmed.

This model can also be used to find an optimal arrangement of feeders given

cost constraints. For example, if we must limit the number of feeders because placing

feeders in all six sites is too expensive, the results also give us the optimal arrangement

for each number of feeders. Figures 4.2, 4.4, 4.6, 4.8 and 4.10 show the η values for each

arrangement, and the solid line connects the optimal arrangement for each number

of feeders. As an example, Table 4.3 shows results excluding feeders in all 6 sites as a

possibility. The optimal η for each scenario is roughly twice the optimal η from Table

4.2, but the cost is significantly reduced in each scenario. Since the η values are still

relatively small, using only 5 feeders may be more favorable.

Table 4.3: Optimal arrangement of feeders and average value of percent of ticks
infected (not allowing 6 feeders).

Scenario Optimal Arrangement η Cost (thousands)
1 All but LAKE .0302 $660

2 All but LAKE .0222 $600

3 All but CHAT .0220 $680

4 All but GRAV .0272 $600

5 All but LAKE .0388 $400
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Figure 4.2: Average percent of infected ticks vs. number of feeders for Scenario 1.
Each point on the graph represents a feeder arrangement, and the solid line connects
the optimal arrangement for each number of feeders. From these results it is clear
that an arrangement with 6 feeders is optimal. The optimal arrangement gives an
average percent infected tick value of .0146
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Figure 4.3: Percent of ticks infected using optimal feeder arrangement for Scenario 1.
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Figure 4.4: Average percent of infected ticks vs. number of feeders for Scenario 2.
Each point on the graph represents a feeder arrangement, and the solid line connects
the optimal arrangement for each number of feeders. From these results it is clear
that an arrangement with 6 feeders is optimal. The optimal arrangement gives an
average percent infected tick value of .0199.
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Figure 4.5: Percent of ticks infected using optimal feeder arrangement in Scenario 2.
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Figure 4.6: Average percent of infected ticks vs. number of feeders for Scenario 3.
Each point on the graph represents a feeder arrangement, and the solid line connects
the optimal arrangement for each number of feeders. From these results it is clear
that an arrangement with 6 feeders is optimal. The optimal arrangement gives an
average percent infected tick value of .0135, slightly better than Scenario 1’s optimal
value.



35

Figure 4.7: Percent of ticks infected using optimal feeder arrangement in Scenario 3.



36

Figure 4.8: Average percent of infected ticks vs. number of feeders for Scenario 4.
Each point on the graph represents a feeder arrangement, and the solid line connects
the optimal arrangement for each number of feeders. From these results it is clear
that an arrangement with 6 feeders is optimal. The optimal arrangement gives an
average percent infected tick value of .0130.
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Figure 4.9: Percent of ticks infected using optimal feeder arrangement in Scenario 4.
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Figure 4.10: Average percent of infected ticks vs. number of feeders for Scenario 5.
Each point on the graph represents a feeder arrangement, and the solid line connects
the optimal arrangement for each number of feeders. From these results it is clear
that an arrangement with 6 feeders is optimal. The optimal arrangement gives an
average percent infected tick value of .0290.
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Figure 4.11: Percent of ticks infected using optimal feeder arrangement in Scenario
5.
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Chapter 5

Conclusion

We have used a previous difference model developed by Gaff and Gross to find

the optimal arrangement of feeders given 6 different sites and varying durations of

acaricide application estimated by Gaff et al.’s optimal control for a single patch. For

each case we found the optimal arrangement by a brute force method, computing the

efficiency of each arrangement and then comparing them directly. Other numerical

experiments were conducted to compare accuracy of the optimal length of application

time derived from the single patch model used in [9]. All test cases resulted in all 6

sites containing feeders as the optimal arrangement. However, the results allow us to

calculate the optimal arrangement given any number of sites with feeders in the case

that the optimal arrangement with feeders in all 6 sites is too expensive to implement.

Future work on this project could include adding more patches so that more of the

Fairfield Glade retirement community is covered by acaricide application. The area

of Fairfield Glade from Gaff et al.’s model is a subsection of the area from the REU

group’s model. This complicates computation, however, as each run of the model

already takes around 5 minutes. The brute force method for each case takes between

2 and 3 hours. Methods can be developed to reduce the running time of the model,

and to simplify the spatial optimization process. The use of parallel processing could

dramatically improve computation time. Also, temporal optimization of each feeder

arrangement should be considered. For this work we derived application times from
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temporal optimization of a single-patch model [9]. From our test cases it is clear that

these results do not carry over to the 12-patch model, and thus spatial and temporal

optimization of feeder arrangements and application durations should be solved for

simultaneously.
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