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Abstract 

Temporal Resolution vs. Accuracy of Rhesus Macaques’ Social Network Based on RFID Tracking Data 
By Yizhou (Joyce) Wang 

The adaptation of the tracking device enables primate studies to obtain more comprehensive and 
longitudinal behavior data of the animals. Nevertheless, such data often comes with enormous 
computational challenges. In the previous relevant studies, it was discovered that data obtained at a very 
short timescale is comparable with the actual human observational data (Gelardi et al., 2020). In addition 
to the computational challenges, few studies focused on using longitudinal tracking data to generate and 
infer the social network of the rhesus macaque. Therefore, this study is aimed to evaluate the accuracy vs. 
temporal resolution for generating the social network of Rhesus Macaque with 154 days of data collected 
from 2021 March 4th to 2021 August 4th. Through investigating the spectral clustering result and the 
Euclidean distance of the proximity matrices generated from different averaging-over durations and the 
correlation of them with the actual matrilineal genetic similarities, it was found that averaging-over 
durations of 14 or 28 days are potentially optimal for generating a stable social network that can represent 
the entire period between March 4th, 2021 and August 4th, 2021.  



 

Temporal Resolution vs. Accuracy of Rhesus Macaques’ Social Network Based on RFID Tracking Data 

 

 

By 

 

Yizhou (Joyce) Wang 

 

Dr. Gordon J. Berman 

Advisers 

 

Dr. Benjamin Wilson 

Advisers 

 

 

 

 

 

A thesis submitted to the Faculty of Emory College of Arts and Sciences 
of Emory University in partial fulfillment 

of the requirements of the degree of 
Bachelor of Science with Honors 

 

Quantitative Theory and Methods 

 

2023 



 

Acknowledgements 

I would like to thank Dr. Gordon J. Berman and Dr. Benjamin Wilson for providing me with extensive 
professional guidance in conducting this research. I would also like to thank Dr. Michal Arbilly and Dr. 
Weihua An for providing valuable advices to my thesis. In addition, I would like to thank Michael Hess 
and Kanishk Jain for assisting me with processing the data. I would also like to thank Dr. Kim Wallen for 
providing the data. 

 

 

 

 

 



Table of Contents
Introduction 1
Background 2

The Significances of Rhesus Macaque in Psychological and Biomedical Studies 2
Social Structure of Rhesus Macaque 3
Proximity Measurements and the Tracking Device Data 4
Weighted Adjacency Matrix and Similarity Matrix 5
Laplacian Matrix 6
Spectral Clustering 7
K-means Clustering and K-medoids Clustering 8
Rand Index and Modified Rand Index 9
Euclidean Norm 10

Methods 10
Data Collection 10
Preliminary Processing and Correction of the Data 11
Proximity Calculation 11
Spectral Clustering 12

Selecting The Optimal Number of Clusters k 12
Spectral Clustering With k = 6 16
Selecting the Optimal Window-away Distance 16
Selecting the Optimal Averaging Duration 19
Selecting the Optimal Window Within the Optimal Window-away Distance for Visualization
Purposes 21

Euclidean Distance of Matrices 22
Selecting the Optimal Window-away Distance 22
Selecting the Optimal Averaging Duration 25

Comparing the Results With the Actual Matrilineal Genetic Tree 25
Results 28

Background 28
Results of Spectral Clustering Evaluated by Modified Rand Index 28
Results of Euclidean Norm of the First Eigenvectors 34
Social Network Generated Based on the Selected Data 35

Discussion 38
Limitations and Future Directions 43

References 44



 

List of Figures 
 

1. Mean of the average cross-validated Modified Rand Index for k = 1:15 over all windows and 
averaging-over duration of 1 day to 10 day ....................................................................................15 

 
2. Average Modified Rand Index of each window away distance at each averaging-over duration...19 

 
3. Average Modified Rand Index for each window with their one-window-away neighbor at each 

averaging-over duration from 1 to 10 days  ........................................................................................
 .........................................................................................................................................................22 

 
4. Average Euclidean distance for the first eigenvectors set of the proximity matrices derived from 

the windows that are distanced away by each window-away distance at each averaging duration ...
 .........................................................................................................................................................24 

 
5. Spectral clustering result based on the genetic similarity matrix ....................................................27 

 
6. Average modified rand indexes of windows that fall into the bin in each averaging-over duration 

for each window-away distance ......................................................................................................30 
 

7. Spectral clustering results at k = 6, window = 3rd, averaging-over duration = 14 days .....................
 .........................................................................................................................................................32 
 

8. Average of modified rand index between the spectral clustering result based on the genetic 
similarity matrix and the proximity matrices that are generated by all windows at different 
averaging-over durations ................................................................................................................33 

 
9. 2-Norm of the pairwise Euclidean distance between the genetic similarity matrix and the 

proximity matrices (at the 3rd window) generated across averaging-over durations .........................
 .........................................................................................................................................................34 
 

10. Average L2 norm (Euclidean distance) of the first eigenvectors of each averaging-over duration 
at each window-away distance ........................................................................................................35 
 

11. The social network of 26 rhesus macaques based on their normalized aggregated proximity score 
from 2021/03/06 to 2021/03/19 ......................................................................................................36 
 

12. The social network of 26 rhesus macaques based on their normalized aggregated proximity score 
from 2021/03/06 to 2021/04/02 ......................................................................................................37 
 
 

 



1

Introduction

A large proportion of nonhuman primates’ behavior is social and such behavior connects tightly

with their social structure (Brent et al., 2013). Understanding the social structure of non-human primates

plays a critical role in animal behavior research and public health practice, such as understanding the

persistence of cooperative behaviors, rate of disease, and information spreading (Brent et al., 2013;

Gardner & Luciw, 2008). Having knowledge of accurate long-term animal social network structure also

lays the foundation of epidemiological models for detecting animal-borne disease transmission (Keeling

& Eames, 2005). Moreover, the network approach of non-human primates’ social structure provides

significant insight into their group formation and stability mechanism in terms of conflicts, reconciliation,

conflict intervention, and kinship structure, and ultimately leads to critical insights into primates’ health,

behavior, and development (McCowan et al., 2011; Hrolenok et al., 2018). With advancements in

technology, animal behavior studies can use positional tracking devices to collect continuous

observational data that can overcome the time-cost limitations of traditional observational data collection

methods (Hrolenok et al., 2018; Gelardi et al., 2020). However, such continuous tracking data often

presents computational challenges due to the extensive amount of data available, while the actual social

network of the species may remain stable for a certain continuous period (Gelardi et al., 2020). In

addition, only a few studies have been applied to track data in inferring rhesus macaque’s social structure

and none has focused on using longitudinal tracking data to infer and analyze the social structure of

rhesus macaque (Hrolenok et al., 2018). Therefore, this study aims to infer and investigate social

networks of Rhesus Macaques generated with different averaging-over durations (which is the length of

timeframes of the data used for generating the social network) within a half-year time frame based on

RFID tracking device collected data. It also aims to determine the optimal averaging-over duration for

generating a relatively representative and stable social network of the sampled rhesus macaque in

different short-term timeframes based on their half-year tracking data.
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Background

The Significances of Rhesus Macaque in Psychological and Biomedical Studies

Rhesus Macaques (Macaca Mulatta), as the Old World nonhuman primates that are

geographically distributed across Asia, are one of the most widely used in research (Lewis & Prongay,

2015). The importance of studying their social structure is underlined by the fact that macaque species

share important features with humans in terms of physiology, cognition, and social complexity (NPRC).

They are ideal candidates for examining the underlying mechanisms of human temperament and studying

psychopathology due to their shared social and biological characteristics (Kalin & Sheltona, 2003). They

exhibit cognitive imitation and certain theory of mind capabilities, which indicates their significance in

both human and animal cognition research (Subiaul et al., 2004; Drayton & Santos., 2016). In 1953,

Japanese researchers discovered the notable cultural behavior of the Japanese Macaques— food

washing— where the behavior of washing sweet potatoes before eating spread from one young female

macaque to the whole troop (Kawamura, 1959 as cited in Fiore et al., 2020). Such cultural behavior

reveals the significance of Macaques’ social learning capability and the importance of social learning in

their emergence (Fiore et al., 2020). Moreover, a past study adopted Rhesus Macaques as their model

organism to study brain network activity patterns and the positive influence of peer presence on the

performance of well-learned tasks for the similarity of their social behavior and cognition with humans

(Monfardini et al., 2017). Because of the similarities in macaque species’ physiology, social behavior, and

cognition with humans, many other studies have also adopted them as model organisms to reveal the

significance of social learning and behavior. Therefore, understanding their social structure is essential for

acquiring behavioral insights from the species.

