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Abstract 

Effects of Social Stress and Obesogenic Diet on Prefrontal Cortex, Hippocampus and Amygdala 

Structural Development in Juvenile Female Macaques 

By Andrew Kaldas 

 Chronic stress and obesity are modern epidemics, and together they pose a major public 

health concern by potential synergistic effects predisposing adverse health outcomes including 

diabetes, cardiovascular disease, and psychopathologies such as anxiety and depression. There is 

evidence that social stress and highly caloric diets rich in fats and sugars influence both humans 

and nonhuman primates, producing similar physiological responses and brain structure 

alterations. This study examined these effects using a highly translational rhesus monkey model 

of social stress. Rhesus macaques have comparably complicated brain organizations and social 

structures as those of humans, without confounding factors such as comorbid psychiatric 

disorders, drug abuse, cognitive awareness or social stigma. The goal of this study was to use an 

MRI approach to examine the long-term, potentially synergistic effect of postnatal exposure to 

social stress and to a highly caloric, obesogenic, diet on brain structure of juvenile female 

macaques. Regions of interest were the prefrontal cortex, hippocampus and amygdala due to 

their involvement in stress and emotion regulation and their vulnerability to the effects of stress 

and obesogenic diets. Measures of cortisol levels, calories consumed, and body weights were 

collected for examination of associations between these potential underlying biological factors 

and the brain structural outcomes of chronic exposure to stress and obesogenic diet. To minimize 

potential confounding effects of prenatal environment or heritability, we used a partial cross-

fostering design with random assignment of infants to either a high or low ranking foster mother 

at birth. MRI techniques were used at 16 months to examine the structural effects of chronic 
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stress and obesogenic diet. This study found increased total brain volume in the obesogenic diet 

group as well as increased amygdala, hippocampus and prefrontal cortex cerebrospinal fluid 

volumes in the low ranking group, in comparison to high-ranking animals. These findings 

suggest that postnatal exposure to a highly caloric diet has long-term global effects on brain size 

during development while social rank has more region-specific structural effects on the 

amygdala, hippocampus and prefrontal cortex of female primates. 
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Introduction: 

Chronic stress is a documented risk factor for a number of adverse health outcomes and 

psychopathologies, including anxiety, mood and substance abuse disorders, and metabolic 

syndrome (Ansell, Rando, Tuit, Guarnaccia, & Sinha, 2012; Baum & Posluszny, 1999; Gunnar 

& Quevedo, 2007; Jacobson & Sapolsky, 1991; Juster, McEwen, & Lupien, 2010; Lupien, 

McEwen, Gunnar, & Heim, 2009; Pervanidou & Chrousos, 2012; Segerstrom & Miller, 2004; 

Selye, 1955). Obesity, an adverse health outcome associated with chronic stress, contributes to 

conditions such as diabetes, high blood pressure and cardiovascular disease (NIH, 2017; Scott, 

McGee, Wells, & Oakley Browne, 2008). Increased Body Mass Index (BMI) in children has also 

been associated with impaired cognition, mood disorders and psychopathologies including 

anxiety, particularly among females (Bruehl, Sweat, Tirsi, Shah, & Convit, 2011; Hillman, Dorn, 

& Bin, 2010; Maayan, Hoogendoorn, Sweat, & Convit, 2011; J. L. Miller et al., 2009). 

Childhood obesity affects over 12 million children in the United States (CDC, 2017), and gains 

in adiposity are predicted by childhood risk factors associated with low socioeconomic status, 

disproportionately affecting demographic minorities (Evans, Fuller-Rowell, & Doan, 2012; NIH, 

2017). Altogether, chronic stress and obesity are each modern epidemics, and collectively they 

pose a major public health concern. 

Stressors can be actual or perceived challenges to homeostasis, physical or emotional, 

that activate autonomic, neuroendocrine and immune systems mediating main metabolic, 

cognitive and behavioral stress responses (G. P. Chrousos, 2009; G.P. Chrousos & Gold, 1992; 

E. O. Johnson, Kamilaris, Chrousos, & Gold, 1992; McEwen, 2007; McEwen & Gianaros, 2010; 

Stratakis & Chrousos, 1995). The neuroendocrine stress response involves activation of two 

main systems: the Sympathetic Adrenomedullary (SAM) system and Hypothalamic-Pituitary-
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Adrenal (HPA) axis (Gazzaniga, Ivry, & Mangun, 2014; Gunnar & Quevedo, 2007). The SAM 

response is initiated by the autonomic nervous system (ANS), through activation of the 

sympathetic nervous system and promoting adrenal medullary secretion of epinephrine and 

norepinephrine to systemic blood circulation. These hormones bind to adrenoreceptors on 

various organs (e.g. heart) involved in the quick flight/fight stress response. 

The HPA axis is activated in parallel to the SAM system in response to threats to the 

organism, including by signals of homeostatic/systemic disruption (e.g. injury, hemorrhage, 

infection, extreme cold/heat), or psychogenic stressors (e.g. predator sight, social defeat, exams, 

public speaking) activating different pathways in the brain that project to and activate neurons in 

the paraventricular nucleus (PVN) of the hypothalamus to release mainly corticotrophin-

releasing hormone (CRH), but also arginine vasopressin (AVP). These hormones stimulate the 

release of adrenocorticotropic hormone (ACTH) from the anterior pituitary into systemic 

circulation. ACTH binds to receptors on adrenal cortex cells triggering synthesis and release of 

glucocorticoids (GCs) such as cortisol (in primates) into circulation (Gunnar & Quevedo, 2007; 

Herman & Cullinan, 1997). GCs bind glucocorticoid receptors (GRs) acting as ligand-activated 

transcription factors, causing long-latency and long-acting changes in gene transcription (Ulrich-

Lai & Herman, 2009). GCs released by the adrenal cortex also mediate the negative feedback 

loop that shuts down stress-induced HPA axis activations through GCs binding to GRs in the 

hypothalamus, pituitary and other brain regions outside the HPA axis, such as the hippocampus 

and prefrontal cortex, inhibiting synthesis of CRH and ACTH. This GC negative feedback is 

important to limit damage due to exposure to chronically high levels of GCs, thereby minimizing 

their catabolic, proteolytic, lipogenic, antireproductive, and immunosuppressive effects 

(Charmandari, Tsigos, & Chrousos, 2005; Ulrich-Lai & Herman, 2009). Limbic forebrain 
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regulation of the HPA axis involves structures including 1) the amygdala, which activates the 

HPA stress response through indirect projections to the PVN, 2) the hippocampus linked to GC-

mediated negative feedback, inhibitory action on HPA axis, also through indirect pathways, and 

3) the prefrontal cortex (PFC) through direct projections to the hypothalamus, but also through 

indirect projections to the HPA via interconnections with limbic regions including the amygdala 

and hippocampus (Herman & Cullinan, 1997; Jacobson & Sapolsky, 1991; Smotherman, Kolp, 

Coyle, & Levine, 1981; Sullivan et al., 2004; Ulrich-Lai & Herman, 2009). 

Although the acute stress response is adaptive, chronic stress can cause detrimental 

effects, some through attenuation of GC negative feedback on the HPA axis. This GR resistance 

promoting prolonged GC secretion is associated with HPA axis dysfunction and failure to down-

regulate inflammatory responses leading to increased neuroinflammation, cardiovascular disease, 

diabetes and metabolic syndrome, and brain impacts that cause alterations in neurotransmitter 

activity affecting emotional regulation, reward processing and behavior (Cohen et al., 2012; 

Ganzel, Morris, & Wethington, 2010; Haroon, Raison, & Miller, 2012; Makino, Hashimoto, & 

Gold, 2002; Mora, Segovia, Del Arco, de Blas, & Garrido, 2012; Sanchez, Young, Plotsky, & 

Insel, 2000; Shekhar, Truitt, Rainnie, & Sajdyk, 2005; Ulrich-Lai & Herman, 2009). Cortico-

limbic regions involved in emotional and stress regulation, such as the prefrontal cortex, 

amygdala and hippocampus are vulnerable to chronic stress (Arnsten, 2009; Buwalda et al., 

2005; Gazzaniga et al., 2014; Liston et al., 2006; McEwen, 2016; Radley & Morrison, 2005; 

Rice & Barone, 2000; Vyas, Mitra, Shankaranarayana Rao, & Chattarji, 2002; Watanabe, Gould, 

& McEwen, 1992) and have been implicated in stress-related psychopathologies including 

anxiety and depression (Drevets, Price, & Furey, 2008; Lupien et al., 2009; McEwen, 2007; 

Shekhar et al., 2005; Shepard, Barron, & Myers, 2000; Vyas et al., 2002). 
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These limbic and cortical regions seem particularly vulnerable to stress during 

development, and not just during infancy and early childhood, but also during adolescence which 

has been attributed to another wave of synaptic remodeling during  adolescent development 