In addition to their significance in social behavior studies, they are also critical species in

modeling infectious disease transmission due to their great similarity to human neurobiology and

susceptibility to infectious and metabolic diseases (Gibbs et al., 2007). Macaque species have served as

models for more than seventy human infectious diseases investigation including Hepatitis B, Poliovirus,

Syphilis, and Dengue, as they can be experimentally infected by the infectious disease (Gardner & Luciw,



3

2008). A recent study has shown the capability of rhesus macaque as the model organism for investigating

Covid-19 disease (Munster et al., 2020). It specifically found similar symptom patterns in rhesus macaque

and humans in terms of pulmonary infiltrates, viral loads in the noses and throat, and prolonged rectal

shedding (Munster et al., 2020). Therefore, understanding the social structure of rhesus macaques is

critical for revealing disease transmission patterns in humans and establishing effective medical measures,

given the highly socially spread nature of Covid-19. Overall, the species plays an important role in both

biomedical and psychological research for modeling and demonstrating behavior, cognitive mechanisms,

and infectious disease transmission. Subsequently, it becomes critical not only to understand the social

structure but also to construct accurate social networks with valid data for such species.

Social Structure of Rhesus Macaque

Understanding the social structure and hierarchy of macaque groups can help to reveal the

underlying social behavior, social cognition, disease, and information transmission pattern in macaque

species, and therefore, is critical to psychology and biomedical studies (Brent et al., 2012; Gardner &

Luciw, 2008). Rhesus macaques live in multimale and multifemale social groups (Maestripieri &

Hoffman, 2011). These groups have a complex matrilineal social structure resulting from sex-specific

patterns of dispersal and philopatry. Males leave the natal group to join a new group at puberty, while

females remain with their families in the same group throughout their lives. This gives rise to social

structure and dominance hierarchy based around female matrilines (groups of closely related females) as

well as a smaller number of adult males, typically at the top of the dominance hierarchy. Within each

group, the dominance relationship is generally transitive and the hierarchy structure is linear: alpha male

outranks all other individuals in the group and alpha female outranks all of the females and most of the

females in the groups; all other individuals have their position in the hierarchy according to their

dominance rank (Maestripieri & Hoffman, 2011). Throughout their lives, females maintain stable

dominant rank whereas males go through losing their rank when they left the group at puberty, acquiring

new rank when joining a new group, and eventually work their rank up by forming alliances with
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powerful males and females in the group (Maestripieri & Hoffman, 2011). Besides individual dominance

relationships, matrilines in the group also have dominance relationships where the high-ranking one tends

to be the one with a larger population in the group (Ehardt & Bernstein, 1986). The mechanism behind

such a hierarchical structure is not genetic, but often social, involving events such as overthrow, maternal

intervention, and alliance formation (Ehardt & Bernstein, 1986). Therefore, monkeys’ positions within

this social structure have profound effects on many aspects of their social life, often dictating access to

resources, mating opportunities, and even future reproductive success. Given the importance of these

social structures, automated methods and algorithms to analyze and understand macaques’ social

networks would provide important insights into our understanding of their social behavior.

Proximity Measurements and the Tracking Device Data

Underlying the complex social events that induce the formation of Rhesus Macaques’ hierarchical

social structure is their agonistic social behavior and affiliative social behavior. The amount of time spent

in close proximity is one of the key measures for measuring the strength of social bonds, or the affiliation

between individuals (Maestripieri & Hoffman, 2011). Proximity indicates the individuals are in close

enough distance to receive assistance or provide service, such as grooming, in an appropriate time frame

(Maddali et al., 2014). Therefore, many animal studies collect observational data of proximity to uncover

the social structure of macaques and ultimately evaluate the aforementioned biomedical and

psychological significance (Gelardi et al., 2020; Brent et al., 2012).

This study uses data collected by wearable RFID devices, which record high-resolution 3D

positional data using radio frequency tags that are sensed and triangulated by RFID sensors positioned

around the compound. Compared to time-limited observational data collection, the tracking device allows

researchers to continuously sample positional data throughout the desired period (Gelardi et al., 2020).

However, the high-resolution GPS data poses significant computational challenges as it samples data at

short intervals from seconds to seconds. The social structure of Rhesus Macaques remains relatively

stable during short-term sampling, and past research suggests that the aggregated network obtained with
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the tracking device remains stable at a short time scale and is comparable to the network generated from

observational data (Gelardi et al., 2020). To date, only a few studies have used position-tracking devices

to infer the social structure of Rhesus Macaques, and none of these studies have focused on using

longitudinal positional tracking data to infer and analyze the dynamic social structure of Rhesus

Macaques over a long-term period (Hrolenok et al., 2018). Therefore, this study will use the longitudinal

tracking device data provided by the National Primate Research Center to infer and visualize the social

network of Rhesus Macaques over a long-term period. Ultimately, the study will also determine the

optimal averaging-over duration for generating the social network of Rhesus Macaques in different time

frames. To clearly define the averaging-over duration, it is referring to the length of the timeframe of the

data (in which the unit is days) that is used for generating the social network.

Weighted Adjacency Matrix and Similarity Matrix

To investigate the tracking device data, it is necessary to transform the position data to the

distance matrix and the adjacency matrix. Given a set of data points , where n is the number of𝑋 ∈ ℜ𝑝 × 𝑛 

samples and p is the dimensionality of the data, the distance matrix is a square𝐷 =  (𝑑
𝑖𝑗

 ) ∈ ℜ𝑛× 𝑛 

matrix that shows the distance between each pair of nodes in the graph. An adjacency matrix is a square

matrix that allows the representation of a graph with a square matrix where each𝐴 =  (𝑎
𝑖𝑗

) ∈ ℜ𝑛× 𝑛 

element represents the edge attributes of the edge between vertices i and j (Busato & Bombieri, 2017).𝑎
𝑖𝑗

The adjacency matrix of a weighted graph stores the weights of the edges between each node. If the

graph’s edges are undirected, the matrix will be symmetric along the diagonal. Moreover, the similarity

matrix is a square matrix that has each entry storing the similarity between data𝑆 =  (𝑠
𝑖𝑗

) ∈ ℜ𝑛× 𝑛 𝑠
𝑖𝑗

points and .𝑥
𝑖

𝑥
𝑗
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Laplacian Matrix

The main components for spectral clustering are graph Laplacian matrices, which have been

developed into various forms in the past literature (Luxburg, 2007). In between all different kinds of

Laplacian Matrices, there are two variants that are widely used: the unnormalized graph Laplacian matrix

and the normalized graph Laplacian matrix. Since we are using the unnormalized graph Laplacian Matrix

in this study, we will define it in the following. The unnormalized graph Laplacian matrix is defined as

L = D - W,

where L stands for the unnormalized Laplacian matrix that is symmetric and positive semi-definite (i.e.,

all entries in the matrix are larger than or equal to 0), D represents the diagonal matrix that has the𝑛 × 𝑛

degree of each vertex in the graph,W represents the weighted adjacency matrix of the graph. Following

are the mathematical notation and definition for the aforementioned matrices:

For an undirected graph with non-negative weighted edges, the weighted adjacency matrixW,

, and𝑊 =  (𝑤
𝑖𝑗

 ) ∈ ℜ𝑛× 𝑛,  𝑤ℎ𝑒𝑟𝑒 𝑖,  𝑗 = 1,  ...,  𝑛 

1. If wij = 0, the vertices vi and vj are not connected by an edge.

2. If the graph is undirected, wij= wji .

The degree matrix D = , the degree of a vertex xi in X is defined as(𝑑
𝑖𝑗

 ) ∈ ℜ𝑛× 𝑛

𝑑
𝑖𝑖

 =  
𝑗 = 1

𝑛

∑ 𝑤
𝑖𝑗

Therefore, by definition, dii sums over all vertices adjacent to vi that are connected by edges with weight

nonzero. Given the above definition and properties of matrices D and W, the Laplacian Matrix has the

following properties:
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Therefore, by definition, as L is an n✕ n symmetric and positive semi-definite matrix, it will have n

non-negative, real-valued eigenvalues. In addition to the purpose of distinguishing the connected

components in the graph, the Laplacian Matrix L measures the extent that a graph differs from one vertex

to another vertex.

Spectral Clustering

Spectral clustering, as one of the most popular modern clustering algorithms, can be efficiently

used to identify groups of similarity in the data (Luxburg, 2007). It outperforms the traditional K-means

clustering as it overcomes two major issues in the method: the assumption of the spherical shape of the

cluster, and the difficulty of determining the cluster centroid (Rodriguez et al., 2016). Specifically, with

the similarity matrix, the spectral clustering algorithm will help to identify the partition of the network

graph with the edges between different groups that have very low weights and thus, meaning the nodes

within one group are very dissimilar from the other one and the edges within one group have higher

weights which indicate the member intragroup are very similar (Luxburg, 2007). The general steps of

spectral clustering are as follows (Luxburg, 2007):

1. Construct the Similarity Matrix S from graph G with weighted adjacency matrixW.

2. Compute the unnormalized Laplacian L.

3. Compute the k eigenvectors of L corresponding to k smallest eigenvalues and denote

them as u1, u2, … uk.

4. Let be the matrix containing u1, u2, … uk as its column vectors.𝑈 ∈  ℜ𝑛×𝑘  

5. Cluster the points in each i-th row of the matrix U with the k-means algorithms into

clusters C1, C2,…, Ck.

In summary, the output structure of the spectral clustering is k clusters that are respectively grouped

together based on their similarity.
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K-means Clustering and K-medoids Clustering

As mentioned above, the spectral clustering algorithm uses k-means clustering on the Laplacian

matrix L’s k eigenvectors. The k-means clustering is an iterative data-partitioning algorithm that assigns n

observations to exactly one of the k clusters based on the Euclidean distance of two points (Chang, Huang

& Wu, 2009; Lloyd, 1981). The general algorithm of the k-means clustering includes

1. Select the k random centroids in data

2. Compute the n data point’s distance to each centroid using the Euclidean distance.

3. Choose the cluster for the n data points by finding the cluster with the centroid that has the

minimum distance to reach them.

4. Reinitialize the centroid and repeat steps 2 and 3 until the clusters stop changing.

Since the k-means clustering on the centroid of the cluster, which is not necessarily one of the

data points, its clustering results will be greatly affected when there are outlier data (Change, Huang &

Wu, 2009). In contrast to k-means clustering, k-medoids clustering chooses the actual data point as the

center of the cluster and assigns data to the clusters based on their dissimilarity (e.g., Euclidean distance)

with the medoids. By choosing actual data as the center of the cluster, k-medoids clustering is much less

sensitive than k-means clustering and provides higher interpretability. The following is the general steps

of k-medoids clustering (Park & Jun, 2009),

1. Select the k initial medoids.

2. Compute the distance of each data point to each medoid.

3. Obtain the initial cluster by assigning each data point to the nearest medoid.

4. Find a new medoid of each cluster, which is the data point that minimizes the total distance to

other data points.

5. Assign the data point to the nearest medoid and calculate the sum of the distance from all data

points to their medoids. If the distance is less than the previous one, use the new medoids as the

medoids until the clustering (or the distance to medoids of data points within clusters) stops

changing.
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Rand Index and Modified Rand Index

To evaluate the clustering result of data without an absolute scheme of clustering, Rand Index

provides a proper measure by evaluating the similarity of arbitrary clustering results. Rand Index assumes

the clustering is discrete in which all data points are assigned to a specific cluster; it also assumes the

cluster is defined as much by the points they contain as by the points they do not contain; and, it assumes

equal importance in the clustering determination process (Rand, 1971). With these assumptions, Rand

Index aims to measure the similarity between clustering results Y and Y’, each consisting of n points

(Rand, 1971). The following formula defines the Rand Index mathematically,

,𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 (𝑌,  𝑌’) =  (𝑎 +  𝑏) / 
𝑛
𝐶

2

𝑤ℎ𝑒𝑟𝑒,  𝑎 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑌 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑖𝑛 𝑌'

𝑏 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑌 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑖𝑛 𝑌' 

𝑛
𝐶

2
 =  𝑛(𝑛 − 1)/2,  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑎𝑖𝑟𝑠

Therefore, Rand Index (Y, Y’) represents the similarity between the two clustering results Y and Y’. Rand

Index will be one when the two clustering results are completely the same and will be zero when the

clustering results have no similarities. The similarity essentially represents the proportion of pairs of

elements whose relationship is the same in both clustering results (Rand, 1971).

Since the study will have data that have a changing size due to the tracking devices’ technical

issues, Modified Rand Index will be used to evaluate the clustering. The Modified Rand Index

accommodates the Rand Index computation for two partitions U and U’ with different sets of units

(Cugmas & Ferligoj, 2018). It is defined as the ratio between the number of all possible pairs of units

placed in the same or different clusters in both U and U’ and the number of all possible pairs of units.

Given U hasM points, U’ has N points, andM < N, the mathematical formula is defined as below,

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥(𝑈,  𝑈') =  (𝑐 +  𝑑) / 
𝑁

𝐶
2
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where, c = the number of pairs of elements in U that are in the same subsets in U’,

d = the number of pairs of elements in U that are in the same subsets in U’,

.        
𝑁

𝐶
2
 =  𝑁(𝑁 − 1)/2,  𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑎𝑖𝑟𝑠

The modified rand index will be equal to the rand index when the size of U and U’, orM and N, are the

same.

Euclidean Norm

In addition to comparing the clustering results, one can also use the Euclidean norm to evaluate

the distance between different matrices by measuring the distances between the eigenvectors of the two

matrices. The Euclidean norm of two vectors measures the Euclidean distance between the two input

vectors. Given vectors , the distance between the two vectors is𝑣
→

 𝑎𝑛𝑑 𝑢
→

 ∈ 𝑅𝑛 

.𝑑(𝑢
→

,  𝑣
→

) = ||𝑢
→

 −  𝑣
→

 || =  (𝑢
1

− 𝑣
1
)2 + (𝑢

2
− 𝑣

2
)2 ...  +  (𝑢

𝑛
− 𝑣

𝑛
)2   

The result of the Euclidean norm will be a positive distance value.

Methods

Data Collection

The data of the study is provided by the National Primate Research Center. The data were

collected using the RFID tag collar, which records 3D positional data at a rate of around 30 Hz. Each

collar has four tags that simultaneously record the positional data. The tracking system operates

continuously from 2021 March 4th to 2021 August 4th for recording the macaques wearing the collar

tracking device. Therefore, this study will use the 154 days of data collected to generate the social

network of 26 macaques and investigate the optimal averaging-over duration among 1 day, 7 days, 14

days, 21 days, …, and 140 days for generating a stable network that can represent the short-term period.

The averaging-over duration indicates the length of the sampled days for generating the social network.
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Preliminary Processing and Correction of the Data

To reduce the computation difficulty, the data is sampled at a 10-hertz rate for the proceeding

analysis. Since the tracking device occasionally experiences technical complexities, such as recording

out-of-range data, and rapid jumps in a limited time, the data are processed and filtered with the following

steps to ensure accuracy.

1. Removed the data that is out of the range of the tracking field.

2. Removed the tag data for one tracking device that has a distance to the median of the four tags on

the collar greater than 50cm.

The final position data for each macaque throughout the collection period is the median of each

macaque’s corrected collar data (i.e. the median of the four tags on each collar).

Proximity Calculation

With the 3D position data of each monkey, we are able to calculate the distance between each

dyad of macaques across each sampling time point during the data collection. The distance is calculated

based on the 3D Pythagorean theorem. For macaque A with positional data {xa, ya, za} at the time point t,

and macaque B with positional data {xb, yb, zb} at the same time point t, the distance dt (A, B) between

them at the time point t is defined as

.𝑑
𝑡
(𝐴,  𝐵) = (𝑥

𝑎
 −  𝑥

𝑏
)2 + (𝑦

𝑎
 −  𝑦

𝑏
)2 + (𝑧

𝑎
 −  𝑧

𝑏
)2  

Following Rhesus Macaques’ social behavior demonstrated in the background section, a dyad of

macaques that is in close proximity to each other is defined as when their distance is less than 1 meter.