(Bourgeois, Goldman-Rakic, & Rakic, 1994; Chareyron, Lavenex, Amaral, & Lavenex, 2012; 

Koss, Belden, Hristov, & Juraska, 2013; Rakic & Nowakowski, 1981; Rice & Barone, 2000), 

and these prolonged developmental processes have been found to increase vulnerability to 

detrimental environmental factors, including chronic stress and obesogenic diets. The amygdala, 

for example, undergoes increased dendritic arborization due to chronic stress, and increased 

amygdala volume has been associated with many stress-related disorders (Buwalda et al., 2005; 

Drevets et al., 2008; Gogtay et al., 2004; Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008; 

Lupien et al., 1998; McEwen, 2016; McEwen & Gianaros, 2010; Vyas et al., 2002; Watanabe et 

al., 1992). Inversely, hippocampal dendritic remodeling under conditions of chronic stress and 

inflammation is associated with dendritic atrophy and debranching (Magariños, McEwen, 

Flügge, & Fuchs, 1996; Palin et al., 2004; Vyas et al., 2002) resulting in smaller hippocampal 

volumes reported in literature in conditions of chronic stress or early life stress (Bruehl et al., 

2011). Protracted PFC development increases vulnerability to environmental factors such as 

chronic stress causing spine loss and decreased PFC dendritic arborization (Ansell et al., 2012; 

Arnsten, 2009; Bourgeois et al., 1994; Knickmeyer et al., 2010; Liston et al., 2006; McEwen & 

Gianaros, 2010; Noble, Houston, Kan, & Sowell, 2012; Radley & Morrison, 2005), which as 

described above for the hippocampus, could explain the smaller PFC volumes previously 

reported in situations of chronic stress or models of early life stress (Ansell et al., 2012; Arnsten, 

2009). 
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Connections between the PFC and amygdala are extensive, with the central nucleus of the 

amygdala (CeA) known to project directly to the brainstem and indirectly to the hypothalamus 

driving behavioral (e.g. fear responses), autonomic (sympathetic and SAM activations), HPA 

axis and somatomotor responsivity and also projects to the neuromodulatory systems underlying 

dopamine (DA), acetylcholine, serotonin and norepinephrine function (Gazzaniga et al., 2014; 

Kim et al., 2011; Pitkänen, Pikkarainen, Nurminen, & Ylinen, 2000; Veinante & Freund-

Mercier, 1998). The medial PFC is involved in integration of cognitive emotional information, 

the orbitofrontal cortex is involved in goal-directed motivational and inhibitory control of 

behavior, and the ventromedial prefrontal cortex (vmPFC) has been shown to regulate amygdala 

activity pertinent to stress and emotional responses (Delgado, Nearing, Ledoux, & Phelps, 2008; 

Gazzaniga et al., 2014; Maayan et al., 2011; Radley & Morrison, 2005; Wager, Davidson, 

Hughes, Lindquist, & Ochsner, 2008). The hippocampus is involved in learning and memory 

processes, including storage of emotional information influencing interpretation and reaction to 

events with connections to the hypothalamus, amygdala and prefrontal cortex(Gazzaniga et al., 

2014; Jacobson & Sapolsky, 1991; Phelps, 2004; Preston & Eichenbaum, 2013). Interactions 

between hippocampus, amygdala and prefrontal cortex have been documented in stress and 

emotional regulation (Delgado et al., 2008; Kim et al., 2011; Phelps, 2004; Preston & 

Eichenbaum, 2013; Wager et al., 2008). Altogether, this evidence suggests that stress-related 

disruption of amygdala, hippocampus and PFC circuitry can affect emotional, stress and 

motivational/reward responses that may underlie related disorders and psychopathologies. 

Chronic stress is also a documented risk factor for childhood obesity (Evans et al., 2012), 

and stress may predispose emotional overeating in part by acting on reward circuitry (Epel et al., 

2004; Izzo, Sanna, & Koob, 2005; Michopoulos, 2016; Richard, Castro, Difeliceantonio, 
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Robinson, & Berridge, 2013; Shively, Grant, Ehrenkaufer, Mach, & Nader, 1997). Stress and 

reward brain circuits are interconnected such that exposure to rewarding stimuli (e.g. 

consumption of palatable food higher in fats and sugars) has been found to lead to release of 

CRH and activation of CRH Receptor 1 (CRHR1) which has been shown to increase reward-

seeking behavior (Dallman et al., 2003; Michopoulos, 2016; Ulrich-Lai & Herman, 2009). 

Elevated GC levels and CRHR1 activation due to stressors or consumption of palatable foods 

may predispose overeating and other mood disorders by altering mesolimbic D2R levels in brain 

reward circuits (Izzo et al., 2005; P. M. Johnson & Kenny, 2010; Michopoulos, 2016; Russo & 

Nestler, 2013). The PFC, involved in the meso-corticolimbic pathway, is a key mediator of 

reward processing through connections with reward areas, such as the ventral striatum, including 

the nucleus accumbens (Haber, 2016; Hyman, Malenka, & Nestler, 2006; Wise, 2002) and 

coordinates activity of limbic regions such as the amygdala and hippocampus that are highly 

interconnected with the mesolimbic DA pathway. 

Increased intake of high caloric density foods enhances the stress response and is 

associated with increased weight-gain shown to elicit hyperresponsiveness of the HPA axis and 

related increased release of GCs and pro-inflammatory cytokines, adverse health outcomes such 

as metabolic syndrome associated with high blood pressure, high blood sugar, excess adiposity 

and abnormal cholesterol levels, and psychopathologies including anxiety and mood disorders 

(Epel et al., 2004; Hillman et al., 2010; Legendre & Harris, 2006; Pasquali et al., 2002; Scott et 

al., 2008).  Subjects exposed to chronic social stress and a high caloric diet have been shown to 

display greater caloric intake and reduced glucocorticoid negative feedback associated with 

increased risk for obesity and psychopathology (Michopoulos, 2016). 
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Obesity has also been associated with impaired cognition, atrophy of frontal lobes, 

anterior cingulate gyrus and hippocampus, and disinhibited eating associated with impairments 

in reward processing, executive function and impulse control. (Bruehl et al., 2011; Contreras-

Rodriguez, Martin-Perez, Vilar-Lopez, & Verdejo-Garcia, 2017; Maayan et al., 2011; J. L. 

Miller et al., 2009; Raji et al., 2010). These regions overlap with regions involved in stress, 

reward and emotional regulation, such as the PFC and hippocampus, and have been 

demonstrated to cause downstream effects on interconnected structures such as the amygdala 

(Adam & Epel, 2007; Ansell et al., 2012; Arnsten, 2009; Hyman et al., 2006; Liston et al., 2006; 

McEwen & Gianaros, 2010; Radley & Morrison, 2005; Wise, 2002) by acting to suppress or 

enhance activity depending on contextual information (Kim et al., 2011; Wager et al., 2008). 

Through overlapping circuitry involved in stress, reward and addiction, over-eating may 

exacerbate the effects of chronic stress, which may perpetuate further non-homeostatic eating 

and subsequent weight gain along with comorbid disorders (Adam & Epel, 2007; Lutter & 

Nestler, 2009; Volkow, Wang, Fowler, & Telang, 2008). 

Animal models are useful for disentangling the often comorbid impact of chronic stress 

and obesity effects reported in human populations and for examining underlying biological 

mechanisms (Brunner, 1997; Buwalda et al., 2005; Machado & Bachevalier, 2003; Radley & 

Morrison, 2005; Sapolsky, Uno, Rebert, & Finch, 1990; Uno, Tarara, Else, Suleman, & 

Sapolsky, 1989; Wilson, 2016). In particular, nonhuman primates (NHPs) are highly 

translational animal models of social stress not confounded by comorbid conditions typical of 

human studies (e.g. psychiatric disorders, drug abuse), cognitive awareness or social stigma. 

NHP species, such as rhesus monkeys, are model organisms with high translational value due to 
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biological and developmental similarities and comparably complicated brain organizations and 

social structures with humans (Jovanovic, 2016; Wilson, 2016). 

Among NHP models, female rhesus monkeys constitute a valuable model to understand 

the impact of chronic psychosocial stress on female neurobehavioral development. Female 

macaques live in troops with matriarchal and matrilineal social structure, establishing complex 

long-term relationships between family members with influences pertaining to allocation of 

resources or defense against predation in nature (Silk, 2002). Strict matrilineal social hierarchies 

wherein female offspring adopt the rank of their mother influence social interactions and the 

social environment (Suomi, 2005), with social rank strictly enforced by aggression from more 

dominant to more subordinate families/animals (Bernstein, 1976). Thus, low social status in 

adult female macaques has been associated with more frequent exposure to social stressors such 

as aggression and trauma, resulting in elevated levels of GCs due to activations of stress 

neuroendocrine systems such as the HPA axis (Abbott et al., 2003; Godfrey, Pincus, & Sanchez, 

2016; Kohn et al., 2016; Michopoulos, Toufexis, & Wilson, 2012; Sapolsky, 2005). Social 

subordination in females stress also influences food intake, increasing the preference for highly 

caloric diets and leading to overeating and the development of an obese phenotype in subordinate 

compared to dominant animals, at least during adulthood (Arce, Michopoulos, Shepard, Ha, & 

Wilson, 2010; Godfrey et al., 2016; Michopoulos, 2016; Michopoulos et al., 2012). 