Summing up the number of times a dyad is in close proximity provides a proximity score for the dyad,

which essentially represents how close a dyad of macaques is. Given macaque A and B with distance d(A,

B) = {d1 (A, B),..., dn(A, B)} throughout the time period with n time points, the proximity score

Proximity(A, B) between the two macaques is,

,𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝐴,  𝐵) =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑑
𝑖
(𝐴,  𝐵) < 1 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒
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where .𝑖 ∈  𝑛

With the proximity scores, we construct the proximity matrix P for all macaques within the desired time

frame. Each entry pij is the proximity score Proximity(i, j) between macaque i and macaque j. The

proximity matrix P for an averaging-over duration dur that is in the time frame of T = {t1, t2, …, tdur},

where ti is associated with a proximity matrix Pi that has all dyads’ proximity score, is calculated by

aggregating all Pi associated with T,

𝑃
 

=  
𝑖 = 0

𝑑𝑢𝑟

∑ 𝑃
𝑖

For different time frames, there can be newcomer macaques and outgoer macaques. Although it will

include all macaques that have been recorded in the selected time frame, the size of the proximity matrix

P varies for different time frames.

To normalize the proximity matrices obtained by different averaging-over durations, we divide

the cumulative proximity scores of each dyad by the averaging-over durations which stands for the length

of time the data was sampled. Given macaque A and B with proximity Proximity(A, B), their normalized

proximity score in duration dur days 1 day, …, 140 days is

,𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝐴,  𝐵) = 𝑝(𝐴,  𝐵)/(𝑑𝑢𝑟 * 10 * 3600 * 24) 

where the denominator is the product of the number of days dur the data being collected and the number

of samples per day ( ).10 * 3600 * 24

Spectral Clustering

Selecting The Optimal Number of Clusters k

To evaluate the difference between the networks generated by different averaging-over durations

on a normalized basis, we used spectral clustering to identify the clusters from the different proximity

matrices. The number of clusters k is determined by comparing the rand indexes of the clustering results

generated by k = 1, 2, 3, …, 15 for every window throughout the duration from 1 day to 10 days. For

example, for averaging-over duration = 2-day in the total data collection period from 2021.03.04 to
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2021.08.04, time windows in this duration will be 2021.03.04 to 2021.03.05, 2021.03.05 to 2021.03.06,

2021.03.06 to 2021.03.07…

Spectral clustering with k = 1:15 was performed for all time windows in each averaging-over

duration from 1 day to 10 days for examining the optimal k for clustering. Each k is associated with a

cross-validated modified rand index (MRI) rk, which is calculated by taking the average of the modified

rand indexes between the clustering result Uk (i.e., the spectral clustering results when clustering number

= k) and the clustering results Ui (where i = {1, 2, 3, … 15} except k) at each time window. The following

defines such comparison formulaically:

Given K = {1,..., 15}, where , each k is associated with𝑘, 𝑖 ∈  𝐾 𝑖 ≠  𝑘 𝑎𝑛𝑑 𝑖 =  {1,  2,  ...,  15} 

a clustering result Uk from spectral clustering, and each i is associated with corresponding clustering

result Ui

𝑟
𝑘 

=  
𝑖 = 1

14

∑ 𝑀𝑅𝐼(𝑈
𝑘
,  𝑈

𝑖
) / 14

To ensure the clustering results can represent the overall data, we shuffle all clustering results Ui for each

i, where we obtain the shuffled clustering result Vi.With the shuffled clustering result Vi, we recompute

the cross-validated rand indexes for each k. By doing so, we obtain the for each k, where it is definedγ
𝑘

as,

γ
𝑘
 =  

𝑖 = 1

14

∑ 𝑀𝑅𝐼(𝑈
𝑘
,  𝑉

𝑖
) / 14

Therefore, given all windows across averaging-over durations 1 to 10 days (total number of windows =

n), each time window within each averaging-over duration is associated with an rk and an . To compareγ
𝑘
 

across all time windows at each averaging-over duration, the overall average of cross-validated MRI Rk

and R’k corresponding to each k in 1 to 15 at each averaging-over duration were computed as the

following:

𝑅
𝑘
 =

 
𝑖 = 1

𝑛

∑ 𝑟
𝑘 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
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𝑅'
𝑘
 =  𝑖 = 1

𝑛

∑ γ
𝑘

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

With the average cross-validated MRI for each k at each averaging-over duration, we are able to compute

the mean of average cross-validated MRI for each k across all 22 averaging-over durations RRk and RR’k

as the following:

𝑅𝑅
𝑘
 =

 
𝑖 = 1

𝑛

∑ 𝑅
𝑘 
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𝑅𝑅'
𝑘
 =

 
𝑖 = 1

𝑛

∑ 𝑅'
𝑘 

 22

Fig. 1. shows the mean of the average of cross-validated rand index of shuffled and non-shuffled

clusters R and for each k across all averaging-over durations. The elbow point𝑅
𝑘

𝑅𝑅'
𝑘

∈  {1,  2,  3,  ...,  15}

of the increasing curve takes place around k = 6, indicating the clustering result of k = 6 can relatively

well represent the clustering results generated from all ks. In other words, the clustering results at the

number of clusters k = 6 resulting from all different possible windows in the averaging-over durations = 1

to 10 days during the period 2022.03.04 to 2022.08.04 is relatively well-representative or having a

relatively high similarity, of macaques’ possible social networks that are consisted respectively of one

group, two groups, three groups, …, fifteen groups of macaques. Therefore, the proceeding analysis will

be based on the clustering result when the number of clusters k = 6.
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Figure 1. Mean of the average cross-validated Modified Rand Index for k = 1:15 over all windows
and averaging-over duration of 1 day to 10 days. The Mean of the average cross-validated MRI for
each k was computed by finding the mean of the average cross-validated MRI of each k across all time
windows at each averaging-over durations throughout all durations (e.g. the mean of the average MRI at k
= 1 represents the average of the 22 average cross-validated MRI across all durations, where each average
cross-validated MRI is computed by taking the average of MRI over all windows at each duration). The
elbow point of the increasing mean occurs around k = 6.
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Spectral Clustering With k = 6

For each averaging-over duration in dur = {1 day, 7 days, 14 days, 21 days …, 140 days}, spectral

clustering was performed based on k = 6 for each time window within the duration. The similarity matrix

S is used to measure the similarity between the macaques based on the proximity scores. In this case, the

proximity matrix P was normalized to ensure that each entry pij , being the normalized proximity score

Normalized Proximity(i, j) of the macaque i and j, had a value between 0 and 1, which makes it a suitable

input for spectral clustering. To transform the similarity matrix into a matrix that is suitable for clustering,

the Laplacian matrix L was then computed as it can capture the data structures and project them into a low

dimensional space so that we can easily identify the k clusters. Specifically, the similarity matrix was

transformed to the unnormalized Laplacian matrix L based on the formula L = D-S, where D is the degree

matrix d that was computed based on the following equation

.𝑑
𝑖𝑖

 =  
𝑗 = 1

𝑛

∑ 𝑆
𝑖𝑗

The k eigenvectors (k = 6) of the Laplacian matrix L corresponding to its k smallest eigenvalues were then

computed and input to a matrix respectively as its column vectors u1, …, uk. K-means𝑈 ∈  ℜ𝑛×𝑘  

clustering was then performed in each i-th row of the matrix U to form clusters C1, C2,… , Ck. By doing

the above steps of spectral clustering, we are able to group all macaques in the data into 6 clusters based

on their pairwise proximities in different time windows that belong to different averaging-over durations

and compare the clustering across these time windows.

Selecting the Optimal Window-away Distance

With the optimal k = 6, we are able to compare the windows within each average-over duration

by different window-away distances and select the optimal window-away distance for later comparison of

the effect of averaging-over durations on the stableness of the clustering results generated by different

windows distanced by the optimal window-away distance. By window-away distance, we mean the

number of windows between the window we intend to compare. For example, for averaging-over duration
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= 2 days and window-away distance = 2 windows, we will compare the window 2021/03/04 ~ 2021/03/05

to window 2021/03/06~2021/03/07. We used the distance between different windows to categorize and

compare the windows fairly at each averaging-over duration since the cross-validation method described

above will produce an unfair comparison for comparing the rand index of the clustering results of

windows that are distanced away by lots of time windows to the rand index of the clustering results of

windows that are only distanced away by few time windows. For instance, with the averaging-over

duration = 1 day, comparing the modified rand index between the clustering results (2021/03/04) and

(2021/03/05) to the modified rand index between the clustering results (2021/03/04) and (2021/08/04)

will be unfair since the later one will be naturally dissimilar, having a much lower MRI than the previous

one, to each other as the social structure of macaques developed over the five months period. By the

following procedures, we are able to identify the optimal window-away distance, or the distance, that can

most fairly compare the clustering results of windows at each averaging-over duration.

For each averaging-over duration dur, there are k consecutive windows as 1st, 2nd, …, and kth

fall into the total data collection period ( ).𝑘 =  𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 −  𝑑𝑢𝑟 +  1

Therefore, there are N possible distances between different windows for each dur, where 𝑁 =  𝑘 −  1.  

For each at each averaging-over duration dur, there are x window pairs that fall into such a𝑛 ∈  𝑁

window-away distance bin n, where xi denotes each window pair’s clustering results. Therefore, each

window-away distance n is associated with an average rand index valueWn that indicates how well the

clustering results of window pairs falling into the window-away distance n bin represent each other. In

other words, it represents how stable the clustering results are over all the window pairs that are distanced

away by n windows for the averaging-over duration dur.Wn is defined as the following,

.𝑊
𝑛
 =

𝑖 = 0

𝑥

∑ 𝑀𝑅𝐼 (𝑥
𝑖
) / 𝑥 

To ensure the clustering results and theWn calculated is not due to randomness, we shuffled the clustering

result for each xi pair and obtained the new shuffled clustering result vi.With the shuffled clustering result
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vi, we recompute the average modified rand index as the following,ω
𝑛

ω
𝑛
 =

𝑖 = 0

𝑥

∑ 𝑀𝑅𝐼 (𝑣
𝑖
) / 𝑥 

By computing the average rand indexWn and of each window-away distance for eachω
𝑛

averaging duration, it is found that the average rand indexWn is highest throughout all different duration

when the window-away distance = 1 window as shown in Fig. 2. The shuffled average rand index ω
𝑛

shows a significant deviation from the distribution of the actual average rand index , indicating the𝑊
𝑛

distribution of actualWn is not due to randomness. Thus, when window-away distance = 1 window, the

clustering results of windows belonging to window pairs that fall into the distance bin can relatively

well-represent each other throughout all averaging-over durations. In other words, the social networks

generated by the time windows that are distanced by one window, such as 2021/03/04’s social network

and 2021/03/05’s social network for averaging-over duration = 1 day, tend to stay stable across the

averaging-over duration. Therefore, comparing the stableness of the clustering results of windows that are

distanced by one window at each duration over all averaging-over durations is the most reliable metric to

evaluate how different averaging-over durations can influence the stableness of the social networks

(proximity matrices) generated by the windows.

Figure 2. Average Modified Rand Index of each window away distance at each averaging-over
duration. The average modified rand index at each window-away distance is calculated by taking the
average of the MRI of each window pair’s clustering results that are distanced by the window-away
distance at each case of averaging-over durations (or, the size of each window). Throughout different
durations, the windows that are distanced by one-window have clustering results that can most well
represent each other.
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Selecting the Optimal Averaging Duration

By comparing the average of the modified rand index of the windows across the cases of them

distanced by different window-away distances, we were able to identify window-away distance = 1

window provides the metric that can relatively fairly compare the windows, meaning the time windows

that are distanced away by one window across all durations have clustering results that are very similar to

each other. With this optimal window-away distance, we can compare how the averaging-over duration

affected the stability or similarity of clustering results for pairs of windows that were separated by one

window at each duration. To compare the averaging-over durations comprehensively, we also include

other window-away distances’ comparison results. With 154 days of data (collected from 2021.03.04 to

2021.08.04), we are able to generate k windows for each averaging-over duration dur days, where k is

defined as the following,

.𝑘 = 154 −  𝑑𝑢𝑟 +  1 

Therefore, there are k -1 possible window-away distances for each duration dur. Since the maximum

averaging-over duration is 140 days, the maximum window away distance to compare across all
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averaging-over duration is 14 days. Thus, we compare eachWn at duration = dur associated with each dur for

each n, where n = {1, 2, 3, …, 14}, to examine the variation of the stability of the clustering results

generated from windows with different window size (averaging-over duration) when they are separated

by n windows.

By doing so, we are essentially evaluating how averaging-over duration (window size) can

influence the stability or similarity of macaques’ social networks generated across the time windows that

are each distanced away by n windows. For instance, for window-away distance = 1 window, we can

compare the average modified rand index of clustering results for averaging-over duration dur = 1 day

which consisted ofW1 at duration = 1-day = average of {MRI(2021/03/04, 2021/03/05), MRI(2021/03/05,

2021/03/06)...} and the average modified rand index of clustering results for averaging-over duration dur

= 2-day which consisted ofW1 at duration = 2-day = average of {MRI(2021/03/04~2021/03/05,

2021/03/05~2021/03/06), MRI(2021/03/05~2021/03/06, 2021/03/06~2021/03/07)...}. The aforementioned

comparison essentially allows us to identify the optimal averaging-over duration that has the highest

average modified rand index of the clustering results across the windows when they are distanced away

by all different window-away distances. This optimal averaging-over duration implies an ideal duration

that is able to produce clustering results of proximity matrix, or ultimately the social structure, of the

macaques that is relatively accurate for representing the social structure over the entire data collection

with the minimum amount of data.

We expect the optimal averaging-over duration to have a relatively high average rand indexWn at

duration = dur across all different n and especially at n=1 window-away distance, indicating its highest stability

throughout the time windows it averaging over with. We also expect the optimal averaging-over duration

to be at the elbow-point that shows a slowdown of the fluctuation ofWn across all n. Since we found

window-away distance = 1 window provides us an optimal Modified Rand Index, we will use the one-day

window away distance as the priority metric to compare across different averaging duration.
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Selecting the Optimal Window Within the Optimal Window-away Distance for Visualization Purposes

To achieve our goal of generating a stable social network that can well-represent the social

structure of a short-term time frame, we also locate the optimal time window within the optimal

window-away distance for generating stable proximity matrices by calculating the average modified rand

index of each window with their one-window-away neighbor windows for each averaging-over duration.

Fig. 3. presents the ideal window around window 3 since it has a relatively high average modified rand

index across all different durations although there are fluctuations between different averaging-over

durations, indicating the third window’s social network across all duration have a relatively high

similarity with its neighbor windows’ social network and thus, can well represent other windows’ social

network. Therefore, we will use window 3 to visualize the social network and clustering result at the

optimal averaging-over duration.
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Figure 3. Average Modified Rand Index for each window with their one-window-away neighbor at
each averaging-over duration from 1 to 10 days. The average modified rand index of each window is
calculated by taking the average of the MRI of the window with its two neighbor windows that is one
window distanced away. The optimal average MRI occurs around window 3 for each duration.