It is unclear, though, whether and how social subordination stress and exposure to an 

obesogenic diet may interact and function synergistically during female development to alter 

brain structure and function of the corticolimbic circuits reviewed above. Although 

environmental insults such as exposure to stress and highly caloric diets seem to impact 
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development of emotional and stress regulatory and reward circuits in the brain, underlying the 

mechanisms and synergistic effects of stress and obesogenic diet are not fully understood. 

Understanding the specific and combined neurodevelopmental effects of chronic social 

stress and exposure to a high caloric (obesogenic) diet is important clinically, but difficult to 

study in a prospective and longitudinal way in humans. The main goal of the present NHP study 

is to use an MRI approach to examine the long-term, potentially synergistic effect of stress and 

the obesogenic diet (and likely increased fat mass) on brain structure once female macaques 

reach the juvenile, prepubertal, period (16 months of age). We hope to gain a better 

understanding of mechanisms underlying stress- and obesity-related disorders potentially related 

to alterations in brain structural development and psychopathologies to ultimately contribute to 

innovations in healthcare and social policy. 

We hypothesize that 1) animals exposed to social subordination will experience a greater 

degree of chronic social stress associated with elevated hair cortisol levels and 2) will show 

smaller PFC and hippocampus volumes and greater amygdala volume relative to those of 

dominant subjects, and 3) exposure to a high caloric density obesogenic diet will result in 

increased caloric intake and increased body weight, and 4) will be associated with smaller PFC 

and hippocampal volumes in comparison to animals in the low caloric dietary condition, with 

opposite effects expected for amygdala volume, and 5) subordinates with access to an 

obesogenic diet (Choice condition) will experience a synergistic effect of stress and diet, 

exacerbating effects hypothesized above including elevated hair cortisol levels, and increased 

amygdala volume as well as decreased PFC and hippocampal volumes. 
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Methods: 

Subjects – 

 Forty-four female rhesus macaques (Macaca mulatta) born during spring 2014, 2015 or 

2016 were originally assigned to the study. All subjects were born and raised at the Yerkes 

National Primate Research Center Field Station in Lawrenceville, GA, reared by dams in social 

groups comprising 1-2 males, 30-60 females and their offspring. Subjects were socially housed 

in outdoor enclosures three-quarters of an acre in size each with an attached climate-controlled 

indoor enclosure.  

 Although data was collected longitudinally in these animals since birth through 16 

months of age (juvenile, prepubertal), in this study I focus only on the 16-month structural MRI 

data. Six subjects were excluded from analyses due to health-related issues (e.g. chronic 

unthriftiness early in life) that resulted in their release from the study. Therefore, a total number 

of 38 subjects were included in analyses for this study. All studies were carried out in accordance 

with the Animal Welfare Act and the U.S. Department of Health and Human Services “Guide for 

the Care and Use of Laboratory Animals” and were approved by the Emory University 

Institutional Animal Care and Use Committee (IACUC). 

Half of the subjects were reared by their biological mother, and the other half were 

randomly assigned at birth (or within 48 hours postpartum) to either a low or high-ranking foster 

mother using a cross-fostering experimental design using well-established procedures (Drury et 

al., 2017; B.R. Howell, Neigh, & Sanchez, 2016; Pincus, 2018) to disentangle the effect of 

postnatal social rank experience from that of potential social rank-related heritable factors. This 

design allows for the examination of the impact of postnatal conditions while controlling for 

maternal, prenatal conditions and heritable effects (Phelan et al., 2011; Schlotz & Phillips, 2009). 
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Newborn subjects weighing less than 450g were excluded from the study to avoid effects of 

prematurity and low birth weight on brain development. 

 Cross fostered infants assumed the social status of their foster mothers similar to rhesus 

offspring assuming the social status of their biological mothers (Bernstein, 1976; Kutsukake, 

2000; Spencer-Booth, 1968). The final sample size included 19 dominant (high ranking) mother-

infant pairs and 19 subordinate (low-ranking pairs), with approximately half of pairs in each 

group assigned to the low calorie diet (LCD) or Choice diet that included access to a high caloric 

density (HCD) diet and the LCD option (see details in the feeding section below). 

 

Rank Determination – 

Prior to birth of the subjects examined in this study, social status of individuals in each 

group was determined from formal group checks with outcomes of dyadic agonistic interactions 

recorded in a matrix and analyzed (Altmann, 1962; Bernstein, 1976). In an interaction, the 

subordinate animal is identified as the one producing an unequivocal submissive behavior such 

as a withdrawal or fear grimace in response to another (more dominant) animal’s approach or 

aggressive act. Dam social rank was therefore defined based on the subordinate animal’s 

submissive behavior rather than that of the dominant animal (e.g. contact or non-contact 

aggression). Dams selected for this study were from families at the extremes of the social 

hierarchy within their enclosures. Dominant-ranking dams were recruited from families ranking 

in the top third of the social hierarchy, and subordinate-ranking dams were recruited from 

families in the bottom third of the hierarchy. Exclusionary criteria for Dam selection included 

primiparous females and females with histories of infant physical abuse or neglect. 
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Individual/family rankings within social hierarchies were evaluated each month to 

monitor and account for group changes in social structure. Relative ranks of infant subjects were 

calculated as ratios of postnatal dams’ rank divided by the number of (female) animals older than 

three years of age in the female social hierarchy of each enclosure (i.e. if highest rank was 1/100, 

lowest rank would be 100/100). 

 

Diet Intervention – 

Subjects were randomly assigned to either a low calorie diet (LCD) condition or given 

access to both an LCD and high caloric-density (HCD) diets as part of a “choice” dietary 

condition (Moore, Michopoulos, Johnson, Toufexis, & Wilson, 2013; Wilson et al., 2008). 

Prenatal dietary environment was controlled for by maintaining all pregnant females on LCD-

only diet during gestation. The LCD used in this study was LabDiet Monkey Diet 503A, a 

pelleted standard monkey chow from Purina Mills International, St. Louis, MO, containing 3.46 

kcals/gram (14% fat, 18% protein and 65% carbohydrate). The HCD pellets used in this study 

contained 4.25 kcal/gram (30% fat, 20% protein and 50% carbohydrate). It should be noted the 

HCD chow was comprised of more sugar carbohydrates (29.84% of total calories) relative to the 

LCD chow (6.11% of total calories). LCD and HCD chows contain similar amounts of vitamins 

and minerals. 

 Food pellets were available 24/7 and were dispensed from automated feeders activated 

with radio-frequency identification (RFID) chips subcutaneously embedded in the subjects’ 

wrists. Dams received RFID chips prior to the onset of this experiment and had access to the 

LCD feeders prenatally; however, the access to the HCD diet feeders was activated only after 

they gave birth.  All non-subject animals in each social group had access to the LCD but were 
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restricted from accessing the HCD. Infant subjects received RFID chips at six weeks of age 

before infants transition to solid food. Prior to weaning, exposure to the HCD during the first six 

postnatal weeks in infants in the Choice condition was through the mother’s milk. Automated 

feeders were designed to record subjects’ RFID, dispense a single pellet of chow at a time and 

record each subject’s caloric intake (Pincus, 2018; Wilson et al., 2008). This design has been 

shown to provide monkeys the ability to consume food as desired from both a HCD feeding 

station and three LCD feeding stations, allowing researchers to systematically control access to 

food types and maintain established experimental diet conditions. Although this set up is not 

naturalistic for rhesus monkey societies (e.g., lacks resource competition, HCD diet with high fat 

% composition), the choice (HCD plus LCD) condition offers translational value by modeling 

common human dietary environment with access to less healthy dietary alternatives to relatively 

more healthy diet options. Subjects were also weighed at 16 months at the Yerkes National 

Primate Research Center Field Station. Kcal consumption was calculated as the cumulative 

amount of kcals (LCD + HCD) consumed since birth. 

 

Hair Cortisol – 

 High cortisol accumulation in hair can be used as a marker of stress exposure over an 

extended period of time (Davenport, Tiefenbacher, Lutz, Novak, & Meyer, 2006; Meyer, Novak, 

Hamel, & Rosenberg, 2014). Approximately one square inch of hair was shaved from the back of 

subjects’ necks at 16 months of age. Samples were stored at -80 degrees Celsius until assayed. 