Euclidean Distance of Matrices

Selecting the Optimal Window-away Distance

To evaluate the physical similarity of the normalized proximity matrices generated by the

different averaging duration, the Euclidean distance between each normalized proximity matrix's first set

of eigenvectors (the eigenvectors associated with the largest eigenvalue) is calculated. Similar to the

above procedure, the average Euclidean distance of the matrices (or, the average of the L2 norm)
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generated by different window-away distances was calculated for each averaging duration. Specifically,

the average Euclidean distance En for each window-away distance n given x within-bin window pairs’

proximity matrices’ first eigenvectors sets, where each pair of first eigenvector set is denoted as (xi , x’i ),

is calculated as the following,

.𝐸
𝑛
 =   𝑖 = 0

𝑥

∑ ||𝑥
𝑖
 − 𝑥'

𝑖
||

2

𝑥  

Fig. 4. presents the average Euclidean distance En of windows in each window-away distance at each

averaging duration. Consistent with the average of the modified rand index of the spectral clustering

result, the average Euclidean distance of windows separated by each window-away distance at each

averaging-over duration also shows the optimal window-away distance is 1 window away as the value of

E1 is lowest across durations. In other words, the Euclidean distance, or the physical similarity, between

the proximity matrices derived from the time windows that are separated by one window are overall

similar to each other across all averaging-over durations (or the window size). With this optimal window,

we are able to compare the durations at their most stable comparison rates of the windows.
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Figure 4. Average Euclidean distance En for the first eigenvectors set of the proximity matrices
derived from the windows that are distanced away by each window-away distance n at each
averaging duration dur. The average Euclidean distance En for the first eigenvectors of the proximity
matrices at each window-away distance is calculated by taking the average of the Euclidean distance En
between each two proximity matrices that are separated by n windows. Although the distribution of En
varies slightly for duration = 135 days and 140 days, the lowest Euclidean distance Enoccurs around
window-away distance n = 1.
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Selecting the Optimal Averaging Duration

With the average Euclidean distance En of the normalized proximity matrices’ first eigenvectors

generated from windows that are separated by different window-away distances n at different duration

dur, we compare average En for each window-away distance across all averaging-over durations to

evaluate the physical similarity between the proximity matrices generated by the different averaging

duration. By this comparison, we aim to find the averaging-over duration that has the lowest average

Euclidean distance across all different window-away distances which indicates the proximity matrices of

the time windows that are associated with this averaging-over duration are relatively stable and therefore,

optimal for representing the aggregated proximity matrix of the whole data collection period. In other

words, the identified optimal averaging-over duration provides an ideal duration that is capable to produce

the social structure that is relatively accurate to represent the overall social structure of the macaque

during the data collection period without using extensive data.

We expect a relatively lower value of the average Euclidean distance En across all window-away

distances n for an optimal averaging-over duration as it will indicate the relative physical stability of the

normalized proximity matrices. We will especially focus on examining the fluctuation of the average

Euclidean distance across the duration when the window-away distance = 1 window as the proximity

matrices from the windows that are separated by this distance generally have a relatively small difference

across all durations. We also expect the Euclidean distance Enof the optimal averaging-over duration to be

at an elbow point where the fluctuation, or decrease, of En begins to decline.

Comparing the Results With the Actual Matrilineal Genetic Tree

To verify the accuracy of the clustering result based on the optimal averaging-over duration, a

similarity matrix based on the genetic similarity of each dyad of macaque was built. The genetic similarity

was calculated based on the matriline connection of the 26 macaques. The genetic similarity score s

between individual x and itself is measured as 1 ( . Each n connection away individual𝑖. 𝑒.,  𝑠(𝑥,  𝑥) =  1)
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y will have the genetic similarity score s with x being . Therefore, the genetic similarity𝑠(𝑥,  𝑦) =  0. 5𝑛  

score of one’s parents and siblings is measured as 0.5 and the similarities to one’s cousins are measured as

0.25. Appendix A shows the calculated similarity matrix based on genetic similarity. A spectral clustering

with k = 6 was performed based on the genetic similarity matrix as shown in Fig. 5. The following is the

resulting cluster:

Cluster 1: {Nl16, 151MX, Mw16, Pw13}

Cluster 2: {Cn17, Ki18, Sr11, Nm17, Zc18, Iv11, Dt13, Do12, Fs16, Cc11, Gh10}

Cluster 3: {Aq15, Gm17, Ih11}

Cluster 4: {Id18, Nk15, Mm17, Mw13}

Cluster 5: {Mp11, Zd17, Oc16}

Cluster 6: {Ch12}

The result of the spectral clustering based on the genetic similarity matrix was compared with the

original and shuffled spectral clustering result generated at k = 6 across all windows in all averaging-over

durations by computing the modified rand index between them. By computing the modified rand index,

we are able to identify the averaging-over duration that has the most similar clustering result with the

clustering result of the genetic matrix on average. In other words, we will obtain the averaging-over

duration that can generate the social structures based on the proximity matrix of each of its windows that

are most similar to macaques’ actual matrilineal family structure on average.

Since the 3rd window was recognized as the optimal window representing all windows as

aforementioned, we also compared the 2-norm of the pairwise Euclidean distance between the genetic

similarity matrix and the normalized proximity matrices generated at the 3rd window across each

averaging-over duration to investigate the similarity between the two. The shuffled normalized proximity

matrices at the 3rd window of each duration were also compared across different durations with the

genetic similarity matrix by finding the 2-norm of the pairwise Euclidean distance between them. By

doing so, we can verify the previous comparison result. However, since the genetic similarity matrix is
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only based on the matriline family tree and our data include male macaques and the matrix only contains

an approximate discrete value of the pairwise genetic similarity, the comparison can produce an

inconsistent result.

Figure 5. Spectral clustering result based on the genetic similarity matrix. Cluster is generated by
spectral clustering on the genetic similarity at the number of clusters k = 6.
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Results

Background

The adaptation of the tracking device enables primate studies to obtain more comprehensive and

longitudinal behavior data of the animals. Nevertheless, such data often comes with enormous

computational challenges. In the previous relevant studies, it was discovered that data obtained at a very

short timescale is comparable with the actual human observational data (Gelardi et al., 2020). In addition

to the computational challenges, few studies focused on using longitudinal tracking data to generate and

infer the social network of the rhesus macaque. Therefore, this study is aimed to evaluate the accuracy vs.

temporal resolution for generating the social network of Rhesus Macaque with 154 days of data collected

from 2021 March 4th to 2021 August 4th. It specifically investigates the optimal averaging-over duration

among duration = {1 day, 7 days, 14 days, 21 days …, 140 days} for generating a stable network that can

relatively represent the network generated from the long-term timescale.

Results of Spectral Clustering Evaluated by Modified Rand Index

By calculating the average modified rand indexWn at duration = dur of each window-away distance n

for each averaging-over duration dur , we obtain∈  {1,  2,  3,  ...,  14} ∈  {1 𝑑𝑎𝑦,  7 𝑑𝑎𝑦𝑠,  ...,  140 𝑑𝑎𝑦𝑠}

Fig. 6. The x-axis in Fig. 6. shows the averaging-over duration and the y-axis shows the average modified

rand indexes of each averaging-over duration. Lines labeled by “o” are the average modified rand index

of non-shuffled clustering results across each averaging-over duration whereas the lines labeled by “x”

are the average modified rand index of shuffled clustering results. Different window-away distances are

distinguished by color labeled in legend.

The average modified rand index of the non-shuffled clustering results shows an increasing

pattern from averaging-over duration = 1 day to 14 days. The increasing pattern becomes stable after

averaging-over duration = 14 days. For window-away distance = 1 window (colored by the blue line

labeled as 1), the averaging modified rand index fluctuates within 0.05 after reachingWn = 0.95 at±

averaging-over duration = 14 days. Before this elbow point, the averaging modified rand index increased
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from 0.73 to 0.95. Similar patterns were observed for all other window-away distances. However, for

window-away distances 7 to 14 windows, there is over 0.05 increase in the average modified rand index

after averaging-over duration = 98 days. The increase slows and decreases slightly within 0.05 after

reaching averaging modified rand index 0.95 at averaging-over duration = 112 days. The average≥

modified rand indexes of the shuffled clustering results are generally below the result of the non-shuffled

clustering results. None of the fluctuation in the shuffled result across all different averaging-over

duration in each window-away distance is above 0.05.±

The similarity of the clustering results of all windows increased greatly from averaging-over

duration = 1 day (modified rand index = 0.73) to averaging-over duration = 7 days (MRI = 0.90) to

averaging-over duration = 14 days (MRI = 0.95). The increase of stableness drops as the averaging-over

duration reaches 14 days with the MRIs of the subsequent duration on the average increase within 0.03.



30

Figure 6. Average modified rand indexes of windows that fall into the bin in each averaging-over
duration for each window-away distance. The average MRI of each duration at each window-away
distance is calculated by taking the average of the modified rand indexes of the clustering results of the
windows that are separated by the window-away distance. The elbow point of the distribution occurs
around the averaging-over duration = 14 days.