Based on previously established protocols (Davenport et al., 2006; Meyer et al., 2014), each 

sample was weighed, washed twice in isopropanol to remove external contamination, dried, 

ground into a fine powder using a Retsch ball mill, and then extracted with methanol overnight. 
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The methanol was evaporated and the residue was redissolved in the assay buffer. Cortisol 

concentrations in hair were measured as pg/mg hair units using the Salimetrics (Carlsbad, CA) 

enzyme immunoassay kit (cat. # 1-3002) according to the manufacturer’s directions. 

 

Neuroimaging – 

 Structural MRI scanning took place at the Yerkes National Primate Research Center 

Imaging Center, requiring each subject to be transported from the Yerkes National Primate 

Research Center Field Station to the YNPRC Imaging Center the day before image acquisition. 

MRI was performed at 16 months of age using a 3T Siemens Magnetom TRIO system (Siemens 

Med. Sol., Malvern, PA, USA) and an 8-channel phase array knee coil. Both T1 and T2-

weighted structural MRI scans were acquired during the same scanning session. The T1-

weighted structural MRI scans were collected using a 3D magnetization prepared rapid gradient 

echo (3D-MPRAGE) parallel imaging sequence (TR/TE = 2600/3.46msec, FoV: 116mm, voxel 

size: 0.5mm3 isotropic, 8 averages, GRAPPA, R=2). T2-weighted MRI scans were collected in 

the same direction as the T1 images (TR/TE = 3200/373msec, FoV: 128mm, voxel size: 0.5mm3 

isotropic, 3 averages, GRAPPA, R=2) in order to assist in the identification of the brain tissue 

classes by improving contrast of the borders between gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF), and aid in the delineation of the regions of interest (Knickmeyer et al., 

2010). Regions of interest (ROIs) include cortico-limbic areas with critical involvement in 

emotion and stress regulation, executive function, inhibitory control of behavior, reward and 

social behavior: Prefrontal Cortex (PFC), Hippocampus and Amygdala. 

In order to minimize motion artifacts scans were collected under isoflurane anesthesia 

(1% to effect, inhalation) following induction with telazol (3-4 mg/kg, intramuscular) and 
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intubation. Animals’ physiological parameters were monitored during scanning with an 

oximeter, electrocardiograph, rectal thermomistor and blood pressure monitor. Dextrose/NaCl 

(0.45%) was administered intravenously to maintain hydration throughout the scanning session, 

and subjects were placed on an MRI-compatible heating pad to maintain temperature. Subjects 

were scanned in the same supine placement and orientation through placement on a custom-

made head-holder with ear bars and a mouth piece to prevent head movements. To indicate the 

right side of the brain, a vitamin E capsule was taped to each subject’s right temple during 

scanning. After scanning, subjects were monitored until full recovery before being returned back 

to social housing. 

 

MRI Data Processing, Analysis and ROI Volume Computation – 

 Structural data was analyzed using the AutoSeg (version 3.3.2) software application 

pipeline – developed by our collaborators at the Neuro Image Research and Analysis 

Laboratories of University of North Carolina – to perform automatic brain tissue structural 

segmentation into gray matter (GM), white matter (WM), or cerebrospinal fluid (CSF), as well as 

parcellation into selected ROIs to compute their volumes (Liu et al., 2015; Shi et al., 2016). 

Images are registered to population-based T1- and T2-MRI brain atlases (Liu et al., 2015; Shi et 

al., 2016). AutoSeg corrects image intensity inhomogeneity with N4 bias field correction, 

accounting and correcting for bias in field signal intensities that result in gradual variations in the 

image intensities within the same tissue due to radiofrequency (RF) coil imperfections. Then, 

AutoSeg performs image registration to atlas space using BRAINSFit for rigid body and affine 

registration (Liu et al., 2015), aligning the subject brain image to age-specific, population-based 

T1- and T2-MRI atlases using a reference space algorithm (Styner et al., 2007). For this project, 
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subjects’ images were registered to the 12-month UNC-Emory juvenile rhesus brain T1- and T2-

MRI atlases which are very close in GM/WM/CSF signal contrast to our 16-month subjects’ 

MRI images (Shi et al., 2016). These 12-month T1 and T2 atlases were built from 48 juveniles 

scanned at YNPRC, in collaboration with members from UNC using deformable registration 

tools in the Advanced Normalization Tools (ANTs) software (Liu et al., 2015; Shi et al., 2016). 

Once the subject’s T1- and T2- MRI images were in atlas space, AutoSeg uses an automatic 

atlas-based classification (ABC) tissue segmentation for probabilistic tissue class classification 

of each subject’s image into GM, WM and CSF brain tissue or non-brain tissue (e.g. skull, 

vessels, muscle) and to remove non-brain tissue for analysis (referred to as “skull-stripping”). 

The program does this by using information on T1 and T2 image signal intensities and by 

warping the atlas-specific tissue priors (i.e. weight values) from the UNC-Emory Atlas (Fig. 1) 

into the subject to label each voxel via probabilistic maps for each tissue type (Liu et al., 2015). 

The first round is done with skull and the 2nd round is done after skull stripping, in which all 

non-brain tissue is identified and removed from analyses. Skull-stripping is automatically 

performed by AutoSeg, although this step typically requires manual editing with a program such 

as ITK-snap to improve results of another round of ABC GM, WM and CSF tissue segmentation 

with the manually skull-stripped images (Carpenter, 1983; Styner et al., 2007; Yushkevich et al., 

2006) and lobar parcellations (described next). The next step is the cortical lobar (PFC) and 

subcortical ROI parcellations (amygdala, hippocampus) during which AutoSeg uses ANTS 

registration (Liu et al., 2015) of the ROIs in the skull-stripped version of the brain atlas to the 

skull-stripped subject image. The tissue class segmentations generated (GM, WM, CSF) are also 

applied to the cortical parcellations to generate WM, GM and CSF of each cortical region (see 

Fig. 2). In the final step, AutoSeg computes volumes for all ROIs in this study: volumes of right 
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and left PFC (GM, WM, CSF and total PFC volume), right and left amygdala, right and left 

hippocampus. Total Intracranial Volume (ICV) was arithmetically calculated (total GM + total 

WM + total CSF) as a measure of total brain volume/size. Volumes are reported in cubic 

millimeters for all regions. 

 

Neuroanatomical Definition of Regions of Interest (ROI) in the Atlas – 

 The atlas ROIs have been described previously (Knickmeyer et al., 2010; Shi et al., 2016). 

The amygdala boundary was defined rostrally by the anterior limit of the periamygdaloid cortex, 

posteriorly by the hippocampus, ventrally by CSF, ventrolaterally by WM (Amaral & Basset, 

1989; Price, 1987), and when CSF was not visible due to low contrast, the ventromedial border 

was defined by the rhinal fissure. The PFC border was defined anteriorly and superiorly by CSF, 

posteriorly and inferiorly by the Sylvian fissure and the arcuate sulcus also serving as the 

superior boundary posteriorly, and medially by the interhemispheric fissure. The hippocampal 

boundaries followed previous anatomical definitions (Rosene & Hoesen, 1987), delineated 

superiorly by the lateral ventricle and temporal horn, except at the subiculum where the 

boundary was marked by WM. WM also marks the inferior boundary, separating the 

hippocampus from the entorhinal cortex. Borders are defined anteriorly by the lateral ventricle, 

temporal horn and amygdala, posteriorly by the lateral ventricle and WM, and medially by CSF 

(Knickmeyer et al., 2010). 

 

Statistical Analyses – 

 SPSS (version 24.0) was used for statistical analyses. The threshold for significance was 

set at p < 0.05, although statistical trends are also reported for 0.1 > p > 0.05. If the assumption 
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of homogeneity was violated, the results were presented using the corrected Greenhouse-Geisser 

values for sphericity not assumed. 

 Total Intracranial Volume (ICV), as well as total GM, total WM and total CSF volumes 

were analyzed using a Two Way ANOVA with Rank (High – Dominant –, Low – Subordinate –) 

and Diet condition (LCD, Choice (LCD + HCD)) as fixed factors, to determine main or 

interaction effects of Rank and Diet on total ICV, GM, WM or CSF volumes. Due to the small 

sample size of this dataset I was underpowered to examine the additional potential effects of 

biological mother rank or crossfostering factors in the statistical models. However, the potential 

confounding effect of these two factors was controlled for by counterbalancing them across all 

our experimental groups. 

 Effects of Rank and Diet condition on PFC volumes (GM, WM, CSF and total), as well 

as on hippocampus and amygdala volumes were analyzed using repeated measures (RM) 

ANOVA with Rank (High, Low) and Diet condition (LCD, Choice) as fixed factors and 

Hemisphere laterality (Left, Right) as the repeated measures factor. In cases when a significant 

interaction effect was detected, post-hoc pairwise comparisons of the means (Tukey’s) were 

used. To ensure that Rank and/or Diet condition regional effects were not due to variation in 

brain size (defined as ICV here), when an effect of Diet condition or Rank was detected on ICV, 

RM analysis of covariance (ANCOVA) was utilized entering ICV as a covariate in the statistical 

models for each of the ROIs (amygdala, hippocampus, PFC).  

 Hair Cortisol collected at 16 months and accumulated from 12-16 months, total 

cumulative kcal consumption (LCD + HCD kcals) since infancy, cumulative LCD kcal 

consumption and HCD kcal consumption, and Body Weight were analyzed using Two Way 

ANOVAs with Rank and Diet condition as fixed factors to determine main or interaction effects 
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of Rank and Diet on cortisol, feeding data and body weight. Due to high variance in Dominant 

subjects’ Hair Cortisol as compared to that of Subordinates, Hair Cortisol data was also log 10 

transformed and analyses re-ran in the log-transformed data. 

 Bivariate Pearson correlations were also run between brain and cortisol/calorie 

intake/body weight measures to examine potential associations between measures. These 

correlations incorporate analyses using both untransformed and log base 10 transformed hair 

cortisol data. Correlations were also run with relative rank as a continuous variable.
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Results: 

Structural MRI Measures – 

ICV and total GM, WM and CSF volumes 

Two Way ANOVA revealed a main effect of Diet Condition (F1,34=7.29, p=0.01, η2
partial= 

0.18) on ICV with the Choice Diet condition (LCD + HCD) showing greater ICV relative to the 

LCD condition. No other main effects of Rank (F1,34=0.01, p=0.94, η2
partial=2x10-4) or interaction 

effects of Diet by Rank (F1,34=0.17, p=0.69, η2
partial= 0.01 were detected on total ICV (see Fig. 3). 

Because a main effect of Diet was detected on ICV, RM ANCOVA adding ICV as a covariate 

was used to analyze results for the ROI volumes (PFC, amygdala, and hippocampus). 

Two Way ANOVA also revealed a main effect of Diet (F1,34=4.47, p=0.04, η2
partial= 0.12) 

on total WM volume with the Choice Diet condition showing greater average total WM volume 

relative to the LCD condition. No other main effects of Rank (F1,34=0.39, p=0.54, η2
partial= 0.01) 

or interaction effects of Diet by Rank (F1,34=0.01, p=0.92, η2
partial= 3x10-4) were detected on total 

WM volume (see Fig. 4). 

An additional main effect of Diet (F1,34=7.27, p=0.01, η2
partial= 0.18) was detected on total 

GM volume with the Choice Diet condition showing greater average total GM volume relative to 

the LCD condition. No other main effects of Rank (F1,34=4x10-3, p=0.95, η2
partial= 1x10-4,) or 

interaction effects of Diet by Rank (F1,34=0.27, p=0.61, η2
partial= 8x10-3) were detected on total 

GM volume (see Fig. 5). 

No main effects of Diet (F1,34=2.82, p=0.10, η2
partial= 0.08), Rank (F1,34=0.50, p=0.48, 

η2
partial= 0.02,) or interaction effects of Diet by Rank (F1,34=0.06, p=0.80, η2

partial= 2x10-3) were 

detected on total CSF volume (see Fig. 6).
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Amygdala Volume 

 RM ANCOVA (controlling for ICV as a covariate) revealed a main effect of Rank 

(F1,33=6.75, p=0.01, η2
partial= 0.17) on Amygdala volume with the Low Rank (subordinate) 

condition showing bilaterally greater (right and left hemisphere) Amygdala volumes relative to 

the High Rank (dominant) condition. No other main effects of Diet (F1,33=2.25, p=0.14, η2
partial= 

0.06), Hemisphere (F1,33=1.21, p=0.28, η2
partial= 0.04), or interaction effects of Diet by Rank 

(F1,33=0.47, p=0.50, η2
partial= 0.01), Diet by Hemisphere (F1,33=1.34, p=0.26, η2

partial= 0.04), Rank 

by Hemisphere (F1,33=7x10-5, p=0.99, η2
partial= 2x10-6), or Diet by Rank by Hemisphere 

(F1,33=2.31, p=0.14, η2
partial= 0.07) were detected on amygdala volume (see Fig. 7). 

 

Hippocampus Volume 

 RM ANCOVA (controlling for ICV as a covariate) revealed a main effect of Rank 

(F1,33=13.05, p=1x10-3, η2
partial=0.28) on Hippocampal volume with the Low Rank condition 

showing bilaterally greater Hippocampal volumes relative to the High Rank condition. No other 

main effects of Diet (F1,33=0.80, p=0.38, η2
partial= 0.02),  Hemisphere (F1,33=0.18, p=0.67, 

η2
partial= 0.01), or interaction effects of Diet by Rank (F1,33=1.51, p=0.23, η2

partial= 0.04), Diet by 

Hemisphere (F1,33=0.10, p=0.76, η2
partial=3x10-3), Rank by Hemisphere (F1,33=0.37, p=0.55, 

η2
partial= 0.01), or Diet by Rank by Hemisphere (F1,33=1.85, p=0.18, η2

partial= 0.05) were detected 

on hippocampus volume (see Fig. 8). 

 

PFC Volume 

 RM ANCOVA analyses on total PFC volume (controlling for ICV as a covariate) 

revealed no main effects of Diet (F1,33=0.17, p=0.69, η2
partial= 0.01), Rank (F1,33=0.59, p=0.45, 
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η2
partial=0.02), Hemisphere (F1,33=2x10-4, p=0.99, η2

partial= 5x10-6), or interaction effects of Diet 

by Rank (F1,33=0.03, p=0.87, η2
partial= 8x10-4), Diet by Hemisphere (F1,33=0.37, p=0.55, η2

partial= 

0.01), Rank by Hemisphere (F1,33=2.56, p=0.12, η2
partial= 0.07), or Diet by Rank by Hemisphere 

(F1,33=1.82, p=0.19, η2
partial= 0.05) on PFC Total Volume (see Fig. 9). 

 A similar RM ANCOVA model for PFC WM volume (controlling for ICV as a covariate) 

revealed no main effects of Diet (F1,33=1x10-3, p=0.97, η2
partial= 4x10-5), Rank (F1,33=0.13, 

p=0.73, η2
partial= 4x10-3), Hemisphere (F1,33=2.77, p=0.11, η2

partial= 0.08), or interaction effects of 

Diet by Rank (F1,33=0.52, p=0.48, η2
partial= 0.02), Diet by Hemisphere (F1,33=4x10-3, p=0.95, 

η2
partial= 1x10-4), Rank by Hemisphere (F1,33=0.01, p=0.95, η2

partial= 1x10-4), or Diet by Rank by 

Hemisphere (F1,33=0.15, p=0.70, η2
partial= 0.01) on PFC WM volume (see Fig. 10). 

 RM ANCOVA analyses for PFC GM volume (controlling for ICV as a covariate) 

revealed no main effects of Diet (F1,33=0.01, p=0.92, η2
partial= 3x10-4), Rank (F1,33=1x10-4, 

p=0.99, η2
partial= 4x10-6), Hemisphere (F1,33=1.14, p=0.29, η2

partial= 0.03), or interaction effects of 

Diet by Rank (F1,33=0.22, p=0.88, η2
partial= 6x10-4), Diet by Hemisphere (F1,33=2.58, p=0.12, 

η2
partial= 0.07), Rank by Hemisphere (F1,33=2.51, p=0.12, η2

partial= 0.07) or Diet by Rank by 

Hemisphere (F1,33=0.11, p=0.75, η2
partial= 3x10-4) on PFC GM volume (see Fig. 11). 

 RM ANCOVA statistical analyses for PFC CSF (controlling for ICV as a covariate) 

revealed a main effect of Rank (F1,33=5.26, p=0.03, η2
partial= 0.14) on PFC CSF volume with 

bigger PFC CSF volumes in Dominant than in Subordinate animals. No other main effects of 

Diet (F1,33=0.69, p=0.41, η2
partial= 0.02), Hemisphere (F1,33=0.10, p=0.75, η2

partial= 3x10-3), or 

interaction effects of Diet by Rank (F1,33=0.25, p=0.62, η2
partial= 0.01), Diet by Hemisphere 

(F1,33=0.51, p=0.48, η2
partial= 0.02), or Rank by Hemisphere (F1,33=1.02, p=0.32, η2

partial= 0.03) 

were detected on PFC CSF volume. However, a trend for a Diet by Rank by Hemisphere 
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interaction effect was detected (F1,33=3.03, p=0.09, η2
partial= 0.08) with specific effects of Rank in 

the Choice group observed in the right hemisphere (see Fig. 12). 