Fig. 7. presents the six clusters resulting from the spectral clustering at k = 6, window = 3, and

averaging-over duration = 14 days. The result presents the following clusters,

Cluster 1: {Cn17, Ki18, Nm17, Sr11}

Cluster 2: {151MX, Mw16, Pw13}

Cluster 3: {Nl16}

Cluster 4: {Cc11, Ch12, Do12, Dt13, Fs16, Gh10, Id18, Mm17, Mp11, Mw13, Nk15, Oc16, Zd17}

Cluster 5: {Gm17}

Cluster 6: {Aq15, Ih11, Iv11, Zc18} .
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Fig. 8. presents the average modified rand index between the clustering result (original and

shuffled) based on the proximity matrices generated with different averaging-over durations across all its

windows and the clustering result based on the genetic similarity matrix. The MRI peaked around

averaging-over duration = 14 days, which is consistent with the average MRI of the clustering result of

windows. The highest modified rand index between the original spectral clustering results based on the

proximity matrix and the genetic similarity matrix occurs at duration =14 days with MRI = 0.62. The

error bars are calculated by the standard deviation of the rand indexes of windows within individuals’

duration compared to the clustering result of the genetic similarity matrix.

Fig. 9. shows the 2-norm of the pairwise Euclidean distance between the genetic similarity matrix

and the proximity matrix (at the 3rd window) generated across the averaging-over duration. All shuffled

proximity matrices have a higher value of the 2-norm. The lowest 2-norm occurs when averaging-over

duration = 1 day. However, the overall differences between the Euclidean distances at each

averaging-over duration are within 2.±
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Figure 7. Spectral clustering results at k = 6, window = 3rd, averaging-over duration = 14 days. The
spectral clustering is based on the aggregated proximity matrix generated by the data from 2021/03/06 to
2021/03/19.
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Figure 8. Average of modified rand index between the spectral clustering result based on the genetic
similarity matrix and the proximity matrices that are generated by all windows at different
averaging-over durations. The average modified rand index at each averaging-over duration is
calculated by taking the average of the modified rand indexes between the spectral clustering result of the
genetic similarity matrix (k = 6) and the clustering results of the normalized proximity matrices generated
by each window at the averaging-over duration. The shuffled clustering result indicates the normalized
proximity matrix-based spectral clustering result was shuffled and then compared with the clustering
result of the genetic similarity matrix. The error bar is calculated by the standard deviation of the
modified rand indexes at each averaging-over duration. The averaging-over duration that has the highest
value of the average modified rand index with the non-shuffled clustering result is 14 days.
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Figure 9. 2-Norm of the pairwise Euclidean distance between the genetic similarity matrix and the
proximity matrices (at the 3rd window) generated across averaging-over durations. The 2-norm of
the pairwise Euclidean distance at each averaging-over duration was computed by finding the square root
of the largest eigenvalue of the pairwise distance matrix's inner product matrix. The pairwise distance
matrix is computed by finding the Euclidean distance between the normalized proximity matrix of the 3rd
time window at each duration and the genetic similarity matrix. The lowest 2-norm of the pairwise
distance occurs at duration = 1 day. The magnitude, or the 2-norm, of the distance between the two
matrices, stays consistent after duration = 1 day.

Results of Euclidean Norm of the First Eigenvectors

By computing the average Euclidean distance Enof the first eigenvector sets associated with

normalized proximity matrices that are generated from the window pairs that fall into each window-away

distance n for each averaging-over duration dur ,∈  {1,  2,  3,  ...,  14} ∈  {1 𝑑𝑎𝑦,  7 𝑑𝑎𝑦𝑠,  ...,  140 𝑑𝑎𝑦𝑠}

we obtain Fig. 10. The x-axis in the figure denotes the averaging-over durations and the y-axis in the

figure denotes the average Euclidean distance En. Different window-away distances are distinguished by

color labeled in legend. The average Euclidean distance shows a decreasing pattern from averaging-over

duration = 1 day to 49 days across all different window-away distances. For window-away distance = 1

window, the lowest Euclidean distance E1occurs at averaging-over duration = 105 (En= 0.17). The elbow

point of the trend occurs around averaging-over duration = 28 days, where the changes after the point
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remain within the interval of 0.4. For window-away distance other than one window, the average±

Euclidean distance En fluctuates across the averaging-over durations within the interval of 0.8.±

Throughout all window-away distances, the average Euclidean distance En reaches the relatively lowest

value around duration = 49 days.

Social Network Generated Based on the Selected Data

Fig. 11. and Fig. 12. present the social network generated by the normalized proximity matrices

with the averaging-over duration = 14 days and window = 3rd. The edge width represents the proximity

between the dyads.

Figure 10. Average L2 norm (Euclidean distance) of the first eigenvectors of each averaging-over
duration at each window-away distance. The average L2 norm of the first eigenvectors at each
averaging-over duration and window-away distance is calculated by taking the average of the L2 norm of
the first eigenvectors of the proximity matrix from the windows separated by the window-away distance
at the duration. The value of the L2 norm is the lowest for window-away distance = 1 window around
duration = 28 days.
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Figure 11. The social network of 26 rhesus macaques based on their normalized aggregated
proximity score from 2021/03/06 to 2021/03/19
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Figure 12. The social network of 26 rhesus macaques based on their normalized aggregated
proximity score from 2021/03/06 to 2021/04/02
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Discussion

The macaque species share important social cognition and behavior characteristics with humans.

As tightly connected as their social structure with their social behavior, studying the social structure of

macaques can reveal significant insights into human psychology and behavior, such as social learning

capabilities (Fiore et al., 2020). In addition to their significance in social behavior and psychology studies,

they are also critical model organisms for modeling infectious disease transmission of their great

similarity to human physiology, neurobiology, and susceptibility. Therefore, it becomes critical to acquire

accurate knowledge of their social structure. With the advancement of technology, animal behavior

studies are able to collect continuous high-resolution positional data with tracking devices that can

overcome the time limitations of traditional observational studies. However, such data collection methods

often come with huge computational challenges. Since very few studies in the past have used longitudinal

tracking-device data to infer the social network of rhesus macaque and little focused on finding the

solution for resolving the computational challenges in using such data in inferring macaque’s social

structure, this study focuses on examining the social network generated with different averaging-over

durations. It specifically focuses on analyzing the networks generated with different short-term time

frames within the half-year data collection period (from 2021/03/04 to 2021/08/04) and determining the

optimal averaging-over duration for generating a stable and accurate social network of the sampled rhesus

macaques. In summary, the result suggests sampling 14 days or 28 days are the potential optimal

averaging-over durations for generating a stable network that can represent the whole period from

2021/03/04 to 2021/08/04.

With the normalized proximity matrices generated from different averaging-over durations of 1

day, 7 days, …, 140 days, we obtained different spectral clustering results at the number of clusters k= 6.

By computing the average modified rand indexes of the clustering results of windows that are separated

by each window-away distance across all averaging-over duration, we found the elbow point of increasing

trend occurs at the 14-day duration over all window-away distances from 1 to 14 windows as shown in

Fig. 6., indicating using 14 days data throughout different time windows can generate a relatively stable
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proximity matrix or the social network of macaques, that can relatively well-represents their social

structure in the whole short-term period of 154 days with the minimum amount of data. For instance, the

spectral clustering’s results of the normalized aggregated proximity matrix generated by averaging over

14-days duration stay more consistent throughout the time windows {(2021/03/04 to 2021/03/17),

(2021/03/05 to 2021/03/18), …} than the clustering results generated by all the time windows that are

averaging over the 1-day duration, which include the window {2021/03/04, 2021/03/05, …}. In other

words, sampling randomly 14 consecutive days of data can produce a social structure that is relatively

well-representing the social structure of the entire 154-day data collection period since the normalized

aggregated proximity matrix of 14-day averaging-over duration produce the spectral clustering results that

have the highest similarity, or stability, with each 14-days time window.