 

Hair Cortisol – 

Two Way ANOVA revealed no main effects of Diet (F1,34=1.41, p=0.24, η2
partial= 0.04), 

Rank (F1,34=0.18, p=0.67, η2
partial= 5x10-3,) or interaction effects of Diet by Rank (F1,34=2.02, 

p=0.16, η2
partial= 0.06) on hair cortisol levels (see Fig. 13). Following hair cortisol data log10 

transformation, Two Way ANOVA revealed no main effects of Diet (F1,34=0.48, p=0.49, η2
partial= 

0.01), Rank (F1,34=0.48, p=0.49, η2
partial= 0.01,) or interaction effects of Diet by Rank (F1,34=1.06, 

p=0.31, η2
partial= 0.03) on hair cortisol levels. 

 

Total kcal Consumption – 

 Two Way ANOVA revealed main effects of Diet (F1,31=9.63, p=4x10-3, η2
partial= 0.24) 

and Rank (F1,31=8.01, p=8x10-3, η2
partial= 0.21) on total kcal consumption, with the animals in the 

HCD condition consuming more cumulative calories than the LCD group, and Dominant animals 

consuming more calories than subordinates. No interaction effects of Diet by Rank (F1,31=0.04, 

p=0.85, η2
partial= 1x10-3) were detected on kcal consumption (see Fig. 14). 

 

LCD kcal Consumption – 

 Two Way ANOVA revealed main effects of Diet (F1,31=25.63, p=2x10-5, η2
partial= 0.45) 

and Rank (F1,31=5.06, p=0.03, η2
partial= 0.14) on LCD kcal consumption, with the animals in the 

LCD condition consuming more cumulative LCD calories than those in the Choice dietary 

condition, and Dominant animals consuming more LCD calories than subordinates. No 
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interaction effects of Diet by Rank (F1,31=1.64 p=0.21, η2
partial= 0.05) were detected on LCD kcal 

consumption (see Fig. 15). 

 

HCD kcal Consumption – 

 Two Way ANOVA revealed a main effect of Diet Condition (F1,34=53.64, p=6x10-4, 

η2
partial= 0.61) on HCD kcal consumption, with the animals in the HCD condition consuming 

more cumulative HCD calories than those in the LCD-only condition. No main effects of Rank 

(F1,34=1.95, p=0.17, η2
partial= 0.05) or interaction effects of Diet by Rank (F1,34=0.65 p=0.43, 

η2
partial= 0.02) were detected on HCD kcal consumption (see Fig. 16). 

 

Body Weight – 

 Two Way ANOVA revealed no main effects of Diet (F1,33=0.26, p=0.61, η2
partial= 8x10-3) 

or Rank (F1,33=0.03, p=0.87, η2
partial= 1x10-3) or interaction effects of Diet by Rank (F1,33=2x10-4, 

p=0.99, η2
partial= 7x10-6) on subjects’ body weight at 16 months (see Fig. 17). 

 

Correlations Between Brain Measures and Cortisol, Caloric Intake and Body Weight Data – 

 Results of bivariate Pearson correlations (see Fig. 18) revealed significant positive 

correlations between: body weight and right and left PFC GM volumes (r=0.33, p=0.05 and r= 

.36, p=0.03, respectively) and between total kcals consumed and right and left PFC CSF volumes 

(r=0.40, p=0.02), as well as between body weight and total kcals consumed and total CSF 

volume (r=0.36, p=0.03 and r= 0.44, p=0.01, respectively). Significant negative correlations 

were detected between kcal consumption and left hippocampal volume (r= -0.39, p=0.02), hair 

cortisol and right PFC WM (r= -0.35, p=0.03), and between hair cortisol concentrations and ICV 
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and total WM volume (r=-0.34, p=0.04 and r=-0.41, p=0.01, respectively). Analyses using log-

transformed hair cortisol data revealed significant negative correlations between hair cortisol and 

Right and Left PFC WM (r=-0.39, p=0.02 and r=-0.32 and p=0.05, respectively), hair cortisol 

and ICV (r=-0.35, p=0.03), and between hair cortisol and total WM (r=-0.44, p=0.01). 

Correlational analyses revealed no significant correlation between Relative Rank and Hair 

Cortisol (r=-0.06, p=0.70). 

Further, significant positive correlations were detected between HCD kcal consumption 

and Total CSF Volume (r=0.40, p=0.01), HCD kcals and total kcal consumption (r=0.78, 

p=1x10-3), and a significant negative correlation was detected between HCD kcals and LCD kcal 

consumption (r=-0.60, p=2x10-4). No significant correlations were detected between HCD kcal 

consumption and ICV (r=0.22, p=0.19) or between LCD kcal consumption and ICV (r=-0.18, 

p=0.31). 
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Discussion: 

The goal of this study was to use a structural MRI approach to examine the long-term, 

potentially synergistic effect of stress and the obesogenic diet (and likely increased fat mass) on 

brain structural development of female macaques during the juvenile, prepubertal, period. For 

this, in addition to investigating potential effects on global brain size, we focused on specific 

structural impact on the prefrontal cortex, hippocampus and amygdala due to their critical 

involvement in stress and emotion regulation as well as reward processing and social behavior. 

These regions also show vulnerability to environmental factors (e.g. stress and diet) during their 

protracted development into the juvenile period. We utilized a naturalistic model of social stress 

in rhesus monkeys comparing volumetric long-term structural impact of social rank and postnatal 

exposure to a highly caloric diet. Overall significantly greater total brain volume (measured as 

ICV) and total WM and GM volumes were detected by MRI for subjects in the Choice (HCD + 

LCD) dietary condition, relative to subjects eating LCD diet. Although this could be related to 

the higher total Kcal consumption observed in the Choice diet group, the correlational analyses 

only confirmed a positive association between Kcals and body weights with bigger total brain 

CSF and PFC GM and CSF volumes, while they did not predict the main finding of bigger ICV 

volumes in the Choice group. These findings suggest that the differences in ICV, and total GM 

and WM volumes between the Choice and LCD diet juveniles may be better explained by 

qualitative differences in the nutrient composition between both diets. Regarding the effects of 

social rank, bigger amygdala and hippocampal volumes were detected in Low Ranking 

(subordinate) animals than in the High Ranking (dominant) group. These findings suggest that 

both postnatal social rank and diet exposure influence neurodevelopment affecting brain volume 
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growth as well as region-specific effects before puberty, but that the effects of diet and social 

subordination on brain development seem distinct. 

Social subordination in adult females is considered a chronic psychosocial stress, 

however, it is unclear when this phenotype emerges during development. Previous studies show 

subordinate juveniles have higher morning baseline plasma cortisol compared to dominant 

females at ~18 months of age (Buwalda et al., 2005; B. R. Howell et al., 2014; Michopoulos, 

2016; Shively et al., 1997), although hair cortisol analyses from the current study did not 

differentiate dominant versus subordinate females. This said, chronic and psychosocial stress 

have been found to influence neurobehavioral development in humans (Ansell et al., 2012; 

Drevets et al., 2008; Lupien et al., 2009), as well as to increase consumption of highly caloric 

diets, which has also been documented to influence physiology and neurodevelopmental 

trajectories in humans (Bruehl et al., 2011; Maayan et al., 2011; J. L. Miller et al., 2009; Raji et 

al., 2010). Additional findings show childhood gains in adiposity have been associated with low 

socioeconomic status (SES) in humans, an effect largely accounted for by deteriorated self-

regulatory abilities (Evans et al., 2012), although these findings should not be equated to social 

subordination. To our knowledge, only two studies (Embree et al., 2013; B. R. Howell et al., 

2014) have previously examined the relationship between social subordination stress and brain 

development in juvenile peripubertal female macaques, demonstrating that effects of social rank 

on brain serotonin function and structural connectivity are already present in the juvenile, 

prepubertal period. A potential mechanism for these effects involves activation of the HPA axis, 

resulting in increased release of GCs (e.g. cortisol in primates). GCs can, indeed, affect structural 

and functional connectivity in the brain, capable of remodeling dendritic length and branching as 

well as synapses and myelin through genomic effects on gene expression (Hall, Moda, & Liston, 
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2015). And, based on this literature, I proposed the hypothesis that stress-induced increases in 

GCs (cortisol) would explain the expected bigger amygdala volumes in the subordinate females. 

The findings of bigger amygdala volumes in low ranking females partially supported my 

hypotheses, but I did not find either higher hair cortisol accumulation in subordinate than 

dominant animals, nor a positive correlation between cortisol and amygdala volumes. Therefore, 

additional studies will need to address the biological mechanism mediating the bigger amygdala 

sizes of low ranking animals, which were already detected in the same animals during infancy 

(Kyle et al., 2017).  

Another potential mechanism underlying these organizational effects of stress involves 

Corticotropin-Releasing Hormone (CRH) released from the hypothalamus and amygdala, 

activating the HPA axis. Pharmacologically antagonizing CRH Receptor 1 (CRHR1) has been 

shown to inhibit effects related to the stress response, one of which involves dopamine (DA) 

neurotransmission (Michopoulos, 2016). Chronic stress associated with a hypodopaminergic 

state wherein mesolimbic DA Receptor 2 (D2R) levels are diminished (Hall et al., 2015; 

Michopoulos, 2016). This impaired DA neurotransmission is associated with dysregulated 

reward circuitry in areas such as the PFC, amygdala, Nucleus Accumbens (NAcc), suggesting an 

effect of HPA axis activation on reward circuitry. Amygdala and Orbitofrontal Cortex (OFC) 

neurons have also been shown in primates to respond to stress as well as taste, texture, sight and 

smell of food (Kadohisa, Verhagen, & Rolls, 2005; Rolls, 2015a, 2015b). Further, the amygdala 

and OFC project to the hypothalamus involved in the orexigenic-satiety network, which could 

explain an alternative pathway through which these regions may affect feeding behavior (Rolls, 

2015a). Research on adult female macaques (Michopoulos et al., 2012) has also shown chronic 

social subordination stress results in altered leptin satiety signals predisposing overeating or 
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“emotional eating,” which can lead to insulin insensitivity associated with developing diabetes. 

Based on all this evidence, I proposed the hypothesis that chronic social subordination stress 

would also lead to overeating of the HCD in the low ranking juveniles in my study. However, the 

findings that, instead, the Dominant group consumed more Kcals than the subordinate females, 

did not support my hypothesis of increased emotional eating of the HCD diet in the low-ranking 

females. This may have been due to competition for food at the HCD feeders, with subordinates 

having reduced access to the one feeder with HCD because of the presence of more dominant 

females. 

ICV was significantly bigger in juveniles exposed to a Choice diet comprised of both 

Low Caloric Density (LCD) and High Caloric Density (HCD) options. In addition, subjects in 

the Choice diet condition also had bigger total volumes of WM and GM. In humans, ICV growth 

follows a parabolic inverted U shape trajectory, first increasing during childhood and peaking at 

10 ½ years of age in females and 14 ½ years in males and decreasing thereafter (Giedd & 

Rapoport, 2010), although it has also been documented in rats that an obesogenic diet can 

accelerate pubertal timing and influence hormonal activity affecting neurodevelopment (Sloboda, 

Howie, Pleasants, Gluckman, & Vickers, 2009). Although we found that the Choice condition 

was associated with bigger ICV, we did not detect effects of dietary condition on Body Weight 

despite finding the Choice and high-ranking conditions to consume more cumulative kcals. We 

found this increased consumption of kcals to be related to an increased intake of HCD kcals, 

which was also inversely correlated with LCD kcal consumption. Thus, it is possible that a high 

fat and sugar diet influenced physiology as well as neurodevelopmental tempo resulting in 

accelerated brain structural growth that resulted in bigger ICV and total GM and WM volumes in 

the juveniles in the Choice diet in comparison to those maintained on LCD since infancy. 
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Observed differences in ICV are driven by diet differences in total GM and total WM, and 

caloric intake of HCD kcals was also related to greater total CSF volumes, although consumption 

of neither HCD nor LCD kcals was significantly correlated with ICV. A recent study showed 

GM to decrease in volume relatively earlier during development in monkeys (around 10 months), 

than in humans (at 10.5 years in females), indicating a potential accelerated maturation during 

macaque development, which can be further accelerated by environmental/exogenous factors 

(Liu et al., 2015). Although these findings of bigger ICV associated with the Choice diet 

condition contrast with other reports in the literature (Janowitz et al., 2015), the findings are 

inconsistent, and other studies show contrasting brain structural development effects seen in 

children as compared to adults (Giedd & Rapoport, 2010; Knickmeyer et al., 2010; Tottenham & 

Sheridan, 2009). It is possible that obese-like phenotype changes do not emerge until later, which 

has been previously supported by findings showing that as females go through puberty the 

Choice dietary condition starts showing greater body weights and increased fat mass (determined 

by DEXA) than subjects in the LCD-only dietary condition. These effects of HCD exposure may 

also occur neonatally through programming by factors such as increased fat in the milk of the 

Choice dietary condition mother-infant pairs, as shown previously in rats and suggested by 

recent data in rhesus macaques (Pincus, 2018; Wright, Fone, Langley-Evans, & Voigt, 2011). 

Thus, the effect of diet condition on ICV may be more related to composition than quantity of 

diet with the Choice condition exposed to foods of higher caloric density, sugar and fat content, 

including proinflammatory lipids, which has been shown to affect neuroinflammation and brain 

development (Simopoulos, 2013), and may also be due to obesity/obesogenic diet-related factors 

that may develop during early adolescence and will potentially emerge later (Sasaki, de Vega, St-

Cyr, Pan, & McGowan, 2013; Tottenham & Sheridan, 2009; Vasconcelos, Cabral-Costa, 
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Mazucanti, Scavone, & Kawamoto, 2016). Future studies on these subjects should be carried out 

to assess longitudinal brain development in association with a high fat and sugar diet. 

Significant main effects of social rank were detected for the amygdala, showing a region-

specific impact on neurodevelopment. Low-ranking (subordinate) subjects were found to have 

significantly greater amygdala volumes relative to those of their high-ranking (dominant) peers. 

This is consistent with previous literature on humans finding low SES to be associated with 

greater amygdala volumes in children (Noble et al., 2015; Noble et al., 2012). A potential 

explanation for social rank-related increases in amygdala volume could be related to social 

stress, as stress has been found to enhance dendritic arborization in neurons of the basolateral 

amygdala (McEwen & Gianaros, 2010; Vyas et al., 2002). However, our failure to detect higher 

levels of cortisol exposure in the hair of Subordinate animals would not support this hypothesis. 

An alternative explanation is that early life, associated with rapid amygdala development 

followed by slowed, protracted development, provides enhanced amygdalar functional 

development opportunities (Tottenham & Sheridan, 2009) that may reflect neuroadaptation to 

prepare infant and juvenile subordinates for rank-related social stressors that they are able to 

perceive by observing their mothers as infants while they are still experiencing limited exposure 

to direct aggression (Kawai, 1958). 

Our findings are inconsistent with research showing subordinate status and stress related 

to decreased amygdala volume (McEwen & Gianaros, 2010; Noonan et al., 2014). Because the 

animals in our study were juvenile, prepubertal females, it is possible that once these animals 

reach puberty similar chronic activation of the amygdala associated with stress that once led to 

increased amygdala activation and structural volumetric increases may lead to synaptic and 

dendritic damage, instead, causing a reduction in spine density in areas such as the medial 
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amygdala neurons, an effect that may be observable at a later age (B. R. Howell et al., 2014; 

McEwen & Gianaros, 2010). Further anatomical delineation between nuclei of the Amygdala 

(e.g. basolateral, medial, etc.) may elucidate findings, although this is not currently possible with 

the limited MRI image resolution provided by the 3T scanner neuroanatomical definitions of the 

atlases used in this study. 

Significant main effects of social rank were also detected for the hippocampus, with 

subordinate subjects having bigger hippocampal volumes relative to dominant peers. This 

finding is in context of studies showing greater hippocampus volumes associated with low SES 

in children (Noble et al., 2015; Noble et al., 2012). However, if social subordination is 

interpreted to be associated with increased chronic stressor exposure, these findings contrast with 

those of numerous studies in humans, rats, and NHPs that have found stress to cause 

hippocampal neuronal death and atrophy (Lupien et al., 1998; McEwen & Gianaros, 2010; Uno 

et al., 1989; Watanabe et al., 1992) through GC and glutamate excitotoxicity dendritic shrinkage 

(McEwen, 2016; Popoli, Yan, McEwen, & Sanacora, 2011). Our findings did not support the 

hypothesis that subordinate animals had smaller hippocampal volumes (but the contrary), or 

elevated cortisol levels, and the correlational analyses did not show a negative correlation 

between hair cortisol and hippocampal volumes. It is possible that bigger hippocampal volumes 

in Subordinates are an adaptive response to increase the storage of valuable information (e.g. 

spatial or emotional memories) and may be related to increased amygdala volumes as both 

limbic regions are strongly connected (McEwen, 2016; Phelps, 2004; Preston & Eichenbaum, 

2013; Sasaki et al., 2013; Tottenham & Sheridan, 2009). Further studies are necessary to explain 

the biological mechanisms that led to bigger hippocampal volumes in subordinate relative to 

dominant animals. 
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Our hypotheses that the subordinate animals would also show smaller PFC volumes 

relative to the dominant group due to greater levels of stress exposure in the subordinate subjects 

(Abbott et al., 2003; Ansell et al., 2012; Arnsten, 2009; Godfrey et al., 2016; Kohn et al., 2016; 

Michopoulos et al., 2012; Sapolsky, 2005) was not supported by our results, either. Instead we 

found no significant effect of rank or diet condition on total PFC volume, which could be 

interpreted in accordance with reports of protracted PFC volume development into adulthood 

(Knickmeyer et al., 2010; Lupien et al., 2009), and may limit observable effects associated with 

impaired PFC function (Ansell et al., 2012; Liston et al., 2006; Wager et al., 2008) until later 

ages, past adolescence. Although no significant effects were detected for total PFC volume, some 

local effects of social rank were detected for PFC CSF volume with subordinate subjects having 

significantly bigger PFC CSF volumes relative to dominant subjects. A potential explanation of 

this effect of rank on PFC CSF may be described by an association discovered between increased 

lateral ventricle volume and impaired emotional regulation related to psychopathologies in 

humans (Stoll, Renshaw, Yurgelun-Todd, & Cohen, 2000). A large portion of the CSF volume in 

the PFC is accounted for the lateral ventricles (Knickmeyer et al., 2010; Shi et al., 2016), 

implicating these structures as sources of variance in PFC CSF volume between rank conditions.  