As shown in Fig. 6., for window-away distances = 6 windows to 14 windows, there is another

elbow point around averaging-over duration = 112 days where the average rand index increase 0.05 in≥

the previous three consecutive durations. This might be due to the effect of the sample size decrease for

these window-away distances as the slope of change of the average modified rand index becomes steeper

as the window-away distance becomes larger around averaging-over duration = 112 days. The overall

lower average modified rand index for larger window-away distance across all durations also

demonstrates this point. Compared to the original clustering results, the shuffled clustering results

consistently produced a lower value of modified rand indexes with each window-away distance

throughout the averaging-over durations. Therefore, the distribution of the modified rand index of the

original clustering result is not generated by chance. The stableness of the social network, or the

clustering results, measured by the proportion of similar clustering between the time windows of the

duration, increased greatly from averaging-over duration = 1 day (MRI = 0.73) to averaging-over duration

= 7 days (MRI = 0.90) to averaging-over duration = 14 days (MRI = 0.95). The increase rate of stableness

drops as the averaging-over duration reaches 14 days with the proportion of similar clustering of the

subsequent duration on the average increase within 0.03. Overall, comparing the average rand index of

the spectral clustering at different window-away distances across all different averaging-over duration
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shows averaging over 14 days of data is the optimal point for generating the social network of rhesus

macaques sampled in this study.

Apart from the average modified Rand indexes between proximity matrices, the study also

examined the average modified Rand indexes between the spectral clustering results of the genetic

similarity matrix and proximity matrices generated from all windows across the averaging-over durations

(as shown in Fig. 8.). The results indicate that the duration of 14 days has the highest MRI, suggesting

that the normalized proximity matrices generated from 14 days of data can effectively represent the

genetic similarity matrix. This finding confirms that the social structure inferred from 14 days of data can

well-represent the social structure during the 154-day data collection period on average. The study found

that the similarity between the proximity matrix-based spectral clustering result and the clustering result

of the genetic similarity matrix increased from duration = 1 day to 14 days (MRI = 0.6 to 0.61) and then

decreased from duration = 14 days to 140 days (MRI = 0.56) with a change of 0.1. The average modified

rand index between the clustering result of the genetic similarity matrix and the shuffled clustering results

from the normalized proximity matrices produced results that are overall lower than the values sampled

from the original proximity matrices which shows the finding is not necessarily due to randomness.

However, it should be noticed that the physical values of changes of the average MRI across all durations

are relatively small ( 0.1) and the value is consistently located within the interval of 0.52 to 0.62 which±

might potentially be due to the overgeneralization of the entries in the genetic similarity matrix. For

example, macaque 151MX was not in the matriline family tree and therefore, he will have zeros for all the

connections to female macaques in the genetic similarity matrix. Nevertheless, 151MX has a strong bond,

or high proximity score, with Mw16 throughout the data sampling period. Therefore, the inaccurate or

overgeneralized genetic similarity score between dyads may lead to a lower value of the average modified

index.

Similarly to the spectral clustering results, the magnitude (2-norm) of the pairwise Euclidean

distance between the genetic similarity matrix and the proximity matrices (at the 3rd window, selected by

the analysis described in the method section) across averaging-over durations shows very small changes
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throughout the durations as shown in Fig. 9. Only results from one-day duration to seven-day duration

have come through an increase of 1.5. After duration = 7 days, the magnitude of the pairwise Euclidean

distances between the genetic similarity matrix and the proximity matrices stay consistently around 39.5.

The shuffled proximity matrices also consistently have a higher value of Euclidean distance compared to

the original proximity matrices, indicating the distribution was not due to randomness. Therefore, both the

average modified rand index between the spectral clustering result of the genetic similarity matrix and the

proximity matrices generated by different averaging-over duration and the Euclidean distance between the

genetic similarity matrices and proximity matrices (Fig. 6., Fig. 8., Fig. 9.) demonstrates two points:

1. The proximity matrices generated from different averaging-over durations of 1 day, 2 days,...140

days all can approximately represent 50% to 60% of the overall matriline structure. In other

words, the proximity between macaques follows about 50% to 60% of the matriline genetic

closeness pattern.

2. The proximity between macaques, or their social structure, stays relatively stable throughout

different averaging-over durations in terms of their deviation from their actual genetic similarity

tree.

The above two points may ultimately imply the relatively stable nature of rhesus macaque’s social

structure in terms of how they follow the matriline genetic closeness for the affiliative behavior of staying

in close proximity with others. Indeed, female rhesus macaques show a stable preference for associating

with kin (Beisner et al., 2010). Nevertheless, the closed matrilines defined by genetic connection can be

broken down by events such as mothers of individuals who are closely related succumbing to predation,

old age, or illness (Beisner et al., 2010). Such fragmentation of matrilines might as well explain the

relatively medium similarity between the proximity matrices and genetic similarity matrices across all

different durations. Regardless of the stable patterns overall, the averaging-over duration = 14 days still

shows a relatively higher index for the metrics and therefore, indicating it can effectively represent the

social structure of the macaques during the whole data collection period.
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Besides the comparison with the matriline genetic similarity matrix, the study also compared the

average Euclidean distance of the proximity matrices generated by each averaging-over duration at each

window-away distance as shown in Fig. 10. Different from the distribution from the previous analysis, the

Euclidean distance of the proximity matrices’ first eigenvectors of the windows falling into the

window-away distance at each duration has the elbow point of decreasing at duration around 28 days

across window-away distance 1 to 6 windows (Fig. 10.), which indicates 28 days of data can acquire us a

relatively stable proximity matrix. For window-away distance = 7 windows to 14 windows, the elbow

point shifts from 28 to 42 days averaging over durations. Since our previous analysis on window-away

distance suggests window-away = 1 window returns the relatively most stable output, we will recognize

28 days duration as the relatively optimal point for the averaging-over duration suggested by the

Euclidean distance.

The different optimal averaging-over duration suggested by the two analyses, Euclidean distance

between eigenvectors of proximity matrices generated by different durations, and the spectral clustering

result modified rand index across the different durations, might be due to the underlying methodological

and algorithmic differences of the comparison of physical matrices and the clustering results. Since the

Euclidean distance to the genetic matrix shows very little difference between the two durations, it is

necessary to have observational data to compare and validate the two networks generated by the two

different averaging durations. Nevertheless, there were no currently validated social networks constructed

based on the observational data for the 26 macaques. Therefore, the study presents the generated networks

based on the two potential optimal averaging-over durations in Figures 11 and 12 and their associated

descriptive network measures in Appendix B for future analysis.

In conclusion, through conducting spectral clustering and analyzing the modified rand index

between windows falls into the same window-away distance bin at each averaging-over duration (as

shown in Fig. 6.) we were able to find the optimal averaging-over duration is 14 days. This result was also

confirmed by the analysis of the average modified rand index between the clustering results from genetic

similarities matrices and proximity matrices generated across durations (as shown in Fig. 8.). A nearby
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duration of 28 days was also suggested to be optimal according to the Euclidean distance of the first

eigenvector sets of the proximity matrices from the windows falls into each window-away distance bin

across the averaging-over durations (as shown in Fig. 10.). Therefore, this study found 14 days and 28

days of data can produce a social network that can relatively represent the social network during the

whole data collection period of 154 days compared to other durations. The social structure produced by

14 days of data on average has a higher similarity with the actual matrilineal genetic similarity structure.

Limitations and Future Directions

Due to the time limitation, data were only sampled for a five-month period and analyzed with

1-day, 7-day, …, and 140-day averaging-over durations. If time allows, sampling data for all three years

data sampling period 2018/08 to 2022/01 will reveal more insights into the changes in the network over

time since it permits potential time for detecting the actual social structure change among the macaques.

The lack of the observational data constructed network also limited the capability of this study to verify

its finding. Also, the genetic matrix only contains matriline females, and therefore, the comparison result

between it and the proximity matrices in the study might not be accurate. Therefore, the future research

direction can be analyzing the accuracy vs. temporal resolution of social networks generated from

longitudinal data by comparing the result with actual social networks built from the observational data to

discover the true optimal sampling rates. It will also be interesting to evaluate and compare the dynamic

network of different non-human primate species generated from longitudinal data to investigate how

network changes can vary across species. From the network analysis perspective, changing the network to

directed edges, and adding the parameter of gender and age might all provide significant insights into

understanding the network changes over time, the social structure of the analyzed species, and the

hierarchy of the primates.
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