Chronic stress and obesity have also been shown to promote a pro-inflammatory state 

(Cohen et al., 2012), with cytokines influencing neurogenesis, differentiation, migration, neural 

plasticity and synapse formation during development (Boulanger, 2009; Garay & McAllister, 

2010). Cytokines alter neurotransmitter levels, influence synaptic transmission, and functional 

connectivity, with elevated levels shown to activate microglia in the PFC (Felger, Hernandez, & 

Miller, 2015; Felger et al., 2016; Marsland et al., 2017; Yang et al., 2005), associated with stress-

related disorders (Setiawan et al., 2015). Chronic inflammation associated with increased levels 
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of inflammatory cytokines is also associated with obesity (Gregor & Hotamisligil, 2011; A. A. 

Miller & Spencer, 2014), and consumption of an obesogenic diet has been documented to 

increase inflammation levels before obesity is apparent (Vasconcelos et al., 2016). Further, 

exogenous administration of cytokines also influences activation of reward systems (Eisenberger 

et al., 2010; Harrison et al., 2009) through cytokine-induced DA release reductions in critical 

reward regions such as the ventral striatum (Felger et al., 2015). Altogether, numerous 

explanations can describe effects of social subordination status and postnatal diet on brain 

structural development. 

A main limitation of this study is the sample size of 38 animals leading to group sizes of 

9-10, which both 1) may not be representative of the general population, and 2) is underpowered 

to address the potential effect of heritability factors related to the social rank of the biological 

mother or crossfostering effects. However, for this study potential confounding effects of 

crossfostering and biological mother social rank were controlled for by counterbalancing across 

all rank and diet conditions. Future studies should also include the full longitudinal data from 

birth in the statistical analysis in order to better address questions related to brain developmental 

effects over time and across groups as subjects progress from infancy through puberty and 

transition into to adult neurodevelopment. Additional analyses of potential biological signals that 

could mediate the reported Diet and Rank effects on juvenile brain structure should also include 

proinflammatory cytokines (C-reactive protein, CRP & Interleukin-6, IL-6). 

In summary, the findings of this study suggest that postnatal diet and social rank have 

long-term effects on female primate brain structure. We found overall greater ICV in subjects 

exposed to a high caloric density diet in comparison to animals exposed to a low caloric diet. We 

also found that lower rank resulted in bigger amygdalae, hippocampi and PFC CSF volumes. 
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Further structural effects of rank and diet are expected to emerge as the animals progress through 

puberty into early adulthood and as animals in the Choice dietary condition continue to 

experience physiologic effects of caloric intake including increased adiposity and related 

metabolic and neurologic outcomes. Additional studies with these animals as well as future 

longitudinal studies are necessary to expand our understanding of the mechanisms and 

organizational effects of social rank and dietary exposure on neurodevelopment.
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Appendix: 

	

	
Fig. 1 – AutoSeg UNC-Emory rhesus structural MRI brain atlases. This study used the 12 

months atlas as it was structurally and volumetrically most similar to the 16 month brain images 

examined in this project. 
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Fig. 2 – Images from AutoSeg showing brain with skull (top left), brain after skull-stripping has 

been applied (top right), brain segmented into white matter (red), gray matter (green), and CSF 

(blue) (bottom left), and example subcortical ROI parcellations (bottom right). 
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Fig. 3 – Effects of Diet and Rank on ICV. The Choice Diet condition (LCD + HCD) groups were 

found to have greater ICV relative to the LCD Diet condition groups. Data is represented as 

mean±standard error of the mean (SEM). 
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Fig. 4 – Effects of Diet and Rank on Total WM Volume. Data is represented as mean±SEM. 
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Fig. 5 – Effects of Diet and Rank on Total GM Volume. Data is represented as mean±SEM. 
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Fig. 6 – No significant effects of Diet or Rank were detected for Total CSF Volume. Data is 

represented as mean±SEM. 
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Fig. 7 – Effects of Diet and Rank on Amygdala Volume. The Low Rank condition groups were 

found to have greater amygdala volume relative to the High Rank condition groups. Data is 

represented as mean±SEM. 
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Fig. 8 – Effects of Diet and Rank on Hippocampal Volume. The Low Rank condition groups 

were found to have bigger hippocampal volume relative to the High Rank condition groups. Data 

is represented as mean±SEM. 
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Fig. 9 – Effects of Diet and Rank on PFC Total Volume. Data is represented as mean±SEM. 
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Fig. 10 – Effects of Diet and Rank on PFC WM Volume. Data is represented as mean±SEM. 
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Fig. 11 – Effects of Diet and Rank on PFC GM Volume. Data is represented as mean±SEM. 
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Fig. 12 – Effects of Diet and Rank on PFC CSF Volume. The High Rank condition groups were 

found to have bigger PFC CSF volumes relative to the Low Rank condition groups. Data is 

represented as mean±SEM. 
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Fig. 13 – Effects of Diet and Rank on Hair Cortisol. Data is represented as mean±SEM.	
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Fig. 14 – Effects of Diet and Rank on cumulative kcal consumption. Both a main effect of Diet 

and Rank were detected, with animals in the HCD condition and High ranks consuming more 

cumulative calories than those in the LCD condition and the Lower rank. Data is represented as 

mean±SEM. 
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Fig. 15 – Effects of Diet and Rank on cumulative LCD kcal consumption. Both a main effect of 

Diet and Rank were detected, with animals in the LCD condition and High ranks consuming 

more cumulative LCD calories than those in the HCD condition and the lower rank. Data is 

represented as mean±SEM. 
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Fig. 16 – Effects of Diet and Rank on Cumulative HCD kcal consumption. A main effect of diet 

was detected, with animals in the Choice dietary condition consuming more cumulative HCD 

calories than those in the LCD condition. Data is represented as mean±SEM.
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Fig. 17 – Effects of Diet and Rank on Body Weight. Data is represented as mean±SEM. 
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Fig. 18 – Table of Correlations 

 

 

 

Measure	 ROI	(volumes)/	
measures	

Pearson	Correlation	
Coefficient	

P-Value	

Body	Weight	 R&L	PFC	GM	 r	=	0.33,	0.36	 p	=	0.05,	0.03	

Kcals	Consumed	 R&L	PFC	CSF	 r	=	0.40	 p	=	0.02	

Body	Weight	 Total	CSF	 r	=	0.36	 p	=	0.03	

Kcals	consumed	 Total	CSF	 r	=	0.44	 p	=	0.01	

Kcals	consumed	 Left	Hippocampus	 r	=	-0.39	 p	=	0.02	

Kcals	consumed	 Total	Hippocampus	 r	=	-0.36	 p	=	0.03	

Hair	Cortisol	 Right	PFC	WM	 r	=	-0.35	 p	=	0.03	

Hair	Cortisol	 Total	WM	 r	=	-0.41	 p	=	0.01	

Hair	Cortisol	 ICV	 r	=	-0.34	 p	=	0.04	

Hair	Cortisol	Log	
Transformed	

R	&	L	PFC	WM	 r	=	-0.39,	-0.32	 p	=	0.02,	0.05	

Hair	Cortisol	Log	
Transformed	

ICV	 r	=	-0.35	 p	=	0.03	

Hair	Cortisol	Log	
Transformed	

Total	WM	 r	=	-0.44	 p	=	0.01		

HCD	Kcals	consumed	 Total	CSF	 r	=	0.40	 p	=	0.01	

HCD	Kcals	consumed	 Total	Kcals	consumed	 r	=	0.78	 p	=	0.00	

HCD	Kcals	consumed	 LCD	Kcals	consumed	 r	=	-0.60	 p	=	0.00		
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